
PRISM: Simple And Compact Identification and
Signatures From Large Prime Degree Isogenies

Andrea Basso1, Giacomo Borin1, Wouter Castryck2, Maria Corte-Real Santos3,
Riccardo Invernizzi2, Antonin Leroux4,5, Luciano Maino6, Frederik Vercauteren2,

and Benjamin Wesolowski3

1 IBM Research Europe, Zürich, Switzerland
2 COSIC, KU Leuven, Belgium

3 ENS de Lyon, CNRS, UMPA, UMR 5669, Lyon, France
4 DGA-MI, Bruz, France

5 IRMAR - UMR 6625, Université de Rennes, France
6 University of Bristol, Bristol, United Kingdom

Abstract. The problem of computing an isogeny of large prime degree
from a supersingular elliptic curve of unknown endomorphism ring is
assumed to be hard both for classical as well as quantum computers. In
this work, we first build a two-round identification protocol whose security
reduces to this problem. The challenge consists of a random large prime q
and the prover simply replies with an efficient representation of an isogeny
of degree q from its public key. Using the hash-and-sign paradigm, we
then derive a signature scheme with a very simple and flexible signing
procedure and prove its security in the standard model. Our optimized
C implementation of the signature scheme shows that signing is roughly
1.8× faster than all SQIsign variants, whereas verification is 1.4× times
slower. The sizes of the public key and signature are comparable to
existing schemes.

Keywords: Isogenies · Post-Quantum · Signatures · ID Protocols

1 Introduction

Post-quantum cryptography aims to construct cryptographic protocols that are
secure against adversaries with access to both classical and quantum computers.
This field has recently gained interest from the community due to the increased
investment into quantum computing. Most notably, in 2016, NIST began an
effort to standardise post-quantum secure key encapsulation mechanisms (KEMs)
and digital signature schemes. This culminated in the standardisation of the
lattice-based KEM Kyber [14] and signature schemes Dilithium [27], Falcon [32],
and the hash-based signature SPHINCS+ [9]. NIST, however, is still seeking
alternative signature schemes for standardisation [42] due to the heavy reliance

PRISM stands for PRime degree ISogeny Mechanism



on lattice-based assumptions, and the relatively large signature sizes compared
to pre-quantum alternatives.

Isogeny-based cryptography offers a promising answer to these problems.
For instance, the isogeny-based signature scheme SQIsign boasts the smallest
combined public key and signature size of any post-quantum alternative. It is
currently submitted to Round 1 of NIST’s alternate call for post-quantum secure
signature schemes [16]. The main disadvantage of SQIsign and isogeny-based
schemes in general is their inefficiency: signing and verification are orders of
magnitude slower than lattice-based alternatives. As such, a large portion of
research in isogenies has focused on optimizing the subroutines of SQIsign, see
for example [24,17]. Recently, impressive strides have been made in this regard by
exploiting the attacks on SIDH/SIKE [15,39,45]. Indeed, these attacks uncovered
a powerful tool: using higher-dimensional representations, we can efficiently
represent a one-dimensional isogeny of non-smooth degree by embedding it in a
higher-dimensional isogeny of smooth degree between products of elliptic curves.
The efficiency of the protocol depends on the embedding dimension of the isogenies
used in this representation.

The first variant of SQIsign that used the SIDH attacks constructively was
SQIsignHD, which relied on four-dimensional representations to obtain an im-
pressive speed-up in the signing time and even smaller signatures than SQIsign.
Verification, however, suffered from the heavy cost of computing four-dimensional
isogenies. A wave of new protocols — SQIsign2D-West [6], SQIsign2D-East [41]
and SQIPrime [28] — presented new variants of SQIsign making use of two-
dimensional representations. These two-dimensional variants of SQIsign achieve
signature sizes comparable to SQIsignHD, faster signing than SQIsign (though
slower than SQIsignHD), and verification faster than both.

Another drawback that affects all variants of SQIsign is their design complexity.
The intricate signature process complicates the description of the scheme, and
this reflects both in the security analysis and in the flexibility of the design.
The former issue leads to security proofs requiring specific ad-hoc oracles and
assumptions. The latter makes it hard to use these schemes as a building block
for more elaborated protocols. Despite its extremely compact signatures, after
several years since its initial publication, only a few advanced functionalities
based on SQIsign have been proposed, see e.g. [13,44].

High-dimensional isogenies were used in a different manner by Leroux in [38]
to introduce an efficient Verifiable Unpredictable Function (VUF), from which a
Verifiable Random Function and the first isogeny-based hash-and-sign signature
scheme can be derived. The function underlying Leroux’s construction computes
the codomain of an isogeny of given kernel, where the kernel has a fixed large
prime order. The security thus relies on the hardness of computing such a function
without the knowledge of the endomorphism ring of the domain curve.

Contributions. We present a new isogeny-based identification protocol, which
we transform into a signature scheme PRISM-sig via the hash-and-sign paradigm.
The security of both schemes relies on the fact that computing a large prime degree

2



isogeny from an elliptic curve E is conjectured to be hard without knowledge of
the endomorphism ring of E. The identification protocol is very simple:

1. The prover samples a secret key ϕsk : E0 → Evk with corresponding public
key Evk.

2. A verifier challenges the prover with a large prime q.
3. The prover replies with a two-dimensional representation of a degree-q isogeny

from Evk.

The simplicity of the above protocol and the derived signature scheme, particularly
when compared to SQIsign and its variants, improves the flexibility of the scheme
and makes it easier to assess its security. In particular, we obtain an isogeny-based
signature scheme that is secure in the standard model. In view of the simplicity,
we also expect our construction to be a useful building block in other, more
advanced schemes.

Our contributions are summarized as follows:

– In Section 3, we construct a new efficient identification protocol, which we
call PRISM-id. Unlike other isogeny-based ID protocols, PRISM-id is not a
Σ-protocol: this leads to smaller communication costs and more efficient
computations. After constructing an appropriate hash function, we obtain
a signature scheme (PRISM-sig) based on our identification protocol via the
hash-and-sign paradigm. The resulting signature scheme is simple, flexible,
compact, and efficient: at NIST security Level I, public keys and signatures
are only 66 and 189 bytes, while signing and verifying take less than 70 and
8 ms, respectively.

– In Section 4, we prove the security of both the identification scheme and
the signature scheme in the standard model, showing that their hardness is
linked to well-understood problems in isogeny-based cryptography. For the
signature scheme, we also prove security under a weaker assumption in the
random oracle model.

– In Section 5, we propose concrete parameters for our schemes for NIST Level
I, III, and V security, and we provide an optimized implementation in C of
PRISM-sig at Level I. We compare its efficiency and key/signature sizes with
other variants of SQIsign. We also compare PRISM-id and PRISM-sig, and
observe that PRISM-id has a faster verification and much lower communication
costs. The reason is that to instantiate a secure signature scheme via the
hash-and-sign paradigm we need to avoid hash collisions, forcing us to select
larger parameters for PRISM-sig compared to PRISM-id.

Related work. Our construction shares strong conceptual similarities with
Leroux’s verifiable unique function (VUF) [38] as they both rely on the hardness
of computing large degree isogenies without the knowledge of the endomorphism
ring. The main difference lies in the degree of the response isogenies: in [38],
the isogenies have fixed degree, whereas in our case the degree is the challenge,
and it thus changes across executions. As a result, our choice of parameters

3



is less constrained, and our security is arguably better. Indeed, the response
isogeny has kernel defined over a field extension of exponential degree with
overwhelming probability (whereas in [38] the kernel is defined over a small field
extension), which provides us with additional security guarantees even if there
were breakthroughs in the computation of large prime degree isogenies.

Compared to SQIsign and its variants, our scheme is significantly simpler. Not
only does this simplicity make it easier to analyze and implement the protocol,
but it also leads to faster signing times. Our signing procedure requires computing
fewer two-dimensional isogenies compared to all the SQIsign variants, and no
one-dimensional isogenies at all, leading to a 1.8× speedup when compared
to SQIsign2D-West. On the other hand, verification is slightly slower: it takes
roughly 1.4× longer than the verification in SQIsign2D-West. The signature size
is very compact, which is comparable with most other isogeny-based protocols.
For instance, it is the same as SQIsign2D-East.

Outline. We begin by introducing the necessary background in Section 2.
In Section 3 we introduce the new identification protocol and digital signature
scheme based on large prime degree isogenies, and prove their security in Section 4.
Finally, in Section 5 we evaluate the performance of our schemes, both in terms
of efficiency and communication cost.

Acknowledgements. This work was supported in part by the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement ISOCRYPT - No. 101020788), by the
Research Council KU Leuven grant C14/24/099 and by CyberSecurity Research
Flanders with reference number VR20192203. This work was supported in part
by SNSF Consolidator Grant CryptonIs 213766.

2 Preliminaries

In this section we recall some background knowledge about the Deuring corre-
spondence, computation of isogenies in dimension two and different variants of
the SQIsign protocol. We assume some familiarity with elliptic curves and their
isogenies, and refer the reader to [22,47] for more information. From this point
onwards, p is a prime with p ≡ 3 (mod 4).

2.1 Quaternion algebras and the Deuring correspondence

We start by introducing quaternion algebras. A quaternion algebra over Q is a
division algebra defined by Q+Qi+Qj+Qk, where i2 = a, j2 = b, ij = −ji = k
for some a, b ∈ Q∗. We denote it by H(a, b). We say that H(a, b) is ramified at a
place v of Q if the extension of scalars H(a, b)⊗Q Qv is not isomorphic to the
algebra of 2× 2 matrices over Qv. Up to isomorphism, for a given prime p there
exists a unique quaternion algebra ramified exactly at p and ∞, which we denote

4



by Bp,∞. Since we assume p ≡ 3 mod 4, we can choose a basis such that i2 = −1
and j2 = −p.

For a given element α = a + bi + cj + dk ∈ Bp,∞ we define its conjugate
ᾱ := a − bi − cj − dk and its reduced norm nrd(α) := αα. A fractional ideal
in Bp,∞ is a Z-submodule of rank 4. An order O is a fractional ideal that is
also a subring. An order is maximal if it is not properly contained in any other
order. Let I be a fractional ideal in Bp,∞. We define the left order of I to be
OL(I) := {α ∈ Bp,∞ | αI ⊂ I}. We can similarly define the right order OR(I) of
a fractional ideal I, and I is called a connecting ideal for OL(I) and OR(I). If
I is contained in its left order (or, equivalently, in its right order) then it is an
integral ideal, or just an ideal for short.

For a fractional ideal I, we denote its conjugate by I = {α | α ∈ I}. The
reduced norm of an ideal I, denoted by nrd(I), is defined as the gcd of the
reduced norms of the elements of I. For a maximal order O, any left O-ideal I
can be written as I = Oα + Onrd(I) for some α ∈ I. Two ideals I and J are
equivalent if there exists β ∈ B∗p,∞ such that I = Jβ. We denote equivalence by
I ∼ J . A more detailed discussion of quaternion algebras can be found in [51].

The Deuring Correspondence. Deuring [26] showed a categorical equivalence
between maximal orders in Bp,∞ and supersingular elliptic curves defined over
Fp2 . This equivalence is known as the Deuring correspondence. Under this corre-
spondence, to each maximal order O of Bp,∞ we can associate a supersingular
elliptic curve E over Fp2 such that End(E) ∼= O. An isogeny φ : E1 → E2

corresponds to an ideal Iφ, where OL(Iφ) ∼= End(E1) and OR(Iφ) ∼= End(E2).
Moreover, deg(φ) = nrd(Iφ).

Example 1. Since p ≡ 3 mod 4, the elliptic curve E0 : y2 = x3 + x defined over
Fp2 is supersingular. We can define endomorphisms ι : (x, y) 7→ (−x,

√
−1y) and

π : (x, y) 7→ (xp, yp) of E0, where
√
−1 is a fixed square root of −1 in Fp2 . We

have the following isomorphism of rings:

O0 := Z
〈
1, i,

i+ j

2
,
1 + k

2

〉
−→ End(E),

a+ bi+ cj + dk 7−→ a+ bι+ cπ + dιπ.

Throughout the paper, we will always denote by E0 the curve y2 = x3 + x.

Pushforward Isogenies and Ideals. Consider an isogeny φ1 : E → E1 and
a separable isogeny φ2 : E → E2 of degree coprime to deg(φ1). We denote by
[φ1]∗φ2 : E1 → E′ the pushforward isogeny of φ2 under φ1, i.e., the separable
isogeny such that ker([φ1]∗φ2) = φ1(ker(φ2)); see Figure 1.

Under the Deuring correspondence, we can define the pushforward of Iφ2

under Iφ1
as the left ideal of OR(Iφ1

) corresponding to the isogeny [φ1]∗φ2, and
we denote it by [Iφ1

]∗Iφ2
. By [23, Lemma 3] it can be computed as

[Iφ1
]∗Iφ2

=
1

nrd(Iφ1)
Iφ1

(Iφ1
∩ Iφ2

). (1)

5



E E1

E2 E′

φ1

φ2 [φ1]∗φ2

Fig. 1. Pushforward isogeny of φ2 under φ1.

We summarize the Deuring correspondence in Table 1.

Supersingular elliptic curves Quaternions

Supersingular j-invariants j(E) ∈ Fp2 Maximal orders O ∼= End(E) in Bp,∞
(up to Galois conjugacy) (up to isomorphism)
(E1, φ) with φ : E → E1 Iφ integral left O-ideal and right O1-ideal
θ ∈ End(E) Principal ideal Oθ
deg(φ) nrd(Iφ)

φ̂ Iφ

φ : E → E1, ψ : E → E1 Equivalent ideals Iφ ∼ Iψ
τ ◦ ρ : E → E1 → E2 Iτ◦ρ = Iρ · Iτ

Table 1. The Deuring correspondence, a summary given in [24].

2.2 Kani’s Lemma

Kani’s Lemma [35] gives a criterion to compute isogenies of dimension one using
isogenies of dimension two. It was at the heart of the recent SIDH attacks
[15,39,45], but it quickly turned into a powerful building block for isogeny-based
protocols. We will extensively use it in this work. Our formulation follows [39].

Theorem 1 (Kani). Let d1, d2 and N be pairwise coprime integers such that
N = d1 + d2, and let E0, E1, E2, and E3 be elliptic curves connected by the
following diagram of isogenies:

E0 E1

E2 E3

φ1

ψ2 φ2

ψ1

6



such that deg(φ1) = deg(ψ1) = d1, deg(φ2) = deg(ψ2) = d2 and φ2◦φ1 = ψ1◦ψ2.
Then the map

Φ =

(
φ1 φ̂2

−ψ2 ψ̂1

)
: E0 × E3 → E1 × E2

is an isogeny of (principally polarized) abelian varieties with kernel

ker(Φ) = {(φ̂1(P ), φ2(P )) | P ∈ E1[N ]} ∼=
Z
NZ
× Z
NZ

.

Assuming that N is powersmooth, or N is smooth and all N -torsion points are
rational, the isogeny Φ can be efficiently evaluated at any point on E0 ×E3. E.g.,
if N = 2a for some a ≥ 1 then one can use [21]. In this case, the generators of
the kernel defining Φ encode an efficient two-dimensional representation of φ1.

2.3 Ideal To Isogeny Translation

Translating ideals into the corresponding isogenies under the Deuring correspon-
dence is a fundamental task in isogeny-based cryptography. A first breakthrough
was made in 2014 by Kohel, Lauter, Petit and Tignol [36], who introduced the
KLPT algorithm that is at the heart of the SQIsign protocol. The KLPT al-
gorithm can be turned into a polynomial-time method for converting ideals to
isogenies, but this is usually inefficient in practice, due to the large degree of the
auxiliary isogeny appearing in the process, whose kernel elements are in general
defined over large field extensions only. Recently, higher dimensional isogenies
gave a new algorithmic tool for converting ideals to isogenies, as demonstrated
in the recent versions of the SQIsign signature scheme [6,41,28]. In particular,
the IdealToIsogeny algorithm from SQIsign2D-West [6] can efficiently translate
any left O0-ideal, where O0 = End(E0), to the corresponding isogeny originating
at E0 when working over Fp2 with p = f2e − 1, for some small odd f > 0.

Let I be a left O0-ideal. Their algorithm consists of four main steps:

1. Find I1, I2 ∼ I of coprime norms d1, d2 ≈
√
p and u, v such that d1u+ d2v =

2e, with d1u coprime to d2v;
2. Evaluate two isogenies φu, φv of degrees u, v on E0[2

e];
3. Letting φ1 be the isogeny associated to I1, use Kani’s Lemma to compute

the isogeny φ1 ◦ φ̂u;
4. Use φ1 ◦ φ̂u to recover φI .

We now briefly detail each step. A more detailed description of each step can be
found in [6, §4.2]. The first step consists in sampling elements β1 and β2 in I
until the (reduced) norms d1, d2 of I1 = Iβ1/nrd(I), I2 = Iβ2/nrd(I) satisfy the
equation d1u+ d2v = 2e for some u, v > 0. The chance of finding a valid pair is
higher for smaller d1, d2. For this reason, one needs to select β1 and β2 among
the shortest vectors of I; a heuristic argument detailed in [6, Section 4.2] suggests
that a solution can be found efficiently, and this is verified experimentally. We

7



note that, unlike other similar algorithms, this algorithm does not impose a
bound on the norm of the ideal I that is translated.

The second step is a direct application of the QFESTA algorithm [40] for
computing isogenies of fixed degree for the coefficients u and v. This method is
also discussed in Appendix A.2.

For the third step, let φ1 be the isogeny associated to I1, and φ2 the one
associated to I2. The main idea is inspired by [43]. It consists of embedding
the isogenies φ1 ◦ φ̂u and φ2 ◦ φ̂v, of degree d1u and d2v respectively, into a
(2e, 2e)-isogeny using Kani’s Lemma. To determine the kernel of this isogeny, we
can use a method similar to the one employed for the Step 2 (again see also
Appendix A.2). Finally, from this higher dimensional isogeny, it is possible to
evaluate φ1 ◦ φ̂u, and use it to recover φI by applying [6, Lemma 11].

2.4 Identification Protocols and Digital Signatures

Identification protocols and digital signatures are basic cryptographic building
blocks that share some similarities, for example a digital signature scheme implies
an identification protocol (see [48, Section 10.3]), but have important differences
in their definition and security notions.

Definition 1 (Definition 18.1 [12]). An identification protocol is a triple of
probabilistic polynomial-time algorithms (KeyGen,Pvr,Vrf) such that:

– (vk, sk)← KeyGen(1λ), is a probabilistic key generation algorithm, that takes
as input a security parameter λ, and outputs a pair (vk, sk), where vk is called
the verification key and sk is called the secret key;

– Pvr(sk), is an interactive protocol algorithm, called the prover, that takes as
input the secret key sk;

– accept/reject← Vrf(vk) is a probabilistic interactive protocol algorithm, called
the verifier, that takes as input the verification key vk and outputs accept or
reject.

We model the interaction with the following notation: output← Vrf(vk) ⇌ Pvr(sk).

We say that the identification scheme is correct if Vrf outputs accept with
probability 1 over the choice of (vk, sk)← KeyGen(1λ) and over the randomness
in the involved algorithms, i.e., if

Pr [accept← Vrf(vk) ⇋ Pvr(sk)] = 1.

We consider the security against active attacks, following Boneh and Shoup [12,
Definition 18.8].

Definition 2 ([12]). Consider the following three phase impersonator game for
an adversary A:

– Setup: a key pair (vk, sk)← KeyGen(1λ) is generated and the adversary A
receives vk;

8



– Probing: the adversary A can interact multiple times with an honest prover
Pvr(sk) and store the interaction outputs in a state st:

st← A(vk, st) ⇋ Pvr(sk);

– Impersonation: the adversary A(vk, st) interacts with an honest verifier
Vrf(vk):

outputA ← Vrf(vk) ⇋ A(vk, st).

The adversary wins if the verifier accepts, i.e., outputA = accept.

An identification protocol is secure against active attacks if for any PPT adversary
A playing the impersonator game it is not able to authenticate with non-negligible
probability, i.e., Pr [outputA = accept] = negl(λ).

A particular class of identification protocols are Σ-protocols. These are three-
round interactive protocols usually referred to as the commitment, challenge
and response phase, represented by a transcript (com, chall, resp). An example
of a Σ-protocol is the identification protocol underlying SQIsign, that we recall
in Section 2.5. Due to the Fiat–Shamir transform [31], secure Σ-protocols can
be efficiently transformed into secure signature schemes. Thus, many signature
schemes, such as SQIsign, are constructed in this manner.

Definition 3. A digital signature scheme consists of three probabilistic polynomial-
time algorithms (KeyGen,Sign,Vrf) such that:

– (vk, sk)← KeyGen(1λ): On input a security parameter λ, the key generation
algorithm outputs a pair of verification and signing keys (vk, sk);

– σ ← Sign(sk,msg): On input a signing key sk and a message msg, the signing
algorithm outputs a signature σ;

– accept/reject ← Vrf(vk,msg, σ): On input a verification key vk, a message
msg and a signature σ, the verification algorithm outputs accept or reject.

A signature scheme is correct if, given (vk, sk)← KeyGen(1λ), for any message
msg and signature σ ← Sign(sk,msg) a run of Verify(vk,msg, σ) outputs accept
with probability 1.

Definition 4. A digital signature is secure in the EUF-CMA model if for any
PPT adversary A playing the game from Figure 2 it is not able to obtain a valid
signature on a non-queried message, i.e.,

AdvEUF-CMA
A (λ) = Pr

[
Guf(A) = win

]
= negl(λ). (2)

9



Guf(A):
1: (vk, sk)← KeyGen(1λ)
2: M← ∅
3: (msg∗, σ∗)← ASign′(vk)
4: assert msg∗ ̸∈ M
5: assert Vrf(vk,msg∗, σ∗) = accept
6: return win

Sign′(msg):
1: σ ← Sign(sk,msg)
2: M←M∪ {msg}
3: return σ

Fig. 2. Security game for the EUF-CMA property

2.5 SQIsign and its variants

SQIsign [23] is a signature scheme derived from an isogeny-based Σ-protocol. It
is represented by the following diagram:

E0 Ecom

Evk Echall

ϕsk

ψcom

ϕchall

σresp

(3)

Here, ϕsk is the secret key with corresponding verification key Evk, Ecom is the
commitment, and ϕchall is the challenge. As the prover knows the secret isogeny
ϕsk, they have knowledge of the endomorphism ring of Evk. In this way, the
prover is the only party capable of producing a valid response σresp connecting
Evk to the challenge curve Echall. To construct the response isogeny, the prover
finds the ideal I corresponding to the composition ϕchall ◦ψcom ◦ ϕ̂sk, then it finds
an equivalent ideal J not factoring through the secret key ϕsk, and translates
J to its corresponding isogeny σresp. In the original SQIsign protocol [23] this
is done with (a variant of) the KLPT algorithm, that finds J of smooth norm.
Instead, in the subsequent higher-dimensional variants [6,28,20,41], they can pose
milder restrictions on nrd(J) and use Kani’s Lemma (Section 2.2) to represent
the isogeny. A more fine-grained discussion can be found in Appendix A.1.

High Degree Oracles and HVZK property. To show that a Σ-protocol
satisfies the Honest-Verifier Zero Knowledge property we need to show how to
simulate a valid transcript (com, chall, resp) in polynomial time, without access
to the secret key. The natural simulation strategy for the Σ-protocol underlying
SQIsign in (3) is to first generate at random σresp : Evk → Echall, then ϕ̂chall :
Echall → E′,7 and finally define Ecom := E′.

In the original SQIsign identification protocol both the challenge isogeny
ϕchall and the response isogeny σresp have smooth degree, thus they can efficiently
7 The order of computing ϕchall and σresp may be inverted in some variants, but the

simulation strategies rely on the same machinery.

10



be sampled to simulate a transcript, though arguing the indistingishability of
the transcript requires an ad-hoc assumption. This is not true for the high-
dimensional variants: the response isogeny σresp has a larger non-smooth degree
that can be efficiently represented via high-dimensional isogenies to allow the
verifier to compute it. However, this representation cannot be provided without
the knowledge of the endomorphism ring of the public curve Evk. To overcome
this problem, all the security proofs of the higher-dimensional variants rely
on auxiliary oracles that provide efficient representations of uniformly random
non-smooth degree isogenies. These oracles can be characterized as providing:

– isogenies of a fixed degree given as input, FIDIO [6, Definition 23] and AIO
[28, Definition 4];

– isogenies of a random degree satisfying specific conditions, like RUGDIO [20,
Definition 20] and RUNDIO [41, Definition 2];

– uniformly random isogenies of uniformly random bounded degree, like RADIO
[20, Definition 41] and UTO [6, Definition 21];

– efficient representation of isogenies given their non-smooth kernel, like FIX-
DIO [38, Definition 4], RUCODIO [28, Definition 3] and RUCGDIO [28,
Definition 2].

Though these oracles vary in flavor, they are all needed for the same core reason:
to the best of our knowledge, there are no efficient algorithms to compute large
prime degree isogenies without leveraging the knowledge of the endomorphism
ring of the domain curve.

Although, we do not know how to construct any of these oracles in polynomial
time, it is conjectured that a bounded number of queries do not provide any
help in compromising the security of the schemes, e.g., by recovering non-trivial
endomorphisms. This was first argued in [20, Section 5.3].

3 Identification Protocol and Digital Signature Scheme

In this section, we present a new identification scheme built from the conjectured
hardness of constructing large prime degree isogenies from E, without knowledge
of the endomorphism ring End(E). After constructing an appropriate hash
function, this identification protocol can easily be transformed into a simple
signature scheme, built from the same subroutines. We can frame this last scheme
as a hash-and-sign-like signature where the trapdoor one-way function consists of
the degree evaluation of isogenies, with domain Evk, of large prime degree. Indeed,
given an isogeny, its degree can be efficiently recovered by anyone; however,
inverting the trapdoor consists of sampling a large prime degree isogeny, a task
considered to be hard without access to the endomorphism ring of Evk.

3.1 Identification Protocol

The core idea behind our identification protocol is that computing isogenies of
large prime degree from a random elliptic curve with unknown endomorphism

11



ring is believed to be hard. Indeed, the best known algorithm for computing
an isogeny of prime degree q runs in O(q3/2) (see Section 4.4). However, this
task significantly simplifies with knowledge of the endomorphism ring of the
domain elliptic curve. From these two observations, we can now construct an
identification scheme: a party can prove knowledge of the endomorphism ring
of a given curve Evk by publishing an isogeny of large prime degree φ : E → E′.
To instantiate the protocol we fix a base prime p ≡ 3 mod 4 and an integer a
such that we have Fp2 -rational 2a-torsion on any supersingular elliptic curve on
Fp2 (when working with models having (p+ 1)2 rational points). For the same
number a, we define Primesa to be the set of primes of exactly a bits, i.e., primes
q such that 2a−1 < q < 2a.
The identification scheme, referred to as PRISM-id and depicted in Figure 3, relies
on the following subroutines:

– φ← GenIsogeny(E, ϕ, q): on input a supersingular elliptic curve E, an isogeny
ϕ : E0 → E (that gives access to the endomorphism ring of E) and a prime q,
return an efficient representation of a cyclic isogeny φ : E → E′ of degree
q(2a − q); furthermore, φ is uniformly distributed among all cyclic isogenies
of degree q(2a − q) from E.

– accept/reject ← VerIsogeny(φ,E, q): on input an efficient representation of
an isogeny φ : E → E′, verify that it has degree q(2a − q).

Prover Verifier
sk = ϕsk vk = Evk

q←− Sample q ∈ Primesa
φ← GenIsogeny(vk, sk, q)

φ−→
if VerIsogeny(φ,Evk, q)

return accept

Fig. 3. PRISM-id identification scheme.

Security. The security of these protocols rests on the following assumption: given
many isogenies φi : E → Ei of degree qi(2a − qi) with qi an a-bit prime number,
the verifier does not learn any information about the endomorphism ring of E.
This assumption is plausible as there are already efficient ways to compute large
(yet smooth) degree isogenies from a given curve, regardless of any knowledge
of the endomorphism ring. Moreover, because Primesa is defined as the set of
primes having a bits exactly, the cofactor 2a − q cannot be another a-bit prime,
so seeing isogenies of degrees corresponding to q1, . . . , qr ∈ Primesa does not help
to respond to a degree qr+1 that has not been queried before. The security of
the schemes and the underlying assumptions are discussed in greater detail in
Section 4.

12



Remark 1. The degree of the isogeny ϕ has the form q(2a − q) so that ϕ can
be represented in two dimensions (rather than four) by using Kani’s lemma,
which results in a more efficient protocol. The verification procedure thus involves
computing a two-dimensional isogeny, which is significantly more efficient than
the analogous computation in dimension four.

For a slightly different perspective, write the response isogeny ϕ as the
composition ϕ = ϕ2a−q ◦ ϕq, where deg ϕ2a−q = 2a − q and deg ϕq = q. The
isogeny ϕq can be interpreted as the “real” response isogeny, whereas ϕ2a−q is just
an auxiliary isogeny that is needed to obtain a two-dimensional representation.

It is also possible to instantiate PRISM with higher-dimensional isogenies,
which would eliminate the need for an auxiliary isogeny and would lead to an even
more compact protocol (four-dimensional representations require smaller-order
torsion points), but would also come at the cost of a much slower verification
procedure (extrapolating from the software given in [2], four-dimensional isogenies
in SQISign-HD verification are roughly 7 times slower than our verification, for
similar parameter sets).

3.2 Signature scheme

If we also have access to a collision resistant hash function on the set of large
primes Hprime : {0, 1}∗ → Primesa we can define a digital signature, called
PRISM-sig, using the same building blocks of the identification protocol based on
the well-known hash-and-sign paradigm in which we hash a given message to a set
of suitable prime degrees, and give an isogeny of that degree as its signature. This
is explained in Figure 4. We highlight the simplicity of this scheme: it directly
reduces to hard problems in isogeny computation, simplifying its analysis in
terms of both efficiency and security.

Signer Verifier
sk = ϕsk vk = Evk

q ← Hprime(Evk∥msg)
σ ← GenIsogeny(vk, sk, q)

msg,σ−−−→
q ← Hprime(Evk∥msg)
if VerIsogeny(σ,Evk, q)

return accept

Fig. 4. PRISM-sig signature scheme.

In Section 3.3 we carefully define the necessary subroutines for the two
schemes. In Appendix B, we also give an alternative construction for GenIsogeny.
Although this second method is less efficient than the first, it allows for different
parameter choices and can hence become useful in specific settings. Furthermore,
this exhibits an important property of our schemes: they are flexible and easily

13



enable many tweaks and adaptations, a property that paves the way to more
advanced constructions.

3.3 Subroutines based on IdealToIsogeny

In the previous sections, we introduced our constructions for an identification
protocol and signature scheme, however we did not specify how key generation,
or the subroutines GenIsogeny and VerIsogeny are constructed. For the signature
scheme, we also need to specify the hash function Hprime. We first present our
main construction, which relies on the IdealToIsogeny algorithm introduced in
Section 2.3. In what follows, we fix p = f2e − 1 for some small integer f > 0.
This choice is motivated by the need to access rational 2e-torsion during the
IdealToIsogeny algorithm. However, alternative choices are possible. An example
is presented in Appendix B. Let E0 : y2 = x3 +x be the supersingular curve with
j-invariant 1728, and fix a basis P0, Q0 of E0(Fp2)[2a], for some a ≤ e.

Key generation. The key generation procedure is performed by the algorithm
KeyGen, which on input the security parameter λ, outputs the public and se-
cret key pair (vk, sk) as follows. First, sample a random ideal Isk of a random
norm Nsk = ℓnlarge with ℓlarge being a large prime greater than 2a and n such that
we get a distribution statistically close to uniform. Use IdealToIsogeny to compute
the isogeny ϕsk : E0 → Evk corresponding to the ideal Isk. By construction, Evk is
a supersingular elliptic curve defined over Fp2 . Finally, deterministically compute
generators Pvk, Qvk of Evk(Fp2)[2a]. The secret key sk is set to be (ϕsk, Isk), and the
public key vk = (Evk, Pvk, Qvk). Note that Pvk, Qvk can be built deterministically
from Evk.

Isogeny Generation. The algorithm GenIsogeny(vk, sk, q), given in Algorithm 1,
is constructed as follows. Parse vk as Evk, Pvk, Qvk and sk as ϕsk, Isk. As the
endomorphism ring of E0 is known (see Example 1), via the secret isogeny
ϕsk : E0 → Evk we have knowledge of the endomorphism ring of Evk. We can use
this to generate an isogeny σ : Evk → Esig of degree q(2a − q). More precisely,
we compute a two-dimensional representation of the isogeny σ : Evk → Esig,
consisting of the codomain curve Esig and the image of the basis (Pvk, Qvk) of
Evk[2

a] through σ.
The first step is to generate an O0-ideal Ichall of norm q(2a − q). This is done

using the RandomFixedNormIdeal algorithm from SQIsign2D-West [6]. Due to
the definition of Nsk, the ideals Isk and Ichall have coprime norm, thus we can
compute the pushforward of Ichall through the secret ideal Isk using Equation (1):

Iσ = [Isk]∗Ichall =
1

Nsk
Isk(Isk ∩ Ichall).

From this, we see that the ideal corresponding to the isogeny φ = σ ◦ ϕsk : E0 →
Esig is given by I = IskIσ = Isk ∩ Ichall. Using IdealToIsogeny from Section 2.3, we

14



can obtain a representation of φ and compute the images φ(P0), φ(Q0). Finally,
we obtain a two-dimensional representation of σ as follows. For P ∈ Evk[2

a] we
have

σ(P ) =
1

Nsk
(φ ◦ ϕ̂sk)(P ).

If we write Pvk = [m11]ϕsk(P0)+ [m12]ϕsk(Q0) for m11,m12 ∈ Z/2aZ, we see that

1

Nsk
ϕ̂sk(Pvk) = [m11]P0 + [m12]Q0.

So, we compute Psig := σ(Pvk) as

Psig =
1

Nsk
(φ ◦ ϕ̂sk)(Pvk) = [m11]φ(P0) + [m12]φ(Q0),

noting that m11, m12, φ(P0) and φ(Q0) are known. We similarly compute Qsig :=
σ(Qvk) by instead writing Qvk = [m21]ϕsk(P0) + [m22]ϕsk(Q0) for m21,m22 ∈
Z/2aZ. The output is the two-dimensional representation of σ given by iso :=
(Esig, Psig, Qsig).

Remark 2. The RandomFixedNormIdeal algorithm from SQIsign2D-West [6] out-
puts a uniformly random primitive ideal, therefore the output of GenIsogeny is a
uniformly random cyclic isogeny of degree q(2a − q) from Evk.

Remark 3. To make the GenIsogeny procedure more efficient, we can precompute
the integers mij in KeyGen and store them in the secret key.

Algorithm 1 GenIsogeny(vk, sk, q)
Input: Secret key sk = ϕsk : E0 → Evk of degree Nsk with corresponding ideal Isk, public
key vk = (Evk, Pvk, Qvk) and prime number q ∈ (2a−1, 2a).
Output: A two-dimensional representation of σ : Evk → Esig of degree q(2a − q).
1: Find m11,m12 ∈ Z/2aZ such that Pvk = [m11]ϕsk(P0) + [m12]ϕsk(Q0);
2: Find m21,m22 ∈ Z/2aZ such that Qvk = [m21]ϕsk(P0) + [m22]ϕsk(Q0);

▷ Coefficients from Lines 1, 2 can be precomputed in KeyGen
3: N ← q(2a − q);
4: Ichall ← RandomFixedNormIdeal (O0, N);
5: I ← Isk ∩ Ichall;
6: φ← IdealToIsogeny(I);
7: Set Esig as the codomain of φ;
8: Psig = [m11]φ(P0) + [m12]φ(Q0);
9: Qsig = [m21]φ(P0) + [m22]φ(Q0);

10: return (Esig, Psig, Qsig)

15



Verification. We now define the verification algorithm VerIsogeny(iso, Evk, q).
Parse the input iso as (Esig, Psig, Qsig). From GenIsogeny we get (Psig, Qsig) =
(σ(Pvk), σ(Qvk)), where we recall that Evk[2

a] = ⟨Pvk, Qvk⟩. We have to check that
these points interpolate an isogeny σ : Evk → Esig of degree q(2a − q).

Write σ = φq ◦ φq′ = ψq′ ◦ ψq, where deg(ψq) = deg(φq) = q, and deg(ψq′) =
deg(φq′) = 2a − q. We can then factor σ using the commuting square

Evk E2

E1 Esig

φq′

ψq φq

ψq′

This is a (q, 2a−q)-isogeny diamond, and therefore, by Kani’s Lemma, the isogeny

Φ : Evk × Esig → E1 × E2

given by the matrix

Φ =

(
ψq ψ̂q′

−φq′ φ̂q

)
,

is a (2a, 2a)-isogeny between these products of elliptic curves, viewed with their
product polarisation. Furthermore, the kernel of Φ is given by

ker(Φ) = {([q]P, σ(P ))|P ∈ Evk[2
a]} = ⟨([q]Pvk, Psig), ([q]Qvk, Qsig)⟩ .

We further optimize this by asking the prover to return ([q−1]Psig, [q
−1]Qsig).

This comes at virtually no cost in the signing step: by multiplying the coefficients
mij by q−1, the new points can be obtained with the same number of point
multiplications. On the other hand, the verifier has

ker(Φ) =
〈
(Pvk, [q

−1]Psig), ([Qvk, [q
−1]Qsig)

〉
readily available. They can therefore compute Φ to verify that (Psig, Qsig) interpo-
lates the isogeny σ. To verify the degrees, we first compute (P ′, ) := Φ((Pvk, 0))
and (Q′, ) := Φ((Qvk, 0)). Observe that if (Esig, Psig, Qsig) is a valid isogeny, we
have

e2a(P
′, Q′) = e2a(Pvk, Qvk)

n,

where n ∈ {q, 2a − q} and e2a is the 2a-Weil pairing. Therefore, we can simply
compute evk = e2a(Pvk, Qvk) and e′ = e2a(P

′, Q′) and check whether evk = (e′)q

or e′ = (evk)
q.

Hashing in Primesa. For our signature scheme, we need to define the hash
function Hprime that hashes into the set Primesa. To construct Hprime we consider
any cryptographic hash function Ha−2 : {0, 1}∗ → [0, 2a−2), composed with
h 7→ 2a−1+2h+1 (prepending and appending a bit 1 to the binary expansion) to
end up with an odd integer in the interval (2a−1, 2a). Given Evk and msg we define

16



Hprime(Evk∥msg) by repeatedly computing 2a−1 + 2Ha−2(Evk∥msg∥counter) + 1
for increasing values of counter until we hit a prime number. This requires on
average 2a−2/#Primesa ≈ a ln(2)/2 repetitions; notice that the value of counter
can be provided to the verifier in Figure 4 at a minimal cost, its expected size
being about log a bits, to avoid useless hash computations during verification.

Notice that each step in the hash Hprime evaluation requires performing a
primality test [4], which has a quadratic cost in the bit length a.

Remark 4. A slight faster choice for Hprime would be to first hash to a 2a bits odd
integer and then increase it sequentially until we reach a prime. However, this
would introduce a bias towards primes associated to long intervals of non-prime
integers, and we therefore avoid this option.

4 Security

In this section, we prove that both the identification protocol and the signature
scheme are deeply connected to the hardness of evaluating large prime degree
isogenies, a well understood problem in isogeny-based cryptography.

4.1 Key Recovery

First, note that the key recovery problem for both our constructions is simply
the standard Supersingular Endomorphism Ring Problem, given below.

Problem 1 (Supersingular Endomorphism Ring Problem). Given a supersingular
elliptic curve E defined over Fp2 , find four (efficient representations of) endomor-
phisms which generate the ring End(E).

Both the signing and the identification procedure result in revealing isogenies
of large prime degree. These are hard to compute without the knowledge of the
endomorphism ring. Moreover, it is believed that revealing such isogenies does
not help to solve the endomorphism ring problem. This fact was first formulated
in [20] where the authors argued that providing an oracle to produce isogenies
of arbitrary degree would not impact the security of SQIsignHD. Furthermore,
notice that given a curve E anyone can efficiently compute isogenies of large
degree without knowledge of the endomorphism ring, as long as this degree is
smooth. Since smooth-degree isogenies are sufficient to cover the whole isogeny
graph, for each isogeny we reveal there exists an equivalent, smooth-degree isogeny
that is computable without any knowledge of End(Evk). This lends support to
the assumption that our protocols do not leak useful information to an attacker.

4.2 Forgery and Impersonation

The security of the protocol relies on the following (new) assumption. Recall
that Primesa is the set of primes of exactly a bits. Consequently, an element
q ∈ Primesa is uniquely determined by the value of q(2a − q).

17



Definition 5. A special degree isogeny oracle (SPEDIO) is an oracle which
takes as input a supersingular elliptic curve E over Fp2 and a prime q ∈ Primesa,
and returns a uniformly random cyclic isogeny of degree q(2a − q) from E.

Problem 2. Given a random supersingular elliptic curve E and a SPEDIO, output
an isogeny of degree q′(2a − q′) with q′ ∈ Primesa different from all degrees
formerly generated by the oracle.

Remark 5. Using the same notation, Problem 2 is at least as hard as the problem
of computing a degree q′ isogeny. Indeed, given a degree q′(2a − q′) isogeny,
the degree q′ component can be recovered in polynomial time by factoring it
(as we do in the verification procedure). We note that the converse is not as
straightforward, as there may be large prime factors in (2a − q′) that are smaller
than 2a−1.

Problem 2 can be summarized by the security game Gpdeg
E in Figure 5, where

E is a supersingular elliptic curve.

Gpdeg
E (A):

1: Q ← ∅
2: σ∗ ← ASPEDIO(E)
3: assert σ∗ : E → E∗

sig is an isogeny
of degree q(2a − q)

4: assert q ∈ Primesa
5: assert q ̸∈ Q
6: return win

SPEDIO(q):
1: assert q ∈ Primesa;
2: Sample isogeny σ : E → E′ of de-

gree q(2a − q);
3: Q ← Q∪ {q};
4: return σ : E → Esig

Fig. 5. Security game for Problem 2

We now show the straightforward relation between the hardness of Problem 2,
the security against adaptive attacks of PRISM-id and the unforgeability of
PRISM-sig.

Proposition 1. Under the assumption that Problem 2 is hard, any PPT adver-
sary against adaptive attacks (Definition 2) of PRISM-id performing N interac-
tions has a winning probability bounded by N/#Primesa.

Proof. Let A be an adversary for the impersonator game in Definition 2 with N
interactions. Given the supersingular elliptic curve E, we simulate the imperson-
ator game for A to win the game Gpdeg

E in Figure 5, i.e., solve Problem 2. We
proceed as follows:

– During Setup we set Evk = E as public key and send it to A;

18



– During the probing phase we use the oracle SPEDIO (defined in Problem 2)
to perform N interactions with A, let Q be the set of queried degrees, which
is a set of size at most N . By Remark 2, the output of SPEDIO has the same
distribution as the response of an honest prover;

– In the impersonation phase the adversary A wins, i.e., outputA = accept, if
and only if A can provide an isogeny σ : E → Esig of degree q(2a − q) for a
uniformly random q ∈ Primesa.

If q ̸∈ Q, the isogeny σ is a valid solution for Gpdeg
E , against the hardness of

Problem 2. Thus, the winning probability of A is bounded by

Pr [q ∈ Q] = #Q
#Primesa

≤ N

#Primesa

as required. ⊓⊔

We now establish the security of PRISM-sig in the standard model, leveraging
only the collision resistance property of Hprime and the hardness of Problem 2.
Although this proof is inherently designed to simulate a signing procedure that
returns a new random signature per each message msg, it can be straightforwardly
adapted to always return the same isogeny when the same message is queried.

Proposition 2. If Hprime is a collision-resistant cryptographic hash function and
Problem 2 is hard, then PRISM-sig is EUF-CMA secure (Definition 4).

Proof. We show that given a PPT adversary A in the EUF-CMA model we can
use it to win Gpdeg

E (that is equivalent to solving Problem 2) or find a collision
for Hprime in polynomial time. Given the supersingular elliptic curve E, we set
it as a public key Evk in our signature scheme. For every message query msgi,
we evaluate the prime qi = Hprime(Evk∥msgi) ∈ Primesa and query the oracle
SPEDIO(qi) to get an isogeny σi : E → Esig of degree qi(2a − qi) and we return
it as a signature. By Remark 2, these signatures follow the same distribution as
honestly generated signatures for the public key Evk. The strategy is described in
Figure 6. The set M contains the previously queried messages, while Q collects
the values of Hprime applied to the elements inM.

Since σ∗ is a valid signature (due to the assert in Line 4) it satisfies the
assertions in Lines 3 and 4 from Figure 5, i.e., it corresponds to a valid prime
degree isogeny. We need only to check that it has not already been returned from
SPEDIO before (see Line 5). If q∗ = Hprime(Evk∥msg∗) ̸∈ Q, then σ∗ from Line 7
has a degree different from all isogenies previously returned. Indeed, recall that
for all q ∈ Primesa, we have q > 2a − q, so for any q ̸= q∗ ∈ Primesa, we have
q(2a − q) ̸= q∗(2a − q∗). So, it is a valid solution to win Gpdeg

E .
On the other hand, if Hprime(Evk∥msg∗) ∈ Q then in Line 9 we return a

collision since we have found a message msgi ∈M such that Hprime(Evk∥msgi) =
Hprime(Evk∥msg∗), but msg∗ ̸∈ M. ⊓⊔

19



A′(A):
1: Evk ← E
2: M,Q ← ∅
3: msg∗, σ∗ ← ASign(Evk)
4: assert Verify(Evk, σ

∗,msg∗)
5: assert msg∗ ̸∈ M
6: if Hprime(Evk∥msg∗) ̸∈ Q then
7: return σ∗;
8: else
9: return collision for Hprime;

Sign(msg):
1: q ← Hprime(Evk∥msg);
2: σ ← SPEDIO(q) of degree q(2a−q);
3: Q ← Q∪ {q};
4: M←M∪ {msg};
5: return σ

Fig. 6. Reduction from adversary A for PRISM-sig

4.3 Unforgeability in the ROM

Interestingly, if we model our hash function as a random oracle we can give a
security proof under a weaker hardness assumption. Namely, we can consider a
variant of Problem 2 in which the adversary has no control over the non-smooth
isogenies being provided, nor in the degree of the output isogeny they forge.

Problem 3. Given a random curve E, a set of N isogenies {ϕi : E → Ei}Ni=1 of
degree qi(2a − qi) for qi uniformly random in Primesa and ϕi uniformly random
among the isogenies of degree qi(2a − qi), and a prime q̄ uniformly random in
Primesa \{qi}Ni=1, give an efficient representation of an isogeny of degree q̄(2a− q̄).

It is immediate to see that if we can solve Problem 3 then we can also solve
Problem 2, but potentially not vice-versa. Remark 5 similarly applies to Problem 3.

Proposition 3. In the random oracle model (ROM), any PPT adversary that
wins the EUF-CMA game with advantage ϵ and that performs Nsign signing queries
and NH hashing queries can be used to solve Problem 3 for N = Nsign +NH with
probability at least ϵN−2

H .

Proof. Let A be a PPT adversary for the EUF-CMA of PRISM-sig. We want to
define another PPT algorithm B that solves Problem 3 for N = Nsign +NH using
A as a subroutine in the random oracle model. For this B we need to simulate
the answers to the signing and hashing queries. Let {ϕi : E → Ei}Ni=1 be the
isogenies of degree qi(2a − qi) for qi ∈ Primesa received as input from Problem 3,
and q̄ be the prime degree of the isogeny we have to find to solve Problem 3.

Then, B fixes E = Evk and starts to simulate the interactions with A following
the games G0 and G1, as explained in Figure 7. Since we are in the ROM, the
adversary A needs to interact with B to query the hash function Hprime. Let msg∗

be the output message of A. We make the following assumptions on the queries:

1. Queries to Hprime are always of the form Evk∥msg,

20



2. Evk∥msg∗ is part of the NH queries to Hprime, i.e., msg∗ ∈ H. This is because
we can always modify A to query it before returning msg∗ and the signature.

3. H \M ̸= ∅, i.e. there is always at least one message queried to Hprime but
not to Sign. In fact by the previous point msg∗ ∈ H, but by the EUF-CMA
definition we need msg∗ ̸∈ S to have non-zero winning probability, thus at
least one element is in the set H \M.

Setup : G0 / G1

1: set jHprime ← 0, jtot ← 0;
2: setM,H ← ∅;
3: initialize empty lists H, S;
4: sample jq̄

$←− {1, . . . , NH}
5: get σ∗,msg∗ ← AHprime,Sign(Evk)
6: assert msg∗ ̸∈ M
7: assert Verify(Evk,msg∗, σ∗)
8: assert Hprime(Evk∥msg∗) = qjq̄

▷ main difference with Guf

9: return win

Hprime(E∥msg):
1: if H[Evk∥msg] =⊥ then
2: H ← H∪ {msg}
3: jHprime ← jHprime + 1;
4: jtot ← jtot + 1;
5: set H[Evk∥msg]← qj ;
6: set S[msg]← σj ;
7: if jtot = jq̄ then
8: set qjq̄ ← q̄;
9: set H[Evk∥msg]← q̄;

10: return H[Evk∥msg]

Sign(msg):
1: if H[Evk∥msg] = qjq̄ then
2: bad← true;
3: if H[Evk∥msg] =⊥ then

▷ msg not yet reprogrammed
4: jtot ← jtot + 1;
5: set H[Evk∥msg]← qi;
6: set S[msg]← σi;
7: M←M∪ {msg};
8: if msg ∈ H then
9: M←M∪ {msg}; ▷ already re-

programmed in Hprime

10: return S[msg]

Fig. 7. Strategy to simulate the signing EUF-CMA model in the ROM

When looking at the game G0 the only difference from Guf , except for the
output type, is the assertion in Line 8. Since jq̄ is sampled independently from
all the randomness involved in the protocol and used by A, we have that:

Pr[G0(A) = win] = Pr[Guf(A) = win ∧ Hprime(Evk∥msg∗) = qjq̄ ] =

= Pr[Guf(A) = win] · Pr[Hprime(Evk∥msg∗) = qjq̄ ] = ϵ · 1

NH
. (4)

Games G0 and G1 are identical until the bad flag is set to true, since qjq̄ and q̄
have the same distribution. So, the difference is relevant only in the case of a

21



sign query on the same message. Hence, by standard game-based proof results [3,
Lemma 3.7] we have that

Pr[G0(A) = win ∧ Good0] = Pr[G1(A) = win ∧ Good1], (5)

where Goodi is the event that the flag bad is never changed in the game Gi. Now,
observe that in game G0 there is no reprogramming to q̄, thus the two events in
the left hand side of Equation (5) are independent. Moreover, as argued before,
there is at least one message H\M, i.e., a message for which G0 reprograms Hprime

but never queries to Sign. Since jq̄ is chosen independently of the randomness
used by A there is at least a probability 1/NH that the reprogrammed message
is in H \M, that implies Good0. Combining everything we have

Pr[G1(A) = win ∧ Good1]
(5)
= Pr[G0(A) = win] Pr[Good0]

(4)
≥ ϵ

1

N2
H

.

It is clear that if G1(A) = win, the isogeny σ∗ from Line 5 is a valid solution for
Problem 3 that B can return. ⊓⊔

Remark 6. This reduction strongly relies on the signature being deterministic,
as a function of the message msg and the public key Evk. In fact, providing two
different signatures for the same message msg requires returning two isogenies of
the same degree Hprime(Evk∥msg), but the initial data given in Problem 3 only
provides us with one isogeny per prime number qi.

4.4 Best Known Attacks on Hardness Assumptions

In this section we discuss the best known attacks against the hard problems
underlying our scheme. This analysis will guide our choice of parameters.

Endomorphism ring problem. As argued above, key recovery against both
PRISM-sig and PRISM-id amounts to the computation of the endomorphism ring of
the public key Evk. The discussion in [20, Sec. 4] justifies the assumption that Evk is
a random curve. Thus, the fastest known algorithms to compute its endomorphism
ring have classical complexity in Õ(p1/2) [25]. The only known quantum speed-up
uses Grover’s algorithm [34,11], achieving a quantum complexity of Õ(p1/4).
These are the best key recovery attacks against most isogeny-based protocols,
including the SQIsign family (see e.g. [6, Sec. 6]). We hence require p to be a
prime of at least about 2λ bits for a security level of λ bits.

Computing isogenies of prime degree. The most direct attempt to solve
Problems 2 and 3 requires, on input of a prime degree q, to compute a cyclic
degree q(2a − q) isogeny from Evk without the knowledge of End(Evk). First of
all, notice that q ∈ Primesa, i.e., it is a prime bigger than 2a−1, and so q is the
biggest prime factor of q(2a − q). As a consequence, the cost of computing a
q(2a − q)-isogeny will mostly depend on the cost of computing a degree q isogeny.

22



In fact, an attacker may even compute isogenies whose degrees are pairwise
coprime factors of q(2a − q) in parallel, all starting from Evk, and then compose
them by pushing them forward [46, Prop. 6.15]. The complexity of this approach
is dominated by that of computing an isogeny of largest prime power degree. We
can thus restrict to studying the cost of computing an isogeny of (large) prime
degree q.

There are various methods to compute q-isogenies without relying on the
knowledge of the endomorphism ring. An approach is to use Vélu’s formulae [50].
These formulae require knowledge of a point of order q. In general, such a point
will not be defined over Fp2 , but rather over a large field extension. Specifically, we
expect this degree to be roughly the size of q [30]. Field operations in an extension
of degree q have an overhead that is in Õ(q). The amount of field operations
needed to compute a degree-q isogeny using Vélu’s formulae is again linear in
q, and so we obtain a total complexity of Õ(q2). A significant improvement in
computing an isogeny from its kernel is achieved through the square-root Vélu
algorithm [8]. This algorithm reduces the number of field operations from Õ(q)

to Õ(q1/2). As this computation runs over the field extension where a point of
order q is defined, the resulting expected complexity of using square-root Vélu
algorithm is Õ(q3/2). However, this complexity assumes that a point of order q is
already available, and we must still factor in this cost. One method for obtaining
such a point is to sample a random point on the curve E/Fpq and multiply it by
the appropriate cofactor of size around pq

q , by Hasse’s Theorem. This requires at

least log
(
pq

q

)
≈ q point doublings and additions defined on a field extension of

degree q, and thus has complexity Õ(q2). Another option is to instead search for
its x-coordinate as a root of the q-division polynomial of degree (q2 − 1)/2. This
also requires at least Õ(q2) field operations.

A different approach to computing q-isogenies avoiding large field extensions
is to employ kernel polynomials. Once a kernel polynomial has been computed,
it is possible to use well-known formulae, such as those in [37], to compute the
q-isogeny with O(q) field operations. Moreover, obtaining kernel polynomials
without access to an isogeny representation or a point of order q (defined over a
large field extension) is also a costly operation. To the best of our knowledge, the
fastest method to compute the kernel polynomial is via Elkies algorithm [29] (see,
for example, [33, Chapter 25.2.1]). There are two costly steps to this algorihtm.
First, we need to find the root of the modular polynomial Φq(X,Y ) over Fp,
costing O(q) operations, assuming the modular polynomials has already been
computed. Secondly, we need to compute q coefficients via a recurrence relation
involving all previous coefficients, requiring O(q2) operations in Fp. Another
method is to factor the q-division polynomial, and extract the kernel polynomial.
However, this yields a complexity much larger than the method discussed above.

An alternative approach for computing q-isogenies is to look at the classical
modular polynomial Φq(X,Y ), which is the polynomial whose roots are pairs of
j-invariants of q-isogenous curves. Computing these polynomials for large q is
already very challenging. Suppose we want to compute an isogeny originating

23



from E. For the sake of simplifying the argument, let us assume that it is possible
to compute a curve E′ which is q-isogenous to E by finding a root of Φq(j(E), X).
Even in this case, we still need to find a way to compute an isogeny φ : E → E′ of
degree q. An algorithm to compute φ is described by Elkies [29]. The complexity
of this algorithm is Õ(q2).

The quantum complexity of computing prime degree isogenies has never been
thoroughly studied. However, we see no reason to believe that this problem would
be amenable to a significant quantum speed-up.

Concluding the discussions above, we estimate the complexity of computing
a degree q-isogeny, without knowledge of the endomorphism ring, to be Õ(q2).
Hence, when targeting λ-bits security, to guarantee the security of Problems 2
and 3, we only have to impose the mild requirement that q2 > 2λ, which in turn
implies a > 1

2λ. Since we already imposed p ≈ 22λ, this constraint can be easily
satisfied. Moreover, notice that this analysis is also quite conservative (e.g., we
are not limiting the memory at disposal to the attacker).

Together with the computation of the endomorphism ring, these are the only
attacks against PRISM-id we are aware of. Our parameter choice will thus be
guided by this analysis. On the other hand, in the construction of PRISM-sig, we
have to take into account the security of the hash function, which turns out to be
the actual security bottleneck, as argued below. As a consequence, the parameter
choice in PRISM-sig has a large margin against attacks based on direct isogeny
computations.

Breaking the hash function. First of all, to avoid signature reusing, i.e., to
achieve the non-resignability property from [19], we insert the domain isogeny
Evk into the hashing input, since this comes at virtually no cost. Then, as our
construction PRISM-sig follows a hash-and-sign paradigm, an attacker can obtain
forgeries by finding collisions for Hprime.

A priori, it may seem that hashing into Primesa is not enough to achieve
λ-bit security against collision search. Indeed, there are only about 2a−1/(a ln(2))
primes in Primesa. However, we do not hash directly into Primesa, but rather
into the set of odd integers in (2a−1, 2a) via Ha−2 and h 7→ 2a−1 + 2h+ 1, and
reject until we find a prime. Recall that the expected number of tries is about
a ln(2)/2. Thus, in order to produce a collision for Hprime, the expected number t
of calls to Ha−2 satisfies (

t

2

)
2−a+2 ≈ a ln(2)/2,

(birthday paradox for multiple collisions; see [49, Sec. 4] for algorithmic details).
Thus, to get λ-bits collision resistance we want that

2λ ≤ t ≈ 2
a−2
2
√
a, (6)

leading to the asymptotic estimate a ≈ 2λ− log λ. Notice that this requirement
is much stronger than a > 1

2λ resulting from the discussion above. On the

24



other hand, here we have just attributed a cost of 1 to each call to Ha−2, which
is a very conservative choice. We leave it to the reader to take into account
more realistic cost estimates, where one could even use artificially slow hash
functions to establish a further reduction of a (but this also affects signing and
verification). This trick is reminiscent of other schemes that employ slow hashing
or proof-of-work [7,10].

It is clear that a = e ≈ 2λ is good enough to get collision resistance, but
we can do slightly better by taking the smallest a satisfying Equation (6). For
example, for NIST Level I security (namely, λ = 128) we can take a = 251. Note:
in our concrete parameters from Section 5.1 we will choose a = 248, but this
defect is (amply) compensated by the complexity of evaluating Ha−2.

Finally, as was already remarked, given two isogenies of coprime degree from
a curve E there exists a polynomial time algorithm (that eventually requires
to go to dimension four or eight) to compute the respective pushforwards. This
implies that an attacker seeing an isogeny of degree q(2a − q) can effectively
obtain an isogeny for all prime power factors of 2a − q that can then be reused
later: the output of the hash function just consists of q. This also explains why
we require q to have exactly a bits: in this way we ensure that none of the factors
of 2a− q will land in Primesa, and thus by seeing them an attacker does not learn
anything.

5 Implementation and performance

In this section we evaluate the performance of our schemes. We compare PRISM-sig
with other recent isogeny-based signatures, and highlight the difference in perfor-
mance between PRISM-sig and PRISM-id. The repository with the source code
can be found at https://github.com/KULeuven-COSIC/PRISM.

5.1 Parameter choices

Following the discussion of Section 4.4, we can now give concrete parameter
choices for our schemes. To protect against endomorphism ring computation we
require p ≈ 22λ. To use the IdealToIsogeny algorithm, we also require access to
the 2e-torsion with 2e ≈ p. This also allows us to represent isogenies of degree
up to 2e ≈ 22λ, satisfying the security requirements against isogeny computation
and hash collisions for both PRISM-sig and PRISM-id.

We thus choose primes of the form p = f2e− 1, with f a small cofactor. Such
primes are commonly used in isogeny based schemes, for example in SQIsign2D-
West. As such, we can follow their parameter choices and exploit the existing
optimized implementations for those primes. We report these values for NIST
security Levels I, III and V in Table 2, together with the respective public key
and signature sizes discussed in the next section.

25

https://github.com/KULeuven-COSIC/PRISM


5.2 Sizes

The public key for both PRISM-sig and PRISM-id is a curve Evk. Since we are
working in the Montgomery model, we can represent it with a single scalar in
Fp2 , with a cost of 4λ bits. A deterministic basis of the 2a-torsion on Evk can be
included in the public key, to optimize verification performance, or computed
on demand, to optimize compactness. This situation is completely analogous to
SQIsign2D-West. As such, we follow their optimized approach of giving hints for
the generation of the deterministic basis, with a cost of 2 bytes (see [6, Sec. 7]).

Signature Sizes for PRISM-sig. An isogeny representation consists of a curve
Esig and two points (Psig, Qsig). We proceed as follows: first, we send both co-
ordinates of Psig. Since log p = 2λ and we are working in Fp2 , we can represent
these coordinates with 8λ bits. Since we work with Montgomery curves, from
Psig we can recover the curve Esig at the cost of a single field inversion. We can
then represent Qsig by its x-coordinate plus a bit to indicate the sign of the
y-coordinate, which we can recover by computing only a square root. Ignoring
the sign bit, this requires a total of 12λ bits to represent the isogeny.

An alternate approach would be to encode both Psig and Qsig by their coef-
ficients with respect to a deterministic basis of the 2a-torsion on Esig. This is,
for instance, the method adopted by SQIsign2D-West [6]. This approach would
require, in our case, 4λ bits for the Montgomery coefficient of Esig and 4a bits
for the points. Since a ≈ 2λ, the total cost would then again be ≈ 12λ bits.
Recall from Equation (6) that this is in fact a slight overestimation and that
≈ 12λ−4 log λ should do. However, encoding the points in this way would require
the prover to compute a deterministic basis for the 2a-torsion on Esig. This is
much more costly than computing a single square root, and we thus conclude
that this alternate approach, as stated, is strictly worse than the first one.

If instead of four coefficients we send only three, and recover the last one using
pairings with the method discussed in [20, §6.1], the signature would now have
size 4λ+3a. However, this extra compactness comes at the additional cost of two
pairing computations on top of the aforementioned deterministic basis. In this
article, we prioritize efficiency of our scheme due to the relative compactness of
isogeny-based signatures compared to other types of post-quantum signatures. We
therefore choose to represent our signatures PRISM-sig as (Psig, x(Qsig), ϵ), where
ϵ is a bit used to identify y(Qsig); thus, a signature has size 12λ. Nonetheless,
we remark that the other approaches may become useful in contexts in which
signature size is crucial.

Communication Costs for PRISM-id. The situation for PRISM-id is different.
From Proposition 1 we only need to impose #Primesa ≥ 2λ to achieve λ bits
security. For this we only need a ≈ λ+ log λ, and this also implies hardness for
Problem 2. This makes point compression more convenient. On top of the 4λ bits
needed for the curve, it is enough to send four (or three, at the cost of pairing
computations) coefficients of a bits each, for a total cost of 4λ+4a ≈ 8λ+4 log λ

26



(resp. ≈ 7λ+ 3 log λ). The compactness that we obtain in this way makes this
method more favorable in the context of identification, and potentially for other
future protocols relying on this as a building block. The data reported in Table 2
refers to the efficiency-oriented version using four point coefficients.

Notice that the first interaction from Vrf only requires a− 1 bits to represent
the prime q ∈ Primesa, the total communication costs using point compression is
then 4λ+ 4a.

Table 2. Public-key size and signature size in bytes, respectively communication cost,
for the signature scheme PRISM-sig, respectively identification protocol PRISM-id.

NIST I NIST III NIST V

Prime 5 · 2248 − 1 65 · 2376 − 1 27 · 2500 − 1

Public-key size 66 98 130

PRISM-id a 136 201 265
PRISM-sig a 248 376 500

PRISM-id com. cost 132 197 261
PRISM-sig sig. size 189 288 388

5.3 Comparison with other isogeny-based signatures

We now briefly compare the signature size of PRISM-sig with other isogeny-based
signatures in Table 3. For each scheme we report the signature size of the main
variant, ignoring logarithmic factors in terms of the security parameter λ. A
more compact version of SQIsign2D-East presented in [41], CompactSQIsign2D-
East, only requires 10λ bits. However, it comes with a significant computational
overhead and an increase in the number of two-dimensional isogeny computations
(up to about 770 for Level I). A trade-off similar to the one discussed above
could bring SQIsign2D-West signature sizes from 9λ bits to 8λ bits [6, Remark
26]. However, as in our case, the authors prefer the faster version of the scheme.
Finally, for SQIPrime we report the size of the signature in the two-dimensional
case. In their paper [28], the authors also present a four-dimensional version,
which achieves a signature size of 12λ, but seems less practical due to the need
for four-dimensional isogenies for verification.

5.4 Performance

We now compare the performance of PRISM-sig with other isogeny based schemes.
In Table 4 are reported the number of isogeny computations in different

dimensions performed by our scheme and various other SQIsign variants. With
respect to this metric, we see that our scheme has the most efficient signing among

27



Protocol This Work SQIsign SQIsign2D-East SQIsign2D-West SQIPrime

Sig. size (bits) 12λ ≈11λ 12λ 9λ 19λ

Table 3. Signature sizes for the signature scheme given in this work, SQIsign, and its
most efficient variants.

all the analyzed variants. On the other hand, verification involves twice as many
two-dimensional isogenies compared to both SQIsign2D-East and SQIsign2D-
West, but no one-dimensional isogenies. Moreover, thanks to the trick mentioned
in Section 5.2, we avoid computing a deterministic basis.

Table 4. Number of isogenies computed of each degree for NIST-I parameters. The
numbers given in parentheses indicate that they may vary slightly depending on the
case.

Type of isogeny

Protocol 2 3 5 (2, 2) (2, 2, 2, 2)

KeyGen - - - 496 -
This Work Sign - - - 496 -

Verify - - - 248 -

KeyGen 378 234 - - -
SQIsignHD Sign 252 312 - - -

Verify - 78 - - 142

KeyGen - - - 496 -
SQIsign2D-West Sign (248) - - 992 -

Verify (248) - - (126) -

KeyGen - - - 496 -
SQIsign2D-West (Heuristic) Sign (122) - - 624 -

Verify (122) - - (126) -

KeyGen - - - 253 -
SQIsign2D-East Sign 127 (2) (1) 641 -

Verify 127 (2) (1) 129 -

To validate this theoretical analysis, we implemented our signature scheme
within the code base of SQIsign2D-West [1] and compare performance with
SQIsign2D-West by running the two schemes on the same machine. The results
are reported in Table 5.

28



The signature time showcased in Table 5 already proves that our signature
time is better than SQIsign2D-West’s. It is not as good as the estimates in
Table 4 would suggest because of the performance of the LLL implementation
(which is a necessary sub-routine of IdealToIsogeny). The computational cost
of the current implementation seems to be increasing a lot with the volume of
the lattice given as input, and the volume of this lattice is quite larger in our
signature scheme than in SQIsign2D-West. As a result, the basis reduction step
currently takes around 40% of the total signature time. We expect that this step
can be optimized, thus leading to a signing time that would be more consistent
with the operation estimates reported in Table 4.

Our verification is slower than SQIsign2D-West by a factor 1.4. This is
consistent with our expectations.

Table 5. Run time comparison in millions of clockcycles between our signature scheme
and SQIsign2D-West at NIST-I security, with optimized finite field arithmetic. Average
run time over 100 iterations on an Intel Core i7 at 2.30 GHz with turbo-boost disabled.

KeyGen 77.4
SQIsign2D-West Sign 285.7

Verify 11.9

KeyGen 78.2
This work Sign 157.6

Verify 16.9

We conclude by briefly comparing the performance of PRISM-sig and PRISM-id.
Key generation is exactly the same. In the signing phase of PRISM-sig we have
to hash the message, while in PRISM-id we send the points as coefficients and
hence we need to compute a deterministic basis. While both these steps have a
minor impact on the respective protocols, hashing is faster than finding bases, so
we expect PRISM-id to be slightly slower in this phase. On the other hand, the
verification for PRISM-id is twice as fast: we only need λ+log(λ) two-dimensional
(2, 2)-isogenies (for a total of 135 for NIST Level I) instead of 2λ for PRISM-sig.
Notice that 135 two-dimensional isogenies and no one-dimensional isogenies is less
than the verification cost for all the signature schemes presented in Table 2. This
again highlights an interesting property of our signature scheme: the efficiency
bottleneck for PRISM-sig is the need to protect against hash collisions.

6 Conclusion

We present a novel two-round identification protocol and a hash-and-sign digital
signature scheme, whose security reduces to the hardness of computing large prime
degree isogenies from a curve with unknown endomorphism ring. The response

29



and the signature consist of an efficient higher-dimensional representation of such
isogeny with domain the verification key Evk.

We note that the determining factor for secure parameters is actually the size
of the challenge space and not the hardness of the underlying isogeny problem.
In particular, for the signature scheme, we need to increase the set Primesa
to protect against collision attacks on the hash function. To mitigate this, we
carefully measure the cost of computing the hash function Hprime, which involves
repetitions and primality testing, to correctly assess the hardness of collision
finding.

We evaluate the performance of the presented schemes, showing that they
compare favorably to the original SQIsign and many of its variants. Furthermore,
since our construction has the additional advantage of having a much simpler
signature procedure, we hope future work will prove its usefulness as a building
block for more advanced constructions.

References

1. SQIsign2D-West code. https://github.com/SQISign/sqisign2d-west-ac24.
2. SQIsignHD code. https://github.com/Pierrick-Dartois/SQISignHD-lib.
3. Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From

identification to signatures via the Fiat-Shamir transform: Minimizing assumptions
for security and forward-security. In Lars R. Knudsen, editor, Advances in Cryptology

— EUROCRYPT 2002, pages 418–433, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

4. François Arnault. Rabin-miller primality test: composite numbers which pass it.
mathematics of computation, 64(209):355–361, 1995.

5. Andrea Basso. POKE: A framework for efficient PKEs, split KEMs, and OPRFs
from higher-dimensional isogenies. Cryptology ePrint Archive, Paper 2024/624,
2024.

6. Andrea Basso, Pierrick Dartois, Luca De Feo, Antonin Leroux, Luciano Maino,
Giacomo Pope, Damien Robert, and Benjamin Wesolowski. SQIsign2D-West: The
fast, the small, and the safer. In ASIACRYPT 2024. Springer-Verlag, 2024.

7. Carsten Baum, Ward Beullens, Shibam Mukherjee, Emmanuela Orsini, Sebastian
Ramacher, Christian Rechberger, Lawrence Roy, and Peter Scholl. One tree to
rule them all: Optimizing GGM trees and OWFs for post-quantum signatures.
Cryptology ePrint Archive, 2024.

8. Daniel J Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster
computation of isogenies of large prime degree. Open Book Series, 4(1):39–55, 2020.

9. Daniel J Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Nieder-
hagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko
Wilcox-O’Hearn. SPHINCS: practical stateless hash-based signatures. In EURO-
CRYPT 2015, pages 368–397. Springer, 2015.

10. Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Efficient
isogeny based signatures through class group computations. In Steven D. Galbraith
and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS,
pages 227–247. Springer, Heidelberg, December 2019.

11. Jean-François Biasse, David Jao, and Anirudh Sankar. A quantum algorithm
for computing isogenies between supersingular elliptic curves. In International
Conference on Cryptology in India, pages 428–442. Springer, 2014.

30

https://github.com/SQISign/sqisign2d-west-ac24
https://github.com/Pierrick-Dartois/SQISignHD-lib


12. Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Draft
0.5, 2020.

13. Giacomo Borin, Yi-Fu Lai, and Antonin Leroux. Erebor and Durian: Full anonymous
ring signatures from quaternions and isogenies. Cryptology ePrint Archive, Paper
2024/1185, 2024. https://eprint.iacr.org/2024/1185.

14. Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M
Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Kyber: a
CCA-secure module-lattice-based KEM. In 2018 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 353–367. IEEE, 2018.

15. Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH. In
EUROCRYPT 2023, volume 14008 of LNCS, pages 423–447. Springer, 2023.

16. Jorge Chavez-Saab, Maria Corte-Real Santos, Luca De Feo, Jonathan Komada Erik-
sen, Basil Hess, David Kohel, Antonin Leroux, Patrick Longa, Michael Meyer,
Lorenz Panny, Sikhar Patranabis, Christophe Petit, Francisco Rodríguez Hen-
ríquez, Sina Schaeffler, and Benjamin Wesolowski. SQISign specification. https:
//sqisign.org/spec/sqisign-20230601.pdf, 2023. Accessed: 2023-10-04.

17. Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer, and Krijn
Reijnders. AprèsSQI: Extra fast verification for SQIsign using extension-field signing.
Cryptology ePrint Archive, Paper 2023/1559, 2023. https://eprint.iacr.org/2023/
1559.

18. Craig Costello. B-SIDH: Supersingular isogeny Diffie-Hellman using twisted torsion.
In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume
12492 of LNCS, pages 440–463. Springer, Heidelberg, December 2020.

19. Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian Janson.
Buffing signature schemes beyond unforgeability and the case of post-quantum
signatures. In 2021 IEEE Symposium on Security and Privacy (SP), pages 1696–
1714. IEEE, 2021.

20. Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin Wesolowski.
SQISignHD: new dimensions in cryptography. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 3–32. Springer,
2024.

21. Pierrick Dartois, Luciano Maino, Giacomo Pope, and Damien Robert. An algorith-
mic approach to (2, 2)-isogenies in the theta model and applications to isogeny-based
cryptography. 2023.

22. Luca De Feo. Mathematics of isogeny based cryptography. arXiv preprint
arXiv:1711.04062, 2017.

23. Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin
Wesolowski. SQISign: Compact post-quantum signatures from quaternions and
isogenies. In Advances in Cryptology–ASIACRYPT 2020: 26th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7–11, 2020, Proceedings, Part I 26, pages 64–93.
Springer, 2020.

24. Luca De Feo, Antonin Leroux, Patrick Longa, and Benjamin Wesolowski. New
algorithms for the Deuring correspondence: towards practical and secure SQISign
signatures. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 659–690. Springer, 2023.

25. Christina Delfs and Steven D Galbraith. Computing isogenies between supersingular
elliptic curves over Fp. Designs, Codes and Cryptography, 78:425–440, 2016.

26. Max Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper.
In Abhandlungen aus dem mathematischen Seminar der Universität Hamburg,
volume 14, pages 197–272. Springer Berlin/Heidelberg, 1941.

31

https://eprint.iacr.org/2024/1185
https://sqisign.org/spec/sqisign-20230601.pdf
https://sqisign.org/spec/sqisign-20230601.pdf
https://eprint.iacr.org/2023/1559
https://eprint.iacr.org/2023/1559


27. Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A lattice-based digital
signature scheme. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 238–268, 2018.

28. Max Duparc and Tako Boris Fouotsa. SQIPrime: A dimension 2 variant of
SQISignHD with non-smooth challenge isogenies. In ASIACRYPT 2024. Springer-
Verlag, 2024.

29. Noam D. Elkies. Elliptic and modular curves over finite fields and related computa-
tional issues. In Computational perspectives on number theory, Studies in Advanced
Mathematics 7, pages 21–76. AMS, 1998.

30. Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, and Mattia Veroni.
Deuring for the people: Supersingular elliptic curves with prescribed endomorphism
ring in general characteristic. IACR Cryptol. ePrint Arch., 2023:106, 2023.

31. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology — CRYPTO’ 86, pages 186–194, Berlin, Heidelberg, 1987. Springer
Berlin Heidelberg.

32. Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, Zhen-
fei Zhang, et al. FALCON: Fast-Fourier lattice-based compact signatures over
NTRU. Submission to the NIST’s post-quantum cryptography standardization
process, 36(5):1–75, 2018.

33. Steven D Galbraith. Mathematics of public key cryptography. Cambridge University
Press, 2012.

34. Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, page 212–219, New York, NY, USA, 1996. Association for Computing
Machinery.

35. Ernst Kani. The number of curves of genus two with elliptic differentials. Journal
fur die reine und angewandte Mathematik, 1997.

36. David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol. On the
quaternion-isogeny path problem. LMS Journal of Computation and Mathematics,
17(A):418–432, 2014.

37. David Russell Kohel. Endomorphism rings of elliptic curves over finite fields. PhD
thesis, University of California, Berkeley, 1996.

38. Antonin Leroux. Verifiable random function from the Deuring correspondence and
higher dimensional isogenies. Cryptology ePrint Archive, 2023.

39. Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin
Wesolowski. A direct key recovery attack on SIDH. In EUROCRYPT 2024, Part
V, volume 14008 of LNCS, pages 448–471. Springer, 2023.

40. Kohei Nakagawa and Hiroshi Onuki. QFESTA: Efficient algorithms and parameters
for FESTA using quaternion algebras. In CRYPTO 2024, Part V, volume 14924 of
LNCS, pages 75–106. Springer, 2024.

41. Kohei Nakagawa, Hiroshi Onuki, Wouter Castryck, Mingjie Chen, Riccardo In-
vernizzi, Gioella Lorenzon, and Frederik Vercauteren. SQIsign2D-East: A new
signature scheme using 2-dimensional isogenies. In ASIACRYPT 2024. Springer-
Verlag, 2024.

42. National Institute of Standards and Technology (NIST). Call for Additional Digital
Signature Schemes for the Post-Quantum Cryptography Standardization Process,
2022.

32



43. Aurel Page and Damien Robert. Introducing Clapoti(s): Evaluating the isogeny
class group action in polynomial time. Cryptology ePrint Archive, 2023.

44. Farzin Renan and Péter Kutas. SQIAsignHD: SQIsignHD adaptor signature.
Cryptology ePrint Archive, Paper 2024/561, 2024.

45. Damien Robert. Breaking SIDH in polynomial time. In EUROCRYPT 2023, Part
V, volume 14008 of LNCS, pages 472–503. Springer, 2023.

46. Damien Robert. On the efficient representation of isogenies. Cryptology ePrint
Archive, Paper 2024/1071, 2024. https://eprint.iacr.org/2024/1071.

47. Joseph H Silverman. The arithmetic of elliptic curves, volume 106. Springer, 2009.
48. Douglas R Stinson. Cryptography: theory and practice. Chapman and Hall/CRC,

2005.
49. Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with crypt-

analytic applications. Journal of Cryptology, 12:1–28, 1999.
50. Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie

des Sciences de Paris, 273:238–241, July 1971.
51. John Voight. Quaternion algebras. Springer Nature, 2021.

A Additional Preliminaries

A.1 Different Higher Dimensional Variants of SQIsign

Recently, different variants of SQIsign that use higher-dimensional isogenies have
been proposed. They are all inspired by the protocol from Section 2.5, but realize
it in different ways. We summarize them here.

SQIsignHD [20]. There are two different versions of this protocol. The first version,
called RigorousSQIsignHD, aims for the best possible provable security using eight-
dimensional isogenies, which makes it unpractical. The second, FastSQIsignHD,
restricts to four-dimensional isogenies to build a scheme with smaller signatures
than SQIsign, similarly sized public keys, and significantly faster signing time,
but slower verification.

SQIsign2D-West [6]. This variant is based on the IdealToIsogeny algorithm
introduced in Section 2.3 to overcome the obstacles encountered in SQIsignHD
and go down to dimension 2. It has a security equivalent to RigorousSQIsignHD
while having the fastest verification procedure. Signature size is comparable to
SQIsignHD, and the signing time is slower than SQIsignHD but faster than
SQIsign. The authors of [6] also propose a heuristic variant, with a less rigorous
security proof and better signing time (still slower than SQIsignHD).

SQIsign2D-East [41]. Avoids the need for four-dimensional isogenies using en-
domorphisms in the Eichler order Ovk ∩ O0. Because of this, the security proof
requires some ad hoc heuristic. Signing and verification time should be compa-
rable to the signing time of the heuristic version of SQIsign2D-West and the
signature size is slightly bigger.

33

https://eprint.iacr.org/2024/1071


SQIPrime [28]. Uses techniques inspired by [38] to build non-smooth challenge
isogenies. While conceptually this seems the closest variant to our proposal, we
remark that in SQIPrime the non-smooth isogenies are computed for a fixed
prime degree q. Their method is thus not applicable to our setting.

A.2 Isogenies of Fixed Degree

An application of Theorem 1 is the following: given an isogeny φ : E0 → E3 of
degree u(2a−u), for an odd number u, we can factor it as φ := φu′ ◦φu = ψu◦ψu′

with deg(φu) = deg(ψu) = u and deg(φu′) = deg(ψu′) = 2a − u. Notice that as
long as u is odd gcd(u, 2a − u) = 1. We have the following square:

E0 E1

E2 E3

φu

ψu′ φu′

ψu

Then by Kani’s lemma we get

Φ =

(
φu φ̂u′

−ψu′ ψ̂u

)
: E0 × E3 → E1 × E2

with kernel

ker(Φ) = {(φ̂u(P ), φu′(P ))|P ∈ E1[2
a]}

= {(φ̂u(φu(P )), φu′(φu(P )))|P ∈ E0[2
a]}

= {(uP, φ(P ))|P ∈ E0[2
a]} .

If we know the images under φ of the 2a-torsion points of E0 then we can evaluate
Φ. We can thus recover φu and φu′ as components of Φ; for instance

Φ((R, 0)) = (φu(R),−ψu′(R)).

Since the kernel defines an isogeny up to isomorphism, the components of Φ could
be swapped, e.g. the codomain can be E2 × E1 instead of E1 × E2. In this case
we can recover the correct component using pairings. If we know that the ideal
associated to φ is I, the ideal corresponding to φu of degree u is I + uO (see for
instance [6, Lemma 6]).

This method has been exploited in QFESTA [40] to compute isogenies of a
given degree q starting from E0. The idea is to find an endomorphism on E0 of
degree q(2a − q), where a is such that we have access to the 2a torsion. This
is possible thanks to the knowledge of the endomorphism ring of E0, using for
instance [23, Alg. 1]. This endomorphism can be evaluated and then factored in
two components: one of degree q and one of degree 2a − q. This trick is a key
subroutine of the IdealToIsogeny algorithm.

Our techniques for finding an endomorphism in O0 of given norm require
the latter to be greater than p. The case where q(2a − q) < p can be solved

34



by using, if available, additional B-torsion for odd B and searching instead
an endomorphism of norm q(2a − q)B. The endomorphism can be factored as
θ = τ̂ ◦φ with τ of degree B and φ of degree q(2a − q), then from the action of θ
on the B-torsion we can recover the kernel of τ and recover φ(P ) as [1/B]τ(θ(P ))
for any point P of order coprime with B.

B Alternative Subroutines Using Odd-degree Secret
Isogeny

We now introduce an alternative method to instantiate the key generation and
isogeny generation algorithms. For this variant we use a prime such that we
have access (over a small extension field of Fp2) to both the 2a-torsion and the
B-torsion, where B is an odd smooth integer. A natural option to achieve this is
to choose p to be an SIDH-like prime of the form p = 2aBf − 1, with B = 3b.
In this way, the 2aB-torsion is defined over Fp2 . We define new KeyGen and
GenIsogeny procedures, that are compatible with VerIsogeny from the previous
Section 3.3.

Alternative Key Generation. Differently from Section 3.3 sample a uniformly
random cyclic order-B subgroup Ksk of E0[B] and compute the associated isogeny
ϕsk : E0 → Evk. Note that, to be secure against meet-in-the-middle key recoveries,
we need to have B ≈ 22λ. Define the secret key as sk = (ϕsk,Ksk) and the
public key as vk = (Evk, Pvk, Qvk), where Pvk, Qvk are deterministically computed
generators of Evk[2

a]. As before, points could be optional depending on what one
wants to minimize.

Alternative Isogeny Generation. Similarly to the definition of GenIsogeny
using IdealToIsogeny in Section 3.3, we want to efficiently represent an isogeny
σ : Evk → Esig of degree q(2a − q). Differently from Section 3.3, we divide the
signature procedure in two phases: in phase one, we generate an isogeny ζ of
non-smooth degree q(2a − q) with domain E0; in phase two, we push the isogeny
representation through ϕsk to get the signature σ = [ϕsk]∗ζ : Evk → Esig.

Non-smooth degree isogeny generation. We start by computing an isogeny of
degree q(2a − q) with domain E0 using a small modification of the QFESTA
algorithm [40] introduced in [5, Algorithm 2]:

1. Compute a cyclic endomorphism θ of degree q(2a−q)B, which is larger than p,
using the RepresentInteger procedure from SQIsign [23,24]. The endomorphism
can be factored as a composition of two isogenies ζ and α̂ of degrees q(2a− q)
and B, respectively, such that θ = α̂ ◦ ζ;

2. Find a point R of order B such that θ̂(R) = OE0
. Since θ̂ = ζ̂ ◦α is cyclic and

deg(α) = B, this means that ker(α) = ⟨R⟩, from which α can be computed
using Vélu’s formulae.

35



3. For any point P ∈ E0 of order coprime to B, we can compute ζ(P ) as

ζ(P ) = [1/B]α ◦ α̂ ◦ ζ(P ) = [1/B]α ◦ θ(P ).

From this, we can get an efficient higher-dimensional representation by
computing the image of a 2a-torsion basis, as described in Appendix A.2.

Push-forward of ζ. Given an efficient representation of ζ, we can use the diagram
in Equation (7) to get the signature isogeny σ = [ϕsk]∗ζ. Note that the right-most
square of the diagram is commutative, i.e., σ ◦ ϕsk = ϕ′sk ◦ ζ. First, note that
ϕ′sk : E′ → Esig can be efficiently computed from the pushed kernel generator
ζ(Ksk). Then, given a 2a-torsion basis (P2, Q2) on E0 such that ϕsk(P2) = Pvk and
ϕsk(Q2) = Qvk,8 we retrieve the two-dimensional representation from σ(Pvk) =
ϕ′sk ◦ ζ(P2) and σ(Qvk) = ϕ′sk ◦ ζ(Q2).

E0 Evk

E′ Esig

ζα

θ=α̂◦ζ

ϕsk

σ

ϕ′
sk

(7)

Comparison with Section 3.3. This alternative GenIsogeny subroutine only
requires the computation of a (2, 2)-isogenies and two one-dimensional isogenies
of degree B, instead of a longer chain of (2, 2)-isogenies of length 2a. This could
potentially lead to a performance improvement. However, preliminary experiments
with our SageMath implementation still suggest that this alternative variant of
GenIsogeny involving odd degree isogenies is around ×1.25 slower than the one
using IdealToIsogeny. This is primarily because in this variant the underlying
prime is larger in order to have sufficient rational 2aB-torsion (rather than just
rational 2a-torsion). This increased prime size also affects the verification time:
it is around ×2 slower. For these reasons we focus on the construction of our
schemes given in Section 3.3.

Remark 7. We may decrease the odd torsion B by splitting the secret isogeny in k
pieces and performing k push-forwards, in this way we only need Bk ≈ 22λ. We
can also use a smooth torsion over bigger extension fields E0/Fp2k , like in B-SIDH
[18]. These options reduce the size of p at the cost of increased computation
needed in signing.

8 This basis can be precomputed during key generation.

36


	PRISM: Simple And Compact Identification and Signatures From Large Prime Degree Isogenies
	Introduction
	Contributions.
	Related work.
	Outline.
	Acknowledgements.


	Preliminaries
	Quaternion algebras and the Deuring correspondence
	The Deuring Correspondence.
	Pushforward Isogenies and Ideals.

	Kani's Lemma
	Ideal To Isogeny Translation
	Identification Protocols and Digital Signatures
	SQIsign and its variants
	High Degree Oracles and HVZK property.


	Identification Protocol and Digital Signature Scheme
	Identification Protocol
	Signature scheme
	Subroutines based on IdealToIsogeny
	Key generation.
	Isogeny Generation.
	Verification.
	Hashing in Primesa.


	Security
	Key Recovery
	Forgery and Impersonation
	Unforgeability in the ROM
	Best Known Attacks on Hardness Assumptions
	Endomorphism ring problem.
	Computing isogenies of prime degree.
	Breaking the hash function.


	Implementation and performance
	Parameter choices
	Sizes
	Signature Sizes for PRISM-sig.
	Communication Costs for PRISM-id.

	Comparison with other isogeny-based signatures
	Performance

	Conclusion
	Additional Preliminaries
	Different Higher Dimensional Variants of SQIsign
	Isogenies of Fixed Degree

	Alternative Subroutines Using Odd-degree Secret Isogeny
	Alternative Key Generation.
	Alternative Isogeny Generation.
	Comparison with sec:signature:west.




