
ON FACTORING AND POWER DIVISOR PROBLEMS VIA

RANK-3 LATTICES AND THE SECOND VECTOR

YIMING GAO, YANSONG FENG, HONGGANG HU, AND YANBIN PAN

Abstract. We propose a deterministic algorithm based on Coppersmith’s

method that employs a rank-3 lattice to address factoring-related problems.
An interesting aspect of our approach is that we utilize the second vector in
the LLL-reduced basis to avoid trivial collisions in the Baby-step Giant-step

method, rather than the shortest vector as is commonly used in the literature.
Our results are as follows:

- Compared to the result by Harvey and Hittmeir (Math. Comp. 91 (2022),

1367–1379), who achieved a complexity of O
(

N1/5 log16/5 N

(log logN)3/5

)

for factoring a

semiprime N = pq, we demonstrate that in the balanced p and q case, the

complexity can be improved to O
(

N1/5 log13/5 N

(log logN)3/5

)

.

- For factoring sums and differences of powers, i.e., numbers of the formN =

an ± bn, we improve Hittmeir’s result (Math. Comp. 86 (2017), 2947–2954)

from O(N1/4 log3/2 N) to O
(

N1/5 log13/5 N
)

.

- For the problem of finding r-power divisors, i.e., finding all integers p

such that pr | N , Harvey and Hittmeir (Proceedings of ANTS XV, Res. Num-
ber Theory 8 (2022), no.4, Paper No. 94) recently directly applied Copper-

smith’s method and achieved a complexity of O
(

N1/4r log10+ǫ N
r3

)

. By us-

ing faster LLL-type algorithm and sieving on small primes, we improve their

result to O
(

N1/4r log7+3ǫ N
(log logN−log 4r)r2+ǫ

)

. The worst case running time for their

algorithm occurs when N = prq with q = Θ(N1/2). By focusing on this
case and employing our rank-3 lattice approach, we achieve a complexity of

O
(√

rN1/4r log5/2 N
)

. In conclusion, we offer a new perspective on these

problems, which we hope will provide further insights.

1. Introduction

This paper focuses on deterministic and rigorous integer factorization algorithms
implemented on a Turing machine. It is worth noting that when these constraints
are relaxed, superior complexity bounds have been achieved through various meth-
ods, including the Elliptic Curve Method (ECM) [LJ87], the General Number Field
Sieve [CP05, §6.2], and Shor’s Quantum factoring algorithm [Sho94].

In [Har21], Harvey demonstrated that a positive integer N can be rigorously

and deterministically factored into primes in time F (N) = O
(

N1/5 log16/5 N
)

,

where time is measured in bit operations—specifically, the number of steps ex-
ecuted by a deterministic Turing machine with a fixed, finite number of linear
tapes. Subsequently, Harvey and Hittmeir [HH22b] improved this bound to F (N) =

O
(

N1/5 log16/5 N
(log logN)3/5

)

. Our work adopts the same computational model as [Har21] and

[HH22b].
1

2 Y. GAO, Y. FENG, H. HU, AND Y. PAN

We demonstrate that in certain common scenarios, such as when N = pq is
a semiprime with p, q = Θ(N1/2), this complexity can be further refined using
the Coppersmith method in conjunction with the Baby-step Giant-step framework.
Our primary result is as follows:

Theorem 1.1 (Deterministic integer factorization). Let N = pq be a semiprime
with p, q = Θ(N1/2). Then there exists a deterministic algorithm to recover the
factors p and q in time

F (N) = O

(

N1/5 log13/5 N

(log logN)3/5

)

.

In earlier work, Hittmeir [Hit17] presented an algorithm for factoring sums and

differences of powers with time complexity F (N) = O(N1/4 log3/2 N). While this

complexity can be improved to F (N) = O
(

N1/5 log16/5 N
(log logN)3/5

)

using [HH22b], such an

approach does not exploit the specific properties of sums and differences of powers.
Our framework naturally leverages these properties, leading to our second main
result:

Theorem 1.2 (Factoring sums and differences of powers). Let a, b ∈ N be fixed
and coprime such that a > b, and define Pa,b := {an ± bn : n ∈ N}. Then, one may
compute the prime factorization of any N ∈ Pa,b in time

F (N) = O
(

N1/5 log13/5 N
)

.

We briefly introduce the ideas underpinning the algorithms presented in [Har21]
and [HH22b]. The strategy in [Har21] leverages Fermat’s Little Theorem. For
an integer α coprime to N = pq, and integers a, b, we have αaq+bp ≡ αaN+b

(mod p). If a/b is chosen as a good rational approximation to the unknown ratio
p/q, then the value X = aq + bp is close to K = ⌊(4abN)1/2⌋. This leads to
the congruence αX−K ≡ αaN+b−K (mod p). Since X − K is small under the
approximation assumption, the core idea is to find a collision modulo p (and hence
potentially modulo N) between “baby steps” of the form αi (mod N) for small
integers i, and “giant steps” of the form αaN+b−K (mod N) as a/b varies over
a suitable dense set of rational approximations. This collision-finding problem is
efficiently addressed using techniques from fast polynomial arithmetic, resulting in

the complexity bound O(N1/5 log16/5 N).
The subsequent work [HH22b] refines this approach by incorporating the crucial

observation that the prime factors p and q of a large integer N cannot themselves
be divisible by small primes. The algorithm is modified to restrict the search
space by considering only candidates for p that are coprime to m = p1p2 · · · pd, the
product of the first d primes, for a suitably chosen d such that m = NO(1). The
number of residue classes modulom that need consideration is reduced by a factor of
m/ϕ(m), which, by Mertens’ theorem, behaves asymptotically like log d ≈ log logm.
When optimized, this yields a saving proportional to log logN . Technically, this
refinement involves a reorganization where suitable pairs (a, b) for the giant steps
are no longer generated by simple iteration over a range, but are instead computed
using algorithms for finding short vectors in appropriately constructed lattices. This

leads to the improved complexity bound O
(

N1/5 log16/5 N
(log logN)3/5

)

.

FACTOR VIA RANK-3 LATTICES 3

Our work builds upon the foundational Baby-step Giant-step framework and the
sieving techniques introduced in [Har21, HH22b]. We retain the overall strategy of
seeking collisions and incorporate the log-log optimization derived from restricting
prime factor candidates modulo a product of small primes m.

The primary departure and main contribution of this paper lies in a novel method
for constructing the “giant steps”, applicable both to balanced semiprimes and cases
with additional modular information. While [HH22b] employs lattice reduction to
find pairs (a, b) such that a/b approximates p/q, our approach adapts Coppersmith’s
method more directly. We construct a specific rank-3 lattice based on known con-
gruences of the target prime factor p (such as p (mod m) or p (mod mn)) and
its approximate size. By applying lattice basis reduction (LLL) to this lattice—
albeit relaxing the strict determinant conditions typically required by the Howgrave-
Graham lemma and utilizing information from the second vector—we derive coef-
ficients for computing our giant steps.

In essence, by leveraging known properties of the prime factor p (either its ap-
proximate size or a specific congruence) through the Coppersmith-style lattice,
our method performs a more targeted search compared to implicitly searching
through rational approximations. When applied to balanced semiprimes where p =
Θ(N1/2), this more efficient use of the factor’s bit-length information contributes
significantly to reducing the search space, ultimately saving a logarithmic factor

in the complexity analysis and leading to the improved bound O
(

N1/5 log13/5 N
(log logN)3/5

)

presented in Theorem 1.1. Furthermore, we extend this lattice-based technique to
scenarios where partial information p ≡ r (mod n) is available. This adaptation
yields a deterministic factoring algorithm with complexity explicitly dependent on
n, refining previous results [Hit17]. As a key application, this allows for factoring

numbers of the form N = an ± bn in time O(N1/5 log13/5 N) (Theorem 1.2), natu-
rally utilizing the inherent information (ab−1)2n ≡ 1 (mod N) where n = Θ(logN)
arises.

We also propose some improved toolkits. We design a proper module choos-
ing algorithm for the loglog speed-up. Furthermore, we present several improve-
ments to existing toolkits in factorization algorithms. While previous works by
[Hit18, Har21, HH22b] required finding an element α with order ordN (α) > N2/5

or ordN (α) > N2/(3+2r), we demonstrate how to reduce these requirements to
ordN (α) > N1/4+o(1) and ordN (α) > N1/(4r)+o(1) respectively. This advancement
is achieved through our refined generalization of Harvey’s deterministic factoriza-
tion method for finding r-power divisors.

Finally, we extend our rank-3 lattice construction to address the r-power di-
visor problem of finding all integers p such that pr | N . While recent work by
Hales and Hiary [HH24] achieved complexities of O(N1/(r+2)(logN)2 log logN) and
O(N1/(3+2r)(logN)16/5) by extending Lehman’s method, and Harvey and Hittmeir [HH22a]
obtained O(N1/4r log10+ǫ N/r3) using Coppersmith’s method, we present two im-
provements. First, by incorporating faster LLL-type lattice reduction algorithms

and small prime sieving, we improve the complexity to O
(

N1/4r log7+3ǫ N
(log logN−log 4r)r2+ǫ

)

.

Then, focusing on the worst-case scenario where N = prq with p = Θ(N1/2r) and
q = Θ(N1/2), our rank-3 lattice construction further reduces the complexity to

O(
√
rN1/4r log5/2 N).

4 Y. GAO, Y. FENG, H. HU, AND Y. PAN

2. Preliminaries

2.1. Notations. Throughout this paper, we use logN to denote the binary loga-
rithm log2 N . For asymptotic complexity analysis, we employ the standard Bachmann-
Landau notation: For functions f, g : N → R+, we write f = O(g) if there exist
positive constants c and n0 such that f(n) 6 cg(n) for all n > n0; we write f = o(g)
if limn→∞ f(n)/g(n) = 0; and we write f = Θ(g) if both f = O(g) and g = O(f)
hold, or equivalently, if there exist positive constants c1, c2, and n0 such that
c1g(n) 6 f(n) 6 c2g(n) for all n > n0.

2.2. Arithmetics.

2.2.1. Integer Arithmetic. We recall some result about integer and modular arith-
metic.

Let n ∈ N+, and suppose we are given integers x, y ∈ Z satisfying |x|, |y| 6
2n. The fundamental arithmetic operations exhibit the following computational
complexities: The computations of x+ y and x− y can be performed in O(n) time.
Let M(n) denote the time complexity of computing the product xy; as established
in [HVDH21], we have M(n) = O(n log n). For y > 0, both floor division ⌊x/y⌋
and ceiling division ⌈x/y⌉ can be computed in O(M(n)) time, and consequently, the
computation of x mod y ∈ [0, y) also requires O(M(n)) time. More generally, for any
fixed rational number u/v ∈ Q+ and positive integers x, y > 0, both ⌊(x/y)u/v⌋ and
⌈(x/y)u/v⌉ can be computed in O(M(n)) time. Using the half-GCD algorithm, for
any x, y ∈ Z, we can compute both g = gcd(x, y) and the Bézout coefficients u, v ∈ Z
satisfying ux + vy = g in time O(M(n) log n) = O(n log2 n). In particular, when
gcd(x, y) = 1, the modular multiplicative inverse of x modulo y can be computed
in O(M(n) log n) time.

For any integer N > 2, we consider the ring of integers modulo N , denoted
by ZN = Z/NZ. Elements of ZN are canonically represented by their residues in
[0, N), requiring at most ⌈log2 N⌉ bits for storage. Let Z∗

N denote the multiplicative
group of units in ZN , that is, Z∗

N = {x ∈ ZN : gcd(x,N) = 1}. For the ring ZN , we
have the following computational results: Given x, y ∈ ZN , modular addition and
subtraction x± y mod N can be computed in O(logN) time, while modular multi-
plication xy mod N requires O(M(logN)) = O(logN log logN) time. For x ∈ ZN

and m ∈ N0, the computation of xm mod N can be achieved in O(M(logN) logm)
time using the repeated squaring algorithm. Furthermore, testing whether x ∈ Z∗

N

can be performed in O(M(logN) log logN) time by computing gcd(x,N).

2.2.2. Polynomial Arithmetic. The next few results are taken from the previous
papers [Hit18],[Har21] and [HH22b].

Lemma 2.1 (Polynomial Construction). Let n > 1 with n = O(N). Given as input
v1, . . . , vn ∈ ZN , we may compute the polynomial f(x) = (x−v1) · · · (x−vn) ∈ ZN [x]
in time O(n lg3 N).

Lemma 2.2 (Polynomial Evaluation). Given as input an element α ∈ Zn
N , positive

integers m,n = O(N), and f ∈ ZN [x] of degree n, we may compute f(1), f(α), . . . , f(αm−1) ∈
ZN in time

O((n+m) lg2 N).

FACTOR VIA RANK-3 LATTICES 5

Proof. This is exactly in [Har21, HH22b]. The proof leverages Bluestein’s trick
to compute polynomial evaluations efficiently by transforming the problem into a
Laurent polynomial multiplication. �

2.3. Lattice. We begin by recalling fundamental concepts of lattices and basis
reduction. Although our work exclusively employs integer lattices, all definitions
extend naturally to real-valued lattices.

Let v1, . . . , vn ∈ Zm with m > n be linearly independent vectors. The lattice L
generated by {v1, . . . , vn} is defined as

L =

{

n
∑

i=1

aivi
∣

∣ ai ∈ Z

}

⊆ Zm.

When m = n, the lattice is said to be of full rank. A basis B = {v1, . . . , vn} spans
L, and we call n = dim(L) the lattice dimension.

Given a basis B, let v∗1 , . . . , v
∗
n denote its Gram-Schmidt orthogonalization. The

lattice determinant is

det(L) :=
n
∏

i=1

‖v∗i ‖,

where ‖ · ‖ denotes Euclidean norm. Any lattice L admits infinitely many bases,
yet all share the same determinant. For full-rank lattices, this equals the absolute
value of the determinant of the basis matrix [v1 · · · vn]⊤.

Let Bm(0, r) := {x ∈ Rm : ‖x‖ < r} denote the m-dimensional open ball of
radius r centered at the origin (subscript omitted when clear from context). The
successive minima λ1, . . . , λn of a rank n lattice satisfy that λi(L) is the smallest
radius of a ball centered at the origin containing i linearly independent lattice
vectors.

Minkowski’s Second theorem establishes a fundamental connection between a
lattice’s determinant and its successive minima.

Theorem 2.3 (Minkowski’s Second Theorem). For any rank n lattice L with basis
B, the successive minima satisfy

n
∏

i=1

λi(L) < (
√
n)n det(B).

This bound is non-constructive. For the special case of dimension 2, the classical
Gauss reduction algorithm efficiently computes a shortest lattice vector. In arbi-
trary dimensions, we employ the seminal lattice reduction technique by Lenstra,
Lenstra, and Lovász [LLL82]:

Lemma 2.4 (LLL Reduction). Let L(B) ⊆ Zm be a lattice with basis {b1, . . . , bn}.
The LLL algorithm outputs a reduced basis {v1, . . . , vn} satisfying

‖vi‖ 6 2(n−1)/2λi(L) (1 6 i 6 n),

with time complexity O(n4mβ2(log n + log β)), where β = Θ(log ‖B‖max + logm)
encodes the basis vector bit-length.

Remark 2.5. By Corollary 17.5.4 in Mathematics of Public Key Cryptography,
Version 2.0 by Steven D. Galbraith (October 31, 2018) [Gal12], we know that the
LLL algorithm requires O(n3mβ) arithmetic operations on integers of size O(nβ).

6 Y. GAO, Y. FENG, H. HU, AND Y. PAN

Here, by employing integer multiplication with complexity O(n log n) for two n-bit
integers as described in [HVDH21], we obtain our LLL complexity result.

Remark 2.6. If we only require the first relative shortest vector, we can apply
the lattice reduction algorithm proposed by Neumaier and Stehlé [NS16], which
improves the time complexity to O(n4+ǫβ1+ǫ).

2.4. Coppersmith’s Method. In Coppersmith’s method, the first step is to con-
struct a lattice, where each row corresponds to the coefficient vector of a polyno-
mial sharing the same root modulo M . To find small roots of a modular univariate
polynomial f , we require a polynomial that shares the same root with f not only
modulo M but also over Z. To achieve this, we use Howgrave-Graham’s following
result [HG97, HG01], which establishes that small modular roots of a polynomial
h with small coefficients are indeed integer roots of h.

Lemma 2.7 (Howgrave-Graham [HG97]). Let h(x1, . . . , xn) ∈ Z[x1, . . . , xn] be the
sum of at most w monomials, and let X1, . . . , Xn > 0. For any (y1, . . . , yn) ∈ Zn

satisfying the following two conditions:

(1) h(y1, . . . , yn) ≡ 0 (mod M) where |yi| < Xi for 1 6 i 6 n,
(2) ‖h(x1X1, . . . , xnXn)‖ < 1√

w
M ,

then h(y1, . . . , yn) = 0.

In 1996, Coppersmith proposed a result called factoring with a hint [Cop96],
which factors RSA moduli N = pq in polynomial time given only half of the bits of
p.

Lemma 2.8 ([May03], Theorem 7). Let N be an integer of unknown factorization
with a divisor b > Nβ. Let fδ(x) be a univariate, monic polynomial of degree δ.
Then all solutions x0 to the equation

fδ(x) ≡ 0 (mod b) with |x0| 6 cNβ2/δ

can be found in time O
(

⌈c⌉ log6+3ǫ N
δ1+ǫ

)

.

Proof. We begin by defining

X :=
1

2
N

β2

δ − 1
log N , n := ⌈logN + 1⌉ , m :=

⌈

βn

δ

⌉

.

We construct a set G of polynomials where each polynomial has a root x0 modulo
bm whenever fb(x) has the root x0 modulo b. The set comprises:

Nm xNm x2Nm · · · xδ−1Nm

Nm−1f xNm−1f x2Nm−1f · · · xδ−1Nm−1f
Nm−2f2 xNm−2f2 x2Nm−2f2 · · · xδ−1Nm−2f2

...
...

...
...

Nfm−1 xNfm−1 x2Nfm−1 · · · xδ−1Nfm−1.

Additionally, we include:

fm, xfm, x2fm, . . . , xn−δmfm.

Let L be the lattice spanned by the coefficient vectors of gi,j(xX) and hi(xX). The
basis matrix B of L is lower triangular, yielding:

det(L) = N
1
2 δm(m+1)X

1
2n(n−1).

FACTOR VIA RANK-3 LATTICES 7

Applying Lemma 2.7, we require:

2
n−1
4 det(L)

1
n <

bm√
n
.

Using b > Nβ , this yields:

N
δm(m+1)

2n X
n−1
2 6 2−

n−1
4 n− 1

2Nβm.

For X, we obtain:

X 6 2−
1
2n− 1

n−1N
2βm
n−1−

δm(m+1)
n(n−1) .

For n > 7, n− 1
n−1 = 2−

log n
n−1 > 2−

1
2 , simplifying to:

X 6
1

2
N

2βm
n−1−

δm(m+1)
n(n−1) .

Given our choice of X, it suffices to show:

m(2βn− δ(m+ 1))

n(n− 1)
>

β2

δ
− 1

logN

Substituting m = βn/δ and simplifying yields:

1

logN
>

β(δ − β)

δ(n− 1)
.

This is equivalent to:

n− 1 >
β(δ − β)

δ
logN.

Since 0 < β 6 1, we have β(δ−β)
δ logN < logN , which holds by our choice of n.

Note that our choice of X only covers solutions in [−X,X]. To find all solutions

in [−cN β2

δ , cN
β2

δ], we solve the problem for at most 4⌈c⌉ translated polynomials
to cover the full range. At last we apply a root-finding algorithm on each polyno-
mial. For a single polynomial, the total time complexity is dominated by the LLL
algorithm. Note that we only require the first relative shortest vector, so we could
apply the faster lattice reduction algorithm in Remark 2.6. With lattice dimension
n = O(logN) and basis vector bit-length log(Nm) = m logN , the complexity is:

O(⌈c⌉ log4+ǫ N(m logN)1+ǫ) = O

(

⌈c⌉ log
6+3ǫ N

δ1+ǫ

)

.

�

2.5. Prime Distribution. Following the idea of [HH22b], we also need the prime
distribution lemma for the loglog speedup.

Lemma 2.9. For B →∞ we have
∑

26r6B
r prime

log r = (1 + o(1))B, (2.1)

∏

26r6B
r prime

r − 1

r
= Θ

(

1

logB

)

. (2.2)

To choose a proper module, we design the following lemma:

8 Y. GAO, Y. FENG, H. HU, AND Y. PAN

Lemma 2.10. For sufficiently large input x ∈ N, there exists a deterministic
polynomial-time algorithm that outputs an integer m =

∏

p∈S p where S is a set
of distinct primes, satisfying:

x

2
< m < 2x,

ϕ(m)

m
= Θ

(

1

log log x

)

Proof. Label the first n primes by p1, p2, . . . , pn. We compute the product
∏n

i=1 pi
step by step, stopping at the first stage where the product exceeds x. Suppose this
occurs at the k-th prime. Then

k−1
∏

i=1

pi < x ≤
k
∏

i=1

pi.

Define t :=
⌊

∏k
i=1 pi/x

⌋

. By Bertrand’s postulate, there exists a prime p with

t < p < 2t. We scan integers from t+ 1 to 2t− 1 to find ps, the prime closest to t.
We claim that ps 6 pk. Indeed,

pk =

∏k
i=1 pi

∏k−1
i=1 pi

>

∏k
i=1 pi
x

> t.

Define m :=
∏k

i=1 pi/ps, we have

x

2
≤
∏k

i=1 pi
2t

< m =

∏k
i=1 pi
ps

<

∏k
i=1 pi
t

< 2x.

We now estimate k. From (2.1), we know this implies pk = Θ(log x). Consequently,
by (2.2)

ϕ(m)

m
=

ps
ps − 1

∏

26r6pk
r prime

r − 1

r
= Θ

(

1

log pk

)

= Θ

(

1

log log x

)

.

Since the algorithm only needs to check primes up to pk, the total time complexity
is (log x)O(1), which is a polynomial in log x. �

3. Some Improved Toolkits

All related works involve finding an element α of large order. More precisely,
the works [Hit18, Har21, HH22b] require an α with ordN (α) > N2/5, while [HH24]
requires ordN (α) > N2/(3+2r). In our work, we improve these requirements to
ordN (α) > N1/4+o(1) for the former setting, and ordN (α) > N1/(4r)+o(1) for the
latter.

First, we generalize the result of Theorem 1.1 in [HH22a] as the following The-
orem.

Theorem 3.1. Let N, s be a natural number and m ∈ Z∗
N such that s,m <

N . Knowing s and m, one can compute finds all primes p such that p ≡ s
(mod m), pr|N in

O

(⌈

N1/4r

m

⌉

log7+3ǫ N

r2+ǫ

)

bit operations.

Proof. See Appendix A. �

FACTOR VIA RANK-3 LATTICES 9

Corollary 3.2. Let N, s be a natural number and m ∈ Z∗
N such that s,m < N and

p ≡ s (mod m) for every prime divisor p of N . Knowing s and m, one can factor
N in

O

(⌈

N1/4

m

⌉

log7+3ǫ N

)

bit operations.

Proof. Set r = 1 in Theorem 3.1. �

Remark 3.3. When r = 1, Corollary 3.2 improves Theorem 3.1 in [Hit18], which
obtains

O

(

N1/4

√
m

log2 N

)

when m is larger than log10 N . Another advantage is that our algorithm only
requires polynomial space.

Then we revisit the Order-finding algorithm (Lemma 4.1) in [HH24].

Lemma 3.4. There is an algorithm taking as an input N > 2 and δ such that
N1/4r log8 N 6 δ 6 N . It returns either some α ∈ Z∗

N with ordN (α) > δ, or a
nontrivial factor of N , or “N is r power free”. Its runtime is bounded by

O

(

δ1/2 log2 N

(log log δ)1/2

)

.

Proof. See Appendix B. �

Finally, we revisit the Order-finding algorithm in [Hit18, Har21, HH22b].

Lemma 3.5. There is an algorithm with the following properties. It takes as input
integers N > 2 and δ such that N1/4 log8 N 6 δ 6 N . It returns either some
α ∈ Z∗

N with ordN (α) > δ, or a nontrivial factor of N , or “N is prime”. Its
runtime is bounded by

O

(

δ1/2 log2 N

(log log δ)1/2

)

.

Proof. Setting r = 1 in Lemma 3.4. �

Remark 3.6. In [Hit18, Remark 6.4], the author conjectured that the restriction
could potentially be relaxed to δ ≥ N1/3+o(1) for suitable o(1). Through the appli-
cation of Theorem 3.1, we successfully improve the lower bound of δ from N2/5 to
N1/4+o(1). Given that the algorithm’s complexity is δ1/2+o(1), this lemma remains
applicable for potential future improvements in deterministic integer factorization
algorithms targeting complexities of N1/6+o(1) or even N1/8+o(1).

4. Starting Point: Factoring N = pq

4.1. Factoring Algorithm for Balance Semiprime. For the convenience of the
reader, we recall the following algorithm from [Har21], which forms a key subroutine
of the main search algorithm presented afterwards.

Algorithm 4.1 (Finding collisions).
Input:
– A positive semiprime N = pq.
– A positive integer κ, and an element α ∈ Z∗

N such that ordN (α) > κ.

10 Y. GAO, Y. FENG, H. HU, AND Y. PAN

– Elements v1 . . . , vn ∈ ZN for some positive integer n, such that vh 6= αi for all
h ∈ {1, . . . , n} and i ∈ {0, . . . , κ− 1}.

– There exists h ∈ {1, . . . , n} such that vh ≡ αi (mod p) or vh ≡ αi (mod q) for
some i ∈ {0, . . . , κ− 1}

Output:
– p and q.

1: Using Lemma 2.1 (product tree), compute the polynomial

f(x) := (x− v1) · · · (x− vn) ∈ ZN [x].

2: Using Lemma 2.2 (Bluestein’s algorithm), compute the values f(αi) ∈ ZN for
i = 0, . . . , κ− 1.

3: for i = 0, . . . , κ− 1 do

4: Compute γi := gcd(N, f(αi)).
5: if γi /∈ {1, N} then recover p and q and return.

6: if γi = N then

7: for h = 1, . . . , n do

8: if gcd(N, vh − αi) 6= 1 then recover p and q and return.

Proposition 4.2. Algorithm 4.1 is correct. Assuming that κ, n = O(N), its run-
ning time is O(n log3 N + κ log2 N).

Proof. This is exactly Proposition 4.1 in [Har21] and Proposition 4.2 in [HH22b].
�

We now present the main search algorithm, the idea is to generalize Copper-
smith’s method by relaxing the determinant constraint det(L) < pmd.

Algorithm 4.3 (The main search).
Input:
– A semiprime N = pq with cNβ < p ≤ Nβ , 1/3 ≤ β ≤ 1/2, where c < 1 is a

constant.
– Positive integers m, s ∈ Z∗

N such that 72 < m < N (1−β)/2/2,ms = tN + 1,

X =
⌊

Nβ

m

⌋

.

– An element α ∈ Z∗
N such that for all i ∈ [k], gcd(αm2i − 1, N) = 1 where

k :=

⌈

2 · 35/4N1/2

cm3/2

⌉

.

Output: p and q.

1: for i = 0, . . . , k − 1 do ⊲ Computation of babysteps

2: Compute αm2i (mod N).

3: for j = 1, . . . ,m do ⊲ Computation of giantsteps
4: if gcd(j,m) = 1 then

5: Construct 3-rank lattice with basis

B =





N 0 0
js X 0
j2s2 2jsX X2



 (4.1)

6: Apply Lemma 2.4 (LLL Algorithm) and take the second vector

vj = (cj , bjX, ajX
2).

FACTOR VIA RANK-3 LATTICES 11

7: Compute

xj = αcjm
2+bjm(1−j)+aj(1−j)2 (mod N)

8: Applying a sort-and-match algorithm to the babysteps and giantsteps computed
in Steps 2 and 7, find all pairs (i, j) such that

αm2i ≡ xj (mod N). (4.2)

For each such match, solve the quadratic equation

cj + bj
(p− j)

m
+ aj

(p− j)2

m2
= ip

If p is found, return p and N/p.
9: Let x1, . . . , xn be the list of giantsteps computed in Step 7, skipping those that

were discovered in Step 8 to be equal to one of the babysteps. Apply Algorithm

4.1 (finding collisions) with N , κ := k, α := αm2

(mod N) and x1, . . . , xn as
inputs.

10: Return p and q.

Before we prove the correctness of Algorithm 4.3, we would like to explain the
core step of the main search.

The main idea is to use the Coppersmith method to compute the giantsteps,
which is different with [HH22b]. We also gain the loglog speed up by sieving on
small primes. In common Coppersmith method, suppose one knows x,m such that
p ≡ x mod m, if logN (p/m) ≤ (logN p)2 then one could factor N in polynomial
time. We use the same lattice in dimension 3. While the classical Coppersmith
method requires strict adherence to the Howgrave-Graham lemma’s inequality, we
present a generalization that relaxes these constraints. Specifically, we remove the
strict requirement that det < pd. Although the vectors obtained from our modified
LLL approach may not be as short, they can be utilized to construct giant steps.
We then employ Harvey’s baby-step giant-step method [Har21] to find collisions
and factor N .

The reason why we choose the second vector by LLL algorithm, is that the
shortest vector is the second row of the basis itself. The collision by this shortest
vector is trivial. We prove this in the following lemma.

Lemma 4.4. Let N,m ∈ N,ms = tN + 1, j ∈ Z∗
m, p̃j = js, X = ⌊Nβ/m⌋,

1/3 6 β 6 1/2, 72 < m < N (1−β)/2/2. Then the shortest vector in the lattice

B =





N 0 0
p̃j X 0
p̃2j 2p̃jX X2





is
v0 = −tj(N, 0, 0) +m(js,X, 0) = (j,mX, 0),

and the second vector v2 obtained from the LLL algorithm has a non-zero third
coordinate.

Proof. We first demonstrate that v0 is indeed the shortest vector in the lattice.
Suppose, for the sake of contradiction, that there exists a shorter vector. Let this
vector be represented as

v = (aN + bjs, (b+ cjs)X, cX2).

12 Y. GAO, Y. FENG, H. HU, AND Y. PAN

By our assumption, the squared norm of v must satisfy

‖v‖2 = (aN + bjs)2 + (b+ cjs)2X2 + c2X4
6 ‖v0‖2 = j2 +m2X2.

Consider the expression

|(am2 + bjtm− cj2t)N |2 =
(

m2(aN + bjs)− jm(b+ cjs) + cj2
)2

6

(

(aN + bjs)2 + (b+ cjs)2X2 + c2X4
)

(

m4 +
j2m2

X2
+

j4

X4

)

< (j2 +m2X2)

(

m4 +
m4

X2
+

m4

X4

)

< 2N2β · 2m4 < N2,

which implies that am2 + bjtm− cj2t = 0. Since gcd(j,m) = 1 and gcd(t,m) = 1,
we must have m | c. However, we know that |c| < 2Nβ/X2 < m, which forces
c = 0.

Substituting this back into our equation yields am + bjt = 0. Again, using the
facts that gcd(j,m) = 1 and gcd(t,m) = 1, there must exist an integer k such that
b = km and a = −ktj. This means that v is an integer multiple of v0, contradicting
our assumption that v is the shortest vector distinct from v0.

We now prove that the second vector v2 obtained from the LLL algorithm has a
non-zero third coordinate. By Theorem 2.3 and the fact that λ3 > λ2 > λ1 > Nβ ,
we have

λ1λ2λ3 6 (
√
3)3 detB ⇒ λ2 6

(

33/2 detB

λ1

)1/2

<
33/4N1/2+β

m3/2
. (4.3)

From the properties of the LLL algorithm (Lemma 2.4), we know that

‖v2‖ 6 2λ2 <
2 · 33/4N1/2+β

m3/2
.

If the third coordinate of v2 were zero, then using the same analysis as above, we
could write v2 = (aN + bjs, bX, 0). This would give us

(aN + bjs)2 + b2X2 = ‖v2‖2 <
4 · 33/2N1+2β

m3
.

Similarly,

|(am+ bjt)N |2 =
(

m(aN + bjs)− bj
)2

6

(

(aN + bjs)2 + b2X2
)

(

m2 +
j2

X2

)

<
4 · 33/2N1+2β

m3
· 2m2

=
8 · 33/2N1+2β

m
< N2,

which implies am + bjt = 0. Since gcd(j,m) = 1 and gcd(t,m) = 1, we must
have b = km and a = −ktj for some integer k. But this would make v2 an integer
multiple of the shortest vector v0, contradicting the linear independence of the basis
vectors. �

Now we will prove the following proposition of our main search.

FACTOR VIA RANK-3 LATTICES 13

Proposition 4.5. Algorithm 4.3 is correct. It runs in time

O

(

φ(m) log3 N +
N1/2 log2 N

m3/2

)

. (4.4)

Proof. We first prove correctness. Let p = mpm + pl. Then for j = pl, we have
p|js + pm and |pm| < ⌊p/m⌋ 6 X. Consider the vector vj = (cj , bjX, ajX

2)
obtained in Step 6. We know that

p|cj + bjpm + ajp
2
m

Let cj + bjpm + ajp
2
m = ip. By the Cauchy-Schwarz inequality,

i2p2 = (cj + bjpm + ajp
2
m)2 6 3(c2j + b2jp

2
m + a2jp

4
m) 6 3‖vj‖2 (4.5)

From (4.3), we know

‖vj‖ 6 2λ2 <
2 · 33/4N1/2+β

m3/2
(4.6)

Combining (4.5) and (4.6), we get

i <
2 · 35/4N1/2+β

m3/2p
<

2 · 35/4N1/2

cm3/2
6 k

Furthermore, we know

mpm = p− pl ≡ 1− j (mod p− 1)

Therefore,

αim2 ≡ αipm2 ≡ αm2(cj+bjpm+ajp
2
m) ≡ αcjm

2+bjm(1−j)+aj(1−j)2 = xj (mod p)

So there must be a collision modulo p between the baby steps computed in Step 2
and the giant steps computed in Step 7.

If this collision is not only a collision modp but also a collision modN , then
Step 8 will find the pair (i, j) and solve the quadratic equation. By Lemma 4.4,
we know that aj 6= 0, so we are guaranteed to return p by solving the quadratic
equation.

Otherwise, if this collision is merely a collision modp, then the algorithm will
find p in Step 9.

Now we analyse the time complexity. It is clear that the number of babysteps is
k. So the total cost of computing babysteps (Step 1–2) is

O(k logN(log logN)2).

In Step 4 we compute m GCDs of integers bounded by m = O(N), which costs

O(m logN(log logN)2).

Then consider the gaintsteps computation. It is also clear that the number of
gaintsteps is φ(m). By Lemma 2.4, we know the LLL algorithm on our 3-dimensional
lattice is O(log2+ǫ N). So the cost of Step 5–6 is

O(φ(m) log2+ǫ N)

The Step 7 can be computed in time

O(φ(m) logN log logN)

In Step 8, we construct a list of pairs (αm2i, i) of length k, and a list of tuples
(xj , j) of length O(φ(m)). From the bounds already mentioned, each item in these

14 Y. GAO, Y. FENG, H. HU, AND Y. PAN

lists occupies O(lgN) bits. We then use merge-sort to sort the lists by the first
component of each tuple, which requires

O((k + φ(m)) log2 N)

bit operations. Each giantstep xj is equal to at most one babystep αm2i, because

our input gcd(αm2i − 1, N) = 1, ∀i ∈ [k] implies that the babysteps are all distinct.
Matching the two sorted lists, we may hence find all matches in time

O((κ+ φ(m)) logN).

Since there are at most k such matches, the total cost for solving the quadratic
equation in Step 8 is bounded by

O(k logN log logN).

Finally, in Step 9 we apply Algorithm 4.1, whose complexity is

O(φ(m) log3 N + k lg2 N) = O

(

φ(m) log3 N +
N1/2 log2 N

m3/2

)

.

Combining the cost time from all steps, we obtain the overall bound

O

(

φ(m) log3 N +
N1/2 log2 N

m3/2

)

.

�

Then we present an algorithm to find the element α ∈ Z∗
N for Algorithm 4.3.

Algorithm 4.6 (Finding α).
Input:
– A semiprime N = pq.
– A positive integer k,m = O(N), where m =

∏

pj∈S p
αj

j and S is a known set

of distinct primes.
Output:

– An element α ∈ Z∗
N such that for all i ∈ [k], gcd(αm2i − 1, N) = 1.

– Otherwise, the prime factors p and q.

1: Apply Lemma 3.5 with D := ⌈N1/3⌉. If any factors of N are found, return.
Otherwise, we obtain α ∈ Z∗

N such that ordN (α) > D.
2: for i = 0, . . . , k − 1 do

3: Compute gcd(αm2i − 1, N).

4: if gcd(N,αm2i − 1) /∈ {1, N} then
5: Recover p and q and return.

6: if gcd(N,αm2i − 1) = N then

7: Initialize r = m2i and factor m2 =
∏

pj∈S p
2αj

j .

8: for each prime pj ∈ S do

9: while pj |r and gcd(αr/pj − 1, N) = N do

10: r ← r/pj

11: for each prime pj ∈ S where pj |r do

12: Compute gcd(αr/pj − 1, N).
13: if gcd(αr/pj − 1, N) /∈ {1, N} then
14: Recover p and q and return.

FACTOR VIA RANK-3 LATTICES 15

15: Using Corollary 3.2 with p ≡ 1 (mod r) to factor N and return p and q.

16: Return α.

Proposition 4.7. Algorithm 4.6 is correct. It runs in time

O

(

N1/6 log2 N

(log logN)1/2
+ (k + logm) logN(log logN)2

)

Proof. We first prove correctness. Assume that the element β we obtain in Step 1

satisfies gcd(αm2i − 1, N) = 1 for all i ∈ [k]. Then the algorithm will return β in
Step 16.

Otherwise, there exists some i ∈ [k] such that gcd(αm2i − 1, N) 6= 1. Let i0 be

the smallest i ∈ [k] such that gcd(αm2i − 1, N) 6= 1. If gcd(αm2i0 − 1, N) ∈ {p, q},
then the algorithm will return p and q in Step 5. The only remaining case is that

gcd(αm2i0 − 1, N) = N .
Let ordp(β) = rp and ordq(β) = rq. We first claim that i0|rp. We prove this by

contradiction. Suppose gcd(i0, rp) < i0. Since

rp|i0m2 =⇒ rp
gcd(i0, rp)

∣

∣

∣

i0
gcd(i0, rp)

m2

Because gcd(rp/ gcd(i0, rp), i0/ gcd(i0, rp)) = 1, we know that (rp/ gcd(i0, rp))|m2.
Thus

rp = gcd(i0, rp) ·
rp

gcd(i0, rp)

∣

∣

∣ gcd(i0, rp)m
2

This implies that p| gcd(αgcd(i0,rp)m
2 − 1, N), which contradicts the minimality of

i0! By similar reasoning, we can show that i0|rq.
At the beginning of Step 6, we initialize r = m2i0. The algorithm then performs

a series of divisions by the prime factors of m2. For each prime factor pj , we divide

r by pj as long as gcd(αr/pj − 1, N) = N . This process continues until we find the
smallest value r such that αr ≡ 1 (mod N).

We claim that after this process, r equals ordN (α). This is because we start
with a multiple of both rp and rq and gradually reduce it by removing unnecessary
prime factors until we reach the minimum value that still satisfies αr ≡ 1 (mod N).

Now, two cases are possible:
Case 1: rp 6= rq. Without loss of generality, there must exist a prime factor pj

of rq such that pj ∤ rp or pj appears with a higher exponent in rq than in rp. When

we compute gcd(αr/pj − 1, N), we have αr/pj ≡ 1 (mod p) (since r/pj is still a

multiple of rp) and αr/pj 6≡ 1 (mod q) (since r/pj is no longer a multiple of rq).

Therefore, gcd(αr/pj − 1, N) = p, and the algorithm will return p and q in Step 14.
Case 2: rp = rq = r. In this case, we have r = ordp(α) = ordq(α) = ordN (α).

Since r > D > N1/4+o(1) (from Step 1), we can apply Coppersmith’s method as
implemented in Corollary 3.2 to factor N in polynomial time, and return p and q
in Step 15.

This completes the proof of correctness.
We now analyze time complexity. The cost of Step 1 from Lemma 3.5 is

O

(

N1/6 log2 N

(log logN)1/2

)

.

16 Y. GAO, Y. FENG, H. HU, AND Y. PAN

To prepare for the loop in Step 5, we first compute αm2

(mod N); the cost of this
step is

O(logm logN log logN).

The Step 5 itself computes at most k products modulo N and k GCDs of integers
bounded by N , whose total cost is

O(k logN(log logN)2).

If we go into Step 10, for each prime pj ∈ S, we compute at most 2αj products
modulo N and 2αj GCDs of integers bounded by N . Since

∑

αj is at most logm,
and the time cost of Coppersmith’s method is in polynomial time, so the total cost
of Steps 10–15 is at most

O(logm logN(log logN)2 + poly(logN)).

Combining together we complete the proof. �

Finally we present the main factoring algorithm. In this algorithm, N0 is a
constant that is chosen large enough to ensure that the proof of correctness works
for all N > N0.

Algorithm 4.8 (Factoring semiprimes).
Input: A semiprime N = pq ≥ N0 with cNβ < p ≤ Nβ , 1/3 ≤ β ≤ 1/2, where
c < 1 is a constant. Output: p and q.

1: Compute

x :=

⌊

N1/5(log logN)2/5

log2/5 N

⌋

,

2: Apply Lemma 2.10 with x and get m satisfying:

x

2
< m < 2x,

ϕ(m)

m
= Θ

(

1

log logN

)

.

If gcd(N,m) /∈ {1, N}, recover p and q and return. Computing s = m−1

(mod N) and

k :=

⌈

2 · 35/4N1/2

cm3/2

⌉

= Θ

(

N1/5 log3/5 N

(log logN)3/5

)

.

3: Apply Algorithm 4.6 with N, k,m. If any factors of N are found, return. Oth-

erwise, we obtain α ∈ Z∗
N such that for all i ∈ [k], gcd(αm2i − 1, N) = 1.

4: Run Algorithm 4.3 (the main search) with the given N , m, s and α. Return p
and q.

Proposition 4.9. Algorithm 4.8 is correct (for suitable N0), and it runs in time

O

(

N1/5 log13/5 N

(log logN)3/5

)

.

Proof. We first prove the correctness. Consider Step 2, we either get p and q or
m, s satisfying

m = Θ(x) = Θ

(

N1/5(log logN)2/5

log2/5 N

)

.

FACTOR VIA RANK-3 LATTICES 17

In Step 3, we either get p and q or obtain α ∈ Z∗
N such that for all i ∈ [k],

gcd(αm2i − 1, N) = 1. Also, for large enough N , we have

72 < m <
N1/4

2
6

N (1−β)/2

2
,

which satisfies the requirement of Algorithm 4.3. In Step 4, we are guaranteed to
get p and q by the Proposition 4.5.

Then we calculate the time complexity. Step 1 and Step 2 (from Lemma 2.10)
are only polynomial time, which is negligible.

From Proposition 4.7, Step 3 costs

O

(

N1/6 log2 N

(log logN)1/2
+ (k + logm) logN(log logN)2

)

,

is also negligible.
From Proposition 4.5, Step 4 costs

O

(

φ(m) log3 N +
N1/2 log2 N

m3/2

)

= O

(

N1/5 log13/5 N

(log logN)3/5

)

.

�

Corollary 4.10. Applying Algorithm 4.8 with β = 1/2, we prove Theorem 1.1.

5. Better Factoring Sums and Differences of Powers

5.1. Factoring Algorithm for Extra Modulo Information. In the the previ-
ous section, we showed how the bit size of p can help us to improve factoring. Now
we focus on how to exploit extra modulo information.

We employ the same fundamental approach as in Algorithm 4.3, with the primary
distinction being the necessity to enumerate the possible bit sizes of p, resulting in a
factor of logN increase in the number of giantsteps. Concurrently, the congruence
constraint p ≡ r (mod n) reduces the number of giantsteps by a factor of n.

Algorithm 5.1 (The main search with modulo).
Input:
– A semiprime N = pq,N1/3 < p < N1/2, r, n such that p ≡ r (mod n), (n,N) =

1.
– Positive integers m ∈ Z∗

N , such that (m,n) = 1, 72 < mn < N1/4/2, s =
(mn)−1 (mod N),minv = m−1 (mod n), ninv = n−1 (mod m).

– An element α ∈ Z∗
N such that for all i ∈ [k], gcd(α(mn)2i − 1, N) = 1 where

k :=

⌈

4 · 35/4N1/2

(mn)3/2

⌉

.

Output: p and q.

1: for i = 0, . . . , k − 1 do ⊲ Computation of babysteps

2: Compute α(mn)2i (mod N).

3: for i = 1, . . . ,
⌈

logN
6

⌉

do ⊲ Computation of giantsteps

4: Compute Xi =
⌊

2iN0.3

mn

⌋

.

5: for j = 1, . . . ,m do

6: if gcd(j,m) = 1 then

7: Compute mj ≡ snminv + jmninv (mod mn).

18 Y. GAO, Y. FENG, H. HU, AND Y. PAN

8: Construct 3-rank lattice with basis

B =





N 0 0
mjs Xi 0
m2

js
2 2mjsXi X2

i



 . (5.1)

9: Apply Lemma 2.4 (LLL Algorithm) and take the second vector

vij = (cij , bijXi, aijX
2
i).

10: Compute

xij = αcij(mn)2+bijmn(1−j)+aij(1−j)2 (mod N).

11: Applying a sort-and-match algorithm to the babysteps and giantsteps computed
in Steps 2 and 10, find all pairs (i, j, σ) such that

α(mn)2σ ≡ xij (mod N). (5.2)

For each such match, solve the quadratic equation

cij + bij
(p−mj)

mn
+ aij

(p−mj)
2

(mn)2
= σp.

If p is found, return p and N/p.
12: Let {xij} be the list of giantsteps computed in Step 10, skipping those that were

discovered in Step 11 to be equal to one of the babysteps. Apply Algorithm 4.1

(finding collisions) with N , κ := k, α := α(mn)2 (mod N) and {xij} as inputs.
13: Return p and q.

Proposition 5.2. Algorithm 5.1 is correct. It runs in time

O

(

φ(m) log4 N +
N1/2 log2 N

(mn)3/2

)

. (5.3)

Proof. The proof follows a similar structure to that of Proposition 4.5. We first
establish the correctness of the algorithm.

Let p = mnpm + pl where 0 < pl < mn. For j0 = (p mod m), the Chinese
remainder theorem implies that pl = mj0 , which gives us p|mj0s + pm. Setting
t = ⌈logN/6⌉, we observe that X0 6 |pm| < ⌊p/(mn)⌋ 6 ⌊N0.5/(mn)⌋ = Xt.
Therefore, there exists an index i0 such that Xi0−1 6 |pm| 6 Xi0 , which implies
that p > mnXi0−1 = mnXi0/2.

Consider the vector vi0j0 = (ci0j0 , bi0j0Xi0 , ai0j0X
2
i0
) obtained in Step 6. We

know that

p|ci0j0 + bi0j0pm + ai0j0p
2
m.

Let ci0j0 + bi0j0pm + ai0j0p
2
m = σp. By the Cauchy-Schwarz inequality, we have

σ2p2 = (ci0j0 + bi0j0pm + ai0j0p
2
m)2 6 3‖vi0j0‖2. (5.4)

Working with modulomn, we note that for i = 0, . . . , t, we have βi = logN (Ximn) ∈
[1/3, 1/2] andmn < N1/4/2 6 N (1−βi)/2/2, which satisfies the conditions of Lemma
4.4.

From equation (4.3), we derive

‖vi0j0‖ 6 2λ2 <
2 · 33/4N1/2+βi0

(mn)3/2
. (5.5)

FACTOR VIA RANK-3 LATTICES 19

Combining inequalities (5.4) and (5.5), we obtain

σ <
2 · 35/4N1/2+βi0

(mn)3/2p
6

4 · 35/4N1/2

(mn)3/2
6 k.

Following the same reasoning as in Proposition 4.5, we have ασ(mn)2 ≡ xi0j0

(mod p). So there must exist a collision modulo p between the babysteps and
the giantsteps.

If this collision also manifests as a collision modulo N , then Step 11 will identify
the triplet (i0, j0, σ) and solve the corresponding quadratic equation. By Lemma
4.4, we know that ai0j0 6= 0, ensuring that we can successfully recover p by solving
the quadratic equation.

Alternatively, if the collision only occurs modulo p but not modulo N , the algo-
rithm will still determine p in Step 12.

We now analyze the time complexity of the algorithm. The number of babysteps
is k, and the number of giantsteps is tφ(m). Therefore, the computational cost of
finding collisions between babysteps and giantsteps is

O(k log2 N + tφ(m) log3 N) = O

(

φ(m) log4 N +
N1/2 log2 N

(mn)3/2

)

.

The time complexity of the remaining steps is negligible compared to this dominant
term, analogous to the analysis in Proposition 4.5, which completes our proof. �

Now we revisit Theorem 2.8 in [Hit17] with our three dimensional-lattice tech-
nique.

Theorem 5.3. Let N, r, n be a natural number such that r = p mod n for every
prime divisor p of N . Knowing r and n, one can compute the prime factorization
of N in

O

(

N1/5 log16/5 N

n3/5
+N1/6 log4 N

)

.

Proof. We first note that ifN is prime, we can identify this using the AKS algorithm
in polynomial time.

If N has three or more prime factors (counting repetitions), then at least one fac-
tor is bounded above byN1/3, and such a factor may be found in timeO(N1/6 log3 N)
(see [Har21, Prop. 2.5]). By repeating this process at most logN times, we reduce
to the case where N is a semiprime with p, q > N1/3. The cost of this reduction
step is at most

O
(

N1/6 log4 N
)

.

Now we assume n < N1/4; otherwise, we could apply Corollary 3.2 to factor N
in polynomial time.

Next, we determine the parameterm. We begin by computingm =
⌈

N1/5

log4/5 N ·n3/5

⌉

.

If gcd(m,n) > 1, we set m = m + 1 and iterate until we find a value such
that gcd(m,n) = 1. We claim that this process examines at most O(log2 n)
values of m. This follows from a result by Iwaniec [Iwa78], which states that
j(n) = O(log2 n), where j(n) is defined as the smallest positive integer y such that

20 Y. GAO, Y. FENG, H. HU, AND Y. PAN

every sequence of y consecutive integers contains an integer coprime to n. Since

log2 n < log2 N ≪ N1/5

log4/5 N ·n3/5 , the value of m we obtain satisfies

m = Θ

(

N1/5

log4/5 N · n3/5

)

, gcd(m,n) = 1,

and the computational complexity of this step is only polynomial in logN , which
is negligible in the overall complexity analysis.

We proceed to compute s = (mn)−1 (mod N), minv = m−1 (mod n), ninv =
n−1 (mod m), and the factorization of mn. These computations can be performed
in polynomial time, and the factorization costs at most (mn)1/4 = O((N3/10)1/4) =
O(N3/40), which is also negligible.

Let

k :=

⌈

4 · 35/4N1/2

(mn)3/2

⌉

= Θ

(

N1/5 log6/5 N

n3/5

)

.

We apply Algorithm 4.6 with parameters N , k, andmn, which either yields p and

q directly or provides an element α ∈ Z∗
N such that for all i ∈ [k], gcd(αm2i−1, N) =

1. This step incurs a cost of

O

(

N1/6 log2 N

(log logN)1/2
+ (k + log(mn)) logN(log logN)2

)

,

which is negligible in the overall complexity.
Finally, we employ Algorithm 5.1 with the aforementioned parameters to factor

the semiprime N . We can verify that all conditions required by Algorithm 5.1 are
satisfied. The complexity of this algorithm is

O

(

φ(m) log4 N +
N1/2 log2 N

(mn)3/2

)

= O

(

N1/5 log16/5 N

n3/5

)

.

Combining all the above analyses, the total complexity of the algorithm is

O

(

N1/5 log16/5 N

n3/5
+N1/6 log4 N

)

.

�

Remark 5.4. When n is not a product of small primes, by selecting an appropriate
m as a product of small primes, we can obtain the same loglog speedup as Algo-

rithm 4.8, yielding an improved complexity of O
(

N1/5 log16/5 N
(n log logN)3/5

)

in the first term

of Theorem 5.3.

5.2. Factoring Sums and Differences of Powers. While maintaining the orig-
inal algorithmic framework proposed by Hittmeir (Algorithm 3.1 in [Hit17]), we
present an improved version of his Theorem 2.8 as Theorem 5.3 for n = Θ(logN),
which yields better bounds in the final results.

Algorithm 5.5 (Factoring sums and differences of powers).
Input:
– Coprime integers a, b ∈ N with a > b.
– A number N ∈ Pa,b where either N = an + bn ∈ P+

a,b or N = an − bn ∈ P−
a,b

for some n ∈ N.
Output:

FACTOR VIA RANK-3 LATTICES 21

– The prime factorization of N .

1: Set N1 := N, v := 1.
2: Apply trial division to compute all divisors of n.
3: if N ∈ P+

a,b then

4: Define D := {2d : d | n}.
5: else

6: Define D := {d : d | n}.
7: Let d1 < d2 < · · · < dl be the ordered list of all elements in D where l > 2.
8: while Nj 6= 1 do

9: Set j = v.
10: Compute Gj = gcd((ab−1)dj − 1 mod Nj , Nj).
11: if Gj = 1 then

12: Set Nj+1 = Nj .
13: else if 1 < Gj 6 N then

14: Apply Theorem 5.3 with n = dj and r = 1 to compute prime factoriza-
tion of Gj .

15: Remove all prime factors dividing Gj from Nj to obtain Nj+1.

16: Set v = j + 1.

17: Return the prime factorization of N .

Proposition 5.6. Algorithm 5.5 is correct and it runs in time

O
(

N1/5 log13/5 N
)

.

Proof. The correctness of Algorithm 5.5 has already been proved in proof of The-
orem 1.1 [Hit17]. We now focus on the time complexity.

Following the analysis in [Hit17], we have n = O(logN), and for j < l, we obtain
Gj 6 N1/2 when N ∈ P−

a,b and Gj 6 N2/3 when N ∈ P+
a,b. For j = l, note that

n = Θ(logN). In the worst case where Gl = N , applying Theorem 5.3 yields a
runtime of

O

(

N1/5 log16/5 N

n3/5
+N1/6 log4 N

)

= O(N1/5 log13/5 N),

which dominates all other operations and gives the claimed complexity bound. This
also proves Theorem 1.2. �

Remark 5.7. For the case where j = l, we have n = Θ(logN). In this scenario, one
can achieve a logarithmic speedup by carefully selecting small prime numbers that
are coprime to n, thus obtaining a modulu m that satisfies both gcd(m,n) = 1 and

ϕ(m)/m = Θ(1/ log logN). This leads to the complexity bound O
(

N1/5 log13/5 N
(log logN)3/5

)

.

Notably, this matches the complexity in Theorem 1.1 for balanced semiprimes,
where the bit-length information of p saves a factor of logN in the exhaustive
search, while here the additional information from n = Θ(logN) combined with
the loglog speedup achieves the same effect.

6. Speedup for prq

Finally, we generalize our rank-3 lattice construction to solve the r-power divisor
problem. This problem—finding all integers p such that pr | N—has recently seen
notable progress in the development of provably deterministic algorithms. Hales

22 Y. GAO, Y. FENG, H. HU, AND Y. PAN

and Hiary [HH24] extended Lehman’s method [Leh74] and obtained two algorithms
with complexities

O
(

N1/(r+2)(logN)2 log logN
)

and O
(

N1/(3+2r)(logN)16/5
)

.

Around the same time, Harvey and Hittmeir [HH22a] (Proceedings of ANTS
XV, Res. Number Theory 8 (2022), no. 4, Paper No. 94) applied Coppersmith’s
method directly and achieved a complexity of

O

(

N1/4r log10+ǫ N

r3

)

.

By incorporating faster LLL-type lattice reduction algorithms and sieving on small
primes, we improve this to

O

(

N1/4r log7+3ǫ N

(log logN − log 4r)r2+ǫ

)

.

According to Remark 3.5 in [HH22a], the worst-case running time of their al-
gorithm occurs when p = Θ(N1/2r) and q = Θ(N1/2), that is, when N = prq.
By focusing on this case and employing our rank-3 lattice construction, we further
reduce the complexity to

O
(√

rN1/4r log5/2 N
)

.

6.1. More Refined Complexity Analysis of [HH22a]. Set m = 1 in Theorem
3.1, we first demonstrate how the complexity bound in [HH22a] can be improved
from

O

(

N1/4r log10+ǫ N

r3

)

to O

(

N1/4r log7+3ǫ N

r2+ǫ

)

.

Theorem 6.1. There exists an explicit deterministic algorithm with the following
properties. Given as input an integer N > 2 and a positive integer r, the algorithm
outputs a list of all positive integers p such that pr | N . Its running time is

O

(

N1/4r log7+3ǫ N

r2+ǫ

)

.

Proof. Set s = 0 and m = 1 in Theorem 3.1. �

Remark 6.2. We emphasize that this improvement does not arise from a novel
algorithmic idea, but rather from a more refined complexity analysis combined
with the use of alternative lattice basis reduction algorithms [NS16].

We could also get a faster algorithm using the same idea of sieving on the small
primes.

Theorem 6.3. Let N be a natural number, one can compute all primes p such that
pr|N in time

F (N) = O

(

N1/4r

log logN − log 4r

log7+3ǫ N

r2+ǫ

)

.

Proof. Set x = ⌈N1/4r⌉ and apply Lemma 2.10 to obtain m satisfying

m =
∏

p∈S

p,
x

2
< m < 2x,

ϕ(m)

m
= Θ

(

1

log log x

)

FACTOR VIA RANK-3 LATTICES 23

This step requires only polynomial time in logN .
We first compute G = gcd(m,N), then identify all primes p ∈ S such that p|G,

and verify for each whether pr|N . We remove all prime factors p of G from N to
obtain N1.

Since |S| = O(logN), this step also requires only polynomial time in logN .
Next, we iterate through all elements i ∈ Z∗

m. For each i, we apply Theorem 3.1
with parameters N1, r, s = i, and m to find all primes p satisfying p ≡ i (mod m)
and pr|N1. We claim this will identify all primes p such that pr|N1. This is because
if a prime p divides N1, then gcd(p,m) = 1, which implies (p mod m) ∈ Z∗

m.
Therefore, when i = (p mod m), this prime p will be output by Theorem 3.1.
Combined with our earlier discussion, we prove that we output all primes p such
that pr|N .

The time complexity for each i is

O

(⌈

N
1/4r
1

m

⌉

log7+3ǫ N

r2+ǫ

)

= O

(

log7+3ǫ N

r2+ǫ

)

Since there are ϕ(m) = O(m/ log log x) = O(N1/4r/(log logN − log 4r)) values of
i, the total time complexity is

O

(

N1/4r

log logN − log 4r
· log

7+3ǫ N

r2+ǫ

)

�

Remark 6.4. Compared to Theorem 6.1, Theorem 6.3 does not always yield a
genuine log logN -speedup. When r = O(1), the improvement log logN − log 4r
can indeed be interpreted as a log logN -speedup. However, in the case where
r = Θ(logN/ log logN), the difference becomes Θ(log log logN), which is asymp-
totically weaker. A similar issue arises in Proposition 4.4 of [HH24], where the
authors claim that “a more sophisticated choice of m can give a log logN speedup.”
This assertion is not entirely accurate in general.

6.2. Factor N = prq with q = Θ(N1/2). Next, we focus on this specific scenario
and demonstrate how to use our rank-3 lattice to solve the r-power divisor problem.

For r > logN
32 log logN , then p < log1/64 N , which means we can find p in poly(logN)

time by enumeration. Then we consider r < logN
32 log logN .

We now present the main search algorithm:

Algorithm 6.5 (The main search).
Input:
– A integer N = prq with N1/2 < q ≤ N1/2/c, where r < logN

32 log logN and c < 1 is
a constant.

– Positive integers X =
⌊

N1/4r logγ N
⌋

, where γ = 1/2− 1/2 log r.

– An element α ∈ Z∗
N whose order larger than k =

⌊

2erX
c

⌋

.
Output: p and q.

1: for i = 0, . . . , k − 1 do ⊲ Computation of babysteps
2: Compute αi (mod N) and gcd(αi − 1, N).
3: if gcd(αi − 1, N) > 1 then

4: Compute p and q and return p and q.

5: for j =
⌊

c1/rN1/2r

X

⌋

, . . . ,
⌊

N1/2r

X

⌋

do ⊲ Computation of giantsteps

24 Y. GAO, Y. FENG, H. HU, AND Y. PAN

6: Mj := jX
7: Construct 3-rank lattice with basis

Bj =





N 0 . . . 0 0
Mr

j rXMr−1
j . . . Xr 0

Mr+1
j (r + 1)Mr

j X . . . (r + 1)MjX
r Xr+1



 (6.1)

8: Apply Lemma 2.4 (LLL Algorithm) and take the second vector

vj = (v0j , v
1
jX, . . . , vr+1

j Xr+1).

9: Compute

xj = α
∑r+1

ℓ=0 vℓ
j(1−j)ℓ (mod N)

10: Applying a sort-and-match algorithm to the babysteps and giantsteps com-
puted in Steps 1 and 5, find all pairs (i, j) such that

αi ≡ xj (mod N). (6.2)

For each such match, solve the quadratic equation

r+1
∑

ℓ=0

vℓj(p− j)ℓ = ipr

If p is found, return p and N/pr.
11: Let x1, . . . , xn be the list of giantsteps computed in Step 5, skipping those that

were discovered in Step 10 to be equal to one of the babysteps. Apply Algorithm
4.1 (finding collisions) with N , κ := k, α := α (mod N) and x1, . . . , xn as
inputs.

12: Return p and q.

Now we will prove the following proposition of our main search.

Proposition 6.6. Algorithm 4.3 is correct. It runs in time

O(
√
rN1/4r log5/2 N). (6.3)

Proof. The correctness and most parts of the complexity analysis follow similarly
to the proof of Proposition 4.5. Analogous to Lemma 4.4, we establish that the
second vector obtained from the LLL algorithm has a non-zero final coordinate.
Since vr+1

j 6= 0, we avoid trivial collisions. Our analysis will focus primarily on the
giant-step baby-step component.

We can construct two linearly independent lattice vectors: (Mr
j , rXMr−1

j , . . . , Xr, 0)
and

(Mr+1
j , (r + 1)Mr

j X, . . . , (r + 1)MjX
r, Xr+1)−Mj(M

r
j , rXMr−1

j , . . . , Xr, 0),

which simplifies to (0,Mr
j X, . . . , rMjX

r, Xr+1). Computing its norm yields:

FACTOR VIA RANK-3 LATTICES 25

∥

∥(0,Mr
j X, . . . , rMjX

r, Xr+1)
∥

∥ =

√

√

√

√

r
∑

i=0

((

r

i

)

M i
jX

r+1−i

)2

6

√

√

√

√

(

r
∑

i=0

(

r

i

)

M i
jX

r+1−i

)2

= X(X +Mj)
r

= XMr
j

(

1 +
X

Mj

)r

= XMr
j

(

1 +
logγ N

N1/4r

)r

.

Since

4r log r + 4r log logN <
1

2
logN +

1

2
logN = logN,

we obtain

1 +
logγ N

N1/4r
< 1 +

logN

N1/4r
< 1 +

1

r
.

Therefore,

∥

∥(0,Mr
j X, . . . , rMjX

r, Xr+1)
∥

∥ < XMr
j

(

1 +
logγ N

N1/4r

)r

< eXN1/2.

Let the second vector obtained from the LLL algorithm in L(Bj) be vj =

(v0j , v
1
jX, . . . , vr+1

j Xr+1). Then ‖vj‖ < 2λ2(L(Bj)) < 2eXN1/2.

Write p = ⌊p/X⌋X + (p − ⌊p/X⌋X) and define j0 = ⌊p/X⌋ and x0 = p − j0X.
Then:

pr | v0j0 + v1j0x0 + · · ·+ vr+1
j0

xr+1
0 . (6.4)

By the Cauchy–Schwarz inequality and our bound on ‖vj‖:
∣

∣v0j0 + v1j0x0 + · · ·+ vr+1
j0

xr+1
0

∣

∣ 6 ‖vj0‖·
√

(r + 2)X2 < 2eXN1/2·
√
rX < 2erXN1/2.

Since N = prq and q > N1/2/c, we have pr < cN1/2. Thus:

v0j0 + v1j0x0 + · · ·+ vr+1
j0

xr+1
0 = kpr for some |k| 6 2erX

c
.

Using the congruence x0 ≡ p− j0X ≡ p−Mj0 ≡ 1−Mj0 (mod p), we obtain:

αk ≡ α(v0
j0

+v1
j0

(1−Mj0
)+···+vr+1

j0
(1−Mj0

)r+1)/pr

(mod p). (6.5)

Define

wi = αv0
i+v1

i (1−Mi)+···+vr+1
i (1−Mi)

r+1

,

and construct the polynomial

f(x) =

M
∏

i=1

(x− wi) ∈ ZN [x]. (6.6)

By Proposition 4.2, evaluating f at α0, . . . , αk−1 takes time

O(N1/4r log3−γ N + rN1/4r log2+γ N).

26 Y. GAO, Y. FENG, H. HU, AND Y. PAN

At least one evaluation f(αk0) will satisfy gcd(f(αk0), N) > 1, thus yielding
a factor of N . With γ = 1

2 − 1
2 log r , the overall complexity of our algorithm is

O(
√
rN1/4r log5/2 N). �

Remark 6.7. When r = O
(

logN
log logN

)

, we have p = poly(logN), so p can be found

in poly(logN) time by brute-force enumeration. Now consider the case where r =

o
(

logN
log logN

)

. In this regime, the complexity of our algorithm isO
(√

rN1/(4r) log5/2 N
)

.

Compared to Strassen’s method, which has complexity O
(

N1/(4r) log3 N
)

[Har21,

Proposition 2.5], our method is strictly better by a factor of
√
r/ log1/2 N .

Remark 6.8. The LLL step takes time

O

(

N1/(2r)

X
· r log2 N log logN

)

= O
(

rN1/(4r) log2−γ N log logN
)

,

which is negligible compared to the overall complexity. Moreover, the LLL step can
be omitted entirely, as the vector (0,Mr

j X, . . . , rMjX
r, Xr+1) can be directly used

to construct the giant step.

Finally we present the main factoring algorithm. In this algorithm, N0 is a
constant that is chosen large enough to ensure that the proof of correctness works
for all N > N0.

Algorithm 6.9 (Factoring r-powers).
Input: A integer N = prq ≥ N0 with N1/2 < q ≤ N1/2/c. Output: p and q.

1: if r > logN
32 log logN then

2: for i = 0, . . . , logN do

3: if ir|N then

4: Recover p and q and return.

5: Apply Lemma 3.4 with N , r and δ = N1/4r log8 N . If any factors of N are
found, return. Otherwise, we obtain α ∈ Z∗

N with ordN (α) > δ.
6: Run Algorithm 6.5 (the main search) with the given N , r and α. Return p and

q.

Proposition 6.10. Algorithm 6.9 is correct (for suitable N0), and it runs in time

O(
√
rN1/4r log5/2 N).

Proof. For correctness, we first handle the case r > logN
32 log logN by enumerating all

p < logN . For the case r < logN
32 log logN , we can recover p and q via the main search

step. Moreover, in this case, we have rX < N1/(4r) log8 N , which satisfies the
requirement on the order size needed by the main search.

Regarding the algorithm’s complexity: when r > logN
32 log logN , the enumeration of

p < logN is negligible. For the case r < logN
32 log logN , finding α takes time less than

N1/(8r) log4 N , and the order checking is bounded by N1/(4r). Therefore, the most
expensive step is the main search, which takes time

O(
√
rN1/4r log5/2 N).

�

FACTOR VIA RANK-3 LATTICES 27

7. Conclusion

In this work, we present a novel deterministic integer factorization approach
that merges Coppersmith’s method with Harvey and Hittmeir’s Baby-step Giant-
step framework through a specialized rank-3 lattice construction. The key insight
of our work is utilizing the second vector from LLL-reduced lattice bases—rather
than the traditional shortest vector—to generate giant steps that avoid trivial colli-
sions, resulting in more efficient factorization algorithms with improved asymptotic
complexity bounds.

Our contributions span multiple factorization problems: For semiprimes with
known bit size of p or q, we achieve a logarithmic improvement in complexity
compared to previous results. For numbers representing sums and differences of
powers, our algorithm also provides significant logarithmic improvements. .

We also introduce several technical innovations that may be of independent in-
terest: an improved approach to finding elements of high multiplicative order; a
refined generalization of Harvey’s deterministic factorization method for identi-
fying r-power divisors; and an extension of Coppersmith’s method that relaxes
determinant constraints while preserving practical utility.

An open question remains whether our approach could directly improve the gen-
eral bound established by Harvey and Hittmeir [HH22b]. Without additional infor-
mation about the factors p or q, our algorithm currently yields the same complexity

bound O
(

N1/5 log16/5 N
(log logN)3/5

)

as their original work.

References

[Cop96] Don Coppersmith, Finding a small root of a univariate modular equation, In-
ternational Conference on the Theory and Applications of Cryptographic Tech-

niques(EUROCRYPT’96), Springer, 1996, pp. 155–165.
[CP05] Richard E Crandall and Carl Pomerance, Prime numbers: a computational perspec-

tive, vol. 2, Springer, 2005.
[Gal12] Steven D Galbraith, Mathematics of public key cryptography, Cambridge University

Press, 2012.
[Har21] David Harvey, An exponent one-fifth algorithm for deterministic integer factorisation,

Math. Comp. 90 (2021), 2937–2950.

[HG97] Nicholas Howgrave-Graham, Finding small roots of univariate modular equations re-

visited, IMA International Conference on Cryptography and Coding, Springer, 1997,
pp. 131–142.

[HG01] Nick Howgrave-Graham, Approximate integer common divisors, International cryp-

tography and lattices conference, Springer, 2001, pp. 51–66.
[HH22a] David Harvey and Markus Hittmeir, A deterministic algorithm for finding r-power

divisors, Research in Number Theory 8 (2022), no. 4, 94.
[HH22b] David Harvey and Markus Hittmeir, A log-log speedup for exponent one-fifth deter-

ministic integer factorisation, Math. Comp. 91 (2022), 1367–1379.
[HH24] Jonathon Hales and Ghaith Hiary, A generalization of lehman’s method, The Ramanu-

jan Journal (2024), 1–18.

[Hit17] Markus Hittmeir, Deterministic factorization of sums and differences of powers, Math.
Comp. 86 (2017), no. 308, 2947–2954.

[Hit18] M. Hittmeir, A babystep-giantstep method for faster deterministic integer factoriza-

tion, Math. Comp. 87 (2018), no. 314, 2915–2935.

[HVDH21] David Harvey and Joris Van Der Hoeven, Integer multiplication in time O(n logn),
Annals of Mathematics 193 (2021), no. 2, 563–617.

[Iwa78] Henryk Iwaniec, On the problem of jacobsthal, Demonstratio Mathematica 11 (1978),

no. 1, 225–232.

28 Y. GAO, Y. FENG, H. HU, AND Y. PAN

[Leh74] R Sherman Lehman, Factoring large integers, Math. Comp. 28 (1974), no. 126, 637–
646.

[LJ87] Hendrik W Lenstra Jr, Factoring integers with elliptic curves, Annals of Mathematics
(1987), 649–673.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational

coefficients, Math. Ann. 261 (1982), 515–534.

[May03] Alexander May, New rsa vulnerabilities using lattice reduction methods., Ph.D. thesis,
Citeseer, 2003.

[NS16] A. Neumaier and D. Stehlé, Faster LLL-type reduction of lattice bases, Proceedings
of the ACM on International Symposium on Symbolic and Algebraic Computation,

ISSAC 2016, Association for Computing Machinery, 2016, pp. 373–380.
[Sho94] Peter W Shor, Algorithms for quantum computation: discrete logarithms and fac-

toring, Proceedings 35th Annual Symposium on Foundations of Computer Sci-

ence(FOCS’94), IEEE, 1994, pp. 124–134.

Appendix A. Proof of Theorem 3.1

Proof. Without loss of generality, we may assume s 6 m − 1. Let p = mx0 + s
where pr|N . This implies p 6 N1/r and |x0| 6 p/m. Let t ≡ m−1 (mod N). We
observe that p|(st+ x0).

Define a sequence {Xi} where X0 = N1/r, X1 = X0/2, . . . , Xk = X0/2
k with

k = ⌊logN/r⌋. Let Xi = Nβi where βi+1 = βi − 1
logN .

For each interval [Xi+1, Xi], consider the polynomial fr(x) = (st + x)r. When
p ∈ [Xi+1, Xi], we have:

fr(x0) ≡ 0 (mod pr), |x0| 6 Xi/m = Nβi/m

Applying Lemma 2.8 with δ = r, b = pr, b > Nβ = Xr
i+1, β = rβi+1, and c =

Xi/m/Nβ2/r, we obtain an upper bound for c:

c =
Xi

mNβ2/r
=

Nβi−rβ2
i+1

m
=

2Nβi+1−rβ2
i+1

m
6

2N1/4r

m

Thus, for each interval [Xi+1, Xi] where i ∈ [k − 1], we can find all p satisfying
p ∈ [Xi+1, Xi] and pr|N in time:

O

(

⌈c⌉ log
6+3ǫ N

δ1+ǫ

)

= O

(⌈

N1/4r

m

⌉

log6+3ǫ N

r1+ǫ

)

We repeat this process for intervals [Xk, Xk−1], . . . , [X2, X1], [X1, X0]. For [0, Xk],
we perform exhaustive search for p ≡ s (mod m). With k = ⌊logN/r⌋ intervals,
the total time complexity is:

⌊

logN

r

⌋

O

(⌈

N1/4r

m

⌉

log6+3ǫ N

r1+ǫ

)

= O

(⌈

N1/4r

m

⌉

log7+3ǫ N

r2+ǫ

)

Since Xk = N1/r/2k = O(1), the exhaustive search complexity is O(logN), which
is negligible in the overall complexity. �

Appendix B. Order-finding algorithms for r-powers

Lemma B.1 ([Hit18], Theorem 6.1). There exists an algorithm with the following
properties:

• Input: N ∈ N, T 6 N and a ∈ Z∗
N .

• Output: If ordN (a) 6 T , then the output is ordN (a); otherwise, the output
is ’ordN (a) > T ’.

FACTOR VIA RANK-3 LATTICES 29

The runtime complexity is bounded by

O

(

T 1/2

√
log log T

· log2 N
)

.

Algorithm B.2 (Order-finding algorithms).
Input:
– N ∈ N and δ 6 N .

Output:
– Either some a ∈ Z∗

N such that ordN (a) > δ, or a nontrivial factor of N , or “N
is r power free”.

1: Set M1 = 1 and a = 2
2: for e = 1, 2, . . . do
3: while a ∤ N and aMe ≡ 1 (mod N) do
4: a← a+ 1

5: if a | N then

6: return a as a nontrivial factor of N , or if a = N , return ’N is prime’.

7: Apply Lemma B.1 with T = δ1/2/ log2 N.
8: if ordN (a) is not found then

9: Apply Lemma B.1 with T = δ.
10: if ordN (a) is not found then

11: return a as an element with ordN (a) > δ.

12: Set me = ordN (a) and compute the prime factorization of me.
13: for each prime p dividing me do

14: if gcd(N, ame/p − 1) 6= 1 then

15: return gcd(N, ame/p − 1) as a nontrivial factor of N.

16: Set Me+1 ← lcm(Me,me)
17: if Me+1 > δ1/2/ log2 N then

18: Apply Theorem 3.1 with r, s = 1,m = Me+1.
19: return some nontrivial factor of N or “N is r power free”.

20: a← a+ 1

Theorem B.3. Algorithm B.2 is correct. Assuming N1/4r log8 N 6 δ, the runtime
complexity of Algorithm B.2 is bounded by

O

(

δ1/2 log2 N

(log log δ)1/2

)

.

Proof. Our algorithm differs from [Hit18, Algorithm 6.2] in two aspects: we set
T = δ1/2/ log2 N instead of T = δ1/3 in Steps 7 and 17, and we apply Theorem
3.1 for detecting r-powers of N in Step 18. Since Theorem 3.1 identifies all primes
p satisfying p ≡ s (mod m) and pr|N , these modifications preserve the correct-
ness established in the proof of [Hit18, Theorem 6.3]. We now analyze the time
complexity.

Let us first examine the running time of Step 18. When the algorithm reaches
this step, we have Me > δ1/2/ log2 N . Given our assumption that N1/4r log8 N 6 δ,
Theorem 3.1 bounds the computational cost by:

O

(⌈

N1/4r

Me

⌉

log7+3ǫ N

r2+ǫ

)

= O

(

δ1/2 log1+3ǫ N

r2+ǫ

)

.

This shows that the cost of Step 18 is asymptotically negligible.

30 Y. GAO, Y. FENG, H. HU, AND Y. PAN

When the algorithm reaches Step 9, it terminates within the claimed running
time. By Lemma B.1, Step 9 requires

O

(

δ1/2√
log log δ

· log2 N
)

.

If ordN (a) is not found, the algorithm terminates. Otherwise, assuming ordN (a) 6
δ, we note that me > δ1/2/ log2 N since the algorithm reached Step 9. This implies
Me > me > δ1/2/ log2 N , leading to Step 18, whose negligible runtime was analyzed
above.

For the e-th iteration of the main loop, each while loop execution in Steps 3-4
takes O(M(logN) logMe) = O(log2 N log logN) operations, with at most Me <
δ1/2/ log2 N iterations. Thus, the total cost is bounded by

O
(

δ1/2 log logN
)

.

Step 7 requires O
(

δ1/4+o(1)
)

bit operations by Lemma B.1. If ordN (a) is found and

sinceme < δ1/2/ log2 N , factoringme in Step 12 via trial division costsO
(

δ1/4+o(1)
)

bit operations. All remaining computations are polynomial-time.
Therefore, one complete main loop iteration requires O

(

δ1/2 log logN
)

bit oper-
ations. Since the value of Me+1 is at least twice as large as Me, it iterates at most
O(log δ) until Me reaches δ1/2/ log2 N . The total time until reaching either Step
9 or Step 18 is O

(

δ1/2 logN log logN
)

, which is asymptotically negligible. This
completes the proof. �

School of Cyber Science and Technology, University of Science and Technology of

China, Hefei, China

Email address: qw1234567@mail.ustc.edu.cn

State Key Laboratory of Mathematical Sciences, Academy of Mathematics and Sys-

tems Science, Chinese Academy of Sciences, Beijing, China and School of Mathematical

Sciences, University of Chinese Academy of Sciences, Beijing, China

Email address: fengyansong@amss.ac.cn

School of Cyber Science and Technology, University of Science and Technology of

China, Hefei, China

Email address: hghu2005@ustc.edu.cn

State Key Laboratory of Mathematical Sciences, Academy of Mathematics and Sys-

tems Science, Chinese Academy of Sciences, Beijing, China and School of Mathematical

Sciences, University of Chinese Academy of Sciences, Beijing, China

Email address: panyanbin@amss.ac.cn

	1. Introduction
	2. Preliminaries
	2.1. Notations
	2.2. Arithmetics
	2.3. Lattice
	2.4. Coppersmith's Method
	2.5. Prime Distribution

	3. Some Improved Toolkits
	4. Starting Point: Factoring N=pq
	4.1. Factoring Algorithm for Balance Semiprime

	5. Better Factoring Sums and Differences of Powers
	5.1. Factoring Algorithm for Extra Modulo Information
	5.2. Factoring Sums and Differences of Powers

	6. Speedup for prq
	6.1. More Refined Complexity Analysis of harvey2022deterministic
	6.2. Factor N = pr q with q=(N1/2)

	7. Conclusion
	References
	Appendix A. Proof of Theorem 3.1
	Appendix B. Order-finding algorithms for r-powers

