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Abstract. The impossible boomerang attack is a very powerful attack, and the existing results show
that it is more effective than the impossible differential attack in the related-key scenario. However,
in the current key recovery process, the details of a block cipher are ignored, only fixed keys are pre-
guessed, and the time complexity of the early abort technique is roughly estimated. These limitations
are obstacles to the broader application of impossible boomerang attack. In this paper, we propose the
pre-sieving technique, partial pre-guess key technique and precise complexity evaluation technique. For
the pre-sieving technique, we capitalize on the specific features of both the linear layer and the nonlinear
layer to expeditiously filter out the impossible quartets at the earliest possible stage. Regarding the
partial pre-guess key technique, we are able to selectively determine the keys that require guessing
according to our requirements. Moreover, the precise complexity evaluation technique empowers us to
explicitly compute the complexity associated with each step of the attack.
We integrate these techniques and utilize them to launch an attack on ARADI, which is a low-latency
block cipher proposed by the NSA (National Security Agency) in 2024 for the purpose of memory
encryption. Eventually, we achieve the first full-round attack with a data complexity of 2130, a time
complexity of 2254.81, and a memory complexity of 2252.14. None of the previous key recovery methods
have been able to attain such an outcome, thereby demonstrating the high efficacy of our new technique.

Keywords: ARADI· Impossible boomerang attack · Pre-sieving technique · Partial pre-guess key
technique · Precise complexity evaluation technique

1 Introduction

The impossible boomerang attack (IBA) is a universal key recovery cryptanalysis method for block ciphers,
which was first introduced and extended to related-key scenarios by Lu in [Lu,Lu11]. It has effectively
targeted 6-round AES-128, 7-round AES-192/AES-256 [DR02] in single-key settings, and 8-round AES-192,
9-round AES-256 in related-key settings.

The basic idea of an impossible boomerang distinguisher (IBD), the core of IBAs, can be best elucidated
through a boomerang distinguisher with a probability of 0. Specifically, for a block cipher Ed, given two input
differences α, α′ and two output differences β, β′, if no pair of plaintexts (x1, x2) can satisfy the following
conditions:

Ed(x1)⊕ Ed(x2) = β,Ed(x1 ⊕ α)⊕ Ed(x2 ⊕ α′) = β′,

then (α, α′) 9 (β, β′) forms an IBD of Ed. For the construction of IBDs, the initial method was proposed by
Lu [Lu], which decomposes a block cipher Ed into two sub-ciphers E0 and E1 (Ed = E1 ◦ E0). Specifically,

(α, α′) 9 (β, β′) holds if for ∀γ, γ′, δ, δ′ such that α
E0−−→ γ, α′

E0−−→ γ′, β
E−1

1−−−→ δ and β′
E−1

1−−−→ δ′, it follows
that γ ⊕ γ′ ⊕ δ ⊕ δ′ 6= 0. However, this method overlooks the dependence between the two sub-ciphers as
highlighted by Murphy [Mur11], which could hinder the discovery of longer IBDs. With the advancement
of boomerang attacks, Dunkelman et al. [DKS10,DKS14], introduced the sandwich framework, dividing the
block cipher Ed into three parts: E1 ◦ Em ◦ E0, as illustrated in Fig. 1. To evaluate the probability of the
boomerang distinguisher on Em, new tables such as the Boomerang Connectivity Table (BCT) [CHP+18],
Double Boomerang Connectivity Table (DBCT) [WP19,DDV20] and others [BHL+20] were proposed for
S-box based block ciphers. Building on the concepts of BCT and DBCT, two papers [BCL+24,ZWT24]
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Fig. 1. The IBD and its extended IBA.

proposed new methods for constructing IBDs, including SAT/SMT-based approaches [BL23,WWS23] and
CP-based approaches [HSE23] to search for IBDs.

To launch the IBA given an IBD, an attacker can extend rb rounds before the IBD and rf rounds after the
IBD, as shown in Fig. 1. Two primary key recovery methods have been identified: the impossible differential
style (IDS) and the boomerang style (BS) [Lu11,BCL+24,ZWT24]. In IDS, the attacker constructs a set of
quartets that satisfy the two input differences and two output differences of the IBD. Subsequently, the early
abort technique [LKKD08a] is employed to eliminate incorrect key guesses. In BS, the attacker first guesses all
necessary keys in the first rb rounds (resp. the last rf rounds) to build the quartets that satisfy the two input
differences and two output differences of the IBD. Then, the early abort technique [LKKD08a] is employed
to discard incorrect keys in the last rf rounds (resp. the first rb rounds). Additionally, the IBAs were initially
launched manually for AES [Lu11], while recent studies have utilized automatic methods [BCL+24,ZWT24],
leading to new results for block ciphers such as SKINNY [BJK+16] and SKINNYee [NSS22].

Compared with the differential attack of block ciphers, the research and application of IBA remain
relatively insufficient, especially in the key recovery process, where several limitations persist.

- Ignore the details of a block cipher. In current key recovery methods, if a difference α can affect l
bits through the inverse of a function F , then all 2l−1 differences that are active on at least one of those
bits are considered to be able to propagate to this difference through F . This undoubtedly increases the
number of impossible quartets, leading to an increase in the complexity of the attack.

- Only pre-guess fixed keys. In the impossible differential style, the attacker does not pre-guess the keys,
and in boomerang style, the attacker pre-guesses the keys in the first rb rounds or the last rf rounds.
These two styles may have high complexity in different steps, which may lead to the overall attack being
unavailable.

- Roughly estimate the time complexity of the early abort technique. Currently, all key recovery
methods will use an approximate formula to estimate the complexity. There are two problems here. One
is that if the time complexity of the early abort technique dominates the overall complexity, the result
obtained by using the approximation formula is not necessarily the optimal one. The other is that even
if we use the approximation formula to obtain the optimal solution, we still have to manually derive the
specific key recovery process so as to give the detailed attack steps, which is undoubtedly complicated
and boring.

Our contributions. In this paper, we focus on automated key recovery of IBA. In order to break through
the limitations of current automated algorithms, we propose three new techniques as follows.

- Pre-sieving technique. In this technique, we utilize the details of the linear layer and the nonlinear
layer to obtain the set of possible differences as accurately as possible, and then filter out the impossible
quartets as early as possible.
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- Partial pre-guess key technique. In this technique, we define the forward dependency graph of known
variables and backward dependency graph of known variables. Using these two graph, we can divide the
key blocks that can be guessed separately, thus achieving partial guessed keys. That is, we can choose
the key blocks in the first rb rounds of the distinguisher and the last rf rounds of the distinguisher for
pre-guessing according to one’s own needs.

- Precise complexity evaluation technique. In this technique, we define the forward dependency graph
of key recovery and backward dependency graph of key recovery. According to these two diagrams, the
early abort technique can be clearly described step by step, which allows us to clearly calculate the
complexity of each step of the attack. By exhaustively searching for all given distinguishers, we can
automatically provide the optimal key recovery strategy as well as the detailed process of the attack.

Finally, we integrate the above techniques together and present a new automated key recovery technique for
IBA.

As a result, we implement the IBA on the block cipher ARADI.

- Distinguishers. By carefully studying the key schedule of ARADI, we found 3-round related-key dif-
ferentials with a probability of 1. Utilizing two such differentials and according to the BCT, we found
11-round IBDs.

- Key recovery. We add 2 rounds before and 3 rounds after the 11-round distinguisher. Then, we use our
new key recovery method to launch the full-round attack. Finally, we get an optimal attack with the data
complexity is 2128, the time complexity is 2254.81 and the memory complexity is 2252.14, which means we
break the block cipher totally. This implies that the block cipher is completely broken. To the best of
our knowledge, this constitutes the first full-round attack. Moreover, even by leveraging the impossible
differential style and the boomerang style IBA, a full-round break remains unattainable. This indicates
that our new method is highly effective.

Outline. We introduce the notations and related work in Section 2. The new key recovery techniques are
presented in Section 3. In Section 4, we detail the full-round attack for the block cipher ARADI. In Section
5, we conclude this paper.

2 Preliminaries

Our key recovery method is applicable to S-box based block ciphers. To provide a clearer description, we use
the SPN block cipher as an illustrative example and present the following notations accordingly.

2.1 Notations

Let E denote an n-bit SPN block cipher and has a key size of m bits. One encryption round of E is illustrated
in Fig. 2, which consists of three fundamental operations:

- SL: The S-box layer, wherein t parallel q-bit S-boxes are employed, introducing non-linearity to the cipher
- LL: The linear layer, which adopts a global linear transformation, further enhancing the diffusion.
- AKLkr : The key addition layer, where the round key kr in round r is XORed with the internal state.

The following notations are used hereafter.

- Zn : The set {0, 1, . . . , n− 1}.
- α

F−→ β: The input difference α can propagate to the output difference β through the function F .
- Ki, i = 0, 1, 2, 3: The keys of E in the related-key setting.
- Ti, i = 0, 1, 2, 3: The plaintext-ciphertext sets encrypted by Ki.
- IXr

i , i = 0, 1, 2, 3 : The internal state of E under Ki before the key addition layer in round r.
- IY ri , i = 0, 1, 2, 3 : The internal state of E under Ki before the S-box layer in round r.
- IZri , i = 0, 1, 2, 3 : The internal state of E under Ki before the linear map in round r.
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Fig. 2. One round of SPN structure block cipher.

- IKr
i , i = 0, 1, 2, 3 : The round key in round r under Ki.

- ∆Xr
01, ∆X

r
23 : Differences in the upper trail of the IBD, i.e. ∆Xr

01 = IXr
0 ⊕ IXr

1 and ∆Xr
23 = IXr

2 ⊕ IXr
3 .

Analogous notations apply for IY , IZ, and IK.
- ∇Xr

12,∇Xr
03 : Differences in the lower trail of the IBD, i.e. ∇Xr

12 = Xr
1 ⊕ Xr

2 and ∇Xr
03 = Xr

0 ⊕ Xr
3 .

Analogous notations apply for IY , IZ, and IK.
- N r

j (β) : The number of input differences that can propagate to the output difference β for the j-th S-box
in round r.

- N r

j(α) : The number of output differences that can propagate to the input difference α for the j-th S-box
in round r.

The notations of an IBA according to Fig. 1 are details as follows:

- α, α′ (resp. β, β′): The input (resp. output) differences of the IBD.
- Ωin,din (resp. Ωout, dout): Ωin (resp. Ωout) denotes the set of plaintext (resp. ciphertext) differences that

may lead to the input (resp. output) difference α (resp. β) of the IBD, where din = log2|Ωin| (resp.
dout = log2|Ωout|).

- pin (resp. pout): pin (resp. pout) denotes the probability of reaching the input (resp. output) difference α
(resp. β) of the IBD from the plaintext (resp. ciphertext) difference in Ωin (resp. Ωout).

- Kin (resp. Kout): The key bits involved in the IBA in Eb (resp. Ef ).
- Nr

a , Jr: Nr
a denotes the number of active S-boxes in round r, and Jr = {jr0 , . . . , jrNr

a−1} denotes the indices
of the active S-boxes in round r.

- Ωrin, prin: Ωrin denotes the set of input difference that may lead to the input difference α of the IBD in
round r when considering the details of S-boxes, and prin represents the probability of reaching α from
the difference within Ωrin, for 0 ≤ r ≤ rb − 1.

2.2 The definitions about IBDs

The original definition of IBD is defined as follows.

Definition 1 (IBD). Given a block cipher E : Fn2 × Fm2 → Fn2 under four keys Ki ∈ Fm2 , i = 0, 1, 2, 3, if for
four state differences α, α′, β, β′ and three key differences κ0, κ1, κ2, any pair of plaintexts (x1, x2) cannot
satisfy

EK1
(x1)⊕ EK2

(x2) = β, EK0
(x1 ⊕ α)⊕ EK3

(x2 ⊕ α′) = β′ (1)

then (α, α′, β, β′) is called an realted-key IBD (RK-IBD) of E under the key differences κ0, κ1, κ2, where
(K0,K1,K2,K3) = (K,K ⊕ κ0,K ⊕ κ1,K ⊕ κ2). Particularly, (α, α′, β, β′) is called an IBD of E under K
if K = K0 = K1 = K2 = K3 in Eq. (1).
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Currently, existing techniques [BCL+24,ZWT24] for constructing an IBD involve the utilization of various
tables, such as BCT [CHP+18] and DBCT [WP19,DDV20]. They are defined as follows and outlined in Fig. 3.

Definition 2 (BCT). Let S be a permutation of Fn2 , and ∆i,∇o ∈ Fn2 . The BCT of S is a two-dimensional
table defined by:

BCT (∆i,∇o) = {x ∈ Fn2 | S−1(S(x)⊕∇o)⊕ S−1(S(x⊕∆i)⊕∇o) = ∆i}.

Definition 3 (DBCT). Let S be a permutation of Fn2 , and ∆i, ∆o,∇i,∇o ∈ Fn2 . The DBCT of S is a
two-dimensional table defined by:

DBCT (∆i,∇o) =
∑
∆o,∇i

UBCT (∆i, ∆o,∇i) · LBCT (∆o,∇i,∇o),

where the UBCT and LBCT of S are three-dimensional tables defined as

UBCT (∆i, ∆o,∇i) = #

{
x ∈ Fn2

S(x)⊕ S(x⊕∆i) = ∆o

S−1(S(x)⊕∇i)⊕ S−1(S(x⊕∆i)⊕∇i) = ∆i

}
,

LBCT (∆o,∇i,∇o) = #

{
x ∈ Fn2

S(x)⊕ S(x⊕∇i) = ∇o
S−1(S(x)⊕∇o)⊕ S−1(S(x⊕∆o)⊕∇o) = ∆o

}
.
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∇i

∇o

∇o

Fig. 3. The illustrations of BCT and DBCT.

As illustrated in Fig. 1, for a block cipher Ed = E1 ◦ Em ◦ E0, if for ∀γ, γ′, δ, δ′ such that α
E0−−→ γ,

α′
E0−−→ γ′, β

E−1
1−−−→ δ and β′

E−1
1−−−→ δ′, (γ, γ′) cannot propagate to (δ, δ′) through Em according to the BCT or

DBCT, then (α, α′) 9 (β, β′).
We now formally describe the automatic search methods of (RK-)IBDs named as sat model, introduced

in [BCL+24,ZWT24] in a more unified way.

I. Identify the S-boxes with known and non-zero (KD) input-output differences.
i. Set the flags. Categorize the differences of S-boxes into four types: zero difference (ZD), known and

non-zero difference (KD), any non-zero difference (ND), and any difference (AD). Partition the difference
of the internal states into blocks based on the size of the S-box. Set two flags for each block: flag fd
to signify the type of the difference, and flag fv to signify the specific difference value if fd = KD.

ii. Build the propagation rule. For the operations in SPN block ciphers, the flags propagate as follows.
- S-box: Let fdi and fdo be the types of input and output differences. Then,

fdo =


ZD, fdi = ZD,

ND, fdi = KD or ND,

AD, otherwise.
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- XOR: Let fdi0 and fdi1 be the types of two input differences of XOR, and fdo be the type of
output difference. Then,

fdo =


ZD, (fdi0 , fdi1) = (ZD, ZD),

KD, (fdi0 , fdi1) = (ZD, KD) or (KD, ZD),

ND, (fdi0 , fdi1) = (ZD, ND) or (ND, ZD)

AD, otherwise.

For other linear transformations, their propagation rules can be derived based on XOR operations.
Additionally, fv adjusts in accordance with the changes of fd.

iii. Detect the positions of S-box. Utilize the MILP method [ZWT24] or CP method [BCL+24] to model
the forward propagation of the flag of the input difference over r rounds under the flag of the key
difference, and also the backward propagation of the flag of the output difference over r rounds under
the flag of the key difference. Find a solution where there exists a target S-box for which both the
input and output differences are non-zero and known.

II. Check for contradictions according to the BCT. If a solution is identified, assign specific values to the
input difference and output difference (and key difference in the related-key setting). Subsequently, derive
the specific values of the input and output differences for the target S-box. If these specific values do not
align with the possible input and output values in the BCT, an RK-IBD is confirmed.

Within this model, there is no need to pre-specify the differences in input, output and key. Each solution
is associated with a set of flags that may generate an (RK-)IBD. Contradictions can be verified post-model
solving. Consequently, this approach remains effective in searching for (RK-)IBDs even when the weights of
the input, output, and key differences are high.

2.3 Key recovery process of IBAs

As depicted in Fig. 1, given an rd-round IBD of Ed, attackers add rb rounds before and rf rounds after the
IBD to launch an (rb + rd + rf ) rounds IBA. Similar as that in [BCL+24,ZWT24], the two input differences
and the two output differences of the IBD are set equal hereafter, i.e. α = α′ and β = β′. Besides, we focus
on the related-key setting with

(K0,K1,K2,K3) = (K0,K0 ⊕∆K,K0 ⊕∇K ⊕∆K,K0 ⊕∇K). (2)

The single-key setting can be derived analogously by setting ∆K = ∇K = 0. Consequently, the sets of
plaintext and ciphertext differences leading to α and β are identical, i.e., Ωin = Ω′in and Ωout = Ω′out.
Without loss of generality, we assume that the queries are directed to the encryption oracle. Similarly, these
queries can also be submitted to the decryption oracle.

Subsequently, we provide an overview of the state-of-the-art automatic key recovery techniques for IBA
proposed in [BCL+24,ZWT24], named Impossible Differential Style (IDS) and Boomerang Style (BS).
Before introducing the two key-recovery attack styles, we recall the early abort technique used in both.

Early abort technique [LKKD08b]. Depending on the round function, instead of guessing all of the
required round key bits Kin ∪ Kout at once, attackers can partially check if a plaintext or ciphertext pair
produces the expected difference of the distinguisher by guessing fractions of them step by step, discarding
invalid pairs after each guess. This reduces the attack’s computational workload.

Impossible Differential Style

-IDS.1: Get plaintext-ciphertext pairs. Construct 2s plaintext structures, each containing 2din plaintexts
activated at din fixed bits. Query the ciphertexts corresponding to the 2s+din plaintexts under four
related keys as specified in Eq. (2). In total, D = 22+s+din plaintext-ciphertext pairs are required.

-IDS.2: Produce quartets.
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-IDS.2a: Construct plaintext pairs within each plaintext structure, and derive P pairs of ((P0, C0),
(P1, C1)) under (K0,K1) and P pairs of ((P3, C3), (P2, C2)) under (K2,K3), where P = 2s+2din .

-IDS.2b: Construct a hash table H0 that lists the pairs of ((P0, C0), (P1, C1)), indexed by the two
(n−dout) bits of the ciphertexts not belonging to Ωout. For each ((P3, C3), (P2, C2)), lookup the hash
table H0 using the two (n − dout) bits of C3 and C2 to find the corresponding ((P0, C0), (P1, C1)).
On average, Q = 22(s+2din)−2(n−dout) quartets of ((P0, C0), (P1, C1), (P2, C2), (P3, C3)) are derived,
where (P0, P1) and (P2, P3) have differences in Ωin, and (C0, C3) and (C1, C2) have differences in
Ωout.

-IDS.3: Assume that the keys in Kin are recovered first, , followed by the keys in Kout.
-IDS.3a: Adopt the early abort technique to recovery the Kin by the Q quartets.
-IDS.3b: Adopt the early abort technique to recovery the Kout by the remaining quartets.

-IDS.4: Perform an exhaustive search on the remaining keys.

Complexity. The date complexity is DCIDS = 22+s+din . For the time complexity T CIDS , it consists of the
following five parts, i.e., T CIDS = D + 2P +Q+A+ E :

– Cost of data generation: D = 22+s+din .
– Cost of building pairs: 2P, where P = 2s+2din .
– Cost of producing quartets: Q = 22(s+2din)−2(n−dout).
– Cost of adopting the early abort technique to recovery keys: The time complexity of this step is estimated

as A = (Q×p2inp2out×2|Kin∪Kout|)C ′E , where C ′E represents the ratio of the cost for one partial encryption
to the full encryption.

– Cost of final exhaustive search: If such a quartet indeed leads to the input and output differences of the
IBD, which occurs with a probability of p2inp

2
out, it is able to discard a key. Thus, the probability of a key

being retained is p = (1−p2inp2out)Q. The time complexity of this step is E = p ·2|K| = 2|K|(1−p2inp2out)Q.

The memory complexity is determined by the cost of storing the data, pairs, quartets and remaining keys:
MCIDS = D + 2P +Q+K, where K = 2|Kin∪Kout|.

Boomerang Style

-BS.1: This step is identical to Step IDS.1 of the impossible differential style.
-BS.2: Guess all the key candidates Kin:

-BS.2a: For each plaintext structure, partially encrypt P0 to the beginning of the IBD under k0, XOR
the resulting state with α, and then decrypt it to produce the plaintext P1 under k1. Get their
corresponding ciphertexts (C0, C1) by consulting table Ti, i ∈ {0, 1}. Consequently, 2s+din pairs
((P0, C0), (P1, C1)) are derived. Consequently, 2s+din pairs ((P3, C3), (P2, C2)) are constructed.

-BS.2b: This step is identical to Step IDS.2b of the impossible differential style. On average, Q =
22(s+din)−2(n−dout) quartets of ((P0, C0), (P1, C1), (P2, C2), (P3, C3)) are derived, where (P0, P1) and
(P2, P3) have differences in Ωin, and (C0, C3) and (C1, C2) have differences in Ωout.

-BS.2c: Adopt the early abort technique to recovery the Kf for the Q quartets.
-BS.3: Perform an exhaustive search on the remaining keys.

Complexity. The date complexity is DCBS = 22+s+din . For the time complexity T CIDS , it consists of the
following five parts, i.e., T CIDS = D + P ′ +Q′ +A+ E :

– Cost of data generation: D = 22+s+din .
– Cost of building pairs: P ′ = 2|Kin| × 2P × 2|Eb|/|E|, where P = 2s+din .
– Cost of producing quartets: Q′ = 2|Kin| ×Q = 2|Kin|+2(s+din)−2(n−dout).
– Cost of adopting the early abort technique to recovery keys : A = 2|Kin| × (Q × 2|Kout/Kin|−2cout)C ′E ,

where C ′E is the ratio of the cost for one partial encryption to the full encryption.
– Cost of final exhaustive search: If such a quartet indeed leads to the input and output differences of the

IBD, which occurs with a probability of p2out, it is able to discard a key. Thus, the probability of a key
being retained is p = (1− p2out)Q. The time complexity of this step is E = p · 2|K| = 2|K|(1− p2out)Q.

The memory complexity is determined by the cost of storing the data, pairs, quartets and remaining keys:
MCBS = D + 2P +Q+K, where K = 2|Kin∪Kout|1.

1 We summarize some general details for deriving the common parameters used in both IDS and BS key recovery:
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3 New Technologies Facilitating IBAs

In this section, we introduce the pre-sieving technique, the partial pre-guess key technique, and the precise
complexity evaluation technique to optimize the key recovery in IBA2.

3.1 Pre-sieving technique

The core of our pre-sieving technique lies in determining the possible propagation difference set as precisely
as possible based on the details of nonlinear layers, thereby enabling the early elimination of impossible
quartets. For an SPN block cipher E, given an rd-round IBD (α, α, β, β), rb rounds before and rf rounds
after the IBD are added to launch an (rb + rd + rf ) rounds IBA. The pre-sieving technique can be applied
to the first rb rounds when queries are directed towards the encryption oracle as detailed subsequently. It is
also applicable to the last rf rounds for decryption queries.

Let ϕr = (ϕr0, . . . , ϕ
r
t−1) and ηr = (ηr0, . . . , η

r
t−1) denote the input and output differences of the S-box

layer in round r, respectively. With truncated differential propagation rules, the indexes Jr and the number
Nr
a of active S-boxes in round r within Eb are derived based on the given α and round key differences.

For determining Ωin, current key recovery methods consider a nonzero output difference of a q-bit S-box as
potentially propagated from any one of the 2q−1 nonzero input differences. Thereby |Ωin| = 2N

0
a ·q. However,

these methods fail to account for the details of the S-box, which can further reduce |Ωin|.
Consequently, we propose the pre-sieving technique. For instance, when rb = 1, the optimized plaintext

difference set Ω0
in is derived according to the DDT of S-boxes with |Ω0

in| =
∏
j∈J0 N 0

j (η0j ), where η0 is

determined by α. Given that N 0
j (η0j ) ≤ 2q, it follows that |Ω0

in| ≤ |Ωin|. This implies that the differences in

Ωin/Ω
0
in cannot propagate to α, and thus can be initially disregarded to prevent the unnecessary addition

of impossible quartets. Furthermore, when rb > 1, the set of differences Ωrin that might lead to α at round
r is derived by back-propagating each difference in Ωr+1

in through one round of E under the corresponding
round key difference, for 0 ≤ r ≤ rb − 2. Similarly, Ωrb−1in is derived as in the case when rb = 1.

To evaluate the feasibility of the attack, it is necessary to estimate the attack complexity, which hinges on
determining the value of |Ω0

in|. As described above, we iteratively compute Ωrin to a computable intermediate
set Ωrbmin , where 0 ≤ rbm ≤ rb − 1. When bm = 0, |Ω0

in| is derived; otherwise, we need further estimate Ω0
in,

which exceeds the current computing capacity. For S-boxes over F2, at most 2q−1 differences can propagate
to a given output difference. Therefore, we amplify N r

j (ηrj ) to 2q−1 for all j ∈ Jr and 0 ≤ r ≤ rbm − 1.

Consequently, |Ω0
in| is estimated as |Ωrbmin |

∏rbm−1
r=0

(∏
j∈Jr 2q−1

)
, which is upper bounded by 2N

0
a ·q.

Next, we prove that p0in, the probability of reaching the differences α from the difference within Ω0
in, is

1/|Ω0
in|.

Theorem 1. Let Erbk denote the rb-round encryption function under the round keys k = (k0, . . . , krb−1),
and Ω0

in be the set of plaintext differences that back-propagate the difference α through rb rounds under
the key difference ∆k = (∆k0, . . . ,∆krb−1) using the pre-sieving technique. For a plaintext pair (x0, x1) ∈
{(x, x⊕ µ)|µ ∈ Ω0

in}, the probability that Erbk (x0)⊕ Erbk⊕∆k(x1) = α is 1/|Ω0
in|.

Proof. We prove this theorem using the recursive method.

- The positions of the din (resp. dout) activated bits in the plaintext (resp. ciphertext) are determined by the truncated
differential back-propagation (resp. propagation) from the input difference α (resp. output difference β) of the
IBD based on the round key differences.

- The probabilities pin and pout are usually analyzed specifically based on the filtering conditions. For the fixed input
and output difference of IBD, pin and pout are usually equal to 1/|Ωin| and 1/|Ωout|, respectively.

- C′E is usually estimated as the number of nonlinear operations in the partial encryption, divided by the number of
nonlinear operations in the full-round encryption, such as the ratio of the numbers of S-boxes for an SPN block
cipher.

2 For the sake of simplicity, we consider the scenario where α = α′ and β = β′. However, these technology are equally
applicable the scenario where they are not equal.
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Case rb = 1: For a q-bit bijective S-box S and a given output difference ν, let U denote the set of input
differences that can propagate to the output difference ν and N = |U|. Since |{(x, x ⊕ µ)|S(x ⊕ k) ⊕
S(x ⊕ µ ⊕ k) = ν, µ ∈ U}| = 2q and |{(x, x ⊕ µ)|x ∈ Fq2, µ ∈ U}| = N2q, it follows that for ∀(x0, x1) ∈
{(x, x ⊕ µ)|x ∈ Fq2, µ ∈ U} and a given k ∈ Fq2, the probability that S(x0 ⊕ k) ⊕ S(x1 ⊕ k) = ν is
2q/(N2q) = 1/N . When rb = 1, similarly for the S-box layer, p0in = 1/(

∏
j∈J0 N 0

j (η0j )) = 1/|Ω0
in|.

Case rb ≥ 2: Assume that for a state pair (x0, x1) ∈ {(x, x ⊕ µ)|µ ∈ Ω1
in} in round 1, the probability that

Erb−1k (x0) ⊕ Erb−1k⊕∆k(x1) = α is p1in = 1/|Ω1
in|. For each η0 ∈ Ω1

in, there are
∏
j∈J0 N 0

j (η0j ) possible

plaintext pairs in Ω0
in that may propagate to η0, but only one pair can reach the η0 according to the

analysis in the case rb = 1. Since the pairs cannot satisfy two different values of η0 simultaneously, a total
of |Ω1

in| plaintext pairs in Ω0
in can reach the state difference in Ω1

in. Based on the conditional probability
formula, p0in = |Ω1

in|/|Ω0
in|1/| ×Ω1

in| = 1/|Ω0
in|.

We illustrate the application of the pre-sieving technique using the example of IDS key recovery. The
subsequent part details only the steps that differ from those outlined in Section 2.3.

IDS.2’: Produce quartets.
-IDS.2a: Construct plaintext pairs. Compute Ωrin (0 ≤ r ≤ rb − 1) by back-propagating α based on the

key differences. For 2s+din plaintexts, construct P = |Ω0
in|2s+din pairs (P0, C0, P1, C1) and P pairs

(P2, C2, P3, C3). Insert (P0, C0, P1, C1) into a hash table H0 which is indexed by n − dout bits of C0

and n − dout bits of C1. For each (P2, C2, P3, C3), search the hash table H0 to find the corresponding
(P0, C0, P1, C1). On average, we can find |Ω0

in|2(s+din−2(n−dout)) = |Ω0
in|2s+din+2(dout−n) (P0, C0, P1, C1)

corresponding to each (P2, C2, P3, C3). Eventually, we obtainQ = |Ω0
in|22s+din+s+din+2(dout−n) = |Ω0

in|222s+2din+2dout−2n

quartets that possess differences in Ω0
in and Ωout.

-IDS.3a’: Rather than applying the traditional early abort technique to recover the Kin for the Q quartets,
we adopt the following steps to recover the keys.
-IDS.3a’.1: At round 0, let η0 and η′0 be the output differences of the S-box layer in round 0, which

are derived from α and the corresponding key differences. Then, there are |Ω1
in|2 possible values for

(η0, η′0). For each value of (η0, η′0), there are (
∏
j∈J0 N 0

j (η0j )N 0
j (η′0j ))22s+2din+2dout−2n quartets that

might propagate to it. For these quartets and for each j ∈ J0, we guess the 2q possible keys IK0
0,j

and then filter the quartets successively according to the output differences (η0j , η
′0
j ). Eventually, for

each guessed key, |Ω1
in|222s+2din+2dout−2n quartets remain.

-IDS.3a’.2 - IDS.3a’.(rb − 1): At round r (r ≥ 1), let ηr and η′r be the output differences of the
S-box layer in round r, which are derived from α and the corresponding key differences. Then, under
each guessed key, there are |Ωr+1

in |2 possible values for (ηr, η′r). Under each guessed key and for each
value of (ηr, η′r), there are (

∏
j∈Jr N r

j (ηrj )N r
j (η′rj ))22s+2din+2dout−2n quartets that might propagate

to it. For these quartets and for each j ∈ Jr, we guess the 2q possible keys IKr
0,j as well as the

necessary unguessed keys in rounds 0 − (r − 1), and then filter the quartets successively according
to the output differences (ηrj , η

′r
j ). Finally, for each guessed key, |Ωr+1

in |222s+2din+2dout−2n quartets
remain.

-IDS.3a’.rb: At round rb− 1, let ηrb−1 and η′rb−1 be the output differences of the S-box layer in round
rb − 1, which are derived from α and the corresponding key differences. Then, the values of ηr and
η′r are uniquely determined by the input difference of the distinguisher α. Under each guessed key,
there are (

∏
j∈Jrb−1 N rb−1

j (ηrb−1j )N rb−1
j (η′rb−1j ))22s+2din+2dout−2n quartets that might propagate to

it. For these quartets and for each j ∈ Jrb−1, we guess the 2q possible keys IKrb−1
0,j and the necessary

unguessed keys in rounds 0−(rb−2), and then filter the quartets successively according to the output
differences (ηrb−1j , η′rb−1j ). Eventually, for each guessed key, 22s+2din+2dout−2n quartets remain.

Complexity. The data complexity is DCIDS′ = 22+s+din . Regarding the time complexity, it comprises five
components:

– Cost of data generation: D = 22+s+din .
– Cost of building pairs: 2P, where P = |Ω0

in|2s+din .
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– Cost of producing quartets: Q = |Ω0
in|222s+2din+2dout−2n.

– Cost of recovering keys: The time complexity of this step is rather intricate, and thus we will conduct
an in-depth discussion hereinafter.

– Cost of final exhaustive search: After the step IDS.3a’, there remain Q′ = 22s+2din+2dout−2n quartets.
Since the last rf -round employs the early abort technique to recover keys, the probability for a given
quartet to discard a key is 2−2cout . Hence, the probability of not discarding a key is:

p = (1− 2−2cout)Q
′
.

Therefore, the time complexity of this step is p · 2k = 2k(1− 2−2cout)Q
′
.

The memory complexity will be determined by the cost of storing the data, pairs, quartets and remaining
keys: MCIDS′ = D + 2P +Q+K, where K = 2|Kin∪Kout|.

Now, let’s discuss the cost of recovering keys. To begin with, for general S-boxes, we present the following
observation.

Observation 1 For an S-box with a size of s bits, given two output differences ν0 and ν1, let U0 and U1 be
the sets of input differences that are capable of propagating to the output differences ν0 and ν1, respectively.
Also, let N0 = |U0| and N1 = |U1|. Then, it holds that N0N1 > 2q.

Lemma 1. For the step IDS.3a’.1, its time complexity is mainly determined by T 1
1 = |Ω1

in|22q(
∏
j∈J0 N 0

j (η0j )N 0
j (η′0j ))22s+2din+2dout−2nC ′E,1,

where C ′E,1 represents the ratio of the cost for two S-box operations to the full encryption.

Proof. Let J0 = {j00 , . . . , j0N0
a−1}. For each of the |Ω1

in|2 values of (η0, η′0), we have

T 1
1,i = (2q)i+1(

∏
j∈J0\{j00 ,...,j0i−1}

N 0
j (η0j )N 0

j (η′0j ))22s+2din+2dout−2nC ′E,1 (0 ≤ i ≤ N0
a − 1).

Based on the observation, it follows that T 1
1,i > T 1

1,i+1 for 0 ≤ i ≤ N0
a − 2 with respect to any fixed values

of (η0, η′0). In other words, for each (η0, η′0), the time complexity is mainly determined by T 1
1,0. Hence, the

time complexity of step IDS.3a’.1 is predominantly determined by T 1
1 .

Lemma 2. For the step IDS.3a’.(r + 1) within the range from IDS.3a’.2 to IDS.3a’.(rb − 1), its time com-
plexity is upper-bounded by

T 1
r = |Ωr+1

in |22q2NK
1
r,0+NK

1
r,1(

∏
j∈Jr

N r
j (ηrj )N r

j (η′rj ))22s+2din+2dout−2nC ′E,1,

where C ′E,1 denotes the ratio of the cost for two S-box operations to the full encryption, NK1
r,0 represents the

number of bits of the keys that have already been guessed in the previous (r − 1) rounds, and NK1
r,1 stands

for the number of bits of the keys that need to be guessed for round r in the previous (r − 1) rounds.

Proof. Let Jr = {jr0 , . . . , jrNr
a−1}. Consider an extreme case in which, for each key guess at round r, we are

required to guess the NK1
r,1 bits of keys in the previous (r− 1) rounds as well. Then, for 0 ≤ i ≤ Nr

a − 1, we
have

T 1
r,i = (2q)i+12NK

1
r,0+NK

1
r,1(

∏
j∈Jr\{jr0 ,...,jri−1}

N r
j (ηrj )N r

j (η′rj ))22s+2din+2dout−2nC ′E,1.

Based on the observation, it follows that T 1
r,i > T 1

r,i+1 for 0 ≤ i ≤ Nr
a − 2 with respect to any fixed values

of (ηr, η′r). In other words, for each (ηr, η′r), the time complexity is mainly determined by T 1
r,0. Hence, the

time complexity of step IDS.3a’.(r + 1) is upper-bounded by T 1
r .
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Lemma 3. For the step IDS.3a’.rb, let NK1
rb−1,0 denote the number of bits of the keys that have already

been guessed in the previous (rb − 2) rounds, and let K1

1,j
rb−1

i

represent the keys that need to be additionally

guessed in the previous (rb − 2) rounds for the jrb−1i -th S-box at round rb − 1 (0 ≤ i ≤ Nrb−1
a ). Then, the

time complexity of this step is bounded by

T 1
rb−1 =

N
rb−1
a −1∑
i=0

T 1

rb−1,jrb−1

i

,

where

T 1
rb−1,i = (2q)i+12NK(

∏
j∈Jrb−1\{jrb−1

0 ,...,j
rb−1

i−1 }

N rb−1
j (ηrb−1j )N rb−1

j (η′rb−1j ))22s+2din+2dout−2nC ′E,1

and NK = NK1
rb−1,0 +

∣∣∣⋃iu=0K
1

1,j
rb−1
u

∣∣∣.
Lemma 3 is rather intuitive, and thus we will not provide a separate proof for it. It should be noted

that only a bound for step IDS.3a’.rb is presented here. Adopting another key recovery order might lead to
a tightened value of Trb−1. The way to conduct the key recovery in step IDS.3a’.rb and step IDS.3b so as
to obtain the globally optimal time complexity will be discussed in the subsequent section. Eventually, we
arrive at the following theorem.

Theorem 2. The time cost of recovering keys by means of the pre-sieve technique is estimated as follows:

T 1 =

rb−1∑
i=0

T 1
i + 2|Kin| × (Q′ × 2|Kout/Kin|−2cout)C ′E ,

where Q′ = 22s+2din+2dout−2n and C ′E stands for the ratio of the cost for one partial encryption to the full
encryption.

Proof. Once the step IDS.3a’ is completed, there are Q′ quartets remaining, and |Kin| bits of keys have
already been guessed at this point. Subsequently, in accordance with the estimation approach for the time
complexity of the early abort technique, the time complexity for recovering Kout is given by 2|Kin| × (Q′ ×
2|Kout/Kin|−2cout)C ′E . By combining this result with Lemma 1 through Lemma 3, we have thereby proven
our theorem.

Undoubtedly, we can also choose to recover the keys of the last rf rounds first. In such case, we will have
guessed |Kout| bits of the keys, and the number of remaining quartets is Q′′ = |Ω0

in|222s+2din−2n, which is
reduced by a factor of 22dout for the first rb rounds. All things considered, we obtain the following results.

Corollary 1. If the keys of the last rf rounds are recovered first, the time cost for recovering keys using the
pre-sieve technique is estimated to be

(2|Kout|−2dout)

rb−1∑
i=0

T 1
i + (Q× 2|Kout|−2cout)C ′E ,

where Q = |Ω0
in|222s+2din+2dout−2n and C ′E represents the ratio of the cost for one partial encryption to the

full encryption.
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3.2 Partial pre-guess key technique

In the impossible differential style key recovery, the attacker does not make any pre-guesses regarding the
keys. Meanwhile, in the boomerang style key recovery, the attacker pre-guesses all of the Kin or Kout. In
other words, within the existing key recovery methods, the attacker either refrains from making any pre-
guesses or is compelled to guess the entire key of either Kin or Kout. This situation naturally gives rise
to two issues. On the one hand, if we choose to guess all of Kin, for the majority of items related to the
attack complexity in the boomerang-style key recovery, it becomes necessary to multiply them by the value
of 2|Kin|. Consequently, if the value of |Kin| is excessively large, the overall complexity might surpass the
maximum complexity that the attack can tolerate. In such a scenario, we can only pre-guess values that are
less than 2|Kin|. On the other hand, aside from pre-guessing Kin, if we are also able to guess a portion of
Kout, then the value of dout will decrease. As a result, the overall complexity may also be lowered. In this
situation, pre-guessing values greater than 2|Kin| proves to be more advantageous for reducing the overall
complexity of the attack. Therefore, being able to select the pre-guessed keys in a flexible manner would be
highly beneficial for conducting the attack. To achieve this objective, we propose the partial pre-guess key
technique.

Regarding the states, differences, and keys, we partition them into blocks based on the size of the S-box.
Specifically, assuming that the S-box layer consists of t S-boxes, we define Xrj = (IXr

0,j , IX
r
3,j , ∆X

r
01,j , ∆X

r
23,j),

Yrj = (IY r0,j , IY
r
3,j , ∆Y

r
01,j , ∆Y

r
23,j), Zrj = (IZr0,j , IZ

r
3,j , ∆Z

r
01,j , ∆Z

r
23,j), and Krj = (IKr

0,j , IK
r
1,j , IK

r
2,j , IK

r
3,j)

(0 ≤ j ≤ t− 1).
Given the input difference α of the distinguishers along with the key differences, we are able to back-

propagate them for rb rounds. Consequently, we can define the flag of Xrj in the following manner:

fXrj =


0, if ∆Xr

01,j and ∆Xr
23,j are inactive,

1, if ∆Xr
01,j and ∆Xr

23,j are active and known,

2, if ∆Xr
01,j and ∆Xr

23,j are unknown.

In the same format, we define fYrj , fZrj , and fKrj . Subsequently, we define a type of directed graph for the
key recovery during the first rb rounds.

Definition 4. The key recovery graph of the first rb rounds, denoted as Gb, is a directed graph. For r =
rb − 1, . . . , 0, its vertices and edges are defined as follows.

- LL: For 0 ≤ j ≤ t− 1, if Xr+1
j is a vertex or, although Xr+1

j is not a vertex, there exists Zrv with fZrv = 2

that influences Xr+1
j , then add Xr+1

j and all such Zrv that influence Xr+1
j as vertices to the graph. Also,

add edges directed from each Zrv to Xr+1
j .

- SL: For 0 ≤ j ≤ t − 1, if Zrj is a vertex or fZrj = 1, then add Zrj and Yrj as vertices to the graph.
Additionally, add an edge directed from Yrj to Zrj .

- AKLkr : For 0 ≤ j ≤ t − 1, if Yrj is a vertex, then add Xrj as a vertex to the graph. Also, add an edge
directed from Xrj to Yrj , and this edge is named as Krj .

In the graph Gb, certain vertices and edges possess special characteristics, which we define as follows.

Definition 5. For the graph Gb and its subgraphs, a vertex that does not direct edges to other vertices is
referred to as a sink vertex. Conversely, vertices that are not pointed to by other vertices are called source
vertices. Additionally, the edge Krj is termed the associated key.

Undoubtedly, the source vertices are X0
j (j ∈ J), where J denotes the set of indices for which X0

j functions
as a source vertex within Gb or its subgraphs. Given that the differences of the sink vertices are known, we
can establish a relationship that encompasses all the source vertices influencing a specific sink vertex and
then utilize this relationship to filter the keys. In other words, a sink vertex represents a particular condition.
To facilitate independent guessing of the keys, we introduce the concept of independent subgraphs, which is
defined as follows.
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Definition 6. A subgraph Gbs is referred to as a basic subgraph of Gb if Gbs contains a source vertex along
with all the vertices and edges of Gb that have an influence on this source vertex. A subgraph Gbi is called an
independent subgraph of Gb if it is composed of basic subgraphs and if, given the values of IX0

0,j and IX0
3,j

as well as the associated key of Gbi (j ∈ J), where J is the set of indices for which X0
j serves as a source

vertex within Gbi, the values of IX0
1,j and IX0

2,j can be determined.

For an independent subgraph Gbi, for all vertices Zrj ∈ Gbi (0 ≤ j ≤ t−1) and for each Xr+1
u (0 ≤ u ≤ t−1)

that influences Zrj , if Xr+1
u is not a vertex of Gbi, then fXr+1

u ≤ 1. Otherwise, we would encounter unknown

differences when attempting to recover IX0
1,j and IX0

2,j . Moreover, the independent subgraph Gbi has the
following property.

Property 1. The independent subgraph Gbi contains at least one source vertex in the form of Zrj or Yrj
(0 ≤ r ≤ rb − 1, 0 ≤ j ≤ t− 1).

Proof. Suppose that all the source vertices of Gbi are Xrj (0 ≤ r ≤ rb − 1, 0 ≤ j ≤ t− 1). Let r0 denote the
maximum value of r such that Xr0j0 (0 ≤ r0 ≤ rb − 1, 0 ≤ j0 ≤ t − 1) is a source vertex. Then, there exists

a Zr0−1u with fZr0−1u = 2 (0 ≤ u ≤ t − 1) that influences Xr0j0 . Since fZr0−1u = 2, there exists at least one

non-source vertex Xr0j1 (0 ≤ j1 ≤ t−1) within Gbi that influences Zr0−1u . Consequently, the source vertex that
is influenced by Xr0j1 is also a source vertex of Gbi. However, this source vertex cannot be Xrj (0 ≤ r ≤ rb − 1,
0 ≤ j ≤ t− 1), because r0 is the maximum value of r for which Xr0j0 is a source vertex. Hence, the property
holds.

Based on Property 1, we can construct the independent subgraphs Gbi for all source vertices in the form
of Zrj or Yrj (0 ≤ r ≤ rb − 1, 0 ≤ j ≤ t − 1). Specifically, for each source vertex, we examine whether
the corresponding basic subgraph is an independent subgraph. If it is, we retain it. If not, according to
our previous analysis, there exist values of r and j such that there exists Xrj that is not a vertex of the
independent subgraph Gbi. In such a case, we simply merge the basic subgraph that contains Xrj with Gbi,
and continue this process analogously until an independent subgraph is formed.

Analogously, for the last rf rounds, we define Xrj = (IXr
1,j , IX

r
0,j , ∆X

r
12,j , ∆X

r
03,j), Y

r

j = (IY r1,j , IY
r
0,j , ∆Y

r
12,j , ∆Y

r
03,j),

and Zrj = (IZr1,j , IZ
r
0,j , ∆Z

r
12,j , ∆Z

r
03,j). Given the output difference β of the distinguisher along with the

key differences, we can propagate them for rf rounds in the forward direction. Consequently, we can define

the flag of Xrj in the following manner:

fXrj =


0, if ∆Xr

12,j and ∆Xr
03,j are inactive,

1, if ∆Xr
12,j and ∆Xr

03,j are active and known,

2, if ∆Xr
12,j and ∆Xr

03,j are unknown.

In the same format, we define fYrj , fZ
r

j , and fKrj . Subsequently, we define a type of directed graph for the
key recovery during the last rf rounds.

Definition 7. The key recovery graph of the last rf rounds, denoted as Gf , is a directed graph. For r =
rb + rd, . . . , rb + rd + rf , its vertices and edges are defined as follows.

- AKLkr : For 0 ≤ j ≤ t − 1, if Xrj is a vertex, then add Yrj as a vertex to the graph. Also, add an edge

directed from Yrj to Xrj , and this edge is named as Krj .
- SL: For 0 ≤ j ≤ t − 1, if Yrj is a vertex or fYrj = 1, then add Zrj and Yrj as vertices to the graph.

Additionally, add an edge directed from Zrj to Yrj .
- LL: For 0 ≤ j ≤ t− 1, if Zrj is a vertex or, although Zrj is not a vertex, there exists Xr+1

v with fXr+1

v = 2

that influences Zrj , then add Zrj and all such Xr+1

v that influence Zrj as vertices to the graph. Also, add

edges directed from each Xr+1

v to Zrj .
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The definitions of sink vertex, source vertex, and associated key for the key recovery graph Gb are also
applicable to Gf . Similarly, the definitions of basic subgraphs and independent subgraphs are analogous.

Definition 8. A subgraph Gfs is called a basic subgraph of Gf if Gfs contains a source vertex along with
all the vertices and edges of Gf that have an influence on this source vertex. A subgraph Gfi is called an

independent subgraph of Gf if it is composed of basic subgraphs and if, given the values of IY
rb+rd+rf
0,j and

IY
rb+rd+rf
1,j as well as the associated key of Gfi (j ∈ J), where J is the set of indices for which Yrb+rd+rfj

serves as a source vertex within Gfi, the values of IY
rb+rd+rf
2,j and IY

rb+rd+rf
3,j can be determined.

For an independent subgraph Gfi, for all vertices Xr+1

j ∈ Gfi (0 ≤ j ≤ t−1) and for each Zru (0 ≤ u ≤ t−1)

that influences Xr+1

j , if Zru is not a vertex of Gfi, then fZru ≤ 1. Otherwise, we would encounter unknown
differences when attempting to recover IY 0

2,j and IY 0
3,j . Moreover, the independent subgraph Gfi has a

property similar to that of the independent subgraph Gbi, which provides a method for constructing the
independent subgraph Gfi.

Property 2. The independent subgraph Gfi contains at least one source vertex in the form of Xrj or Yrj
(0 ≤ r ≤ rb − 1, 0 ≤ j ≤ t− 1).

For a block cipher, we can calculate all the independent subgraphs of the key recovery graph of the first
rb rounds Gb and the key recovery graph of the last rf rounds Gf . The associated keys of these graphs can
be pre-guessed. Assume that we choose to pre-guess the associated keys of lb independent subgraphs Gbi,ib
(0 ≤ ib ≤ lb − 1) and lf independent subgraphs Gfi,if (0 ≤ if ≤ lf − 1). Before presenting the attack in
detail, we introduce the following new notations.

- ∆pin, dpin: ∆pin represents the set of the part of plaintext differences that is involved in Gbi,ib (0 ≤ ib ≤
lb − 1), and dpin = log2 |∆pin|.

- ∆rin, drin: ∆rin represents the set of the part of plaintext differences that is not involved in Gbi,ib (0 ≤
ib ≤ lb − 1), and drin = log2 |∆rin|.

- ∆pout, dpout: ∆pout represents the set of the part of ciphertext differences that is involved in Gfi,if (0 ≤
if ≤ lf − 1), and dpout = log2 |∆pout|.

- ∆rout, drout: ∆rout represents the set of the part of ciphertext differences that is not involved in Gfi,if
(0 ≤ if ≤ lf − 1), and drout = log2 |∆rout|.

- Kpin,Kpout: the associated keys involved in Gbi,ib (0 ≤ ib ≤ lb − 1) and Gfi,if (0 ≤ if ≤ lf − 1).
- Krin,Krout: Krin = Kin/Kpin, and Krout = Kout/Kpout.
- crin, crout: 2−crin and 2−crout denote the probabilities of reaching the distinguisher differences α and β

from differences in ∆rin and ∆rout under the values of ∆pin and ∆pout, respectively.

Take the boomerang style key recovery as an example. The overall improved attack process is detailed
as follows. The overall improved attack can be divided into four steps: BS.1′, BS.2′, and BS.3′. The step
BS.1′ and BS.3′ are the same as BS.1 and BS.3 of the boomerang style. The step IDS.2′ is detailed as
follows.

-BS.2’: Guess all the keys Kpin ∪Kpout:

-BS.2a’: For all possible values of (IX0
0,j , IX

0
3,j) in the source vertex X0

j of Gbi,ib (0 ≤ ib ≤ lb − 1),

obtain the corresponding (IX0
1,j , IX

0
2,j) and store them in the table PT . Similarly, for all possible

values of (IY
rb+rd+rf
1,j , IY

rb+rd+rf
0,j ) in the source vertex Yrb+rd+rfj of Gfi,if (0 ≤ if ≤ lf − 1), obtain

the corresponding (IY
rb+rd+rf
2,j , IY

rb+rd+rf
3,j ) and store them in the table CT .

-BS.3b’: Under the 2s+din plaintexts, for the index j where X0
j is the source vertex of Gkvb,i (0 ≤ i ≤ lb−1),

look up PT to obtain the value of (IX0
1,j , IX

0
2,j). For the remaining positions of active differences,

enumerate all values of difference. Finally, we can construct P = 2s+dpin+2drin pairs.
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-BS.3c’: Store (IX0
0 , IY

rb+rd+rf
0 , IX0

1 , IY
rb+rd+rf
1 ) into a hash table H0 indexed by n − |Ωout| bits

of C0 and n − |Ωout| bits of C1 and indexed by the index j where Yrb+rd+rfj is the source vertex

of Gkvf,i (0 ≤ i ≤ lf − 1). For each (IX0
2 , IY

rb+rd+rf
2 , IX0

3 , IY
rb+rd+rf
3 ), look up the hash table H0

to find the corresponding (IX0
0 , IY

rb+rd+rf
0 , IX0

1 , IY
rb+rd+rf
1 ). For the index j where Yrb+rd+rfj is

the source vertex of Gkvf,i (0 ≤ i ≤ lf − 1), look up the table CT to obtain the possible value of

(IY
rb+rd+rf
1,j , IY

rb+rd+rf
0,j ). On average, we can find 2s+dpin+2drin−(2(n−dout)+2dpout) (P0, C0, P1, C1)

corresponding to each (P2, C2, P3, C3). Finally, we obtainQ = 2s+dpin+2drin+s+dpin+2drin−(2(n−dout)+2dpout) =
22(s+dpin+2drin)+2(dout−dpout−n) quartets that have differences in Ωin and Ωout.

-BS.4c’: Adopt the early abort technique to recover the remaining keys Krin and Krout for the Q
quartets.

Complexity. The data complexity is DCBS′ = 22+s+din . For the time complexity, it consists of five parts:

– Cost of data generation: D = 22+s+din .
– Cost of building pairs: 2|Kpin∪Kpout|×2P×C ′E , where P = 2s+dpin+2drin and C ′E is the cost of the partial

encryption and decryption of building pairs.
– Cost of producing quartets: 2|Kpin∪Kpout| ×Q.
– Cost of adopting the early abort technique to recover keys: The time complexity of this step is estimated

to be 2|Kpin∪Kpout|× (Q×2|Krin∪Krout|−2(crin+crout))C ′′E , where C ′′E is the ratio of the cost for one partial
encryption to the full encryption.

– Cost of final exhaustive search: Let Nr
b be the number of active S-boxes at round r that are not in the

independent graph. In the early abort technique, the probability that the difference ∆rin propagates to

α is prin = 2s·N
1
b /2s·N

0
b ×· · ·×1/2s·N

rb−1

b = 2−s·N
0
b = 2−drin . Analogously, it holds prout = 2−drout . Thus,

p = (1− (prinprout)
2)Q = e−2

(2s+2din−2n)

. Therefore, the cost of this step is p · 2k = e−2
(2s+2din−2n) × 2k.

The memory complexity will be determined by the cost of storing the data, pairs, quartets and remaining
keys: MCBS′ = D + 2P +Q+K, where K = 2|Kin∪Kout|.

3.3 Precise complexity evaluation technique

Currently, automated methods enable the automatic search for the optimal key recovery strategy by mod-
eling each step of the attack. Specifically, the attacker employs an approximate formula to assess the time
complexity of the early abort technique. However, there are two issues. Firstly, if the time complexity of the
early abort technique preponderates over the overall complexity, the outcome obtained using the approxima-
tion formula may not necessarily be the optimal one. Secondly, even if the approximation formula is utilized
to derive the optimal solution, it is still necessary to manually deduce the specific key recovery process in
order to present the detailed attack steps, which is undeniably complex and tedious.

First, we combine the pre-sieving technique with the partial pre-guess key technique and provide a unified
account of the key recovery attack. It should be noted that the impossible differential style and boomerang
style key recovery attacks are particular instances of our attack. The configuration of the attack is detailed
as follows.

- Pre-guessed key Kpin. Compute all the independent subgraphs of the directed graphs for key recovery
in the first rb rounds. Then, select the associated keys of lb independent subgraphs Gbi,ib (0 ≤ ib ≤ lb−1)
as Kpin.

- Pre-guessed set Kpout. Calculate all the independent subgraphs of the directed graphs of the key recovery
in the last rf rounds. Subsequently, choose the associated keys of lf independent subgraphs Gfi,if (0 ≤
if ≤ lf − 1) as Kpin.

- With/without the pre-sieving technique in the first rb rounds. LetΩrrin denote the set of differences
at round r that are obtained by propagating from the differences α and the key difference and are not
involved in Gbi,ib (0 ≤ ib ≤ lb − 1), and let d0rin = log2 |Ω0

rin|. Let Nr
b be the number of active S-boxes
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at round r that are not in the independent graph and Jrb = {jr0 , . . . , jrNr
b−1} be the index of the active

S-boxes. If the early abort technique with the pre-sieving technique is used in the first rb rounds, we
pre-calculate the set of difference Ω0

rin. Otherwise, this set Ω0
rin traverses all possible values of drin bits.

In the absence of the pre-sieving technique during the first rb rounds, the key recovery attack is essentially
the improved boomerang style key recovery attack. Therefore, in this context, we will only elaborate on the
key recovery attack that incorporates the pre-sieving technique within the first rb rounds.

-1: This step is identical to step IDS.1 of the impossible differential style.
-2: Guess all the keys Kpin ∪Kpout:

-2a: This step is the same as step BS.2a’ of the improved boomerang style.
-2b: Under the 2s+din plaintexts, for the index j of the source vertex X0

j of Gbi,ib (0 ≤ ib ≤ lb − 1), we

look up PT to obtain the value of (IX0
1,j , IX

0
2,j). For the remaining positions of active differences, we

traverse all possible values of the difference of Ω0
rin. Eventually, we can construct P = |Ω0

rin|2s+din =

2s+d
0
rin

+din pairs.
-2c: Insert (IX0

0 , IY
rb+rd+rf
0 , IX0

1 , IY
rb+rd+rf
1 ) into a hash table H0 which is indexed by n−|Ωout| bits

of C0 and n− |Ωout| bits of C1 and also indexed by the index j where Yrb+rd+rfj is the source vertex

of Gkvf,i (0 ≤ i ≤ lf − 1). For each (IX0
2 , IY

rb+rd+rf
2 , IX0

3 , IY
rb+rd+rf
3 ), look up the hash table H0

to find the corresponding (IX0
0 , IY

rb+rd+rf
0 , IX0

1 , IY
rb+rd+rf
1 ). When the index j where Yrb+rd+rfj

is the source vertex of Gkvf,i (0 ≤ i ≤ lf − 1), we look up the table CT to get the possible value of

(IY
rb+rd+rf
1,j , IY rb+rd+rf0,j ). On average, we can find 2s+d

0
rin+din−(2(n−dout)+2dpout) (P0, C0, P1, C1) cor-

responding to each (P2, C2, P3, C3). Finally, we obtainQ = 2s+d
0
rin+din+s+d

0
rin+2din−(2(n−dout)+2dpout) =

22(s+d
0
rin+din)+2(dout−dpout−n) quartets that have differences in Ωin and Ωout.

-2d: Recover the keys Krin and Krout. Assume that the keys in Krin are recovered first, and then the
keys in Krout are recovered.

-2d.1: At round 0, let η0 and η′0 be the output difference of the S - box layer in round 0 and be
derived from α and the corresponding key differences. Then there are |Ω1

rin|2 possible values
of (η0, η′0). For each value of (η0, η′0), there are (

∏
j∈J0

b
N 0
j (η0j )N 0

j (η′0j ))22s+2din+2dout−2dpout−2n

quartets that may propagate to it. For those quartets and each j ∈ J0
b , we guess the 2s possible

keys IK0
0,j and filter the quartets according to the output difference (η0j , η

′0
j ) in turn. Finally, for

each guessed key, |Ω1
rin|222s+2din+2dout−2dpout−2n quartets remain.

-2d.2 - 2d.(rb − 1) : At round r (r ≥ 1), let ηr and η′r be the output difference of the S - box layer
in round r and be derived from α and the corresponding key differences. Then there are |Ωr+1

rin |2
possible values of (ηr, η′r) under each guessed key. Under each guessed key, for each value of
(ηr, η′r), there are (

∏
j∈Jr

b
N r
j (η0j )N r

j (η′rj ))22s+2din+2dout−2dpout−2n quartets that may propagate

to it. For those quartets and each j ∈ Jrb , we guess the 2s possible keys IKr
0,j and the necessary

unguessed keys in round 0 − (r − 1), and filter the quartets according to the output difference
(ηrj , η

′r
j ) in turn. Finally, for each guessed key, |Ωr+1

rin |222s+2din+2dout−2dpout−2n quartets remain.

-2d.rb : At round rb − 1, let ηrb−1 and η′rb−1 be the output difference of the S - box layer in round
rb − 1 and be derived from α and the corresponding key differences. Then the values of ηr and
η′r are uniquely determined by the input difference of the IBD. Under each guessed key, there
are (

∏
j∈Jrb−1

b

N rb−1
j (ηrb−1j )N rb−1

j (η′rb−1j ))22s+2din+2dout−2dpout−2n quartets that may propagate

to it. For those quartets and each j ∈ Jrb−1b , we guess the 2s possible keys IKrb−1
0,j and the

necessary unguessed keys in round 0 − (rb − 2), and filter the quartets according to the output
difference (ηrb−1j , η′rb−1j ) in turn. Finally, for each guessed key, Q′ = 22s+2din+2dout−2dpout−2n

quartets remain.
-2d.(rb + 1) : Adopt the early abort technique to recover the remaining keys Krout for the Q′

quartets.

-3: Exhaustively search for the remaining keys.
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Complexity. The date complexity is DC = 22+s+din . For the time complexity, it consists of five parts:

– Cost of data generation: D = 22+s+din .
– Cost of building pairs: 2|Kpin∪Kpout|× 2P ×C ′E , where P = 2s+din+drin and C ′E is the cost of the partial

encryption and decryption of building pairs.
– Cost of producing quartets: 2|Kpin∪Kpout| ×Q.
– Cost of recovering keys: Unlike the traditional methods that use estimation, we will present a method

below to directly obtain the detailed key recovery steps, and then obtain the globally optimal time
complexity.

– Cost of final exhaustive search: the cost of this step is p · 2k, where p = (1− 2−2cpout)Q
′

= e−2
2s+2din−2n

.

The memory complexity will be determined by the cost of storing the data, pairs, quartets and remaining
keys: MC = D + 2P +Q+K, where K = 2|Kin∪Kout|.

The complexity of the other steps is very clear. Thus, we put forward the method for obtaining the
time complexity associated with recovering keys, and then obtain an accurate representation of the overall
complexity. Similar to the proof of Lemma 1-Lemma 3, we have the following results.

Lemma 4. Regarding step 2d.1, its time complexity is mainly determined by T 2
1 = |Ω1

rin|22q(
∏
j∈J0

b
N 0
j (η0j )N 0

j (η′0j ))22s+2din+2dout−2dpout−2nC ′E,1,

where C ′E,1 represents the ratio of the cost for two S-box operations to the cost of a full encryption.

Lemma 5. For the step 2d.r between 2d.2 and 2d.(rb − 1), its time complexity is bounded by

T 2
r = |Ωr+1

rin |22q2NK
2
r,0+NK

2
r,1(

∏
j∈Jr

b

N r
j (ηrj )N r

j (η′rj ))22s+2din+2dout−2dpout−2nC ′E,1,

where C ′E,1 is the ratio of the cost for two S-box operations to the full encryption, NK2
r,0 is the number of

bits of the keys that has been guessed in the prior (r− 1) rounds already, and NK2
r,1 is the number of bits of

the keys that need to guessed for round r in the prior (r − 1) rounds.

Lemma 6. For the step 2d.rb, let NK2
rb−1,0 is the number of bits of the keys that has been guessed in the

prior (rb−2) rounds already, and K2

1,j
rb−1

i

is the set of keys that need to addition guessed in the prior (rb−2)

rounds for the jrb−1i -th S-box at round rb − 1 (jrb−1i ∈ Jrb−1b , 0 ≤ i ≤ Nrb−1
b − 1). For a given key recovery

order jrb−1i0
, . . . , jrb−1i

N
rb−1
b

−1

, the time complexity of this step is

T 2
rb

=

N
rb−1

b −1∑
u=0

T 2
rb−1,iu ,

where T 2
rb−1,iu = (2q)u+12NK(

∏
j∈Jrb−1

b /{jrb−1

i0
,...,j

rb−1

iu−1
}N

rb−1
j (ηrb−1j )N rb−1

j (η′rb−1j ))22s+2din+2dout−2dpout−2nC ′E,1

and NK = NK2
rb−1,0 + | ∪up=0 K

2

1,j
rb−1

iu

|.

In the final rf rounds, we employ the early abort technique to recover the remaining keys Krout. Recall
that, based on the key recovery graph of the last rf rounds Gf , each sink vertex represents a condition.
According to the early abort technique, there are crout/q (2q)-bit conditions. Specifically, for each sink
vertex v, let Cfv be the set of source vertices that affect v, and Kf

v be the set of corresponding keys. Then, we
can establish a relationship among Cfv , Kf

v and the differences of v. Such a relationship is, in fact, a (2q)-bit
condition. To obtain all crout/q (2q)-bit conditions, we can iterate through all sink vertices v. If not all keys
in Kv have been guessed, then we set a condition and mark all keys in Kv as guessed. To determine the time
complexity, we have the following lemma.

Lemma 7. For the step 2d.(rb + 1), let NK2
rb,0

is the number of bits of the keys that has been guessed in

the prior rb steps already, v0, . . . , vcrout/q−1 are the sink vertexes that derive the crout/q (2q)-bit, and Kf
vi be
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the set of the associated keys of vi(0 ≤ i ≤ crout/q− 1). For a given key recovery order i0, . . . , icrout/q−1, the
time complexity of this step is

T 2
rb+1 =

crout/q−1∑
u=0

T 2
rb+1,iu ,

where T 2
rb+1,iu

= Q′(2−2q)u2NK , where NK = NK2
rb,0

+ | ∪ul=0 K
f
vil
|.

Taking into account Lemma 4-Lemma 7, the overall time complexity of key recovery can be summarized
as follows.

Theorem 3. Let jrb−1i0
, . . . , jrb−1i

N
rb−1
b

−1

be the key recovery order of step rb and i0, . . . , icrout/q−1 be the key

recovery order of step rb + 1. In the case of using the pre-sieve technique and the keys in Krin are recovered
first, the time cost of recovery keys is T 2 =

∑rb+1
i=1 T 2

i , where the time complexity T 2
i (1 ≤ i ≤ rb + 1) and

other notations are defined as Lemma 4-Lemma 7.

Undoubtedly, we can also choose to recover the keys of the last rf rounds first. In such case, we will have
guessed |Kout| bits of the keys, and the number of remaining quartets is Q′′ = |Ω0

rin|222s+2din−2n, which is
reduced by a factor of 22dout for the first rb rounds. All things considered, we obtain the following results.

Corollary 2. Let jrb−1i0
, . . . , jrb−1i

N
rb−1
b

−1

be the key recovery order of step rb and i0, . . . , icrout/q−1 be the key

recovery order of step rb + 1. In the case of using the pre-sieve technique and the keys in Krout are recovered

first, the time cost of recovery keys is T 3 =
∑rb+1
i=1 T 3

i , where T 3
rb+1 =

∑crout/q−1
u=0 T 3

rb+1,iu
with T 3

rb+1,iu
=

Q(2−2q)u2
|Kf

vil
|
, and T 3

i = (2|Kout|−2dout)T 2
i (1 ≤ i ≤ rb).

Certainly, when we don’t use the pre-sieve technique, we will obtain (crin + crout)/q (2q)-bit conditions
for (crin + crout)/q source vertices.

Corollary 3. Let K4
v be the set of corresponding keys that on the path from plaintexts or ciphertexts to the

vertices v, and i0, . . . , i(crin+crout)/q−1 be the key recovery order. Then the time cost of recovery keys is

T 4 =

(crin+crout)/q−1∑
u=0

T 4
iu ,

where T 4
iu

= Q(2−2q)u2
|∪u

l=0K
4
vil
|
.

Based on the previous discussion, we have furnished an accurate depiction of the complexity of the entire
attack. This enables us to automatically search for the optimal key recovery strategy. It should be noted that
the time complexity of key recovery is one component of the overall time complexity. Thus, if for a particular
given key recovery order, the time complexity of key recovery does not surpass the time complexity of other
steps, then the overall complexity is not strongly correlated with this specific item. Consequently, it can
also be inferred that this key recovery order exhibits a globally optimal time complexity. Therefore, we can
employ the greedy algorithm to recover the keys. That is, in each step, we select the keys that demand the
fewest guesses for recovery. If the final time complexity of key recovery indeed does not exceed the time
complexity of other steps, then the key recovery order is considered optimal.

When the final time complexity of key recovery exceed the time complexity of other steps, we need to
utilize optimization methods to search for the optimal key recovery strategy.

4 The Full-round Related-key Impossible Boomerang Attack on ARADI

In this section, we first propose the 11-round RK-IBDs. Then, we add 2 rounds before the distinguisher and
3 rounds after the distinguishers to launch the 16 rounds IBA.
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4.1 Specification of the block cipher ARADI

The block cipher ARADI is a low-latency block cipher, which is based on Toffoli gates and has a 128-bit
block size and a 256-bit key size [BGG+23]. The overall encryption function is defined as follows:

E = τk16 ◦ (Λ15πτk15) ◦ · · · ◦ (Λ2πτk2) ◦ (Λ1πτk1) ◦ (Λ0πτk0).

Where,

- π: π is the S-box layer, it uses 32 identical 4-bit S-boxes in parallel.
- Λr(0 ≤ r ≤ 15): Λr is the r-th linear map, and the indices of the Λr are reduced modulo four.
- τkr (0 ≤ r ≤ 15): τkr is the key addition layer, the 128-bit round key kr is XORed with the internal state.

One round of ARADI is shown in Figure
The internal state at r-th step of the key schedule of ARADI is represented by an array of eight 32-bit

words (Kr
0 ,K

r
1 , . . . ,K

r
7), and

kr =

{
Kr

0‖Kr
1‖Kr

2‖Kr
3 , r mod 2 = 0,

Kr
4‖Kr

5‖Kr
6‖Kr

7 , r mod 2 = 1.

In each step, Kr
0‖Kr

1 and Kr
4‖Kr

5 are processed through a 64-bit linear transformation M0, while Kr
2‖Kr

3

and Kr
6‖Kr

7 undergo a 64-bit linear transformation M1. This is followed by a word-level permutation Pr mod 2,
where P0 = (1, 2)(5, 6) and P1 = (1, 4)(3, 6). The linear transformations M0 and M1 operate on the 32-bit
inputs (a, b) as follows:

M0((a, b)) =
(
S1
32(a)⊕ b, S3

32(b)⊕ S1
32(a)⊕ b

)
,

M1((a, b)) =
(
S9
32(a)⊕ b, S28

32(b)⊕ S9
32(a)⊕ b

)
,

where Sj32 donates the left circular shift j-bit on a 32-bit word.

4.2 The 11 rounds RK-IBDs of ARADI

To enable the addition of as many rounds as possible before and after the distinguisher, we expect the weights
of the input and output differences of the distinguisher to be as small as possible. Therefore, by adopting
the same concept in [BCL+24,?], we propose a more concise way to obtain the RK-IBDs.

- Define the flag of difference. Partition the difference into blocks according to the size of the S-box, for a
given difference, the flag of the difference is defined as fs with 0 ≤ fs ≤ 2q, where 0 ≤ fs ≤ 2q − 1
represents the real values of the difference of this S-box and fs = 2q represents unknown differences.

- Define the propagation rule of the flag of difference through each operation.

- S-box: Let fs0 and fs1 be the types of input and output differences. Then,

fs1 =

{
0, fs0 = 0,

2q, fs0 > 0.

- Xor: Let fs0 and fs1 be the two types of two input differences of Xor, and fs2 be the type of output
differences. Then,

fs2 =

{
fs0 ⊕ fs1, fs0 ≤ 2s − 1, fs1 ≤ 2s − 1,

2s, otherwise.

For other linear transformations, its propagation rules can be derived according to Xor, and it will
not be elaborated here.
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- Detect the RK-IBDs. For the input difference α, output difference β, the master key difference ∆K in the
upper trail, and the master key difference ∇K in the lower trail, propagate these differences for r rounds
in the forward and backward directions respectively using a Python or C program. Subsequently, detect
the S-box where the flag of the input difference fs0 ≤ 2s − 1 and the output difference fs0 ≤ 2s − 1. It
should be noted that, in this scenario, the flag of the difference is the difference value. Therefore, we can
examine the BCT to ascertain whether ((α, α), (β, β)) is an r-round RK-IBD under the key difference
(∆K,∇K) or not.

Although in [BCL+24] the difference is divided into four types, the types of any non-zero difference
and any difference essentially play the same role. As a result, they can be combined into a single category.
Moreover, the propagation rules of our method are identical to those of the original method. Consequently,
our method is simply a simplified rendition of the original one. Its advantage lies in the fact that it does not
depend on a third-party solver and can be implemented both quickly and concisely.
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6 Kr

7

M0 M1 M0 M1
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r
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Fig. 4. One type of 3-round key difference of ARADI

We use our method to search for the RK-IBDs of ARADI. Firstly, it has been found that there exist
3-round probability-1 related-key differentials in ARADI.

Theorem 4. For ∀κ ∈ F32
2 , let ∆kr be the key difference at round r. Then ∆kr = (λ0, λ1, λ2, λ3), ∆kr+1 =

∆kr+2 = 0, and ∆kr+3 = (ω0, 0, ω1, 0) for r mod 2 = 0, where (χ0, 0) = M0(λ0, λ1), (χ1, 0) = M1(λ2, λ3)
(0, κ) = M0(χ0, χ1), and (ω0, ω1) = M0(κ, 0). Meanwhile, the difference of the master key ∆K be got by
calculating (λ0, λ1, λ2, λ3, 0, 0, 0, 0) r rounds in the backward direction.

Proof. As shown in Figure 4, let Ki+2
4 = κ, then this theorem holds.
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Fig. 5. One type of 3-round key difference of ARADI

Let ∆xr be the difference at round r before the operation key addition, and ∆yr be the difference at
round r after the operation key addition, then ∆xr = ∆kr → 0 → 0 → ∆yr+2 = ∆kr+2 is an 3-round
related-key differential with probability of 1 under the master key difference ∆mk.

Similarly, according to Figure 5, we can construct another type of 3-round related-key differential with
probability of 1. We only detail the key differences here.

Theorem 5. For ∀κ ∈ F32
2 , let ∆kr be the key difference at round r. Then ∆kr = (λ0, λ1, λ2, λ3), ∆kr+1 =

∆kr+2 = 0, and ∆kr+3 = (0, ω0, 0, ω1) for r mod 2 = 0, where (χ0, χ1) = M1(0, κ), (ω0, ω1) = M1(κ, 0),
and (λ0, λ1) = M0(0, ω0), (λ2, λ3) = M1(0, ω1). Meanwhile, the difference of the master key ∆mk be got by
calculating (λ0, λ1, λ2, λ3, 0, 0, 0, 0) r rounds in the backward direction.

With the 3-round related-key differential with probability of 1, we can construct the IBD as follows.

Construction. Let (α, αcore) be an 3-round related-key differential with probability of 1 under the master
key difference ∆K form round r0 to r0 + 3, and (βcore, β) be an 3-round related-key differential with proba-
bility of 1 under the master key difference ∇K form round r1− 3 to r1 (r0 mod 2 = 0, (r1− 3) mod 2 = 0),
if ((αcore, αcore), (βcore, βcore)) is an (r1 − r0 − 6)-round IBD under the master key difference (∆K,∇K),
then ((α, α), (β, β)) is an (r1 − r0)-round IBD from round r0 to round r1 under the master key difference
(∆K,∇K). Note that, for either of the two construction methods of the 3-round related-key differential with
probability of 1, the values of α, αcore and ∆K is fully determined by a 32-bit value αv, and the values of
β, βcore and ∇K is fully determined by another 32-bit value βv. Therefore, we we can search for IBD within
given ranges of αv and βv.

Result. We set r0 = 2 and r1 = 13, with αv and βv each having only 1 bit activated. The overall search space
amounts to 32 × 32 × 4 = 212. By employing our search method, we obtain 97 11-round RK-IBDs within
258.06 seconds. One of these RK-IBDs is presented as follows and is utilized to implement our subsequent
attacks.
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Theorem 6. Let α be a 32-dimensional tuple with α0 = 8, α15 = 1, α16 = 2, α23 = 4 and 0 otherwise, and
β be a 32-dimensional tuple with β0 = 10 and 0 otherwise. Then ((α, α), (β, β)) is an 11-round IBD from
round 2 to round 13.

Proof. We prove this theorem by contradiction. Let αcore be a 32-dimensional tuple with αcore,0 = 10 and 0
otherwise, and βcore be a 32-dimensional tuple with βcore,0 = 8, βcore,15 = 1, βcore,16 = 2, βcore,23 = 4 and
0 otherwise. As shown in Figure 6, (α, αcore) and (βcore, β) both are 3-round related-key differential with
probability of 1. By propagating the αcore 3 rounds in forward direction, and βcore 2 rounds in backward
direction. Then, in the 13-th S-box at round 8, it holds BCT (4, 2) 6= 0. However, according to the property
of S-box, it holds BCT (4, 2) = 0. This is a contradiction.

4.3 Full-round Related-key Impossible Boomerang Attack on ARADI

We add 2 round before and 3 round after the 97 11-round RK-IBDs, and attempt to utilize our novel technique
to identify a full-round attack of ARADI. That is, the sum of the data complexity, time complexity and
memory complexity is less than 2256. Finally, a full-round attack based on the distinguisher in Theorem 6 is
detected. In this full-round attack, we pre-guess 12-bit key in Kin and 8-bit key in Kout, apply the pre-sieving
technique in the first rb rounds, and adopt the greedy algorithm to recover the keys. The overview of the
full-round attack is shown in Figure 7 and Figure 8. In the last 3 rounds, we exchange the operation τki and
Λi−1(i = 14, 15, 16). Before we launch an attack, we introduce some notations.

Notation 1 For determined differences ∆K0
01 = ∆K0

23, ∆K1
01 = ∆K1

23 and ∆Z1
01 = ∆Z1

23, define

SY1 = {ε|∆Z1
01

π−1

−−→ ε},
SX1

= {θ|θ = ε⊕∆K1
01, ε ∈ SY1

},
SZ0

= {λ|λ = Λ0(θ), θ ∈ SX1
},

SY0
= {σ|λ π−1

−−→ σ, where λi = 0, i ∈ I = {7, 12, 13}, λj = λj , j ∈ Z32/I, and λ ∈ SZ0
},

SX0
= {ω|ω = σ ⊕∆K0

01, σ ∈ SY0
}.

Let |S| donate the size of the set S, then

|SZ0
| = |SX1

| = |SY1
| =

∏
j∈J
N 1
j (∆Z1

01,j),

where J = {0, 9, 10, 15, 16, 17, 23, 26, 27}. And

|SX0
| = |SY0

| =
∑
γ∈SZ0

∏
j∈J
N 0
j (γj),

where J = {0, 2, 3, 4, 5, 8, 9, 10, 11, 15, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28, 29, 30}. For the block cipher ARADI,
and the fixed differences ∆K0

01, ∆K
1
01, ∆Z

1
01 = ∆Z1

23, we obtain |SX0 | ≈ 280.07 by exhaustive search.
Data Collection.

- Data generation. For all 2n plaintexts P , we get the corresponding ciphertexts (C0, C1, C2, C3) under
four keys (K,K ⊕∆K,K ⊕∆K ⊕∇K,K ⊕∇K). Then, we guess K16

0,7 and K16
0,29, and partial decrypt

the ciphertexts to obtain Wi = Λ15(Ci)(0 ≤ i ≤ 3), and

Vi,j =

{
S−1(Wi,j ⊕K16

i,j), j ∈ J = {7, 29},
Wi,j , j ∈ Z32/J,

(0 ≤ i ≤ 3).

Finally, for each guessed key, we create four tables Ti = {(P, Vi)|P ∈ F128
2 }(0 ≤ i ≤ 3).
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- Pair generation. For j ∈ Z32, let IX0
0,j and IX0

3,j traverse through all possible values.

- For j = 1, 6, 14, 19, 20, 25, 31, we set IX0
1,j = IX0

0,j and IX0
2,j = IX0

3,j .

- For j = 7, 12, 13, we guess IK0
0,j and calculate

IX0
1,j = S−1((S(IX0

0,j ⊕ IK0
0,j)⊕∆Z0,j))⊕ IK0

0,j ⊕∆K0,j ,

IX0
2,j = S−1((S(IX0

3,j ⊕ IK0
0,j ⊕∇K0,j)⊕∆Z0,j))⊕ IK0

0,j ⊕∆K0,j ⊕∇K0,j .

- For the remained position j and all differences ω, ω′ ∈ SX0 , we set IX0
1,j = IX0

0,j ⊕ ωj and IX0
2,j =

IX0
3,j ⊕ ω′j .

Finally, we guess 12-bit keys, and for each key, we get 2n|SX0 | = 2208.07 pairs (X0
0 , X

0
1 ) and 2n|SX0 | =

2208.07 pairs (X0
2 , X

0
3 ).

- Quartets generation. For each guessed keys IK16
0,7, IK16

0,29, IK0
0,7, IK0

0,12, and IK0
0,13, we adopt the

following method to construct quartets. For all 2n|SX0
| pairs (IX0

0 , IX
0
1 ), we get the corresponding

(V0, V1) by lookup table T0 and T1. Then, we insert those values to a hash table H0 index by the j-th
(j ∈ J) column of V0 and the j-th (j ∈ J) column of V1, where J = Z32/{0, 1, 4, 7, 10, 11, 21, 25, 28, 29, 31}.
For each 2n|SX0

| pairs (IX0
2 , IX

0
3 ), we get the corresponding (V2, V3) by lookup table T2 and T3, and

lookup the hash table H0 to find the corresponding (IX0
0 , V0, IX

0
1 , V1) such that

V0,j ⊕ V3,j = V1,j ⊕ V2,j =


4, j = 7,

2, j = 29,

0, j ∈ Z32/{0, 1, 4, 7, 10, 11, 21, 25, 28, 29, 31}.

Finally, we get Q = |SX0
|2 · 22drout = 2232.14 quartets, where drout = 4× 9 = 36.

Guess-and-Filter. For each 20-bit keys IK16
0,7, IK16

0,29, IK0
0,7, IK0

0,12, and IK0
0,13, we make use of the Q

quartets to eliminate wrong key bits, and then exhaust the remaining key bits to recover the full key.

1. Guess the keys of the active difference in the first round. For ε ∈ SY1
and ε′ ∈ SY1

, (ε, ε′)
correspond to

∏
j∈J0 N 0

j (λj)N 0
j (λ′j) · 22drout quartets, where λ = Λ0(ε⊕∆K1

01), λ′ = Λ0(ε′⊕∆K1
01) and

J0 = {0, 2, 3, 4, 5, 8, 9, 10, 11, 15, 16, 17, 18,
21, 22, 23, 24, 26, 27, 28, 29, 30}. Let

J0,0 = J0, J0,1 = J0,0/{J0,0
0 }, J0,2 = J0,1/{J0,1

0 },
. . .

J0,21 = J0,20/{J0,20
0 }, J0,22 = J0,21/{J0,21

0 } = ∅.

Then, for i ∈ {1, 2, . . . , 22}, we repeat the following steps to recover the keys.

- 1.i(p = J0
i−1): Guess 24 possible values of IK0

0,p, partially encrypt (IX0
0,p, IX

0
1,p, IX

0
2,p, IX

0
3,p) one S-

box, then use the known difference (λp, λ
′
p) to filter the quartets. There are about

∏
j∈J0,i−1 N 0

j (λj)N 0
j (λ′j)·

22drout · (1/(N 0
j (λj)N 0

j (λ′j))) =
∏
j∈J0,i N 0

j (γj)N 0
j (γ′j) · 22drout remaining quartets. The time com-

plexity of this step is

220 ×
∏

j∈J0,i−1

N 0
j (λj)N 0

j (λ′j) · 22drout × (24)i × 4/(32 · 16) = 213+2drout+4i
∏

j∈J0,i−1

N 0
j (λj)N 0

j (λ′j).

Finally, for each possible (ε, ε′) and IK0
0,p(p ∈ J0), there remain 22drout quartets. Since we have

∏
j∈J1(N 1

j (∆Z1
01,j))

2

pairs (ε, ε′), where J1 = {0, 9, 10, 15, 16, 17, 23, 26, 27}. Thus, for each IK0
0,p(p ∈ J0), there remain

22drout
∏
j∈J1(N 1

j (∆Z1
01,j))

2 quartets.
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2. Guess the remained keys in the first two rounds. Let

J1,0 = {0, 9, 10, 15, 16, 17, 23, 26, 27}, P0 = {0, 5, 24},
J1,1 = {9, 10, 15, 16, 17, 23, 26, 27}, P1 = {10, 15, 18},
J1,2 = {9, 15, 16, 17, 23, 26, 27}, P2 = {4, 15, 23},
J1,3 = {9, 16, 17, 23, 26, 27}, P3 = {2, 16, 21},
J1,4 = {9, 17, 23, 26, 27}, P4 = {3, 17, 22},
J1,5 = {9, 23, 26, 27}, P5 = {9, 23, 28},
J1,6 = {9, 26, 27}, P6 = {13, 16, 27},
J1,7 = {9, 26}.

Then, for i ∈ {1, 2, . . . , 7} and J1′ = {0, 10, 15, 16, 17, 23, 27}, we repeat the following steps to recover
the keys.
- 2.i(q = J1′

i−1): Guess 24 possible values of IK1
0,q, partially encrypt (IX1

0,q, IX
1
1,q, IX

1
2,q, IX

1
3,q) one S-

box, then use the known difference (∆Z1
01,q, ∆Z

1
01,q) to filter the quartets. There are about 22drout

∏
j∈J1,i−1(N 1

j (∆Z1
01,j))

2·
(1/(∆Z1

01,j)
2) = 22drout

∏
j∈J1,i(N 1

j (∆Z1
01,j))

2 remaining quartets. The time complexity of this step
is

2108 × 22drout

∏
j∈J1,i−1

(N 1
j (∆Z1

01,j))
4 × (24)i × 2/(32 · 16) = 2100+2drout+4i

∏
j∈J1,i−1

(N 1
j (∆Z1

01,j))
2.

After that, we adopt the following two steps to recover the keys.
- 2.8: Guess 28 possible values of IK0

0,14, IK
1
0,9, partially encrypt (IX0

0,14, IX
0
1,14, IX

0
2,14, IX

0
3,14) and

(IX1
0,p, IX

1
1,p, IX

1
2,p, IX

1
3,p)(p = 9, 17) one S-box, then use the known difference (∆Z1

01,9, ∆Z
1
01,9) to

filter the quartets. There are about 22drout
∏
j∈J1,7(N 1

j (∆Z1
01,j))

2·(1/(∆Z1
01,9)2) = 22drout(N 1

9 (∆Z1
01,26))2

remaining quartets. The time complexity of this step is

2136 × 22drout

∏
j∈J1,7

(N 1
j (∆Z1

01,j))
2 × 28 × 8/(32 · 16) = 2138+2drout

∏
j∈J1,7

(N 1
j (∆Z1

01,j))
2.

- 2.9: Guess 28 possible values of IK0
0,31, IK

1
0,26, partially encrypt (IX0

0,31, IX
0
1,31, IX

0
2,31, IX

0
3,31) and

(IX1
0,p, IX

1
1,p, IX

1
2,p, IX

1
3,p)(p = 12, 26) one S-box, then use the known difference (∆Z1

01,26, ∆Z
1
01,26)

to filter the quartets. There are about 22drout(N 1
26(∆Z1

01,26))2 · (1/(∆Z1
01,26)2) = 22drout remaining

quartets. The time complexity of this step is

2144 × 22drout(N 1
26(∆Z1

01,26))2 × 28 × 8/(32 · 16) = 2146+2drout(N 1
26(∆Z1

01,26))2.

3. Guess the keys in the last three rounds.
- 3.1: Guess 28 possible values of IK16′

0,0 , IK
16′
0,28, partially encrypt (IX16′

0,p , IX
16′
1,p , IX

16′
1,p , IX

16′
1,p ) one S-box

(p = 0, 28), then use the known difference (∇X15′
12,0,∇X15′

03,0) to filter the quartets. There are about

22drout−8 remaining quartets. The time complexity of this step is 2152 × 22drout × 28 × 8/(32 · 16) =
2154+2drout .

- 3.2: Guess 24 possible values of IK16′
0,21, partially encrypt (IX16′

0,21, IX
16′
1,21, IX

16′
1,21, IX

16′
1,21) one S-box,

then use the known difference (∇X15′
12,21,∇X15′

03,21) to filter the quartets. There are about 22drout−16

remaining quartets. The time complexity of this step is 2152 × 22drout−8 × 28 × 24 × 4/(32 · 16) =
2149+2drout .

- 3.3: Guess 28 possible values of IK16′
0,4 and IK16′

0,11, partially encrypt (IX16′
0,p , IX

16′
1,p , IX

16′
1,p , IX

16′
1,p ) one

S-box (p = 4, 11), then use the known difference (∇X15′
12,4,∇X15′

03,4) to filter the quartets. There are

about 22drout−24 remaining quartets. The time complexity of this step is 2152 × 22drout−16 × 212 ×
28 × 8/(32 · 16) = 2150+2drout .

24



- 3.4: Guess 24 possible values of IK16′
0,25, partially encrypt (IX16′

0,p , IX
16′
1,p , IX

16′
1,p , IX

16′
1,p ) one S-box (p =

25), then use the known difference (∇X15′
12,25,∇X15′

03,25) to filter the quartets. There are about 22drout−32

remaining quartets. The time complexity of this step is 2152 × 22drout−24 × 220 × 24 × 4/(32 · 16) =
2145+2drout .

- 3.5: Guess 28 possible values of IK16′
0,1 and IK16′

0,10, partially encrypt (IX16′
0,p , IX

16′
1,p , IX

16′
1,p , IX

16′
1,p ) one

S-box (p = 1, 0), then use the known difference (∇X15′
12,10,∇X15′

03,10) to filter the quartets. There are

about 22drout−40 remaining quartets. The time complexity of this step is 2152 × 22drout−32 × 224 ×
28 × 8/(32 · 16) = 2146+2drout .

- 3.6: Guess 24 possible values of IK16′
0,31, partially encrypt (IX16′

0,p , IX
16′
1,p , IX

16′
1,p , IX

16′
1,p ) one S-box (p =

31), then use the known difference (∇X15′
12,31,∇X15′

03,31) to filter the quartets. There are about 22drout−48

remaining quartets. The time complexity of this step is 2152 × 22drout−40 × 232 × 24 × 4/(32 · 16) =
2141+2drout .

- 3.7: Guess 216+16 possible values of IK16′
0,p (p = 8, 14, 19, 24) and IK15′

0,p (p = 1, 7, 24, 28), partially

encrypt (IX16′
0,p , IX

16′
1,p , IX

16′
1,p , IX

16′
1,p ) one S-box (p = 8, 14, 19, 24), and (IX15′

0,p , IX
15′
1,p , IX

15′
1,p , IX

15′
1,p )

one S-box (p = 1, 7, 24, 28), then use the known difference (∇X14′
12,28,∇X14′

03,28) to filter the quartets.

There are about 22drout−56 remaining quartets. The time complexity of this step is 2152×22drout−48×
236 × 232 × 32/(32 · 16) = 2168+2drout .

- 3.8: Guess 28+4 possible values of IK16′
0,p (p = 2, 23) and IK15′

0,p (p = 11), partially encrypt (IX16′
0,p , IX

16′
1,p , IX

16′
1,p , IX

16′
1,p )

one S-box (p = 2, 23), and (IX15′
0,p , IX

15′
1,p , IX

15′
1,p , IX

15′
1,p ) one S-box (p = 11), then use the known dif-

ference (∇X14′
12,11,∇X14′

03,11) to filter the quartets. There are about 22drout−64 remaining quartets. The

time complexity of this step is 2152 × 22drout−56 × 268 × 212 × 12/(32 · 16) ≈ 2171+2drout .

- 3.9: Guess 24 possible values of IK14′
0,p (p = 1), partially encrypt (IX14′

0,p , IX
14′
1,p , IX

14′
2,p , IX

14′
3,p ) one S-

box (p = 1), then use the known difference (∇Y 13
12,1,∇Y 13

03,1) to filter the quartets. There are about

22drout−72 remaining quartets. The time complexity of this step is 2152×22drout−64×280×24×4/(32 ·
16) = 2165+2drout .

After above process, there remains 2256/e ≈ 2254.56 keys, we can exhaustively search for these remaining
keys.

Complexity. This attack use the full-codebook, thus the data complexity is 2130.

- Cost of data generation: we guess 28 keys for 2128 under four keys and store those plaintexts-ciphertexts.
The time complexity is 2128×28×4×8/(32 ·16) = 2134, and the memory complexity is 2128×28×4×2 =
2139.

- Cost of pair generation: we guess 212 keys for 2128, then we lookup table to construct the pairs store them.
The time complexity is 2128×212×12/(32 ·16)+212×2×2n|SX0

| ≈ 2221.07, and the memory complexity
is 212 × 2× 2n|SX0

| = 2221.07.

- Cost of pair generation: for 220 guessed keys and 2n|SX0 | pairs (X0
2 , X

0
3 ), we lookup the 22drout−n|SX0 |

pairs (X0
0 , X

0
1 ). The time complexity and memory complexity are both 220 × |SX0

|2 · 22drout = 2252.14.

- Cost of Step 1 in Guess-and-Filter: Since N 0
j (γj) > 4, the time complexity of 1.i decreases successively

as the value of i increases. Thus, the time complexity and memory complexity are both 213+2drout ×
(
∑
λ∈SZ0

∑
λ′∈SZ0

∏
j∈J0,0 N 0

j (λj)N 0
j (λ′j)) = 213+2drout |SX0

|2 = 2245.14.

- Cost of Step 2 in Guess-and-Filter: The time complexity of 2.i decreases successively as the value of i(∈
{1, 2, . . . , 7}) increases. Thus, the time complexity and memory complexity are both 2100+2drout

∏
j∈J1,0(N 1

j (∆Z1
01,j))

2 =

2218.2. For step 2.8, the time complexity and memory complexity are both 2138+2drout
∏
j∈J1,7(N 1

j (∆Z1
01,j))

2 =

2220.34. For step 2.9, the time complexity and memory complexity are both 2146+2drout(N 1
26(∆Z1

01,26))2 =
2223.18.

- Cost of Step 3 in Guess-and-Filter: The time complexity and memory complexity are both 2171+2drout =
2243.

- Cost of exhaustively search: the time complexity is 2254.56
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All in all, the data complexity is 2130, the time complexity is 2254.56 + 2252.14 = 2254.81, and the memory
complexity is 2252.14 + 2236 = 2252.14. Since 2128 + 2254.81 + 2252.14 = 2255.02 < 2256, we can recovery the key
within the complexity is less than exhaustive keys.

5 Conclusion

In this paper, we propose the pre-sieving technique, partial pre-guess key technique and precise complexity
evaluation technique to improve the key recovery of impossible boomerang attack. As a result, we apply
those techniques to the block cipher ARADI, and propose the first full-round attack on ARADI.
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Fig. 6. The core of 11-round IBD.
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Fig. 7. Top 2 rounds added for key recovery in full-round attack on ARADI.

29



∇X13
12

τk13∇K13
12

∇Y 13
12

π

v
v
v
v

∇Z13
12

τk′
14∇K ′14

12

v
v
v
v

∇X ′14
12

Λ13

vvv
vvv
vvv
vvv

∇Y 14
12

π

vvvvv
vvvvv
vvvvv
vvvvv

∇Z14
12

τk′
15∇K ′15

12

vvvvv
vvvvv
vvvvv
vvvvv

∇X ′15
12

Λ14

vvvvvvvvvvvvv
vvvvvvvvvvvvv
vvvvvvvvvvvvv
vvvvvvvvvvvvv

∇Y 15
12

π

vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv

∇Z15
12

τk′
16

vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvv

∇X ′16
12

Λ15

∇K ′16
12

vvvvvvvvvvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvvvvvvvvvv
vvvvvvvvvvvvvvvvvvvvvvvvvvvvv

∇Y 16
12

Fig. 8. Bottom 3 rounds added for key recovery in full-round attack on ARADI.
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