
Time-Lock Puzzles from Lattices

Shweta Agrawal1, Giulio Malavolta2, and Tianwei Zhang3,4

1IIT Madras
2Bocconi University

3Max Planck Institute for Security and Privacy
4Ruhr University Bochum

Abstract

Time-lock puzzles (TLP) are a cryptographic tool that allow one to encrypt a message into
the future, for a predetermined amount of time T . At present, we have only two constructions
with provable security: One based on the repeated squaring assumption and the other based on
obfuscation. Basing TLP on any other assumption is a long-standing question, further motivated
by the fact that known constructions are broken by quantum algorithms.

In this work, we propose a new approach to construct time-lock puzzles based on lattices,
and therefore with plausible post-quantum security. We obtain the following main results:

• In the preprocessing model, where a one-time public-coin preprocessing is allowed, we
obtain a time-lock puzzle with encryption time log(T).

• In the plain model, where the encrypter does all the computation, we obtain a time-lock
puzzle with encryption time

√
T .

Both constructions assume the existence of any sequential function f , and the hardness of the
circular small-secret learning with errors (LWE) problem.

At the heart of our results is a new construction of succinct randomized encodings (SRE)
for T -folded repeated circuits, where the complexity of the encoding is

√
T . This is the first

construction of SRE where the overall complexity of the encoding algorithm is sublinear in
the runtime T , and which is not based on obfuscation. As a direct corollary, we obtain a
non-interactive RAM delegation scheme with sublinear complexity (in the number of steps T).

1 Introduction

A Time-Lock Puzzle (TLP) [RSW96] allows one to encrypt a message into the future, for a pre-
determined amount of time T . Cryptographically, a TLP must satisfy two properties: The time
needed to generate a puzzle must be sublinear, ideally logarithmic, in T (efficiency) and the time
needed to solve a puzzle must be greater than T (sequentiality). Importantly, sequentiality must
hold even against massively parallel algorithms, which should have no advantage compared to a
regular sequential solver. In other words, solving a puzzle must be a strictly sequential operation.

Recently, TLPs have been the subject of intense study and a large body of work has discov-
ered a number of different applications, such as sealed-bid auctions, e-voting systems [MT19], fair
contract signing [BN00], non-malleable commitments [LPS17], cryptocurrency payment systems
[TMSS22], atomic swaps [TMMS22], distributed consensus algorithms [WXDS20], and byzantine

1

consensus protocols [SLM+23], to mention a few. Very recently, TLPs have been used in real-
world cryptographic protocols, specifically in sealed-bid auctions [TAF+23] and voting [GSZB23]
on blockchains.

Given the wide spectrum of applications and the central role played by TLPs in modern cryp-
tography, it is important to ask what are the computational assumptions needed to construct
time-lock puzzles. At present, there are two main recipes1 to build time-lock puzzles: Either
using the hardness of repeated squaring on groups of unknown order [RSW96], or using indis-
tinguishability obfuscation [BGJ+16]. To make things worse, when considering TLPs with se-
curity against quantum algorithms, all schemes derived from the first approach are plainly inse-
cure, whereas the second approach is left with a handful of candidate constructions of obfuscation
[Agr19, WW21, GP21, BDGM23], whose security is based on assumptions that are not yet well-
understood.

The objective of this work is to make progress on this problem, and place TLPs with post-
quantum security on solid foundations.

1.1 Our Results

In this work, we propose the first constructions of TLPs based on lattices, with provable security
against well-defined and falsifiable lattice assumptions. More in details, we obtain two main results:

• (Preprocessing Model) In the preprocessing model, we allow for a one-time, public-coin com-
putation whose runtime can depend on T . This computation produces some small public
parameters pp (of size independent of T) that anyone can use to encrypt a message for time
T . In this model, we obtain a TLP scheme where the encryption time is logarithmic in T and
the solving time is linear in T , ignoring multiplicative factors in the security parameter.

• (Plain Model) In the plain model, there is no preprocessing, and the encrypter does all the
computation. In this model we obtain a TLP where the encryption time and the puzzle size
are bounded by

√
T , again ignoring factors dependent on the security parameter.

Both of our constructions require the following cryptographic ingredients:

1. Any sequential function f of the form f(x) = C(. . . C(x) . . .), for some fixed circuit C.

2. The hardness of the circular small-secret LWE problem [HLL23].

The circular small-secret LWE problem is a variant, recently introduced in the context of attribute-
based encryption [HLL23], of the well-known circular LWE problem, which is required to bootstrap
[Gen09] lattice-based Fully Homomorphic Encryption (FHE). Thus, our approach yields the first
sublinear TLPs based on standard assumptions that can be conjectured post-quantum secure.

At a technical level, we obtain our constructions via a two-step process: (i) We first propose a
new compiler, inspired by the work of [BGJ+16], where we show how to combine any sequential
function with a succinct randomized encoding (SRE) for repeated circuit computations to obtain
a time-lock puzzle. Such a compiler relies on a new depth-preserving version of the celebrated
Goldreich-Levin theorem [GL89]. Next, (ii) we show how to construct SREs for repeated circuits
from the above-mentioned assumptions. While the preprocessing SRE follows almost immediately

1We defer a more thorough treatment of existing approaches to construct time-lock puzzles to Section 2, and we
keep this discussion deliberately informal.

2

as a corollary of prior works, the SRE without preprocessing and with
√
T encoding complexity is

the technically most involved part of our work, and we view it as our main technical contribution.
Such scheme is heavily inspired by techniques originally developed in the context of code obfuscation
[BDGM23], but in a regime where we can prove security against the circular small-secret LWE
problem and the LWE problem. This is the first SRE construction with sublinear encoding time
that does not rely on iO. We believe our techniques are likely to have other applications. As an
example, we show that our SRE yields the first non-interactive garbled RAM scheme with sublinear
encoding complexity (in the number of steps T) without using iO.

Along the way, we define and construct the notion of range puncturable pseudorandom function
(PRF), which extends the celebrated puncturable PRF [SW14] to puncture an entire (possibly
exponentially large) range of inputs. This primitive may be of independent interest.

1.2 Technical Overview

In the following we give a high-level overview of the main technical ideas introduced in this work,
while keeping the overall discussion somewhat informal. For more precise statements, we refer
the reader to the technical sections of the paper. As alluded to earlier, our TLP constructions
follow a two-step process, where we first show how to compile a sequential function f and an SRE
for repeated circuits into a TLP, and then we show how to instantiate the cryptographic building
blocks. We follow a similar outline in this overview, starting from the former.

Time-Lock Puzzles from SRE for Repeated Circuits. Let us first recall that an SRE for
repeated circuits takes as input a circuit C, a repetition parameter T , and an input x and returns
an encoded tuple (C̃, x̃). Anyone can then evaluate the encoded tuple to obtain

Eval(C̃, x̃) = C(. . . C︸ ︷︷ ︸
T−times

(x) . . .) = CT (x)

but otherwise no further information is learned about x2. The point here is that the complexity of
the encoding procedure should be less than that of the evaluation process. In our case, we require
that the complexity of the encoding algorithm should be sublinear in T .

Assuming the existence of a T -folded sequential function f : X → X , we now show how to
encrypt a random message m for time T . We define the circuit C(b, x,m, z, i) as follows:

• If i = T + 1 and b = 0 return m.

• Else if i = T + 1 and b = 1 return x⊕ z.

• Otherwise return (b, f(x),m, z, i+ 1).

We then simply define our TLP to be an SRE encoding for the T -fold repetition of C, on input
(0, x,m, 0, 1), where x is a uniformly sampled instance from the domain of f . It is easy to verify
that the scheme is correct since

CT (0, x,m, 0, 1) = m.

2Here and throughout this work, we always assume that SRE protects the privacy of the input, but the circuit
C is always public. The stronger definition, where C is also hidden can be achieved using standard techniques (e.g.,
universal circuits).

3

To argue security, we first apply the following modifications to the encoded input

(C̃, x̃) = Encode(C, (0, x,m, 0, 1)) ≡ Encode(C, (0, x,m⊕ fT (x), 0, 1))
≈ Encode(C, (0, x,m⊕ fT (x),m, 1))
≈ Encode(C, (1, x,m⊕ fT (x),m, 1))
≈ Encode(C, (1, x, 0,m, 1))

where the first equality holds because m is uniformly sampled, and for the other steps the circuit
is functionally equivalent and thus indistinguishability follows from the security of the SRE. Note
that in the last hybrid, the puzzle is “effectively” encrypting fT (x) ⊕ m, by the definition of C.
Now we can argue that any adversary that is able to output the message in time less than T will
also compute fT (x), thus violating the sequentiality of f .

This argument crucially relies on m being sampled uniformly, and on the distinguisher being
forced to output the entire message (rather than just distinguishing two distributions). Fortunately
here we can apply the standard Goldreich-Levin transformation [GL89], which allows us to achieve
the standard notion of security. A subtle point here is that we need to make sure that the Goldreich-
Levin reduction does not introduce additional depth to the circuit of the reduction, thus voiding our
above argument. For this reason, we prove a depth-preserving version of the standard Goldreich-
Levin theorem, where the depth of the circuit is only marginally increased by the search-to-decision
reduction. Finally, we also mention that, while we have described here a TLP in the plain model,
a version with preprocessing follows from the same template, with minor syntactical adjustments.

Sublinear Randomized Encodings. Next, we turn to the question of constructing an SRE
with the efficiency required to instantiate the above compiler. Relevantly for us, a recent work of
Hsieh et al. [HLL23] shows (paraphrasing) how to construct an SRE with encoding time logarithmic
in T from the circular small-secret LWE assumption. However, their construction requires a one-
time public-coin preprocessing running in time T . Fortunately, such a preprocessing is reusable
and therefore plugging it in the above compiler already yields a TLP with asymptotically optimal
efficiency, in the preprocessing model. However, if we insist on a TLP in the plain model, the long
preprocessing of [HLL23] brings us back to square one.

Our first observation is that, since the preprocessing is reusable, we can hope to amortize the
work. We can then try to chop the execution of fT in

√
T -many blocks, each of size

√
T , to reduce

the complexity of the encoding. In more details, we can compute an SRE for the circuit F√T (x, i)
defined as follows:

• If i = T + 1 return x.

• Else compute y = f√T (x) and output an encoding of (y, i+
√
T).

The idea is that we can run the preprocessing once for the circuit F√T and then compute an

encoding of (x, 1). The first evaluation would return a valid encoding of (f√T (x),
√
T + 1), which

we can feed again into the evaluation algorithm to compute (f2
√
T (x), 2

√
T + 1), and so on, all the

way until we compute fT (x).
While this almost seems like it would work, we have overlooked an important aspect: The size

of an encoding in the [HLL23] scheme depends on the output size of the circuit.3 Translating this

3This is to some extent inherent, since it is known that output compression implies obfuscation [AJ15, BV18].

4

to the above construction, this means that the size of an encoding grows exponentially with the
number of repetitions! In other words, the scheme outlined above is not even running in polynomial
time, beyond constant T . To fix this, we resort to ideas from constructions of obfuscation, and
specifically to the notion of split-FHE [BDGM23]. Loosely speaking, a split-FHE scheme is a
standard FHE, except that when evaluating a function

Enc(m)
g−−−→ Enc(g(m))

one can compute a small hint hg,m that allows one to decrypt the evaluated ciphertext. For the
purpose of this work, it suffices to recall two properties about the hint:

1. (Succinctness) The size of the hint hg,m is independent from the size of the output g(m).

2. (Linearity) The hinted decryption operation is linear, that is:

A · hg,m − Enc(g(m)) ≈ g(m)

for some matrix A, and where the approximate equality hides some noise terms.

Our idea is to alternate the computation of the SRE with the computation of the split-FHE. In
other words, we modify the function F√T so that, instead of computing the output directly, it
outputs the hint of the split-FHE computation. This way the evaluator can conduct the split-FHE
computation in a parallel thread, and use the information output by the SRE to compute the new
encoded input. Since the size of the hint is succinct (and in particular it does not depend on
the output size), this allows us to avoid the circular dependency in the parameters of the above
attempt.

This new idea places us on the right track, but there are still two problems to solve: First,
the hint is computed using the secret key of the split-FHE, and second, the hint may potentially
reveal some extra information about the plaintext m, jeopardizing the security of the scheme. To
solve this first problem, in our actual construction, we will actually use

√
T different split-FHE

schemes, but with coins pseudorandomly sampled. The security proof will require a non-standard
puncturing argument of a PRF where, instead of puncturing a single point, we will have to puncture
out an entire range of points. We defer more details about this to a later point of this overview. To
solve the second problem, we use a technique from [BDGM23], where instead of releasing hg,m, we
instruct our SRE to compute a masked term hg,m + rand instead. Using the linearity of the hinted
decryption, we see that:

A · (hg,m + rand)− Enc(g(m)) = A · hg,m +A · rand− Enc(g(m))

≈ A · rand− g(m).

Note that the terms A · rand is independent from any intermediate step of the computation,
which means that we can include it as part of the puzzle. This way, the evaluator can subtract the
term, and proceed with the rest of the evaluation. To be more precise, we include with the puzzle
a rounded version (component-wise) of such vector, to smudge the noise of the hinted decryption,
which may contain harmful information. A standard argument shows that the above equality still
holds with high probability.

This outline glosses over many subtleties of the construction, and the final scheme requires a few
more ideas in order to avoid circular parameter dependencies and to make the proof go through.
Here we will simply say that security proof proceeds by iteratively “programming” an encoded
input at each step of the computation, after “erasing” the information that can potentially harm
security in the previous steps. For more details, we refer the reader to Section 6.

5

Range Puncturable PRF. As discussed before, our construction requires a PRF where we
can “puncture” keys to remove from the evaluation domain an entire range of points. Although
technically this is syntactically allowed by the standard puncturable PRF syntax [SW14], the issue
is that the size of the punctured keys would grow with the number of punctured points. For our
application, it is crucial that the size of the punctured key remains constant. In this work, we show
how to construct a range puncturable PRF, by modifying the celebrated [GGM86] construction.
Recall that [GGM86] defines the output of the PRF recursively as

PRF(s, x||b) := Gb(PRF(s, x)), b ∈ {0, 1},

where for a single bit
PRF(s, b) := Gb(s), b ∈ {0, 1}

and Gb is a length-doubly pseudorandom generator (PRG). In order to puncture at range [0, i], the
range punctured key is defined to be

K{i+ 1} = {PRF(s, i0i1 . . . ik−11)|ik = 0, k ∈ [0, n− 1], i = i0i1 . . . in−1}

Note that K{i+ 1} is sufficient to compute the PRF at any point outside the range [0, i], since we
can expand the tree below the neighboring nodes by applying the PRG to the values of the nodes.
Furthermore, we can compute K{i + 2} from K{i + 1} without increasing the size of the key, by
descending one level and erasing the parent node, when appropriate. This allows us to run the
iterative puncturing argument in our main construction.

New Application: Sublinear Garbled RAM. We also mention that our new SRE can be
seen as a garbled RAM scheme with sublinear complexity (in the number of steps T). Recall
that a garbled RAM protocol consists of a client holding a RAM program P ∗ and an input x and
computes a short encoding Enc(P ∗, x), that allows the evaluator to recover P ∗(x) and nothing
more. Sublinearity requires that the runtime of the client should be sublinear in the runtime of P ∗

on x.
The construction follows by simply observing that the computation of a RAM program can be

parsed as the T -folded execution of a circuit P with the syntax

P (D, state, iread, iwrite, bread, bwrite) = (D′, state′, i′read, i
′
write, b

′
read, b

′
write)

which takes as input a memory database D, some state, indices for the read/write operations,
and bits to read/write. To delegate a RAM program of this form, we can simply call our SRE
construction on input (0|D|, x, 0, 0, 0, 0). As for the efficiency, the running time of the client is
poly(λ, |x|, |D|) ·

√
T while the runtime of the server is poly(λ, |x|, |D|) · T . Prior to our work, all

protocols for non-interactive sublinear garbled RAM without preprocessing required obfuscation
[GHRW14, BGL+15, CHJV15, CH16, CCC+15].

1.3 Organization

This manuscript is organized as follows: In Section 2 we discuss known approaches to construct
time-lock puzzles in more details. Section 3 outlines the necessary cryptographic preliminaries. In
Section 4, we present our compiler that turns an SRE and a sequential function into a TLP. In
Section 5, we define and construct range puncturable PRFs. Section 6 details the construction
of our main SRE scheme with sublinear encoding complexity, while Section 7 demonstrates the
application of SRE to RAM Delegation.

6

2 Related Work

To better understand the context of our work, we discuss in details what are the known construction
strategies to build TLPs, and why they do not suffice for our goal. At a high-level we can group
existing constructions into three categories, which we describe below.

(1) The Group-Based Approach. The pioneering work of Rivest, Shamir, andWagner [RSW96]
builds the first TLPs in RSA groups, by conjecturing that repeated squaring is a sequential op-
eration in groups of unknown order and using the group structure of RSA to “encrypt a message
to the future”. Ever since, variants of this construction have been proposed, adding properties
such as homomorphism [MT19, BDGM19], batch-solving [SLM+23, DGM23], non-malleability
[KLX20, FKPS21], verifiability [TBM+20, AK21], and adopting other group structures, such as
class groups of imaginary quadratic order [TCLM21] or isogenies on elliptic curves [BDF21]. One
property that all of these constructions have in common is that they are known to be insecure
against quantum attacks.

(2) The Succinct Randomized Encoding Approach. The work of Bitansky et al. [BGJ+16]
introduces an alternative method for constructing TLPs, which relies on the existence of suc-
cinct randomized encodings [BGL+15] and non-parallelizable languages. At present, the only
constructions of succinct randomized encodings that can be used in their compiler rely on in-
distinguishability obfuscation [BGL+15]. Although lattice-based constructions of obfuscation exist
[Agr19, WW21, GP21, BDGM23], the underlying assumptions are not well-understood and it is
considered an open problem to build lattice-based obfuscation based on a “standard” assumption.

Our work is closely related to this approach, and can be thought of as constructing the kind
of randomized encodings that are sufficient to instantiate a variant of their compiler. In fact, one
contribution of our work is to describe an alternative compiler to build time-lock puzzle (Section
4), based on weaker premises. Compared to their approach, our compiler has two main advantages:
(i) It provides (provably) meaningful security also in the preprocessing settings, whereas [BGJ+16]
only proves a weaker notion of security. More in details, in [BGJ+16] the message is shown be
hidden for a given time starting from the publication of the public parameters, whereas we prove
that the same holds starting from the publication of the puzzle. [BGJ+16] leaves as an open problem
to prove the security of their compiler in the stronger, reusable, settings. (ii) Our compiler does
not require the full power of succinct randomized encodings, but only randomized encodings for
repeated computations, which is a weaker functionality. On the flip side, our compiler is less general
since it requires an explicit sequential function f , as opposed to the mere existence of one.

(3) The Witness Encryption Approach. A folklore construction of TLP uses extractable
witness encryption [GGSW13], succinct non-interactive arguments for deterministic computation
[CJJ22], and the existence of a sequential function f . In brief, the encryptor computes a wit-
ness encryption for the statement that checks whether one knows a valid proof for the sequential
evaluation of f . Anyone that successfully evaluates f , can produce a proof of this fact, which
functions as the secret key for the witness encryption ciphertext. Crucially, checking the validity
of a proof does not require one to recompute the function f , and therefore this scheme satisfies the
desired efficiency requirements. It is also important that the witness encryption scheme should be

7

extractable, so that a reduction can efficiently derive a contradiction against the soundness of the
succinct argument.

The works of Liu et al. [LJKW18] and of Döttling et al [DHMW23] can be seen as a special case
of this general paradigm. Succinct arguments can be built from lattices [CJJ22, ACL+22, CLM23],
and recent works have proposed candidate constructions of witness encryption [VWW22, Tsa22],
based on evasive lattice assumptions but, at present, no provable construction of extractable witness
encryption is known, and there is evidence against the existence of this primitive [GGHW17]. Thus,
although this approach leads to at least a scheme with heuristic security, a proof from a standard
assumption seems out of reach.

3 Preliminaries

Throughout this work, we write λ to denote the security parameter. A function µ : N→ N is said
to be negligible, denoted µ(n) = negl(n), if for every positive polynomial p(·) and all sufficiently
large n it holds that µ(n) < 1/p(n). We say an algorithm is efficient if it runs in probabilistic
polynomial time (PPT) in the length of its input. In this work, we model all algorithms as circuits,
and we refer to their size as the number of gates, whereas their depth is the depth of the circuit.
We denote by [n] the set {1, . . . , n}.

3.1 Depth-Preserving Goldreich-Levin

In the following we recall the celebrated Goldreich-Levin theorem [GL89] and we highlight a prop-
erty of the extractor that is implicitly present in the original proof. Namely, that the circuit depth
of the extractor is poly-logarithmic in the inverse of the success probability of the algorithm.

Theorem 3.1 ([GL89]). Let Ax be an algorithm such that

Pr
r←{0,1}λ

[
Ax(r) =

n⊕
i=1

xiri

]
≥ 1

2
+ ε.

Then there exists an extractor x ← EAx whose success probability and runtime are a polynomial
in 1/ε. Furthermore, the depth of the extractor is bounded by that of A plus poly-logarithmic in
1/ε.

Proof Sketch. We briefly recall how the Goldreich-Levin extractor works. On input ε, and for each
i = 1, . . . , λ, the extractor prepares a set of correlated queries for Ax. The size of the set is at most
1/εO(1) and all queries are issued in parallel to Ax. Then, the extractor sets the i-th bit of x to be
the majority bit of the answers of Ax. Since all queries are asked in parallel to Ax and the majority
function can be computed in depth logarithmic in the input size, the statement follows.

3.2 Lattices and Learning with Errors

We recall the definition of the decisional Learning with Errors problem, introduced by Regev
[Reg09].

8

Definition 3.2 (Decisional Learning with Errors). Let n = n(λ) and q = q(λ) be integer parameters
and χ = χ(λ) be a distribution over Z. The LWEn,m,q,χ problem is to distinguish between the
distributions

{A,As+ e (mod q)} and {A,u}

where A← Zn×m
q , s← Zn

q , e← χm and u← Zm
q . The Learning with Errors (LWE) assumption is

that no polynomial time procedure can solve the LWEn,m,q,χ problem with more than a negligible
advantage in λ.

We rely on LWE security with the following range of parameters. Let χ = χ(λ) be a distribution
supported in [−B,B] such that q/B ≈ 2ω(log λ) is super polynomial. The works of [Reg09, Pei09]
showed that the LWE assumption with the above parameters follows from the worst-case quantum
hardness SIVP and classical hardness of GapSVP with sub-exponential approximation factors.

3.3 Time-Lock Puzzles

We recall the definition of standard time-lock puzzles [BGJ+16]. For conceptual simplicity we
consider only schemes with binary solutions.

Definition 3.3 (Time-Lock Puzzles). A time-lock puzzle is a tuple of two algorithms (PGen,PSolve)
defined as follows.

• Z ← PGen(T, s) a probabilistic algorithm that takes as input a hardness-parameter T and a
solution s ∈ {0, 1}, and outputs a puzzle Z.

• s← PSolve(Z) a deterministic algorithm that takes as input a puzzle Z and outputs a solution
s.

Definition 3.4 (Correctness). For all λ ∈ N, for all polynomials T in λ, and for all s ∈ {0, 1}, it
holds that

s = PSolve(PGen(T, s)).

Definition 3.5 (Security). A scheme (PGen,PSolve) is secure if there exists a polynomial T̃ (·) such
that for all polynomials T (·) ≥ T̃ (·) and every polynomial-size adversary A = {Aλ}λ∈N of depth
o(T), there exists a negligible function µ(·), such that for all λ ∈ N it holds that

Pr [b← A(Z) : Z ← PGen(T (λ), b)] ≤ 1

2
+ µ(λ).

In terms of efficiency, we require that the time to compute the puzzle should be sublinear,
ideally polylogarithmic, in T .

Time-Lock Puzzle with Setup. We also consider a relaxed variant of time-lock puzzles, where
the syntax is augmented with an additional setup algorithm PSetup that computes public param-
eters that are made available to all algorithms. Specifically we define the additional algorithm
as:

• pp← PSetup(1λ, T) a probabilistic algorithm that takes as input a security parameter 1λ and
a time hardness parameter T , and outputs public parameters pp.

We then modify the security notion accordingly.

9

Definition 3.6 (Reusable Security). A scheme (PSetup,PGen,PSolve) is reusable secure if there
exists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-size ad-
versary (A1,A2) = {(A1,A2)λ}λ∈N where the depth of A2 is bounded from above by o(T), there
exists a negligible function µ(·), such that for all λ ∈ N it holds that

Pr

b← A2(Z, z) :

pp← PSetup(1λ, T (λ))
z← A1(pp)
b← {0, 1}
Z ← PGen(pp, b)

 ≤ 1

2
+ µ(λ).

3.4 Reusable Garbled Circuits

We recall the definition of reusable garbled circuits [GKP+13].

Definition 3.7 (Reusable Garbled Circuits). A reusable garbling scheme
(rGC.Garble, rGC.Enc, rGC.Eval) for circuits is defined as the following tuple of algorithms.

(C̃, pk)← rGC.Garble
(
1λ, C

)
: Given the security parameter 1λ and a circuit C, the garbling algo-

rithm returns a garbled circuit C̃ and an encoding key pk.

x̃← rGC.Enc(pk, x): Given the encoding key pk and an input x, the garbling algorithm returns an
encoded input x̃.

y ← rGC.Eval
(
C̃, C, x̃

)
: Given a garbled circuit C̃, and garbled input x̃, the rGC.Eval returns a

string y.

In the following we define correctness for the reusable garbled circuit. For simplicity, we just
define perfect correctness, but the definition can be easily adapted to weaker notions of statistical
and computational correctness. This is relevant since the reusable garbled circuit presented in
[HLL23] achieves only computational correctness. These differences will be largely irrelevant for
us, since our results will hold assuming any of these notions of correctness.

Definition 3.8 (Correctness). A garbling scheme (rGC.Garble, rGC.Eval) is correct if for all C and
for all inputs x

C(x) = rGC.Eval
(
C̃, C, rGC.Enc(pk, x)

)
,

where (C̃, pk)← rGC.Garble
(
1λ, C

)
.

Finally, we define security for a reusable garbled circuit.

Definition 3.9 (Security). There exists a negligible function µ(·) and an efficient simulator Sim
such that for any polynomial time adversary A, any circuit C and input x,∣∣∣∣∣∣ Pr

[
A
(
C̃, pk, rGC.Enc(pk, x)

)
= 1

]
−Pr

[
A
(
C̃, pk,Sim

(
1λ, C, pk, C(x)

))
= 1

] ∣∣∣∣∣∣ ≤ µ(λ),
where (C̃, pk)← rGC.Garble

(
1λ, C

)
.

10

We also remark that, by making the rGC.Enc algorithm part of the rGC.Garble algorithm, we
recover the standard definition of (non-reusable) randomized encodings [Yao82, Yao86] where the
syntax and the properties are changed accordingly. In this work we will use both notions (for
instance in Section 6 we construct a non-reusable randomized encoding), but we omit a formal
definition for the latter.

Depth-Independent Reusable Garbling. We explicitly recall a recent work [HLL23] that
builds reusable garbled circuits where the complexity of the encoding algorithm is entirely in-
dependent from the complexity of the circuit. The construction is proven secure assuming the
hardness of the circular small-secret LWE problem, which is a variant of the standard circular
LWE assumption used to construct fully-homomorphic encryption. We refer the reader to [HLL23]
for more details on the assumption.

Theorem 3.10 ([HLL23]). Assuming circular small-secret LWE assumption, there exists a reusable
garbling scheme with

|C̃| = poly(λ) · |y| and |pk| = poly(λ) · |x| · |y| and |x̃| = poly(λ) · |x| · |y|

and furthermore

|rGC.Garble| = poly(λ) · |C| and |rGC.Enc| = poly(λ) · |x| · |y| and |rGC.Eval| = poly(λ) · |C|

where |C| is the number of gates of C (including input and output gates).

In this work we are actually going to use a slightly different version of this result, applying a
transformation from [QWW18] (Section 4.2.2 in [QWW18]). The transformation uses the concept
of laconic function evaluation (LFE), and we sketch it here: Instead of outputting directly pk,
the rGC.Garble algorithm returns digest, which is the output of the LFE.Compress algorithm, on
input the function rGC.Enc(pk, ·). The new rGC.Enc algorithm then takes as input digest and x
and computes the ciphertext ctx via the LFE.Enc algorithm. The new rGC.Eval algorithm first
runs LFE.Dec(rGC.Enc(pk, ·), ctx) to get x̃ and then continue with the original rGC.Eval algorithm.
Note that the asymptotic complexity of the algorithms is not changed by this transformation.
Furthermore, since LFE can be constructed from LWE [QWW18], the underlying computational
assumption is unchanged as well.

Given that the encoding algorithm of the compiled construction is identical to LFE.Enc algo-
rithm, we can analyze the components of an input encoding by inspecting the construction of
[QWW18] (Appendix E in [QWW18]). For an input x, an encoding contains the following input
dependent components:{

Ψi =

[
Bi

s⊺Bi + ei

]
+ xi ·G

}
i

and
{
bj = s⊺(Aj − ψj · Ḡ) + e⊺j

}
j

where the matrices Aj are part of the public key, whereas the matrices Bj , the vector s, and the
error terms are taken from the randomness. Here ψ is the bit-decomposition of Ψ and Ḡ is the
gadget matrix without the last row. In addition, denoting by Ck the circuit that computes the k-th
output bit, the encoding contains the following input-independent components:

{βk = s⊺ACk
tk + ẽk, tk}k

11

where the matrices ACk
can be thought of as the garbled circuit. Denoting by rand the randomness

used by the encoding algorithm, we can split the execution of the input encoding algorithm rGC.Enc
into three subroutines:

• rGC.PartEnc(pk, rand): The partial encoding algorithm computes the input-independent com-
ponents βk and tk, along with{

Ψi =

[
Bi

s⊺Bi + ei

]
+Pi

}
i

and {bj = s⊺Aj + pj + e⊺}j

where Pi and pj are uniformly sampled from the appropriate domain. Denote by x̃part the
partial encoding.

• rGC.InputEnc(x, rand): The input encoding algorithm computes

{xi ·G−Pi}i and
{
−s⊺ψj · Ḡ− pj

}
j

and returns x̃input as the input encoding.

• rGC.RecEnc(x̃part, x̃input): Compute the encoded input x̃ by adding the corresponding com-
ponents of x̃part and x̃input.

It is easy to see that

rGC.Enc(pk, x; rand) = rGC.RecEnc(rGC.PartEnc(pk, rand), rGC.InputEnc(x, rand)).

Furthermore, there exists a simulator rGC.SimEnc such that for all input x it holds that

rGC.SimEnc(rGC.Enc(pk, x; rand)) ≡ (rGC.PartEnc(pk, rand), rGC.InputEnc(x, rand)) .

On input an encoding x̃ = (Ψi,bj , tk, βk), the simulator rGC.SimEnc simulates the input-dependent
components of x̃part with random matrices Ri and random vectors rj , and computes the corre-
sponding elements of x̃input as

{Ψi −Ri}i and {bj − rj}j .

This distribution is identical to that induced by the above algorithms.

3.5 Sequential Functions

We assume the existence of a sequential function f , i.e., a function

f : {0, 1}λ → {0, 1}λ

such that, for a uniformly sampled input x ∈ {0, 1}λ computing

y = f(. . . f(f︸ ︷︷ ︸
T times

(x)) . . .)

takes time Ω(T), for any efficient adversary. For notational convenience, we use the shorthand fT
to denote the T -fold repetition of f . We formalize this notion below.

12

Definition 3.11 (Security). A function f is sequential if there exists a polynomial T̃ (·) such that
for all polynomials T (·) ≥ T̃ (·) and every polynomial-size adversary A = {Aλ}λ∈N of depth o(T),
there exists a negligible function µ(·), such that for all λ ∈ N it holds that

Pr
[
fT (x)← A(x) : x← {0, 1}λ

]
≤ µ(λ).

Candidate sequential functions of this form have been proposed in the literature, and we recall
a here few candidate functions.

• It is well-known that a random oracle is sequential (unconditionally), and therefore it is
a widely accepted conjecture that setting f to be some cryptographic hash function (e.g.,
SHA-256) yields a heuristic sequential function.

• It was shown in [JMRR21] that the repeated evaluation of a dummy circuit in a fully ho-
momorphic encryption scheme is sequential, if sequential function exists. In other words,
assuming the hardness of the circular LWE assumption (needed to build fully-homomorphic
encryption) there exists an explicit universal sequential function.

• Finally, a recent work [LM23] proposes the function

fA(x) = G−1(Ax)

where G−1 denotes the bit decomposition operator, as candidate lattice-based sequential
function.

3.6 Decrypt-and-Multiply Homomorphic Encryption

We recall the definition of Decrypt-and-Multiply homomorphic encryption scheme [BDGM19] in
the following. Such scheme satisfies a fine-grained correctness property, which requires that the
decryption consists of the application of a linear function in the secret key, followed by a rounding.
Furthermore, we require that such a procedure allows us to specify an arbitrary constant ω that is
multiplied to the resulting plaintext. We stress that all major FHE constructions satisfy (or can
be adapted to) such a constraint, e.g., [GSW13, ASP13, BV14].

Definition 3.12 (Decrypt-and-Multiply Homomorphic Encryption). A Decrypt-and-Multiply ho-
momorphic encryption scheme consists of the following efficient algorithms.

• KeyGen(1λ) : On input the security parameter 1λ, the key generation algorithm returns a key
pair (sk, pk).

• Enc(pk,m) : On input a public key pk and a message m, the encryption algorithm returns a
ciphertext c.

• Eval(pk, C, (c1, . . . , cℓ)) : On input the public key pk, an l-inputs circuit C, and a vector of
ciphertexts (c1, . . . , cℓ), the evaluation algorithm returns an evaluated ciphertext c.

• Dec(sk, c) : On input the secret key sk and a ciphertext c, the decryption algorithm returns
a message m.

13

• Dec&Mult(sk, c, ω): On input the secret key sk, the Decrypt-and-Multiply consists of the ap-
plication of a linear function in the secret key, followed by some publicly computable function,
and it outputs a message m̃.

Definition 3.13 (Correctness). ADecrypt-and-Multiply homomorphic encryption scheme (KeyGen,
Enc, Eval, Dec, Dec&Mult) is correct if for all λ ∈ N, all l-inputs circuits C, all inputs (m1, . . . ,mℓ),
all (sk, pk) in the support of KeyGen(1λ), and all ci in the support of Enc(pk,mi) it holds that

Pr[Dec(sk,Eval(pk, C, (c1, . . . , cℓ))) = C(m1, . . . ,mℓ)] = 1.

and
Dec&Mult(sk,Eval(pk, C, (c1, . . . , cℓ)), ω) = ω · C(m1, . . . ,mℓ) + e mod q

where Dec&Mult is a linear function in sk and |e| ≤ B with all but negligible probability.

We require a scheme to be compact in the sense that the size of the ciphertext should not grow
with the size of the evaluated circuit.

Definition 3.14 (Compactness). ADecrypt-and-Multiply homomorphic encryption scheme is com-
pact if there exists a polynomial poly(·) such that for all λ ∈ N, all ℓ-inputs circuits C in the
supported family, all inputs (m1, . . . ,mℓ), all (sk, pk) in the support of KeyGen(1λ), and all ci in
the support of Enc(pk,mi) it holds that

|Eval(pk, C, (c1, . . . , cℓ))| = poly(λ) · |C(m1, . . . ,mℓ)|.

Definition 3.15 (Semantic Security). A Decrypt-and-Multiply homomorphic encryption scheme
is semantically secure if for all polynomial-size distinguishers A there exists a negligible function
µ(·) such that for all λ ∈ N, all pairs of message (m0, m1), it holds that

|Pr[1 = A(pk,Enc(pk,m0))]− Pr[1 = A(pk,Enc(pk,m1))]| = µ(λ)

where (sk, pk)← KeyGen(1λ).

Most known constructions of fully-homomorphic encryption are captured in this framework, for
instance [GSW13].

4 Time-Lock Puzzle Construction

In the following, we present our time-lock puzzle construction. Our construction will use the
following ingredients:

• A function f , whose T -folded repetition fT (x) = f(. . . f(x) . . .) is inherently sequential.

• A reusable garbled circuits (rGC.Garble, rGC.Enc, rGC.Eval).

We describe the construction in the reusable setting, assuming a setup whose runtime can be
proportional to T . However, exactly the same construction gives a time-lock puzzle without setup
if we use the sublinear randomized (Section 6) instead of the reusable garbled circuits, and merge
the setup with the puzzle generation algorithm.

14

• PSetup(1λ, T): Compute (C̃, pk) ← rGC.Garble
(
1λ, CT

)
where the circuit C(b, x,m, z, i) is

defined as follows.

– If i = T + 1:

∗ If b = 0: Return m.

∗ If b = 1: Return x⊕ z.
– Otherwise, return (b, f(x),m, z, i+ 1).

And we denote by CT the T -fold repetition of C. Set the public parameters to pp = (C̃, pk).

• PGen(pp, s): Given s ∈ {0, 1}, Sample a random x ← {0, 1}λ, a random m ← {0, 1}λ, and a
random r ← {0, 1}λ. Compute

x̃← rGC.Enc(pk, (0, x,m, 0λ, 1))

and return Z = (x̃, r, r ·m⊕ s), where r ·m is the Goldreich-Levin inner-product predicate.

• PSolve(Z): Compute

y ← rGC.Eval
(
C̃, CT , x̃

)
and use y · r to unmask the secret s.

Correctness follows by a straightforward invocation of the correctness of the underlying building
blocks. In the following we show that solving the time-lock puzzle takes time indeed proportional
to T .

Theorem 4.1. Let rGC be a reusable garbled circuit and let f be a sequential function. Then the
construction as described above is a reusably-secure time-lock puzzle.

Proof. By Theorem 3.1, it suffices to show that there exists no adversary of depth sublinear in T
that, on input x̃, can return m ∈ {0, 1}λ with non-negligible probability. Recall that in the original
experiment, we compute

x̃ = rGC.Enc(pk, (0, x,m, 0λ, 1)).

We are now going to change the distribution of x̃ via hybrid experiments, and we argue that each
modification is computationally indistinguishable. Specifically, we observe that

x̃ = rGC.Enc(pk, (0, x,m, 0λ, 1)) ≡ rGC.Enc(pk, (0, x, η ⊕ fT (x), 0λ, 1))
≈ rGC.Enc(pk, (0, x, η ⊕ fT (x), η, 1))
≈ rGC.Enc(pk, (1, x, η ⊕ fT (x), η, 1))
≈ rGC.Enc(pk, (1, x, 0λ, η, 1))

where we have implicitly defined η = m ⊕ fT (x). It can be easily checked that the circuit C with
the above inputs always returns the same output, and therefore indistinguishability follows by the
security of the (reusable) garbling scheme. We stress that computational indistinguishability follows
for all PPT adversaries, i.e., not necessarily depth-bounded. At this point, we can show that the
puzzle is sequential with a straightforward reduction against the sequentiality of f : The reduction
samples a random η ← {0, 1}λ, computes x̃ as specified above, and activates the adversary, who

15

returns some m∗. The reduction returns m∗ ⊕ η. If the adversary returns the correct output of
the circuit (which happens with at least inverse-polynomial probability), then the output of the
reduction equals

CT (1, x, 0
λ, η, 1)⊕ η = η ⊕ fT (x)⊕ η = fT (x)

as desired.

We also state a theorem for our construction without pre-processing, where we substitute the
reusable garbled circuit with a sublinear randomized encoding (see Section 6 for definitions). Since
the analysis is identical, up to syntactical modifications, we omit the proof.

Theorem 4.2. Let (Enc,Dec) be a sublinear randomized encoding and let f be a sequential func-
tion. Then the construction as described above (with PSetup integrated with PGen) is a secure
time-lock puzzle.

5 Range Puncturable Pseudorandom Functions

A range puncturable psuedorandom function (PRF) is a PRF augmented with a procedure that
allows to “puncture” a PRF key at a range [0, i], in such a way that the adversary with the
punctured key can evaluate the PRF at all points except the points in [0, i]. Moreover, even given
the punctured key, an adversary cannot distinguish between a uniformly random value and the
evaluation of the PRF at a point in [0, i] with respect to the original unpunctured key. We provide
a formal definition in the following.

Definition 5.1 (Range Puncturable PRF). A range Puncturable psudorandom function PRF :
K × {0, 1}n(λ) → {0, 1}m(λ) consists of three polynomial time algorithms:

• KeyGen(1λ): on input 1λ, output a secret key K ← K.

• RangePuncture(K, i): On input secret key K and index i ∈ {0, 1}n(λ), output a punctured key
K{i+ 1}.

• IterPuncture(K{i}, i): On input punctured keyK{i} at range [0, i−1] and index i ∈ {0, 1}n(λ),
output a punctured key K{i+ 1} at range [0, i].

We require the range puncturable PRF to satisfy the following conditions:

• (Functionality Preserved Under Puncturing) For all i ∈ {0, 1}n, all x /∈ [0, i], we have that

PRF(K,x) = PRF(K{i+ 1}, x)

where K ← KeyGen(1λ) and K{i+1} ← RangePuncture(K, i). In other words, non-punctured
keys and punctured key always agree on a point x, so long as x ≥ i, where [0, i] is the range
where the key was punctured.

• (Iterative Puncturing) For K ← KeyGen(1λ) and K{i} ← RangePuncture(K, i − 1), it holds
that

RangePuncture(K, i) = IterPuncture(K{i}, i).

• (Compactness) The size of any punctured key K{i} is poly(λ) ·O(n).

16

Finally, we state the security that we require for range puncturable PRFs, which is identical to the
standard definition from [SW14].

Definition 5.2 (Pseudorandomness at Punctured Points). There exists a negligible function µ(·)
such that for every PPT adversaries A and for every i ∈ {0, 1}n(λ) and x ≤ i it holds that

|Pr [A(K{i+ 1},PRF(K,x))]− Pr [A(K{i+ 1}, u)]| ≤ µ(λ).

where K ← KeyGen(1λ), K{i+ 1} ← RangePuncture(K, i), and u← {0, 1}m(λ).

We stress that, although range puncturable PRF are syntactically similar to standard punc-
turable PRFs, they are not directly implied by the construction in [SW14]. Even though we are
allowed to puncture a PRF at polynomially many points, the size of punctured key will scale with
the number of points that we have punctured, violating the compactness requirement. In the fol-
lowing we show how to modify the GGM tree method [GGM86] for building range puncturable
PRFs.

5.1 Construction

We first recall the GGM tree construction of a normal PRF from a length-doubling PRG G :
{0, 1}λ → {0, 1}2λ. Given an output G(s), we are going to divide it into two halves G0(s) and
G1(s). First, we define the PRF for a single bit as:

PRF(s, b) = Gb(s), b ∈ {0, 1}.

Then we can recursively define the PRF as:

PRF(s, x||b) = Gb(PRF(s, x)), b ∈ {0, 1}.

We can observe that the GGM construction of PRF forms a tree. For n-bit input, we will have n
levels of the tree. The leaves of the tree correspond to the output of the PRF. Note that if the input
has size λ, the tree is exponentially big. Therefore, we cannot compute the entire tree. However,
we can still efficiently compute each particular input to the PRF.

Range Puncturable PRF. Recall that the range punctured key for a range puncturable PRF
allows us to evaluate the PRF tree everywhere but a range [0, i]. Now we describe the construction
of range puncturable PRF.

• KeyGen(1λ): Output the PRG seed s as the PRF key K = s.

• RangePuncture(K, i): Let i = i0i1 . . . in−1.

If i0 = 0, PRF(K, 1) is included in K{i+ 1}. If i1 = 0, PRF(K, i01) is included in K{i+ 1}.
Similarly, if in−1 = 0, PRF(K, i0i1 . . . in−21) is included in K{i+ 1}.

K{i+ 1} = {PRF(s, i0i1 . . . ik−11)|ik = 0, k ∈ [0, n− 1], i = i0i1 . . . in−1}

Output the range punctured key K{i+ 1}.

17

• IterPuncture(K{i}, i): Let i− 1 = i0i1 . . . in−1.

If in−1 = 0, in order to puncture out range [0, i] for K{i}, remove PRF(K, i0i1 . . . in−21) from
K{i} and output the result as K{i+ 1}.
If in−1 = 1, assume there are ℓ consecutive ones in the least significant bits of i. Without
loss of generality, we can further assume that ℓ < n (otherwise i − 1 = 2n−1 and therefore
PRFPuncture(i) is already empty). Therefore,

i− 1 = i0i1 . . . in−ℓ−1in−ℓ . . . in−1

= i0i1 . . . 0 1 . . . 1︸ ︷︷ ︸
ℓ times

.

Remove PRF(K, i0i1 . . . in−ℓ−21) from K{i}, append the following points

PRF(K, i0i1 . . . in−ℓ−21in−ℓ),

PRF(K, i0i1 . . . in−ℓ−21in−ℓin−ℓ+1),

· · ·,
PRF(K, i0i1 . . . in−ℓ−21in−ℓin−ℓ+1 . . . in−1).

Which can all be computed starting from PRF(K, i0i1 . . . in−ℓ−21) from K{i}. Output the
result as K{i+ 1}.

Note that the values we include in K{i + 1} are sufficient to compute the PRF for any value
larger than i, since we can expand the tree below the neighboring nodes by applying the PRG to
the values of the nodes. Furthermore, K{i+1} can be computed efficiently and its size is O(n) for
any index i. We summarize the results of this section in the following theorem, appealing to the
fact that PRGs can be constructed from any one-way function [HILL99].

Theorem 5.3. If one-way functions exist, then for all efficiently computable functions n(λ) and
m(λ), there exists a range puncturable PRF family that maps n(λ) bits to m(λ) bits.

Proof. Since the security proof is very close to that of the GGM construction, we only provide a
sketch here. We need to argue that given the range punctured key, an adversary cannot distinguish
between the values at the punctured interval and truly random values. By PRG security, an
adversary cannot distinguish between output of the PRG and a truly random value.

Let i = i0i1 . . . in−1 and

K{i+ 1} = {PRF(s, i0i1 . . . ik−11)|i = i0i1 . . . in−1, ik = 0, k ∈ [0, n− 1]}

be the range punctured key of interval [0, i]. Our goal is to replace the value PRF(s, x) for a given
x = x0x1 . . . xn−1 ≤ i with a uniformly random value. First, we can replace PRF(s, 0) = G0(s),
PRF(s, 1) = G1(s) with s0, s1 uniformly sampled from {0, 1}λ by the security of PRG. If i0 = 0,
we can then output s1 as part of the K{i + 1} and use s0 to compute the value of x. If i0 = 1
and x0 = 0, we can use s0 to compute the value of x. Otherwise if i0 = 1 and x0 = 1, we need to
compute the value of x with s1. With sb, for b ∈ {0, 1}, as a truly random value, we can apply PRG
security again to replace PRF(s, b0) = G0(sb), PRF(s, b1) = G1(sb) with random values sb0 and sb1.
Repeat this process until we arrive at the leaf of the tree corresponding to x. Indistinguishability
follows by a standard hybrid argument. Now we have replaced the PRG values of the path from
the root to x and its neighbour with uniformly random ones that are independent of each other.
Since the value of x is now independent of the rest of the tree, K{i+1} does not give the adversary
any information about x.

18

6 Sublinear Randomized Encodings

In the following, we present a construction of randomized encoding for the T -folded repeated
application of a function f , where the complexity of the encoding algorithm, and consequently the
size of the encoding, is O(

√
T).

Ingredients. For a given function f : X → X , we assume the existence of the following crypto-
graphic building blocks:

• A depth-independent reusable garbling scheme (rGC.Garble, rGC.Enc, rGC.Eval).

• A fully-homomorphic encryption scheme FHE = (FHE.KeyGen, FHE.Enc, FHE.Eval, FHE.Dec)
with linear decrypt-and-multiply with noise bound B and prime modulus q.

• A pseudorandom generator PRG : {0, 1}λ → Zn×nk⌈log q⌉
q × Zn

q .

• A range puncturable pseudorandom function (PRF.KeyGEn,PRF.RangePuncture,PRF.IterPuncture)
such that

PRF : K ×
[√

T
]
→ {0, 1}4λ.

Parameters. For convenience, we list all the parameters that we use in our scheme, and we
discuss the constraints introduced by the subsequent construction:

• The security parameter λ.

• The lattice dimension n governs the hardness of the underlying LWE problem, and we set it
to be some fixed poly(λ).

• The noise bound B determines (a bound on) the magnitude of the noise of the LWE problem,
and we will set it to be as large as possible, conditioned on satisfying the constraint below.

• The modulus q is chosen to be sufficiently large, for instance:

q/4 = 2ω(log λ) ·B · (n · k · ⌈log(q)⌉+ 1). (1)

• The output size k is set to be the size of the output of Γ, a circuit that we evaluate in our
construction (see below for a precise definition). As we shall see shortly, we set it to be some
fixed poly(λ).

• The number of repetitions T .

Given the above parameter settings, we will henceforth refer to the LWE problem as the instance
of LWEn,k,q,χ with parameters set to satisfy the above constraints (and in particular Equation 1),
but otherwise we are free to choose parameters so that the problem is hard.

19

Construction. In our construction, we define for convenience the most significant bit function
MSB(·) as the operator that takes as input a vector in Zk

q and return the most significant bit

component-wise. On input the security parameter 1λ, a function f , and an input x ∈ X , the
encoding algorithm proceeds as follows.

• Sample a matrix A← Zk×n
q and a key K ← K for a range puncturable PRF.

• Compute (C̃, pk)← rGC.Garble
(
1λ, C

)
where the circuit C is defined in Figure 1.

• For i = 1, . . . ,
√
T + 1:

– Let (oi, ri, si, ki)← PRF(K, i).

– Expand (Ri, ti)← PRG(oi).

– Compute the key pair (ski, pki)← FHE.KeyGen(1λ; ki) and parse ski = (si,1, . . . , si,n).

– Compute zi = MSB(Ati) and

Bi = ARi +Ei + (si,1, . . . , si,n)⊗G

where Ei ← [−B,B]k×nk⌈log q⌉ is a randomly sampled noise matrix and G is the gadget
matrix, i.e., G = g ⊗ Ik, where g = (1, 2, 4, , . . . , 2⌈log q⌉−1).

– Compute ei,part ← rGC.PartEnc(pk, ri).

• The garbled circuit is defined as

A, C̃, pk, {pki,Bi, zi, ei,part}i∈[√T]

whereas the garbled input is defined as

c1 ← FHE.Enc(pk1, (x,K{2}); s1) and e1 ← rGC.Enc(pk, (o1, pk1, x, 1, c1); r1).

Next we describe the behavior of the decoding algorithm. On input a garbled circuit and a garbled
input as specified above, the algorithm proceeds as follows. For i = 1, . . . ,

√
T :

• Compute
c← FHE.Eval(pki,Γi, ci)

and let Lc be the vector concatenation corresponding to the coefficients of the linear function
Dec&Mult(·, c, ⌈q/2⌉).

• Decode hi ← rGC.Eval(C̃, C, ei).

• Set
(ci+1, ei+1,input) = MSB

(
BiG

−1(Lc)−Ahi

)
⊕ zi

and ei+1 = rGC.RecEnc(ei+1,part, ei+1,input).

The output of the decoding algorithm is defined to be rGC.Eval
(
C̃, C, e√T+1

)
.

20

Circuit C(oi, pki, x, i, ci)

– If i =
√
T + 1: Return x.

– Otherwise, expand (Ri, ti)← PRG(oi).

– Compute the ciphertext
c← FHE.Eval(pki,Γi, ci)

and let Lc be the vector concatenation corresponding to the coefficients of the linear function
Dec&Mult(·, c, ⌈q/2⌉). Here, the circuit Γi(x,K{i+ 1}) is defined as follows:

∗ Compute y = f√T (x).

∗ Expand (oi+1, ri+1, si+1, ki+1)← PRF(K{i+ 1}, i+ 1).

∗ Recompute (ski+1, pki+1)← FHE.KeyGen(1λ; ki+1).

∗ Puncture the key K{i+ 2} ← PRF.IterPuncture(K{i+ 1}, i+ 1).

∗ Return a ciphertext

ci+1 ← FHE.Enc(pki+1, (y,K{i+ 2}); si+1)

and an encoding

ei+1,input ← rGC.InputEnc((oi+1, pki+1, y, i+ 1, ci+1), ri+1).

– Return
hi = RiG

−1(Lc)− ti.

Figure 1: The circuit C.

21

Efficiency. In the following we argue that the scheme satisfies efficiency, and in particular that the
runtime to the encoding algorithm is bounded by some polynomial poly(λ) ·

√
T . By construction,

we set k to be the size of the output of the circuit Γ and we argue that k can be bounded by some
fixed polynomial in λ. Zooming in the components of the output of Γ, we see that they consist of:

• An FHE ciphertext ci+1 encrypting the updated input y = f(x), which is of size exactly
log(|X |) = poly(λ), and a punctured key which, by compactness of the range puncturable
PRF, is also of size poly(λ). By the compactness of the FHE evaluation algorithm, the overall
size of the ciphertext can be bounded by |ci+1| = poly(λ).

• An input encoding ei,input, whose size is at most the size of an encoding ei of the reusable
garbling scheme. The size of an encoding depends (ignoring the security parameter), on the
size of the input and on the size of the output of the circuit C. The input size of C can
be bounded by poly(λ) since it consists only of five components whose individual size is also
bounded by poly(λ). In more details:

– |oi| = λ by definition.

– |pki| = poly(λ) by the compactness of the FHE scheme.

– |x| = log(|X |) = poly(λ).

– |i| ≤ log(T) ≤ λ.
– |ci| = poly(λ) as discussed above.

The size of the output of C is log(q) · n = poly(λ).

Overall, we have established that k = poly(λ). Therefore, all components of the output of the
encoding algorithm are also bounded by some fixed polynomial in the security parameter. Since
there are exactly 4

√
T + 5 such components, the bound on the output size follows. Similarly, we

can easily see that the runtime of the encoding algorithm is dominated by:

• The
√
T +1 iterations needed to compute {pki,Bi, zi, ei,part}i∈[√T], where the runtime of each

iteration depends polynomially on λ (and nothing else).

• The invocation of rGC.Garble on input C, whose runtime grows with poly(λ) · |C|. The size
of C can be bounded by poly(λ) ·

√
T , since the only computation that depends on T is the

evaluation of f√T (x).

Overall, we can bound the runtime of the encoding algorithm by poly(λ)
√
T , and the efficiency

claim follows.

Correctness. Let us define yi = f√T (yi−1), where y1 = x. For i = 1, . . . ,
√
T + 1, we prove by

induction that ci, ei are of the following form:

ci = FHE.Enc(pki, (yi,K{i+ 1}); si),
ei = rGC.Enc(pk, (oi, pki, yi, i, ci); ri).

For i = 1, this holds by the definition of garbled input. Assume this holds for i, we show next that
ci+1, ei+1 are the same form. Recall that

hi = rGC.Eval(C̃, C, ei)

= RiG
−1(Lc)− ti

22

where c = FHE.Eval(pki,Γi, ci). Substituting, we obtain:

MSB(BiG
−1(Lc)−Ahi) = MSB((ARi +Ei + (si,1, . . . , si,n)⊗G)G−1(Lc)−Ahi)

= MSB(ARiG
−1(Lc) +EiG

−1(Lc) + Lc(si,1, . . . , si,n)−Ahi)

= MSB(ARiG
−1(Lc) + e+ Lc(si,1, . . . , si,n)−A(RiG

−1(Lc)− ti))

= MSB(Lc(si,1, . . . , si,n) +Ati + e)

= MSB(Dec&Mult((si,1, . . . , si,n), c, ⌈q/2⌉) +Ati + e).

Therefore

MSB
(
BiG

−1(Lc)−Ahi

)
⊕ zi = MSB(⌈q/2⌉ · Γi(yi,K{i+ 1}) + ẽ+Ati + e)⊕ zi

= (ci+1, ei+1,input)⊕MSB(Ati + e+ ẽ)⊕ zi

= (ci+1, ei+1,input)⊕MSB(Ati)⊕MSB(Ati)

= (ci+1, ei+1,input).

To show the above equality, we claim that MSB(Ati + e+ ẽ) = MSB(Ati), with all but negligible
probability. Observe that

||e+ ẽ||∞ ≤ B̃ := B · (n · k · ⌈log(q)⌉+ 1).

For a given v ∈ Zq say that v is bad if |v − q/4| < B̃ or |v + q/4| < B̃. By choosing q sufficiently
large, e.g., by setting q/4 > 2ω(log λ) · B̃, we get that the probability that a uniformly random
v ∈ Zq is bad is negligible. We further define that a vector v ∈ Zk

q is bad if any of its components
is bad. Fix any v ̸= 0, and let ai, . . . ,ak be the rows of A. Since ai is uniformly random, the
probability that a⊺i v is bad is negligible. Therefore, by a union bound, the probability that Av is
bad is negligible as well. We can conclude that MSB(Ati + e+ ẽ) = MSB(Ati) with overwhelming
probability. Finally, we can see that that

ei+1 = rGC.RecEnc(ei+1,part, ei+1,input) = rGC.Enc(pk, (oi+1, pki+1, yi+1, i+ 1, ci+1); ri+1).

proving the above claim. Taking i =
√
T + 1, we have that

e√T+1 = rGC.Enc(p̄k, (o√T+1, pk
√
T+1, y

√
T+1,

√
T + 1, c√T+1); r

√
T+1)

and by the correctness of the reusable garbled circuit we obtain that

rGC.Eval
(
C̃, C, e√T+1

)
= C(o√T+1, pk

√
T+1, y

√
T+1,

√
T + 1, c√T+1)

= y√T+1

= f√T (. . . f
√
T (f
√
T︸ ︷︷ ︸√

T times

(x)) . . .)

= fT (x).

23

Security Analysis. In the following we present our main theorem.

Theorem 6.1. Let rGC be a reusable garbling scheme, FHE be a semantically secure fully-
homomorphic encryption scheme, PRG be a pseudorandom generator, and PRF be a range punc-
turable pseudorandom function. Then the construction described above is a secure randomized
encoding.

Proof. Fix any two x0 and x1 such that y = fT (x0) = fT (x1). We can show that their randomized
encodings are computationally indistinguishable by defining a series of hybrid experiments. We
define the very first experiment to be the original distribution, except with the input fixed to x0.
For i = 1, . . . ,

√
T+1 we define a sequence of seven sub-hybrids, where we prove indistinguishability

inductively.

• Hybrid (i, 1): We substitute the point (oi, ri, si, ki) ← PRF(K, i) with a uniformly random
one. By induction hypothesis, at this hybrid, the only information that the adversary has
about the PRF key is the punctured key

K{i+ 1} ← PRF.IterPuncture(K{i}, i),

where K{1} = K. Since i < i+ 1, by the pseudorandomness of the range puncturable PRF,
even given K{i + 1}, PRF(K, i) is still computationally indistinguishable from a uniformly
random one. It follows that this hybrid experiement is computationally indistinguishable
from the previous one.

• Hybrid (i, 2): We replace ei,part and ei,input with the output of rGC.SimEnc(ei) where ei =
rGC.Enc(pk, (oi, pki, yi, i, ci); ri). By the simulatability of partial encodings, this hybrid is
identical to the previous one.

• Hybrid (i, 3): We replace ei by rGC.Sim(1λ, C, pk,hi). By the simulatability of reusable
garbled circuits, the distribution induced by this hybrid is computationally indistinguishable
from the previous one.

• Hybrid (i, 4): We switch
(Ri, ti)← PRG(oi)

with uniformly random elements. Since oi is uniformly random, the security of the PRG
guarantees that (Ri, ti), expanded from oi, are computationally indistinguishable from uni-
formly random elements. Therefore, this hybrid is computationally indistinguishable from
the previous one.

• Hybrid (i, 5): In this hybrid the hint hi is sampled uniformly from Zn
q , and zi is hardwired

with the output (ci+1, ei+1,input):

zi = MSB
(
BiG

−1(Lc)−Ahi

)
⊕ (ci+1, ei+1,input).

This hybrid is identical to the previous one, since (hi, zi) has the same conditional distribution.

• Hybrid (i, 6): We choose a uniformly random Bi and keep everything else the same. By the
LWE assumption, this modification is computationally undetecatable .

24

• Hybrid (i, 7): We switch

ci ← FHE.Enc(pki, (y,K{i+ 1}); si)

with an encryption of 0:
ci ← FHE.Enc(pki, 0; si).

By the semantic security of the FHE scheme, it follows that this hybrid is computationally
indistinguishable from the previous one. We note that in this hybrid we have removedK{i+1}
from the view of the attacker and hence maintained the invariant that during hybrid series i,
the distinguisher has only access to K{i+ 1} but not prior keys.

After proceeding with this series of hybrids, at the very last one, we have just hardwired the
output of the computation y and have remove all keys from the view of the adversary. Because
y = fT (x0) = fT (x1), we can then proceed with the same series of hybrid backwards, but using x1
as input instead. This shows that the two distributions are computationally indistinguishable and
concludes our proof.

7 Garbled RAM with Sublinear Encodings

Before we describe sublinear garbled RAM, let us fix some notation for describing standard RAM
computation. We use the notation PD(x) to denote the execution of program P that takes a
short input x and has random-access to a memory of size n, which may initially contain some
data D ∈ {0, 1}n. The program can read/write to various locations in memory throughout the
execution. A useful representation of a RAM program P is through Step Circuit which executes a
single step of RAM computation:

CP (state, bread) = (state′, iread, iwrite, bwrite).

This circuit takes as input the current state and a bit bread residing in the the last read memory
location. It outputs an updated state′, the next location to read iread ∈ [n], a location to write to
iwrite ∈ [n] ∪ {⊥} (where ⊥ values are ignored), a bit bwrite to write into that location.

The computation PD(x) starts in the initial state state1 = x corresponding to the input and
all other values set to 0, by convention. In each step j, the computation proceeds by running
CP (statej , b

read
j) = (statej+1, iread, iwrite, bwrite). The program then reads the requested location

iread by setting breadj+1 = D[iread] and, if iwrite ̸=⊥, we overwrite the location by setting D[iwrite] =
bwrite. The value y = state output by the last step serves as the output of the computation, and
we assume here that |x| = |y| for convenience.

Sublinear Garbled RAM. In this work, we are interested in constructing one-time sublinear
garbled RAM programs, where the runtime of the client is sublinear in the number of steps (T)
but can otherwise grow with the size of the memory of the computation (and in particular |D|),
which is often referred to as the settings without persistent memory. We omit formal definitions of
garbled RAM, and we refer the reader to [GHRW14] for a more comprehensive treatment of this
notion. For us, it suffices to observe that we can parse the computation of a RAM program as the
T -folded execution of a circuit Γ with the syntax

Γ(D, state, iread, iwrite, bread, bwrite) = (D′, state′, i′read, i
′
write, b

′
read, b

′
write)

25

which is defined as the combination of CP and PD, as described above, and T is a bound on the
worst-case number of steps of the computation. To garble RAM computation using our sublinear
randomized encoding (Section 6) it suffices to invoke the Enc algorithm on input the circuit Γ and
the input (0|D|, x, 0, 0, 0, 0). Security follows directly from the simulatability of the randomized
encoding.

Efficiency. The running time of the client is identical to that of the encoding procedure, and
therefore can be upper bounded by poly(λ, |x|, |D|) ·

√
T . On the other hand, the runtime of the

server is identical to that of the decoding algorithm, and therefore bounded by poly(λ, |x|, |D|) · T .
Therefore, we obtain the first garbled RAM scheme with client complexity sublinear in T , without
using obfuscation.

Acknowledgements

G.M. wishes to thank Chris Peikert for inspiring discussions on timed cryptography at an early
stage of this work.

S.A. was supported by the CyStar center of excellence and a DST Swarnajayanti fellowship.
G.M. was supported by the European Research Council through an ERC Starting Grant (Grant
agreement No. 101077455, ObfusQation). T.Z. was supported by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2092
CASA – 390781972.

References

[ACL+22] Martin R Albrecht, Valerio Cini, Russell WF Lai, Giulio Malavolta, and Sri Aravin-
daKrishnan Thyagarajan. Lattice-based snarks: Publicly verifiable, preprocessing,
and recursively composable. In Annual International Cryptology Conference, pages
102–132. Springer, 2022.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: new meth-
ods for bootstrapping and instantiation. In Advances in Cryptology–EUROCRYPT
2019: 38th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings, Part I 38,
pages 191–225. Springer, 2019.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Annual Cryptology Conference, pages 308–326. Springer,
2015.

[AK21] Aydin Abadi and Aggelos Kiayias. Multi-instance publicly verifiable time-lock puzzle
and its applications. In Financial Cryptography and Data Security: 25th International
Conference, FC 2021, Virtual Event, March 1–5, 2021, Revised Selected Papers, Part
II 25, pages 541–559. Springer, 2021.

[ASP13] Jacob Alperin-Sheriff and Chris Peikert. Practical bootstrapping in quasilinear time.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013,
pages 1–20, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

26

[BDF21] Jeffrey Burdges and Luca De Feo. Delay encryption. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 302–326.
Springer, 2021.

[BDGM19] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear
decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In Theory of
Cryptography Conference, pages 407–437. Springer, 2019.

[BDGM23] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate io
from homomorphic encryption schemes. Journal of Cryptology, 36(3):27, 2023.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan,
and Brent Waters. Time-lock puzzles from randomized encodings. In Proceedings
of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages
345–356, 2016.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In Proceedings of the forty-seventh an-
nual ACM symposium on Theory of Computing, pages 439–448, 2015.

[BN00] Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor, Advances
in Cryptology — CRYPTO 2000, pages 236–254, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based fhe as secure as pke. In Pro-
ceedings of the 5th Conference on Innovations in Theoretical Computer Science, ITCS
’14, page 1–12, New York, NY, USA, 2014. Association for Computing Machinery.

[BV18] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. Journal of the ACM (JACM), 65(6):1–37, 2018.

[CCC+15] Yu-Chi Chen, Sherman SM Chow, Kai-Min Chung, Russell WF Lai, Wei-Kai Lin,
and Hong-Sheng Zhou. Computation-trace indistinguishability obfuscation and its
applications. IACR Cryptol. ePrint Arch., 2015:406, 2015.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled ram. In Proceedings of
the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages
169–178, 2016.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for ram programs. In Proceedings of the
forty-seventh annual ACM symposium on Theory of Computing, pages 429–437, 2015.

[CJJ22] Arka Rai Choudhuri, Abhihsek Jain, and Zhengzhong Jin. Snargs for p from lwe. In
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 68–79. IEEE, 2022.

[CLM23] Valerio Cini, Russell WF Lai, and Giulio Malavolta. Lattice-based succinct arguments
from vanishing polynomials. In Annual International Cryptology Conference, pages
72–105. Springer, 2023.

27

[DGM23] Jesko Dujmovic, Rachit Garg, and Giulio Malavolta. Time-lock puzzles with efficient
batch solving. Cryptology ePrint Archive, 2023.

[DHMW23] Nico Döttling, Lucjan Hanzlik, Bernardo Magri, and Stella Wohnig. Mcfly: verifiable
encryption to the future made practical. In International Conference on Financial
Cryptography and Data Security, pages 252–269. Springer, 2023.

[FKPS21] Cody Freitag, Ilan Komargodski, Rafael Pass, and Naomi Sirkin. Non-malleable time-
lock puzzles and applications. In Theory of Cryptography: 19th International Confer-
ence, TCC 2021, Raleigh, NC, USA, November 8–11, 2021, Proceedings, Part III 19,
pages 447–479. Springer, 2021.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford, CA,
USA, 2009. AAI3382729.

[GGHW17] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of
differing-inputs obfuscation and extractable witness encryption with auxiliary input.
Algorithmica, 79:1353–1373, 2017.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, aug 1986.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Proceedings of the forty-fifth annual ACM symposium on Theory
of computing, pages 467–476, 2013.

[GHRW14] C. Gentry, S. Halevi, M. Raykova, and D. Wichs. Outsourcing private ram compu-
tation. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science
(FOCS), pages 404–413, Los Alamitos, CA, USA, oct 2014. IEEE Computer Society.

[GKP+13] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In Proceedings
of the 45th annual ACM symposium on Symposium on theory of computing, STOC ’13,
pages 555–564, New York, NY, USA, 2013. ACM.

[GL89] Oded Goldreich and Leonid Levin. A hard-core predicate for all one-way functions.
pages 25–32, 01 1989.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 736–749, 2021.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances
in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, pages 75–92. Springer, 2013.

[GSZB23] Noemi Glaeser, István András Seres, Michael Zhu, and Joseph Bonneau. Cicada: A
framework for private non-interactive on-chain auctions and voting. Cryptology ePrint
Archive, 2023.

28

[HILL99] Johan HÅstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[HLL23] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for circuits of
unbounded depth from lattices. In 2023 IEEE 64th Annual Symposium on Foundations
of Computer Science (FOCS), pages 415–434. IEEE, 2023.

[JMRR21] Samuel Jaques, Hart Montgomery, Razvan Rosie, and Arnab Roy. Time-release cryp-
tography from minimal circuit assumptions. In Avishek Adhikari, Ralf Küsters, and
Bart Preneel, editors, Progress in Cryptology – INDOCRYPT 2021, pages 584–606,
Cham, 2021. Springer International Publishing.

[KLX20] Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puzzles and
timed commitments. In Theory of Cryptography: 18th International Conference, TCC
2020, Durham, NC, USA, November 16–19, 2020, Proceedings, Part III 18, pages
390–413. Springer, 2020.

[LJKW18] Jia Liu, Tibor Jager, Saqib A Kakvi, and Bogdan Warinschi. How to build time-lock
encryption. Designs, Codes and Cryptography, 86:2549–2586, 2018.

[LM23] Russell W. F. Lai and Giulio Malavolta. Lattice-based timed cryptography. In Helena
Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023,
pages 782–804, Cham, 2023. Springer Nature Switzerland.

[LPS17] Huijia Lin, Rafael Pass, and Pratik Soni. Two-round concurrent non-malleable com-
mitment from time-lock puzzles. IACR Cryptol. ePrint Arch., 2017:273, 2017.

[MT19] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic time-lock
puzzles and applications. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, pages 620–649, Cham, 2019. Springer In-
ternational Publishing.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
Extended abstract. STOC ’09, page 333–342, New York, NY, USA, 2009. Association
for Computing Machinery.

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and appli-
cations. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pages 859–870. IEEE, 2018.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):1–40, 2009.

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-
release crypto. 1996.

[SLM+23] Shravan Srinivasan, Julian Loss, Giulio Malavolta, Kartik Nayak, Charalampos Pa-
pamanthou, and Sri AravindaKrishnan Thyagarajan. Transparent batchable time-
lock puzzles and applications to byzantine consensus. In Alexandra Boldyreva and

29

Vladimir Kolesnikov, editors, Public-Key Cryptography – PKC 2023, pages 554–584,
Cham, 2023. Springer Nature Switzerland.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. In Proceedings of the Forty-Sixth Annual ACM Symposium on
Theory of Computing, STOC ’14, page 475–484, New York, NY, USA, 2014. Associa-
tion for Computing Machinery.

[TAF+23] Nirvan Tyagi, Arasu Arun, Cody Freitag, Riad Wahby, Joseph Bonneau, and David
Mazières. Riggs: Decentralized sealed-bid auctions. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, pages 1227–1241,
2023.

[TBM+20] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat, Giulio Malavolta, Nico Döttling,
Aniket Kate, and Dominique Schröder. Verifiable timed signatures made practical. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 1733–1750, 2020.

[TCLM21] Sri Aravinda Krishnan Thyagarajan, Guilhem Castagnos, Fabian Laguillaumie, and
Giulio Malavolta. Efficient cca timed commitments in class groups. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security,
pages 2663–2684, 2021.

[TMMS22] Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, and Pedro Moreno-Sanchez.
Universal atomic swaps: Secure exchange of coins across all blockchains. In 2022
IEEE Symposium on Security and Privacy (SP), pages 1299–1316. IEEE, 2022.

[TMSS22] Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, Fritz Schmid, and Dominique
Schröder. Verifiable timed linkable ring signatures for scalable payments for monero.
In European Symposium on Research in Computer Security, pages 467–486. Springer,
2022.

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In Yevgeniy
Dodis and Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022,
pages 535–559, Cham, 2022. Springer Nature Switzerland.

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and
null-io from evasive lwe. In Shweta Agrawal and Dongdai Lin, editors, Advances
in Cryptology – ASIACRYPT 2022, pages 195–221, Cham, 2022. Springer Nature
Switzerland.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious lwe sampling.
In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology –
EUROCRYPT 2021, pages 127–156, Cham, 2021. Springer International Publishing.

[WXDS20] Jun Wan, Hanshen Xiao, Srinivas Devadas, and Elaine Shi. Round-efficient byzantine
broadcast under strongly adaptive and majority corruptions. In Theory of Cryptogra-
phy: 18th International Conference, TCC 2020, Durham, NC, USA, November 16–19,
2020, Proceedings, Part I 18, pages 412–456. Springer, 2020.

30

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 160–164. IEEE Computer Society, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada,
27-29 October 1986, pages 162–167. IEEE Computer Society, 1986.

31

