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ABSTRACT

Secret handshakes, introduced by Balfanz et al. [3], allow users
associated with various groups to determine if they share a com-
mon affiliation. These protocols ensure crucial properties such as
fairness (all participants learn the result simultaneously), affilia-

tion privacy (failed handshakes reveal no affiliation information),
and result-hiding (even participants within a shared group can-
not infer outcomes of unrelated handshakes). Over time, various
secret-handshake schemes have been proposed, with a notable
advancement being the modular framework by Tsudik and Xu.
Their approach integrates three key components: group signature
schemes, centralized secure channels for each group, and decen-
tralized group key-agreement protocols.

Building upon this modularity, we propose significant updates.
By addressing hidden complexities and revising the security model,
we enhance both the efficiency and the privacy guarantees of the
protocol. Specifically, we achieve the novel property of Self dis-
tinction—the ability to distinguish between two users in a session
without revealing their identities—by replacing the group signature
primitive with a new construct, the List MAC. This primitive is
inherently untraceable, necessitating adjustments to the original
syntax to support stronger privacy guarantees. Consequently, we
introduce the Traitor Catching paradigm, where the transcript
of a handshake reveals only the identity of a traitor, preserving the
anonymity of all other participants.

To showcase the flexibility and robustness of our updated frame-
work, we present two post-quantum instantiations (a hash-based
one and another based on lattices). Our approach not only corrects
prior limitations but also establishes a new benchmark for privacy
and security in secret handshakes.
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1 INTRODUCTION

Secret handshakes were originally introduced by Balfanz et al. [3]
as a means of allowing two (or more) users to ascertain whether
they belong to the same group without revealing their affiliations,
either to each other or to an external adversary. An extension

of secret handshakes is affiliation-hiding key-agreement [12]: if
all participants share an affiliation, they can establish a secure
communications’ channel.

Say two users, Alice and Bob, are registered on a given platform
(e.g., a social network). Though unacquainted, they are open to
exchanging messages – on condition that they share a characteristic
(a geographical area, a common cause, etc.). The more sensitive
the affiliation, the more important it is to hide it until both users
are sure they share it. For instance, two political dissidents in an
autocratic regime might have a lot to lose if a state agent were to
learn of their connections or political opinions.

In a secret-handshake context, various affiliations can co-exist
simultaneously, each affiliation corresponding to a group. Users can
gain new affiliations or voluntarily drop out of groups. An authority
called a group manager, takes over the administrative duties in each
group: new users joining, current users leaving or being revoked,
as well as updates to the group keys 1. Later, subgroups of user
can interact in secret-handshake protocol sessions, which will end
in the acceptance by all users (and the computation of a secure-
channel key) if they belong to the same group. Even if they do not
belong to the same group, protocol participants enjoy strong privacy
properties, such as: session-unlinkability (the same user cannot be
recognized or tracked across sessions), affiliation-hiding2 (hiding
the user’s affiliation from users from different groups), result-hiding
(users of any group, not taking part in the secret handshake, are
unaware of its result), and handshake simulatability (a primitive
form of deniability).

An established modular way of constructing secret handshakes
due to Tsudik et Xu [17] relies on three different building blocks:
a group-signature scheme, centralized key-agreement, and a dis-
tributed key-agreement protocol. While the GCD construction has
some advantages has a potential for strong security and privacy
guarantees, the framework is only partially proved secure. More-
over, the instantiation proposed by [17] features vulnerabilities and
an unsound circularity in the use of the session key which ensures
security cannot be proved under standard assumptions. Moreover,

1However, we limit the power of group managers and ensure non-frameability
even with respect to corrupt or malicious group managers.

2Also called detection-resistance.
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while Tsudik et Xu introduce self-distinction as a desirable property,
their scheme does not guarantee it.

And yet, self-distinction can be a valuable property. In a nutshell,
it allows an honest secret-handshake participant to learn that all
the other handshake peers belong the original participant’s group
and that they are distinct. This gives a reliable lower bound on the
number of users running a particular secret-handshake session.
It can allow, for instance, a journalist to have an objective lower
bound on the number of participants in a protest movement, or a
candidate for a particular election to gauge public support before
entering his, her, or their bid.

Another salient point is that of users misbehaving (and being
banned upon doing so, against their will). In many schemes, ban-
ishment involves an external entity called a judge and reveals more
than just the identity of the banished user.

Though secret handshakes abound in the literature, it is to this
day challenging to design a secret-sharing protocol that combines:

• Strong privacy requirements, such as: unlinkability, result-
hiding, and handshake-simulatability;
• The property of self-distinction;
• Dynamic handling of users joining and leaving groups;
• Handling of banishment with better privacy properties;
• Resistance to quantum attacks;
• Fully-formal security models and proofs.

Our contributions. In this paper we take up this challenge and
provide a modular construction, which departs from the original
GCD compiler, but replaces the initial group signature by a new
primitive we dub ListMAC.

ListMACs are versions of list signatures, in turn related to group
signatures. If we compare ListMACs to group signatures, we find a
few significant differences:

Matching ListMACs allow groupmembers to only authenticate a
fewmessages anonymously within the group3. This property
almost immediately provides both self-distinction and a new
property of tracing banned or leaving users.

Local verification Group and list signatures are verified by
using a publicly-known group key. In ListMACs, verification
can only be done locally, by members of the same group.
This renders it ideal for the problem of secret handshakes,
in which authentication must only function when all users
can prove they are members of the same group.

No Traceability Group (and list) signatures provide Trace-
ability by means of an opening algorithm, which uses trap-
doors in order to track down a signer and prove he is the
signer of a message. ListMACs achieve a slight relaxation of
this property that we dub Traitor Catching. The difference
is subtle: whereas in Traceability an authority can identify
all the participants in a secret handshake, in Traitor Catch-
ing a potentially malicious entity will then effectively be
banned from the group against his, her, or their will, without
all the participants’ identities being compromised.

3In practice, as soon as a user authenticates the same message twice, that user is
correctly identified as a cheater and can be traced.

Since we aim for quantum resistance for our ListMACs, we in-
stantiate them by modifying EPID (Enhanced Privacy ID [5]) sig-
natures, which allows a trusted platform module (TPM) to create
salve-keys that are distributed to new devices. In our instantiation,
the group ListMAC manager creates keys jointly with the users.

In particular, we extend lattice-based [10] and hash-based EPID [8]
for our construction.

Our second and main contribution is a modular protocol we dub
LCA, which constructs secret handshake using three ingredients:
ListMACs, a group channel which allow managers to broadcast
and users to unicast, denoted CBU2, and an anonymous group
key-agreement with fresh randomness AGKA-FR. These two latter
primitives can be viewed as proper formalizations and extensions,
respectively, of the centralized secure channel (CSC) and the de-
centralized group key-agreement (DGKA) protocols used by the
GCD construction. An important contribution of our work is the
formal definition of the CBU2 and AGKA-FR primitives required
for secret handshakes.

Our second and main contribution is a modular protocol we dub
LCA, which constructs secret handshake using three ingredients:
ListMACs, a secure group channel with dynamic updates, which
allow managers to broadcast and users to unicast, denoted CBU2,
and an anonymous group key-agreement with fresh randomness
AGKA-FR. These two latter primitives can be viewed as proper
formalizations and extensions, respectively, of the centralized se-
cure channel (CSC) and the decentralized group key-agreement
(DGKA) protocols used by the GCD construction. An important
contribution of our work is the formal definition of the CBU2 and
AGKA-FR primitives required for secret handshakes.

Our secret handshake construction, LCA, is instantiated using
quantum-resistant cryptography. The resulting scheme guarantees
strong privacy properties, but also self-distinction, and can handle
dynamic group cases. Our final, and equally-important, contribution
consists of the proofs of the properties our scheme provides.

GCD vs. LCA. Our work extends existing results by Tsudik and
Xu [17] – however, our contributions with respect to that existing
framework are manyfold and, we believe, impactful. Amongst the
main differences between our results and [17], we mention:

• Introducing ListMAC as a new cryptographic primitive, and
instantiating it in the quantum-secure setting;
• Formally defining the CBU2 and AGKA-FR building blocks,
which are non-trivial extensions of the Centralized Secure
Channel and decentralized group key-agreement primitives
in [17];
• Formally define the desired security and privacy properties
for secret handshakes;
• Constructing the LCA scheme from ListMACs, CBU2, and
AGKA-FR. Apart from its provable security, our scheme han-
dles dynamic banishment, and provably provides properties
unattained by GCD, such as self-distinction.
• We also introduce a new paradigm for catching banned users
that increases innocent-user privacy.

We emphasize that, since the proofs of [17] contain unclear and
circular arguments, our work is the first to provably confirm the
validity of a modular construction paradigm for secret handshakes.
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Related Work. The literature of secret handshakes is vast, and fea-
tures constructions which are difficult to compare, as they provide
very diverse properties. Some such schemes feature stronger pri-
vacy properties, others seek to provide better traceability. In some
(e.g., [3, 14], the authentication of members of the same group must
take place prior to the establishment of a secure channel, whereas
in later work, parties compute some partial key material before
authentication is finished [17].

Our work in this paper comes closest to the GCD framework, pro-
posed by Tsudik and Xu [17]. The framework is relatively generic,
featuring group signatures (that provide Unlinkability), group
key-agreement, and a permanent secure channel for group up-
dates. Apart from standard properties of secret handshakes, such
as handshake-simulatability, result-hiding, unlinkability, etc., this
work introduces a new and interesting property, namely self-distinction.
While [17] provides a modular, generic construction, we show in
this paper that it does not achieve the properties it requires in a
provable manner.

A recent instantiation of the GCD framework introduced the
mCSH protocol [18], which uses blind signatures in order to authen-
ticate, while hiding the affiliation publicly during the handshake.
Moreover, the construction achieves quantum-resistance through
the instantiation of GCD with quantum-secure primitives. Our
generic construction, which improves the GCD framework, can
also be instantiated in the quantum-secure setting, as we show in
our paper.

However, GCD is not the only way to construct secret hand-
shakes. In the following, we review some further approaches to
constructing secret handshakes.

The first constructions of secret handshakes [3] featured one-
time credentials – essentially pseudonyms generated by group
managers in order to allow users to simultaneously identify each
other and hide their identities. This scheme achieves properties
such as Unlinkability and Full-unlinkability, but at significant
storage costs and a large overhead in case of banned users.

A different approach featured using identity-based encryption
and a description of user identities as a combination of various
descriptive data [2].

A different protocol, called FSSH [1] is based on Zero-Knowledge
Arguments of Knowledge (ZKAoKs), with users obtaining updatable
authentication tokens from their group managers. This method
provides many properties, but loses out in terms of modularity with
respect to the GCD framework, and does not achieve unlinkability.

2 PRELIMINARIES

2.1 Secret handshakes

We consider users4 𝑈𝑖 , which may (or may not) be a part of some
given group 𝐺 . A special user, called a group authority or group
manager GA, will be associated with each group. We denote by
GA the set of group authorities and byU the set of all (regular)
users, and demand that the two sets are disjoint5.

4We will require user to have unique identifiers. In practice, this could be imple-
mented by an additional registration step including authentication.

5Note that in reality, some users can manage groups; our construction simply
divides these roles and associates to each one potentially different credentials.

Table 1: Valid properties per protocols: ✓ pass, ✗ fail
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CSH [18] ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗

FSSH [1] ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗

GCD 1 [17] ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗

GCD 2 [17] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

Our ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓

Secret handshakes are interactive protocols run among a set Δ
of users. Users𝑈𝑖 ∈ Δ may or may not be part of a common group
𝐺 . At the end of the protocol run, each𝑈𝑖 either: (1) Concludes that
all the 𝑈𝑖 ∈ Δ belong to a group 𝐺 . Each 𝑈𝑖 computes a session
key 𝐾 ; or (2) Concludes that some of the users do not share their
affiliation; no key is then established.

We formally present the syntax of secret handshake protocols
like GCD in Appendix A. In terms of properties, GCD, as well as
other secret handshake schemes, aim to guarantee the following
properties6:
User authentication (Auth): an outsider to a group 𝐺 cannot

convince a user𝑈 ∈ 𝐺 , that the adversary A ∈ 𝐺 .
Handshake simulability (Hand-Sim): a group outsider with no

knowledge of group data (e.g., through corruption) cannot
distinguish between a handshake with a group member and
a handshake with a simulator.

Full-unlinkability (F-Unlink): no adversary can link two hand-
shakes run with the same user𝑈 , even if𝑈 ’s private material
was corrupted. A weaker form of this property, called just
Unlinkability (Unlink) will not allow users to be corrupted.

Result-hiding (Res-Hide): a legitimate group member not partic-
ipating in a handshake cannot know whether the handshake
finished successfully or not.

Traceability (Trace): the group authority can trace all the users
involved in a given handshake.

Non-frameability (NF): no collusion of malicious users, aided
by the group authority, can frame an honest user of taking
part in a session if that is not so.

Self distinction (S-Dist): a user can establish that all participants
in a handshake are distinct.

2.2 The GCD Approach

The GCD approach. In [17], secret handshakes feature groups
with dynamic joining and leaving mechanisms, and algorithms

6We use a slightly different (but we believe more descriptive) name for classical
security and privacy properties in Secret Handshakes. We do this to improve legibility
and the impact on privacy community.
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ensuring the well-running of secret handshakes. Finally, the GCD
framework also incorporates a mechanism for tracing: given a hand-
shake transcript from a successful handshake, the group authority
can recover the identities of all the participants (and possibly prove
this to a judge J).

2.2.1 The GCD Construction. In 2005, Tsudik and Xu proposed a
modular GCD construction for secret handshakes, relying on three
main cryptographic sub-components:

Group signatures: GCD requires a group signature scheme with
dynamic user addition, leaving, and key-updates. The group
authority bothmanages the group and traces problematic sig-
natures and issues, to each user𝑈𝑖 , a pair of group signature
keys (GSig.𝑝𝑘,GSig.𝑠𝑘𝑖 ). Later, the users group-sign a value
that is unique per user to obtain an unlinkable signature 𝜎𝑖 ,
traceable only by the group authority;

Centralized secure channel: The protocol relies on groupmem-
bers sharing a secret value 𝑘 , which has to be regularly up-
dated whenever users join or leave the group; this value is
broadcast by GA over a group secure channel and is essen-
tially half of the key-material for the secret handshake;

Decentralized group key-agreement: This allows handshake
participants to compute an unauthenticated group key 𝑘 .
This is the second half of the key-material for the secret
handshake.

In addition, the GCD scheme also relies on the following, much
less discussed primitives: an IND-CCA-secure public-key encryp-
tion scheme to ensure traceability; symmetric-key encryptionwhose
properties, which are not specified, are discussed below and in Ap-
pendix A.1; a MAC scheme with no precise security requirements,
which we return to again below and in Appendix A.1; and mutually-
secure channels between the group authority and each of the group
members.

The GCD scheme. We proceed to intuitively indicate how the
GCD scheme works (for full details, please see [17]).

In this scheme, group authorities will each own a pair of PKE keys
(pkGA, skGA, as well as some group-signature opening trapdoor 𝜏 .
Users𝑈𝑖 belonging to a group 𝐺 managed by GA maintain secure
channels to GA, over which they will receive group-signature keys
(GSig.pk,GSig.sk𝑖 ) and a common secret value 𝑘𝐺 .

Group dynamics. Users can dynamically join, leave or be revoked
from the group; in all cases, the group authority will refresh (via the
centralized secure channel and mutually-authenticated user-to-GA
channels) their group signature keys (GSig.pk,GSig.sk𝑖 ) as well as
a secret value, denoted 𝑘𝐺 , which is known only to current group
members.

Secret handhshake. Whenever users 𝑈1, . . . ,𝑈𝑚 run a secret
handshake, the protocol begins with a decentralized group key-
agreement between 𝑈1, . . . ,𝑈𝑚 , so that users compute a session
key 𝑘 .

During the secret handshake, each user (belonging to some group
𝐺) will compute the value 𝑘𝑖 ← 𝑘𝐺 ⊕ 𝑘 , where 𝑘𝐺 is the current
secret value shared over the centralized channel of 𝐺 and 𝑘 is the
key computed through decentralized key-agreement.

Once 𝑘𝑖 is computed, each user𝑈𝑖 broadcasts a MAC MAC𝑘𝑖 (𝑠𝑖 , 𝑖),
on its index 𝑖 within the set of handshake users, and 𝑠𝑖 is a potentially-
public, user-specific value (e.g., some user-specificmessage). Having
received everyone else’s MAC tag,𝑈𝑖 verifies them.

The next step for each user𝑈𝑖 is to check all the received MAC
values. Note that whenever𝑈𝑖 checks the tag of a user 𝑈 𝑗 which is
in the same group as𝑈𝑖 , the tag verifies because the users computed
the same key. When this is not the case, the MAC verification fails.
From this point on,𝑈𝑖 simulates the protocol by outputting random
values of the correct format, thus achieving result-hiding.

If all the MAC tags verify, each user computes a public-key
encryption of 𝑘𝑖 underGA’s public key, then group-signs this value,
and finally symmetric-encrypts the signature with 𝑘𝑖 in order to
hide whether it verifies or not. The user broadcasts the encryption
of 𝑘𝑖 and the symmetric-encryption of it.

Tracing. The group manager can trace the users involved in a
handshake by decrypting all the encryptions of the keys 𝑘𝑖 , some
of which might not be correct (in this scenario, some users cheat).
If at least one user was honest, the group authority decrypts, using
the keys 𝑘𝑖 , the encryption of the signature and traces those back
to all the handshake participants using its trapdoor 𝜏 .

2.2.2 GCD Security Problems. Although the GCD paper aims to
prove the security of its scheme, this is not quite achieved, as we
point out below and, in more detail, in Appendix A.1.

One of the most problematic aspects of the GCD construction
is the fact that the key 𝑘𝑖 is first encrypted, then used as the key
to encrypt the group signature. This constructional aspect creates
a circularity that makes proving security difficult under standard
assumptions. Since 𝑘𝑖 is meant to be later used in order to secure a
channel between the handshake participants, this further compli-
cates a proof.

Another potential problem is the construction of GCD based on
generic MAC schemes. The paper indicates no specific security as-
sumption for its MACs, and the standard security notion for MACs
is existential unforgeability under chosen-message attacks. In GCD
𝑘𝑖 is used to generate a MAC, and under standard unforgeability
assumptions, we have no guarantee that 𝑘𝑖 is still indistinguishable
from random after this step, which jeopardizes further security
steps (such as symmetric-encrypting with 𝑘𝑖 ).

Another component with insufficient security assumptions is the
decentralized group key-agreement, which is only required to hide
user identities. This is insufficient, since sessions of given users can
be linked even when nothing leaks about the user’s identifier.

Finally, note that users can bypass tracing by simply choosing not
to encrypt the correct key 𝑘𝑖 . Since fellow handshake participants
cannot decrypt a PKE ciphertext generated with the group author-
ity’s public key. We describe further weaknesses of this scheme in
Appendix A.1.

2.3 Our approach

Our approach is four-fold in this paper, as we review three impor-
tant aspects of the initial GCD construction:

• A new primitive: ListMACs The problems caused by the
public verifiability of GCD’s group signatures led us to define
and employ a new primitive: List Message-Authentication
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Codes (ListMACs). Intuitively, these are a symmetric-key
variant of List signatures, which ensure that, if a single user
tags two messages in quick succession, this can be detected
– thus guaranteeing self-distinction for free.
• Clean key-derivationWe replace the key-derivation mech-
anism in the secret handshake to ensure that different keys
are used in different operations. To that purpose we use a
two-step KDF, such as HKDF.
• A new banishment paradigm Traitor Catching Assume
a user has misbehaved and their behaviour was flagged by
another group member. The group authority decides to ban
that user. In most secret-handshake schemes, this leads to re-
vealing the identity not just of the misbehaving user, but also
those of the other handshake participants. In our approach,
non-misbehaving users retain their privacy, while still al-
lowing the banished users from being noticed at subsequent
handshake attempts.
• Full formalizations/proofs An important disadvantage
of the paper by Tsudik et Xu is that their design is not ac-
companied by proper formalization of security assumptions
and proofs. In our paper, we remedy this and provide formal-
izations of both the primitives we use, and of the properties
we achieve.

We begin by presenting the protocol that results from merely
replacing group signatures by ListMACs and introducing a clean,
purpose-specific key-derivation. We then assess the security of
resulting scheme and finally describe a potential enhancement.

Building blocks.We use two main new building blocks in our pro-
tocol: ListMACs (which we present in section 3 and a key-derivation
function like HKDF, consisting of two steps: the extraction of a high-
entropy, short secret 𝑠 from a low-entropy secret sk and a value
𝑠𝑎𝑙𝑡 : (HKDF.Ext(sk; 𝑠𝑎𝑙𝑡)), and the expansion of that high-entropy
secret to a number of keys, using a potential input value 𝑖𝑛𝑝𝑢𝑡 and
an output length ℓ (HKDF.XP(𝑠 ; 𝑖𝑛𝑝𝑢𝑡, ℓ)). In our notation, we will
often omit the length at the evaluation step.

Assumptions and environment.We consider the environment
presented in subsection 2.1, with users𝑈𝑖 ∈ U. In this environment,
groups𝐺 also exist, each group being associated with a single group
authority GA ∈ GA. The set of usersU is disjoint from the set of
group authorities GA.

Users𝑈𝑖 can join and leave groups of their choice, and they can
also be banned by the group authority. In parallel, users of various
groups can run a secret handshake together, whose result is:

• Common group: If the users taking part in the handshake
are part of one common group (and identify themselves,
during the handshake, as belonging to that group), then the
result is an overall accept of the handshake, culminating in
the establishment of a group secure channel;
• Non-consensus: If at least one participant to the handshake
has no group in common with all the others (or is a member
of that group, but chooses not to identify as being a part of
it), then the result is an overall reject of the handshake, and
no secure channel will be established.

We take, seemingly, the same approach as Tsudik et Xu and allow
group authorities to control both registration/access to the group
and catching responsibilities.

3 LISTMAC

Group signature schemes, as used in the GCD framework, can pro-
vide the anonymity within the group of a specific user. In [17], the
traceability property is also used in order to attain non-frameability.
However, group signatures also come with several disadvantages,
including potentially cumbersome dynamic updates of the group’s
keys and an instant recognition of a valid group signature since the
verification algorithm is public.

We take a different approach to constructing secret handshakes.
Since our goal is to obtain secret handshakes which are moreover
self-distinguishable, we want a means of group authentication that
provides unlinkability, but also a way to match signatures produced
in the same handshake by the same entity.

Thus, we propose the concept of List MACs, akin to List Signa-
tures [7] but only allowing group members to verify the validity of
the produced signature. List MACs essentially allow signatures to
remain unlinkable up to two types of matching, which serve a dual
purpose: tracking malicious users, and achieving self-distinction.

Definition 1 (ListMAC). A ListMAC scheme is a tuple of al-

gorithms LM = (LM.Setup, LM.GenGroup, LM.RegUser, LM.Tag,
LM.Ver,
LM.Match, LM.Match, LM.MatchSet) as follows:
• LM.Setup(1𝜆) → param generates system parameters param;

• LM.GenGroup(param) → (gmk, gvk, bsn) generates a group
master key gmk, a group verification key gvk, and a value bsn
standing for group’s basename.

• LM.RegUser(𝑈 , gmk) → (IDLM
𝑈
, sk𝑈 ) ⊔⊥ allows a new user

𝑈 to join the group by interacting with the group manager

GA. The user outputs a private value sk𝑈 , allowing the user

to generate and verify ListMAC tags on behalf of the group.

The user also outputs a pseudonym IDLM
𝑈

also known by GA,
which will make the user matchable for specific values of the

aux value input to the tagging algorithm.

• LM.Tag(sk,𝑚, aux, 𝑆) → (𝜏, 𝜋) : given a secret key sk, a mes-

sage𝑚, an auxiliary value aux, and a set 𝑆 containing tags,

the algorithm returns a tag 𝜏 and a proof 𝜋 attesting that the

private key used to generate 𝜏 was not used in generating any

value in 𝑆 . The set 𝑆 is composed of tuples of the form (𝜏, aux).
• LM.Ver(gvk,𝑚, aux, 𝜏) ∈ {0, 1} : the algorithm returns a veri-

fication bit as follows: if 𝜏 was issued by a group member, the

algorithm outputs 1 (i.e., the tag is valid for (𝑚, aux)); else it
outputs 0.
• LM.Match(gvk,𝑚,𝑚′, aux, 𝜏, 𝜏 ′) ∈ {0, 1} : this algorithm re-

turns 1 if (𝑚, aux, 𝜏) and (𝑚′, aux, 𝜏 ′) were issued by the same

issuer, and 0 otherwise. More specifically,

∀aux,∀(𝑚,𝑚′) ∈ M2, LM.Match(gvk,𝑚,𝑚′, aux, 𝜏, 𝜏 ′) = 1
∧ LM.Ver(gvk,𝑚, aux, 𝜏,⊥, ∅) = 1
∧ LM.Ver(gvk,𝑚′, aux, 𝜏 ′,⊥, ∅) = 1

⇐⇒ sk = sk′,
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where (𝜏,⊥) ← LM.Tag(sk,𝑚, aux, ∅) and (𝜏 ′,⊥) ←
LM.Tag(sk′,𝑚′, aux, ∅).
Moreover, we design the algorithm so that (𝑚, aux, 𝜏) = (⊥,
bsn, IDLM) matches any (𝑚′, bsn, 𝜏 ′) issued by user with ID

IDLM
.

• LM.MatchSet(gvk,𝑚, aux, 𝜏, 𝜋, 𝑆) ∈ {0, 1} ⊔ ⊥ : this algo-

rithm returns 1 if any tag in 𝑆 was issued by the same user

producing a valid tuple (𝜏, 𝜋) for (𝑚, aux). More formally,

givensk𝑈 , (𝑚, aux, 𝜏, 𝜋), 𝑆 :
∃(𝜏 ′, aux′) ∈ 𝑆, (𝜏 ′,⊥) ∈ LM.Tag(sk𝑈 , ·, aux′, ∅)

∧ LM.Tag(sk𝑈 ,𝑚, aux, 𝑆) ∋ (𝜏, 𝜋)
⇐⇒ LM.MatchSet(gvk,𝑚, aux, 𝜏, 𝜋, 𝑆) = 1

otherwise 0. However if the 𝜋 isn’t valid it returns ⊥.

The Correctness of ListMACs requires several properties:
• Honestly-generated tags always verify.
• Tags honestly generated by the same user match.
• Tags honestly generated by a user can always be matched
with tags produced by the same user and included in 𝑆 .

3.1 Adversarial model

The security model for List MACs combines unforgeability proper-
ties with matching and unlinkability. The adversary interacts with
the environment by using several oracles.

Generating groups and users.We allow the adversary to generate
honest or corrupt group authorities, corresponding to honest or
corrupt groups. Moreover, honest groups can be corrupted.
• oGenGroup(𝐺,𝑏) → (⊥, gvk, bsn) ⊔ (gmk, gvk, bsn): the or-
acle generates a group, for either an honest group authority
(for 𝑏 = 0) or a corrupt one (𝑏 = 1). For 𝑏 = 1, GA is added
to a list CGA of corrupted authorities, and the adversary
learns the master secret material gmk. Otherwise, GA is
added toHGA, and the oracle outputs public group mate-
rial gvk, bsn.
• oCorruptGA(𝐺) → (gmk, {∀𝑖, IDLM

𝑖
}) corrupt the group

authority GA of 𝐺 , adding GA to CGA.
There are two oracles that allow users to create users:

pjoin (passive join): an honest user is created while the adversary
does not learn its secret keys. The index 𝑖 is added to the
HU (Honest Users) list;

ajoin (active join): the created user is controlled by the adversary,
whose private parameters are given to the group authority.
The user𝑈 is added to CU (the Corrupted Users list).

Created users can also be corrupted:
• oCorruptUser(𝐺,𝑈 ), if 𝑈 ∈ HU, provides the specific se-
cret key of this user for the specific 𝐺 . The adversary can
control this party, and therefore𝑈 is added to CU;

Interactions. Once groups and users are created, the adversary
interacts with the environment via the following oracles.
• OTag(𝑈 ,𝑚, aux, 𝑆) → (𝜏, 𝜋) ⊔ ⊥: this oracle only works for
𝑈 ∈ HU, running the tagging algorithm as a black box to
generate a tag on message𝑚 for the auxiliary aux and given
𝑆 .

Exp𝐸𝑈 𝐹−𝐶𝑀𝐴−𝐴𝐷
ListMAC

Let OEUF−CMA−AD := {oGenGroup, ajoin , pjoin , oCorruptGA,
oCorruptUser, oTag, oVer, oMatch, oMatchSet}
paramListMAC ← ListMAC.Setup(1𝜆)
(𝑚, aux, 𝑆, 𝜏, 𝜋) ← AOEUF−CMA (paramListMAC)
Awins ⇐⇒ ∃𝑔 ∈ QoGenGroup0

, 𝑔.𝐺.GA ∈ HGA
∧Qajoin (𝑔.𝐺,· ) = ∅ ∧ QoCorruptUser(𝑔.𝐺,· ) = ∅
∧oVer(𝑔.𝐺,𝑚, aux, 𝜏) = 1
∧[ 𝜋 ≠ ⊥ =⇒ oMatchSet(𝑔.𝐺,𝑚, aux, 𝑆, 𝜏, 𝜋) = 1 ∧ 𝑆 ≠ ∅ ]
∧∀𝑡 ∈ QoTag,
[𝑡 .𝑆 = 𝑆 =⇒ 𝑡 .𝑚 ≠𝑚]
∨ [𝑡 .𝑚 =𝑚 =⇒ 𝑡 .𝑆 ≠ 𝑆 ∧ 𝑆 ≠ ∅]

Figure 1: ListMAC Existential Unforgeability against Chosen

Message Attacks with Auxiliary Data (EUF-CMA-AD) game

• oTagLoR𝑏 ({𝑈𝐿,𝑈𝑅},𝑚, aux, 𝑆) → (𝜏, 𝜋): this oracle emu-
lates tag generation for one of two users𝑈𝐿 or𝑈𝑅 depending
on a bit 𝑏 ∈ {𝐿, 𝑅}.
• oVer(𝐺,𝑚, aux, 𝜏) → {0, 1} runs LM.Ver as a black box, for
group parameter gvk.
• oMatch(𝐺,𝑚,𝑚′, aux, 𝜏, 𝜏 ′) runs LM.Match as a black box
with the corresponding 𝐺 ’s gvk.
• oMatchSet(𝐺,𝑚, aux, 𝜏, 𝜋, 𝑆) → {0, 1}⊔⊥ runs LM.MatchSet
as a black box with the corresponding 𝐺 ’s gvk.

3.2 Security Notions

In the unforgeability game, the adversary’s task is to forge a tag for
a fresh message on behalf a group not containing any corrupted
users. This definition is described below.

In the unlinkability game, the adversary seeks to link two sig-
natures without using the matching functionality. This game is
formally described below.

The non-frameability game concerns matching.While signatures
created using the same private keys should be matchable, no one
should be able to create a tag that matches to that of an honest
user (either through tag-to-tag matching, or through tag-to-set
matching).

Definition 2 (EUF-CMA-AD). Consider a ListMAC instance

ListMAC. For a probabilistic polynomial-time (PPT) adversary A let

AdvEUF−CMA−AD
ListMAC (A) be its advantage to win the Exp𝐸𝑈 𝐹−𝐶𝑀𝐴−𝐴𝐷

ListMAC
security game (cf.Figure 1):

AdvEUF−CMA−AD
ListMAC (A) = P[A wins Exp𝐸𝑈 𝐹−𝐶𝑀𝐴−𝐴𝐷

ListMAC ] (1)

The ListMAC is 𝜖-EUF-CMA-AD-secure if, and only if, any PPT

adversary A against ListMAC has at most an advantage of 𝜖 to

win Exp𝐸𝑈 𝐹−𝐶𝑀𝐴−𝐴𝐷
ListMAC . Asymptotically, ListMAC is Existentially

Unforgeable Against Chosen Message Attacks with Auxiliary Data
if 𝜖 is negligible as a function of the security parameter 𝑛.

Definition 3 (Unlinkability). Consider a ListMAC scheme

ListMAC. The advantage of a PPT adversaryA to win ExpUnlinkListMAC
(cf. Figure 2) is defined as follows:

AdvUnlinkListMAC (A) = P[A wins ExpUnlinkListMAC] (2)
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ExpUnlinkListMAC

Let OUnlink := {oGenGroup, oCorruptGA, ajoin , pjoin ,
oTag, oVer, oMatch, oMatchSet, oTagLoR𝑏 }
𝑏

$← {𝐿, 𝑅}
𝑑 ← AOUnlink (paramListMAC)
Awins ⇐⇒ 𝑏 = 𝑑

∧∃!ℎ ∈ QoGenGroup,∀𝑒 ∈ QoTagLoR𝑏 ,
𝑒 .aux ≠ ℎ.bsn ∧ {𝑒.𝑈𝐿, 𝑒 .𝑈𝑅} ⊂ (HU ∩ USetℎ.𝐺 )

∧∀𝑓 ∈ QoTagLoR𝑏 \ {𝑒},
[ {𝑒.𝑈𝐿, 𝑒 .𝑈𝑅} ∩ {𝑓 .𝑈𝐿, 𝑓 .𝑈𝑅} ≠ ∅
=⇒ 𝑒.aux ≠ 𝑓 .aux ∧ (𝑓 .𝜏, 𝑓 .aux) ∉ 𝑒.𝑆 ]

∧∀𝑔 ∈ QoTag,
[𝑔.𝑈 ∈ {𝑒.𝑈𝐿, 𝑒 .𝑈𝑅}
=⇒ 𝑒.aux ≠ 𝑔.aux ∧ (𝑔.𝜏, 𝑔.aux) ∉ 𝑒.𝑆 ∧ (𝑒.𝜏, 𝑒 .aux) ∉ 𝑔.𝑆 ]

∧∀𝑠 ∈ 𝑔.𝑆 ∪ 𝑒.𝑆 ∪ 𝑓 .𝑆,
[ ∃!𝑎 ∈ QoTag, (𝑎.𝜏, 𝑎.aux) = (𝑠 .𝜏, 𝑠 .aux) ]
⊕[ ∃!𝑙 ∈ QoTagLoR𝑏 , (𝑙 .𝜏, 𝑙 .aux) = (𝑠 .𝜏, 𝑠 .aux) ]

Figure 2: ListMAC Unlinkability game

ExpNFLM
Let ONF := {oGenGroup, ajoin , pjoin , oCorruptGA,
oCorruptUser, oTag, oVer, oMatch, oMatchSet}
(𝐺,𝑚, aux, 𝜏, 𝜋, 𝑆) ← A𝑂NF

Awins ⇐⇒ oVer(𝐺,𝑚, aux, 𝜏) = 1
∧∀𝑠 ∈ 𝑆, ∃!𝑞 ∈ QoTag, (𝑠 .𝜏, 𝑠 .aux) = (𝑞.𝜏, 𝑞.aux)
∧ [ [oMatchSet(𝐺,𝑚, aux, 𝜏, 𝜋, 𝑆) = 1 =⇒ 𝑞.𝑈 ∈ HU]
∨[oMatchSet(𝐺,𝑚, aux, 𝜏, 𝜋, 𝑆) = 0 =⇒ 𝑞.𝑈 ∈ MU ∪ CU]
∨[ ∃𝐻 ∈ HU,∀𝑚′ ∈ M,

∃(𝜏 ′,⊥) ∈ oTag(𝐻,𝑚′, aux, ∅),
oMatch(𝐺,𝑚,𝑚′, aux, 𝜏, 𝜏 ′) = 1 ] ]

Figure 3: ListMAC NF game : A isn’t able to forge a tag that

can be linked to an honest user

We call ListMAC 𝜖-Unlinkable if, and only if, any PPT adver-

sary A against ListMAC has at most an advantage of 𝜖 to win the

Exp𝐸𝑈 𝐹−𝐶𝑀𝐴−𝐴𝐷
ListMAC security game. Asymptotically, ListMAC is called

Unlinkable-Secure if 𝜖 is negligible as a function of the security

parameter 𝑛.

Definition 4 (Non-Frameable). The advantage of a PPT adver-

sary A to win ExpNFListMAC (cf. Figure 3) against a ListMAC scheme

ListMAC, is defined as follows:

AdvNFListMAC (A) = P[A wins ExpNFListMAC] (3)

The ListMAC is 𝜖-Unlinkable-secure if, and only if, any PPT ad-

versaryA against ListMAC has at most an advantage of 𝜖 to win the

ExpNFListMAC security game. Asymptotically, ListMAC is called Non-
frameability-Secure if 𝜖 is negligible as a function of the security

parameter 𝑛.

4 FURTHER BUILDING BLOCKS

The GCD framework of Tsudik and Xu [17] required the use of three
components: a group-signature scheme, a central secure channel,
and a distributed (non-authenticated) group key-agreement. In this
work, we replace group signatures by the ListMAC primitive, pre-
sented above. In the spirit of our approach, described in Section 2.3,
we propose and formalize below the following building blocks:
• Centralized Broadcast and User Unicast(CBU2):
this extension of the central secure channel of Tsudik and
Xu will allow a group manager to communicate securely in
broadcast mode, and each user to unicast separately to the
group manager. We use this primitive in the secret hand-
shake construction for two main purposes: the broadcast
will allow group members to recognize each other; while the
unicast will allow for the detection of malicious users.
• Anonymous Group Key-Agremment with Fresh
Randomness(AGKA-FR): this extension of the distributed
group key-agreement by Tsudik and Xu will allow a group
of users to compute a master secret without revealing any
information about their identity (sessions are unlinkable).
In addition, we formalize a functionality requirement made
informally by [17], specifically the presence of some infor-
mation that allows the AGKA-FR session to be bound to that
of the subsequent secret handshake.

4.1 Centralized broadcast and User Unicast

(CBU2)
In our construction, we collapse the centralized secure-channel
with the mutually-authenticated secure channels from managers
to users into a single, complex element, allowing group authorities
to broadcast to a multitude of users, but also user-to-central-party
unicast, for the purposes of allowing users to leave or be banned.

We call this a Centralized-Broadcast-and-User-Unicast channel
(in short CBU2). The full formal description of this primitive is
provided in Appendix C.4.2, but we give a summary of it below.

Intuitively, CBU2 features a global setup algorithm outputting
global private (spar) and public (ppar) parameters. Given the pri-
vate parameters, so-called channel managers can use long-term
credentials to register users. The managers can add and remove
users from the channel (see algorithms UAdd and URmv), or trigger
updates of session keys (algorithm ChUpdate).

Messages can be sent via broadcast (channel manager to users)
or unicast (user to channel manager). Sending and receiving of
broadcasts is done via the BCast and respectively RecBCast algo-
rithms. While users cannot use the broadcast channel, they can
unicast to the central manager (algorithms UCast and RecUCast)
in a secure way with respect even to other legitimate CBU2 users.

A full description of the CBU2 syntax is in Appendix C.4.2.
Notice that while our syntax features global private parameters

given to the channel managers, the latter still require private keys to
set up and manage new channels. Users may additionally only join
channels for which they are registered with the managers. Channel
management is dynamic and takes place in installments (epochs).
Only channel managers can trigger updates, and they do so when
users are added or removed. Each modification triggers an update
of key-material and user lists and can be perceived as being akin to
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the notion of “epoch" in secure-channel establishment with post-
compromise security. To avoid confusion, we abuse vocabulary and
call these installments “time", indexed by a discrete variable 𝑡 . The
phrase “the user groupUGsid at time 𝑡" thus refers to the value of
UGsid at the 𝑡-th installment of the group management process.

The CBU2 channel allows channel managers to broadcast using
ms values, and users to unicast using sendK keys. The session
identifier sid and the broadcast key material evolve upon adding or
removing users from a channel session, or updating the keymaterial.
The same may apply to unicast keys, but this is not compulsory.

Channel manager and user states. Both users and channel man-
agers maintain state, consisting of:

• Their long-term private and secret keys sk, pk
• (Users) A list ChList of channels they are registered to.
• (Managers) The database UG of all registered users, with
respective keying materials. For each session of the channel,
UGsid stores the up-to-date session state of sid (with its
keys per epoch).
• The current epoch they are on, in each session, 𝑡sid.
• Bits indicating the acceptance state of users.
• Lists of sent and received messages at each epoch, denoted
respectively Snd and Rcv.
• Lists of keys KeyList for all sessions the users/channel man-
agers are involved in, at various epochs.

Correctness. The definition of correctness for CBU2 is provided in
Appendix C.4.2. Note that we require both a narrower and a broader
notion of correctness than in typical multi-stage authenticated key-
agreement, since CBU2 is centralized (key-updates are triggered
only by the channel manager, acceptance/key computation on the
channel manager will imply acceptance/key computation for the
channel users), features some key-updates for the broadcast channel,
but also includes a more classical end-to-end secure unicast channel
with no key updates.

Adversary Model.We define the security of the CBU2 primitive
in terms of authentication and security of the established channel
(akin to the notion of (S)ACCE, originally introduced in the context
of TLS 1.2 in [11]). Our choice is motivated by the fact that in the
construction of secret handshakes, the property we require from
the CBU2 is that nonces encrypted and sent through broadcast are
indistinguishable from random, and tags sent through unicast are
similarly indistinguishable from random. While this property can
be achieved by the careful composition of AKE-secure forward-
secure key exchange and authenticated-encryption, achieving the
equivalent of ACCE security is not always immediate.

We will require the following properties:

• Centralized broadcast: We require the authentication of
sessions, updates, and transmissions (messages should only
originate with the channel manager), and the security of the
broadcast channel, specifically:
– Authentication: an attacker without access to the chan-
nel manager’s private values cannot make a non-malicious
user accept amessage not sent at that epoch by the channel
manager.

– Security: an attacker without access to the session key
at epoch 𝑡 cannot break the ACCE security of a broadcast
message, i.e., only users legitimately in possession of the
epoch’s keys may distinguish a transmitted message from
random.

• User unicast: We require the authentication of transmis-
sions (the user is authenticated), and the security of the
unicast channel, specifically:
– Authentication: an attacker without access to an hon-
est user’s private values cannot make a channel manager
accept a message not set at that epoch by that user.

– Security: an attacker without access to the user’s key
at that epoch cannot break the ACCE security of unicast
messages, i.e., only the user and channel manager can
distinguish from random the exchanged plaintexts.

The full security definitions are provided in Appendix C.4.2.

Insight: constructing CBU2. At its core, the CBU2 channel con-
sists of a manager-to-users broadcast channel with key-evolution,
and multiple user-to-manager unicast channel which does not nec-
essarily have to feature key-evolution. In both cases, confidentiality
must be ensured, and the authentication property demands that
the communication only run one-way, which requires the use of
EUF-CMA-secure authentication with non-repudiation: typically
signature schemes.

There are many ways to construct such channels.
A typical start would be to provide broadcast communication

via a group-communication channel with post-compromise secu-
rity, such as MLS, combined with a signature scheme that would
allow only the channel manager to effectively send messages. Note,
however, that the functionality required here differs a little from
the standard MLS architecture. For one thing, the only entity that
will be proposing the addition or removal of users is the group
manager. In addition, since we will be using the CBU2 protocol
in the interest of a privacy-preserving scheme, note that the true
identities of the users in the group will not be known (we will
be using channel-specific identifiers within the Secret Handshake
scheme). This partially violates one of the core MLS properties: the
fact that users are aware who is in the group. No users will be able
to make proposals or commits to the channel. Key-updates are also
only triggered by the channel manager.

We note that the unicast channel key-material could be derived,
via a secure PRF, from the group secrets at the epoch at which the
user has joined as well as a nonce known only to the manager and
the user, chosen uniformly and independently at random during
the Joining procedure. The derivation needs to preserve certain
security properties, but could essentially work as described by
Brzuska, Jacobsen, and Stebila in [6]. In this case as well, we would
require the user to sign each sent message.

4.2 Anonymous group key-exchange

(AGKA-FR)

Apart from CBU2, another critical component in the framework of
Tsudik and Xu [17] is Distributed Group Key-Agreement (DGKA),
meant to allow several users to compute a set of common secret
keys without betraying their identities. Unfortunately, the basic
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DGKA syntax described in [17] only models limited privacy, which
is insufficient to guarantee the strong privacy properties required
by secret handshakes.

In our framework, we use anonymous group key-agreement
with an additional feature: each honest user will employ fresh
randomness during every session. We call our protocol Anonymous
Group Key-Agreement with Fresh Randomness (AGKA-FR), and
it has two main properties: the indistinguishability from random
of session keys, and the unlinkability of protocol sessions. Due to
space limitations, we include in Appendix ?? the lion’s share of the
formalization, only including here a characterization that will help
understand our secret handshake protocol.

The AGKA-FR primitive will be parametrized by a randomness
superspace R, essentially characterizing the randomness that is
used (e.g., group element, integer, etc.). Then, during AGKA-FR
setup, a subset RΠ of R is chosen to become the set of randomness
that is used in practice (e.g., nonces of 128 bits). Honest protocol
participants will abort AGKA-FR in case of colliding randomness7.

In our secret handshakes, users first undergo basic group key-
agreement. We need to bind information about that key-agreement
later, when users employ list MACs to authenticate. We require two
properties: each user in the handshake has a unique input during
key-agreement, and the concatenation of the randomness of all
users is in turn unique. For an in-depth discussion of our design
choices and some alternatives, please see Appendix ??.

AGKA-FR syntax and environment.We consider a set of users
USet, each user associated with an identity 𝑈𝑖 . The protocol is
defined as a tuple of the following algorithms.
• AGKA-FR.Setup(1𝜆,R) → (ppar,K,RΠ): The global setup
algorithm outputs the subset of usable randomness RΠ used
for the randomness, as well as a (surjective) set of possible
keys and public parameters ppar.
• AGKA-FR.Handshake(Δ) → ({state𝑖 , sid,ms𝑖 }𝑈𝑖 ∈Δ: This in-
teractive handshake algorithm allows users in a set Δ to run
the protocol, outputting: unique randomness state𝑖 ∈ RΠ , a
session identifier sid which is the concatenation of all state𝑖
from smallest to largest; and a master secret ms.

Users 𝑈𝑖 store a table AGKA-FR.SList indexed by session identi-
fiers sid and containing: the number nsid of users in session sid, the
randomness state the user used in sid, the user’s acceptance bit 𝛼sid
for the correctness of the randomness generated by all the users
during sid, the user’s acceptance bit 𝛼 of the protocol session, the
key computed by the userms, and a reveal bit 𝜌 indicating whether
the key has been revealed.

We require a complex notion of correctness: the honest use of
correct and non-colliding randomness state (otherwise, users abort),
and the computation of the same key by users taking part in the
same handshake.

Security notions forAGKA-FR. Intuitively,AGKA-FR should guar-
antee the following properties: anonymity and the security of the
computed keys. We define anonymity in terms of the unlinkability
between two participating users, and prove that this property also

7Note that, since most key-agreement protocols rely on the use of some ran-
domness, restricting ourselves to schemes explicitly using such values is not a big
restriction.

implies a type of simulatability, i.e., it is impossible to tell whether
the protocol participant is a real user or a simulator.

Since users are not associated with private values, unlike in our
secret handshake and CBU2 protocols, for AGKA-FR it makes no
sense to consider corrupt users: just honest and malicious ones. The
adversary can register either of these and allow them to interact
in protocol sessions. In unlinkability, the adversary aims to link
sessions of the same party. The security definition is a typical AKE
left-or-right notion, in which the adversary aims to distinguish
the real key, computed by an honest party interacting with other
honest parties, from a random key from the keyspace.

5 SECRET HANDSHAKES FROM LIST MACS

Our protocol LCA corrects, improves, and extends the GCD frame-
work of Tsudik and Xu [17]. We preface its presentation by a short
description of the intuition behind it, then present the scheme itself.

5.1 Intuition

Our scheme makes use of the three main building blocks pre-
sented in Sections 3 and 4, and which give it its name: LCA for
ListMAC-CBU2-AGKA-FR. The goal is to provably provide the cor-
nerstone properties of Secret Handshake schemes, notably authen-
tication, unlinkability, handshake-simulatability, result-hiding, non-
frameability, and a measure of traceability. While GCD achieves
a strong form of traceability, which leaks all the participants of a
handshake in case of a dispute, we prefer a more privacy-friendly
approach, in which misbehaving users are caught only if they use
their credentials after misbehaving. We argue that our approach
provides the same security/accountability guarantees, but at less
cost to privacy.

At the core of our construction is a means of providing anony-
mous mutual authentication between group members, which re-
mains undetectable and simulatable. This is achieved by a combi-
nation of several features:

• Group members establish a CBU2 session over which the
group authority provides a fresh nonce at each epoch. When-
ever group members are added, leave, or the channel is up-
dated, the CBU2 key material is renewed, and a new nonce
is broadcast. No one but current group members know the
nonce.
• Secret handshake participants run an initial AGKA-FR ses-
sion. This session yields key material that only participants
will know, as well as public, but unique randomness bound
to each participant.
• ListMACs are computed by each member of the group that
is present in the handshake, and each MAC is bound to the
AGKA-FR execution. Moreover, ListMAC verification can
only be achieved by members of the group, which helps the
result-hiding property. By its matching properties, ListMACs
help LCA achieve self-distinction.

Our protocol LCA takes place on 3 main fronts: group manage-
ment, handshake execution, and tracing/banning.We briefly discuss
each of these before proceeding to the protocol description.

Group management. Each group is run by a group authority,
which establishes a unique CBU2 channel which runs permanently
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in the background. Whenever a user joins, it interacts with the
group authority to obtain ListMAC credentials. The fact that the
group authority does not know the user’s ListMAC key is essential
to providing non-frameability. Every time new users join or leave,
the group manager updates the CBU2 session, computing new key
materials and broadcasting a fresh nonce.

Handshakes. The handshake starts with a AGKA-FR session be-
tween protocol participants. The AGKA-FR anonymity is crucial
here, as we want no information to be leaked about the partici-
pants: we just want the users present at the handshake to establish
some common key material. We recall that AGKA-FR also compels
participants to use fresh randomness, which is unique per party
and per session. This binding material from AGKA-FR is part of a
message tagged (using ListMAC) by each participant. Finally, using
the key material derived from AGKA-FR, the user cleanly computes
(through the judicious use of export keys and Extract-and-Expand
PRFs) a keywith which the tag is encrypted. In short, the encryption
renders the value simulatable, while the ListMAC allows members
of the same group to recognize each other.

ListMACs come with multiple perks. Given a verifiable List-
MAC, users from the same group can ensure that Self-Distinction
is guaranteed. Moreover, it becomes easy to check if any hand-
shake participants are users banned from the group. Finally, the
computation of a second ListMAC tag provides non-frameability.

Tracing/banning. Our scheme supports both users voluntarily
leaving groups (via Leave) and users being banned against their
will if they misbehave. User banishment is essentially ensured by
the use of ListMACs. Banned users will have tags generated by
them added to a special set of banned tags. During handshakes,
users match received tags against the set of banned tags of their
group, thus detecting potentially banned users. If a user misbehaves
and the group authority is provided with that user’s tag from a
handshake, the authority uses CBU2 in order to request, from each
user, a tag that will either match (in the case of the guilty party) or
not (for innocent parties) the tag provided during the handshake8.

We summarize in Figure ?? the properties that our scheme in-
herits from its building blocks.
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AGKA-FR ✓ ✓ ✓ ✓ ✓ ✓

CBU2 ✓ ✓

ListMAC ✓ ✓ ✓ ✓ ✗ ✓

Figure 4: How our building blocks provide the construction’s

properties: Unlinkability, Authentication, Self-Distinction,

Handshake-Simulatability, Result-hiding, Non-Frameability,

Full-Unlinkability, and Traitor-Catching: ✓: building block

useful, ✗: building block prevents property.

8The ListMACs nifty ability to match tags provided by the same user also comes
into play if the guilty party tries to avoid detection by using the credentials of a
corrupted party.

Intuition: multiple groups. Notice that users may actually be
members of several groups simultaneously. The question then is
which group they are meant to represent in each handshake. In
this paper, we simplify such users’ choice and note that users will
simply draw at random one group identity amongst all their groups,
and they will decide to run the protocol as a member of that group.
We leave the question of how to optimize this process – which is
not characteristic to our own scheme, but rather, a general problem
in secret handshakes – as further work.

5.2 Proposed protocol

In this section we describe our LCA scheme in more detail. Due to
space limitations, an even more detailed and formal description is
provided in Appendix C.2.

Global setup: SHS.Setup:. This step is used to run the global
setup of our main primitives, providing parameters paramListMAC
for ListMACs, paramCBU2 = (sparCBU2, pparCBU2) for CBU2, and
paramAGKA-FR and the randomness space RΠ for the AGKA-FR.

Group creation: SHS.NewGroup:. The group authority GA creates
a new group 𝐺 , generates credentials for a new CBU2 channel,
and generates ListMAC master and verification parameters for
ListMACs (including a basename bsn used in identification). Initially
there are no banished users. The GA creates a random sidban (later
used for catching and banning misbehaving users).

Channel update: SHS.Update:. If, for whatever reason, the group
authority wants to renew CBU2 material, it runs an update algo-
rithm, which executes CBU2.ChUpdate as a black box, thus renew-
ing the key material of all the users. It then generates and sends
a fresh nonce over the broadcast channel, and sends two current
banned-user lists: that of voluntarily-leaving users KRL and that
of banned users SRL. Updates are specifically also used whenever
users join and leave the group.

New user joining: SHS.Join:. This step first starts with a registra-
tion step: GA interacts with the new user 𝑈 on a secure channel in
order to generate, together, the user’s ListMAC secret key (known
only to𝑈 ) and its ListMAC identity (IDLM, sk𝑈 ) (known toGA and
𝑈 and stored by GA in a list 𝐷𝐵id). The group authority also gives
𝑈 the verification key gvk and the value sidban. After successful
ListMAC registration,𝑈 is registered, then added to the CBU2. If𝑈
is the first group member, CBU2 needs to first be instantiated. Else,
the CBU2 session is updated and all users, including𝑈 receive new
key material.

Thus, at the end of this step,𝑈 possesses ListMAC private and
verification material, as well as broadcast secrets (in order to receive
GA’s CBU2 broadcasts) and unicast keys (in order to unicast toGA).
Finally, the user receives from GA the updated nonce and the two
lists of banned users KRL, SRL.

User leaving: SHS.Leave:. When users leave voluntarily, they
unicast their ListMAC private keys over CBU2, and the latter is
added to KRL. We note that a variant that achieves even better
privacy involves the leaving user providing a tag that can be added
to SRL. This ensures the user can no longer produce ListMAC tags
on behalf of the group, but unfortunately does not take them off
the CBU2. To identify which CBU2 credentials correspond to each
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users, GA chooses a random𝑚 and broadcasts Leave| |𝑚. Leaving
users unicast a tag on that message, which will be identified and
linked, thus allowing GA to sever the CBU2 connection. This tag
is added to SRL. Finally, GA performs the updating procedure for
the updated KRL, SRL) tuple.

Secret handshake: SHS.Handshake:. As described in the intuition,
a secret handshake consists of several steps: the users first run
AGKA-FR, using fresh randomness from RΠ ; then users authen-
ticate by tagging their randomness, the session transcript, and a
nonce derived from the current group randomness; this tag is en-
crypted, and the ciphertext broadcast; users verify all received tags
and, if they all verify as valid (i.e., they came from other group
members), they match received tags to check for double tagging (to
get self-distinction) and banned users; users compute a second tag
over entire session transcript, to ensure non-frameability.

Note that at each step, failures can occur: in AGKA-FR users
could notice colliding randomness, or perhaps users notice at least
one other handshake participant not being in the same group. In
all failure cases, the user will run a simulation of the handshake,
producing random outputs of the correct format and length.

The protocol is described in Figure 5, with more details in Appen-
dix C.2. An essential part of it is the key-schedule, allowing users to
compute, through the use of HKDF [13], a number of indepdent key,
by taking in input common secrets, but distinct labels, specifically
(in order from label0 to label3): “separation”, “generate nonce”,
“generate hiding key”, “generate session key” These strings
will serve as distinguishing labels in order to obtain independent
key values from the same secret.

msDGKA

𝑘′

ms𝑡 ℎ𝑘

noncesid𝑡

Extract( ·)

Expand( ·,nonce𝑡
𝐺
| |sid | |label0 )

Extract( ·)

Extract( ·)
Expand( ·,nonce𝑡

𝐺
| |label2 )

Expand( ·,nonce𝑡
𝐺
| |label3 )

Expand( ·,nonce𝑡
𝐺
| |label1 )

Extract( ·)

Extract( ·)

Pseudo Random Key Salt Input Key Material
𝑘′ ms𝑡 nonce𝑡

𝐺
| |label3

ℎ𝑘 ms𝑡 nonce𝑡
𝐺
| |label2

noncesid𝑡 ms𝑡 nonce𝑡
𝐺
| |label1

ms𝑡 msAGKA-FR nonce𝑡
𝐺
| |KShare| |label0

Figure 6: KeySchedule: description

Also we need to use the function pad which pads the data up to
the size of a constant, that symbolizes the maximum numbers of size
that can acheive 𝜋SRL. This helps to prevent against Result-hiding.

Banning a user: SHS.Ban:. If a user misbehaves in a secret hand-
shake, other group members taking part in the handshake can
report this, forwarding the session’s transcript including the guilty
user’s tag 𝜏𝑇 . The group authority verifies that the tag is correct
with respect to the transcript (i.e., with respect to session identi-
fier, randomness from AGKA-FR, the proofs are all verifiable, etc.).
If the group authority decides to ban the user,GA updates sidban ←

𝑈𝐴

Get (gvk, sk𝐴, KRL, SRL) // ListMAC parameters

Get nonce𝑡
𝐺
//Current nonce broadcast over CBU2

//Run AGKA-FR with randomness state𝐴
(state𝐴, sid, msAGKA-FR) ← AGKA-FR.Handshake(Δ)

< Δ >←−−−−−−−−−−−−→
//Compute keys 𝑘′, ℎ𝑘 , randomness noncesid𝑡
(𝑘′, ℎ𝑘, noncesid𝑡 ) ← KeySchedule(msAGKA-FR, nonce𝑡𝐺 , sid)
if sid = bsn abort and simulate
//Compute tag and proof non-banned user.

(𝜏𝐴, 𝜋SRL𝐴
) ← LM.Tag(sk𝐴, 𝐻 (state𝐴 | |noncesid𝑡 ), sid, SRL)

//Encrypt and send tag

𝑐𝜏
𝐴
← SEnc(ℎ𝑘, (state𝐴, 𝜏𝐴))

𝑐𝜏
𝐴−−−−−−−−−−→

{𝑐𝜏∗}←−−−−−−−−−−−−
//Verify all tags, check matches for Self-Distinction

𝐷 ← sid // Recall sid is concatenation of state in AGKA-FR
foreach 𝑖 ∈ [[#Δ]]

(state𝑖 , 𝜏𝑖 ) ← SDec(ℎ𝑘, 𝑐𝜏
𝑖
)

if LM.Ver(gvk, 𝐻 (state𝑖 | |nonce𝑡sid), sid, 𝜏𝑖 ) = 0 ∨ state𝑖 ∉ 𝐷
Abort and simulate remainder of protocol

𝐷 ← 𝐷\ < state𝑖 >
𝐸 ← {(0,𝑚′, 𝜏 ′) : ∀sk′ ∈ KRL, 𝜏 ′ ← LM.Tag(sk′,𝑚′, sid, ∅)}
if DetectSelfDistinction(gvk, sid,
𝐸 ∪ {state∗, 𝐻 (state𝑖 | |noncesid𝑡 ), 𝜏𝑖 )}𝑖∈[[𝑛]] ) ≠ ∅

abort and simulate
𝑐𝜋
𝐴
← SEnc(ℎ𝑘, (state𝐴, pad(𝜋SRL𝐴

)))
𝑐𝜋
𝐴−−−−−−−−−−→

{𝑐𝜋∗ }←−−−−−−−−−−−−−
Decrypt all 𝑐𝜋∗ , associate each 𝑐𝜋∗ with AGKA-FR nonces
//Check for banned users

foreach 𝑖 ∈ [[𝑛]]
if0 ≠ LM.MatchSet(gvk, 𝐻 (state𝑖 | |noncesid𝑡 ), sid, 𝜏𝑖 , 𝜋SRL𝑖

, SRL)
Abort and simulate remainder of protocol

acc← 𝐻 (noncesid𝑡 | |𝜏1 | |state1 | | . . . | |𝜏𝑛 | |state𝑛)
//Compute second tag for non-frameability

(𝜏acc
𝐴
,⊥) ← LM.Tag(sk𝐴, 𝐻 (state𝐴 | |acc), sid, ∅)

𝑐acc
𝐴
← SEnc(ℎ𝑘, (state𝐴, 𝜏acc𝐴

))
𝑐acc
𝐴−−−−−−−−−−−−→

{𝑐acc∗ }←−−−−−−−−−−−−−−
foreach 𝑖 ∈ [[𝑛]]

Associate to the corresponding 𝜏𝑖 based on the state𝑖
if LM.Ver(gvk, 𝐻 (state𝑖 | |acc), sid, 𝜏acc𝑖

) = 0
∨ LM.Match(gvk, 𝐻 (state𝑖 | |acc), 𝐻 (state𝑖 | |noncesid𝑡 ), sid,
𝜏acc
𝑖
, 𝜏𝑖 ) = 0
Abort and Simulate

store tr = ({(state𝑖 , 𝜏𝑖 , 𝜏acc𝑖
)}𝑖∈[[𝑛]] , sid, noncesid𝑡 )

//If no aborted/simulated run, handshake is successful

𝑘′ is the session key

Figure 5: SHS.Handshake: Secret Handshake in LCA
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𝐻 (sidban | |tr.
sid𝑇 ), adds the tag to SRL and broadcasts sidban, tr, 𝜏𝑇 , sid𝑇 .

The value of tr, which is computed at the end of each successful
handshake, is crucial in allowing all group users (not just those
who took part in the handshake) to verify that the transcript is
valid, that 𝜏𝑇 was generated in that session, and that the session
was correctly run. All group members then add the tuple (𝜏𝑇 , sid𝑇 )
in SRL. They also unicast a tag on sidban.

The group authority will check first that it has received as many
responses as it expected (it bans all users that do not respond), and
that no two tags match back to single entity (this happens in case
of corruption or malicious users, and the user is banned). Finally,
any user whose tag matches SRL is removed from CBU2.

5.3 Security Analysis

We present in this section a security statement for our protocol,
and include a very brief intuition of the more salient points of the
security proofs. The latter can be found in Appendix D.5 (each
statement corresponds in the appendix to to a separate theorem).

Theorem 1. Let Π be LCA scheme described in subsection 5.2 .

The following statements hold for this protocol:

• Π achieves Unlinkability if AGKA-FR guarantees unlinka-

bility and ListMAC guarantees unlinkability;

• Π achieves User authentication if the employed Symmetric

Encryption scheme is correct, if CBU2 guarantees broadcast-
security, broadcast-authentication, unicast-authentication, and

if ListMAC guarantees EUF-CMA-AD and non-frameability;

• Π achieves Non-frameability if ListMAC guarantees non-

frameability’;

• Π achieves Self distinction if ListMAC guarantees non-

frameability and EUF-CMA-AD, and if AGKA-FR guarantees

correctness;

• Π achieves Result-hiding if AGKA-FR guarantees correctness,

AKE-security, if HKDF acts as a PRF, and if the Symmetric

Encryption guarantees IND-CPA;

• Π achieves Handshake simulability if AGKA-FR guarantees

handshake-simulatability, AKE-security, and correctness, if

the Symmetric Encryption guarantees IND-CPA-secure and

correctness, and if CBU2 guarantees broadcast security;
• Π achieves Traitor Catching if ListMAC guarantees EUF-

CMA-AD and non-frameability, and CBU2 guarantees broad-
cast authentication and unicast authentication.

Sketch. In the unlinkability proof, the adversary gets to query
a Left-or-Right oracle, which adds one of two “comparable" users to
an existing set of users running handshake. In the proof, we replace,
step by step, the values that might give any information to the
adversary about which user is involved. The AGKA-FR is already
unlinkable. Since ListMACs are also unlinkable, the adversary can-
not use the content of the handshake’s authentication messages to
distinguish between the users.

In the user authentication proof, some more obvious reductions
involve the adversary not being able to break the broadcast security
of CBU2 for groups it is not a member of. Moreover, it is paramount
that the adversary cannot broadcast over such a channel itself. How-
ever, a less obvious step is the reduction to unicast authentication

for CBU2. An adversary that is able to unicast instead of an honest
user is able to linger on the CBU2 even after requesting to Leave.

Non-frameability follows in a straight-forward manner from
ListMACs.

In self-distinction, an obvious way for the adversary to cheat is
to try to produce a List MAC on behalf of a user that is not taking
part in the handshake (which counts as a forgery). Another strategy
could be for the adversary to produce two MACs with the same
key and hope matching fails to detect this – or alternatively, the
adversary could try to produce a MAC with a key from KRL – a
fact which again Match should detect. The soundness of the Match
algorithm is captured by the Non-Frameability of ListMACs.

Result-hiding can also be perceived as a Left-or-Right indistin-
guishability game: the left option is a successful handshake, whear-
eas the right option is an unsuccessful one. One way to distinguish
is for the adversary to be faced with a collision between nonces in
the AGKA-FR part of the protocol (since participants always abort if
such an event occurs). Note that in this game, the adversary cannot
influence the handshake and cause the collision itself. Furthermore,
in order to hide the result, it is important for the protocol to match
real executions with the simulation provided whenever an error
occurs. In other words, we need real ciphertexts to be similar to sim-
ulated ones, which is true if the symmetric encryption is IND-CPA
and the used keys are indistinguishable from random. Finally, note
that in order to hide the result, it is imperative to pad the size of the
proof of non-banishment, which would otherwise fluctuate depend-
ing on the size of the banished user set, thus betraying whether
participants are from the same group or not.

For handshake simulatability, it should be possible to simulate
the protocol such that a user not in a given group is unable to distin-
guish between a group member and the simulator. The AGKA-FR
component’s handshake simulatability is an easy first step. The
simulator simulates the remainder of the protocol by generating
random key material, simulating the ListMAC, and otherwise fol-
lowing protocol.

Finally, for the traitor-catching property, our proof will have
to focus on the scheme’s ability to either respond with a forged
List MAC during the manager’s challenge or to bypass matching
algorithms. □

6 CONCLUSION

Our paper presents a new primitive, List MACs, it formalizes two
further building blocks (CBU2 andAGKA-FR), and uses them to con-
struct secret handshakes in a clean, modular fashion. The resulting
secret handshake construction LCA achieves user-authentication,
unlinkability, self-distinction, non-frameability, result-hiding, and
handshake simulatability.

In addition, we put forth a new paradigm of accountability, called
traitor catching. As opposed to traitor-tracing, which reveals not
just dishonest participants, but all the participants to a handshake,
in traitor-catching all innocent participants retain their full unlink-
ability.

We note that, given its ability to ensure the new property of
traitor catching, List MACs are Privacy-Enhancing Technologies
that can be of further interest to the community. We propose two
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quantum-resistant instantiations for this primitive, one based on
hash functions and another, based on lattices.

A quirk of our protocol and of secret handshakes in general is
that, when users have multiple affiliations, it is not clear in practice
which group input it will use. In our work, we assume that each
user randomly picks the group whose credentials it will use within
the handshake. We leave as further work to find a better means of
ensuring that users in multiple groups can better pick the group
they will prove their affiliation to during the protocol run.
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A BACKGROUND ON SECRET HANDSHAKES

We present in this appendix further formal definitions regarding the
type of classical secret handshakes that are instantiated byGCD [17].

Note that our work additionally accounts for user banishment,
which forces us to slightly change this syntax.

The GCD approach is an instantiation of a secret handshake
scheme that can be defined as SHS = (SHS.Setup, SHS.NewGroup,
SHS.Join, SHS.Leave, SHS.Update, SHS.Handshake, SHS.Trace,
SHS.Judge) such that:

(msk, ppar) ← SHS.Setup(1𝜆): this global setup algorithm out-
puts some universal private parameters (given to all group
authorities) and public parameters ppar, implicitly taken in
input to all other algorithms.

(spar𝐺 , ppar𝐺 ) ← SHS.NewGroup(𝐺): a group authority runs this
algorithm for a unique𝐺 to output private group parameters
spar𝐺 (only known to GA) and public group parameters
ppar𝐺 . The group authority sets USet𝐺 ← ∅ and keeps
track of state value state(e.g., a group private key, member
identities, etc.).

((sk𝑈 , pk𝑈 ), {(sk𝑉 , pk𝑉 )}𝑉 ∈USet𝐺 ,USet𝐺 ) ← SHS.Join(𝑈 , spar𝐺 ):
a user𝑈 interacts with the group authority GA to yield, on
the user’s side, private and public keys (sk𝑈 , pk𝑈 ), updated
keys (sk𝑉 , pk𝑉 ) to all other group users, and an updated set
of users for GA.

(⊥, {(sk𝑉 , pk𝑉 )}𝑉 ∈USet𝐺 \𝑈 ,USet𝐺 ) ← SHS.Leave(𝑈 , spar𝐺 ): this
is an interactive algorithm run between a user 𝑈 , which ei-
ther leaves the group or is forcibly revoked, and the group
authority (on input spar𝐺 ). At the end, the leaving user pro-
duces no output, the other users in the group possibly update
new parameters sk𝑉 , pk𝑉 , and the group authority outputs
an updated user set USet𝐺 .

{(sk𝑈 , pk𝑈 )}𝑈 ∈USet𝐺 ← SHS.Update(spar𝐺 ): the group author-
ity can run this algorithm (on input spar𝐺 ), which results in
updated keys for each user𝑈 ∈ USet𝐺 .

({(𝑘𝑖
𝑈
, 𝜏𝑖
𝑈
)}𝑈 ∈SHSet) ← SHS.Handshake({sk𝑈 }𝑈 ∈SHSet): a set of

users SHSet runs this algorithm (using their private keys);
each user ends up outputting a private session key 𝑘𝑖

𝑈
(which

can take a special value ⊥), and a transcript 𝜏𝑖
𝑈
.

((⊥,⊥) ∪ {𝑈 , 𝜋𝑖
𝑈
}𝑈 ∈SHSet) ← SHS.Trace(spar𝐺 , {𝜏𝑖𝑈 }𝑈 ∈SHSet):

on input the private group parameters spar𝐺 , and a list of
handshake transcripts, this algorithm outputs either a single
couple of elements (⊥,⊥), indicating that the handshake had
ended in failure, or a set of elements (𝑈 , 𝜋𝑖

𝑈
) for each user

𝑈 ∈ SHSet, consisting of a user identity and a proof 𝜋𝑖
𝑈
.

(0 ∪ 1) ← SHS.Judge(msk, 𝜋𝑖
𝑈
): on input a proof 𝜋𝑖

𝑈
and the

judge’s master paramters msk, this algorithm outputs either
1 (the proof is valid) or 0 (it is not).

The basic correctness definition requires that, assuming that we
run in sequence : (msk, ppar) ← SHS.Setup(1𝜆); (spar𝐺 , ppar𝐺 ) ←
SHS.NewGroup(𝐺); ∀𝑈 ∈ SHSet, we run
({sk𝑈 , pk𝑈 }, {sk𝑉 , pk𝑉 }𝑉 ∈USet𝐺 ,USet𝐺 ) ← SHS.Join(𝑈 , spar𝐺 ),
where we set
({𝑘𝑖

𝑈
, 𝜏𝑖
𝑈
}𝑈 ∈SHSet) ← SHS.Handshake({sk𝑈 }𝑈 ∈SHSet), and then:

• There exists a value 𝑘 ≠ ⊥ such that ∀𝑈 ∈ SHSet it holds
that: 𝑘 = 𝑘𝑖

𝑈
(i.e., all the keys computed in a successful

handshake are identical);
• ∀𝑈 ∈ SHSet, it holds that:
({𝑈 , 𝜋𝑖

𝑈
}𝑈 ∈SHSet) ← SHS.Trace(spar𝐺 , {𝜏𝑖𝑈 }𝑈 ∈SHSet) and
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∀𝜋𝑖
𝑈
generated in this way: 1← SHS.Judge(msk, 𝜋𝑖

𝑈
) (i.e.,

the transcripts generated in a successful handshake are all
traceable to the correct identities, and moreover, the proofs
of the tracing are valid).

A.1 A cleaner handshake design

Although the GCD paper by Tsudik and Xu aims to provide for-
malizations and security proofs, this is not quite achieved. In this
section, we point out several problems and disadvantages in their
construction, beginning with the ones we deem the most serious.

Message-dependent security. Recall that in the secret handshake,
users compute 𝑘𝑖 = 𝑘 ⊕ 𝑘 as their potential secret key. Following
MAC verification, if all the MACs verify, each𝑈𝑖 will: PK encrypt 𝑘𝑖
with the public key of the group authority: 𝛿𝑖 ← PKE.EncpkGA (𝑘𝑖 );
and use 𝑘𝑖 as a private key in the symmetric-key encryption of the
group signature 𝜎𝑖 .

In particular, we notice that the key 𝑘𝑖 is the message encrypted
in 𝛿𝑖 , but also the key used in deriving 𝜃𝑖 , which would make
a formal proof of security difficult under standard assumptions.
Finally, note that 𝑘𝑖 is meant to be later used in order to secure
a channel between the handshake participants – which further
complicates a potential proof.

Insufficient MAC security. The theorems stating the properties
of the two GCD constructions fail to indicate which assumptions
are required for both the MAC scheme that they use, and for the
symmetric-encryption scheme. However, the authors indicate that
any MAC scheme is sufficient – which seems to imply that the
GCD scheme only relies on existential unforgeability under chosen-
message attacks.

However, recall that following the distributed key-agreement,
the parties running the secret handshake use a MAC keyed with
the session key 𝑘𝑖 to create a tag on a user-specific value 𝑠 and their
index 𝑖 . Under standard unforgeability assumptions, we have no
guarantee that 𝑘𝑖 is still indistinguishable from random after this
step, which jeopardizes further security steps (such as symmetric-
encrypting with 𝑘𝑖 ).

Insufficient group key-agreement security. Tsudik and Xu
strongly rely in their GCD construction on the security of a building
block they call distributed group key-agreement. The latter is only
assumed secure against a passive adversary, which is moreover
not part of the group key-agreement (at least within the targeted
session).

While the emphasis in the paper is that the group key-agreement
need not be authenticated – this is not enough to ensure that it is, at
the very minimal, affiliation hiding. Consider a protocol in which
each handshake participant prefaces its messages in the group key-
agreement by a plaintext unique identifier of its group. Clearly this
cannot count as an authentication – yet, it is sufficient to damage
important properties of Tsudik and Xu’s security aims (such as
Result-hiding and Unlinkability).

Overcomplicated traceability. In the traceability game, the par-
ties running a handshake can potentially cheat, for instance comput-
ing a 𝛿𝑖 value that is not correctly generated: either by encrypting
under some p̂k ≠ pkGA, or by encrypting some value 𝑟 under the

correct pkGA. Yet, it is crucial for GA to retrieve 𝑘𝑖 , since it must
later decrypt 𝜃𝑖 to retrieve 𝜎𝑖 .

In the GCD paper, since GA cannot be sure that what it decrypts
from a 𝛿𝑖 value is the genuine key, the authority has to decrypt
all the 𝛿𝑖 value of all the participants, then exhaustively try out all
the retrieved keys to decrypt the signatures. It will be convinced
that the key is genuine when, having decrypted the corresponding
signature, the latter also verifies.

The degree of obtained traceability is thus relatively weak. For
one thing, traceability is only obtained if all the parties running
the secret handshake belong to the same group (otherwise, only
random signature values are returned). For another, GA has to
perform potentially 2𝑛 decryptions and 𝑛 signature-verifications
in order to decide what the correct 𝑘𝑖 was, which is prohibitive for
large values of 𝑛.

Full-unlinkability is not achieved if users misbehave. The
authors present two schemes. In the second scheme, the group
signature is claimed to have Self distinction, and it is argued
that Full-unlinkability is maintained because the signature is
encrypted with the session key, which is not stored by the user.
However, if users misbehave and secret keys are corrupted, then
the attacker can use self-distinction in order to determine if it has
already interacted in some previous session with the corrupted
user.

Missing assumptions. In contrast to the standard assumptions
stated in their security theorems, Tsudik and Xu actually also rely
on several unstated assumptions.

For instance, there is no requirement specified for the symmetric
encryption used to obtain 𝜃𝑖 . As described above, simple IND-CPA
(or even IND-CCA) security is insufficient: we would need resis-
tance to key-dependent messages.

We recall that a similar problem occurs for the MACs deployed.
Finally, note that the schemes rely on secure channels always

existing between the group manager and each of the users – a
relatively-strong assumption which might be used more – for in-
stance during the handshake, in order to just forward the session
key and the group signature, without encrypting it. This would
enable much quicker traceability.

Rekeying used as a Key Management methodology. Each time
a user joins or leaves the group, the GA needs to rekey for all user
and for GA itself, in order to change the verification key in case a
malicious user could communicate with an insider and therefore
manage to authenticate. The new keys “are somehow sent to the
legitimate users through the authenticated channels (depending on
concrete schemes)” [17]. This might potentially lead to cumbersome
calculation, but more importantly, the term ‘somehow’ indicates
a potentially large attack surface; concretely, since the identities
of user doesn’t exist outside the group how can we ensure the
continuity?

B LISTMAC: TOWARDS PQ-SECURE SECRET

HANDSHAKES

We begin by reminding the reader that the ListMAC has the pur-
pose to achieve those following properties: (1) Self distinction
(detect if a user has signed twice during the same session i.e., for
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the same aux), (2) Unlinkability (it’s not possible to know if we
have already interacted with the user in a previous session), and
(3) Non-frameability (an adversary aided by the GA and some
malicious users cannot forge a signature involving an honest user)
; More formal definitions and security properties can be found in
subsection D.4. To obtain Self distinction – the main feature of
ListMAC – the naive idea is that a tag issued from ListMAC has a
traceable word (also called a nym) which is unique and combine
the secret of the user and the aux in a such way that the users can
compare and state whether this traceable word, nym, looks like
another one which represent the same tuple.

B.0.1 Consequences.

Proposition 1 (multi-set checking). Since ListMAC possesses

two types of matching we can combine them and obtain some proper-

ties such as many set matching due to a type of transitiveness given

with LM.Match.
To check if a user is matchable in two sets, let’s say 𝑆 and 𝑆 ′, we

can do the following:

(1) Prover 𝑃 tags for the first set (𝜏, 𝜋) ← LM.Tag(sk𝑃 ,𝑚, aux, 𝑆)
(2) Prover 𝑃 tags for the second set (𝜏 ′, 𝜋 ′) ← LM.Tag(sk𝑃 ,𝑚′,

aux, 𝑆′) but needs to tag with the same aux as previously.
(3) Prover 𝑃 conveys (aux, (𝑚,𝜏, 𝜋, 𝑆), (𝑚′, 𝜏 ′, 𝜋 ′, 𝑆′)) to the veri-

fier 𝑉

(4) Verifier 𝑉 checks if the tags are valid (i.e., LM.Ver)
(5) Verifier 𝑉 checks if the tags were issued from the same user

(i.e., LM.Match)
(6) Verifier𝑉 can check independently which set is matching with

the prover 𝑃 by running:

• LM.MatchSet(gvk,𝑚, aux, 𝜏, 𝜋, 𝑆)
• LM.MatchSet(gvk,𝑚′, aux, 𝜏 ′, 𝜋 ′, 𝑆′)

Remark 1. Some words about item 5, a contrario of naive methods

where we would checks with𝑂 (𝑛2), with 𝑛 being the numbers of tags,

here we can check with many-to-one tag therefore decreasing to𝑂 (𝑛).

Proposition 2 (Leaking matching tag in list). There exists a
sequence of call to oTag such that, it is possible to leak the tag which

is matching in the list 𝑆 .

Proof. Also, due to the Proposition 1 it is possible for an ad-
versary to determine the same information by using sets that are
disjoint to each other except for few elements (therefore obtaining
more equation than variables) according to 𝑡-design theory. e.g.,
Let say we test those following sets9 composed of the tag of the
user𝑈𝑥 as follows 𝜏𝑥 :

𝑆1 = {(𝜏2, aux2), (𝜏3, aux3)}
𝑆2 = {(𝜏1, aux1), (𝜏3, aux3)}

9The reader may see a reference to block design theory. The instance de-
scribed is for an incidence structure D = (P, B, I) is a 2 − (3, 2, 1)design (i.e.,
𝑡 − (𝑣, 𝑘, 𝜆)design) where:

P = { (𝜏1, aux1 ), . . . , (𝜏3, aux3 ) }
∀𝐵𝑖 ∈ B, 𝐵𝑖 = P \ { (𝜏𝑖 , aux𝑖 ) }
∀{𝑎,𝑏} ⊂ P,∃𝑖 ∈ {1, 2, 3} \ {𝑎,𝑏}, {𝑎,𝑏} ∈ 𝐵𝑖

In our example 𝐵𝑖 is dubbed 𝑆𝑖 . Therefore, we need 𝑡 = 2 blocks to determine precisely
which one (𝜆 = 1) of the three users it was.

Consider the issued tags of those set, let’s say (𝑚, aux, 𝜏, 𝜋1) tagged
with 𝑆1 (idem for (𝑚′, aux′, 𝜏 ′, 𝜋2) with 𝑆2), with the following:

LM.MatchSet(gvk,𝑚1, aux, 𝜏, 𝜋1, 𝑆1) = 𝑟1
LM.MatchSet(gvk,𝑚2, aux′, 𝜏 ′, 𝜋2, 𝑆2) = 𝑟2

therefore we can deduce the following and obtaining the identity
of the user:

𝑟1 = 1 ∧ 𝑟2 = 1 =⇒ 𝑈𝑏 = 𝑈3

𝑟1 = 1 ∧ 𝑟2 = 0 =⇒ 𝑈𝑏 = 𝑈2

𝑟1 = 0 ∧ 𝑟2 = 1 =⇒ 𝑈𝑏 = 𝑈1

otherwise𝑈𝑏 ∉ {𝑈1,𝑈2,𝑈3}
□

B.1 Rewriting from EPID to ListMAC

We notice that ListMAC has similitude with EPID (Enhanced Pri-
vacy ID [5]) signature. In fact, the GA could be seen as the TPM10 in
this paradigm. We propose a new instantiation using Lattice-based
mechanism (based on the following work [10]).

We need to specify first the scheme of an EPID, and then explain
how we convert it in a ListMAC instance.

Definition 5 (EPID). Historically Intel proposed DAA (Direct

Anonymous Attestation [4]) and upgrade it to EPID. DAA is aimed to

be an anonymous group signature, where the group is managed by the

TPM. An EPID [5] is composed of an issuer (or TPM) which manages

a group and members which can sign anonymously on behalf of the

group. "An EPID has the following four procedures:

• Setup: In this procedure, the issuer creates a group public key

and a group issuing private key. The issuer publishes the group

public key.

• JoinGroup: This is a protocol between the issuer and a user

that results in the user becoming a new group member. At the

end of this protocol, the user obtains a membership private key

from the issuer.

• Verify i.e., Proof of Membership: In this protocol, a prover inter-

acts with a verifier to convince the verifier that he is a member

of the group in good standing (i.e., without being revoked). [. . . ]

• Revocation: The revocation manager puts a group member

into the revocation list. There are three types of revocations:

(1) private-key based revocation in which the revocation man-

ager revokes a user based on the user’s membership private

key, (2) signature based revocation in which the revocation

manager revokes a user based on the signatures created by the

user, and (3) issuer based revocation in which the revocation

manager revokes a user based on the recommendation from

the issuer." – [5]

Rewriting. From that, we notice that the first three methods are
almost the same as in ListMAC11, but theRevocationwill be adapted

10A TPM stands for Trusted Platform Module and is a hardware chip aiming to
accelerate and strengthen the cryptographic operations. This chip contains a hard
coded key usually considered as non corruptible.

11Considering breaking down Setup into LM.Setup and LM.GenGroup. Plus
JoinGroup is dubbed as LM.RegUser and Verify is dubbed as LM.Ver.
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and broken down to obtain the so-called LM.Match and LM.MatchSet
to obtain Self distinction. One of the idea in the Revocation func-
tion is to use a pseudonym that is linked to a word and the secret.
Therefore, having to prove that the user isn’t banned, the latter
needs to prove that when generating the pseudonym of the same
tuple the outcome will be far enough/different from the referen-
tial pseudonym. If we fix the word to be the equivalent of our aux
therefore we have a sort of LM.Match, as described previously.

B.2 Lattice-based

Here, we present a flavor that is based on the following work [10].
For the reader we boxed all modifications inside the functions.

LM.Setup(1𝜆) → param
First the GA instantiates all common functions and strings:

param = {𝜆, 𝑡, 𝑞, 𝑛, �̄�, 𝛽, 𝑙, 𝑟 , 𝑠, 𝜉,R𝑞,H𝑝 ,H , 𝐻 }

Where "𝜆,𝑡 are positive integer security parameters, 𝑏𝑒𝑡𝑎 is
a positive real number such that 𝛽 < 𝑞, 𝑙 is the length of the
users’ identifiers, and 𝑟 ,𝑠 and 𝜉 represent standard deviations
of Gaussian distributions" [10]. Alsos the common function
H𝑝 : {0, 1}∗ → R𝑞 a hash function mapping a string into
a polynomial (contained into the ring R𝑞), H : {0, 1}∗ →
{1, 2, 3}𝑡 and 𝐻 : {0, 1}∗ → {0, 1, 2, . . . , 2𝑛 − 1}.

LM.GenGroup(param) → (gmk, gvk, bsn)

gvk = (𝑏,𝐴I , 𝐴0, 𝐴1, . . . , 𝐴𝑙 , u, 𝜋I )
gmk = 𝑇I

bsn
$← {0, 1}∗

For the gvk note that ∀𝑖 ∈ [[0, 𝑙]] ∪ {I}, 𝐴𝑖 ∈ R�̄�𝑞 and b and
u are in R𝑞 . For the gmk we have𝑇I is the GA’s private key
which is the trapdoor of𝐴I with | |𝑇 | |∞ ≤ 𝛽 . 𝜋I is the proof
that the latter key is well-formed.

LM.RegUser(𝑈 , gmk) → (IDLM
𝑈
, sk𝑈 ) ⊔ ⊥

So firstGA generates a nonce 𝜌
$← {0, 1}𝜆 . The user requests

a registration as follows:
(1) Samples a private key x1

Gauss←− D𝑠 and (x2, . . . , x�̄�+1)
Gauss←−

D�̄�
𝑟 . 12 Let 𝑋𝑡 = (x1, . . . , x�̄�+1) corresponds to the user’s

secret key with the condition | | (x2, . . . , x�̄�+1) | |∞ ≤ 𝛽/2
and | |x1 | |∞ ≤ 𝛽 .

(2) The user "computes its public key u𝑡 = [b|𝐴I ]𝑋𝑡 mod 𝑞,
a link token IDLM

𝑈
= H𝑝 (bsn)x1 + eI mod 𝑞 [also re-

ferred as its identity in our scheme ListMAC] for some
error eI

Gauss←− D𝑠 such that | |eI | |∞ ≤ 𝛽 ." [10]

12𝑥
Gauss←− Dℎ

𝑠 i.e., sampling x over the guassian distribution of standard deviation
𝑠 such that P

𝑥
Gauss←− Dℎ𝑠

[ | |𝑥 | | > 𝑠
√

2ℎ] ≤ 2−ℎ/4

(3) The user generates the following proof:

𝜋u𝑡 =SPK{(param, u𝑡 , bsn, IDLM
𝑈 ); (𝑋𝑡 , eI ) :

u𝑡 = [𝑏 |𝐴I ]𝑋𝑡 mod 𝑞

∧ ||𝑋𝑡/x1 | |∞ ≤ 𝛽/2 ∧ ||x1 | | ≤ 𝛽

∧ IDLM
𝑈 = H𝑝 (bsn)x1 + eI mod 𝑞

∧ ||eI | |∞ ≤ 𝛽}(𝜌)

(4) It sends (IDLM
𝑈
, u𝑡 , 𝜋u𝑡 ) to the GA

Upon receiving it, the GA is proceeding as follows to allow
or reject the user:

(1) First the GA checks if no user IDLM
𝑈

exists in his, her or
their, database by checking the following condition:

¬( ∃IDLM ∈ 𝐷𝐵identi, | |IDLM
𝑈 − IDLM | |∞ ≤ 2𝛽 )

if true then the GA continues otherwise returns a ⊥ (im-
plying that this user already exists in the database).

(2)

(3) GA associates an entry token id
$← {0, 1}𝑙

(4) GA computes the vector of polynomials 𝐴ℎ = [𝐴I |𝐴0 +∑𝑙
𝑖=1 id𝑖𝐴𝑖 ] ∈ R2�̄�

𝑞

(5) GA samples, using the GA’s private key gmk = 𝑇I , a
preimage 𝑋ℎ = [𝑋ℎ1 |𝑋ℎ2 ] = (y2, . . . , y2�̄�+1) ∈ D�̄�

𝑟 ×D�̄�
𝑠

of u − u𝑡 such that 𝐴ℎ𝑋ℎ = uℎ = u − u𝑡 mod 𝑞 and
| |𝑋ℎ1 | |∞ ≤ 𝛽/2 and | |𝑋ℎ2 | |∞ ≤ 𝛽

When the user𝑈 receives (𝑋ℎ, uℎ), the user checks if its valid
(checking the boundaries 5) and further checks the equal-
ities (mentioned before 5) If everything happens correctly
therefore we should have the following:

IDLM
𝑈 = H𝑝 (bsn)x1 + eI
sk𝑈 = (id, 𝑋, u)

Where the user has computed:

𝑋 = (x1,∀𝑖=(2,...,�̄�+1)x𝑖 := x𝑖 + y𝑖 ,
∀𝑗=(�̄�+2,...,2�̄�+1)x𝑖 := y𝑖 )

LM.Tag(sk,𝑚, aux, 𝑆) → (𝜏, 𝜋)
To tag the user generates the following proof:

𝜏 : SPK{(gvk, nym, aux );
(𝑋 = (𝑥1, . . . , 𝑥2𝑑+1), id, e) :

[b|𝐴ℎ]𝑋 = u ∧ ||𝑋 | | ≤ 𝛽

∧ nym = H𝑝 (aux)𝑥1 + e

∧ ||e| |∞ ≤ 𝛽}(𝑚)
If 𝑆 ≠ ∅, then the user generates 𝜋 . For each (nym𝑖 , aux𝑖 ) ∈ 𝑆
the user computes the following:
• o𝑖 = H𝑝 (aux𝑖 )q𝑖 + l′𝑖 where q𝑖 , l′𝑖

Gauss←− D𝑠

• k𝑖 = o𝑖x1 + l′′𝑖 where l′′𝑖
Gauss←− D𝑠

• d𝑖 = H𝑝 (aux𝑖 )q𝑖 + l′′′𝑖 where l′′′𝑖
Gauss←− D𝑠

• tnym = H𝑝 (aux)r𝑥1 + r𝑒 where r𝑥1 , r𝑒
Gauss←− D𝑠

• t𝑜𝑖 = H𝑝 (aux𝑖 )r𝑞𝑖 + r𝑙 ′𝑖 where r𝑞𝑖 , r𝑙 ′𝑖
Gauss←− D𝑠

• t𝑘𝑖 = o𝑖r𝑥1 + r𝑙′′𝑖 where r𝑙′′𝑖
Gauss←− D𝑠
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• t𝑑𝑖 = nym𝑖r𝑞𝑖 + r𝑙′′′𝑖 where r𝑙′′′𝑖
Gauss←− D𝑠

Then the user computes the challenge 𝑐𝑣 = 𝐻 (tnym |t𝑜𝑖 |t𝑘𝑖
|t𝑑𝑖 |𝑚 |𝜏 |𝑆) – ensuring that the values computed were played
with the challenge containing the committed values (𝜏, 𝑆)13.
Therefore the user respond to the challenge by computing
(s𝑥1 , s𝑒 , s𝑞𝑖 , s𝑙 ′𝑖 , s𝑙′′, s𝑙′′′) for each 𝑠𝑥 computed as follow :
s𝑎 = r𝑎 +𝑋𝑐𝑣a. Abort if one sample is rejected (out of bound).
the user yields 𝜋 = (nym, aux, {∀𝑖 ∈ [[1, #𝑆]], o𝑖 , k𝑖 , d𝑖 , s𝑥1 ,

s𝑒 , s𝑞𝑖 , s𝑙 ′𝑖 , s𝑙′′, s𝑙′′′}).
LM.Ver(gvk,𝑚, aux, 𝜏) ∈ {0, 1}

First the user checks if the zero-knowledge is correct and
verifies the statement. Next if 𝜋 ≠ ⊥ ∧ 𝑆 ≠ ∅ the user do the
following:

(1) Computes:

t′
𝑘𝑖

= o𝑖s𝑥1 + s𝑙′′𝑖 − 𝑋
𝑐𝑣k𝑖

t′
𝑑𝑖

= nym𝑖s𝑞𝑖 + s𝑙′′′𝑖 − 𝑋
𝑐𝑣d𝑖

t′𝑜𝑖 = H𝑝 (aux𝑖 )s𝑞𝑖 + s𝑙 ′𝑖 − 𝑋
𝑐𝑣o𝑖

t′nym = H𝑝 (aux)s𝑥1 + s𝑒 − 𝑋𝑐𝑣nym

(2) Checks 𝑐𝑣 = 𝐻 (t′nym |t′𝑜𝑖 |t
′
𝑘𝑖
|t′
𝑑𝑖
|𝑚 |𝜏 |𝑆) and that all the

bounds are satisfied i.e., | |s∗ | |∞ ≤ 𝛽 (1 +
√
𝑛)

(3) checks 2| |𝑑𝑖 − 𝑘𝑖 | | < Γ where Γ is a function of 𝛽 if true
then outputs 0 otherwise 1.

LM.Match(gvk,𝑚,𝑚′, aux, 𝜏, 𝜏 ′) ∈ {0, 1}
Parse 𝜏 and 𝜏 ′ and returns 1 if | |𝜏 .nym − 𝜏 ′ .nym| | ≤ 2𝛽 oth-
erwise returns 0 for non-match state. The reader may notice
a similar equation in [10] during the joining procedure.

B.3 Hash-based

Here, we present a flavor that is based on the following work [8].
For the reader we boxed all modifications inside the functions.
LM.Setup(1𝜆) → param

First the GA chooses parameters (𝑑, 𝑘) for the hyper-tree
M-FORS scheme and instanciates the following functions:

𝐻1 : {0, 1}∗ → {0, 1}𝑛

𝐻2 : {0, 1}∗ → {0, 1}𝑑 ·𝑘

𝐻2 : {0, 1}∗ → {0, 1}𝑑 ·𝑘+(log2 𝑞) ·ℎ

And a keyed pseudo random function 𝐹 : {0, 1}𝑛 ×{0, 1}𝑛 →
{0, 1}𝑛 .

LM.GenGroup(param) → (gmk, gvk, bsn)
TheGA generate the SPHINCS tree by executing (skSPHINCS, 𝑟𝑝𝑘, 𝑔𝑝) ←
F − SPHINCS+.keyGen(n, q, h). The GA obtains the follow-
ing:

gmk = skSPHINCS
gvk = (𝑔𝑝, 𝑟𝑝𝑘, 𝐻1, 𝐻2, 𝐻3, 𝐹 , prf)
𝑔𝑝 = (𝑛, 𝑞, ℎ, 𝑑, 𝑘)
bsn = 𝐻1 (𝑟𝑝𝑘)

LM.RegUser(𝑈 , gmk) → (IDLM
𝑈
, sk𝑈 ) ⊔ ⊥

First the user𝑈 chooses 𝑥𝑈
$← {0, 1}𝑛 and computes its iden-

tity with IDLM
𝑈

= 𝐹 (𝑥𝑈 , bsn) (we recall that the user can re-
compute bsn = 𝐻1 (𝑟𝑝𝑘)) with its proof:𝜋𝑈 : P{𝑔𝑝, bsn, IDLM

𝑈
;𝑥𝑈 :

IDLM
𝑈

= 𝐹 (𝑥𝑈 , bsn)}. The user conveys (IDLM
𝑈
, 𝜋𝑈 ).

If IDLM
𝑈

is absent in the database (i.e., haven’t been registered
before) then the GA proceeds as follows, first checks if the
𝜋𝑈 is valid and then the GA computes the group credential
(𝑔𝑟𝑈 , Σ) ← F − SPHINCS + .sign(IDLM

𝑈
| |𝑔𝑟𝑈 , gmk, 𝑔𝑝) and

adds (IDLM
𝑈
, 𝑔𝑟𝑈 , Σ) to its database (with 𝑔𝑟𝑈

$← {0, 1}𝑛);
otherwise rejects. The user if accepted, receives from GA
(𝑔𝑟𝑈 , Σ), and yeilds the following:

sk𝑈 = (𝑥𝑈 , 𝑔𝑟𝑈 , Σ)

IDLM
𝑈 = 𝐹 (𝑥𝑈 , bsn)

LM.Tag(sk𝑈 ,𝑚, aux, 𝑆) → (𝜏, 𝜋)
The user generate an MPC proof that guarantees the follow-
ing:

𝜏 : P{(𝑔𝑝, 𝑟𝑝𝑘, 𝑔𝑖𝑑, aux , 𝑚 , 𝑠𝑠𝑚 , nym, 𝑐𝑜𝑚);

(𝑥𝑈 , IDLM
𝑈 , 𝑔𝑟𝑈 , 𝑠𝑖𝑔𝑚 , 𝑠, Σ = {𝜎ℎ, . . . , 𝜎0}) :

nym = 𝐹 (𝑥𝑈 , aux )

∧ 𝑠𝑖𝑔𝑚 = 𝐹 (𝑥𝑈 ,𝑚)

∧ 𝑠𝑠𝑚 = 𝐹 (𝑠𝑖𝑔𝑚, nym)

∧ IDLM
𝑈 = 𝐹 (𝑥𝑈 , 𝑔𝑖𝑑)

∧𝑚𝑡𝑈 | |𝑖𝑑𝑥 = 𝐻3 ( IDLM
𝑈 | |𝑔𝑟𝑈 )

∧ 𝑝𝑘ℎ = recoverPK(𝜎ℎ,𝑚𝑡𝑈 , (𝑛,𝑑, 𝑘, (ℎ, 𝑖𝑑𝑥)))
∧ 𝑝𝑘ℎ−1 = recoverPK(𝜎ℎ−1, 𝑝𝑘ℎ, (𝑛,𝑑, 𝑘,

(ℎ − 1, ⌊ 𝑖𝑑𝑥
𝑞
⌋)))

∧ . . .
∧ 𝑟𝑝𝑘 = recoverPK(𝜎0, 𝑝𝑘1, (𝑛,𝑑, 𝑘, (0, 0)))
∧ 𝑐𝑜𝑚 = 𝐻1 (𝑠 | |𝑝𝑘ℎ | | . . . | |𝑟𝑝𝑘)}

And from [8], we are able to seperate the proof that is used
for 𝑆 only:

𝜋 : P{( 𝑔𝑝, aux, nym, 𝑟 , 𝜏, nonce
{∀𝑗 ∈ [#𝑆], (nym𝑗 , aux𝑗 ) ∈ 𝑆,𝐴 𝑗 )});
(𝑥𝑈 ) :
𝑟 = 𝐻 (𝑆 | |nym| |𝜏 | |nonce)
∧ nym = 𝐹 (𝑥𝑈 , aux)∧
𝑗∈[#𝑆 ]

(
𝐴 𝑗 = 𝐹 (𝐹 (𝑥𝑈 , aux𝑗 ), 𝑟 )

)
}

Where 𝑟 = 𝐻 (𝑆 | |nym| |𝜏 | |nonce) allows to use it as a com-
mitment over the tupple (𝑆, 𝜏).13

13Two attacks are feasible without those commited values: (1) Without this tweak,
an adversary could get a valid (𝜏, 𝜋 ) for a specific 𝑆 . Then the adversary could forge
easily by creating a subset of 𝑆 , let’s call it 𝑆 ′ and a fresh 𝜋 ′ simply by removing the
corresponding item hence to be valid with the set 𝑆 ′ . Here the (𝑟, nonce) is used to
prevent this attack. (2) If we do not commit the value 𝜏 therefore, according to some
security models, an adversary can call an oracle to tag twice to obtain two tupples
(𝜏0, 𝜋0 ) and (𝜏1, 𝜋1 ) then the adversary can states to have forge a new valid tag with
(𝜏0, 𝜋1 ) (or even (𝜏1, 𝜋0 )) since it is not corresponding to any oracle output.
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LM.Ver(gvk,𝑚, aux, 𝜏) ∈ {0, 1}
Check the proof 𝜏 .

LM.Match(gvk,𝑚,𝑚′, aux, 𝜏, 𝜏) ∈ {0, 1}
returns 1 if nym = nym′ otherwise returns 0 for non-match
state.

LM.MatchSet(gvk,𝑚, aux, 𝜏, 𝜋, 𝑆) ∈ {0, 1}
First checks the 𝑟 = 𝐻 (𝑆 | |nym| |𝜏 | |nonce). Then verifies the
consistency of the proof 𝜋 and checks 𝜋.nym = 𝜏 .nym and
furthermore we have:{

1 ⇐ ∃ 𝑗 ∈ [#𝑆], 𝐴 𝑗 = 𝐹 (𝑠 𝑗 .𝜏 .nym, 𝑟 )
0 otherwise

where 𝑠 𝑗 being the 𝑗-th element of 𝑆 .

C SECRET HANDSHAKES: BUILDING BLOCKS

AND FORMALIZATION

C.1 Algorithms

Here we formally explicit each of the algorithms of the SHS primi-
tive.

DetectSelfDistinction. Without a loss of generality, this sub-
routine enables a user to detect who tagged twice (at least) in the
setW. The following set is composed of a vector containing a
pseudo-identity ID (e.g., it can be linked to a nonce), a message𝑚
and, a tag 𝜏 , aiming to return a set containing pseudo-identities
that misbehaved.

The complexity of this function is𝑂 (𝑛2) calls to LM.Match with
𝑛 the numbers of elements inW.

𝐵 ← DetectSelfDistinction(gvk, aux,W)
𝐵 ← ∅
foreach 𝑒 inW:

foreach 𝑓 inW \ {𝑒}:
if LM.Match(gvk, 𝑒 .𝑚, 𝑓 .𝑚, aux, 𝑒 .𝜏, 𝑓 .𝜏) = 1 :

𝐵 ← 𝐵 ∪ {𝑒.ID, 𝑓 .ID}
return 𝐵

VerTr. This function evaluates if the transcript was correctly gen-
erated by checking first if the tags are valid and also if all the users
has accepted to communicate (represented by 𝜏acc).

{0, 1} ∋ VerTr(gvk, tr = ({(state𝑖 , 𝜏𝑖 , 𝜏acc𝑖
)𝑖∈[[𝑛]] }, sid, noncesid𝑡 ) )

acc← 𝐻 (noncesid𝑡 | |𝜏1 | |state1 | | . . . | |𝜏𝑛 | |state𝑛)
if ∅ ≠ DetectSelfDistinction(gvk, sid,
{(𝐻 (state𝑖 | |acc), 𝜏acc𝑖

)}𝑖∈[[𝑛]] )
return 0

foreach 𝑖 ∈ [[𝑛]]
𝑚𝑖 ← 𝐻 (state𝑖 | |noncesid𝑡 )
acc𝑖 ← 𝐻 (state𝑖 | |acc)
if LM.Ver(gvk,𝑚𝑖 , sid, 𝜏𝑖 ) = 0
∨LM.Ver(gvk, acc𝑖 , sid, 𝜏acc𝑖

) = 0
∨LM.Match(gvk, acc𝑖 ,𝑚𝑖 , sid, 𝜏acc𝑖

, 𝜏𝑖 ) = 0 :
return 0

return 1

DetectTwiceID. This function filters out all the identities that are
present at least twice in a set,W, of arbitrary lengthed vector with
its first coordinate annotated as identity.

𝐶 ← DetectTwiceID(W)
𝐶 ← ∅
foreach 𝑒 inW:

foreach 𝑓 inW \ {𝑒}:
if 𝑒.ID = 𝑓 .ID

𝐶 ← 𝐶 ∪ {𝑒.ID, 𝑓 .ID}
return 𝐶

C.2 Secret handshakes from list MACs

This appendix provides a full, formal description of the LCA scheme.

C.2.1 Protocol details. SHS.Setup. Formally, the following steps
are executed: LM.Setup(1𝜆) → paramListMAC, CBU2.Setup(1𝜆)
→ paramCBU2 = (sparCBU2, pparCBU2),
AGKA-FR.Setup(1𝜆,R) → (pparAGKA-FR,K,RΠ) = paramAGKA-FR
and returns param← (paramListMAC, paramCBU2, paramAGKA-FR).
We recall to the reader, that R here needs to be the same amongst all

the group because it describes the type of randomness.

SHS.NewGroup. The GA creates a new group 𝐺 . First the GA ex-
ecutes CBU2.NewCred(manager) → (CM.sk,CM.pk) and runs
(gmk, gvk, bsn) ← LM.GenGroup(param) to obtain the master key
gmk kept secret by the GA, the group verification key gvk known
to the members, and bsn the base name of the group (used later
on for identification). The GA initializes KRL = ∅, where KRL is
an (initially empty) set, which will store private keys of banned
users. Similarly, for SRL, the list of tags of revoked users. Finally,

the GA chooses an initial random nonce nonce𝑡
𝐺

$← {0, 1}∗, which
is a global group specific nonce which will be updated regularly
(whenever users choose to Join or Leave, when they are banned,
or simply when the GA performs an Update operation). The GA
creates a random sidban later used during banishment.

SHS.Update. First the GA runs CBU2.ChUpdate(sid,CM.sk), then
sends the following updated values through CBU2.BCast: 𝑡 ← 𝑡 +1

and nonce𝑡
𝐺

$← {0, 1}∗.

SHS.Join. The GA interacts with the user𝑈 over a secure channel.
During this interaction they both generate the user’s ListMAC se-
cret key and ListMAC identity (IDLM, sk𝑈 ) ← LM.RegUser(𝑈 , gmk).
Recall that sk𝑈 is only known to the user ; the values IDLM and
gvk are known by the user and the GA. Note that joining fails if a
user tries to re-join the group.

Afterwards, GA needs to add the user to the corresponding
CBU2 channel. User 𝑈 generates credentials (skCBU2

𝑈
, 𝜋CBU2

𝑈
) ←

CBU2.NewCred(“user”). The user then registers to the GA :
CBU2.RegCred(𝑈 (< skCBU2

𝑈
, pkCBU2

𝑈
>),CM(< CM.sk,CM.pk >

)) → (IDCBU2
𝑈

,OK).
One of the following cases holds:
(1) If USet𝐺 = ∅, GA creates and initiates the CBU2 session

CBU2.ChInit({𝑈 },CM.sk) → (< ms0
sidCBU2

,mpk0
sidCBU2

,
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GA

// Choose random message

𝑚
$← {0, 1}∗

// Broadcast LEAVE || m

CBU2.BCast(sidCBU2,CM.sk,ms𝑡sid, (“LEAVE"| |𝑚))

𝑈𝐴

Parse broadcast

(“LEAVE"| |𝑚′) ← CBU2.RecBCast(sidCBU2,ms𝑡sidCBU2 , (𝑐, aux))
// Tag LEAVE || m and unicast result

(𝜏, 𝜋) ← LM.Tag(sk𝐴,𝑚′, bsn, SRL)
CBU2.UCast(sidCBU2, sendK𝐴, (𝜏, 𝜋))
GA

// Parse unicast, trace user ID in CBU2
(𝜏, 𝜋) ← CBU2.RecUCast(sidCBU2, sendK𝐴, (𝑐, aux))
IDLM

𝐴
← 𝐷𝐵id [IDCBU2

𝐴
]

// Remove user from CBU2
CBU2.URmv(sidCBU2,CM.sk, IDCBU2

𝐴
)

// Update banned lists

SRL′ ← SRL
SRL← SRL ∪ {(IDLM

𝐴
, bsn)}

// Check tag validity, check matching

if (LM.Ver(gvk,𝑚, bsn, 𝜏) = 0
∨LM.MatchSet(gvk,𝑚, bsn, 𝜏, 𝜋, SRL′) = 1)

CBU2.BCast(sidCBU2,CM.sk,ms𝑡sidCBU2 , (KRL, SRL))
return ⊥

if LM.Ver(gvk,𝑚, bsn, 𝜏) = 1 ∧ LM.Match(gvk, bsn, IDLM
𝐴
, 𝜏) = 0

SRL← SRL ∪ {(𝜏, bsn)}
𝐸 ← {IDLM : ∀IDLM, IDLM ≠ IDLM

𝐴

∧LM.Match(gvk, bsn, IDLM, 𝜏) = 1}
foreach IDLM ∈ 𝐸

CBU2.URmv(sidCBU2,CM.sk, 𝐷𝐵id [IDLM])
SRL← SRL ∪ 𝐸

CBU2.BCast(sidCBU2,CM.sk,ms𝑡sidCBU2 , (KRL, SRL))

Figure 7: SHS.Leave: Leave in LCA

sidCBU2, sendK1 >, < sidCBU2,ms0
sidCBU2

,mpk0
sidCBU2

,

sidCBU2, {sendK1} >;
(2) Otherwise, the GA adds the user to the corresponding

sidCBU2 i.e., CBU2.UAdd(sidCBU2,CM.sk,𝑈 ).

In both cases broadcast and unicast keys are generated. Then
the authority updates the channel. The user receives sidban. In a
database 𝐷𝐵id, GA associates IDCBU2

𝑈
with IDLM

𝑈
.

SHS.Leave. (cf. Figure 7) If a user𝐴wants to leave a group voluntarily,

it is needed either to reveal his, her, or their ListMAC secret key (and

the GA adds it in the KRL set and broadcast it) or either by adding

one of his, her, or their tag to the SRL. The first method isn’t enough

private since it reveals to the lasting user if they already exchanged

GA

if VerTr(gvk, tr) = 0
return ⊥

SRL← SRL ∪ {(tr.𝜏𝑇 , tr.sid𝑇 )}
sidban ← 𝐻 (sidban | |tr.sid𝑇 )
CBU2.BCast(sidCBU2,CM.sk,ms𝑡sid, (sidban, tr, tr.𝜏𝑇 , tr.sid𝑇 ))
→ (𝑐, aux)

𝑈𝐴

CBU2.RecBCast(sidCBU2,ms𝑡sidCBU2 , (𝑐, aux))
→ (sid′ban, tr

′, 𝜏 ′
𝑇
, sid′

𝑇
)

// Check transcript validity and the new sidban
if VerTr(gvk, tr) = 0 ∨ 𝜏 ′

𝑇
∉ {tr.𝜏∗}

return ⊥
if sid′ = bsn ∧ 𝐻 (sidban | |sid′) ≠ sid′ban

return ⊥
(SRL, sidban) ← (SRL ∪ {(𝜏𝑇 , sid𝑇 )}, sid′ban)
𝑚

$← {0, 1}∗
// Tag with the updated SRL
(𝜏𝐴, 𝜋𝐴) ← LM.Tag(sk𝐴,𝑚, sidban, SRL)
(𝑐𝐴, aux𝐴) ← CBU2.UCast(sidCBU2, sendK𝐴, (𝑚,𝜏𝐴, 𝜋𝐴))
GA

𝐸 ← ∅
foreach𝑈𝑖 ∈ UGCBU2sidCBU2

(𝑚𝑖 , 𝜏𝑖 , 𝜋𝑖 ) ← CBU2.RecUCast(sidCBU2, sendK𝑖 , (𝑐𝑖 , aux𝑖 ))
𝐸 ← 𝐸 ∪ {(IDCBU2

𝑖
,𝑚𝑖 , 𝜏𝑖 )}

// Remove all those can’t tag properly

if (LM.Ver(gvk,𝑚𝑖 , sidban, 𝜏𝑖 ) = 1
∧ LM.MatchSet(gvk,𝑚𝑖 , sidban, 𝜏𝑖 , 𝜋𝑖 , SRL) = 1)

CBU2.URmv(sid,CM.sk, IDCBU2)
// Determine those users who were corrupted or that colluded

𝐵 ← DetectSelfDistinction(gvk, sidban, 𝐸) // via ListMAC
𝐶 ← DetectTwiceID(𝐸) // via CBU2
if ∅ ≠ 𝐵 ∪𝐶 // Cheaters detected

foreach IDCBU2 ∈ 𝐵 ∪𝐶: Remove from CBU2 and ListMAC
CBU2.URmv(sidCBU2,CM.sk, IDCBU2)
CBU2.BCast(sidCBU2,CM.sk,ms𝑡sid,

(𝐷𝐵id [IDCBU2], bsn))
SRL← SRL ∪ {(𝐷𝐵id [IDCBU2], bsn)}

CBU2.BCast(sidCBU2,CM.sk,ms𝑡sid, “FINISHEDBAN”)

𝑈𝐴

// Add cheaters to SRL untill GA ends sending

while“FINISHEDBAN” ≠ 𝑟 ← CBU2.RecBCast(sidCBU2,ms𝑡sidCBU2 ,
(𝑐′, aux))

if 𝑟 .bsn = bsn
SRL = SRL ∪ {(𝑟 .IDLM, bsn)}

Figure 8: SHS.Ban: Banishment in LCA
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with this user or not in the past
14
. We choose to focus on the second

solution to obtain a strong privacy.

After receiving an ACK message for leaving, the GA creates a
random message𝑚 and broadcast it to every user prefixed with
“LEAVE". The users that would like to leave just needs to tag the
message with LM.Tag for the special auxiliary set to bsn and sends
it to GA. Since the GA is able to link the identity IDCBU2

𝐴
of those

interesting to leave to the corresponding IDLM
𝐴

. For safety purpose
there is a need to immediately remove the one whose identity is
linked to CBU2 (also meaning to add his, her or their IDLMin the
SRL), because it implies that if the user didn’t give to order, then
the user is partially corrupted. To avoid any replay attack, we need
to check if the tag is valid, meaning, the tag is verified and that
the tag isn’t issued from a user that already have one of his, her or
their instance in the SRL if it is the case GA return ⊥; this is done
to punish all kind of attackers who would like to leave the group
with someone else without his, her, or their consent. Lastly if the
tag is valid but doesn’t correspond to the ListMAC identity linked
to the CBU2 one, then the GA tries to find the corresponding user
ListMAC identity to the CBU2 identity one, trivially by matching
with all the ListMAC identities in the database. Nevertheless, the 𝜏
is used is added in SRL plus all the corresponding identities. Again
all the matched identities are removed of the CBU2. Finally, GA
updates, by broadcasting, the new KRL, SRL) tuple.

SHS.Ban. (cf. Figure 8) TheGA receives a complaint of a user, which
is composed of a transcript tr and the specific 𝜏𝑇 that is wished to
be banned, implicitly labeling the targeted user to ban as 𝑇 . First
we ensure that the transcript is valid. Here the protocol will ban the
user based on the Traitor Catchingmethod by using the revoked
tags list SRL, as follows:

(1) the GA adds a tag issued from a banned user in SRL.
(2) the GA sends to all members the values to complete the chal-

lenge; the GA sends the tuple (sidban, tr, 𝜏𝑇 , sid𝑇 ). Those val-
ues are defined as follows: sidban ← 𝐻 (sidban | |tr.
sid𝑇 ), which prevents the GA from misbehaving to be curi-
ous, in fact this is in a way used as a commitment,

(3) therefore users act only if the sidban was correctly generated
and if the received tr is valid and that the (𝜏𝑇 , sid𝑇 ) are
present in the tr. If so, the users add the tuple (𝜏𝑇 , sid𝑇 ) in
SRL.

(4) the members have to tag a dummy message with the sidban
and send it back to the GA i.e.,𝑚𝑖

$← {0, 1}∗ ; LM.Tag(sk𝑖 ,
𝑚𝑖 , sidban, SRL) → (𝜏𝑖 , 𝜋𝑖 )

(5) the GA keep the user in the group if the response is success-
ful, which means that the tag is correctly generated (which
also means that the tagger does not possess any element
in SRL nor his, her or their secret key in KRL) and doesn’t
match with any other tags issued for this sidban due to Self
distinction. In other words the GA receives all the user’s
tuple conveyed throughout the unicast i.e., CBU2.RecUCast,
and from there deduce the following information:

14Even though this use case can be helpful in a specific context, where the user can
learn if they have exchanged with it and if they receives false information for example
in more concrete scenario.

(1) if LM.Ver is successful and LM.MatchSet outputs 1, it im-
plies that the user was the concerned targeted user resulting
in his, her or their exclusion using CBU2.URmv.

(2) if LM.Ver succeeded and LM.MatchSet outputs 0, it implies
that the user is partially valid therefore we enter in one of
the two situations:

(a) if a match is detected between the user and an another,
this implies that the user tried to outsmart by playing
with someone else’s valid ListMAC key and with his, her
or their own CBU2 key. Therefore, the IDLM linked to
IDCBU2 is retrieved and added to the SRL ∪ {IDLM, bsn}.

(b) the protocol also checks if the users that are solving the
challenge are all distinct in terms of IDCBU2, if not the GA
adds the corresponding IDLM into SRL.

(c) if no match is detected, this implies that the user is legit.
For all the banned collateral users (those who have been corrupted
for example), since the GA adds the tag generated through their
IDLM, therefore broadcasts to the users some new elements to add
in SRL with the particularities that the added tags are those with
an auxiliary data equal to bsn – therefore users can check that the
added elements in SRL are those ‘collateral’ users. The banishment
finish when the GA sends FINISHEDBAN. Note, that this method
isn’t invasive in a sense that the identities of other members whose
had participated in the handshake corresponding to the transcript
tr aren’t disclosed to the GA, plus the commitment value prevents
any misbehaving from a potential curious GA.

SHS.Handshake. (cf. Figure 5) The secret handshake can be broken
down in four distinct phases, as follows:

(1) First, the users establish a common secret that they authen-
ticate by tagging it;

(2) Then, when receiving the tags of each user they obtained,
they seperatly checks if the tag is valid for their concerned
group;

(3) Next, they check if none of them have been banned or left
the group, if so they accept to communicate by tagging the
contribution of each user;

(4) Finally, they check if they all accepted, and therefore they
can securely communicate, as the handshake was successful.

We recall, the protocol is run amongst user in a set that we dub
Δ – those users may or may not be in the same group. Since then,
they establish a common secret msAGKA-FR and a common value
sid by using the building block AGKA-FR. This also help them to
obtain a unique identifier, which is, for the sake of simplicity, their
share’s part i.e., state𝐴 for user 𝑈𝐴 . In order to separate the user in
Δ amongst them by their affiliation to their group, they each run
KeySchedule by binding the msAGKA-FR (common to all Δ’s users)
with nonce𝑡

𝐺
(common to all 𝐺 ’s members) therefore obtaining a

secret tuple (𝑘′, ℎ𝑘, noncesid𝑡 ). Those values have different uses:
𝑘′ is used to cipher the conversation as would a session key,
ℎ𝑘 referred as hiding key helps to cipher all values needed

for the authentication, prior that all parties trust them
each other,

noncesid𝑡 is used as a nonce in the first phase.
First each user tags with their secret keys, the auxiliary data set to
KShare, and a message which is for example for user 𝑈𝐴 , we have
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𝐻 (state𝐴 | |noncesid𝑡 ) ; This helps to obtain a unique message per
users and therefore avoid the issue of bit-leakage as mentioned in
subsection A.1. Then the pseudo-identifier state𝐴 and the tag 𝜏𝐴 is
symmetrically encrypted with the key ℎ𝑘 .

In the second phase the users decrypt the cipher with their com-
putedℎ𝑘 , therefore obtain a right tag if in the same group otherwise
couldn’t go further. The decryption makes the verification of the tag
possible, plus we check if we have the correspondence between one
tag and one state∗. Plus we check that no two tags could be signed
by the same user by running DetectSelfDistinction, therefore
obtaining Self distinction. The revealed keys stored in KRL are
also checked that they weren’t used to tag, with the same mech-
anism. If all is respected then the users send to each other their
𝜋𝜏∗ , again concatenated with the corresponding state∗ and ciphered
with SEnc(ℎ𝑘, ·).

In the third phase all participants after decryption have the cor-
responding 𝜋SRL which proves if a SRL’s tag has been tagged by
the same user; in our scheme it corresponds to check if the user
is banned. Therefore, each user checks if they do not discuss with
a banned user or with a user who sent an invalid 𝜋SRL. If so, then
the users accepts the handshake by hashing the concatenation of
all signatures into acc ← 𝐻 (noncesid𝑡 | |𝜏1 | |state1 | |...|𝜏#Δ | |state#Δ).
Then each user tags it with their associated state𝑖 always with the
same auxiliary data sid, ciphers it and conveys it to the other users.

In the fourth phase after reception and decryption, the users
obtains 𝜏acc

𝑖
checks the validity of the tag. But also checks if it

matches with the corresponding 𝜏𝑖 supposedly issued by the same
user; satisfying the fact that no users have been substituted due to
Self distinction.

Note to the reader, we haven’t specified, but if a fail occurs there-
fore the function SimuleStage is run to simulate an interaction, by
specifying the number of the phase and a secret common to all the
Δ’s users.

Remark 2. Without loss of generality, since ListMAC doesn’t guar-

antee the confidentiality of the messages, we propose to cipher this

over the network.

Remark 3. To keep Result-hiding, Handshake simulability

and to avoid any threats concerning the affiliation, since the 𝜋SRL can

vary from group to group, it’s send separately from the tag 𝜏 .

Remark 4. One may argue that in the second phase the use of

DetectSelfDistinction over the KRL, may vary from groups to

groups. But since the publication in KRL is discouraged in the protocol,

therefore there should be a very few numbers of keys in KRL. Never-
theless, it is easy to ‘import’ from KRL to SRL, by simply generate a

tag and then put it in SRL.

C.3 Costs

We would like to talk about the costs, to sum up GCD [17] is pretty
heavy. As we have seen before, during a secret handshake in the two
first phases there aren’t any identity system, and we have the group
signature in the third phase that have a sort of identity system, but

a user during a secret handshake doesn’t identify himself/herself in
order to keep Unlinkability and Full-unlinkability, this leads
to an optimization issue mainly in the management of banned
users. In facts, when the GA would like to ban a user since the GA
isn’t able to revoke this user, the GA regenerates new key to all
members. This is a heavy operation to do. The same happens for
SHS.Update for the same reasons, and SHS.Join since SHS.Join
calls SHS.Update.

In terms of the comparative complexity of this scheme with
respect to the original GCD scheme, we can list the following im-
provements. Improvements have been made on the SHS.Join by
avoiding regenerating again all the users’ secret key, therefore the
complexity drop from regenerating keys for all users to only gener-
ate a key for a new user. Same improvements have been made to
SHS.Leave by avoiding sending new sets of keys ; But to ban a user
in the GCD original handshake, the GA traces back the users and
then suppress the access of the user to the CBU2, and then runs
SHS.Update, meaning regenerating secret long term keys for all the
remaining users, here we act with a different paradigm where the
GA prepares a trap and waits for the traitor to ask for temporal ma-
terial before getting trapped, due to the revocation style. Therefore,
the complexity also drops, and we lost access to the function made
for tracing and helps us achieved a better privacy requirements.

C.4 Building blocks

C.4.1 Symmetric encryption.

Definition 6 (SE). Syntax:
• SEKGen(1𝜆) → 𝑘 Generates a key 𝑘 for a given security pa-

rameter (in general it is equivalent to sample a random binary

vector of size 𝜆)

• SEnc(𝑘,𝑚) → 𝑐 For a given key 𝑘 and a message it generates

a ciphertext 𝑐

• SDec(𝑘, 𝑐) → 𝑚 For a given key 𝑘 and a message it gives a

message𝑚

Correctness.

SDec(𝑘′, SEnc(𝑘,𝑚)) =𝑚 =⇒ 𝑘′ = 𝑘

Security.We require that the SE is NM-CPA.

Corollary 1.

NM − CPA =⇒ IND − CPA
C.4.2 Centralized Broadcast and User Unicast (CBU2). This appen-
dix further details the notion of Centralized Broadcast and User
Unicast, providing fully-formal definitions and a security model.

The CBU2 primitive supposes the existence of several users𝑈𝑖 ,
associated with some registered credentials, who may be added or
removed from sessions of CBU2 channels, by special super-users
called managers, denoted as CM. We assume that no manager plays
the role of user elsewhere, and vice-versa.
• CBU2.Setup(𝑛) → (spar, ppar): This global setup algorithm
takes in input a security parameter (in unary) and outputs
global private (spar) and public (ppar) parameters. The pri-
vate parameters spar are given in input to all channel man-
agers CM. the public parameters ppar are taken implicitly
in input to all the following algorithms.
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• CBU2.NewCred(role) → (sk, pk): This auxiliary algorithm
can be run by users (with role = user) or by channel man-
agers (with role = manager) to obtain a pair or private and
public credentials (denoted, respectively, sk or pk).
• CBU2.RegCred(𝑈 ⟨𝑈 .sk,𝑈 .pk⟩,CM⟨CM.sk,CM.pk⟩) →
(⟨IDCBU2 ∪ ⊥⟩, ⟨OK ∪ ⊥⟩): The interactive RegCred algo-
rithm enables a user to register its public key (and implicitly
its private key) (𝑈 .sk,𝑈 .pk) with a channel manager CM.
The output of the algorithm on the user side is a unique,
potentially-public identifier IDCBU2, while on the channel
manager side, the output is just a success/failure bit. The
channel manager will keep track of a user listUG, contain-
ing tuples of the form (𝑈 ,𝑈 .pk, IDCBU2, {(sid,ms, sendK)}∗),
whenever the channel manager outputs OK. The last value
is a list of three-value tuples. Each three-value tuple corre-
sponds to a session in which𝑈 takes part, and will be used
to store, respectively, session identifiers, the current master
secret value for channel session sid, and a unicast key that
is only known by the channel manager and the user itself
(these three values are originally set to ⊥ here and updated
the first time upon channel creation or users joining an es-
tablished channel). We explicitly assume that the channel
manager outputs OK after ensuring: (i) that the same key
pk is not registered for another 𝑈 ′ ∈ UG; (ii) that both 𝑈
and CM have both confirmed that their communication part-
ners know the private keys corresponding to their respective
public keys; (iii) that potentially out-of-band verification is
performed to ensure that the keys legitimately belong to the
user in question (equivalent to verification of identities and
certificates).

• CBU2.ChInit(Δ,CM.sk) → ⟨ms0
sid,mpk0

sid, sid, sendK𝑖 ⟩
|Δ |
𝑖=1,

⟨sid,ms0
sid,mpk0

sid, {sendK𝑖 }
|Δ |
𝑖=1⟩: This interactive algorithm

is always triggered by a channel manager CM for a given
set of registered users Δ := {𝑈1,𝑈2, . . . ,𝑈Δ}, such that ∀𝑖 :
𝑈𝑖 ∈ UG. It outputs, for each user 𝑈𝑖 , a tuple of the form
ms0

sid,mpk0
sid, sid, sendK𝑖 , consisting of the (private) initial

master session key ms0
sid, the public initial master public

key mpk0
sid, a unique session identifier sid, and the private

unicast key of the user𝑈𝑖 , denoted sendK𝑖 . The two former
parameters will be shared amongst all the group users, being
used for broadcasts by the channel manager, and will evolve
through updates (changing the upper index from 0 to 1, 2,
etc.). By contrast, the sending key will only be known to
the user and the channel manager, thus allowing for unicast.
The channel manager receives the master session parame-
ters (both public and private) and all the user unicast keys.
For each 𝑈𝑖 ∈ UG, the channel manager inserts a tuple
(sid,ms = ms0

sid, sendK = sendK𝑖 ) in the entry indexed by
𝑈𝑖 inUG. The channel manager will also keep track of the
identities of users participating in each session sid; these
groups of identities are stored in lists denotedUGsid.
• CBU2.UAdd(sid,CM.sk,𝑈 𝑗 ) → ⟨ms𝑡sid,mpk𝑡sid, sid, sendK𝑗 ⟩,
⟨ms𝑡sid,mpk𝑡sid, sidsendK𝑖 ⟩

𝑈𝑖 ∈UGsid , ⟨sid,ms𝑡sid,mpk𝑡sid,

{sendK𝑖 }𝑈𝑖 ∈UGsid∪𝑈 , sid,UGsid⟩: This protocol is used by

the channel manager to add a registered user𝑈 to an existing
session sid. The user obtains private/public master session
credentialsms𝑡sid,mpk𝑡sid (where 𝑡 is an index accounting for
the number of adds/removals/updates performed since the
setup of the channel), as well as the session identifier and its
unicast key. All other existing users in the channel update
their own key-materials. Finally, the channel manager also
updates its session and unicast parameters, the session iden-
tifier for that session, the current list of users participating
in session sid denotedUGsid, and adds a tuple of the form
(sid,ms = ms𝑡sid, sendK = sendK𝑗 ) for the entry indexed𝑈 𝑗

inUG.
• CBU2.URmv(sid,CM.sk,𝑈 𝑗 ) → ⟨ms𝑡sid,mpk𝑡sid, sid,

sendK𝑖 ⟩𝑈𝑖 ∈UGsid\𝑈 𝑗 , ⟨sid,ms𝑡sid,mpk𝑡sid,

{sendK𝑖 }𝑈𝑖 ∈UGsid\𝑈 , sid,UGsid⟩: The channelmanagermay
also decide to remove a user from the group. Analogously to
the algorithm that allows it to add a new user, the channel
manager triggers updates to each remaining user’s session
key-material, as well as to the listUGsid and potentially the
session identifier itself. Finally, CM removes a tuple of the
form (sid, ·, ·) from the entry indexed by𝑈 𝑗 inUG.
• CBU2.ChUpdate(sid,CM.sk) → ⟨ms𝑡sid,mpk𝑡sid, sid,

sendK𝑖 ⟩𝑈𝑖 ∈UGsid , ⟨sid,ms𝑡sid,mpk𝑡sid, {sendK𝑖 }
𝑈𝑖 ∈UGsid ,

sid⟩: The channel manager may decide to trigger at any
point an update to the session-specific keys of all the users.
Each update increases by 1 the value of the index 𝑡 of the
master private and public keys (used for broadcast). We
note that while the unicast keys may also be updated at
this time, this is not compulsory. After each update, for
each 𝑈 ∈ UGsid, the channel manager updates the entry
(sid,ms = ms𝑡sid, sendK = sendK𝑖 of that user in the data-
baseUG.
• CBU2.BCast(sid,CM.sk,ms𝑡sid,𝑚𝑠𝑔) → (𝑐, aux): The chan-
nel manager may choose to (securely) broadcast messages
𝑚𝑠𝑔 by using its private key CM.sk as well as the current
private broadcast key ms𝑡sid. The result is a ciphertext 𝑐 , and
potentially some auxiliary information aux (which might
store AEAD data, or potential key-updating information).
• CBU2.UCast(sid, sendK𝑖 ,𝑚𝑠𝑔) → (𝑐, aux): Users may not
use the broadcasting algorithm, but any user 𝑈𝑖 can unicast
messages𝑚𝑠𝑔 to the channel manager, by using their current
unicast key sendK𝑖 . The result is a ciphertext 𝑐 , and poten-
tially some auxiliary information aux (which might store
AEAD data, or potential key-updating information).
• CBU2.RecBCast(sid,ms𝑡sid, (𝑐, aux)) →𝑚𝑠𝑔 ∪ ⊥: This algo-
rithm allows a user to receive a broadcast from the channel
manager, by using the current session keys ms𝑡sid in order
to decrypt the ciphertext 𝑐 and auxiliary information aux to
either a message𝑚𝑠𝑔 or to an error symbol ⊥. If the output
is ⊥, we say that the user has rejected the broadcast message.

• CBU2.RecUCast(sid, sendK𝑖 , (𝑐, aux)) → 𝑚𝑠𝑔 ∪ ⊥: This al-
gorithm allows the channel manager to receive a unicast
from a user 𝑈𝑖 , by using the corresponding user’s current
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unicast key sendK𝑖 in order to decrypt the ciphertext 𝑐 and
auxiliary information aux to either a message𝑚𝑠𝑔 or to an
error symbol ⊥. If the output is ⊥, we say that the channel
manager has rejected the unicast message.

Notice that our construction involves a global setup algorithm,
which will output global public and private parameters spar and
ppar. These values will be provided to all the channel managers.
Each channel managers can create various sessions of a channel, by
using both these global parameters are the credentials generated
for the channel manager itself (through the NewCred algorithm). In
other words, whereas sessions of two different channels are some-
what compatible to each other, cryptographically speaking, because
they employ the same global parameters, it is impossible for one
channel manager to hijack the channel of another manager (except
by corruption), because each channel manager needs to use its own
private credentials for channel creation and later management.

Another important note concerns the registration step for the
users. We include this algorithm as a statement of intent, on the part
of the user, that he, she, or they wish to join the channel managed
by CM. In particular, from the point of view of the user, the process
of deciding to joint a CBU2 channel goes as follows: first, the user
generates credentials for role = user. Then, it registers those cre-
dentials in an interactive protocol with the channel manager CM of
the desired channel. The channel manager can then choose to either
add the user to an existing channel session sid or to create a new
channel session sid′ taking in input a set of users made up of at least
the requesting user (and maybe also other, previously-registered
users).

Channel management is dynamic and takes place in various
installments across vast periods of time. The channel manager is
the only entity that can trigger an update, whenever users are added
or removed, or the channel is updated. Eachmodification triggers an
update of key-material and user lists and can be perceived as being
akin to the notion of “epoch" in secure-channel establishment with
post-compromise security. To avoid confusion, we abuse vocabulary
and call these installments “time", indexed by a discrete variable
𝑡 . Thus, the phrase “the user group UGsid at time 𝑡" is used to
refer to the value of UGsid at the 𝑡-th installment of the group
management process.

The lion’s share of the key-management is done by the channel
manager, which maintains updated user listsUGsid of user iden-
tifiers𝑈𝑖 for users taking part in the channel session which has a
session identifier of sid, though we note that in practice CM might
want to store, for each user, a tuple of values (𝑈𝑖 , IDCBU2

𝑖
) – note

that this correspondence is stored in the databaseUG that stores
the cumulative data for all the sessions and all the users involved,
notably tuples of the form (𝑈 ,𝑈 .pk, IDCBU2, {(sid,ms, sendK)}∗),
as mentioned in the description of the credential-registration algo-
rithm. The values sid, ms, and sendK evolve over time, in one or
more of the following ways:

• Whenever a registered user 𝑈 ′ is added an existing session
sid of a channel managed by CM: the entry corresponding
to 𝑈 ′ in UG (which was created upon registration) is en-
riched with a tuple containing key-material and the session
identifier for session sid; all entries corresponding to users

𝑈 ∈ UGsid is updated with new values for the session iden-
tifier and the key-material.
• Whenever a registered user𝑈 ′ leaves an existing session sid
of a channel managed by CM: the entry corresponding to𝑈 ′
inUG (which was created upon registration) has the entry
of the form (sid, ·, ·) removed; all entries corresponding to
users𝑈 ∈ UGsid have the values (sid,ms, sendK) updated.
• Whenever the channel manager decides to update the session
sid, without adding or removing users: all entries correspond-
ing to users 𝑈 ∈ UGsid have the values (sid,ms, sendK)
updated.

Channel manager and user states. We assume that the channel
manager CM maintains state consisting of:

• CM.sk,CM.pk: Its private and public long-term parameters.
• UG: The database of all registered users, described in detail
in previous paragraphs.
• UGsid: For each session sid of the channel, a constantly
updated list of users, which explicitly includes the up-to-
date session state sid, the up-to-date master secret ms𝑡sid,
and for each user𝑈 ∈ UGsid, its unicast key sendK𝑖 .
• 𝑡sid: For each channel session sid, a variable indicating the
current time (epoch) of that session.
• Snd: For each channel session sid, this is a list of entries of the
type (𝑡,UGsid,𝑚𝑠𝑔, 𝑐, aux), consisting of: the time (epoch)
𝑡 at which the message𝑚𝑠𝑔 is broadcast by CM; the users
UGsid taking part in session sid managed by CM at time
𝑡 ; the content of the message𝑚𝑠𝑔; as well as the ciphertext
𝑐 and auxiliary value aux obtained by running the BCast
algorithm for message𝑚𝑠𝑔. We denote by Sndsid the part of
this database indexed by sid.
• Rcv: A database, indexed by session identifiers sid, con-
taining lists of tuples (𝑡sid,𝑈 , 𝑐, aux,𝑚), which keep track
of ciphertexts (𝑐, aux) received at each epoch from users
𝑈 ∈ UGsid, decrypted to a value𝑚 (which can take a spe-
cial value ⊥ if decryption fails). We denote by Sndsid [𝑈𝑖 ]
the part of this database indexed by sid and restricted to
messages received from user𝑈𝑖 .

A user may register its credentials to several channel managers
and be part of several sessions of each channel. Administering these
values will require users𝑈 to keep track of the following values:

• 𝑈 .sk,𝑈 .pk: Its private and public long-term parameters.
• ChList: A database of elements of the form (CM,CM.pk,
IDCBU2, {(sid,ms, sendK)}∗), where the two first components
indicate the identity and public key of the channel manager,
the value IDCBU2 stores the identity of the user within the
channel managed by the channel manager, and the last ele-
ment is a list of credentials per session of the channel. This
last element is updated each time the channel manager trig-
gers an evolution of the key, which is to say, at each epoch.
• 𝛾 : A corrupt bit, initially set to 0, indicating whether the
user has been corrupted (the bit is set to 1 and can never be
reverted back to 0) or not (the bit is 0).
• 𝑡sid: For each channel session sid, a variable indicating the
current time (epoch) of that session.
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• 𝛼sid: For each channel session sid, a variable indicatingwhether
the user is in an accepting state at the current epoch (indi-
cated by 𝑡sid).
• Snd: For each channel session sid, this is a list of entries of the
type (𝑡,𝑚𝑠𝑔, 𝑐, aux), consisting of: the time (epoch) 𝑡 at which
the message𝑚𝑠𝑔 is unicast by the user; the content of the
message𝑚𝑠𝑔; as well as the ciphertext 𝑐 and auxiliary value
aux obtained by running the UCast algorithm for message
𝑚𝑠𝑔 in session sid. We denote by Sndsid the part of this
database indexed by sid.
• Rcv: A database, indexed by session identifiers sid, contain-
ing lists of tuples (𝑡sid, 𝑐, aux,𝑚), which keep track of cipher-
texts (𝑐, aux) received through broadcast at each epoch from
the manager of the channel to which sid belongs, decrypted
to a value𝑚 (which can take a special value ⊥ if decryption
fails). We denote by Rcvsid the part of this database indexed
by sid.

Correctness. For the purposes of the security model, both the
users and the channel managers must keep track of additional
states (real-or-random key bits, as well as past keys).

For the channel manager CM, the additional state consists of:
• 𝛾 : A corrupt bit, initially set to 0, indicating whether the
channel manager has been corrupted (the bit is set to 1 and
can never be reverted back to 0) or not (the bit is 0).
• 𝑏: This real-or-random bit will be used for the security games,
and will indicate whether the game will return a real key
for the test oracle, or a random key chosen from the same
distribution.
• KeyList: A list indexed by session identifiers, containing ele-
ments of the form (sid, {𝑡,UG𝑡sid, 𝛼

𝑡
sid, (ms, 𝜌𝑡ms),

{(sendK𝑖 , 𝜌𝑡sendK𝑖
)}𝑈𝑖 ∈UG𝑡sid }), in which, for each channel

value of 𝑡 = 0, 1, . . . , 𝑡sid, the channel manager stores cre-
dentials ms and sendK at epoch 𝑡 , as well as the list of users
present on the channel session at epoch 𝑡 , denotedUG𝑡sid. In
addition, the channel manager also keeps track of a reveal bit
for each of those keys, denoted 𝜌𝑡ms and respectively 𝜌𝑡sendK,
and an accept bit 𝛼𝑡sid indicating whether it is in an accepting
state at epoch 𝑡 .

For a user𝑈 , the additional state consists of:
• 𝛾 : A corrupt bit, initially set to 0, indicating whether the
user has been corrupted (the bit is set to 1 and can never be
reverted back to 0) or not (the bit is 0).
• 𝑏: This real-or-random bit will be used for the security games,
and will indicate whether the game will return a real key
for the test oracle, or a random key chosen from the same
distribution.
• KeyList: A list indexed by session identifiers15, containing el-
ements of the form (sid, {𝑡, 𝛼𝑡sid, (ms, 𝜌𝑡ms), (sendK, 𝜌𝑡sendK)}),
in which, for each channel value of 𝑡 = 0, 1, . . . , 𝑡sid, the user
stores credentials ms and sendK at epoch 𝑡 . In addition, the
user also keeps track of a reveal bit for each of those keys,

15Note that session identifiers are meant to be globally unique, which means that
a session identifier will implicitly also point to other useful information such as the
identity of the group manager CM, the current epoch of the channel, etc.

denoted 𝜌𝑡ms and respectively 𝜌𝑡sendK, and an accept bit 𝛼𝑡sid
indicating whether it is in an accepting state at epoch 𝑡 .

Notice that the session administration we propose differs some-
what in syntax from typical Bellare-Rogaway terminology (we omit
the notion of instance, though we store instance-specific state infor-
mation in global databases that include entries indexed by session
identifiers, e.g., ChList,UG, etc. We do this mostly in order to ren-
der notation easy to understand even for readers not well-versed
in complex secure-channel establishment; in addition, this allows
us to more easily use the CBU2 channel in the context of secret
handshakes. This notation affects how security is defined, but direct
parallels with more classical notations are evident.

The notion of correctness is multi-faceted.
We require both a narrower and a broader notion of correct-

ness than in typical multi-stage authenticated key-agreement, since
CBU2 is centralized (key-updates are triggered only by the channel
manager, acceptance/key computation on the channel manager
will imply acceptance/key computation for the channel users), fea-
tures some key-updates for the broadcast channel, but also includes
a more classical end-to-end secure unicast channel with no key
updates.

This is formally defined below.

Definition 7 (Correctness of CBU2). A CBU2 protocol run
in the presence of a set of managersMngSet and a set of users USet
should provide the following notions of correctness:

• Centralized broadcast: For every CM, every sid, and ev-

ery value 𝑡 , if there exists (sid, {𝑡,UG𝑡sid, 𝛼
𝑡
sid, (ms, ·), {(𝑈𝑖 ,

sendK𝑖 , ·)}𝑈𝑖 ∈UG𝑡sid }) ∈ CM.KeyList with UG𝑡sid ≠ ∅, and
denoting, by abuse of notation CM.sid = sid, CM.𝛼𝑡sid := 𝛼𝑡sid,
CM.ms𝑡sid = ms from the entry above, and for every 𝑈𝑖 ∈
UG𝑡sid, CM.sid.sendK𝑖 = sendK𝑖 from the entry above, the

following holds, in the absence of an adversary:

– For every user 𝑈𝑖 ∈ UG𝑡sid, there exists an entry (sid, {𝑡,
𝛼𝑡sid, (ms, ·), (sendK, ·)}) ∈ 𝑈𝑖 .KeyList. Informally, if the

channel manager manages a session sid of the channel such

that, at time 𝑡 , it believes the broadcast receivers are users

𝑈𝑖 ∈ UG𝑡sid, then all the users 𝑈𝑖 ∈ UG𝑡sid also agree on

this and store session data to prove it. By abuse of nota-

tion, we denote 𝑈𝑖 .sid = sid, 𝑈𝑖 .𝛼𝑡sid = 𝛼𝑡sid, 𝑈𝑖 .ms𝑡sid =

ms from the user’s database entry as described above, and

𝑈𝑖 .sid.sendK = sendK from the entry above.

– For every user𝑈 𝑗 ∉ UG𝑡sid, there exists no entry of the form
(sid, {𝑡, ·, ·, ·)} ∈ 𝑈𝑖 .KeyList.

– For every user𝑈𝑖 ∈ UG𝑡sid, either CM.sid = 𝑈𝑖 .sid at time

𝑡 or it is a prefix thereof at time 𝑡 , while being equal at time

𝑡 − 1.
– For every user𝑈𝑖 ∈ UG𝑡sid, it holds that CM.𝛼

𝑡
sid = 𝑈𝑖 .𝛼

𝑡
sid.

– For every user 𝑈𝑖 ∈ UG𝑡sid, if CM.𝛼
𝑡
sid = 𝑈𝑖 .𝛼

𝑡
sid = 1 at

time 𝑡 , then CM.ms𝑡sid = 𝑈𝑖 .ms𝑡sid ≠ ⊥.
– IfCM has an entryCM.Sndsid, for each entry (𝑡,𝑚𝑠𝑔, 𝑐, aux) ∈
CM.Sndsid, there exists a corresponding entry (𝑡, 𝑐, aux,𝑚) ∈
𝑈𝑖 .Rcvsid for every user𝑈𝑖 ∈ UG𝑡sid.

• User unicast: Using the same notations as for the first bullet-

point, for every channel manager CM, every session sid, every
timestamp 𝑡 , and every user𝑈𝑖 ∈ UGsid, in the absence of an
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adversary, the following statements hold, in addition to those

in the first bullet-point:

– If CM.𝛼𝑡sid = 𝑈𝑖 .𝛼
𝑡
sid = 1 at time 𝑡 , then CM.sendK𝑖 =

𝑈𝑖 .sid.sendK ≠ ⊥.
– If a user𝑈𝑖 ∈ UGsid has an entry𝑈𝑖 .Sndsid, for each entry

(𝑡,𝑚𝑠𝑔, 𝑐, aux) ∈ 𝑈𝑖 .Sndsid, then there exists a correspond-

ing entry (𝑡sid,𝑈 , 𝑐, aux,𝑚) ∈ CM.Rcvsid [𝑈𝑖 ].

Adversary Model.We define the security of the CBU2 primitive
in terms of authentication and security of the established channel
(akin to the notion of (S)ACCE, originally introduced in the context
of TLS 1.2 in [11]). Our choice is motivated by the fact that in the
construction of secret handshakes, the property we require from
the CBU2 is that nonces encrypted and sent through broadcast are
indistinguishable from random, and tags sent through unicast are
similarly indistinguishable from random. While this property can
be achieved by the careful composition of AKE-secure forward-
secure key exchange and authenticated-encryption, achieving the
equivalent of ACCE security is not always immediate.

We will require the following properties:
• Centralized broadcast: We require the authentication of
sessions, updates, and transmissions (messages can only be
accepted if they originate with the channel manager), and
the security of the broadcast channel, specifically:
– Authentication: an attacker without access to the chan-
nel manager’s private values cannot make a non-malicious
user accept a message that was not sent at that epoch by
the channel manager itself.

– Security: an attacker without access to the session key
at some epoch 𝑡 cannot break the ACCE security of a
message sent through centralized broadcast – that is, only
the users legitimately in possession of the epoch’s keys
may distinguish a transmitted message from random.

• User unicast: We require the authentication of transmis-
sions (the user is authenticated), and the security of the
unicast channel, specifically:
– Authentication: an attacker not having access to a spe-
cific, honest user’s private values cannot make a channel
manager accept a message that was not set at that epoch
by that user.

– Security: an attacker without access to the user’s key at
that epoch cannot break the ACCE security of transmitted
messages (in other words, only the user and the chan-
nel manager can distinguish from random the exchanged
plaintexts).

Throughout the security games, the adversary will be given
access to the following oracles:
• oRegCred(𝑈 ,CM, 𝑏𝑈 , 𝑏CM) : On input a user 𝑈 , a group
manager CM, and a pair of corrupt bits 𝑏𝑈 , 𝑏CM, this ora-
cle first checks that user 𝑈 has the credentials required for
registration and, if this is not the case, the oracle generates
credentials by using the algorithm NewCred as a black box.
We assume that all public credentials are provided to all par-
ties. If moreover 𝑏𝑈 = 1, the user is immediately corrupted
and the adversary also obtains the private key correspond-
ing to the freshly generated credentials. The situation is

analogous for the intended channel manager CM. Once the
credentials are available, the oracle runs CBU2.RegCred as
a black box in order to register the user with the specific
manager. The output is provided to the adversary.
• oChSession(CM,Δ) :On input a channelmanagerCM (which
implicitly identifies a channel managed by CM), as well as a
set Δ of already-registered users, this oracle runs the ChInit
algorithm on these inputs in order to start a new session of
that channel. The adversary receives, as an output, the public
initial session key as well as the session identifier. In addi-
tion, for every corrupt party (user or channel manager), the
adversary also gets its private state (for a user this consists
of the master secret of the broadcast channel and sending
key for its unicast channel; for a channel manager, the state
consists of the master secret of the broadcast channel, as
well as all the keys for all the users’ unicast channels).
• oUAdd(𝑈 , sid): On input a user 𝑈 and a session identifier
sid, this oracle runs the UAdd algorithm for 𝑈 , sid, and the
channel manager CM whose session sid is, at the current
epoch 𝑡 . The adversary gains access to: the (potentially up-
dated) session identifier sid, the public key for the broadcast
channel, as well as private broadcast session credentials and
sending key for each corrupted user and the entire database
of private credentials at epoch 𝑡 if the channel manager is
corrupted.
• oURmv(𝑈 , sid): On input a user 𝑈 and a session identifier
sid, this oracle runs the URmv algorithm for 𝑈 , sid, and the
channel manager CM whose session sid is, at the current
epoch 𝑡 . The adversary gains access to: the (potentially up-
dated) session identifier sid, the public key for the broadcast
channel, as well as private broadcast session credentials and
sending key for each corrupted user and the entire database
of private credentials at epoch 𝑡 if the channel manager is
corrupted.
• oChUpdate(sid): On input a session identifier sid, the ora-
cle first identifies the channel manager whose session sid
is. Then it runs the ChUpdate algorithm as a black box for
that session and channel manager, at current epoch 𝑡 . The
adversary gains access to: the (potentially updated) session
identifier sid, the public key for the broadcast channel, as
well as private broadcast session credentials and sending key
for each corrupted user and the entire database of private
credentials at epoch 𝑡 if the channel manager is corrupted.
• oReveal(sid, 𝑃, type, 𝑡): On input a session identifier sid, a
party 𝑃 , which can be either a user𝑈 or a channel manager
CM, key type type ∈ {UCast,BCast}, and an epoch 𝑡 which
must necessarily predate the epoch of sid at the time of the
query (else the oracle returns an error symbol ⊥), this oracle
proceeds as follows. If type = UCast and 𝑃 ∈ MngSet, then
the output is an error symbol ⊥. Else, if type = UCast and
𝑃 is a user 𝑈𝑖 which is present at epoch 𝑡 in sid, then the
oracle retrieves and returns the user’s unicast key at that
epoch, sendK𝑖 . The user sets 𝜌𝑡sendK𝑖

) = 1 in the attribute
KeyList. If type = BCast, and if the party 𝑃 takes part in
sid at epoch 𝑡 , then the oracle returns the broadcast master
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secret at epoch 𝑡 , ms, setting, for that party, the reveal bit
𝜌𝑡ms := 1 in KeyList.
• oCorrupt(CM, 𝑃): This oracle is typically run with an input
consisting of a channel manager CM and a party 𝑃 (either a
user or a channel manager), in which case it returns either
the long-term credentials of party 𝑃 that were registeredwith
the channel run by CM, or a special symbol⊥. Exceptionally,
it can also be run with a special input CM← MngSet and
a party 𝑃 , in which case the credentials registered for that
users with respect to all channel managers are targeted and
returned. If 𝑃 is a channel manager, CM ≠ MngSet, and
𝑃 ≠ CM, then the oracle returns ⊥. For the case where 𝑃 is a
user𝑈𝑖 , while the oracle works even if𝑈𝑖 is not currently in
the user-group sid run by CM, note that in some cases, the
protocol might proceed to the deletion of key materials that
are no longer in use, in which case the oracle will return ⊥.
• oPromptSend(sid, src, type, 𝑀): This oracle allows the ad-
versary to prompt the honest sending of messages in the
following two ways (in both cases the adversary receives the
messages sent across the channel, such as ciphertexts and
auxiliary information, and the message is delivered at the
session’s current epoch 𝑡 ):
oPromptSend(sid,⊥,BCast, 𝑀): In this variant, the input
includes src = ⊥ and type = BCast. This allows an at-
tacker to prompt the channel manager CM of session sid
to send (potentially in encrypted form), the message 𝑀 .
The message is delivered to all the users𝑈𝑖 that are taking
part in sid at time 𝑡 , i.e., ∀𝑈𝑖 ∈ UG𝑡sid, and for each user
𝑈𝑖 the algorithm RecBCast is run as a black box for that
message and sid. The message is added to the Snd of the
channel manager CM.
oPromptSend(sid,𝑈𝑖 ,UCast, 𝑀): In this variant, the input
to the oracle includes type = UCast, and a source src = 𝑈𝑖 ,
which indicates on which unicast channel the message
is sent. The query runs RecUCast as a black box on the
source user, the session identifier, and the provided mes-
sage. Note that if𝑈𝑖 is not part of session sid at the time
𝑡 when the query is made, the receiving algorithm might
return an error symbol⊥. The message is added to the Snd
of the user 𝑈𝑖 if the user is present in sid at the current
epoch.

• oInjectSend(sid, src, type, 𝑀): This oracle can be used by the
attacker to inject a message either into the broadcast or into
a unicast channel in the following two ways:
oInjectSend(sid,⊥,BCast, 𝑀): In this variant, the input in-
cludes src = ⊥ and type = BCast. This allows an attacker
to inject a message on the broadcast link at the current
epoch 𝑡 (as though he were the group manager CM. The
message is delivered to all the users 𝑈𝑖 that are taking
part in sid at time 𝑡 , i.e., ∀𝑈𝑖 ∈ UG𝑡sid, and for each user
𝑈𝑖 the algorithm RecBCast is run as a black box for that
message and sid. Note that, if for instance𝑀 is incorrectly
encrypted, running RecBCast might yield errors on the
sides of the receivers.
oInjectSend(sid,𝑈𝑖 ,UCast, 𝑀): In this variant, the input to
the oracle includes type = UCast, and a source src = 𝑈𝑖 ,
which indicates on which unicast channel the message

is sent. The query runs RecUCast as a black box on the
source user, the session identifier, and the provided mes-
sage. Note that if𝑈𝑖 is not part of session sid at the time
𝑡 when the query is made, the receiving algorithm might
return an error symbol ⊥.

• oSendRoR𝑏 (sid, src, type, 𝑀): This oracle can be used by the
attacker only in some security games in order to force (with-
out knowing the pertinent secret keys) the (authenticated)
encryption and sending of either the input message𝑀 or a
random message𝑀𝑅 of the same length, from the message
space, depending on a bit 𝑏, which is either 0 (encrypt𝑀𝑅 ) or
1 (encrypt𝑀). If type = BCast, the real-or-random message
is encrypted using ms at the current epoch of sid, whereas
if type = UCast, it is encrypted using the sending unicast
key sendK𝑖 of user 𝑈𝑖 = src. In both cases, the attacker is
given the resulting ciphertext 𝑐 and potential auxiliary mate-
rial aux, and the oracle oInjectSend(sid,⊥,BCast, (𝑐, aux))
is run as a black box.

Security definitions.We define the security notions informally
discussed above.

Game ExpBCast-AuthΠ (A)
Let O = {oRegCred, oChSession, oUAdd, oURmv, oChUpdate}

∪{oReveal, oCorrupt, oPromptSend, oInjectSend}
(spar, ppar) ← CBU2.Setup(𝑛)
done← AO (ppar);
A wins iff. ∃𝑈𝑖 s.t. ∃[sid, (𝑡sid, 𝑐, aux,𝑚)] ∈ 𝑈𝑖 .Rcv
and (simultaneously):

𝑚 ≠ ⊥
[sid, (𝑡sid, ·, ·, ·,𝑚)] ∉ CM.Snd
The unique CM managing sid created via oRegCred(·,CM, ·, 0)
No oCorrupt(CM,CM) query for the manager CM of sid

Figure 9: The Broadcast-authentication security game of

CBU2.

Definition 8 (Broadcast-Authentication Security). Con-
sider a CBU2 channel denoted CBU2. For a probabilistic polynomial-

time (PPT) adversary A we define its advantage AdvBCast-AuthCBU2 (A)
to win the ExpBCast-AuthΠ (A) security game presented in Figure 9 as

follows:

AdvBCast-AuthCBU2 (A) = P[A wins ExpBCast-AuthΠ (A)] . (4)

The channel CBU2 is 𝜖-Broadcast-Authentication-Secure if, and
only if, any PPT adversaryA againstCBU2 has at most an advantage

of 𝜖 to win the ExpBCast-AuthΠ (A) security game. Asymptotically,

CBU2 is called Broadcast-Authentication-Secure if 𝜖 is negligible as
a function of the security parameter 𝑛.

Definition 9 (Unicast-Authentication Security). Consider
a CBU2 channel denoted CBU2. For a probabilistic polynomial-time

(PPT) adversaryA we define its advantage AdvUCast-AuthCBU2 (A) to win
the ExpUCast-AuthΠ (A) security game presented in Figure 10 as follows:

AdvUCast-AuthCBU2 (A) = P[A wins ExpUCast-AuthΠ (A)] . (5)
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The channel CBU2 is 𝜖-Unicast-Authentication-Secure if, and only
if, any PPT adversaryA against CBU2 has at most an advantage of 𝜖

to win the ExpUCast-AuthΠ (A) security game. Asymptotically,CBU2 is
called Unicast-Authentication-Secure if 𝜖 is negligible as a function
of the security parameter 𝑛.

Game ExpUCast-AuthΠ (A)
Let O = {oRegCred, oChSession, oUAdd, oURmv, oChUpdate}

∪{oReveal, oCorrupt, oPromptSend, oInjectSend}
(spar, ppar) ← CBU2.Setup(𝑛)
done← AO (ppar);
A wins iff. ∃CM s.t. ∃[sid, (𝑡sid,𝑈𝑖 , 𝑐, aux,𝑚)] ∈ CM.Rcv
and (simultaneously):

𝑚 ≠ ⊥
[sid, (𝑡sid, ·, ·,𝑚)] ∉ 𝑈𝑖 .Snd
User𝑈𝑖 created via oRegCred(𝑈𝑖 ,CM, 0, ·)
CM created via oRegCred(·,CM, ·, 0)
No oCorrupt(CM,𝑈𝑖 ) query

Figure 10: TheUnicast-authentication security gameofCBU2.

Definition 10 (Broadcast-Security). Consider a CBU2 chan-
nel denoted CBU2. For a probabilistic polynomial-time (PPT) adver-

saryA we define its advantageAdvBCast-SecCBU2 (A) to win the ExpBCast-SecΠ (A)
security game presented in Figure 11 as follows:

AdvBCast-SecCBU2 (A) =
����P[A wins ExpBCast-SecΠ (A)] − 1

2

���� . (6)

The channel CBU2 is 𝜖-Broadcast-Secure if, and only if, any PPT

adversary A against CBU2 has at most an advantage of 𝜖 to win

the ExpBCast-SecΠ (A) security game. Asymptotically, CBU2 is called
Broadcast-Secure if 𝜖 is negligible as a function of the security pa-

rameter 𝑛.

Game ExpBCast-SecΠ (A)

𝑏
$← {0, 1}

Let O = {oRegCred, oChSession, oUAdd, oURmv, oChUpdate}
∪{oReveal, oCorrupt, oSendRoR𝑏 , oInjectSend}

(spar, ppar) ← CBU2.Setup(𝑛)
𝑑 ← AO (ppar);
A wins iff. 𝑑 = 𝑏 and (simultaneously) for any epoch 𝑡
and session sid s.t.
if oSendRoR(sid,⊥,BCast, ·) was queried, simultaneously:

No oReveal(sid, ·,BCast, 𝑡) queried
CM created via oRegCred(·,CM, ·, 0)
If𝑈𝑖 created via oRegCred(𝑈𝑖 ,CM, 0, ·),𝑈𝑖 ∉ UGsid at epoch

𝑡

Figure 11: The Broadcast-security game of CBU2.

Definition 11 (Unicast-Security). Consider a CBU2 channel
denoted CBU2. For a probabilistic polynomial-time (PPT) adversary

A we define its advantageAdvUCast-SecCBU2 (A) to win the ExpUCast-SecΠ (A)
security game presented in Figure 12 as follows:

AdvUCast-SecCBU2 (A) =
����P[A wins ExpUCast-SecΠ (A)] − 1

2

���� . (7)

The channel CBU2 is 𝜖-Unicast-Secure if, and only if, any PPT

adversary A against CBU2 has at most an advantage of 𝜖 to win

the ExpUCast-SecΠ (A) security game. Asymptotically, CBU2 is called
Unicast-Secure if 𝜖 is negligible as a function of the security parameter

𝑛.

Game ExpUCast-SecΠ (A)

𝑏
$← {0, 1}

Let O = {oRegCred, oChSession, oUAdd, oURmv, oChUpdate}
∪{oReveal, oCorrupt, oSendRoR𝑏 , oInjectSend}

(spar, ppar) ← CBU2.Setup(𝑛)
𝑑 ← AO (ppar);
A wins iff. 𝑑 = 𝑏 and (simultaneously) for any epoch 𝑡 and
session sid s.t.
if oSendRoR(sid,𝑈𝑖 ,UCast, ·) was queried, simultaneously:

No oReveal(sid, 𝑃,UCast, 𝑡) queried for 𝑃 ∈ {𝑈𝑖 ,CM}
CM created via oRegCred(·,CM, ·, 0)
𝑈𝑖 created via oRegCred(𝑈𝑖 ,CM, 0, ·)

Figure 12: The Unicast-security game of CBU2.

Insight: constructing CBU2. At its core, the CBU2 channel con-
sists of a manager-to-users broadcast channel with key-evolution,
and multiple user-to-manager unicast channel which does not nec-
essarily have to feature key-evolution. In both cases, confidentiality
must be ensured, and the authentication property demands that
the communication only run one-way, which requires the use of
EUF-CMA-secure authentication with non-repudiation: typically
signature schemes.

There are many ways to construct such channels.
A typical start would be to provide broadcast communication

via a group-communication channel with post-compromise secu-
rity, such as MLS, combined with a signature scheme that would
allow only the channel manager to effectively send messages. Note,
however, that the functionality required here differs a little from
the standard MLS architecture. For one thing, the only entity that
will be proposing the addition or removal of users is the group
manager. In addition, since we will be using the CBU2 protocol
in the interest of a privacy-preserving scheme, note that the true
identities of the users in the group will not be known (we will
be using channel-specific identifiers within the Secret Handshake
scheme). This partially violates one of the core MLS properties: the
fact that users are aware who is in the group. No users will be able
to make proposals or commits to the channel. Key-updates are also
only triggered by the channel manager.

We note that the unicast channel key-material could be derived,
via a secure PRF, from the group secrets at the epoch at which the
user has joined as well as a nonce known only to the manager and
the user, chosen uniformly and independently at random during
the Joining procedure. The derivation needs to preserve certain
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security properties, but could essentially work as described by
Brzuska, Jacobsen, and Stebila in [6]. In this case as well, we would
require the user to sign each sent message.

C.4.3 Anonymous Group Key-Agreement with Fresh Randomness
(AGKA-FR). In this section we formalize in detail the AGKA-FR
primitive, as described in Section 4.2. We consider mostly-generic
anonymous group-key agreement, with a single functional con-
straint: the use, during the protocol run, of a single fresh random
value, taken from a (large) set, which will eventually be used as
state in the secret handshakes protocol.

More technically, the anonymous group key-agreement protocol
is parametrized by a randomness superspace R, which essentially
imposes the type of randomness that is used (for instance, a group
element, an integer, etc.). Then, during setup, depending on the
security parameter, a subset of R, denoted RΠ , is chosen to become
the set from which each protocol participant will output fresh
randomness at each session. Moreover, honest protocol participants
will abort AGKA-FR sessions if two distinct parties output the same
randomness. At the end of a successful session, each party retains
the fresh randomness, along with the computed session secret, as
state to be used in the remainder of the secret handshake protocol
run.

We discuss our choice of constraining the class of anonymous
group key-agreement protocols in this way.

Intuition:whyAGKA-FRwith fresh randomness. First, it should
be noted that the great majority of key-agreement protocols rely on
the use of randomness: either in the form of nonces or in the form
of random group elements. Therefore, while theoretically our choice
restricts the class of group-key agreements that could be used in
constructing secret handshakes, in practice the pick of protocols is
not very restricted.

In our constructions of Secret Handshakes, we specifically need
some means of binding the group key-agreement of users taking
part in a secret handshake with the group membership of those
users. Later in the protocol, we need that binding information in
the construction of a list MAC, which should take in unique input
per user. Finally, the concatenation of those random values will
count as a session identifier, which must, in its own turn, be unique.
On the other hand, we need to keep the group key-agreement
unlinkable, even with respect to other handshake participants –
thus precluding binding through authentication. Thus, we chose to
bind the two phases of the secret-handshake protocol by means of
a piece of randomness, generated uniformly and independently at
random from a set whose size depends on the security parameter,
and whose nature depends on the parameter R. This, however, is
not the only choice we considered.

An alternative could have been to explicitly require that the
session key in the group key-agreement is then used to generate

binding information. Yet, in order for the binding information to
be unique the generation must use fresh randomness, which all the
other users must know (hence, it must be exchanged during the
protocol). Yet, that only seems to reduce this second approach to
the first one.

An alternative, potentially valid approach is to enforce unique-
ness of each user’s state by associating them randomly with an

index between 1 and the number of participants to the handshake.
In order to furthermore ensure that AGKA-FR session identifiers
are unique, one could furthermore associate each session with a
single pseudorandom value, to which users will append their in-
dexes. This potential solution, however, raises the question of how
to ensure that the single pseudorandom value associated with each
session is unique across all the sessions.

AGKA-FR syntax and environment.We consider a set of users
USet, with individual users associated with identities 𝑈𝑖 . The pro-
tocol is defined as a tuple of the following algorithms.

• AGKA-FR.Setup(1𝜆,R) → (ppar,K,RΠ): This global setup
algorithm takes in input a security parameter (in unary) and
the superset of random values R and outputs global public
parameters ppar and a subsetRΠ ofR, whichmust be used to
produce randomness. The public parameters ppar are taken
implicitly in input to all the following algorithms. Finally,
the algorithm also outputs the set K of possible computed
master-secret values (we require that this set be surjective).
• AGKA-FR.Handshake(Δ) → ({state𝑖 , sid,ms𝑖 }𝑈𝑖 ∈Δ: Given a
set of users Δ, this interactive protocol outputs, for each
participating user 𝑈𝑖 ∈ Δ, a set of three values: a piece of
randomness state𝑖 ∈ RΠ , which users choses uniformly and
independently at random and broadcast at the beginning of
the session; a session identifier sid consisting of the concate-
nation of all state𝑖 values, from smallest to largest; and a
master secret valuems. All of these values can take a special
error value ⊥.

Users 𝑈𝑖 stores a table AGKA-FR.SList indexed by session iden-
tifiers sid and containing the following values:

nsid : the number of users taking part in handshake sid, that is
nsid = |Δsid |.

state : the randomness used by that party during session with
identifier sid. Note that sid ∈ (RΠ)nsid and that either state ∈
sid or state = ⊥.

𝛼sid : the user’s acceptance bit for the randomness generated
during session sid. This bit is initially set to 0 and changes
to 1 if the user accepts the validity of the session state sid,
i.e.,, sid consists of nsid unique random values.

𝛼 : the user’s acceptance bit for the validity of the entire proto-
col run. This value is initially set to 0 and may change to 1 if
the user accepts the validity of the protocol run. We demand
that 𝛼 = 0 whenever 𝛼sid = 0.

ms : the master secret computed by the user in session sid of
AGKA-FR, which can also potentially be equal to ⊥.

𝜌 : a reveal bit, initially set to 0, which will be set to 1 if the
key is revealed during an attack.

We require the following notion of correctness.

Definition 12 (AGKA-FR Correctness). Let AGKA-FR =

(AGKA-FR.Setup,AGKA-FR.Handshake) be a AGKA-FR protocol

parametrized with randomness superspace R and used by a set USet.
For every tuple of values (ppar,RΠ) ← AGKA-FR.Setup(1𝜆,R), for
every Δ ∈ USet and AGKA-FR.Handshake(Δ) → ({state𝑖 , sid,
ms𝑖 }𝑈𝑖 ∈Δ, the following statements hold simultaneously:
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• All users 𝑈𝑖 ∈ Δ choose and broadcast state independently
and uniformly at random from RΠ .
• If ∃state, state′ ∈ sidwith state = state′, then 𝛼sid = 0∀𝑈𝑖 ∈
Δ;
• If ∀state, state′ ∈ sid it holds that state ≠ state′, then 𝛼sid =

1 ∀𝑈𝑖 ∈ Δ;
• ∀𝑈𝑖 ∈ Δ, if 𝛼sid = 0, then 𝛼 = 0;
• ∀𝑈𝑖 ∈ Δ, if 𝛼 = 1, then all 𝑈𝑖 compute the same values ms
and sid at the end of the session;

Security notions forAGKA-FR. Intuitively,AGKA-FR should guar-
antee the following properties: anonymity and the security of the
computed keys. We define anonymity in terms of the unlinkability
between two participating users, and prove that this property also
implies a type of simulatability, i.e., it is impossible to tell whether
the protocol participant is a real user or a simulator.

Since users are not associated with private values, unlike in our
secret handshake and CBU2 protocols, for AGKA-FR it makes no
sense to consider corrupt users: just honest and malicious ones. We
describe the following oracles, which will allow the adversary to
interact with its environment.

• 𝑈𝑖 ← oNewUser(mal): on input a bitmal, indicatingwhether
a new user is created honest (mal = 0) or malicious (mal = 1),
this oracle creates a new user𝑈𝑖 , whose identity is output to
the adversary. The challenger will keep track of which users
are malicious and which are honest.
• (sid, 𝜏) ← oNewSession(Δ): on input a set of users Δ of size
at least 2, which may consist of both honest and malicious
users, this algorithm runs the handshake as a black box with
the indicated users. The attacker receives the transcript of
the session, 𝜏 , as well as the session identifier sid. Note that,
because of the way sid is defined above, it is a value that can
be retrieved directly from 𝜏 . The adversary explicitly gets
this value so that it can use it later for potential key-retrieval.
• ms ∪ ⊥ ← oReveal(sid,𝑈𝑖 ): on input the session identifier
sid of a prior session, as well as the identity of a user𝑈𝑖 , this
oracle first checks that 𝑈𝑖 is honest (otherwise, the oracle
outputs ⊥). For an honest user 𝑈𝑖 , this oracle outputs the
value stored by this user as the master secret of sid.
• (sid, 𝜏) ← oLoRNewSession𝑏 (Δ̂,𝑈 ,𝑈 ′): On input a core set
of users Δ̂ and two honest users𝑈 ,𝑈 ′ such that Δ̂∩{𝑈 ,𝑈 ′} =
∅, this oracle, parametrized by a bit 𝑏, it sets Δ = Δ̂ ∪𝑈 for
𝑏 = 0 and Δ = Δ̂ ∪𝑈 ′ for 𝑏 = 1. It then runs a handshake
between users in Δ, producing the transcript 𝜏 , which is
returned to the adversary together with the session identifier
sid.
• ms ∪ ⊥ ← oRoRHandshake𝑏 (sid,𝑈𝑖 ): on input the session
identifier sid corresponding to a prior session, and a user
𝑈𝑖 , and parametrized by a bit 𝑏, this oracle first checks that
user 𝑈𝑖 has stored in its database an entry indexed by the
identifier sid. If that is not the case, the oracle outputs ⊥.
If 𝑈𝑖 has such an entry, the oracle checks that the entry
stored by 𝑈𝑖 for session sid is a value ms ≠ ⊥. Finally, it
also checks that all users involved in sid are honest. Then,
if 𝑏 = 0, the oracle outputs the true entry ms stored by 𝑈𝑖

for sid; else, if 𝑏 = 1, the oracle outputs a random value 𝑠
chosen at uniformly at random from the key set K .

Definition 13 (AKE-Security for AGKA-FR). Consider a

AGKA-FR protocol. For a probabilistic polynomial-time (PPT) ad-

versary A we define its advantage AdvGKA-AKEAGKA-FR (A) to win the

ExpGKA-AKEΠ (A) security game presented in Figure 13 as follows:

AdvGKA-AKEAGKA-FR (A) =
����P[A wins ExpGKA-AKEΠ (A)] − 1

2

���� . (8)

The protocol AGKA-FR is 𝜖-AKE-Secure if, and only if, any PPT

adversary A against the AKE-security of AGKA-FR has at most an

advantage of 𝜖 to win the ExpGKA-AKEΠ (A) security game. Asymptot-

ically, AGKA-FR is called AKE-Secure if 𝜖 is negligible as a function
of the security parameter 1𝜆 .

Definition 14 (Unlinkability in AGKA-FR). Consider a

AGKA-FR protocol. For a probabilistic polynomial-time (PPT) ad-

versary A we define its advantage AdvGKA-UnlinkAGKA-FR (A) to win the

ExpGKA-UnlinkΠ (A) security game presented in Figure 13 as follows:

AdvGKA-UnlinkAGKA-FR (A) =
����P[A wins ExpGKA-UnlinkΠ (A)] − 1

2

���� . (9)

The protocol AGKA-FR is 𝜖-Unlinkable if, and only if, any PPT

adversary A against the Unlinkability of AGKA-FR has at most an

advantage of 𝜖 to win the ExpGKA-UnlinkΠ (A) security game. Asymp-

totically, AGKA-FR is called Unlinkable if 𝜖 is negligible as a function
of the security parameter 1𝜆 .

D SECURITY ANALYSIS

In this section, we begin by formalizing the security properties we
want our scheme to achieve, and then proceed to prove that the
latter are guaranteed.

D.1 Winning condition notations

Let O denote a set of oracles, and let Q refer to a set of queries. For
every 𝑜 ∈ O, we write 𝑜 : 𝑖 ↦→ 𝑟 to indicate that 𝑖 is input to the
oracle 𝑜 and 𝑟 , the oracle’s response. Whenever a query 𝑜 : 𝑖 ↦→ 𝑟

is made, a value (𝑟, 𝑖) is added to a list Q𝑜 .
We denote byMU,HU, CU the sets of malicious, respectively

honest and corrupted users. We denote the set of all users by U
and

U =MU ⊔ CU ⊔HU
The sets of group authorities are similarly denoted and,

GA =MGA ⊔ CGA ⊔HGA
For a user𝑈 , we use the notations:
• accept𝑖 indicates whether the user accepted the handshake
and has computed the key for the 𝑖-th handshake
• group𝑖 denotes the group the user played with during the
𝑖-th handshake
• groups𝑖 denotes all the groups the user has joined prior to
the 𝑖-th handshake.

Definition 15 (USet𝐺 ). Wepropose two valid notations forUSet𝐺
to ease the notation, by fixing either the 𝑖 counter:

USet𝐺,𝑖 = {𝑞.𝑈 : 𝑞 ∈ QoJoin(𝐺,· ) , 𝑞.𝑖 < 𝑖}
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Game ExpGKA-AKEΠ (A) Game ExpGKA-UnlinkΠ (A)
(ppar,K,RΠ) ← AGKA-FR.Setup(1𝜆,R) (ppar,K,RΠ) ← AGKA-FR.Setup(1𝜆𝑠,R)
𝑏

$← {0, 1} 𝑏
$← {0, 1}

Let O = {oNewUser, oNewSession, oReveal, oRoRHandshake𝑏 } O = {oNewUser, oNewSession, oReveal, oLoRNewSession𝑏 }
𝑑 ← AO (ppar,K,R); 𝑑 ← AO (ppar,K,R);
A wins iff. 𝑑 = 𝑏 A wins iff. 𝑑 = 𝑏

and no sid output by oRoRHandshake input to oReveal

Figure 13: The AKE (left) and Unlink (right) security notions for AGKA-FR.

or also the 𝑗 counter:

USet𝐺,𝑖, 𝑗 = {𝑞.𝑈 : 𝑞 ∈ QoJoin(𝐺,· ) , 𝑞. 𝑗 ≤ 𝑗}

Definition 16 (CU ( ·) ). Therefore, we can add a notation to CU,

which is :

∀𝑠 ∈ QoSHandshake,

CU𝑠.𝑖 = {𝑐.𝑈 : 𝑐 ∈ QoCorruptUser, 𝑐 .𝑖 < 𝑠 .𝑖}

For sets not specified we have:

CU = CU#QoSHandshake

For other sets we have:

HU𝑖 = U \ (CU𝑖 ∪MU𝑖 )

where,

MU𝑖 = {𝑟 .𝑈 : 𝑟 ∈ QoUReg( ·,1) , 𝑟 .𝑖 < 𝑠 .𝑖}
And so on for CGA,HGA, andMGA.

D.2 Adversarial model

We define security by means of a number of security games, played
between the challenger and an adversary. A peculiarity of the secu-
rity of secret handshakes is that the adversary can always register
malicious users, or even create its own groups; most security no-
tions, however, will concern groups for which the adversary does
not (at the moment of the challenge phase) control any users.

Honest, malicious, and corrupted entities.We distinguish be-
tween three types of entities. Honest users (whose identities are
stored in a list Lhonest) are not controlled by the adversary (though
the latter might gain oracle access to them), and their private param-
eters (keys, state) remains unknown toA. At the opposite extreme,
malicious users (whose identities are stored in a list Lmalicious)
are fully controlled by the adversary, which in addition knows all
their private parameters and internal state. Finally, corrupted users
(whose identities are stored in Lcorrupt) begin as honest, but are
at some point corrupted by the attacker, which learns the user’s
private key. However, as opposed to malicious users, corrupt users
retain privacy of some of their state (such as accept/reject bits, ses-
sion keys, or intermediate handshake-protocol values), and are not
controlled by the adversary (except through oracle queries). We do,
however, allow the adversary to learn their private keys even after
updates.

Group authorities can also be honest, malicious, or corrupted.
Note that, as opposed to users, group authorities cannot be revoked

– as a result, corruption of a previously honest authority essentially
renders the group malicious.

Party state and attributes. For administrative purposes, the par-
ties involved in our model will retain some state, which may be
updated according to their actions (for instance, when users join
a new group, leave a group, or perform a new handshake). We
consider essentially two distinct types of parties, belonging to two
disjoint sets: common users and group authorities. Each of these
will maintain a distinct state.

Regular users will have to keep state relating to both long-term
group membership, and to the handshakes they ran. Thus, users𝑈
maintain a group-related state

Call-oracle management. Consider that each query are sequen-
tial, therefore we can order them in a particular sequence and check
if it were respected by theA. In our model we introduce two coun-
ters, one is called the universal counter and the other one is called
group counter. In facts, we have two types of main oracles the ones
who are internal to groups such as oJoin, oLeave, or oUpdate, and
another type which runs action over users from different groups
such as oSHandshake. Therefore, those types of oracles will have
each two counters therefore we can manipulate easily our model
to know the order of action that were run. We note that for group-
crossing-users oracles (e.g., oSHandshake,oSHandshakeLoR) only
use the universal counter.

Oracles. The challenger of each security game embodies all the
honest parties and knows their private keys. All the parties, in-
cluding the adversary A, will know the public parameters and
keys involved in the scheme. Moreover, we allow A to query the
following oracles:

• 𝑈 ∪ ⊥ ← oUReg(𝑈 ,𝑏): This oracle allows an adversary to
register a user 𝑈 as honest (𝑏 = 0) or malicious (𝑏 = 1). In
either case, the oracle first verifies whether the identity 𝑈
has already been queried to the oracle before and, if that
is the case, it responds with ⊥. Otherwise, it returns to the
adversary the handle𝑈 , and internally adds𝑈 to an (initially
empty) list Lhonest – if 𝑏 = 0 – or to an (initially empty) list
Lmalicious – if 𝑏 = 0.
• (𝐺,GA, spar𝐺 , ppar𝐺 ) ← oNewGroup(𝑏): This oracle al-
lows for the creation of a group 𝐺 (with a unique identi-
fier 𝐺). The group can be either honestly created (the in-
put bit is 𝑏 = 0) or malicious (𝑏 = 1). Whenever a new
group is created, a new manager identity GA is also created
and returned to the adversary. Finally, the oracle returns
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(spar𝐺 , ppar𝐺 ). If 𝑏 = 0 and the group is thus honest, the re-
turned spar𝐺 value is set to ⊥ (the adversary only learns the
public group parameters). The challenger keeps track of all
the groups by means of a database, whose entries are of the
form (𝐺,𝑏,GA, spar𝐺 , ppar𝐺 ,USet𝐺 ). Initially, each group
will be associated with an empty user-set, i.e., USet𝐺 := ∅. If,
for such an entry, the bit 𝑏 = 1 (the group was maliciously
created), then the adversary is assumed to have taken control
of the group authority GA.
• (𝑖, 𝑗, {sk𝑈 , pk𝑈 }, {sk𝑉 , pk𝑉 }𝑉 ∈USet𝐺 ,USet𝐺 ) ←
oJoin(𝑈 ,𝐺): This oracle allows an adversary to prompt the
honest group authority GA of a group 𝐺 to permit a user 𝑈
(honest or malicious) to join up. As a result, 𝑈 is added (by
the challenger) to 𝐺 and the parameters of all the members
of the new group (including those of𝑈 ) are output. For each
honest user 𝑉 ∈ USet𝐺 , the adversary only gets the public
key pk𝑉 , whereas the output sk𝑉 is set to ⊥. By contrast, for
each𝑉 ∈ USet𝐺 that is malicious or has previously been cor-
rupted, the adversary receives the genuine private key sk𝑉 .
The counters 𝑖 and 𝑗 are returned, where 𝑖 = #QoSHandshake
and 𝑗 = #QoUpdate(𝐺 ) + #QoJoin( ·,𝐺 ) + #QoLeave( ·,𝐺 ) .
• ⊥ ⊔ (𝑖, 𝑗,USet𝐺 , {𝑈𝐿 < sk𝐿, pk𝐿 >}𝐿∈USet𝐺,𝑖,𝑗−1\USet𝐺 ) ←
oLeave(𝐺,𝑈 ): First, this oracle, disallow to input 𝑈 with
all secret parameters of another user. Therefore, the secu-
rity model always assume that at least one of the 𝑈 ’s secret
material is used, otherwise return ⊥. This oracle returns,
depending on the protocol’s design, whether or not the se-
cret material of the users who have left the group 𝐺 and the
USet𝐺 obtained with the counters 𝑖 , and 𝑗 which is incre-
mented.
• (𝑖, 𝑗, {𝑈𝑉 < sk𝑉 , pk𝑉 >}𝑉 ∈USet𝐺 , {𝑈𝐵 < sk𝐵, pk𝐵
>}𝐵∉USet𝐺 ,USet𝐺 , 𝜋BAN) ← oBan(𝐺, tr, 𝑝): This oracle bans
a user from a given transcript addressed with a specific index
𝑝 to point out which part of the transcript is revelant for the
banishing including the data use to specify which participant
is faulty (e.g., it could be the 𝜏 issued during the handshake
or even the KShare𝑈 as in our protocol) and idem returns
counters 𝑖 and 𝑗 .
• (𝑖, 𝑗, {sk𝑈 , pk𝑈 }𝑈 ∈USet𝐺 ,USet𝐺 ) ← oUpdate(𝐺): This ora-
cle allows the adversary to exploit the key-updating process
of the secret handshake, even outside of joining and leaving
actions. For each 𝑈 ∈ USet𝐺 ∩ Lhonest, the adversary is
given only the new pk𝑈 , while the output for sk𝑈 is ⊥. For
users𝑈 ∈ USet𝐺 ∩ (Lcorrupt ∪ Lmalicious), both values are
honestly output. Also, the counters are returned idem for
counters 𝑖 and 𝑗 .

Remark 5. Order of oracles operating over a specific group can
be determined with counters. e.g., oLeave is always followed
by oUpdate could be written as:

∀𝑓 ∈ QoLeave(,𝐺 ) , ∃𝑢 ∈ QoUpdate(,𝐺 ) , 𝑓 . 𝑗 < 𝑢. 𝑗

• (𝑖, sk𝑈 ) ← oCorruptUser(𝑈 ): The adversary is given the
ability to corrupt users 𝑈 ∈ Lhonest. If 𝑈 ∉ Lhonest, the
oracle returns ⊥. Else, the oracle returns sk𝑈 , removes 𝑈
from Lhonest, then adds it to Lcorrupt, and returns with it 𝑖
which is equal to the number of calls of oSHandshake made.

This index 𝑖 allows us to know when the corruption were
made.
• (spar𝐺 , state) ← oCorruptGA(𝐺): The adversary can also
corrupt group authorities of groups 𝐺 which were honestly
created (the group database has 𝑏 = 0, marking that the
group is honest), thus receiving their full state and private
group parameters spar𝐺 . The bit 𝑏 is flipped for that group
in the database, to 𝑏 = 1 (they will be considered malicious
from now on).

The handshake oracle. A special oracle will be provided to the
adversary in order to allow it to run secret handshake session
with a number of honest users. In particular we assume that no
honest or corrupted user will actually engage of its own volition
in a handshake prompted by a malicious party: in order to achieve
this, the adversary has to query the oSHandshake oracle that we
describe below.

At each session 𝑖 , each user𝑈 that is not adversarially-controlled
will keep track of the following values: a session identifier sid𝑖

𝑈
,

a point-of-view transcript for the session tr𝑖
𝑈
, a session key 𝑘𝑖

𝑈
,

potentially set to ⊥ while the handshake is running and if the
handshake is rejected by that party, and finally, a number of partners
n𝑖
𝑈
.

• 𝑖, tr𝑖 ← oSHandshake(SHSet): Given a set of users noted
SHSet, which may include malicious, honest, and corrupted
users, this oracle allows the parties to run a new session
of the secret handshake protocol. The challenger will play
the part of the honest and corrupted parties, whereas the
adversary controls the malicious parties. We index calls to
this oracle by a counter, initialized at 1 for the first query,
and output the counter 𝑖 and a transcript tr (consisting of
messages exchanged over a public channel) back to the ad-
versary. Note that if the adversary has included malicious
or corrupted parties in the handshake, it will also update
its state in terms of the information it has been provided
throughout the protocol run.

D.3 Discussion about the new paradigm

Traitor Catching

The Traitor Tracing paradigm, called traitor tracing, appears first
in [9], where the main idea is to essentially watermark sensitive
data to make it traceable. “If only one person is told about some
secret, and this next appears in the evening news, then the guilty
party is evident. A more complex situation arises if the set of people
that have access to the secret is large. The problem of determining
guilt or innocence is (mathematically) insurmountable if all people
get, the exact same data and one of them behaves treacherously and
reveals the secret." – [9]. We note that this is the standard mecha-
nism used in the literature of secret handshake, finding its roots in
the original article from Balfanz et al. in [3] by means of traceable
signatures.

Here we propose a shift to a methodology that we call Traitor
Catching. We can illustrate it as follows. Consider the perpetrator
of a felony and a law-enforcement officer who is unable to narrow
down a set of suspects. If this is the status quo, then the scheme
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Game ExpAuthSHS ()
(msk, ppar) ← SHS.Setup(1𝜆)
Let OAuth:= {oUReg, oNewGroup, oJoin, oLeave, oUpdate,

oCorruptUser, oCorruptGA, oSHandshake}
DONE← AOAuth (1𝜆)
Awins ⇐⇒ ∃𝑠 ∈ QoSHandshake, 𝑠 .Win = 1

Figure 14: The user authentication game.

fails to guarantee Traitor Tracing. On the other hand, even if
the officer initially does not know who the traitor is, they can lay a
trap and try to find the perpetrator in that way. This is Traitor
Catching. Informally, Traitor Catching is defined as an adver-
sary being unable to ensure a handshake with at least one honest
user is successful after being banned.

Traitor Tracing vs. Traitor Catching:. The two approaches
each have their own pros and cons. The Traitor Catching prop-
erty has a greater complexity. On the other hand, it also offers
better privacy, and also prevents potential intrusion within the
group after the tracing is done. In our construction, we rely on a
combination of self-distinction and traitor catching, which ensures
that the group authority can also trace corrupted and malicious
users if the adversary tries to hide during traitor catching.

D.4 Security Definitions

ExpUnlinkSHS

Let OUnlink := {oUReg, oNewGroup, oJoin, oLeave, oUpdate,
oSHandshakeLoR𝑏 }

(ms, ppar) ← Setup(1𝜆)
𝑏

$← {“𝐿”, “𝑅”}
𝑏′ ← AOUnlink (ppar)
Awins ⇐⇒ 𝑏 = 𝑏′

∧∀𝑞 ∈ QoSHandshakeLoR, {𝑞.𝑈𝑅, 𝑞.𝑈𝐿} ∩ (MU ∪ CU) = ∅
∧𝑈𝐿 .groups𝑞.𝑖 = 𝑈𝑅 .groups𝑞.𝑖
∧{𝑈𝐿 .group𝑞.𝑖 .GA,𝑈𝑅 .group𝑞.𝑖 .GA} ∩ (CGA𝑞.𝑖 ∪MGA𝑞.𝑖 ) = ∅

Figure 15: Experiment Unlinkability

User authentication. The security definition for this property
in [17] is somewhat imprecise, both in terms of oracle formalisations

oSHandshakeLoR𝑏 (SHSet, (𝑈𝐿,𝑈𝑅))
if SHSet ∩ {𝑈𝐿,𝑈𝑅} ≠ ∅

return⊥
Δ← SHSet∪ < 𝑈𝑏 >

(𝑖, tr) ← Handshake(Δ)
𝐷𝐵𝐿𝑅 ← 𝐷𝐵𝐿𝑅 ∪ {(𝑖, tr,𝑈𝐿,𝑈𝑅)}

Figure 16: Oracle oSHandshakeLoR

ExpNFSHS
Let ONF := {oUReg, oNewGroup, oJoin, oLeave, oBan, oUpdate,

oSHandshake, oCorruptGA, oCorruptUser}
(ms, ppar) ← Setup(1𝜆)
(𝐺, tr, 𝜏) ← AONF (ppar)
Awins ⇐⇒ ∃𝑟 ∈ QoBan(𝐺,tr,pointer) , ∃𝑈 ∈ HU,
𝑈 ∈ USet𝐺,𝑟 .𝑖,𝑟 . 𝑗−1 \ 𝑟 .USet𝐺
∧¬(∃𝑠 ∈ QoSHandshake,𝑈 ∈ 𝑠 .Δ ∧ tr = 𝑠 .tr)

Figure 17: Experiment Non-frameability

ExpHand-SimSHS

Let OHand-Sim := {oUReg, oNewGroup, oJoin, oLeave, oUpdate,
oSHandshakeLoR𝑏 (·, (·, SIM))}

(ms, ppar) ← Setup(1𝜆)
𝑏

$← {“𝐿”, “𝑅”}
𝑏′ ← AOHand-Sim (ppar)

Awins ⇐⇒ 𝑏 = 𝑏′

∧∀𝑞 ∈ QoSHandshakeLoR( ·,·,SIM) , 𝑞.𝑈𝐿 ∉MU ∪ CU
∧𝑞.group.GA ∈ HGA

Figure 18: Experiment Handshake simulability

ExpS-DistSHS

Let OS-Dist := {oUReg, oNewGroup, oJoin, oLeave, oUpdate,
, oCorruptUser, oCorruptGA, oSHandshake, oTrace}

(ms, ppar) ← Setup(1𝜆)
DONE← AOS-Dist (1𝜆)
Awins ⇐⇒ ∃𝑒 ∈ QoSHandshake, ∃𝑈 ∈ 𝑒.Δ ∩ {HU ∪ CU},
#(𝑈 .plist𝑒.𝑖 ) < #𝑒.Δ ∧ 𝑈 .accept𝑒.𝑖 = 1

Figure 19: Experiment Self distinction

and in terms of the security game itself. As a result, we modify it
and (hopefully) add the necessary precision.

We will define a Win predicate for each oSHandshake query,
which will intuitively evaluate to 1 if, and only if, the adversary is
able to break authentication for that particular call, and 0 otherwise.

Definition 17 (Win for Auth.). Let oSHandshake(SHSet) be
the adversary’s 𝑖-th query to the oSHandshake oracle, with the entire
protocol execution that leads to completion. We evaluate the predicate

Win for that handshake to 0, except if all the following conditions

hold (in which case,Win evaluates to 1):
• ∃𝑈 ∈ SHSet ∩ (Lhonest ∪ Lcorrupt) which has computed, in

that session a key 𝑘𝑖
𝑈

≠ ⊥;
• �𝐺 such that∀𝑈 ∈ SHSet, a query oJoin(𝑈 ,𝐺) was made, but

no oLeave(𝑈 ,𝐺) query was also made, prior to the execution

of the 𝑖-th handshake;

• Letting 𝐺𝑟 := {𝐺 : ∀𝑈 ∈ SHSet ∩ (Lhonest ∪ Lcorrupt)}:
– A has never queried oCorruptGA(𝐺) for 𝐺 ∈ 𝐺𝑟 ;
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ExpCatchSHS

Let OCatch := {oUReg, oNewGroup, oJoin, oLeave, oUpdate,
oCorruptUser, oCorruptGA, oSHandshake}

DONE← AOCatch (1𝜆)
Awins ⇐⇒
∃𝑠 ∈ QoSHandshake, ∃𝐻 ∈ 𝑠 .Δ ∩ {HU ∪ CU},
𝐻 .accept𝑠.𝑖 = 1 ∧ 𝐻.group𝑠.𝑖 .GA ∈ HGA𝑠.𝑖

∧MU𝑠.𝑖 ∩ USet𝐻.group𝑠.𝑖 ,𝑠 .𝑖 =

( {𝑉 ∈ MU𝑠.𝑖 : ∃𝑒 ∈ QoJoin(𝑉 ,𝐻 .𝑔𝑟𝑜𝑢𝑝𝑠.𝑖 ) ,
∃𝑓 ∈ QoLeave(𝑉 ,𝐻 .group𝑠.𝑖 ) , ∃𝑢 ∈ QoUpdate(𝐻.𝑔𝑟𝑜𝑢𝑝𝑠.𝑖 ) ,
𝑒 .𝑖 ≤ 𝑓 .𝑖 ≤ 𝑢.𝑖 < 𝑠 .𝑖 ∧ 𝑒. 𝑗 < 𝑓 . 𝑗 < 𝑢. 𝑗}
∪ {𝐼 ∈𝑚.Δ ∩MU𝑠.𝑖 : ∃𝑚 ∈ QoSHandshake,
∃𝑟 ∈ QoJoin(𝐼 ,𝐻 .group𝑠.𝑖 ) , ∃𝑏 ∈ QoBan(𝐻.group𝑠.𝑖 ,𝑚.tr,𝑚.𝜏𝐼 )

∃𝑝 ∈ QoUpdate(𝐻.group𝑠.𝑖 ) ,
𝑟 .𝑖 ≤ 𝑏.𝑖 ≤ 𝑝.𝑖 ≤ 𝑚.𝑖 ∧ 𝑟 . 𝑗 < 𝑏. 𝑗 < 𝑝. 𝑗})
∩USet𝐻.group𝑠.𝑖 ,𝑠 .𝑖

Figure 20: Experiment Traitor Catching

ExpRes-HideSHS

Let ORes-Hide := {oUReg, oNewGroup, oJoin, oLeave, oUpdate,
oSHandshakeLoR𝑏 (·, (·, SIM))}

(ms, ppar) ← Setup(1𝜆)
𝑏

$← {“𝐿”, “𝑅”}
𝑏′ ← AORes-Hide (ppar)
Awins ⇐⇒ 𝑏 = 𝑏′ ∧ QoCorruptGA = ∅
∧∀𝑎 ∈ QoJoin,∀𝑐 ∈ QoCorruptUser

=⇒ [[∃𝑙 ∈ QoLeave(𝑎.𝐺,𝑙 .𝑈 ) , 𝑎. 𝑗 < 𝑙 . 𝑗 ∨ 𝑐. 𝑗 < 𝑙 . 𝑗]
∨[∃𝑠 ∈ QHandshake, ∃𝑏 ∈ QoBan,
𝑠 .𝑈 ∈ 𝑏.{𝑈𝐵}𝐵∉USet𝐺 ∧ 𝑏.𝑖 > 𝑠 .𝑖]]

Figure 21: Experiment Result-hiding

– if A queried oCorruptUser(𝑈 ) for any user 𝑈 for which

oJoin(𝑈 ,𝐺) was queried with 𝐺 ∈ 𝐺𝑟 , then oLeave(𝑈 ,𝐺)
was also queried prior to beginning the 𝑖-th oSHandshake
interaction. Notice that in this case 𝑈 need not be part of

SHSet.

A formal definition of this predicate translates to:

A wins

⇐⇒ ∃𝑠 ∈ QoSHandshake, ∃𝐻 ∈ 𝑠 .Δ ∩ {HU ∪ CU},
𝐻 .accept𝑠.𝑖 = 1 ∧ 𝐻.group𝑠.𝑖 .GA ∈ HGA𝑠.𝑖

∧ (∀𝑈 ∈ 𝑠 .Δ,∀𝑒 ∈ QoJoin(𝑈 ,𝐻 .group𝑠.𝑖 ) ,

∃𝑓 ∈ QoLeave(𝑈 ,𝐻 .group𝑠.𝑖 ) , ∃𝑢 ∈ QoUpdate(𝐻.group𝑠.𝑖 )

𝑒.𝑖 ≤ 𝑓 .𝑖 ≤ 𝑢.𝑖 < 𝑠 .𝑖 ∧ 𝑒. 𝑗 < 𝑓 . 𝑗 < 𝑢. 𝑗))
∧ (∀𝐺 ∈ {𝐻.group𝑠.𝑖 },
∀𝐶 ∈ (MU𝑠.𝑖 ∪ CU𝑠.𝑖 ) ∩ USet𝐺,𝑠.𝑖 ,

∃𝑙 ∈ QoLeave(𝐶,𝐺 ) , ∃𝑝 ∈ QoUpdate(𝐻.group𝑠.𝑖 ) ,

𝑙 .𝑖 ≤ 𝑝.𝑖 < 𝑠 .𝑖 ∧ 𝑙 . 𝑗 < 𝑝. 𝑗)

There are a few differences between our notion and that of [17]:

• Tsudik and Xu use a notation in which the adversary may
insert itself at any spot in the participant vector and play
the handshake. Instead, in our framework the attacker can
choose to use malicious users (one or more) as part of any
handshake.
• We formulate the winning conditions of our authentication
game in terms of the predicateWin, which can be computed
after each execution of the Secret Handshake protocol (fol-
lowing a query to oSHandshake). The predicate will be set
to 1 if the adversary has managed to convince at least one
user which is a current, legitimate member of a group to
accept (and compute a key) with a set of users, at least one
of which is not a current, legitimate member of the same
group.

D.5 Proofs

For the reader, we define S𝑖 as the event of winning the game G𝑖 .

Full-unlinkability. The sk𝑈 of the victim user 𝑈 leaked then
an attacker A which has recorded all the transcript can check if
A has already encounter𝑈 in some previous sessions by running
DetectBannedUser by replacing the set KRL by {sk𝑈 } ; By exploit-
ing the property of Self distinction.

Remark 6. One may think that Self distinction and

Full-unlinkability are incompatible but a protocol with a special

one-time credential could meet both of them for example.

Unlinkability. Let𝔓 be the protocol described in subsection 5.2
with the following parameters:

Theorem 2. Suppose there exists an attacker A against the Un-

linkability of LCA, which wins with advantageAdvUnlinkLCA (A). Then,
there exist adversaries (called reductions) R1,R2 against respectively,

the Unlinkability of AGKA-FR winning with AdvGKA-UnlinkAGKA-FR (R1),
and the Unlinkability of ListMAC winning with AdvUnlinkListMAC (R2),
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such that:

AdvUnlinkLCA (A) ≤AdvGKA-UnlinkAGKA-FR (R1) +
(
𝑞oSHandshake

2

)
2 |−KShare𝑈𝑏

|

+ AdvUnlinkListMAC (R2)

Proof. [G0:Orig.] In this original game G0, the adversary plays
with the oracle oSHandshakeLoR𝑏 trying to guess the value of 𝑏.
We have the following probability :

AdvUnlinkSHS (A) = P[S0] −
1
2

[G1:Bridging] We introduce a game G1 which have a slight mod-
ification compare to G0; In G1 the user𝑈𝑏 uses the KShare𝑈𝐿

. We
state that the probability is:

P[𝑆0] = P[𝑆1] ∵ state𝑈𝑏

𝐶.𝐼≡ state𝑈𝐿

Since the value state𝑈𝑏
and state𝑈𝐿

are picked independently uni-

formly from {0, 1}∗. Hence, state𝑈𝑏

𝐶.𝐼≡ state𝑈𝐿
i.e., the probability

space doesn’t differ from the G0.

[G2:Indig.] We introduce Game G2, which is a slight modifica-
tion in the oSHandshakeLoR of the previous game G1. During the
AGKA-FR the user𝑈𝐿 is always chosen and shares the state of𝑈𝑅
with𝑈𝑏 :

We claim that the probability is:

|P[S2] − P[S1] | = AdvGKA-UnlinkAGKA-FR (R)

LetA be an adversary that wins the Unlink for SHS and let R be
an advarsary against Unlink for AGKA-FR. Let C be R’s challenger.
We show how R perfectly simulates the experiment for A to win
its own experiment.

R picks a game uniformly, either G1 or either G2, labeled under

the bit𝑏R . C picks randomly𝑏C
$← {“𝐿”, “𝑅”}. WheneverA sends a

tuple (SHSet,𝑈𝐿,𝑈𝑅) to R, the latter forward it to C. C answers by
running AGKA-FR.oLoRNewSession𝑏C and returns the transcript
trAGKA-FR to R if 𝑏R = G1; otherwise if 𝑏R = G2, C returns the
transcript of the AGKA-FR.oLoRNewSession𝐿 played under the G2
i.e., it runs the AGKA-FR.KA only with𝑈𝐿 .

Since A is able to win the Unlink for SHS, A guess 𝑑A which
user was played with. Notice the only difference between the two
games is that the AGKA-FR.oNewSession is called or not with the
𝑈𝑏C or 𝑈𝐿 . Therefore, we state that the probability for A to win in
G1 is almost the same as to win in G2 except A couldn’t use the
information of the AGKA-FR in G2 but can still use the information
leaking of other building blocks.

|P[S2] − P[S1] | = |P[AwinsG2] − P[AwinsG1] |
= |P[AwinsG2] − P[AwinsG2] − 𝜖 |
= 𝜖

[G3:Indig.] We introduce the following game G3, where we do
not allow anymore the re-use of the same sid during a handshake
in oSHandshakeLoR.

We describe how this condition is useful for A, and how it can
occur to draw the probability.

∀𝑞 ∈QoSHandshakeLoR,

(∀𝑎 ∈ QoSHandshakeLoR \ {𝑞}, 𝑎.tr.sid ≠ 𝑞.tr.sid)

∧(∀𝑏 ∈ QoSHandshake, 𝑏.tr.sid ≠ 𝑎.tr.sid)

It means that during the AGKA-FR all users agreed on a value
such that it produces the same KShare as in a previous session.
The aftermath is that A can guess which user have been played
with, since we have Self distinction. Here’s the following steps
to guess:

(1) A call the oracle oSHandshakeLoR𝑏 with SHSet,𝑈𝐿,𝑈𝑅
(2) A call the oracle oSHandshake with SHSet ∪𝑈𝐿 and man-

ages to make agreed all on the same KShare
(3) A having participating in both sessions (the left-or-right

one and the usual handshake as explain in item 2, therefore
by running the algorithm LM.Match on the tags of the given
transcripts. If it matches thereforeA determines that 𝑏 = “𝐿”
otherwise 𝑏 = “𝑅”

We consider that the probability that A manages to gener-
ate twice the same sid lies on the construction of its generation.
First, each user involved in the handshake publish a key share i.e.,
∀𝑈 ∈ Δ, state𝑈 . Then according to a certain ordinal operation they
agreed on a concatenation. Since there’s at least one honest user in
Δ it becomes almost impossible to agree on the same sid, but not
impossible. The A can tries to run as many handshakes as possi-
ble hopping that the user 𝑈𝐿 will generate the same state𝑈𝐿

. The
probability to occur is, as described with the differential lemma:

|P[S3] − P[S2] | ≤
(
𝑞oSHandshake

2

)
2 |−state𝑈𝑏

|

[G4:Indig.] We introduce a new game G4 with a slight modifi-
cation at G4 .oSHandshakeLoR where the tag (𝜏𝑈 , 𝜋𝑈 ) is always
issued by user𝑈𝐿 i.e., using sk𝑈𝑏

.
Let A be an adversary that wins the Unlink for SHS and let R

be an adversary against anon for ListMAC. Let C be R’s challenger.
We show how R perfectly simulates the experiment for A to win
its own experiment.

First C toss 𝑏C
$← {“𝐿”, “𝑅”} to decide which user will be used.

The R chooses a bit 𝑏R
$← {G3,G4} to choose which game to simu-

late.WheneverA calls the oracle oSHandshakeLoRwith SHSet,𝑈𝐿,𝑈𝑅 ,
then R forward the tupple (𝑈𝐿,𝑈𝑅,𝑚,KShare) with𝑚 choosen by
R in the space of allowed messages for ListMAC and KShare public
from the handshake, to C to the oracle oTagLoR.
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C R A

𝑏C
$← {“𝐿”, “𝑅”} 𝑏R

$← {G3,G4}
SHSet,𝑈𝐿,𝑈𝑅←−−−−−−−−−−−−

𝑚
$← ListMAC.M

𝑈𝐿,𝑈𝑅,𝑚, sid←−−−−−−−−−−−
𝜏, 𝜋
−−→

𝜏, 𝜋
−−→

𝑑A ← AO
𝑏C
Unlink

𝑑A←−−
𝑑R ← 𝑑A

𝑑R←−

Figure 22: Simulation during a call to oSHandshakeLoR with

a reduction R against ExpanonListMAC

Therefore, we obtain:

|P[S4] − P[S3] | = |P[AwinsG4] − P[AwinsG3] |

= AdvUnlinkListMAC (R)

[G4:Final] This G4 will always have a probability of 1
2 beacause

even if C chooses the the user “𝐿” or “𝑅”, A cannot conclude since
the game is only played with the user “𝐿”.

Therefore the Theorem 2 is true. □

Non-frameability.

Theorem 3. Suppose there exists an attacker A against the Non-

frameability of LCA, which wins with advantage AdvNFLCA (A). Then
there exist adversaries (called reductions) R1,R2 against respectively,

the Non-frameability of ListMAC winning with AdvUnlinkListMAC (R1),
such that:

AdvNFLCA (A) ≤ AdvNFListMAC (R1) +
(2𝑞 + 1)4

2𝑛

𝑚𝑖

{𝜏∗} {state∗} noncesid𝑡 state𝑖

sid

acc

{𝜏acc∗ } acc𝑖

as message

Self distinction
as aux

as aux
𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔

Self distinction

as message

Figure 23: Big picture of interdependencies between all the

values in a SHS secret handshake transcript

Proof. [G0:Orig.] In this original game G0, the adversary A
plays ExpNFLCA trying to forge a valid transcript tr. We have the
following probability:

AdvNFLCA = P[S0]
[G1:Indig.] We introduce a new game S1 with a slight modifi-

cation which idealize the ListMAC. Let A be an adversary that

wins the NF for LCA and let R be an adversary against NF for
ListMAC. Let C be R’s challenger. We show how R perffectly sim-
ulates the experiment for A to win its own experiment. R chooses

a bit 𝑏R
$← {G1,G0} to choose which game to simulate. Whenever

A forge a transcript tr, A forwards it to R. The latter extract the
target (, 𝑇 , noncesid𝑡 , 𝜏𝑇 , sid𝑇 ) from the transcript tr and forwards
it to C. Hence, the probability is:

|P[S1] − P[S0] | ≤ AdvNFListMAC (R)
[G2:Failure] We introduce a condition to abort if we detect a

collision. If A return a transcript that contains the same value
acc𝑇 as one issued during oSHandshake but with differents tags,
therefore we detect a collision-finding. Since we use QROM the
obtained probability is:

|P[S2] − P[S1] =
(2𝑞 + 1)4

2𝑛
To give some more explaination, since we are in NF-game, the

A can collude with the GA and therefore forge as many new tags
as possible in order to generate a new set of tags such that acc =
𝐻 (state𝑖 | |𝜏 ′1 | |state

′
1 | |...| |𝜏

′
𝑥 | |state′𝑥 ).

[G2:Final] From now there’s no further possibilities to win the
game. therefore Theorem 3 is true. □

E MITIGATION FOR DATA MINIMIZATION

The principle of Data Minimization means that a data controller
should limit the collection of personal information to what “is di-
rectly relevant and necessary to accomplish a specified purpose”
[15, 16]. As mentioned earlier, previous model used the paradigm of
Traitor Tracing in which, given a transcript, the group manager
trace the user that participated in it to afterward ban the concerned
misbehaving/politically incorrect user. This gives to the group man-
ager too much information such as the identities of each concerned
secret handshake’s participants.

At our known, compare to the current literature we state that our
protocol achieves the Data Minimization – keep in mind that the
definition isn’t very formal and stands only for legal reasons – with
our new paradigm, Traitor Catching. The data that are transmit-
ted to the group manager are : (1) an excerpt of the conversation16
(it can implicitly draw the relation between the participants e.g.,
who is a leader, etc) but even though it avoids judgement based on
out-of-context; (2) the identity of the banned user if the banishment
is done, relies on the Traitor Catching.

On the other hand, the information that are kept secret to the
users are: (1) the number of participants, except of what is mentioned

inmessages since the users have the possibility to trim the transcript;
(2) the identity of users, except the banned one; (3) the identity of the
plaintiff (without a loss of generality we state that Obliviousness
– see definition 18 – couldn’t be respected in a real world; even
though we propose a method to mitigate it17).

Definition 18 (Obliviousness). Based on network information

such as IP address, size packages, time, speed, etc, a monitor can

16Participants are producing a conversation that is chained with the possibility to
extract blocks of conversation for further reading see subsection 5.2.

17We propose a contamination mechanismwhere the plaintiff at the next successful
handshake for the same group will send the complaint (ciphered) to other users
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deduce interaction between users and some information to them e.g.,

someone using the same IP could be deanonymized, an IP receiving

many connections could be a server.

To sum up, the breakthrough in privacy that we gain with our
new paradigm – Traitor Catching – is that only the concerned
misbehaved user identity is revealed to the group manager i.e., the
identities of the participants, except the misbehaved one, in the
examined handshake is kept unknown to the group manager. To do
so the group manager deploys a ‘trap’, and only the targeted user
will not be able to pass it. The ‘trap’ consists of a commit-challenge-
response. First a complaining user publish the transcript which is
seen as a commit, then the group manager instantiate a trap which
is seen as a challenge, and users tries to go through to obtain a
new nonce by sending their responses. We discuss a lot more at
subsection D.3.

Messaging. To avoid any malleability in our messaging i.e., Non-
frameability, we propose to sign as many messages as possible.
This could have harmful performances in terms of size and opera-
tion. Therefore one of the simplest solution is to chain our messages
(as in a “naive" blockchain) and sign them at a specific period 𝑇𝑟 ,
refer to Figure 24a and Figure 24b. We notice that the (𝛽) chain
follows a KDF Chain described in [? ], but it isn’t used as an up-
date of the session key. In other words the (𝛽) chain isn’t used for
confidentiality but only for integrity and authenticity purposes.

𝛽𝑖 𝛽𝑖+1

𝑚𝑖+1

Extract(Expand(𝛽𝑖 ,𝑚𝑖+1 ) )

(a) Chaining system ∀𝑖, 𝑖 . 0 (mod 𝑇𝑟 )
𝛽𝑖 𝛽𝑖+1 𝜎𝑖+1

𝑚𝑖+1

Extract(Expand(𝛽𝑖 ,𝑚𝑖+1 ) ) ListMAC.Tag(sk𝑈 ,𝛽𝑖+1 | |𝑚𝑖+1 )

(b) Chaining system ∀𝑖, 𝑖 ≡ 0 (mod 𝑇𝑟 )

Figure 24: Chaining system for messages

Therefore for every ∀𝑖, 𝑖 . 0 (mod 𝑇𝑟 ) the user sends 𝛽𝑖+1 | |𝑚𝑖+1.
And for every ∀𝑖, 𝑖 ≡ 0 (mod 𝑇𝑟 ) the user sends 𝛽𝑖+1 | |𝜎𝑖+1 | |𝑚𝑖+1.

Note, that there is a privacy concern with the length of each
message. The trade-off here is the optimization. If we want to sign
every message therefore it is still interesting to keep the chain to
avoid any A to manipulate the order of the messages at his will.
Even though one of the countermeasure is to pad messages of the
same length.

In case of a desynchronization, here the chaining is “naive" and
doesn’t need to be bothered by others users. Therefore, if a desyn-
chronization happened, for example the 𝛽𝑖 doesn’t correspond, then
a resynchronization is run. The interlocutor sends the last 𝛽𝑖 and
then the user sends back the rest of messages {𝑚𝑘 |∀𝑘 > 𝑖} and sign
them.

trim. This algorithm helps to build a correct complaint without
revealing the number of participants nor the whole conversation
etc. We notice that the transcript is a set of tags that are almost
independent to each others; in fact this allows us to cherry-pick
only the tag of the misbehaved user. Also in the same scope, by
the helps of messaging, we can also cherry-pick a block of the
conversation, in respect of the𝑇𝑟 . Still note that trim isn’t designed
to modify the content of messages, this can leak some information
such as the number of participants or some identities.

Contamination. As mentioned before for a banishment, due to
the identification used in CBU2.Send it is easy for the GA to trace
back the plaintiff. Therefore, we propose a contamination method-
ology to reduce the risks for the plaintiff. One of the possibility
that doesn’t involve any cryptographic parts are based on offer &
demand market:

(1) everyone has to send one packet to the nonce+ 1 (therefore
the transmission isn’t exponential)

(2) each time a user rerandomize it or replace it with its com-
plain;

(3) the package received and send it to someone of the group
whose nonce is the closest of the obtained hash of the com-
plaint;

(4) this user has the choice to report it or contaminate the next
person in another handshake.

Therefore, the market regulates itself, between those who are com-
plaining, those whose transmit and those whose report it. This
solution prevents from over flooding the network by keeping the
number of packages constant. Even though seeing its complaint
unsatisfied the plaintiff could renew. The numbers of instance can
reveal something on the seniority of the user. Since then the package
is replicated many times over the network.

To sum up, during a period of high complaining, less will reach
the GA; in low complaining many will reach the GA i.e., regulation
as in free market. If one user is flooding its packages repeatedly
therefore its complain has a better chance to reach the GA.

It needs Enc, Dec, Rerand with pkGA. Plus it respects Oblivi-
ousness inside of a group it prevents the GA to reveal the plaintiff
(could be a potential whistleblower).
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