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Abstract. This paper improves upon the quantum circuits required for the Shor’s
attack on binary elliptic curves. We present two types of quantum point addition,
taking both qubit count and circuit depth into consideration.
In summary, we propose an in-place point addition that improves upon the work of
Banegas et al. from CHES’21, reducing the qubit count – depth product by more
than 73% – 81% depending on the variant. Furthermore, we develop an out-of-place
point addition by using additional qubits. This method achieves the lowest circuit
depth and offers an improvement of over 92% in the qubit count – quantum depth
product (for a single step).
To the best of our knowledge, our work improves from all previous works (including
the CHES’21 paper by Banegas et al., the IEEE Access’22 paper by Putranto et al.,
and the CT-RSA’23 paper by Taguchi and Takayasu) in terms of circuit depth and
qubit count – depth product.
Equipped with the implementations, we discuss the post-quantum security of the
binary elliptic curve cryptography. Under the MAXDEPTH metric (proposed by the
US government’s NIST), the quantum circuit with the highest depth in our work is
224, which is significantly lower than the MAXDEPTH limit of 240. For the gate count
– full depth product, a metric for estimating quantum attack cost (used by NIST), the
highest complexity in our work is 260, considerably below the post-quantum security
level 1 threshold (of the order of 2156).
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1 Introduction
Elliptic curves are a key element in modern cryptography. The Elliptic Curve Cryptography
(ECC) [Kob94] makes use of the algebraic structure of the elliptic curves over finite fields
for public-key cryptography. The potential use of elliptic curves in cryptography was
suggested over three decades ago, independently by Miller [Mil85] and Koblitz [Kob87]. In
the present time, ECC has become a staple component in modern electronic communication,
such as, key exchange [DH22], or digital signatures [ElG85, JMV01].

The security of ECC is based on the difficulty of solving the discrete logarithms in
elliptic curve groups (known as the Elliptic Curve Discrete Logarithm Problem, or ECDLP
for short). The efficiency of ECC comes from the fact that the best-known algorithms
[GG16] for solving ECDLP have an exponential time complexity relative to the input
size. ECC is particularly appealing due to its efficiency. It offers strong security bound
while requiring smaller key sizes than RSA (and other public key cryptographic systems)
[RSA78]. For instance, Barker’s recommendations [Bar20], on behalf of the National
Institute of Standards and Technology (NIST) by the United States’ government, indicate
that a 224-bit elliptic curve offers comparable classical security as a 2048-bit RSA modulus.
Table 1 provides estimated classical security comparison for the ECC and RSA (here, the
order of generator point of the prime order subgroup of the elliptic curve group in number
of bits are considered for ECC). Note that classical security (in bits) is less than length
of the key, unlike the (typical) symmetric key ciphers. We refer to Appendix A for a
non-exhaustive use-cases of ECC in modern electronic communication.

Table 1: Comparison of classical security between ECC and RSA.
Classical security (bits) RSA✴ ECC✵

80 1024 160 – 223
112 2048 224 – 255
128 3072 256 – 383
192 7680 384 – 511
256 15360 ≥ 512

✴: Product of two primes in number of bits.
✵: Order of generator point.

Despite such popularity and widespread usage; ECC, akin to RSA, suffers from the
quantum vulnerability. To be more precise, it is known that the Shor’s algorithm in [Sho94]
for computing discrete logarithms in finite fields of prime order can be extended to other
fields, including elliptic curves.

We have seen the rapid progress of the quantum computers in the past few years. It is
already well-known that ECC based systems cannot withstand the threat posed by the
quantum computing paradigm. This realization, in turn, has motivated the researchers in
the community to look for quantum-secure alternatives to the public-key ciphers, ultimately
what is now known as the post-quantum cryptography (see [BL17] for reference). Specially,
one may notice from [RNSL17] that; when compared with cryptographically relevant
sizes (i.e., similar classical security), prime elliptic curves can be solved more easily on a
quantum computer than factoring an RSA modulus based on the currently-known best
results at that time. Recently, Gidney and Ekerå have reduced the cost of attacking RSA in
quantum in [GE21]. Additionally, Banegas, Bernstein, van Hoof and Lange have presented
a concrete quantum cryptanalysis of binary field ECCs [BBvHL20], demonstrating that it
is easier to attack than prime field1 ECC [RNSL17].

Given the accelerating improvements in achieving a functional quantum computer
relatively soon, one may wonder exactly how hard/easy it is to break ECC. In this work,

1One may recall that, a binary field contains 2n elements (for some integer n ≥ 1), whereas a prime
field contains p (which is a prime) elements.
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we humbly strive to answer that question by presenting new results on the quantum
cryptanalysis of binary field ECC, which has only become possible by standing on the
shoulder of giants (including but not limited to [BBvHL20, PWLK22, TT23]).

Contribution
This paper improves quantum point addition on binary elliptic curves, with a primary
focus on optimizing quantum circuit depth, while the number of qubits is considered as a
secondary factor. Compared to previous works, we achieve the lowest Toffoli depth and
circuit depth. For the product of depth and qubit count, we achieve improvements of the
order of 73% – 81% in our in-place point addition and more than 92% in our out-of-place
point addition. These improvements (see Table 8) are realized through optimizations at
the following three logical levels (Section 3):

• We begin by optimizing at the component level (Sections 3.2 and 3.3), where we
use depth-efficient quantum circuits for binary field operations. This includes an
out-of-place squaring technique (with a proposed/used optimization, as detailed
in Section 3.2.1 and Appendix C) and the depth-optimized multiplication method
proposed by Jang et al. in [JKL+23].

• Moving on to the combination level (Section 3.4), the division algorithm benefits from
an inversion approach based on the Fermat’s Little Theorem (FLT). Our inversion
leverages a shallow technique that reuses qubits through reverse operations, keeping
the circuit depth unchanged. Moreover, we achieve further improvements when
multiple sequential multiplications are required, such as in the inversion process, as
the multiplication method by Jang et al. [JKL+23] is particularly effective due to
its capability to reuse the ancilla qubits.

• Finally, at the architecture level (Section 3.5), we present two implementations: FLT-
in and FLT-out. We modify the in-place point addition method from [BBvHL20],
FLT-in. We add a copy process for the control qubit in the Shor’s quantum circuit
and compress the conditional operations in the middle steps of [BBvHL20] by using
a pre-computed result. We also develop the out-of-place point addition, FLT-out,
which computes the result of point addition independently while preserving the input.
This approach significantly reduces both the circuit depth and gate count by allowing
the use of additional qubits.

We construct the quantum circuit required for running the Shor’s algorithm (Section 4)
using our point addition techniques and discuss its efficiency while evaluating the post-
quantum security of binary ECC (Section 5.1).

The paper concludes in Section 6 with a note on future directions. Supplementary
material is given in Appendices A, B (quantum gates), C, D (few worked-out examples),
E (inversion circuit as an annex) and F (semi-classical circuit for Fourier transform).
Our source codes are written in ProjectQ [SHT18]2 and can be accessed online as an
open-source project3.

For clarity, the following major results are produced in this paper: Tables 3, 4, 6
(although this is a collection of algorithms), 7, 9 and 10; Figures 3(b) and 3(c); and
Algorithms 1 and 2; on top of our results being highlighted in Tables 5 and 8. Except
for multiplication (Section 3.3), the rest of the algorithms are newly proposed in this
paper; thus the algorithms used for squaring, inversion, and in-place and out-of-place point
additions are our innovation.

2See also https://projectq.ch/ and https://github.com/ProjectQ-Framework/ProjectQ.
3Accessible at https://github.com/starj1023/Binary_ECC.

https://projectq.ch/
https://github.com/ProjectQ-Framework/ProjectQ
https://github.com/starj1023/Binary_ECC
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2 Background

2.1 Binary Field
A binary field (denoted by F2n) is a finite field having characteristic 2 and contains
2n elements for some integer n ≥ 1. A binary field can be instantiated using binary
polynomials. In particular, let F2[x] be the collection of all polynomials in formal variable
x with coefficient in F2. Let m(x) ∈ F2[x] be an irreducible polynomial of degree n (which
is called the modulus). The quotient ring F2[x]/m(x) is then a finite field with 2n elements.
It may be noted that two finite fields with the same cardinality are isomorphic to each
other. Therefore, while the exact choice of the modulus polynomial m(x), as long as it is
irreducible, does not impact the classical security4, even though it impacts the efficiency
(in terms of faster execution, low bandwidth requirement etc.). Thus, in practice, the
modulus that can be implemented more efficiency is considered more important. Examples
of binary fields can be found in Examples 1 (toy) and 2 (standard).

2.2 Binary Elliptic Curves
Binary elliptic curves, as the name suggests, are defined over binary fields F2n . An ordinary
binary elliptic curve of degree n (i.e., it is defined over a binary field of order 2n) is given
by

Ba,b : y2 + xy = x3 + ax2 + b; where constants a, b ∈ F2n and b ̸= 0. (1)

The above representation of binary elliptic curve is also called short/simplified Weierstrass
form. The curve is well-defined for any value of a and b, as long as b is a non-zero element.

The elliptic curve includes all points (x, y) which satisfy the elliptic curve equation
(Equation 1) over F2n (where x and y ∈ F2n). An elliptic curve group consists of the points
on the elliptic curve, together with a point at infinity (denoted by ∞).

The point at infinity serves as the identity element in the elliptic curve group. In other
words, given an arbitrary point P ∈ Ba,b, P +∞ =∞+ P = P . For any point P = (u, v)
on Ba,b, the inverse point, denoted as −P , is (u, u+ v), and it satisfies P + (−P ) =∞.

Let P1 = (u1, v1) and P2 = (u2, v2) be distinct points on Ba,b such that P1 ̸= ±P2.
Then, the point addition P1 + P2 yields the point Q = (u, v) where

u = δ2 + δ + a− u1 − u2 and v = δ(u1 + u)− u− v1, with δ = (v2 + v1)/(u2 + u1). (2)

For the case where P = (u1, v1) is a point on Ba,b such that P ̸= −P . Then, the point
doubling operation, P + P = 2P is represented by Q = (u, v) where

u = δ2 + δ + a = u2
1 + b/u2

1 and v = δ(u1 + u)− u− v1, with δ = u1 + v1/u1. (3)

An illustrative example of binary elliptic curve is given in Example 3. In point
addition, arithmetic operations such as addition, squaring, multiplication and division
within the binary field are involved5. For faster point addition, efficient implementations
of multiplication and division are particularly crucial in the classical computing. Some
examples of binary elliptic curves are given in Examples 4, 5 and 6 for completeness.

4However, the impact of the choice of the modulus on the quantum security is not well-studied yet, to
the best of our finding.

5Arithmetic operations on binary elliptic curves are well-suited for hardware implementation due to
the structure of the binary field. Notably, in quantum circuit implementations, these operations are highly
optimized. Indeed, the work in [BBvHL20] implement quantum circuits for binary curves and achieve
greater efficiency compared to those for prime curves [RNSL17, HJN+20].
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Table 2: List of binary fields considered within context.
Degree Modulus Source/Reference
n = 8 x8 + x4 + x3 + x+ 1

CFADLNV [CFA+05]n = 16 x16 + x5 + x3 + x+ 1
n = 127 x127 + x+ 1
n = 163 x163 + x7 + x6 + x3 + 1

CMRRR [CMR+23]n = 233 x233 + x74 + 1
n = 283 x283 + x12 + x7 + x5 + 1
n = 571 x571 + x10 + x5 + x2 + 1

2.3 Coordinate Systems
2.3.1 Affine & Projective

The points on a binary elliptic curve are generally represented using the affine or the
projective coordinate systems.

In the affine coordinate representation, a point on elliptic curve is specified by two
coordinates as (x, y); where x, y ∈ F2n satisfying Equation (1). The point at infinity has
no representation in the affine coordinates.

We can make use of the concept of a projective plane over the field F2n to define the
projective coordinates (also called the homogeneous coordinates). Here, one can represent
a point using three coordinates, (x, y, z).

Notice that the computation of the sum of two points on elliptic curve (refer to
Equations (2) and (3)) requires several multiplications, additions, and inverses in the
underlying field F2n . To avoid the expensive cost of field inversion associated with the
arithmetic of affine point representation, the projective coordinates is used in [AMV93].

Let Ba,b be the binary elliptic curve over F2n defined in Section 2.2. We can view Ba,b

as the set of all points in P2(F2m) which satisfy the cubic equation,

y2z + xyz = x3 + ax2z + bz3.

Recall that P2(F2m) denotes the projective plane over F2m and the point (0, 1, 0)
represents the identity O in Ba,b. To derive the addition formulae for the elliptic curve
with this representation, we take the points P = (x1, y1, z1) and Q = (x2, y2, z2), then
normalize each to (x1/z1, y1/z1, 1), (x2/z2, y2/z2, 1), and then apply the aforementioned
formulae for addition: If P,Q ̸= O; and P ̸= −Q; then P + Q = (x3, y3, z3) where, if
P ̸= Q, then

x3 = AD,

y3 = CD +A2(Bx1 +Ay1),
z3 = A3z1z2

where

A = x2z1 + x1z2, B = y2z1 + y1z2, C = A+B, D = A2(A+ ax1z2) + z1z2BC.

In the case of P = Q, then
x3 = AB,

y3 = A4 +B2(x1z1 + y1z1 +A),
z3 = A3.

where A = x1z1 and B = bz1 + x2
1.

This system of projective coordinates is adopted in [ASR12] to estimate the quantum
cost (avoiding division operations). This is not considered in our work, but can be
considered in the future.
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2.3.2 Others

There have been several other proposal for coordinate system for binary elliptic curve
arithmetic. For example, in the Jacobian coordinate system [CC86], a projective point
P = (X,Y, Z) corresponds to the affine point (x = X

Z2 , y = Y
Z3 ). The López-Dahab (LD)

coordinates [LD98] are proposed using x = X
Z and y = Y

Z2 . Since its introduction, LD
coordinates have become one of the most studied coordinate systems [Lan04, LH00, Kin01,
ADMRK02, BLRF08] for binary elliptic curves in the context of classical implementations.
We have not considered the LD coordinates in this work, it is left as the future research
work.

2.4 Key Establishment using ECC
The Elliptic Curve Diffie-Hellman (ECDH) key establishment protocol is an ECC-based
anonymous key agreement protocol that allows two parties (say Alice and Bob), each
possessing an elliptic curve public-private key pair, to establish a shared secret over an
insecure communication channel. The security of ECDH depends on the variant of discrete
logarithm problem known as Elliptic Curve Discrete Logarithm Problem (ECDLP). The
ECDLP problem is states as follows: Let E be an elliptic curve defined over a finite field
Fq; and let G,H ∈ E(Fq) be points on the elliptic curve group such that H ∈ ⟨G⟩. The
ECDLP asks to find the integer m, such that H = [m]G. The ECDLP is a special case of
the discrete logarithm problem in which the cyclic group is represented by the group ⟨G⟩
of points on an elliptic curve.

At the first step, all parties must agree on all the elements defining the elliptic curve
(also called, domain parameters) for the protocol. The binary field is determined by the
pair (n, m(x)) (i.e., F2n = F2[x]/m(x)). The binary elliptic curve Ba,b is determined by
the constants a, b used in the defining equation 1. The cyclic subgroup is defined by its
generator G = (Gx, Gy). The order of G is defined as the smallest positive number p such
that pG = ∅. For practical cryptography purposes, p is usually a prime number. The
cofactor h is set as |Ba,b(F2n)|/p6. Note that order of elliptic curve group is given by
hp. The domain parameters for binary ECC is given by (n,m(x), a, b,G, p, h). Once the
domain parameter has been decided, Alice and Bob proceed as follows. Alice randomly
selects an integer skA from {2, . . . , p− 1}, and computes PKA = [skA]G, and sends PKA

to Bob. Similarly, Bob selects an integer skB from {2, . . . , p−1}, computes PKB = [skB ]G,
and sends PKB to Alice. Upon receiving PKB and PKA, Alice and Bob can compute
the shared secret key SK independently as:

S = [skA]PKB = [skB ]PKA = [skA][skB ]G = [skA · skB (mod p)]G

Both Alice and Bob arrive at the same S, thereby establishing the shared key. Worked-out
examples of key establishment using ECC is given in Examples 7 and 8.

2.5 Elliptic Curve Cryptography vs. Shor’s Algorithm
The elliptic curve cryptography (ECC) is renowned for its security, largely due to the
difficulty of solving the elliptic curve discrete logarithm problem (ECDLP) on a classical
computer. Given a binary elliptic curve E over a finite field F2n and two points P and Q
on E, the objective of ECDLP is to find an integer m such that:

Q = [m]P,

6Since p is the size of a subgroup of Ba,b(F2n ), it follows from the Lagrange’s theorem that the number
h = 1

p
|Ba,b(F2n )| is an integer.
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Figure 1: Circuit of Shor’s algorithm for solving ECDLP.

where [m]P denotes the scalar multiplication of P by m. This problem is computation-
ally hard for classical algorithms.

However, the Shor’s algorithm poses a significant threat to ECC by efficiently solving
the discrete logarithm problem (on a powerful-enough quantum computer). The algorithm
leverages quantum parallelism (which differs from classical parallelism) and a Quantum
Fourier Transform (QFT) to achieve exponential speedup. The process involves the
following steps:

Initialization: Allocate three quantum registers: the first two registers, k and ℓ, each of
size n+ 1 qubits, are initialized to the |0⟩ state, and the third register is used for point
addition. After that, apply a Hadamard gate to each qubit in the first two registers (i.e.,
k and ℓ), resulting in a uniform superposition state:

|ψ⟩ = H⊗n+1 |k, ℓ⟩⊗n+1 = 1
2n+1

2n+1−1∑
k,ℓ=0

|k, ℓ⟩.

Conditional Addition: Based on the qubits in the first two registers, add the corresponding
multiple of P and Q to the third register, implementing the map:

1
2n+1

2n+1−1∑
k,ℓ=0

|k, ℓ⟩|[k]P + [ℓ]Q⟩.

In the Shor’s circuit, only the first and second registers are measured, while the third
register containing the state |[k]P + [ℓ]Q⟩ is discarded in the final stage (see Figure 1).

Quantum Fourier Transform (QFT): Apply the QFT to the first two registers, each
holding n+ 1 qubits. The QFT involves phase shift gates and Hadamard gates, enabling
the algorithm to determine the period r of the function. Using the period r, the discrete
logarithm m can be recovered through classical post-processing, as described in [Sho94].

The quantum circuit for Shor’s algorithm is shown in Figure 1. It illustrates the
initialization of quantum registers, the conditional addition of elliptic curve points, the
application of the QFT, and the measurement of the registers.

Shor’s quantum circuit can be implemented using only a single control qubit by
employing a semi-classical Fourier transform [GN96]. More details about the semi-classical
Fourier transform are provided in Appendix F.



8 New Quantum Cryptanalysis of Binary Elliptic Curves (Extended Version)

3 Quantum Circuit Construction for Binary Elliptic Curves
In this section, we present our quantum circuits for applying Shor’s algorithm to binary
ECC. We first introduce quantum circuits for binary field arithmetic. Following this,
we design a depth-optimized quantum circuit for point addition, which is essential for
Shor’s algorithm in ECC, using the previously introduced quantum circuits for binary field
arithmetic.

3.1 Addition & Binary Shift
In the integer domain (Z), efforts to design efficient adders have been made in both
classical and quantum computing, as demonstrated in [CDKM08, DKRS04, Dra00, TTK09].
However, in a binary field (F2n), addition is equivalent to the XOR operation, and hence,
it can be implemented using only n CNOT gates (incurring the depth of 1).

Shift and rotation operations can be implemented using a logical swap method, which
rearranges the indices of qubits without the use of quantum swap gates. Even when swap
gates are used for convenience in implementing shift and rotation operations in quantum
circuits, they are often ignored in resource estimation. In this work, we implement binary
shift operations by rearranging the indices of qubits, i.e., using logical swaps.

3.2 Squaring (Binary Non-Singular Matrix Multiplication)
Squaring over binary fields can be implemented using binary shift operations (e.g., 11112 =
1010101). As described in Section 3.1, binary shift operations are generally implemented
without additional cost, only the modular reduction of the shifted result is implemented
using CNOT gates.

In previous works [BBvHL20, PWLK22, TT23], most squaring operations for point ad-
dition are implemented in-place using PLU factorization; except only two are implemented
out-of-place. In-place quantum circuits compute the result directly in the input qubits by
replacing the input with the output7. Thus, no ancilla qubit is required. However, this
often leads to the higher circuit depth due to the constrained space.

In contrast, we only adopt an out-of-place approach, computing the result on newly
allocated output qubits in this work. The result of squaring can be represented as a
matrix multiplication due to the linear nature of the squaring operation. For an element
in the binary field a ∈ F2[x]/m(x), the results of single squaring a2 (mod m(x)) as well
as multiple squaring a2p (mod m(x)) can be represented as binary non-singular matrices.
For example, the results of a2 and a22 in the binary field F2[x]/(x8 + x4 + x3 + x+ 1) are
represented as follows:

a =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


, a2 =



0 1 0 1 0 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 0 0 1 0
1 1 1 1 0 0 0 0
1 0 0 1 0 1 0 0
0 1 1 0 0 0 0 0
0 0 1 0 1 0 0 0
1 1 0 0 0 0 0 0


, a22

=



1 1 1 0 1 1 0 1
0 1 1 1 1 1 0 0
1 0 1 1 0 0 0 0
0 0 0 1 1 1 0 0
0 1 1 1 0 1 1 0
0 1 0 0 1 0 0 0
1 0 0 1 0 0 0 0
1 1 1 0 1 0 0 0


.

CNOT gates operate on positions where there is 1. The input qubits (a) act as control
qubits, while the newly allocated output qubits (out) serve as target qubits (CNOT (control,
target)). For example, for the first row (corresponding to out0) in the squaring matrix a2,

7This corresponds to the so-called s1-XOR from [BDK+21].
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CNOT(a0, out0), CNOT(a4, out0), and CNOT(a6, out0) are applied. By constructing the
matrix, we avoid redundant CNOT gate operations compared to the schoolbook squaring
method. The total number of CNOT gates required is equal to the Hamming weight of the
matrix8. Table 3 shows the quantum resources required for squaring using our proposed
out-of-place approach. The quantum resources in terms of CNOT gates and circuit depth
vary depending on the matrix, which is determined by the number of squaring operations
(i.e., p). For n = 8 and 16, we set p = 2; and for the rest (n = 127, . . . , 571), we set p = 8.

Table 3: Comparison of the quantum resources needed for squaring (matrix multiplication).
n Method #CNOT #Qubit (Reuse) Quantum depth

8 Naïve 13Out-of-place
{

Compiler-friendly※ 30 16 (8) 8

16 Naïve 22Out-of-place
{

Compiler-friendly※ 80 32 (16) 14

127 Naïve 175Out-of-place
{

Compiler-friendly※ 2529 254 (127) 125

163 Naïve 270Out-of-place
{

Compiler-friendly※ 11094 326 (163) 149

233 Naïve 158Out-of-place
{

Compiler-friendly※ 6743 466 (233) 97

283 Naïve 459Out-of-place
{

Compiler-friendly※ 32762 566 (283) 256

571 Naïve 772Out-of-place
{

Compiler-friendly※ 88183 1142 (571) 468
※: Proposed and used in this work.

3.2.1 Out-of-Place Implementation

For the naïve out-of-place implementation of an n × n binary matrix, we first need to
introduce n ancilla qubits (effectively doubling the qubit count) initialized at |0⟩. Then
the ancilla qubits are updated with the initial values of the first n qubits. This helps to
retain the original matrix on the initial n qubits, while the n qubits are overwritten.

The out-of-place squaring method typically results in a low quantum depth than the
in-place method, but requires newly allocated qubits for the output9. However, in our
case, we do not allocate new qubits each time squaring is performed in division and point
addition. Instead, we initialize the output qubits and reuse them in subsequent squaring
operations . This is described in detail in Section 3.4.

In this work, we additionally propose/apply a compiler-friendly optimization to the
out-of-place squaring operations, through shuffling the sequence. As a result, our approach
reduces quantum depth by more than 38% on average compared to naïve implementation.
An overview of the compiler-friendly implementation is presented subsequently for the
sake of completeness, though a thorough description is deferred till Appendix C.

Compiler-Friendly Implementation (Optimization for Quantum Depth) We explore
the optimization of the out-of-place implementation of the squaring matrices in terms of

8Note that, we only need ‘Hamming weight − number of rows’ CNOT gates to implement the naïve
classical circuit. However, for the naïve quantum circuit, we first need to copy to the ancilla qubits, that
would require additional ‘number of rows’ CNOT gates, totalling in ‘Hamming weight’ CNOT gates. See
[RBC23, Example 1] for a toy example.

9Note that, the naïve out-of-place implementation is used for the linear layer (which is effectively a
320 × 320 binary non-singular matrix) in [OJBS24].
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quantum depth. In process, we introduce and use a deterministic algorithm for compiler-
friendly implementation. Our optimization is motivated by the observation that quantum
programming tools often fail to find an optimal circuit depth for CNOT gates when the
same qubits are continuously involved (even when they can be parallelized with other
CNOT gates). By reordering CNOT gate operations to avoid iterative calls to the same
input and output qubits, the proposed method reduces the quantum depth. See Appendix C
for more information.

3.2.2 In-Place Implementation

Our analysis on the in-place implementations of the matrices is summarized here10. We test
with the two legacy algorithms that are known to produce in-place implementations, namely
the Gauss-Jordan elimination and the PLU factorization (refer to [RBC23, Examples 4
and 5] for toy examples). In this work, we experiment with these two algorithms while
incorporating the following changes/adjustments:

• We consider random row and column permutations, then the obtained implementation
is adjusted accordingly.

• We run the inverse of the given matrix, and then reverse the sequence to get back
the given matrix.

• To reduce the quantum depth, we adopt a randomized shuffling of once an imple-
mentation is obtained (then choose that one with the least quantum depth).

Despite this, we observe that the quantum depth and the CNOT count × quantum depth
are high compared to what we get from the out-of-place method (the benchmarks are
omitted here for brevity) for the cases n ≥ 127. Consequently, we choose not to use the
in-place implementations for this work. Whether or not it is possible to find more efficient
in-place implementations is left as a future work.

3.3 Multiplication
Multiplication is used in the implementation of inversion and point addition, making its
efficiency crucial. In [BBvHL20], van Hoof’s space-efficient multiplication [vH19] is utilized.
In [PWLK22], a modified version of van Hoof’s multiplication is presented. Recently,
in [TT23], Kim et al.’s Toffoli gate count-optimized and space-efficient multiplication
[KKKH22] is adopted. These multiplications share the common feature of not using any
ancilla qubits except for the input and output qubits. Stated in other words, for multiplying
h = f · g of size n, only 3n qubits are used. Table 4 shows a comparison of the required
quantum resources for multiplications from [vH19, PWLK22, TT23, JKL+23].

In this work, we use a depth-efficient Karatsuba algorithm by Jang et al. [JKL+23],
which reduces the Toffoli depth to one by allocating an additional ancilla qubits. The
Karatsuba algorithm can recursively reduce the size of the multiplication. In [JKL+23], the
authors copied the operands of the divided (reduced-size) multiplications and performed
them simultaneously, optimizing both the Toffoli depth and the full depth (for more details,
the inquisitive readers are directed to [JKL+23, Figure 2]). We note that this multiplication
method is particularly effective for implementing inversion and point addition, which require
multiple multiplications, since the ancilla qubits used can be reused. This will be described
in Section 3.4.2.

10We are aware of the tool by [XZL+20] that finds in-place implementations for a given binary non-
singular matrix. However, its source-code uses a data structure (hard-coded) that works for matrices up
to dimension of 64 × 64 only (the authors clearly state that their tool is not expected to scale-up beyond
that). Thus, in our context, this tool exclusively works for the trivial cases (viz., n = 8 and 16), and
hence is not considered here. The same goes for the follow-up work by [YWS+24]. The SMT/MILP model
proposed in [BKD21] does not scale-up either.
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Table 4: Comparison of the quantum resources required for multiplication.
n Source #CNOT #Toffoli #Qubit Toffoli depth Depth Full depth

8
vH [vH19] 200 27 24 N/A 124 N/A

P+ [PWLK22] 102 27 24 N/A 82 N/A
J+[JKL+23]※ 237 27 81 1 22 34

16

vH [vH19] 678 81 48 N/A 365 N/A
P+ [PWLK22] 655 81 48 N/A 286 N/A
K+ [KKKH22] 974 64 48 N/A 405 N/A
J+ [JKL+23]※ 828 81 243 1 29 43

127

vH [vH19] 20632 2185 381 N/A 8769 N/A
P+ [PWLK22] 20300 2183 381 N/A 7000 N/A
K+ [KKKH22] 49040 737 381 N/A 6953 N/A
J+ [JKL+23]※ 24660 2185 6555 1 36 50

163

vH [vH19] 37168 4387 489 N/A 17906 N/A
P+ [PWLK22] 36439 4355 489 N/A 13814 N/A
K+ [KKKH22] 76262 992 489 N/A 10210 N/A
J+ [JKL+23]※ 46329 4387 13161 1 52 66

233

vH [vH19] 63655 6323 699 N/A 29530 N/A
P+ [PWLK22] 60453 6307 699 N/A 19294 N/A
K+ [KKKH22] 154892 1441 699 N/A 16383 N/A
J+ [JKL+23]※ 71197 6323 18969 1 42 56

283

vH [vH19] 89620 10273 849 N/A 41548 N/A
P+ [PWLK22] 87929 10241 849 N/A 31894 N/A
K+ [KKKH22] 224246 1784 849 N/A 22050 N/A
J+ [JKL+23]※ 110571 10273 30819 1 56 70

571

vH [vH19] 270940 31171 1713 N/A 121821 N/A
P+ [PWLK22] 267771 31139 1713 N/A 95863 N/A
K+ [KKKH22] 862604 3813 1713 N/A 61771 N/A
J+ [JKL+23]※ 337968 31171 93513 1 60 74

※: Used in this work.

3.4 Division using Fermat’s Little Theorem (FLT)

For our quantum circuit implementation, we focus on the Fermat’s Little Theorem (FLT)-
based inversion algorithm to optimize circuit depth. We briefly review the method for
computing the multiplicative inverse in a binary field F2n based on FLT. This theorem
states that for any integer a and a prime number p, if a is not divisible by p, then
ap−1 ≡ 1 (mod p). From this, it follows that the multiplicative inverse of a modulo p is
given by a−1 ≡ ap−2 (mod p) since ap−1 = a · ap−2.

In binary fields F2n , we can apply a similar concept. The elements of the field can be
expressed as polynomials of degree n− 1 with coefficients in F2. Given an element a ∈ F2n ,
the multiplicative inverse a−1 can be computed as:

a−1 = a2n−2.

3.4.1 Itoh-Tsujii based Inversion

The Itoh-Tsujii algorithm [IT88] computes the inverse more efficiently instead of directly
computing a2n−2. The algorithm leverages following two mathematical observations:
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Recursive Reduction: The problem of computing a2n−2 can be recursively reduced by
expressing it as:

a2n−2 =
(
a2n−1−1

)2
.

Multi-Level Exponentiation: The exponentiation required at each level can itself be
decomposed further using previously computed results:

a22t
−1 =

(
a22t−1

−1
)22t−1

· a22t−1
−1.

The Itoh-Tsujii algorithm can be outlined as follows:
1. Begin by expressing n − 1 as a sum of powers of 2, i.e., n − 1 =

∑t
i=1 2ki , where

k1 > k2 > · · · > kt ≥ 0. This step is equivalent to writing n − 1 in its binary
form, where each ki corresponds to the position of a binary 1. For example, n = 12
corresponds to [k1, k2, k3] = [3, 1, 0].

2. Compute the intermediate values a2k1 −1, a2k2 −1, . . . , a2kt −1 recursively. The key
advantage here is that each successive value can be computed using previously
calculated results, thus reducing the number of required multiplications.

3. Combine the intermediate results to compute the full exponentiation:

a2n−2 =




(
a22k1 −1

)22k2

· a22k2 −1

22k3

· a22k3 −1 . . .


22kt

· a22kt −1


2

.

3.4.2 Depth-Optimized Quantum Circuit for Inversion

We implement the depth-efficient quantum circuit of Itoh-Tsujii-based inversion using the
multiplication method from [JKL+23] and out-of-place squaring.

Let n = 8, which corresponds to [k1, k2, k3] = [2, 1, 0]. Following the Itoh-Tsujii
algorithm, we can compute the inverse of a as:

a−1 =


(

a22k1 −1
)22k2

· a22k2 −1

22k3

· a2k3 −1


2

Following the second observation in the Itoh-Tsujii algorithm (Multi-Level Exponentia-
tion), we can represent the exponentiations a22k1

, a22k2
and a22k3

as follows:

a22k3 −1 = a

A → a22k2 −1 =
(
a22k3 −1

)22k3

· a22k3 −1 = a2 · a

B → a22k1 −1 =
(
a22k2 −1

)22k2

· a22k2 −1 = A22
·A

Figure 2 illustrates the proposed quantum circuit for inversion using the Itoh-Tsujii
algorithm for n = 8. Here, M and S represent multiplication and squaring, respectively.
In M(result) and S(result), the result is the output derived from the operation. Here,
S†(result) denotes the reverse operation of S(result) to initialize the output qubits (i.e.,
result→ |0⟩). Additionally, the quantum circuit for n = 16 is given in Appendix E.
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|Sanc0⟩ S(A22) • S†(A22) S(B23) • S†(B23) |0⟩

|Sanc1⟩ S(a2) • S†(a2) S(A2) • S†(A2) S(((a ·A2) ·B23)2)
∣∣a−1

〉

|Manc⟩ • • • • |0⟩

|a⟩ • • • • /

|0⟩ M(a · a2) • • • • • /

|0⟩ M(A ·A22) • • /

|0⟩ M(a ·A2) • /

|0⟩ M((a ·A2) ·B23) • /

Figure 2: Proposed quantum circuit for inversion using FLT for n = 8.

Low-Depth Multiplication One may recall from Section 3.3 that the effectiveness of
the multiplication method from [JKL+23] for implementing division and point addition.
In [JKL+23], the authors mentioned a reuse technique that allows the initialization of
allocated ancilla qubits with trivial overhead (see Section 3.3 in [JKL+23]). We note that
this technique is particularly effective for implementing division and point addition, which
require multiple multiplications. This is because the ancilla qubits used in the initial
multiplication can be reused in subsequent operations without the need for additional
qubits.

For n = 8, a total of four multiplications are performed to compute A = a · a2,
B = A ·A2, a ·A2, and (a ·A2) ·B22 . In our quantum circuit, only one ancilla set (|Manc⟩)
is allocated for the initial multiplication (A = a · a2) and reused for the rest (B = A ·A2,
a ·A2, (a ·A2) ·B22)11. We can achieve low-depth multiplications with only the initial qubit
overhead. Note that this ancilla set will also be reused in the point addition (Section 3.5).

Low-Depth Squaring We use the out-of-place squaring method described in Section 3.2.
In inversion, the result of squaring is used as an operand for multiplication but is no longer
needed afterward (i.e., it is an intermediate value). Thus, we initialize the output qubits
after their use and reuse them for subsequent squaring operations. For example, after
the multiplication A = a · a2, the output qubits containing the result of squaring a2 are
initialized using a reverse operation.

However, while the reverse operation is often used in quantum implementations to
reduce the number of qubits, it increases the circuit depth. For instance, in Figure 2,
assume that the initialized output qubits from the reverse operation S†(a2) are reused in
S(A22). To reuse initialized output qubits from the reverse operation S†(a2), the squaring
S(A22) is delayed.

To address this delay, we allocate two sets of output qubits, |Sanc0⟩ and |Sanc1⟩, and use
them alternately12 In Figure 2, when the reverse operation of the squaring S†(a2) initializes
the output qubits |Sanc1⟩, the current squaring S(A22) is performed simultaneously using
the other output qubits |Sanc0⟩. Thanks to this approach, low-depth squarings are achieved
with only two sets of output qubits (a total of 2n qubits).

11Even in inversion and point addition, the multiplications are performed sequentially, making the reuse
technique more effective. If the multiplications are not sequential (i.e., can be performed in parallel), each
multiplication would require its own set of ancilla qubits (for parallelization). In that case, implementing
space-efficient multiplications (e.g., [vH19, PWLK22, KKKH22]) in parallel might be more efficient,
depending on the degree of parallelization.

12This concept is first introduced in [JBK+22] (referred to as the shallow architecture) to eliminate the
depth overhead caused by the reverse operations of SubBytes in AES, and later adopted in [LPZW23, SF24].
In addition, it also serves as the inspiration behind the interval architecture of [JLO+24].
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Comparison with Previous Division Algorithms In Table 5, we compare the quantum
resources required for division, h = h+ f · g−1 (involving one inversion, one multiplication,
and one addition), with those in previous works13. Note that the division in Table 5
includes reverse operations14 (resulting in twice the cost) to initialize ancilla qubits.

For [BBvHL20] and [PWLK22] in Table 5 (corresponding to n = 163, 233, 283 and
571), we use the re-estimated quantum resources from [TT23]. In this re-estimation,
the multiplication methods in [BBvHL20] and [PWLK22] were replaced by the method
proposed by Kim et al. [KKKH22]. The reasons for using the results from [TT23] are as
follows. First, [BBvHL20] reported the upper bounds for gate count and circuit depth.
For a fair comparison, we rely on the re-estimated results from [TT23], which, in fact,
show improved performance. Second, it is difficult to compare the results of [PWLK22]
due to inconsistencies between [PWLK22, Tables 3 and 4 (multiplication), 5 (inversion),
6 (point addition)]. However, the authors in [TT23] provide corrected quantum resource
estimates for [PWLK22].

As shown in Table 5, the Toffoli gate count is lower in previous works, but their CNOT
gate count is higher compared to ours. This difference arises from the use of the Toffoli
gate-optimized multiplication from [KKKH22] in their re-estimation. While our qubit
count (M) is higher, we achieve the lowest circuit depth (D) and Toffoli depth. In terms
of the product of circuit depth and qubit count (D-M), we observe a 31% improvement
for n = 8 and exceeding 72% – 78% in other cases.

Although we are unable to compare the full depth and the full depth-qubit count
product (as those are not reported in [BBvHL20, PWLK22, TT23, KKKH22]), we achieve
further improvements in these metrics. This is because our low Toffoli depth results in a
slight increase from the depth (D) to the full depth (after the decomposition of Toffoli
gates), which is not the case for the previous works.

3.5 Point Addition

In Shor’s quantum circuit, conditional point additions |[k]P+[ℓ]Q⟩ are performed according
to the control qubits in the first register (i.e., k’s and ℓ’s in Section 2.5 and Figure 1).
In conditional point addition, if the control qubit q is 1, the point addition P3(x3, y3) =
P1(x1, y1) + P2(x2, y2) is computed; otherwise, the input P1(x1, y1) remains unchanged.

In [BBvHL20], the authors presented an in-place point addition algorithm ([BBvHL20,
Algorithm 3]) by modifying Algorithm 1 from [RNSL17] for the binary case, and subsequent
works [PWLK22, TT23] have followed this algorithm.

In this work, we introduce the in-place point addition described in Algorithm 1, modified
from [BBvHL20, Algorithm 3] by us; with the presented quantum circuits for addition,
squaring, multiplication, and division. This approach has the advantage of reducing the
number of qubits while maintaining a reasonably low depth. For better clarity, Figure 3(a)
shows the unmodified version, whereas Figure 3(b) portrays the modifications proposed by
us.

Additionally, we develop the out-of-place point addition of Algorithm 2 (Figure 3(c)),
which computes P3(x3, y3) independently while preserving the input P1(x1, y1). This
significantly reduces both the circuit depth and gate count.

In Figure 3, D is the division (which includes inversion and multiplication), and C is
the copy operation for the control qubit q.

13In [KH23], the authors introduce a quantum GCD-based inversion algorithm. However, we do not
include their algorithm in Table 5, as they do not provide estimates for the number of CNOT gates and
the circuit depth.

14These reverse operations are performed in the division for the in-place point addition (FLT-in,
Algorithm 1), but not for the out-of-place point addition (FLT-out, Algorithm 2).
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Table 5: Comparison of the quantum resources required for division.

n Source #Toffoli #CNOT #Qubit
(M)

Toffoli
depth

Depth
(D)

Full
depth

D-M

8
B+ [BBvHL20]

{
(FLT) 243 2212 56 N/A 1314 N/A 73584
(GCD) 3641 1516 67 N/A 4113 N/A 275571

This paper (FLT) 270 2762 213 10 238 358 50694

16
B+ [BBvHL20]

{
(FLT) 1053 10814 144 N/A 5968 N/A 859392
(GCD) 10403 5072 124 N/A 12145 N/A 1505980

This paper (FLT) 1134 13510 777 14 458 654 182595

127
B+ [BBvHL20]

{
(FLT) 50255 502870 1778 N/A 203500 N/A 361823000
(GCD) 277195 227902 903 N/A 378843 N/A 342095229

This paper (FLT) 52440 681717 30971 24 2423 2645 75042733

163

B+ [BBvHL20]
{

(FLT) 18848 1601716 1956 N/A 342516 N/A 669961296
(GCD) 438766 414586 1156 N/A 510628 N/A 590285968

P+ [PWLK22] (FLT) 18848 1558180 3097 N/A 300924 N/A 931961628

T+ [TT23]
{

(FLT-basic) 18848 1557528 2771 N/A 300920 N/A 833849320
(FLT-extended) 18848 1579944 1956 N/A 310830 N/A 607983480

This paper (FLT) 87740 1176499 53133 20 2801 3046 148825533

233

B+ [BBvHL20]
{

(FLT) 30261 3374430 3029 N/A 459709 N/A 1392458561
(GCD) 823095 834256 1646 N/A 992766 N/A 1634092836

P+ [PWLK22] (FLT) 30261 3346938 4660 N/A 435001 N/A 2027104660

T+ [TT23]
{

(FLT-basic) 30261 3345540 3961 N/A 434995 N/A 1723015195
(FLT-extended) 30261 3353750 3029 N/A 437747 N/A 1325935663

This paper (FLT) 139106 2114587 82898 22 3476 3716 288153448

283

B+ [BBvHL20]
{

(FLT) 41032 5644678 3962 N/A 985710 N/A 3905383020
(GCD) 1194498 1222600 1997 N/A 1449098 N/A 2893848706

P+ [PWLK22] (FLT) 41032 5492126 6226 N/A 837106 N/A 5211821956

T+ [TT23]
{

(FLT-basic) 41032 5489296 4811 N/A 837096 N/A 4027268856
(FLT-extended) 41032 5502090 3962 N/A 840612 N/A 3330504744

This paper (FLT) 246552 3705491 144671 24 5412 5685 782959452

571

B+ [BBvHL20]
{

(FLT) 102951 26043772 9136 N/A 4401901 N/A 40215767536
(GCD) 4434315 4857244 4014 N/A 5602181 N/A 22487154534

P+ [PWLK22] (FLT) 102951 25189566 14275 N/A 3556815 N/A 50773534125

T+ [TT23]
{

(FLT-basic) 95325 23458648 10849 N/A 3433263 N/A 37247470287
(FLT-extended) 95325 23514068 8565 N/A 3456469 N/A 29604656985

This paper (FLT) 872788 14649243 500450 28 11723 12087 5866775350

3.5.1 In-Place Implementation

The in-place point addition of Algorithm 1 computes the result on the input P1(x1, y1),
and this result changes based on the control qubit q. As a result, the point either
becomes P (x, y) = P3(x3, y3) or remains as P1(x1, y1). Compared to the point addition in
[BBvHL20], our modified point addition differs in two key aspects:

• First, we copy the control qubit q to ancilla qubits used in multiplication. In
[BBvHL20, PWLK22, TT23], only a single control qubit q is used for controlled
constant additions and controlled additions, meaning all CNOT and Toffoli gates are
applied sequentially. Using a single control qubit for operations on arrays reduces
the number of qubits but significantly increases the circuit depth15. In contrast, we
copy the control qubit q to the ancilla qubits for multiplication (Algorithm 1; Steps

15In [BBvHL20], the authors consider this trade-off but retain the approach, as their focus is on
minimizing the qubit count. In our case, since we have a sufficient number of ancilla qubits, it is more
efficient to copy.
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2, 8, 15) to optimize the circuit depth. Since we already have a sufficient number
of ancilla qubits (Manc) for the copy, we can perform controlled constant addition
(CTRL_CONST_ADD) and controlled addition (CTRL_ADD) with depth 1 using
these copies without additional allocation. As a side note, an efficient tree-based
copy is implemented, where previous copies are used in subsequent copying steps
(reducing the depth), and the copies are initialized to a clean state after use.

• Second, we optimize the middle steps of [BBvHL20, Algorithm 3] to compute x2 +x3
if q = 1, or x1 + x2 if q = 0. In the previous implementation, one controlled
constant addition for q(a+ x2) and two controlled additions for q · λ2 and q · λ are
performed (see Figure 3(a)). In Algorithm 1, Step 6, we compute λ2 + λ in a single
squaring operation by constructing the matrix for λ2 + λ through the addition of the
matrices for λ2 and λ (similar to the addition of the matrices for a and a2 in Section
3.2). Additionally, in Step 7, the constant a + x2 is added to λ2 + λ, resulting in
λ2 + λ+ a+ x2. Finally, in Step 9, only one controlled addition is performed using
this precomputed result λ2 + λ+ a+ x2.

Table 6(a) presents the step-by-step procedure of Algorithm 1, and the quantum circuit
is shown in Figure 3(b).

Algorithm 1: Proposed in-place point addition on binary elliptic curves.
Classical input: A constant a from the elliptic curve, a fixed point P2(x2, y2).
Quantum input: A control qubit q, a point P1(x1, y1) on the elliptic curve, ancilla qubits

Manc for multiplication, ancilla qubits for inversion, ancilla qubits for λ.
Output: P1 + P2 = P3(x3, y3) if q = 1, P1(x1, y1) if q = 0, all ancilla qubits in a clean

state.
1: x ← CONST_ADD (x2, x1) ▷ x = x1 + x2
2: Manc ← COPY (q, Manc) ▷ Copy q to Manc

3: y ← CTRL_CONST_ADD (Manc, y2, y1) ▷ y = y1 + q · y2
4: λ ← DIV (x1 , y1 , 0) ▷ λ = y/x
5: y ← MUL (x1, λ, y1) ▷ y = y + x · (y/x) = 0
6: y ← SQR (λ2 + λ, y1) ▷ y = λ2 + λ
7: y ← CONST_ADD (a+ x2, y1) ▷ y = λ2 + λ+ a+ x2
8: Manc ← COPY (q, Manc) ▷ Copy q to Manc

9: y ← CTRL_ADD (Manc, y1, x1) ▷ x = x1 + x2 + q(λ2 + λ+ a+ x2)
10: y ← SQR (λ2 + λ, y1) ▷ y = λ2 + λ+ a+ x2 + λ2 + λ = a+ x2
11: y ← CONST_ADD (a+ x2, y1) ▷ y = a+ x2 + a+ x2 = 0
12: y ← MUL (x1, λ, y1) ▷ y = x · λ
13: λ ← DIV (x1 , y1 , λ) ▷ λ = λ+ (x · λ)/x = 0
14: x ← CONST_ADD (x2, x1) ▷ x = x1 + q(λ2 + λ+ a+ x2)
15: Manc ← COPY (q, Manc) ▷ Copy q to Manc

16: y ← CTRL_CONST_ADD (y2, y1) ▷ y = y + q · y2
17: y1 ← CTRL_ADD (x1, y1) ▷ y = y + q · x3
18: return (x, y)

3.5.2 Out-of-Place Implementation

The out-of-place point addition in Algorithm 2 preserves P1(x1, y1) and computes P3(x3, y3)
independently of the control qubit q. Recall that the in-place method (Algorithm 1)
requires reverse operations to revert the value to its intermediate state, which is necessary
to compute the conditional result of either P1(x1, y1) or P3(x3, y3). On the other hand, the
out-of-place approach avoids these additional operations by allocating output qubits during
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the process and computing the intermediate values directly on them (see Figure 3(c)). As
a result, Algorithm 1 (in-place) requires 2 divisions, 2 squarings, and 2 multiplications,
whereas Algorithm 2 (out-of-place) consists of 1 division, 1 squaring, and 1 multiplication.

Additionally, the out-of-place point addition reduces the number of controlled operations
that use the control qubit q. In Algorithm 1 (in-place), 2 controlled constant additions
and 2 controlled additions are performed (3 controlled constant additions and 3 controlled
additions are required in [BBvHL20, PWLK22, TT23]).

In Algorithm 2, we swap the results P1(x1, y1) and P3(x3, y3) based on the control qubit
q in the final stage (Steps 13 and 14). A controlled-swap (CTRL_SWAP) is performed
twice: once for (x1, y1) and once for (x3, y3). These two controlled-swap operations are
performed in parallel, and similar to the in-place method, the same copy technique is
applied.

Table 6(b) presents the step-by-step walk-through of Algorithm 2, and the quantum
circuit is illustrated in Figure 3(c).

Algorithm 2: Proposed out-of-place point addition on binary elliptic curves.
Classical input: A constant a from the elliptic curve, a fixed point P2(x2, y2).
Quantum input: A control qubit q, a point P1(x1, y1) on the elliptic curve, ancilla qubits

Manc for multiplication, qubits for (x, y), ancilla qubits for inversion, ancilla qubits for
λ.

Output: P1 + P2 = P3(x3, y3) if q = 1, P1(x1, y1) if q = 0; ancilla qubits Manc in a clean
state.

1: x ← CNOT (x1, x) ▷ x = x1
2: y1 ← CONST_ADD (y2, y1) ▷ y1 = y1 + y2
3: x ← CONST_ADD (x2, x) ▷ x = x1 + x2
4: λ ← DIV (x, y1, 0) ▷ λ = (y1 + y2)/(x1 + x2)
5: y1 ← CONST_ADD (y2, y1) ▷ y1 = y1 + y2 + y2 = y1
6: x ← CONST_ADD (a+ x2, x) ▷ x = x1 + x2 + a+ x2 = x1 + a
7: x ← SQR (λ2 + λ, x) ▷ x = x1 + a+ λ2 + λ = x2 + x3
8: y ← MUL (x, λ, 0) ▷ y = (x2 + x3)λ
9: x ← CONST_ADD (x2, x) ▷ x = x1 + a+ λ2 + λ+ x2 = x3

10: y ← CONST_ADD (y2, y) ▷ y = (x2 + x3)λ+ y2
11: y ← CNOT (x, y) ▷ y = (x2 + x3)λ+ y2 + x3 = y3
12: Manc ← COPY (q, Manc) ▷ Copy q to Manc

13: CTRL_SWAP (Manc, x1, x) ▷ x = x3 (if q = 1) or x1 (if q = 0)
14: CTRL_SWAP (Manc, y1, y) ▷ y = y3 (if q = 1) or y1 (if q = 0)
15: return (x, y)

3.6 Windowing Technique
The windowing technique is an effective method to optimize conditional point additions
by adding a superposition of a single point P2. Windowing utilizes quantum random
access memory (qRAM) and represents qubits in superposition over the indices i =
0, 1, 2, . . . , 2ℓ− 1. The addition of points can then be described as adding [i]P2. To achieve
this, the lookup table consists of precomputed points: P2, [1]P2, [2]P2, . . . , [2ℓ − 1]P2 (fixed
point T is used to avoid infinity). This table enables the addition of [i]P2 through a
look-up operation in superposition, significantly reducing the number of point additions
required. The efficiency of the windowing method depends on the chosen window size
ℓ, which determines how many points are precomputed and stored. A larger value of ℓ
reduces the number of point additions but increases the cost of constructing the lookup
using qRAM.
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Table 6: Steps of point addition.
(a) Algorithm 1

(in-place, modified from [BBvHL20] by us).

Step q = 1 q = 0
1 x = x1 + x2

2, 3 y = y1 + y2 y = y1
4 λ = y1+y2

x1+x2
λ = y1

x1+x2

5 y = 0
6, 7 y = λ2 + λ+ a+ x2
8, 9 x = x2 + x3 x = x1 + x2

10, 11 y = 0
12 y = (x2 + x3)λ y = y1
13 λ = 0
14 x = x3 x = x1

15, 16, 17 y = y3 y = y1

(b) Algorithm 2 (out-of-place, by us).

Step q = 1 q = 0

1, 2, 3
{

x = x1 + x2
y1 = y1 + y2

4 λ = y1+y2
x1+x2

5 y1 = y1
6, 7 x = x2 + x3
8 y = (x2 + x3)λ
9 x = x3
10 y = (x2 + x3)λ+ y2
11 y = y3

12, 13, 14 (x, y) = (x3, y3) (x, y) = (x1, y1)

In [BBvHL20, PWLK22, TT23], the reduction in the number of Toffoli gates through
windowing is estimated for each field size n, by using the optimal window size ℓ. For
windowing, the addition of precomputed points via look-ups must be considered. In
[BBvHL20], the additions of P2(x2, y2) in Figure 3(a) are replaced with lookup additions,
and the controlled additions are changed to regular additions. The same modification
applies to Algorithm 1. Similarly, for Algorithm 2 (out-of-place), additions of P2(x2, y2)
are replaced with lookup additions, and the controlled-swap operations in the final step
can be removed.

As in previous works [BBvHL20, PWLK22, TT23], we too estimate the results after
applying windowing (in Section 4). These works have reported a reduction in Toffoli gate
count due to windowing. Similarly, we report the reduced Toffoli gate count after applying
windowing and provide the total reduced quantum gate count after decomposing the Toffoli
gates.

4 Results
Table 8 shows the quantum resources required for a single point addition on binary elliptic
curves. As in Table 5, for [BBvHL20, PWLK22] in Table 8, we use the re-estimated results
from [TT23].

Since [BBvHL20], two research works [PWLK22, TT23] have been reported. However,
it can be argued that the improvement (in terms of performance) over [BBvHL20] in these
subsequent works is not that significant or noteworthy. Indeed, in Table 8, the results by
[BBvHL20] achieve the best performance in terms of the product of depth and qubit count
(D-M) for n = 163, 283 and 571 in comparison to [PWLK22, TT23].

The point additions in this work demonstrate superior performance, surpassing previous
works [BBvHL20, PWLK22, TT23] with significantly lower Toffoli depth and circuit depth
by utilizing additional ancilla qubits. Our Toffoli gate count is higher than the re-estimated
result in [TT23] because they replaced the Toffoli gate-optimized multiplication from
[KKKH22]. However, this multiplication method requires more CNOT gates. For the
product of depth and qubit count (D-M), we achieve improvements of 73% – 81% and
more than 92% for in-place and out-of-place point additions (FLT-in and FLT-out) in each
binary field F2n , respectively.

In Table 8, note that there is a slight increase from depth (D) to full depth in our
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|x1⟩ /
n +x2 • • +a+x2 • • +x2 • |x3⟩ or |x1⟩

|q⟩ • • • • • • |q⟩

|y1⟩ /
n +y2 • M S(+λ2) • S(+λ2) M • +y2 |y3⟩ or |y1⟩

|0⟩ /
n

D • • • • • D |0⟩
(a) Point addition in [BBvHL20] (in-place, used in [PWLK22, TT23]).

|x1⟩ /
n

+x2 • • • • +x2 • |x3⟩ or |x1⟩
|q⟩

C C C
|q⟩

|Manc⟩ • • • • • • • • |0⟩
|y1⟩ /

n
+y2 • M S(+λ2+λ)+a+x2 • S(+λ2+λ)+a+x2 M • +y2 |y3⟩ or |y1⟩

|0⟩ /n
D • • • • D |0⟩

(b) Algorithm 1 (in-place, modified from [BBvHL20, Algorithm 3] by us).

|q⟩
C

|q⟩

|Manc⟩ • • • • |0⟩
|x1⟩ /

n • • × |x3⟩ or |x1⟩

|y1⟩ /
n +y2 • +y2 × |y3⟩ or |y1⟩

|0⟩ /n +x2 +a+x2 S(+λ2 +λ) • +x2 • × |x1⟩ or |x3⟩

|0⟩ /n

D • • /

|0⟩ /n

M +y2 × |y1⟩ or |y3⟩
(c) Algorithm 2 (out-of-place, by us).

Figure 3: Quantum circuits for point addition.

implementation (compared to [BBvHL20]), because of the low Toffoli depth. Although
the product of full depth and qubit count can not be mentioned in Table 8 (as those are
not reported), we achieve further improvements in this metric.

Relation to Shor’s Algorithm

As mentioned in Section 2.5, 2n+ 2 point additions over the binary field Fn
2 are required

to construct Shor’s quantum circuit for solving the ECDLP. Table 7 reports the required
quantum resources for Shor’s algorithm on binary elliptic curves. For the estimation, we
decompose the Toffoli gates and estimate the total number of quantum gates, consisting
of Clifford and T gates, as well as the full depth. We adopt one of the decomposition
methods from [AMM+13]; where a Toffoli gate is decomposed into 8 Clifford gates plus 7
T gates, incurring the T -depth of 4 and the full depth of 816.

As mentioned in Section 3.6, the number of point additions (steps) can be reduced to
2 · ⌈n+1

ℓ ⌉. Each point addition requires 6 lookups, and each lookup involves 2 · (2ℓ − 1)
Toffoli gates. Given these, we determine the optimal size for each of the binary fields.
Table 10 presents the reduced Toffoli gate count and the total gate count for each binary
field based on the choice of window size ℓ.

16It is worth noting that further improvements can be achieved by replacing Toffoli gates with quantum
AND gates (as in [JNRV19, LPZW23, SF24, JBK+22]). Further details are given in Appendix B.
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Table 7: Quantum resource requirement by Shor’s algorithm on binary elliptic curves.

Method n Qubits Total gates Full depth
T -depth Cost MxDp NIST

(G) (FD) (G-FD) security

FLT-in
(Algorithm 1)

8 1.67 · 27 1.14 · 218 1.83 · 213 1.83 · 210 1.04 · 232

✓
(≤ 240) ✗✶

16 1.52 · 29 1.13 · 221 1.47 · 215 1.13 · 212 1.66 · 236

127 1.89 · 214 1.51 · 229 1.34 · 220 1.69 · 215 1.02 · 250

163 1.62 · 215 1.66 · 230 1.95 · 220 1.84 · 215 1.62 · 251

233 1.26 · 216 1.98 · 231 1.69 · 221 1.43 · 216 1.67 · 253

283✲ 1.10 · 217 1.05 · 233 1.56 · 222 1.87 · 216 1.64 · 255

571✳ 1.91 · 218 1.99 · 235 1.70 · 224 1.06 · 218 1.70 · 260

FLT-out
(Algorithm 2)

8 1.60 · 211 1.22 · 216 1.04 · 212 1.97 · 28 1.27 · 228

16 1.42 · 214 1.18 · 219 1.67 · 213 1.20 · 210 1.97 · 232

127 1.75 · 222 1.53 · 227 1.36 · 218 1.75 · 213 1.04 · 246

163 1.90 · 223 1.69 · 228 1.02 · 219 1.92 · 213 1.72 · 247

233 1.06 · 225 1.00 · 230 1.73 · 219 1.49 · 214 1.74 · 249

283✲ 1.14 · 226 1.06 · 231 1.64 · 220 1.94 · 214 1.74 · 251

571✳ 1.00 · 229 1.98 · 233 1.76 · 222 1.12 · 216 1.74 · 256

✲: Corresponds to 128-bit classical security (i.e., comparable to AES-128).
✳: Corresponds to 256-bit classical security (i.e., comparable to AES-256).
✶: Level 1 security is achieved if G-F D cost ≥ 2156 (based on [JBK+22]).

5 Applicability & Impact of Shor’s Algorithm
It is important to note that in-place point addition has the advantage that the qubit count
does not increase during the 2n + 2 point additions in Shor’s quantum circuit. Simply
put, the required number of qubits for Shor’s algorithm (using the semi-classical Fourier
transform, see Appendix F) remains the same as shown in Table 8.

In contrast, in the case of out-of-place point additions, new output qubits must be
allocated for each execution in Shor’s quantum circuit. The continuous production of
garbage qubits during the process is a clear disadvantage in quantum computations [VP98].
However, their gate and depth complexity are much lower compared to in-place point
additions. Additionally, it should be noted that we do not manage all the qubits listed in
Table 7 throughout the entire computation.

In these considerations, a careful choice between the in-place and out-of-place point
additions should be made, and our work provides the best options for both approaches.

5.1 NIST Post-Quantum Security
NIST has introduced criteria for quantum attacks. In particular, the MAXDEPTH
constraint17 involves limiting quantum attacks by setting a maximum quantum circuit
depth (corresponding to runtime). The lower limit of MAXDEPTH is ≤ 240 (though
the maximum allowable limit for MAXDEPTH is ≤ 296), and we can observe that none
of the full depths from Table 7 exceed this limit (here, ‘MxDp’ denotes MAXDEPTH).
Additionally, NIST employs post-quantum security measures against quantum attacks to
evaluate the robustness of cryptographic algorithms18. For the post-quantum security level
1, the cost of a quantum key search (using Grover’s algorithm) on AES-128 is used for
evaluation. For the calculation of the cost, the product of the total quantum gates and
full depth is used (i.e., G-FD in Table 7), and the cost for AES-128 is 2156, based on the

17Refer to page 16 of the NIST documentation: https://csrc.nist.gov/csrc/media/Projects/pqc-d
ig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf.

18Refer to pages 15 – 17 of the NIST documentation: https://csrc.nist.gov/csrc/media/Projects/
pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf.

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
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results of [JBK+22] at the time of writing this paper. Note that, the bound was formerly
estimated as 2157 based on the results in [JNRV19]; however, it was later found that this
was overestimated due to a bug in Q# (see [JBK+22, Section 5] for more details). As
anticipated, the costs in Table 7 are orders of magnitude lower than this, and thus cannot
achieve the post-quantum security.

Table 8: Quantum resources required for a single point addition on binary elliptic curves.
n Source #Toffoli #CNOT #Qubit

(M)
Toffoli
depth

Depth
(D)

Full
depth

D-M

8
B+ [BBvHL20] (GCD) 7360 3522 68 N/A 8562 N/A 582216

(FLT-in) 664 6580 214 26 517 831 110638This paper
{

(FLT-out) 178 1761 241 7 159 236 38319

16
B+ [BBvHL20] (GCD) 21016 11686 125 N/A 25205 N/A 3150625

(FLT-in) 2624 30560 778 34 959 1412 746102This paper
{

(FLT-out) 680 7953 859 9 283 402 243097

127
B+ [BBvHL20] (GCD) 559141 497957 904 N/A 776234 N/A 701715536

(FLT-in) 113874 1464162 30972 54 4994 5507 154674168This paper
{

(FLT-out) 28659 370120 33157 14 1267 1394 42009919

163

B+ [BBvHL20]
{

(FLT) 40169 3357029 1957 N/A 706512 N/A 1382643984
(GCD) 880005 982769 1157 N/A 1042736 N/A 1206445552

P+ [PWLK22] (FLT) 40169 3269957 3098 N/A 623328 N/A 1931070144

TT [TT23]
{

(FLT-basic) 40169 3268653 2772 N/A 623320 N/A 1727843040
(FLT-extended) 40169 3313485 1957 N/A 643140 N/A 1258624980

(FLT-in) 193354 2540458 53134 46 5685 6227 302066790This paper
{

(FLT-out) 48583 650277 57521 12 1495 1631 85993895

233

B+ [BBvHL20]
{

(FLT) 64103 7059764 3030 N/A 953699 N/A 2889707970
(GCD) 1649771 1979416 1647 N/A 2019813 N/A 3326632011

P+ [PWLK22] (FLT) 64103 7004780 4661 N/A 904283 N/A 4214863063

TT [TT23]
{

(FLT-basic) 64103 7001984 3962 N/A 904271 N/A 3582721702
(FLT-extended) 64103 7018404 3030 N/A 909775 N/A 2756618250

(FLT-in) 303970 4516616 82899 50 7059 7589 585184041This paper
{

(FLT-out) 76342 1158949 89222 13 1800 1942 160599600

283

B+ [BBvHL20]
{

(FLT) 86481 11739723 3963 N/A 2017360 N/A 7994797680
(GCD) 2393413 2895567 1998 N/A 2944136 N/A 5882383728

P+ [PWLK22] (FLT) 86481 11434619 6227 N/A 1720152 N/A 10711386504

TT [TT23]
{

(FLT-basic) 86481 11428959 4812 N/A 1720132 N/A 8277275184
(FLT-extended) 86481 11454547 3963 N/A 1727164 N/A 6844750932

(FLT-in) 534762 7856986 144672 54 10957 11556 1585171104This paper
{

(FLT-out) 134115 2007399 154945 14 2902 3025 449650390

571

B+ [BBvHL20]
{

(FLT) 215241 53816483 9137 N/A 8931056 N/A 81603058672
(GCD) 8877969 11443427 4015 N/A 11331616 N/A 45496438240

P+ [PWLK22] (FLT) 215241 52108071 14276 N/A 7240884 N/A 103370859984

TT [TT23]
{

(FLT-basic) 199989 48646235 10850 N/A 6993780 N/A 75882513000
(FLT-extended) 199989 48757075 8566 N/A 7040192 N/A 60306284672

(FLT-in) 1871402 30657812 500450 62 23596 24399 11808618200This paper
{

(FLT-out) 468707 7833731 531621 16 6313 6449 3356123373

5.2 Comparison with RSA
In this part, we compare the quantum attack complexity estimated in this work on attacking
binary ECC with the same on RSA in terms of the required quantum resources. For
attack cost comparison, we use the estimations provided by Yamaguchi et al. on RSA.
Although many other studies have focused on optimizing Shor’s attack on RSA, such as
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[TK06, EH17, GE21, CFS24, KMY24] to name a few, the concrete estimates provided
in [YYT+23] are suitable for a direct comparison with our results. In this comparison,
we do not incorporate recent improvements to Shor’s algorithm, such as those presented
in [HJN+20, CFS24] (including the windowing technique discussed in Section 3.6), as
algorithm-level optimizations can be applied equivalently to both RSA and ECC. Instead,
we focus on the quantum resources required to implement the core operations for attacking
ECC and RSA (i.e., point addition and modular exponentiation).

In Table 9, a comparison of the quantum resources required to attack binary ECC
over F2233 and F2283 (as shown in Table 8) and RSA-1024 and RSA-2048 (as estimated in
[YYT+23]) is presented (which provide comparable classical security; see Table 1). Except
for qubit count, the other metrics, including the product of full depth and qubit count
(FD-M), are significantly lower for binary ECC compared to RSA.

Binary ECC has been identified in previous work [PWLK22, TT23, BBvHL20] as a
promising target for the first real-world demonstrations of feasible quantum attacks on
large-scale cryptographic systems. In light of Table 9, we infer that binary ECC is weaker
(as indicated by our best results) against quantum attacks compared to RSA (when the
results from [YYT+23] are taken into consideration). The improvements presented in this
paper could, in theory, enable such demonstrations probably years earlier. It is worth
pointing out that, RSA is often considered as the standard for the prediction of quantum
attacks19; however, RSA may not necessarily be the maiden target.

Table 9: Quantum resource requirement by Shor’s algorithm on RSA and binary elliptic
curves.

Source Qubits Total gates Full depth Cost
FD-M(M) (G) (FD) (G-FD)

RSA
{

1024
2048 Y+ [YYT+23] 1.25 · 212 1.10 · 237 1.64 · 240 1.80 · 277 1.02 · 253

1.25 · 213 1.01 · 238 1.01 · 241 1.02 · 279 1.27 · 254{
233
283

FLT-in
(Algorithm 1)

1.26 · 216 1.98 · 231 1.69 · 221 1.67 · 253 1.06 · 238

Binary 1.10 · 217 1.05 · 233 1.56 · 222 1.64 · 255 1.72 · 239

ECC
{

233
283

FLT-out
(Algorithm 2)

1.06 · 225 1.00 · 230 1.73 · 219 1.74 · 249 1.83 · 244

1.14 · 226 1.06 · 231 1.64 · 220 1.74 · 251 1.87 · 246

6 Conclusion
It is expected that the common public key systems currently employed, including those
are based on the binary elliptic curves, will be broken with a powerful enough quantum
computer sometime in the near future. Few research works have been carried out in this
direction, still, arguably there has not been any remarkable advancement since the work
of Banegas et al. [BBvHL20], from where our work picks up.

We significantly reduce the quantum resources required to break binary field ECC. We
focus on FLT-based division and depth-efficient point addition on binary elliptic curves
using both in-place and out-of-place approaches. Compared to the previous best results,
our point addition achieve the lowest circuit depth and improvements of more than 73% –
81% (in-place, Algorithm 1) and 92% (out-of-place, Algorithm 2) in trade-off performance
(the product of depth and qubit count) for all binary fields, as shown in Table 7. As far as
we can tell, this work shows the most advanced results in quantum cryptanalysis of binary
ECC.

Similar to the prior research works cited in our work (such as [BBvHL20, PWLK22,
TT23]), we implement quantum circuits and estimate costs using a quantum programming

19See, for example, the prediction at https://sam-jaques.appspot.com/quantum_landscape_2024.

https://sam-jaques.appspot.com/quantum_landscape_2024


K. Jang et al. 23

Table 10: Approximate quantum gate requirement after applying windowing technique.
Method n Window size (ℓ) Steps Look-ups Toffoli gates Total gates (G)

FLT-in
(Algorithm 1)

8 5 4 24 1.01 · 212 1.35 · 216

16 6 6 36 1.24 · 214 1.86 · 218

127 10 26 156 1.56 · 221 1.30 · 226

163 11 30 180 1.56 · 222 1.30 · 227

233 12 40 240 1.68 · 223 1.46 · 228

283 13 44 264 1.66 · 224 1.42 · 229

571 14 82 492 1.26 · 227 1.20 · 232

FLT-out
(Algorithm 2)

8 3 6 36 1.54 · 210 1.04 · 215

16 5 8 48 1.03 · 213 1.45 · 217

127 8 32 192 1.94 · 219 1.61 · 224

163 10 34 204 1.97 · 220 1.58 · 225

233 10 48 288 1.01 · 222 1.78 · 226

283 11 52 312 1.97 · 222 1.70 · 227

571 12 96 576 1.48 · 225 1.39 · 230

tool that performs logical simulation without accounting for physical constraints. However,
real-world quantum hardware introduces factors; such as noise, decoherence, and error
correction overhead; typically increase the physical resource requirements. This considera-
tion similarly applies to both previous and future research on this direction. Despite these
potential avenues left unexplored, our work, similar to the previous works noted earlier,
provides a foundational estimate of resource requirements from an abstract perspective
(from a computer scientist’s point-of-view).

As a potential direction for future research, point addition on projective coordinates
(Section 2.3) may reduce circuit depth by increasing the qubit count, similar to our out-of-
place point addition. It would be worthwhile to adapt our implementations to projective
coordinates and benchmark its efficiency. Another interesting direction is to extend our
approaches to other elliptic curves (such as the Curve-25519 by Bernstein in [Ber06]),
or RSA (e.g., following up on [YYT+23]). One might also be curious by the work of
[GE21], i.e., estimating the time required to break by a quantum computer. At the circuit
component level, it could be useful to find more efficient in-place implementations than
that of the Gauss-Jordan elimination or PLU factorization for large (> 64× 64) binary
matrices.

A Prominent Use-Cases of Elliptic Curve Cryptography
ECC-based protocols are employed in many everyday applications to secure communications
and protect data, such as in the Transport Layer Security (TLS) [DR08, BWBG+06] and
in Secure Shell (SSH) [SG09]. The popular cryptocurrency systems such as Bitcoin20 and
Ethereum21 also rely on elliptic curves to maintain the integrity of financial transactions.
ECC is also widely used in secure messaging protocols like the Signal protocol22 employed
by popular messaging platforms such as WhatsApp, Signal and Facebook Messenger. The
Signal protocol uses ECC as part of its double ratchet algorithm. ECC is employed by
Cloudflare23 to provide forward secrecy.

20https://github.com/bitcoin/bitcoin/tree/master/src/secp256k1.
21https://github.com/ethereum/go-ethereum/tree/master/crypto.
22https://signal.org/docs/.
23https://blog.cloudflare.com/staying-on-top-of-tls-attacks.

https://github.com/bitcoin/bitcoin/tree/master/src/secp256k1
https://github.com/ethereum/go-ethereum/tree/master/crypto
https://signal.org/docs/
https://blog.cloudflare.com/staying-on-top-of-tls-attacks
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|a⟩ |∼ a⟩
(a) X.

|a⟩ |a⊕ b⟩

|b⟩ • |b⟩
(b) CNOT.

|a⟩ • |a⟩
|b⟩ • |b⟩

|c⟩ |c⊕ ab⟩
(c) Toffoli.

|a⟩ × |b⟩
|b⟩ × |a⟩

(d) Swap.

|a⟩ • • |a⟩

|b⟩ × ≡ • |c⟩ if a = |1⟩, otherwise |b⟩

|c⟩ × • • |b⟩ if a = |1⟩, otherwise |c⟩
(e) Controlled-swap.

Figure 4: Basic quantum gates.

B Quantum Computing Overview
The analogy to the concept of a bit in the quantum computing is the so-called quantum
bits (qubits for short). It is customary to write the qubits using the Dirac’s ket notation,
i.e., as |0⟩ or |1⟩. For more relevant details, one may refer to sources such as, [BJ24].

Several quantum gates in Figure 4 are frequently used to integrate ciphers into quantum
circuits, such as the X (NOT), CNOT and Toffoli (CCNOT) gates. The X gate flips the
state of a qubit, which is the quantum equivalent of the classical NOT operation (i.e.,
X(a) = ∼ a). The CNOT gate acts on two qubits, where the target qubit is flipped based
on the value of the control qubit. If the control qubit is 1, the target qubit is flipped;
otherwise, it remains the same (i.e., CNOT(a, b) = (a, a⊕ b)). Since this is equivalent to
applying XOR between the control and target qubits, the CNOT gate can replace the
classical XOR operation. The Toffoli gate works on three qubits, with two control qubits
and one target qubit. The target qubit is flipped only if both control qubits are set to
1 (i.e., Toffoli(a, b, c) = (a, b, c ⊕ ab)). This can be described as XORing the result of
the AND operation between the control qubits with the target qubit’s value. Thus, the
Toffoli gate can replace the classical AND operation. Using these quantum gates allows
for the implementation of cipher encryption in quantum computing, replacing classical
NOT, XOR, and AND operations.

Toffoli gates are expensive to implement as they require a combination of T gates
(which affect T -depth) and Clifford gates. Various methods for decomposing Toffoli gates
exist (see, e.g., [CBC23] for more information). In this study, we use the decomposition
method involving 7 T gates and 8 Clifford gates, with a T -depth of 4 and a full depth of 8
for one Toffoli gate, as introduced in [AMM+13].

The swap gate operates on two qubits, exchanging their quantum states (i.e., Swap(a, b) =
(b, a)). The controlled-swap gate, also known as the Fredkin gate, performs a conditional
swap depending on the control qubit (i.e., the qubits are swapped if the control qubit is 1;
otherwise, no change occurs). It can be implemented using 2 CNOT gates and 1 Toffoli
gate, and we employ this method in this work.

In quantum circuits, the evaluation metrics resemble those used in hardware-based
cryptography, although the perspective differs slightly. Time complexity can be measured
by the depth of the quantum circuit, and T -depth, which counts the number of non-
parallelizable T gates, is also a major metric for fault-tolerant quantum computing. Space
complexity is the number of qubits required by the circuit, also referred to as the width.
Time-space complexity represents the trade-off between depth and qubit count, calculated
as their product. The quantum attack complexity is defined by the total gate count and
circuit depth, a metric used by NIST to determine post-quantum security levels (refer to
Section 5.1).
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Quantum AND Gate
To the best of our knowledge, the most efficient quantum AND gates were proposed by S.
Jaques et al. [JNRV19]. Figure 5 shows the quantum AND gates from [JNRV19]. The
AND gate is decomposed into 11 Clifford gates and 4 T gates, with a T -depth of 1 and a
full depth of 8, requiring one ancilla qubit. The inverse of the AND gate (AND†), which
performs un-computation, is implemented based on the measured value of the target qubit.
The AND† gate consists of 7 Clifford gates and 1 measurement gate. In particular, the
AND† gate offers a significant benefit in reverse operations, such as our in-place point
addition. It is important to note that the target qubit of the AND gate should be initialized
in a clean state, |0⟩ (unlike the Toffoli gate, where the state of the target qubit is irrelevant).

Although potential improvements using AND gates can be anticipated, we focused
solely on optimizing the base implementation for point addition, as replacing Toffoli gates
with AND gates depends entirely on this.

|a⟩ • T † • |a⟩

|b⟩ • T † • |b⟩

|0⟩ H • • T • • H S |ab⟩ (Result)

(Ancilla) |0⟩ T |0⟩
(a) AND.

|a⟩ • |a⟩

|b⟩ H H |b⟩

(Result) |ab⟩ H X |0⟩

(b) AND†.

Figure 5: Quantum AND and AND† gates in [JNRV19].

C Annex: Quantum Depth Optimization of Squaring Ma-
trix at Compiler Level

This part works as an annex to Section 3.2.1. To begin with, we highlight the findings of
[JBK+22], which demonstrate that quantum programming tools do not always find the
optimal depth for the binary non-singular matrices (implemented using CNOT gates).
This answers the puzzling situation reported in [JNRV19, Section 4.3]:

.
Note that [GLRS16] describes the same technique, while achieving a signifi-
cantly smaller design than the one we obtain.

The authors in [JNRV19] implement the AES MixColumn (which is a 32× 32 binary
non-singular matrix) by following the method in [GLRS16], but they do not find the
same quantum depth. This is due to the fact that the encodings of the same matrix
is different (cf. the GF(2) and GF(28) encodings in [JBK+22, Table 4]), and the tools
find the quantum depth without considering any optimization. Indeed, often a simple
row/column permutation of the matrix can lead to lower quantum depth.

To overcome the shortcoming of the tools’ inability to optimize for the quantum depth,
we attempt to find a lesser quantum depth manually (before feeding it to the tool). We
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target the out-of-place implementation, as it already has lower quantum depth compared
to that of the best in-place implementations we have found thus far. Our algorithm, which
we call compiler-friendly, is deterministic in nature. The quantum programming tool used
in this work is ProjectQ [SHT18], but other tools could have been used.

For a matrix of dimension 10 × 10 taken as an exmaple here, Figure 6 shows the
first two steps of the naïve implementation. Depending on the constructed matrix for
squaring, CNOT gates are applied as described in Section 3.2. Let us first check the first
row (Figure 6(a)) and then the second row (Figure 6(b)) of the matrix. For simplicity,
let the matrix be composed entirely of 1s. These steps call the same output qubit
iteratively: CNOT(a0, out0), CNOT(a1, out0) , . . . , CNOT(a9, out0), then CNOT(a0, out1),
CNOT(a1, out1) , . . . , CNOT(a9, out1). In this implementation, the compiler struggles to
find the optimal depth, resulting in a quantum depth of 270 for out-of-place squaring when
n = 163.

To improve this, we present a compiler-friendly implementation in Figure 7. Un-
like the previous method, we avoid iterative calls to the same qubit: CNOT(a9, out0),
CNOT(a8, out1) , . . . , CNOT(a0, out9) (Figure 7(a)) then CNOT(a8, out0), CNOT(a7, out1)
, . . . , CNOT(a9, out9) (Figure 7(b)). Thanks to this compiler-level optimization, we
achieved a quantum depth of 149 for the out-of-place squaring operation when n = 163,
and we obtained similar reductions for other values of n as well.

(a) Step 1. (b) Step 2.

Figure 6: Naïve implementation of out-of-place squaring.

(a) Step 1. (b) Step 2.

Figure 7: Compiler-friendly implementation of out-of-place squaring (by us).
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D Worked-Out Examples
D.1 Binary Fields
Example 1 (Binary field of order 16). Let m(x) = x4 + x + 1 ∈ F2[x] and consider
F2[x]/m(x). Since the product of two polynomial in F2[x]/m(x) is reduced modulo m(x),
hence, all the elements of F2[x]/m(x) can be represented by polynomials of degree 3 or
less (and therefore there are 24 = 16 of them). The collection of these polynomials form a
finite field of order 16. The elements of this field are as listed as,

0000 : g0 = 0x3 + 0x2 + 0x+ 0 1000 : g8 = 1x3 + 0x2 + 0x+ 0
0001 : g1 = 0x3 + 0x2 + 0x+ 1 1001 : g9 = 1x3 + 0x2 + 0x+ 1
0010 : g2 = 0x3 + 0x2 + 1x+ 0 1010 : g10 = 1x3 + 0x2 + 1x+ 0
0011 : g3 = 0x3 + 0x2 + 1x+ 1 1011 : g11 = 1x3 + 0x2 + 1x+ 1
0100 : g4 = 0x3 + 1x2 + 0x+ 0 1100 : g12 = 1x3 + 1x2 + 0x+ 0
0101 : g5 = 0x3 + 1x2 + 0x+ 1 1101 : g13 = 1x3 + 1x2 + 0x+ 1
0110 : g6 = 0x3 + 1x2 + 1x+ 0 1110 : g14 = 1x3 + 1x2 + 1x+ 0
0111 : g7 = 0x3 + 1x2 + 1x+ 1 1111 : g15 = 1x3 + 1x2 + 1x+ 1 V

Example 2 (Standard example of a binary field (adopted from [CMR+23]) of order 2571).
Let m(x) = x571 + x10 + x5 + x2 + 1 ∈ F2[x] be a polynomial of degree 571 and consider
F2[x]/m(x). All the elements of F2[x]/m(x) can be represented by polynomials of degree
570 or less. V

D.2 Binary Elliptic Curves
Example 3 (Toy example of a binary elliptic curve). We consider the binary elliptic curve
of the form

B1,1 : y2 + xy = x3 + x2 + 1
defined over the binary field F16 (see Example 1). Set of all points on the elliptic curve
forms a group (also known as elliptic curve group) under the binary operation of point
addition. Let us denote the elliptic curve group by B1,1(F16), i.e.,

B1,1(F16) := {(x̃, ỹ) ∈ F16 × F16 : ỹ2 + x̃ỹ = x̃3 + x̃2 + 1}.

The list of all points on the binary elliptic curve B1,1 in affine coordinates is given next:
B1,1(F16) = {(0, 1), (1, x2 + x), (1, x2 + x+ 1), (x2 + x, 1), (x2 + x, x2 + x+ 1), (x2 + x+
1, 1), (x2 +x+ 1, x2 +x), (x3, x), (x3, x3 +x), (x3 +x, x2 + 1), (x3 +x, x3 +x2 +x+ 1), (x3 +
x2, x2), (x3 + x2, x3), (x3 + x2 + x+ 1, x+ 1), (x3 + x2 + x+ 1, x3 + x2), ∅}

Note that |B1,1(F16)| = 16. Take P1 = (x2 + x, 1) = (u1, v1), P2 = (x3 + x, x2 + 1) =
(u2, v2) ∈ B1,1(F16). Let Q = P1 + P2 = (u, v) denotes the point addition. We illustrate
the process of computing the point Q. The slope δ is given by (x2)/(x3 +x2) = x3 +x2 +x.
The coordinates of Q are given by the formulae

u = δ2 + δ + a− u1 − u2 and v = δ(u1 + u)− u− v1

Therefore,

u = (x3 + x+ 1) + (x3 + x2 + x) + 1− (x2 + x)− (x3 + x) = x3,

and
v = (x3 + x2 + x)(x2 + x+ x3)− x3 − 1 = x.
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Thus, Q = (x3, x). Note that point Q indeed is an elliptic curve point as it satisfies the
elliptic curve equation B1,1 : y2 + xy = x3 + x2 + 1. We also illustrate the process of point
doubling by computing P2 + P2 = 2P2. Let W = (w1, w2) denote the point 2P2, then the
coordinates of W can be computed by

w1 = δ′2 + δ′ + a and w2 = δ′(u2 + w1)− w1 − v2

with δ′ = u2 + v2/u2. δ′ = x3 +x+ (x2 + 1)/(x3 + x) = x3 +x+ (x2 + 1)(x3 +x2) = x+ 1.
Therefore,

w1 = (x2 + 1) + (x+ 1) + 1 = x2 + x+ 1,

and
w2 = (x+ 1)(x3 + x+ x2 + x+ 1)− (x2 + x+ 1)− (x2 + 1) = x2 + x.

Thus, 2P2 = (x2 + x+ 1, x2 + x). V
In this part, we show standard examples (adopted from [CMR+23]) of binary elliptic

curves in Examples 4, 5, and 6. Binary elliptic curves Ba,b can be divided into two major
classes: Koblitz curves [Sol00] and pseudo-random curves [CMR+23].
The pseudo-random curve [CMR+23] has the form

B1,b : y2 + xy = x3 + x2 + b

with a = 1 and b is a non-zero element of F2m .
The Koblitz curves[Sol00] has the representation

Ba,1 : y2 + xy = x3 + ax2 + 1

with a being either 0 or 1.

Example 4 (Binary elliptic curve K-233). The binary elliptic curve K-233 belongs to the
class of Koblitz curves with the Weierstrass form B0,1:

B0,1 : y2 + xy = x3 + 1

defined over the binary field F2n with n = 233. The size of the elliptic curve group of the
curve K-233 is 4p, where p is a prime number. The other parameters of K-233 are given
as follows.

• Modulus for the binary field F2233 is x233 + x74 + 1

• p : 3450873173395281893717377931138512760570940988862252126328087024741343
(= 0x8000000000000000000000000000069d5bb915bcd46efb1ad5f173abdf)

• Generator point G = (Gx, Gy) ∈ K-233 of a subgroup of prime order p, where
Gx: 0x17232ba853a7e731af129f22ff4149563a419c26bf50a4c9d6eefad6126, and
Gy: 0x1db537dece819b7f70f555a67c427a8cd9bf18aeb9b56e0c11056fae6a3 V

Example 5 (Binary elliptic curve K-571). The binary elliptic curve K-571 belongs to the
class of Koblitz curves with the Weierstrass form B0,1:

B0,1 : y2 + xy = x3 + 1

defined over the binary field F2n with n = 571. The size of the elliptic curve group of the
curve K-571 is 4p, where p is a prime number. The other parameters of K-571, along with
choice of p are given next.

• Modulus for the binary field F2571 is x571 + x10 + x5 + x2 + 1
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• p : 1932268761508629172347675945465993672149463664853217499328617625725759
5711447802122681339785227067118347067128008253514612736749740666173119296
82421617092503555733685276673 (= 0x2000000000000000000000000000000000000
0000000000000000000000000000000000131850e1f19a63e4b391a8db917f4138b630
d84be5d639381e91deb45cfe778f637c1001)

• Generator point G = (Gx, Gy) ∈ K-571 of a subgroup of prime order p where,
Gx: 0x26eb7a859923fbc82189631f8103fe4ac9ca2970012d5d46024804801841ca4
4370958493b205e647da304db4ceb08cbbd1ba39494776fb988b47174dca88c7e29452
83a01c8972, and
Gy: 0x349dc807f4fbf374f4aeade3bca95314dd58cec9f307a54ffc61efc006d8a2c
9d4979c0ac44aea74fbebbb9f772aedcb620b01a7ba7af1b320430c8591984f601cd4c
143ef1c7a3 V

Example 6 (Binary elliptic curve B-283). The binary elliptic curve B-283 belongs to the
class of pseudo-random curves with the Weierstrass form B1,b:

B1,b : y2 + xy = x3 + x2 + b,

defined over the binary field F2n with n = 283. The size of the elliptic curve group of the
curve B-283 is 2p, where p is a prime number. The other parameters of K-283 are given
here.

• Modulus for the binary field F2283 is x283 + x12 + x7 + x5 + 1

• p : 777067556890291628367784762729407562656962592437690488910919652677004
4277787378692871 (= 0x3ffffffffffffffffffffffffffffffffffef90399660fc93
8a90165b042a7cefadb307)

• b : 0x27b680ac8b8596da5a4af8a19a0303fca97fd7645309fa2a581485af6263e313
b79a2f5

• Generator point G = (Gx, Gy) ∈ K-571 of a subgroup of prime order p, where
Gx: 0x5f939258db7dd90e1934f8c70b0dfec2eed25b8557eac9c80e2e198f8cdbecd
86b12053, and
Gy: 0x3676854fe24141cb98fe6d4b20d02b4516ff702350eddb0826779c813f0df45
be8112f4 V

D.3 Key Establishment with ECC
Example 7 (Toy example of key establishment using ECC). With the defined notations
in Section 2.4, consider the domain parameters (n,m(x), a, b,G, p, h) = (8, x8 + x4 + x3 +
x+ 1, 0, 1, (x7 + x6 + x4 + x3 + x+ 1, x7 + x5 + x4 + x3), 96, 3). Note that elliptic curve,

B0,1 = y2 + xy = x3 + 1,

is defined over the binary field F256. The size of elliptic curve group B0,1(F256) is 288 with
the subgroup generated by G having size 96.

• Alice private key: skA : 82 ∈ {2, 95}

• Alice’s public key: pkA : [82]G = (x4 + 1, x7 + x4 + x2 + x)

• Bob’s private key: skB : 61 ∈ {2, 95}

• Bob’s public key: pkB : [61]G = (x5 + x3 + x2, x7 + x5 + x3)
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• Alice’s computation of shared secret S: [skA]PKB = [82](x5 +x3 +x2, x7 +x5 +x3) =
(x4 + x, x7 + x6 + x5 + x4 + x3 + x)

• Bob’s computation of shared secret S: [skB ]PKA = [61](x4 + 1, x7 + x4 + x2 + x) =
(x4 + x, x7 + x6 + x5 + x4 + x3 + x) V

Example 8 (Standard example of key establishment using ECC). Consider the standard
domain parameters (n,m(x), a, b,G, p, h) for Koblitz curve with

• n = 233

• m(x) = x233 + x74 + 1

• a = 0, b = 1

• G = (Gx, Gy), with Gx = 0x17232ba853a7e731af129f22ff4149563a419c26bf50a
4c9d6eefad6126 and Gy = 0x1db537dece819b7f70f555a67c427a8cd9bf18aeb9b5
6e0c11056fae6a3

• p = 3450873173395281893717377931138512760570940988862252126328087024741343
(= 0x8000000000000000000000000000069d5bb915bcd46efb1ad5f173abdf)

• h = 4

Note that elliptic curve is B0,1 = y2 + xy = x3 + 1 defined over the binary field F2233 .
The size of elliptic curve group B0,1(F2233) is,

hp = 0x200000000000000000000000000001a756ee456f351bbec6b57c5ceaf7c

with the subgroup generated by G having size p.

• Alice’s private key: skA = 0x60a199a7a5c72d1dd073c05f9b6950bbb8ed9837f0148
002acc6fc97d9

• Alice’s public key: pkA = (0x318332683366efd1eca9abd451cde39d6c8723682efa8
df72706113ef, 0x16d34d5f5f2cd899ba76b54737f277d54c7901d533dbfc4b7e570fd
84b5)

• Bob’s private key: skB = 0x59549cfe112c9acf8b6ac1bf5c0e2aa8381744f20c8efa
49461d1a2aa3

• Bob’s public key: pkB = (0x16a5b88d01f6e4901c949965e720e598a2f88cfdc18dc
908426727b5974, 0x10e2019fd7e397bb98ad1f457763a01d27c686e56574bbbaebe8
9fe6784)

• Shared secret: (0xdb49e4a46383f224a270aec8f6617361c451b01dbd29bc5cc780bb
8ca8, 0x1b410b6cd0c2a8c216263eb8201f43c838b06f8b21e3a9d7b121fcab16d) V

D.4 Inversion in F2n using Itoh–Tsujii Algorithm
We consider a simple example of inversion using the Itoh–Tsujii inversion algorithm [IT88].
Let α ∈ F2n , Define Φj(α) = α2j−1, then note that

Φj1+j2(α) = [Φj1(α)]2
j2 · Φj2(α) (4)

where j1 and j2 are natural numbers. We also by know Fermat’s little theorem that
α−1 = α2n−2. Observe that

α2n−2 = (α2n−1−1)2,
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thus
α−1 = (Φn−1(α))2

Thus, our goal is to compute the quantity Φn−1(α) starting from Φ1(α) = α. In other
words, we want to achieve an addition chain from 1 to n− 1. The algorithm to achieve the
addition chain is given in Algorithm 3. Note that Algorithm 3 calculates the corresponding
addition chain by going from second most significant bit of n− 1 to the least significant
bit.

Algorithm 3: Classic addition-chain Itoh–Tsujii inversion
1: Input n− 1 = (bq−1, . . . , b0)2 and α ∈ F2n

2: Output x_inv = α−1

3: x_inv← α, t← 1
4: for i← q − 2 to 0 do
5: x_inv← x_inv · (x_inv)2t

6: t← 2t
7: if bi = 1 then
8: x_inv← α · (x_inv)2

9: t← t+ 1
10: end if
11: end for
12: x_inv← (x_inv)2

13: return x_inv

Consider F2163 with n = 163. Let α = x4. n − 1 = 162 = (10100010)2. We want
to compute Φ162(α) starting from Φ1(α). From the Algorithm 3, we can note that the
corresponding addition chain is given by

{Φ1(α),Φ2(α),Φ4(α),Φ5(α),Φ10(α),Φ20(α),Φ40(α),Φ80(α),Φ81(α),Φ162(α)}.

We work out the exact computations involved to obtain the inverse of α = x4 in the
subsequent parts. Note that α = x4 and Φ1(α) = α; Φ1(x4) = x4. Then, the following
expressions are derived from Equation (4):

• Φ2(α) = Φ1+1(α) = (Φ1(α))2 · Φ1(α). Therefore, Φ2(x4) = x12

• Φ4(α) = Φ2+2(α) = (Φ2(α))22 · Φ2(α)
Φ4(x4) = x60

• Φ5(α) = Φ4+1(α) = (Φ4(α))2 · Φ1(α)
Φ5(α) = x124

• Φ10(α) = Φ5+5(α) = (Φ5(α))25 · Φ5(α)
Φ10(x4) = x161+x160+x159+x156+x153+x144+x143+x140+x137+x136+x135+x132+
x129+x128+x127+x124+x121+x96+x95+x92+x89+x80+x79+x76+x73+x48+x47+
x44 +x41 +x36 +x34 +x26 +x24 +x23 +x22 +x20 +x18 +x17 +x14 +x10 +x6 +x5 +x

• Φ20(α) = Φ10+10(α) = (Φ10(α))210 · Φ10(α)
Φ20(x4) = x161 +x160 +x159 +x158 +x157 +x156 +x153 +x151 +x148 +x144 +x143 +
x140 +x139 +x137 +x136 +x135 +x134 +x133 +x132 +x126 +x125 +x124 +x119 +x118 +
x117 +x113 +x112 +x110 +x109 +x107 +x106 +x105 +x104 +x100 +x95 +x86 +x85 +x84 +
x82 +x81 +x80 +x79 +x74 +x72 +x70 +x69 +x68 +x66 +x65 +x64 +x60 +x58 +x56 +
x52 +x51 +x50 +x49 +x48 +x47 +x44 +x43 +x42 +x41 +x40 +x38 +x37 +x36 +x34 +
x33 +x29 +x27 +x25 +x24 +x23 +x18 +x17 +x16 +x15 +x10 +x8 +x7 +x6 +x5 +x4 +x2
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• Φ40(α) = Φ20+20(α) = (Φ20(α))220 · Φ20(α)
Φ40(x4) = x160 +x158 +x156 +x154 +x151 +x149 +x146 +x145 +x143 +x142 +x140 +
x137 + x136 + x133 + x132 + x130 + x126 + x125 + x124 + x123 + x122 + x119 + x114 +
x112 +x107 +x104 +x102 +x101 +x100 +x98 +x96 +x92 +x91 +x90 +x87 +x86 +x85 +
x83 +x82 +x80 +x77 +x76 +x74 +x73 +x72 +x71 +x70 +x68 +x67 +x66 +x63 +x62 +
x61 + x55 + x52 + x49 + x48 + x47 + x43 + x41 + x38 + x36 + x35 + x32 + x30 + x27 +
x26 +x25 +x24 +x23 +x22 +x19 +x18 +x17 +x16 +x14 +x10 +x7 +x5 +x3 +x2 +x

• Φ80(α) = Φ40+40(α) = (Φ40(α))240 · Φ40(α)
Φ80(x4) = x162 +x161 +x159 +x158 +x156 +x153 +x151 +x144 +x143 +x140 +x137 +
x136 + x135 + x131 + x130 + x128 + x127 + x125 + x124 + x122 + x119 + x115 + x113 +
x112 +x111 +x108 +x102 +x101 +x99 +x97 +x95 +x94 +x92 +x89 +x86 +x82 +x81 +
x80 +x75 +x71 +x70 +x69 +x68 +x64 +x63 +x62 +x60 +x59 +x58 +x57 +x56 +x53 +
x52 +x51 +x48 +x47 +x41 +x40 +x39 +x37 +x35 +x34 +x33 +x31 +x30 +x29 +x28 +
x26 +x24 +x22 +x21 +x19 +x18 +x15 +x13 +x12 +x9 +x8 +x7 +x6 +x5 +x3 +x2

• Φ81(α) = Φ80+1(α) = (Φ80(α))2 · Φ1(α)
Φ81(x4) = x162 +x157 +x156 +x149 +x147 +x144 +x143 +x142 +x140 +x136 +x135 +
x134 + x133 + x129 + x119 + x118 + x117 + x115 + x114 + x113 + x111 + x109 + x107 +
x102 + x98 + x96 + x94 + x89 + x88 + x84 + x79 + x77 + x74 + x73 + x70 + x69 + x68 +
x67 + x65 + x62 + x57 + x56 + x51 + x50 + x49 + x46 + x43 + x42 + x41 + x40 + x39 +
x37 + x36 + x30 + x29 + x26 + x18 + x16 + x14 + x13 + x11 + x10 + x9 + x7 + x3

• Φ162(α) = Φ81+81(α) = (Φ81(α))281 · Φ81(α)
Φ162(x4) = x161 + x5 + x4 + x

• α−1 = (Φ162(α))2 = x162 + x159 + x6 + x5 + x3

It can be checked that, α−1 ·α = (x162 + x159 + x6 + x5 + x3) · (x4) = x10 + x9 + x6 + x3 +
x7 + x6 + x3 + 1 + x10 + x9 + x7 = 1.

E Annex: Quantum Circuit for Inversion
Figure 8 illustrates the quantum circuit diagram for inversion using the Itoh-Tsujii algorithm
with n = 16. As described in Section 3.4.1, the binary form of n− 1 is [k1, k2, k3, k4] =
[3, 2, 1, 0], and C = B24 ·B.

F Semi-Classical Fourier Transform
Shor’s quantum circuit involves multiple control qubits and a series of Hadamard gates,
controlled rotations, and measurements. However, the circuit can be optimized by reducing
the number of control qubits to just one. In [GN96], Griffiths and Niu demonstrate how a
quantum Fourier transform can be implemented semi-classically by measuring qubits one
at a time, using the classical outcomes

µ0, . . . , µ2n+1 with θk = −π
k−1∑
j=0

2k−jµj

to control subsequent operations. By taking measurements after each step, the 2n + 2
qubits in the quantum Fourier transform can be reduced to a single qubit. The quantum
circuit diagram for finding elliptic curve logarithms using a semi-classical Fourier transform
is shown in Figure 9.
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Figure 9: Shor’s quantum circuit for finding elliptic curve logarithms using a semi-classical
Fourier transform.
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