
Voting with coercion resistance and everlasting
privacy using linkable ring signatures

Panagiotis Grontas[0000−0001−7584−0643], Aris Pagourtzis[0000−0002−6220−3722],
and Marianna Spyrakou[0000−0001−5694−8405]

School of Electrical and Computer Engineering
National Technical University of Athens,

9 Iroon Polytechniou St, 157 80 Zografou, Greece
pgrontas@corelab.ntua.gr, pagour@cs.ntua.gr, mspyrakou@mail.ntua.gr

Abstract. We propose an e-voting protocol based on a novel linkable
ring signature scheme with unconditional anonymity. In our system, all
voters register create private credentials and register their public coun-
terparts. To vote, they create a ring (anonymity set) consisting of public
credentials together with a proof of knowledge of their secret credential
via our signature. Its unconditional anonymity prevents an attacker, no
matter how powerful, from deducing the identity of the voter, thus at-
taining everlasting privacy. Additionally, our protocol provides coercion
resistance in the JCJ framework; when an adversary tries to coerce a
voter, the attack can be evaded by creating a signature with a fake but
indistinguishable credential. During a moment of privacy, they will cast
their real vote. Our scheme also provides verifiability and ballot secrecy.

Keywords: e-voting, coercion resistance, everlasting privacy, linkable
ring signatures, unconditional anonymity

1 Introduction

Voting is a distributed decision making process. Voters submit their opinions,
talliers aggregate them and everyone is bound by the result. Electronic voting
aims to improve the speed, cost and accessibility of this process. To do so, it
must satisfy a set of conflicting security properties. Verifiability [14] removes the
trust in the various components of the system, by allowing voters to check all
parts of the process. Privacy [7] encourages voters to express their true opinions.
It can be implemented using secrecy [17] and/or anonymity [9]. In its most ba-
sic form, it protects only against other (passive) voters and the talliers through
cryptography under computational assumptions. Everlasting privacy [37] pro-
tects voter privacy even after such assumptions cease to hold. Privacy can also
be ‘extended’ to protect against corrupted voters that want to sell their votes
(receipt - freeness [6]) and active adversaries that seek to coerce a particular
action using threats in case of non-compliance. Coercion resistance [31] is the
strongest form of privacy that must be satisfied for remote electronic voting to
be broadly adopted.



2 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

Related work Voting protocols have a close connection to digital signatures
schemes, both as means to force untrusted players to behave correctly ([17, 1,
8, 14, 39]) and as proofs of knowledge of private credentials to authenticate the
voters ([31, 12]). The versatility of signatures as a primitive also enables the
provision of privacy. For example, the schemes in [21, 23] use blind signatures.
The seminal work of [34] utilizes linkable ring signatures to provide strong levels
of anonymity, while eliminating the registration phase and preventing double
voting. Unfortunately, [34] does not provide neither coercion resistance nor ev-
erlasting privacy, since the linking tag which connects votes also reveals the
identity of the voter to a future adversary and can be used to check compliance
from a contemporary coercer. Our scheme provides improvements on both these
areas, without sacrificing verifiability.

Regarding coercion resistance, the JCJ framework [31] has been the defini-
tive paradigm for many schemes. Its attack model considers three cases: the
randomization attack, where the voter is forced to vote randomly, the forced ab-
stention attack, where the voter must not cast a vote at all, and the simulation
attack, where the coercer essentially takes total control of the voter and votes
as they wish. Coercion resistance is achieved by not allowing the adversary to
be certain if their attack succeeded, i.e. if the voter followed their instructions.
This is made possible in [31] using two methods: multiple votes per voter and
anonymous credentials. The voter follows the coercer’s instructions when they
are present, but during a moment of privacy (a necessary assumption) they cast
their real vote. The coercer cannot tell which ballot was counted because of the
use of anonymous and indistinguishable credentials. The talliers must prove that
they counted the correct vote, to maintain verifiability, without leaking the cre-
dential that accompanied the real vote. To do so, they use a plaintext equivalence
test (PET) [29]. A detailed implementation of JCJ was given in Civitas [12]. One
of the main drawbacks of both these works is the quadratic tallying time to weed
out real and fake votes using the PET. Selections [11], another implementation
of JCJ provides a detailed specification of the registration phase, and a usable
way to generate anonymous credentials through panic passwords. A noteworthy
characteristic of [11] is that it associates tallying complexity with the degree of
coercion resistance and allows the trade-off to be adjusted.

Works that provide everlasting privacy can be distinguished in two main
categories depending on whether an anonymous casting phase is used [21, 35,
25] or not [37, 38, 19, 2, 18, 39]. The latter schemes accompany the encrypted
vote with a perfectly hiding commitment. Everlasting privacy is achieved by
allowing only the part of the ballot box that contains the commitments to be
revealed to the public. The election server maintains, but never discloses, a secret
ballot box that contains voting information that can be broken by an unbounded
adversary. It is trusted to delete these values after the election ends thus making
them unavailable in the future. Whether this trust is justified or not, is an open
problem [23]. The best known schemes that provide everlasting privacy based on
anonymous casting are [35, 25]. Both these works also provide coercion resistance
by using the observation that an anonymous channel during casting can be used



Voting with coercion resistance and everlasting privacy 3

to thwart the forced abstention attack of a coercer together with everlasting
privacy. The scheme of [35] utilizes deniable vote updating, where the voters
initially follow the coercer’s instructions, but deniably change their ballot later
to reflect their true choice. On the other hand, [25] works in the JCJ setting with
anonymous credentials and performs tallying in linear time to the total number
of votes. In comparison, deniable vote updating requires stronger assumptions
on the timing of the coercion attack, as a last-minute adversary has an easier
task, while anonymous credentials require the voters to handle cryptographic
material. Specialized voting devices or more user-friendly techniques like panic
passwords [11] may be used to make such schemes practical.

Regarding the degree of everlasting privacy achieved, we can distinguish two
variations: practical (or weak) and strong. Practical everlasting privacy [2] pro-
tects against an adversary that can break cryptographic assumptions, but only
has access to publicly available data (long) after the election has ended. Strong
everlasting privacy [24, 23] on the other hand, also protects against adversaries
that have access to insider data maintained by the election authorities or inter-
mediaries. It is clear that schemes based on public commitments cannot achieve
strong everlasting privacy because an insider can access the contents of the secret
ballot box (e.g. decommitment values) and reveal voter preferences. A criticism
of anonymous casting [27], on the other hand, considers it to be a very strong
assumption and finds it difficult to combine with verifiability. However, there
are some clear advantages as well [23]. Firstly, it can provide strong everlasting
privacy since there is no need for a secret ballot box. Everything submitted by
the voters can be made public. Secondly, it can be used to provide ballot se-
crecy without trusting the election talliers for this property (as is common in all
schemes descending from [17, 1]), because a future computationally unbounded
adversary is equivalent to an untrusted contemporary tallier.

Our contribution This work can be classified in the fake-credentials and
anonymous-casting paradigm. Our novel voting protocol provides coercion re-
sistance (à la JCJ) together with everlasting privacy and ballot secrecy without
sacrificing verifiability. To this end, we augment the design of [34] with a new ring
signature scheme that achieves unconditional anonymity and admits fake creden-
tials. Each vote in our protocol is accompanied by such a signature. The ring in
our case consists of a list of credentials together with an extra one supplied by
the voter themselves. If they are under coercion, the latter is invalid causing the
ballot to be discarded. During a moment of privacy, they utilize their registered
(genuine) credential. The construction of our credentials prevents the coercer
from distinguishing these cases. The unconditional anonymity provided by our
novel linkable ring signature creates an anonymous channel at the endpoints of
the system and achieves everlasting privacy. Tallying complexity is quadratic as
in JCJ [31], but in our scheme vote casting is a simple one-move operation by
the voter, an improvement over [25] which requires voters to send two messages
in different protocol phases (both over an anonymous channel). This balances
the quadratic tallying time of our scheme against the linear time of [25]. Fur-



4 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

thermore, anonymous casting is an inherent feature of our protocol. Thus, in our
case, an external anonymous channel is required only to hide networks addresses
and defend against side-channel attacks.

2 Preliminaries

Notation Let λ denote the security parameter. The number of voters is n and
each voter is indexed by i ∈ [n] = {1, . . . , n}. We use the term vote to refer to the
choice of the voter (in plaintext form), while the term ballot stands for the en-
crypted vote together with credentials and proofs of validity. In our scheme each
ballot contains exactly β credentials indexed by j ∈ [β]. Sampling uniformly
at random from a set is denoted by ←$, appending by ⇐, assignment by ←,
equality by =, and concatenation by |. We denote by params the cryptographic
groups on which our schemes operate and the related sets (e.g. message, signa-
ture, pseudoidentity and event spaces). It is an input to all our algorithms and
it will be omitted for brevity. It includes a group G of prime order q where the
DDH assumption holds, a hash function HG that maps binary strings to group
elements, and a hash function Hq that maps binary strings to elements of Zq.
We denote a list as L, its length as |L| and a list item as Lj . Since our protocol
utilizes both an encryption and a signature scheme, we denote the encryption
keys by (pk, sk) and the signature keys (which also double as voter credentials)
by (pc, sc). We also use the dot notation to refer to items of a tuple.

Encryption We require an IND-CPA-secure public key cryptosystem with ho-
momorphic properties that can support distributed key generation and thresh-
old decryption, like the ElGamal scheme [22]. We denote the ElGamal encryp-
tion of a group element m ∈ G with randomness r ∈ Zq under the public
key pk as Encpk(m; r) = (gr, m · pkr). A variation of our scheme may also use
the exponential (or additive) version of ElGamal where m ∈ Zq and gm is en-
crypted instead of m. Given an ElGamal ciphertext c = (c1, c2) we denote
its reencryption with randomness r′ ∈ Zq under the same public key pk as

ReEncpk(c, r
′) = c⊙ Encpk(1; r

′) = (c1 · gr
′
, c2 · pkr

′
), where ⊙ is the elementwise

multiplication. Similarly, the notation cz is used for (cz1, c
z
2).

Non-Interactive Zero-Knowledge Proofs of Knowledge In verifiable e-
voting schemes the voters and the various election authorities must provide
proofs that they correctly executed the actions prescribed in the protocol with-
out revealing their private inputs (e.g. candidate choices, secret keys or private
credentials). Any interested party can then check these proofs and be convinced
that the protocol was executed correctly.

We employ Σ-protocols for this task, which are public-coin 3-move interactive
protocols (NIZK.Setup,NIZK.Prove,NIZK.Vrfy) where NIZK.Prove consists of the
following steps: commitment by the prover (Com), challenge by the verifier and
response by the prover (Resp). These protocols have the security properties of



Voting with coercion resistance and everlasting privacy 5

completeness, special-soundness and special honest-verifier zero-knowledge. The
latter property implies the existence of a simulator Sim that creates accepting
proofs for any public input. They can be made non-interactive (NIZK), and thus
publicly verifiable, with the Fiat-Shamir transform [20]. We use its strong version
by including all public parameters in the hash to avoid the attacks of [8, 36].

Most standardΣ-protocols in the literature originate from the proof of knowl-
edge of a discrete logarithm πS of Schnorr [40] and the proof of equality of
discrete logarithm πCP (or equivalently proof that a tuple of group elements
is a Diffie-Hellman tuple) due to Chaum and Pedersen [10]. The NIZK proofs
commonly utilized in e-voting schemes are:

– πEnc: proof that the selected vote is a valid candidate encoding, which is
constructed as a disjunction [16] of proofs that a ciphertext c corresponds to
a known message m. It is important to stress that the Enc + PoK paradigm
with an IND-CPA secure encryption scheme together with the strong Fiat-
Shamir transform provides NM-CPA security [8].

– πDec: proof that a ciphertext Enc(m) has been correctly decrypted to m [17].
– πReEnc: proof that ciphertext c

′ correctly reencrypts ciphertext c.
– πsc: proof that a user knows a secret credential x, y such that c = Encpk(g

xhy; r),
constructed using a variation of the idea from [26].

A designated verifier proof [30], denoted by δ, receives as an additional input
the public key of a ‘legitimate’ verifier. This has the effect that only this verifier
can be convinced that the proof is valid, as they can simulate proofs using their
private key. In our scheme we utilize a designated verifier proof δReEnc that c′ is
a correct reencryption of c due to [28].

We provide more details for the construction of these proofs in Appendix A.

Plaintext Equivalence Test (Proof) An essential component of all JCJ-
related schemes is a proof that two ciphertexts, encrypted with the same public
key, hide the same plaintext. This proof is generated by a group of players, each
holding shares of the decryption key, using the PETprimitive from [29], i.e.

PET(Encpk(m1);Encpk(m2)) = 1⇔ m1 ≡ m2

A PET can be instantiated in a distributed El Gamal setting using the tech-
niques of [29, 12, 36]. At first, each player ‘divides’ the two ciphertexts c1, c2
elementwise and the result c = ( c11c21

, c12
c22

) is blinded by each, using a blinding
factor chosen uniformly at random, thus producing czi = (( c11c21

)zi , ( c12c22
)zi) Then

everyone commits to czi and provides proofs πCP of correct construction (i.e that
the same zi was used in both components). After all commitments and proofs
have been published and verified, every player multiplies all czi together. The
result c′ =

∏
i c

zi is threshold decrypted and a proof πDec is generated. If c1, c2
indeed hid the same plaintext, the decryption yields 1, otherwise a random group
element. The proofs of decryption and correct construction shall be collectively
denoted as πPET. We note that in a practical implementation all the provisions of
[36] (i.e. strong Fiat-Shamir transform, checks for trivial cases) must be included
in order for the PET to be a proof even if all parties are dishonest.



6 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

Verifiable shuffles We require a functionality Shuffle that receives a list of
items and aims to anonymize them, i.e. to stop an attacker from tracing the
processing of an item in a particular position. In our protocol the items are the
ballots and credentials of the voters. The Shuffle functionality is usually instan-
tiated using permutations and reencryptions to alter both the position and the
form of the ciphertexts. For verifiability purposes a NIZK proof of correct pro-
cessing πShuffle is returned as an output as well. Verifiable shuffles are a very well
studied topic in the literature and many such schemes exist. An implementation
of our scheme could use a shuffle similar to [12].

3 A linkable ring signature with unconditional anonymity

The proposed voting scheme is based on a new linkable ring signature (LRS)
inspired from [34, 33].

Definition 1. A LRS scheme is a tuple of algorithms (Setup,KGen,Sign,Vrfy, Link):

– params← LRS.Setup(λ). Generates the system parameters.
– (sc, pc)← LRS.KGen(). Produces the secret and public credentials.
– σ ← LRS.Sign(L, ev, sc, m). Sign is the algorithm that is used to sign a mes-

sage m by some sc with public counterpart in the ring L for event ev.
– 0\1← LRS.Vrfy(L, ev, m, σ) is the public verification algorithm which outputs

1 if the signature is valid or 0 if it is not.
– 0\1 ← LRS.Link(σ1, σ2) is the public linking algorithm which outputs 1 if

valid signatures σ1 and σ2 originate from the same signer for the same event.

In our proposal, the ev variable will be produced using a hash function on
the public election parameters (such as voting issue, candidate list, date etc.) It
will serve as a unique election identifier.

Linkable ring signatures were first used for electronic voting in [34]. The
security properties of our signature and their relation to the security of our
voting scheme are:

– Unforgeability: Only the holder of the signing key can produce valid signa-
tures. This property will be used to ensure verifiability and prevent double
voting (in concert with linkability).

– Anonymity: The identity of the voter is hidden inside the ring, which serves
as an anonymity set. This will help achieve (everlasting) privacy.

– Linkability: Given two signatures created by the same ring member for
the same event, the Link algorithm will always return 1. As the anonymity
property can allow malicious voters to vote twice, the linkability property
can make double voting detectable and thus avoidable.

– Non-slanderability: Given a signature created by a ring member no one
can create a valid signature that is linked to it. This ensures that no one can
update the vote of a voter except for the voter themselves.



Voting with coercion resistance and everlasting privacy 7

In Figure 1, we present our linkable ring signature for our voting scheme
(cf. section 4). In order to participate, each player invokes the LRS.KGen func-
tion, which generates the pair of public and secret credentials. Then each player
publishes pc. As a result, the ring in our construction comprises a public list of
ElGamal encrypted values 1 of the form:

L =
(
pc1, . . . , pcn

)
=
(
Encpk(g

x1hy1 ; r1), . . . , Encpk(g
xnhyn ; rn)

)
To create a signature, a signer that knows the secret credential corresponding to
an item Li of L invokes the signing algorithm LRS.Sign. The secret credential is
a tuple consisting of the secrets xi, yi and the randomness ri used to create Li.
In essence, the signature is a NIZK proof of knowledge of this secret credential.
Note that the ring creation is ad-hoc, as each signer can select a subset of the
published credentials at will. To verify the signature, everyone can invoke the
algorithm LRS.Vrfy. Finally, to check if two signatures are linked, everyone can
invoke the LRS.Link, which checks if both signatures verify correctly and contain
the same linking tag.

3.1 Security Analysis

Theorem 1 (Unforgeability). Our LRS has the property of unforgeability in
the random oracle model, according to the definition of [34], given that DLOG is
hard.

Proof Sketch. Assume a PPT adversary A that with non-negligible probabil-
ity can forge a signature σ. We construct an algorithm B, that given n DLOG
instances {Xi}ni=1 uses A to obtain a forgery σ∗

0 . B rewinds A and by the rewind-
on-success lemma [34], A will produce another forgery σ∗

1 with non-negligible
probability. Then, B uses σ∗

0 and σ∗
1 to solve the DLOG problem on at least one

of the given challenges {Xi}ni=1. The complete proof is in Appendix B.1.

Theorem 2 (Anonymity). Our LRS has unconditional anonymity, as defined
in [3].

Proof Sketch. Assume a computationally unbounded adversary A and let σ
be a challenge signature given to A. The proof is based on the idea that the
linking tag of the signature cannot reveal the signer. Therefore, even if A can
solve DLOG for the linking tag t = ex and decrypt all the public credentials,
they cannot distinguish to which signer t belongs to, since it is equally likely to
have been produced by each one. More details are presented in Appendix B.2.

Theorem 3 (Linkability). Our LRS has the property of strong linkability in
the random oracle model, according to the definition of linkability of [4], if DLOG
is hard.

1 Our signature can be implemented absent an encryption scheme without sacrific-
ing any of its security properties. Encryption in our construction is used to easily
integrate the PET functionality later in the voting scheme (cf. section 4)



8 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

LRS.Setup(1λ)

Generate a group G with prime order q

Select generators g, h←$ G.

Choose HG : {0, 1}∗ → G and Hq : {0, 1}∗ → Zq

Select sk←$ Zq and set pk← gsk

as an ElGamal key pair

return params = (G, q, g, h,HG,Hq, pk)

LRS.KGen(params)

Each participant:

Samples x, y, r ←$ Zq

Sets sc← (x, y, r)

Computes gx · hy

pc← Encpk(g
xhy; r)

return (sc, pc)

LRS.Sign(L, ev, sci, m)

Parse sci = (xi, yi, ri)

Compute e← HG(ev)

Compute linking tag t← exi

Sample α, β, γ ←$ Zq

Compute

Ki ← gαhγpkβ

K′
i ← gβ

K′′
i ← eα

ci+1 ← Hq(params, L, t, Ki, K
′
i, K

′′
i , m)

for j = i+ 1, . . . , n, 1, . . . , i− 1 do

Parse (Lj1, Lj2) = Lj

sj , tj , pj ←$ Zq

Kj ← gtj · hpj · pksj · (Lj2)
cj

K′
j ← gsj · (Lj1)

cj

K′′
j ← etjtcj

cj+1 ← Hq(params, L, t, Kj , K
′
j , K

′′
j , m)

The signer sets

si ← β − ciri

ti ← α− cixi

pi ← γ − ciyi

return σ = (c1, {sj}nj=1, {tj}nj=1, {pj}nj=1, t)

LRS.Vrfy(L, ev, m, σ)

Parse σ = (c1, {sj}nj=1, {tj}nj=1, {pj}nj=1, t)

Compute e← HG(ev)

for j = 1 . . . n do

Parse (Lj1, Lj2) = Lj

Kj ← gtj · hpj · pksj · Lcj
j2

K′
j ← gsjL

cj
j1

K′′
j ← etitcj

cj+1 ← Hq(params, L, t, Kj , K
′
j , K

′′
j , v)

return 1 if and only if

c1 = Hq(params, L, t, K′
n, K

′′
n , K

′′′
n , m)

LRS.Link(σ1, σ2)

Parse σ1 = (·, ·, ·, ·, t1)
Parse σ2 = (·, ·, ·, ·, t2)
if t1 = t2

and both signatures verify correctly then

return 1

else return 0

Fig. 1. Our LRS construction

Proof Sketch. Assume a PPT adversary A that owns k − 1 secret credentials
and can produce k pairwise unlinkable signatures with non-negligible probability.
We construct an algorithm B, that given n DLOG instances {Xi}ni=1, obtains
through A, k pairwise unlinkable signatures {σ∗

i }ki=1. B rewinds A k times, and
by the rewind-on-success lemma [34], A will produce k forgeries {σ′

i}ki=1. Then,
since A knows only k − 1 secret credentials, B uses the forgeries {σ∗

i }ki=1 and
{σ′

i}ki=1 to solve the DLOG problem on one of the given challenges {Xi}ni=1. The
full proof can be found in Appendix B.3.

Theorem 4 (Non-slanderability). Our LRS has the property of non-slanderability,
in the random oracle model as defined in [33], given that DLOG is hard.



Voting with coercion resistance and everlasting privacy 9

The proof is implied by the unforgeability and strong linkability of our LRS
construction.

4 A Voting Scheme using Linkable Ring Signatures

Syntax A voting scheme consists of the following entities:

– a set of n eligible voters V = {V1, . . . ,Vn} identified by their index in V.
– a set of k candidates CS = {cnd1, · · · cndk},
– the registration authority (RA), distributed among a set of nRA registrars,
– the tallying authority (TA) consisting of nTA talliers,
– A bulletin board (BB) which can be considered as an authenticated append-

only ledger. It contains all public election data. For clarity, we split the BB
into sections named after the corresponding phases of the voting protocol.

In an implementation, the voters would be represented by the voting clients
which are combinations of software and hardware components to handle crypto-
graphic operations - they can even be realized in a web browser like in [1]. Clients
for JCJ-related schemes require the extra functionality of generating fake cre-
dentials, which can be either included as a component of the client or by using
the more user friendly mechanism of panic passwords [11]. We also assume an
election supervisor (EA) to invoke the various server-side functionalities. The EA
is involved with maintenance procedures so it is considered honest.

Definition 2. A voting scheme is a tuple VS = (Setup, Register,SetupElection,
Vote, IsValid, Shuffle, Tally, Vrfy) where:

– (params, pk, (pki)
nTA
i=1, (skTAi

)nTA
i=1) ← VS.Setup(λ), is a PPT algorithm that

generates the cryptographic parameters of the voting scheme.
– (pci, sci)← VS.Register(i), allows voter i to generate their credentials.
– (L,CS, ev)← SetupElection() generates configuration data for a specific elec-

tion and returns the public credential list for eligible voters.
– bi ← VS.Vote(cnd, sci, i), generates the ballot bi for voter Vi given the can-

didate choice cnd and the secret credential of Vi.
– 0\1 ← VS.IsValid(b,BB) is an algorithm executed by the BB. It returns 1 if

the ballot b can be added to the BB.
– πShuffle ← VS.Shuffle(BB) is an algorithm that shuffles the ballots in the BB

and returns a proof of correct operation.
– (T, π) ← VS.Tally(skTA,BB), outputs the result of the election T , together

with proof(s) π of the correctness of T .
– 0\1← VS.Vrfy(BB, T, π) allows anyone to verify the election result.

Our construction

Our proposed voting scheme is depicted in Figure 2 and described next.



10 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

Setup In the setup phase the EA initiates a variation of the LRS.Setup algorithm.
The difference from the one in Figure 1 is that a distributed key generation phase
is executed. Consequently the TA secret key skTA is split into nTA parts skTAi

with public counterparts pkTAi
. The joint TA public key is pk. The returned

values params, pkTAi
, pk are posted on the BB.

Registration The registration phase utilizes the VS.Register and VS.SetupElection
algorithms. The former is executed by each voter in concert with the RA and its
objective is to enable the voters to create and enroll their real credentials. Each
voter Vi executes LRS.KGen to compute (pci, sci). The secret credential is the real
credential that will be used to indicate that the vote is the input of the voter.
Any other value for sci indicates coercion. The public credential is encrypted
using pk. The voter sends to the RA their index2 i along with their public cre-
dential pci and a proof of knowledge πsc of its secret counterpart to avoid replay
attacks. The RA reencrypts the credential pc′i ← ReEnc(pci, r

′
i), and provides

a designated-verifier proof of correct reencryption (δReEnc) that does not reveal
the randomness used. To create this proof, every voter must have a public key
pki which they generate themselves and send to the RA during this registration
phase. Using its secret counterpart ski will allow the voter to fake the proof δReEnc
for the coercer. After all the voters have registered and a specific election begins,
the RA filters only the eligible ones and executes the SetupElection algorithm to
produce the list of candidates CS, and ev = HG(CS,V, issue, params, pk, pkTAi

)
as the election identifier. Note that issue denotes a description of the question
that the particular election aims to settle. The election authority also selects
the global size of the anonymity set, denoted by β. This will be the size of the
ring for each signature that comes with the ballot. If a ballot is accompanied
with a ring of different size it will be rejected as it could be used as a tag to
enable coercion (cf. section 5.4) Then it posts to the BB the public credential
pc′i along with the identities of the voters. Thus, after the registration phase, the
BB contains the list of (reencrypted) public credentials of the n eligible voters
L(0) = (pc′1, . . . , pc

′
n), where each voter only knows their own secret credential

sci and can infer its position/index i in the list. Since the RA has reencrypted
the credentials, Vi does not know the final randomness used in encrypting pci.

Voting In order to generate a vote for candidate cnd, the voter invokes the
VS.Vote(cnd, sc∗i , i) algorithm, where sc∗i is their secret credential, real or fake.

Cast-as-intended verifiability can be provided through a cut-and-choose mech-
anism, like the Benaloh-challenge [5]; the voter selects their candidate of choice
and then the voting client prepares the ballot. The voter is given the option to
audit or cast it. In the former case, the voting client reveals the randomness and
other parameters used to create the ballot, so that the voter can externally repli-
cate the process to verify its correctness. Of course an audited ballot is never

2 In an implementation of our scheme the index i can be replaced by real-world iden-
tification



Voting with coercion resistance and everlasting privacy 11

cast. In order to avoid clash attacks, our scheme follows the recommendation
of [32] by generating the randomness used to encrypt the candidate choice in
cooperation with the voter. As suggested in [32], the voter may simply type a
random string consisting of a specified number of characters which is combined
with randomness generated by the voter device to create the final value that will
be used when encrypting cnd.

If the voter is under coercion, the value of sc∗i is generated on the fly by
the voting client. During the moment of privacy, the voter uses the credential
created during the registration phase, i.e. sc∗i = sci and disregards all instructions
of the coercer. In both cases, the voter encrypts sc∗i to obtain a credential pc∗i .
Afterwards they obtain the list of encrypted credentials L(0) from the BB and
select the rest β − 1 credentials in a random order which they reencrypt. In
order to check that the voting client correctly reencrypted the credentials, the
Benaloh challenge mechanism is employed again. For usability, the audit or cast
challenge applies to all β − 1 credentials and not to each individual one. These
credentials will serve as the anonymity set. Finally, the voter embeds pc∗i in a
random position among the β−1 decoys. As a result, a new list L(i) containing β
credentials is produced by every voter. Then they encrypt their candidate choice

as Enc(cnd; r) and produce a proof πL(i)

Enc that cnd is a valid candidate choice
from CS and that it is encrypted correctly. This proof is made non-interactive
using the strong Fiat-Shamir heuristic, where the input to the hash function also
contains the actual ring L(i) used during signature generation. Thus the hash
call contains the full statement and as a result the ballot is not malleable ([8]).

In the end, the voters invoke the LRS.Sign algorithm to sign mi = Enc(cnd; r) |
πL(i)

Enc . As the signature is a proof of knowledge of the secret credential sci, there
is no need to include an extra proof in this stage. The ballot returned from the
voting algorithm consists of (mi, L

(i), σ) and appended to the BB.

We emphasize the use of the Benaloh challenge to allow the voter to check
that the decoy credentials have been properly reencrypted. This protects indi-
vidual verifiability. Note that this procedure does not interfere with coercion
resistance. The voter will follow the same steps, albeit with different credentials
- the real ones during the moment of privacy and the fakes when the coercer
is present, making the proof valid in both cases. Universal verifiability, is also
maintained since the signature makes any corruption in the ballot during tallying
detectable, and successful PETs guarantee that the decoy credentials correspond
to the ones in L(0). Another possible option would have been to equip all ballots
with proofs of correct reencryption (πReEnc) for the credentials in the anonymity
set. This however would break ballot ‘symmetry’, as it would contain β−1 proofs
of correct reencryptions only for the decoy credentials, thus giving away which
element of L(i) is the encryption of the real one. Thus, the adversary against
everlasting privacy could use its advanced power to decrypt it and then compare
it against the decrypted contents of the BB during the election setup phase. This
would allow them to find out if a credential is valid or not and in the former
case to uncover both the identity and the preference of a targeted voter.



12 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

Ballot weeding Each ballot undergoes some checks to validate its well-formedness
and to protect against replay attacks by IsValid algorithm which makes sure that:

– the format of the ballot is the one specified from VS.Vote
– L(i) contains exactly β items.
– there does not exist an exact copy of the ballot currently in the BB.
– there does not exist a duplicate of mi in BB

– the commitments (inputs to the hash function) for πL(i)

Enc cannot be found in
any other such proof in the BB.

The IsValid algorithm can be executed by any interested party (either a voter,
election administrator or election observer).

Mixing When the voting phase has concluded, the EA discards ballots with
invalid signatures and invalid proofs of well-formedness. Then it invokes the
LRS.Link algorithm for all ballots to see if there are votes that were cast using
the same credential. If such are found, only one is kept according to a pre-
specified policy (e.g. the one that was cast later). After these tests, the EA
initiates shuffling to anonymize the ballots so that the coercer loses track of
the ballot they cast and the position of the credential in the credential list.
Initially the list L(0) is shuffled. For each ballot bi, only the encrypted voter
choice Enc(cnd) and the encrypted credential list L(i) are kept. The latter is
shuffled to prevent the use of the credential list as a tag (horizontal shuffle).
Subsequently, the list of all the ballots is shuffled again (vertical shuffle).

Tally The objective of the tally phase is to verifiably remove coerced ballots
and to count only the ones that were cast using the real credentials of the voters.
To this end, the members of the TA utilize the PET functionality. In particular,
for each ballot bi, each element of the list L(i) is compared with all the elements
of the initial list L(0). If each of the credentials in L(i) reencrypt some element
in L(0), it means that bi was cast with the correct credentials and the choice
of the voter must be included in the tally. If, on the other hand, there exists
an element of L(i) that does not correspond to an element of L(0), then the
ballot is considered a product of coercion and thus discarded. Since during the
mixing phase both the order of the ballots and the order of the credential list
was shuffled the coercer cannot tell if their own ballot was discarded or not.

From this stage on, two types of tallying on the encrypted candidate choice
may be applied. Firstly, all the acceptable ciphertexts may be homomorphically
combined - assuming that the encryption scheme is the exponential ElGamal.
Then the talliers will jointly decrypt the ‘aggregate ballot’ and announce the
election result along with a proof of correct computation πDec. Alternatively,
each Enc(cnd) corresponding to an accepted ballot may be decrypted along with
a proof of correct decryption for verifiability - for conciseness we depict only
this case in Figure 2. After all ballots have been decrypted the result calculation
function can be applied to the plaintexts corresponding to each accepted ballot.



Voting with coercion resistance and everlasting privacy 13

Then the election result is announced. The second option is of more general use,
as it can be employed in protocols with elaborate vote counting functions.

Everyone can verify the result by checking the proof πL(i)

Enc and verifying the
signature in each ballot contained in the BBVote section of the bulletin board.
Afterwards, they can check the proofs for all PET in the BBdiscard and BBTally

section of the BB and all the proofs of correct ballot decryption πDec. Finally,
any interested party can reapply the result calculating function to the voters’
candidate choices. These actions are part of VS.Vrfy.

Performance We express the performance of our scheme by counting the op-
erations executed by the voter during the voting phase and by the various au-
thorities during the mixing and tallying phase.

The voters perform β − 1 reencryptions, 1 encryption and 1 sign operation
which depends on the size of L(i). Thus the complexity of VS.Vote is O(β).

After voting has finished, assume that there are m > n ballots in the BB,
since voters may vote multiple times to evade coercion or because they are
following the instructions of the coercer. Before shuffling, the check of validity
for all ballots requires O(nm) time, while discovering duplicates requires O

(
m2
)

time. This can be reduced to O(m) by passing all the linking tags through a hash
table. Assuming shuffling is implemented by reencryption and sorting the results
as binary strings, it takes O(m logm) time. During tallying, the n credentials
in L(0) participate in PET with the β credentials contained in each of the m
ballots. Consequently, tallying takes O(βmn) time.

As a result, and assuming β is constant, our scheme is of quadratic complex-
ity, similar to most JCJ-related schemes. However, our scheme is also ‘vote-and-
go’ and provides everlasting privacy, in contrast to [25] which provides similar
security properties but requires two messages from the voters at different phases
of the protocol. These benefits justify in our view the quadratic cost, which can
be further managed by partitioning a large voting population to β-sized groups,
in a manner similar to precincts in physical elections. Such organizational mea-
sures will be explored in future works.

5 Security Analysis

5.1 Assumptions

For all security properties we assume a BB that will not delete or reject ballots.
The voting client is trusted for all security properties except verifiability.

For verifiability, the TA is not trusted and the adversary may corrupt some
voters. To prove strong verifiability [13] we require that the BB and the RA are
not simultaneously corrupted, in the sense that the BB will not stuff ballots and
the RA will not handle credentials in a malicious way.

For (everlasting) privacy and coercion resistance, we trust the client not
to reveal the voting choice and randomness used, to the (everlasting) privacy
adversary and to the coercer. We also trust it to generate fake credentials during



14 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

VS.Setup(λ)

params← LRS.Setup(λ)

TAi : Select skTAi
←$ Zq

Compute joint pk

BB⇐ (params, pk, pkTAi
)

VS.SetupElection(params)

ev←
HG(CS,V, issue, params, pk, pkTAi

)

L(0) =
(
pc′1, · · · , pc

′
n

)
Select global ring size β

BBSetupElection ⇐

(L(0),V,CS, ev, issue)

for all eligible voters Vi i ∈ [n] do

BBSetupElection ⇐ (i, pc′i)

VS.Register(i)

Vi executes:

(pci, sci)← LRS.KGen(params)

pki ← gski where ski ←$ Zq

Sends to the RA : (i, pki, pci)

RA executes

pc′i ← ReEnc(pci)

Sends to Vi : (pc′i, δReEnc)

VS.Vote(cnd, sc∗i , i)

Sample r∗i , r, r⃗ ←$ Zq

Parse sc∗i = (x∗
i , y

∗
i )

Compute pc∗i ← Enc(gx
∗
i hy∗

i , r∗i )

for j = 1 . . . β − 1, j ̸= i do

L
(i)
j ←$ L(0) \ {L(0)

i }

L
(i)
j ← ReEnc(L

(i)
j , r⃗j)

Check reencryptions using Benaloh-challenge

Embed pc∗i in a random position in L(i)

Receive randomness rv by Vi

Compute Enc(cnd;Hq(r||rv)), πL(i)

Enc

Check encryption using Benaloh-challenge

Set mi = Enc(cnd; r)|πL(i)

Enc

σi ← LRS.Sign(L(i), ev, sc∗i , mi)

bi = (mi, L
(i), σi)

BBVote ⇐ bi

VS.Shuffle(BB)

for each bi ∈ BBVote do

if NIZK.Vrfy(bi.πEnc) = 0 or

LRS.Vrfy(L(i), ev, m, bi.σi) = 0

BBdiscarded ⇐ bi

else

BBvalid ⇐ bi

for each bi, bj ∈ BBvalid do

if LRS.Link(bi.σ, bj .σ) = 1

b← RemoveDuplicate (bi, bj)

BBunique ⇐ b

L(0)′ ← Shuffle(L(0))

for each bi ∈ BBunique do

L(i)′ ← Shuffle(L(i))

Remove σi

From mi keep Enc(cnd)i

Set b′i ← (Enc(cnd)i, L
(i)′)

BBclean ⇐ b′i

BBShuffle ⇐ Shuffle(BBclean), πShuffle

VS.IsValid(bi,BB)

Parse bi = (mi, L
(i), σi)

if parse failed return 0

if |L(i)| ̸= β return 0

if bi ∈ BB return 0

if ∃bj = (mj , ·, ·) ∈ BB : mi = mj return 0

Let (Comi,Respi) = bi.mi.π
L(i)

Enc

if ∃bj = (mj , ·, ·) ∈ BB : mj .π
L(j)

Enc .Comj = Comi

return 0

return 1

VS.Tally(skTA,BB)

for each bi ∈ BBShuffle do

for each pci ∈ L(i) do

if ∀ pcj ∈ L(0) : PET(pci, pcj) = 0

BBdiscard ⇐ b,πPET

Continue with next ballot

(cnd, πDec)← Dec(skTA,Enc(cnd)i)

BBTally ⇐ (cnd, πDec)

Apply tallying algorithm to BBTally

Fig. 2. Our VS construction



Voting with coercion resistance and everlasting privacy 15

the coercion attack that are indistinguishable from the registered ones. For both
these properties we allow the adversary to corrupt some voters and use them
to cast arbitrary ballots (e.g. for replay attacks). For (everlasting) privacy we
assume that the adversary has access to all messages posted by the voters in all
phases of the protocol and that all the tallying authorities might be corrupted.

Regarding coercion resistance, we assume that the coercer does not have full
control over a voter during the entirety of the election. If such were the case,
they essentially would become the voter [12]. In particular, we assume that the
voter has a moment of privacy to cast their ballot using their real credentials
during elections and cannot be impersonated by the coercer during the regis-
tration phase. In practice this is implemented by using well-known techniques,
e.g. through an untappable channel using a physical polling station like in [11].
While this option contradicts the idea of remote voting, the ‘inconvenience’ can
be mitigated by reusing the credentials in many elections through a ‘rebasing’
mechanism (e.g. by changing the group generator from g to ga, where a is ran-
domly selected for each new election). Alternatively, as mentioned in [31], the
transcript of the registration phase can be securely deleted or the voter would
learn which member of the RA is corrupted. In this case, the voter could fake the
transcript with the honest RA members using designated verifier proofs in order
to prove the validity of any secret credential. This presumes that the voter has
a registration key pair which is only used for this proof, but nowhere else in our
scheme. Our protocol is compatible with all these scenarios, but for conciseness
we described only the latter in Figure 2. We also assume (as in JCJ [31]) that the
adversary does not have complete knowledge of the honest voters’ behavior. This
uncertainty can be implemented in practice by allowing some external entities
(e.g. non-governmental organizations) to cast decoy ballots. Finally we require
at least one honest TA for coercion resistance.

5.2 Verifiability

Our scheme satisfies election verifiability as formalized in [13]. This notion incor-
porates the varieties of individual and universal verifiability. It is achieved mainly
through the NIZK proofs provided by the voters, the registration and tallying
authorities and the use of the Benaloh challenge mechanism. Since these proofs
are sound, even if these entities are corrupted they cannot force an honest vote
to be ignored. Unfortunately, our scheme does not satisfy eligibility verifiability,
a related variation (not covered by the definition of [13]). If this property were
satisfied, everyone would be able to check that each ballot that was successfully
tallied was cast by a voter that had the right to vote [41]. But this would be
incompatible with coercion resistance, as the coercer would be able to discover
if a particular ballot belonging to a known voter was successfully tallied or not,
or equivalently if the credentials in the ballot were fake or not. In our scheme
these properties hold globally, i.e. everyone can verify that all tallied ballots
were cast by voters with the right to participate, without being able to isolate
specific voters’ ballots.



16 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

To intuitively see why our scheme satisfies individual and universal verifia-
bility we examine how it fares against some related attacks.

Individual Verifiability An adversary cannot create a clash attack nor can they
invalidate a ballot without the voter finding out assuming that they contribute to
the randomness required by the cryptographic functionalities [41]. Firstly, the RA
cannot assign the same credential to two distinct honest voters as they generate
it on their own using LRS.KGen. Also, the credentials cannot be invalidated by a
dishonest RA. The soundness of the designated verifier proof (δReEnc) proves that
their reencryption was correctly applied. During voting, the Benaloh challenge
along with the fact that the voter contributes to the encryption randomness
prevent the system from substituting the preferred candidate and from casting
duplicate and invalid ballots. We must note here that the coercer cannot use the
receipt (r, r⃗) generated by VS.Vote to find out if their attack succeeded or not.
When a coercer is present, the voter will use (r, r⃗) along with the fake credentials,
so the ballot will verify, but will not be counted, since contrary to Helios ([1])
not every ballot in the BB is counted in JCJ-compliant schemes.

Universal Verifiability The adversarial goal for universal verifiability is to either
alter or drop ballots belonging to honest voters or to add new ballots to the
tally (ballot stuffing) apart from the ones that correspond to corrupt voters.
The architecture of our scheme does not allow such attacks to succeed.

– Ballot altering: The adversary cannot alter a ballot after vote casting (by
changing either the candidate selection or the credential list), since they
would have to produce an honest signature for the altered ballot. This is
prevented by the unforgeability of the LRS scheme. Additionally, the adver-
sary may try to alter a ballot during the Shuffle functionality, but this is
averted by the soundness of the proofs used to verify mixing. Finally, during
tallying, the adversary might try to decrypt a ballot to a different candidate,
but this would violate the proof of correct decryption.

– Ballot removal: Since the BB cannot delete ballots they can only be removed
during the shuffling and tallying phase. As before, the proof of correct shuffle
prevents this attack. During tallying, the adversary might wrongly mark a
ballot cast with real credentials, as being a product of coercion. This is
avoided by the soundness of the PET proof.

– Ballot injection: The adversary will need to associate a credential with an
identity. Assuming that the voter roll provided to the RA is trustworthy
(a necessary condition for all elections), the attacker must associate the
stuffed ballot with an existing identity, which can be detected because the
correspondence of credentials to identities is public and our assumption that
the RA and the BB are not simultaneously corrupted.

More formally, to prove that our scheme satisfies the notion of verifiability
of [13], we note that our scheme satisfies the properties of correctness, accuracy
and tally uniqueness. Therefore, it is weakly verifiable (i.e verifiable under the
assumption that both the RA and the BB are honest). Furthermore, since our



Voting with coercion resistance and everlasting privacy 17

LRS has the property of unforgeability it also satisfies the notion of strong veri-
fiability of [13], i.e. verifiability when the BB and the RA are not simultaneously
corrupted. The full proof can be found in Appendix C.1.

5.3 Privacy

Ballot secrecy We note that our scheme is impervious to some well known
attacks in the literature. First of all, we avoid the attacks of [8] by the use of
the strong Fiat-Shamir transform. Secondly, ballot weeding via the VS.IsValid
functionality of the BB and later through the tallying process, provides ballot
independence and prevents replay attacks that seek to break privacy [15]. In
particular, the checks of during ballot weeding (c.f. section 4) together with

the proof πL(i)

Enc prevent an adversary from replaying entire ballots or only their
individual mi components, verbatim or through malleability, to protect privacy
[15]. Importantly, this is done without leaking the identity of the voter. We stress
that even if the ballots were malleable, their binding with the ring L(i) would
force a replay adversary to know a secret credential belonging to the particular
L(i) in order to sign the copied ballot.

More formally, our scheme satisfies the BPRIV definition of [7] which essen-
tially states that the cryptographic components of a voting system do not leak
information that could help an attacker uncover the vote of an honest voter be-
yond what is deducible from the election result. In the BRPIV definition game
the adversary must distinguish between two bulletin boards BB0,BB1 which are
built by the ballots cast by honest and corrupt voters. The former may cast dif-
ferent choices to each of BB0,BB1 (selected by the adversary), while the latter
casts the same ballot to both. The tally algorithm always executes on BB0 while
the adversary observes one of BB0,BB1 chosen by the challenger uniformly at
random. The adversary must guess which of the two bulletin boards they viewed.

In our scheme, A succeeds in winning this game only with negligible probabil-
ity. To argue about this, it suffices to prove that the challenger can successfully
swap the honest ballots between BB0,BB1 without the adversary noticing. Since
our scheme supports two tallying methods this must be proved for both. The
case of homomorphic tallying is easier. If the attacker observes BB1 the chal-
lenger must simulate the proof of correct decryption πDec only for the aggregate
result. On the other hand, if each individual ballot is decrypted, then the chal-
lenger must simulate the proof of correct decryption πDec for each ballot. This
is not a problem since in both cases πDec possesses the (special honest-verifier)
zero-knowledge property. As a result the challenger can always decrypt each bal-
lot in BB0 to the corresponding honest vote in BB1 and provide a (simulated in
the case of different honest votes) proof that the adversary will distinguish with
negligible probability.

There is a subtle issue with the framework of [7] in case each ballot is de-
crypted. Since the adversary dictates the honest choices, in election rules which
carry a lot of information, the adversary may dictate a particular and very rare
choice for one of the bulletin boards and easily win the game by checking in



18 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

which of BB0,BB1 it appears after decryption. For instance, if the voters must
rank a lot of candidates, then the adversary may require that a particular per-
mutation of unpopular candidates appears on the last places of the ranking so
that they can distinguish on which of BB0,BB1 it appears (i.e. the well known
Italian attack [12]). This attack applies to all schemes where individual ballots
are decrypted and not only to ours and allows the adversary to defeat the defi-
nition of ballot secrecy. As this is a general characteristic of the model and not
of particular systems, in order to overcome it, we assume that all voter choices
dictated by the adversary in BB0,BB1 are equal as multisets. More details are
included in Appendix C.2.

Everlasting privacy Our scheme provides practical everlasting privacy [2].
Given only the publicly available election data in the BB a powerful attacker that
can break the encryption of the published credentials and the ballots, still cannot
map honest ballots to honest voters. This is due to the unconditional anonymity
of our LRS construction. Indeed, assume that A retrieves all {gxihyi}ni=1 from

to {pc′i = Enc(gxihyi)}ni=1 in BBSetupElection and all {gxihyi}βi=1 for each ballot
in BBVote. Then A knows which identities comprise the anonymity set selected
by Vi. However the unconditional anonymity (c.f. Theorem 2) of our signature
does not allow to pinpoint exactly which of these identities actually signed and
submitted the ballot. Even if a credential is used in fewer than β ballots, the
adversary doesn’t have a significantly better probability of pinpointing the bal-
lot of this voter, since they cannot be sure whether the voter that owns this
credential actually voted or abstained. The expected number of times that each
credential is used, given that N valid votes are in the final tally is β·N

n , since

each credential has probability β
n to be in L(j), j ∈ {1, . . . N}.

It must be also noted that the same analysis also applies to the election tal-
liers. Indeed, the TA might not be computationally powerful but is in possession
of the private decryption key skTA. As a result, it is conceptually equivalent to
the powerful future attacker of everlasting privacy. The TA, thus, may legiti-
mately decrypt the individual ballots in order to compute the result, but they
cannot deduce the identity of the voter, but only whether the ballot is valid or
not. As a result, the common trust assumption in most voting schemes that the
TA is trusted for privacy does not need to apply for our scheme. If voters com-
bine this unconditionally anonymous ‘channel’ implemented at the endpoints
with countermeasures such as a Tor client or even a public computer to hide
networking information (e.g. IP addresses), they erase all traces of insider data
that is possible to obtain.

5.4 Coercion Resistance

Coercion resistance is a property designed to protect from an active adversary
that can perform impersonation, random voting and forced abstention attacks
and has receipt-freeness as a prerequisite. Our scheme provides coercion resis-
tance according to the framework of JCJ [31, 11], assuming that the coercer
hasn’t corrupted a majority of the RA, TA and that the DDH problem is hard.



Voting with coercion resistance and everlasting privacy 19

The definition of coercion resistance of [31, 11] is comprised of two games,
the real and the ideal. In the real game a coin is flipped to determine whether the
voter will provide the real or a fake credential to the adversary. If a fake credential
is provided, the voter may cast a ballot using their real credential. The adversary
can cast a ballot using the provided credential, as well as ballots using corrupted
credentials. Honest voters cast their ballots at an order programmed by the
adversary. The goal of the adversary is to guess whether their attack succeeded,
namely, whether the vote cast with the coerced credential was counted in the
final tally. The ideal game is similar to the real game with the difference that
the adversary always gets the real credential, cannot cast ballots using corrupted
credentials, doesn’t have access to any cryptographic material nor BB and an
idealized tally is produced that includes only the valid votes. The adversary
wins if they can distinguish the real from the ideal game with non-negligible
probability.

Intuitively, the fake but indistinguishable credentials allow the voter to seem-
ingly obey the instructions of the coercer, but undo them by casting their ballot
during their moment of privacy. The anonymization offered by the mixing and
our signature prevent the attacker from discovering if their ballot was counted
or not. Linking is of no use to the coercer, since the ballots ordered by them
and the ones during the moment of privacy are cast with different credentials.
Additionally, our scheme avoids tagging attacks caused by allowing each voter
to select their own size of anonymity set. Indeed, if each voter could select the
number of decoy credentials, then the coercer could tag the ballot by forcing the
use of a particular size for the anonymity set (e.g. 1009 [42]) and then with very
high probability find out if it was discarded or not. This is the reason for which
the anonymity set has globally a constant size β.

More formally, when voter j is under coercion, the voting device generates
a fake credential sc∗j = (x∗, y∗). The adversary cannot distinguish whether the

credential is real, since the tuple (g, L
(j)
i1 = gr, pk,

L
(j)
i2

gx∗hy∗ = gxhy

gx∗hy∗ pkr)

is a DDH tuple and the coercer hasn’t corrupted a majority of the RA nor of
TA, and thus neither the coercer nor the voter know the randomness of the
encryption of pcj . The ballot created by VS.Vote and then posted on the BB is
indistinguishable from a ballot created with real credentials, since it contains a
valid signature, valid proofs and the list L(j) that contains an encryption of pc∗j .
We note that, a signature produced by the voter during the moment of privacy
cannot be detected by the coercer, since the signature contained in each ballot
has unconditional anonymity, as described in Theorem 2. After VS.Shuffle the
coercer loses track of their ballot and in the VS.Tally the proofs of the tally do
not reveal anything more to the coercer, since the ballots and the credential list
where shuffled.

As far as receipt-freeness is concerned, a voter may claim the ownership of a
ballot, by disclosing pc and the randomness used to create it, but cannot prove
whether the ballot was counted in the final tally. More details are provided in
Appendix C.3.



20 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

6 Conclusion and future work

In this paper, we proposed a voting scheme that supports coercion resistance and
everlasting privacy without sacrificing verifiability. Our work is based on the JCJ
framework and does not require trust in the election talliers to provide ballot
secrecy. These guarantees are achieved through a new linkable ring signature
scheme with unconditional anonymity. Our construction has favorable security
properties but suffers from the increased complexity of the tallying phase which
is in part inherent in the JCJ architecture and in part for achieving everlasting
privacy. In future work, we aim to improve the efficiency of the tallying phase.
One mechanism we will explore in this direction, is the batching of PETs dur-
ing the identification of coerced votes. Instead of checking each credential with
the ones in L(0) all credentials in a ballot will be batched and the result will
be compared against a batch of L(0) credentials. This will reduce the complex-
ity by a factor of n. However, a naive implementation might negatively affect
universal verifiability. Additionally, reducing the complexity of the vote casting
phase from linear to logarithmic will allow the voters to increase the size of
their anonymity set. We also aim to explore the optimal value for β by taking
into consideration the trade-off between performance and privacy for particular
election types. Finally, we plan to improve the usability of the casting phase by
integrating a mechanism similar to panic passwords of [11] to allow the voters
to easily generate their secret credentials. This must be done in a way that does
not affect everlasting privacy.

Acknowledgements The authors would like to thank the anonymous reviewers of
previous versions of this paper for their comments and suggestions which greatly
improved this work.

References

[1] Ben Adida. “Helios: web-based open-audit voting”. In: Proceedings of the
17th conference on Security symposium. USENIX, 2008, pp. 335–348.

[2] Myrto Arapinis, Véronique Cortier, Steve Kremer, and Mark Ryan. “Prac-
tical everlasting privacy”. In: LNCS. Vol. 7796 LNCS. 2013, pp. 21–40. doi:
10.1007/978-3-642-36830-1_2.

[3] Danai Balla, Pourandokht Behrouz, Panagiotis Grontas, Aris Pagourtzis,
Marianna Spyrakou, and Giannis Vrettos. “Designated-Verifier Linkable
Ring Signatures with Unconditional Anonymity”. In: 9th International
Conference on Algebraic Informatics, CAI 2022. Vol. 13706. LNCS. 2022,
pp. 55–68. doi: 10.1007/978-3-031-19685-0_5.

[4] Pourandokht Behrouz, Panagiotis Grontas, Vangelis Konstantakatos, Aris
Pagourtzis, and Marianna Spyrakou. “Designated-Verifier Linkable Ring
Signatures”. In: 24th International Conference on Information Security
and Cryptology - ICISC 2021. Vol. 13218. LNCS. 2022, pp. 51–70. doi:
https://doi.org/10.1007/978-3-031-08896-4_3.

https://doi.org/10.1007/978-3-642-36830-1_2
https://doi.org/10.1007/978-3-031-19685-0_5
https://doi.org/https://doi.org/10.1007/978-3-031-08896-4_3


Voting with coercion resistance and everlasting privacy 21

[5] Josh Benaloh. “Simple Verifiable Elections”. In: 2006 USENIX/ACCURATE
Electronic Voting Technology Workshop (EVT 06). Vancouver, B.C.: USENIX
Association, Aug. 2006. url: https://www.usenix.org/conference/
evt-06/simple-verifiable-elections.

[6] Josh Benaloh and Dwight Tuinstra. “Receipt-free secret-ballot elections
(extended abstract)”. In: STOC ’94. ACM, 1994, pp. 544–553. doi: 10.
1145/195058.195407.

[7] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and
Bogdan Warinschi. “SoK: A Comprehensive Analysis of Game-Based Bal-
lot Privacy Definitions”. In: IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2015, pp. 499–516. doi: 10.1109/SP.2015.37.

[8] David Bernhard, Olivier Pereira, and Bogdan Warinschi. “How Not to
Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to
Helios”. In: ASIACRYPT 2012. Vol. 7658. LNCS. 2012, pp. 626–643. doi:
10.1007/978-3-642-34961-4_38.

[9] David Chaum. “Untraceable Electronic Mail, Return Addresses, and Dig-
ital Pseudonyms”. In: Commun. ACM (1981), pp. 84–88.

[10] David Chaum and Torben P. Pedersen. “Wallet Databases with Observers”.
In: CRYPTO ’92. Vol. 740. LNCS. 1992, pp. 89–105. doi: 10.1007/3-
540-48071-4_7.

[11] Jeremy Clark and Urs Hengartner. “Selections: Internet Voting with Over-
the-Shoulder Coercion-Resistance”. In: Financial Cryptography and Data
Security, FC 2011. Vol. 7035. LNCS. 2011, pp. 47–61. doi: 10.1007/978-
3-642-27576-0_4.

[12] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. “Civitas: To-
ward a Secure Voting System.” In: IEEE Security and Privacy Symposium.
May 19, 2008.

[13] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachène.
“Election Verifiability for Helios under Weaker Trust Assumptions”. In:
ESORICS 2014. Cham, 2014, pp. 327–344.

[14] Véronique Cortier, David Galindo, Ralf Küsters, Johannes Müller, and
Tomasz Truderung. “SoK: Verifiability Notions for E-Voting Protocols”.
In: IEEE Symposium on Security and Privacy, SP 2016. IEEE Computer
Society, 2016, pp. 779–798. doi: 10.1109/SP.2016.52.

[15] Veronique Cortier and Ben Smyth. “Attacking and Fixing Helios: An Anal-
ysis of Ballot Secrecy”. In: 24th Computer Security Foundations Sympo-
sium. 2011, pp. 297–311. doi: 10.1109/CSF.2011.27.

[16] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. “Proofs of Par-
tial Knowledge and Simplified Design of Witness Hiding Protocols”. In:
CRYPTO ’94. Vol. 839. LNCS. 1994, pp. 174–187. doi: 10.1007/3-540-
48658-5_19.

[17] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. “A Secure
and Optimally Efficient Multi-Authority Election Scheme”. In: EURO-
CRYPT ’97. 1997, pp. 103–118.

https://www.usenix.org/conference/evt-06/simple-verifiable-elections
https://www.usenix.org/conference/evt-06/simple-verifiable-elections
https://doi.org/10.1145/195058.195407
https://doi.org/10.1145/195058.195407
https://doi.org/10.1109/SP.2015.37
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-642-27576-0_4
https://doi.org/10.1007/978-3-642-27576-0_4
https://doi.org/10.1109/SP.2016.52
https://doi.org/10.1109/CSF.2011.27
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19


22 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

[18] Edouard Cuvelier, Olivier Pereira, and Thomas Peters. “Election Verifi-
ability or Ballot Privacy: Do We Need to Choose?” In: ESORICS 2013.
2013, pp. 481–498.

[19] Denise Demirel, J Van De Graaf, and R Araújo. “Improving Helios with
Everlasting Privacy Towards the Public”. In: EVT/WOTE’12 (2012).

[20] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions
to Identification and Signature Problems”. In: CRYPTO ’86. Vol. 263.
LNCS. 1986, pp. 186–194. doi: 10.1007/3-540-47721-7_12.

[21] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. “A Practical Secret
Voting Scheme for Large Scale Elections”. In: AUSCRYPT ’92. Vol. 718.
LNCS. 1992, pp. 244–251. doi: 10.1007/3-540-57220-1_66.

[22] Taher El Gamal. “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms”. In: CRYPTO ’84. Vol. 196. LNCS. 1984,
pp. 10–18. doi: 10.1007/3-540-39568-7_2.

[23] Panagiotis Grontas and Aris Pagourtzis. “Anonymity and everlasting pri-
vacy in electronic voting”. In: Int. J. Inf. Sec. 22.4 (2023), pp. 819–832.
doi: 10.1007/S10207-023-00666-2.

[24] Panagiotis Grontas, Aris Pagourtzis, and Alexandros Zacharakis. “Security
models for everlasting privacy”. In: E-Vote-ID (2019), p. 140.

[25] Panagiotis Grontas, Aris Pagourtzis, Alexandros Zacharakis, and Bing-
sheng Zhang. “Towards Everlasting Privacy and Efficient Coercion Resis-
tance in Remote Electronic Voting”. In: Financial Cryptography Work-
shops. Vol. 10958. LNCS. 2018, pp. 210–231.

[26] Jens Groth. “Non-interactive Zero-Knowledge Arguments for Voting”. In:
ACNS 2005. LNCS. 2005, pp. 467–482. doi: 10.1007/11496137_32.

[27] Thomas Haines, Rafieh Mosaheb, Johannes Müller, and Ivan Pryvalov.
“SoK: Secure E-Voting with Everlasting Privacy”. In: Proc. Priv. Enhanc-
ing Technol. 2023.1 (), pp. 279–293. doi: 10.56553/POPETS-2023-0017.

[28] Martin Hirt and Kazue Sako. “Efficient Receipt-Free Voting Based on Ho-
momorphic Encryption”. In: EUROCRYPT 2000. Vol. 1807. LNCS. 2000,
pp. 539–556. doi: 10.1007/3-540-45539-6_38.

[29] Markus Jakobsson and Ari Juels. “Mix and Match: Secure Function Eval-
uation via Ciphertexts”. In: ASIACRYPT 2000. Vol. 1976. LNCS. 2000,
pp. 162–177. doi: 10.1007/3-540-44448-3_13.

[30] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. “Designated Ver-
ifier Proofs and Their Applications”. In: EUROCRYPT ’96. Vol. 1070.
LNCS. 1996, pp. 143–154. doi: 10.1007/3-540-68339-9_13.

[31] Ari Juels, Dario Catalano, and Markus Jakobsson. “Coercion-resistant
electronic elections”. In: WPES 2005. ACM, 2005, pp. 61–70. doi: 10.
1145/1102199.1102213.

[32] Ralf Kusters, Tomasz Truderung, and Andreas Vogt. “Clash Attacks on the
Verifiability of E-Voting Systems”. In: 2012 IEEE Symposium on Security
and Privacy. 2012, pp. 395–409. doi: 10.1109/SP.2012.32.

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/S10207-023-00666-2
https://doi.org/10.1007/11496137_32
https://doi.org/10.56553/POPETS-2023-0017
https://doi.org/10.1007/3-540-45539-6_38
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1145/1102199.1102213
https://doi.org/10.1145/1102199.1102213
https://doi.org/10.1109/SP.2012.32


Voting with coercion resistance and everlasting privacy 23

[33] Joseph K. Liu, Man Ho Au, Willy Susilo, and Jianying Zhou. “Linkable
Ring Signature with Unconditional Anonymity”. In: IEEE Trans. Knowl.
Data Eng. 26.1 (2014), pp. 157–165.

[34] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. “Linkable Sponta-
neous Anonymous Group Signature for Ad Hoc Groups (Extended Ab-
stract)”. In: ACISP 2004. Vol. 3108. LNCS. 2004, pp. 325–335. doi: 10.
1007/978-3-540-27800-9_28.

[35] Philipp Locher, Rolf Haenni, and Reto E. Koenig. “Coercion-Resistant
Internet Voting with Everlasting Privacy”. In: FC’16 Workshops, BIT-
COIN,VOTING,WAHC. 2016. doi: 10.1007/978-3-662-53357-4_11.

[36] Eleanor McMurtry, Olivier Pereira, and Vanessa Teague. “When Is a Test
Not a Proof?” In: ESORICS 2020. Vol. 12309. LNCS. 2020, pp. 23–41.
doi: 10.1007/978-3-030-59013-0_2.

[37] Tal Moran and Moni Naor. “Receipt-Free Universally-Verifiable Voting
with Everlasting Privacy”. In: CRYPTO 2006. Vol. 4117. LNCS. 2006,
pp. 373–392. doi: 10.1007/11818175_22.

[38] Tal Moran and Moni Naor. “Split-ballot voting”. In: ACM Transactions
on Information and System Security 13.2 (2010), pp. 1–43. issn: 10949224.
doi: 10.1145/1698750.1698756.

[39] David Pointcheval. “Efficient Universally-Verifiable Electronic Voting with
Everlasting Privacy”. In: Security and Cryptography for Networks. Cham:
Springer Nature Switzerland, 2024, pp. 323–344. isbn: 978-3-031-71070-4.
doi: 10.1007/978-3-031-71070-4_15.

[40] Claus-Peter Schnorr. “Efficient Identification and Signatures for Smart
Cards (Abstract)”. In: EUROCRYPT ’89. Vol. 434. LNCS. 1989, pp. 688–
689. doi: 10.1007/3-540-46885-4_68.

[41] Ben Smyth, Steven Frink, and Michael R. Clarkson. Election Verifiability:
Cryptographic Definitions and an Analysis of Helios, Helios-C, and JCJ.
Cryptology ePrint Archive, Paper 2015/233. 2015.

[42] Stefan G.Weber, Roberto Araujo, and Johannes Buchmann. “On Coercion-
Resistant Electronic Elections with Linear Work.” In: ARES. IEEE, 2007,
pp. 908–916. url: http://dblp.uni-trier.de/db/conf/IEEEares/
ares2007.html#WeberAB07.

https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-662-53357-4_11
https://doi.org/10.1007/978-3-030-59013-0_2
https://doi.org/10.1007/11818175_22
https://doi.org/10.1145/1698750.1698756
https://doi.org/10.1007/978-3-031-71070-4_15
https://doi.org/10.1007/3-540-46885-4_68
http://dblp.uni-trier.de/db/conf/IEEEares/ares2007.html#WeberAB07
http://dblp.uni-trier.de/db/conf/IEEEares/ares2007.html#WeberAB07


24 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

A Details of Proofs of Knowledge

Given ciphertexts c = (c1, c2) = Encpk(m; r) = (gr, m · pkr) and c′ = ReEnc(c) =

(gr+r′ , m · pkr+r′) we construct the proofs πEnc, πDec, πReEnc as follows:

– If c is a correct encryption of m then the tuple (g, pk, c1, c2m
−1) = (g, pk, gr, pkr)

is a valid Diffie - Hellman tuple. This can be proved using πCP of [10]. πEnc

can then be constructed as an OR-proof where the various messages are the
encodings of the candidates in CS.

– If c correctly decrypts to m using sk then (g, c1, pk, c2m
−1) = (g, gr, gsk, csk1 )

is a valid Diffie - Hellman tuple which can be also proved using πCP of [10].

– If c′ is a reencryption of c then c′ ⊙ c−1 = (gr
′
, pkr

′
) which can be proved

using πCP of [10].

The proof of knowledge of secret credential corresponding to public credential
(πsc) and the designated verifier proof of correct reencryption (δReEnc) can be
found in Figure 3. A designated verifier with knowledge of skV such that pkV =
gskV can simulate the proof δReEnc = (e, s, t2, t3) by selecting s′, a, b ←$ Zq and

computing: T1 = gs
′
(c′1/c1)

−a, T2 = pks
′
(c′2/c2)

−a, T3 = gb and t2 = a − e, t3 =
(b− t2)sk

−1
V which verifies correctly.

B Security properties of our LRS scheme

B.1 Proof of unforgeability for our LRS (Theorem 1)

Proof. Assume a PPT adversary A that with non-negligible probability can forge
a signature σ that passes the verification without knowledge of any of the secret
credentials. We will construct an algorithm B that given n DLOG instances
{Xi}ni=1 and by using A outputs the discrete logarithm of at least one of them
with non-negligible probability.

The input of B is G, g, q, {Xi}ni=1 and B simulates the environment for A.
A may query the random oracle RO, to receive a random element of Zq or
of G, the joining oracle JO, to add users and their public credentials to the
system, the corruption oracle CO, where A may ask for the secret credential
that corresponds to a public credential and lastly the signing oracle SO, where
A receives a signature on behalf of a specific signer. B generates the system
parameters and simulates the oracles that A has access to. Upon query of the
RO, B returns a random value and replies consistently to all the queries. Upon
query of the JO, B adds public credentials to the system, either by adding pci ←
(gri , Xih

yipkri) using the given DLOG challenges and yi, ri ←$ Zq or by adding
pci ← (gri , gxihyipkri), using random values xi, yi, ri ←$ Zq. Furthermore, A
may query the CO for a public credential, where B replies with the corresponding
private credential and lastly Amay query the SO, where B programs the random
oracle and replies with a signature created on behalf of the queried signer on the
queried message.



Voting with coercion resistance and everlasting privacy 25

πsc = NIZK
{
(G, q, g, h, pk, c), (x, y, r) : c = Encpk(g

xhy; r)
}

Prover Verifier

x′, y′, r′ ←$ Zq

c′ ← Encpk(g
x′
hy′

; r′)

c′

e←$ Zq

e

x′′ ← x′ + ex

y′′ ← y′ + ey

r′′ ← r′ + er

x′′, y′′, r′′

Accept if and only if:

Encpk(g
x′′

hy′′
; r′′) = c′ ⊙ ce

δReEnc = NIZKpkV
{
(G, q, c, c′, pkV, pk), (r) : c

′ = (c′1, c
′
2) = (grc1, pk

rc2) = ReEnc(c)
}

Prover (r) Verifier (skV)

t1, t2, t3 ←$ Zq

T1 ← gt1 , T2 ← pkt1 , T3 ← gt2pkt3V

T1, T2, T3

e←$ Zq

e

s← t1 + r(e+ t2)

s, t2, t3

Accept if and only if:

T3 = gt2pkt3V

gs = (c′1/c1)
e+t2T1

pks = (c′2/c2)
e+t2T2

Fig. 3. Proofs πsc and δReEnc



26 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

Let σ∗
0 be a forgery thatA produced on the list of public credentials {(gri , Xih

yipkri)}ni=1.
We can assume that A queried all n queries used in the Vrfy algorithm. B
rewinds A, replies consistently to all hash queries but at the hash query where
they replied cj0 they reply cj1 ̸= cj0. From the rewind-on-success lemma [34]
A will produce another forgery σ∗

1 with non-negligible probability, for which
ci0 = ci1, ∀i ∈ {1, . . . n} \ {j}. Therefore for the two forgeries, since they both
verify correctly, it holds that:

Kj0 = Kj1 ⇒ gtj0 · hpj0 · pksj0 · (Lj2)
cj0 = gtj1 · hpj1 · pksj1 · (Lj2)

cj1 (1)

There exist x′
j , y

′
j , r

′
j ∈ Zq s.t. Lj2 = Xjh

y′
jpkr

′
j = gx

′
j · hy′

j · pkr
′
j . Then by Eq. 1:

gtj0 · hpj0 · pksj0(gx
′
j · hy′

j · pkr
′
j )cj0 = gtj1 · hpj1 · pksj1(gx

′
j · hy′

j · pkr
′
j )cj1

gtj0+cj1x
′
j · hpj0+cj1y

′
j · pksj0+cj1r

′
j = gtj1+cj1x

′
j · hpj0+cj1y

′
j · pksj1+cj1r

′
j

x′
j =

tj0 − tj1
cj1 − cj0

, y′j =
pj0 − pj1
cj1 − cj0

, r′j =
sj0 − sj1
cj1 − cj0

(2)

Thus B solved the DLOG problem for one of the given challenges with non-
negligible probability, since x′

j is the discrete logarithm of Xj .

B.2 Proof of unconditional anonymity for our LRS construction
(Theorem 2)

Proof. Assume a computationally unbounded adversary A and let a signature
σ = (c1, {si}ni=1, {ti}ni=1, {pi}ni=1, t) be given as challenge to A to determine the
signer. A has access to the RO,JO, CO,SO, as described in Appendix B.1. B
simulates the oracles for A as in Appendix B.1, with the difference that upon
query to the joining oracle B adds the public credential pci ← (gri , gxihyipkri)
to the system, where xi, yi, ri ←$ Zq.

Since A is computationally unbounded, they can compute {Zi = gxihyi}ni=1

and {ri}ni=1 by decrypting L =
(
Encpk(g

x1hy1 ; r1), . . . , Encpk(g
xnhyn ; rn)

)
. A can

also compute x ∈ Zq : t = ex as well as {wi ∈ Zq : Zi = gxhwi}ni=1. Assume
that A obtained m1 secret credentials from the CO and m2 signatures from the
SO. Then for the rest n−m1 −m2 public credentials that A doesn’t know the
secret credential they can compute for each i ∈ [n−m1 −m2]:

αi = si + ciri, βi = ti + cix, γi = pi + ciwi

The sign algorithm LRS.Sign(L, ev, (x,wi, ri),m) initialized with αi, βi, γi in-
stead of α, β, γ produces exactly the same signature σ for each signer i ∈
[n−m1−m2] and hence A cannot distinguish which of the n−m1−m2 signers
is the signer that produced σ.

B.3 Proof of linkability for our LRS (Theorem 3)

Proof. Assume a PPT adversary A that owns k − 1 secret credentials and with
non-negligible probability can produce k pairwise unlinkable signatures. We will



Voting with coercion resistance and everlasting privacy 27

construct an algorithm B that given n DLOG instances {Xi}ni=1 outputs the
discrete logarithm of at least one of them with non-negligible probability.
B simulates the environment and the oracles for A as described in the proof of

unforgeability in Appendix B.1. Let {σ∗
i }ki=1 be the set of k pairwise unlinkable

signatures that A produced. We assume that A queried all queries used in the
Vrfy algorithm.

Case 1: A produced at least 2 signatures σa and σb that had as last queries
la and lb respectively for the same index j. Then B rewinds A twice, on the
la and lb query respectively, replies consistently to all hash queries but at la
replies cja1 instead of cja0 and at lb replies cjb1 instead of cjb0. By the rewind on
success lemma [34], A will produce a forgery σ∗

a1 on the first rewind and σ∗
b1 on

the second rewind with non-negligible probability, for which similarly with the
unforgeability proof it holds that:

K ′′
ja0 = K ′′

ja1 ⇒ etja0 · tcja0
a = etja1 · tcja1

a
ta=ex

′
a⇒ x′

a =
tja0 − tja1
cja1 − cja0

(3)

K ′′
jb0 = K ′′

jb1 ⇒ etjb0 · tcjb0b = etjb1 · tcjb1b

tb=ex
′
b⇒ x′

b =
tjb0 − tjb1
cjb1 − cjb0

(4)

By eqs. (2) and (3) we have that x′
a = x′

j and by eqs. (2) and (4) we have that

xb = x′
j . Therefore LRS.Link(σ∗

a) = LRS.Link(σ∗
b ) = ex

′
j , hence σa and σb are not

unlinkable.
Case 2: All signatures produced by A had distinct index j as the last query. B

does k rewind simulations on each of the last queries of each signature, similarly
with the unforgeability proof. Since A knows only k − 1 secret credentials, B
solves the DLOG problem for at least one of the challenges {Xi}ni=1 with non-
negligible probability.

C Security properties of our voting scheme

C.1 Verifiability

Firstly we will show that our scheme satisfies the notion of weak verifiability of
[13]. According to [13, Theorem 4.1] it suffices to show that our protocol satisfies
correctness, accuracy and tally uniqueness. Correctness is self-evident from our
scheme specification in Figure 2.

Accuracy intuitively means that every ballot that is deemed valid corre-
sponds to a correct vote and that the proof produced by the tally function will
successfully pass VS.Vrfy.

Lemma 1 (Accuracy). Assuming that the DLOG problem is hard in G and
that the soundness error of the NIZK scheme is negligible, our scheme provides
accuracy.

Proof. To prove the former claim consider a ballot (m, L(i), σ) where m contains

Enc(cnd; r)|πL(i)

Enc . Assuming that VS.IsValid(b,BB) = 1 we deduce that the ballot



28 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

is syntactically correct, that it is unique in the BB and that the ring L(i) is
correctly constructed. We also deduce that:

– NIZK.Vrfy(πL(i)

Enc ) = 1. This means that Enc(cnd; r) encrypts a real candidate
cnd ∈ CS with soundness error 1

q .

– LRS.Vrfy(L(i), ev, m, σ) = 1 which implies that a credential corresponding to
sc∗i has been included in the ring L(i) unless the signature has been forged.
This credential might be real or fake. However the voter doing the verifica-
tion, maybe using their own device, is aware if they have included in L(i)

the public counterpart of the real or the fake credential.

Furthermore, if VS.Vrfy({b},Tally(skTA, {b})) = 1 then:

– NIZK.Vrfy(πDec) = 1. This means that Enc(cnd; r) has been correctly de-
crypted with soundness error 1

q .

– NIZK.Vrfy(πPET) = 1. This means that the PET has been executed correctly
on ballot b.

Combining the conclusions above, we can reach the conclusion that a ballot
which passes validation and yields a tally that passes verification will lead to a
vote that will be counted if the real credential has been used. ⊓⊔

Lemma 2 (Tally uniqueness). Assuming that Enc is correct and the NIZK
schemes πDec, πPET are sound, our scheme provides tally uniqueness.

Proof. Assume that an adversary has managed to create a BB and (T1, π1), (T2, π2)
such that T1 ̸= T2 and Vrfy(BB, T1, π1) = Vrfy(BB, T2, π2) = 1. This implies that
there exists at least one ballot b ∈ BB for which Enc(cnd; r) can be decrypted
both as cnd1, cnd2 ∈ CS with cnd1 ̸= cnd2 for πDec (which is the same in both
cases as there is a single bulleting board) correctly verifies. But this goes against
the correctness properties of the encryption and proof schemes. Alternatively
there may be two ballots in the BB b1, b2 that encrypt different cnd1, cnd2 ∈ CS
with cnd1 ̸= cnd2 and the adversary can obtain T1 by counting cnd1 and T2 by
counting cnd2 due to the validity of the credentials. This violates the soundness
of the proof πPET. ⊓⊔

Theorem 5 (Weak verifiability). Our protocol is weakly verifiable assuming
that the DLOG problem is hard in G, that the soundness error of the NIZK
schemes is negligible and that Enc is correct

Proof. Implied by Lemma 1 and Lemma 2 according to [13, Theorem 4.1]. ⊓⊔

Theorem 6 (Strong verifiability). Our protocol is strongly verifiable.

Proof. In Theorem 1 we proved that our LRS construction is unforgeable. There-
fore, according to [13, Theorem 4.3] since our scheme is weakly verifiable (The-
orem 5) it also satisfies the property of strong verifiability. ⊓⊔



Voting with coercion resistance and everlasting privacy 29

C.2 Privacy

To argue about ballot secrecy we adapt the BPRIV model [7] to our scheme.

Theorem 7 (Ballot secrecy). Our scheme provides ballot secrecy according
to BPRIV [7], assuming the soundness of the NIZK proofs and that the ElGamal

encryption scheme together with the proof πL(i)

Enc satisfy NM-CPA security.

Proof. We define a sequence of games that transition the view of the privacy
adversary A from an election where a bulletin’ board BB0 is both observed and
tallied, to an election where BB1 is observed by A and BB0 is tallied.

The adversary may corrupt some voters and cast ballots on their behalf. This
will be represented using an oracle OC(i, b) which casts the same ballot to both
BB0,BB1. As a result, they do not need to be swapped and the challenger does
not deal with them any further.

Regarding honest votes, the adversary selects their choices by using an oracle
OV. A call OV(i, cnd0, cnd1) dictates that an honest voter casts a ballot for cnd0
in BB0 and cnd1 in BB1. We assume that OV always uses a valid credential, as
voting with a fake one would not help the privacy attacker.

In what follows, the challenger maintains a table containing tuples created
by the calls to OV containing the values (i, cnd0, b0, cnd1, b1). As explained in
section 5.3, we assume that the set of choices {cnd0} selected in BB0 is equal as
a multiset to the set of choices {cnd1} selected in BB1.

Assume that there are m honest ballots cast in each of BB0,BB1. Game0 is
the BPRIV game where BB0 is both observed and tallied. In {Gamei}mi=1 the
challenger swaps the i-th ballot of BB0 with the i-th ballot of BB1. As in the proof
of section D.1 of [7], given an adversary that can distinguish between Gamei and
Gamei−1 with non-negligible probability, we can construct an adversary that can
break the NM-CPA property of an ElGamal ciphertext c accompanied by the
proof πEnc with the same non-negligible probability. It is easy to see that Gamem
is the game where the adversary observes BB1. The challenger must now tally
BB0 without the adversary knowing. The functionalities Shuffle,PET do not aid
A any further, since they all take as input any bulletin board and operate on
the ballot ciphertexts. Furthermore, PET returns 1 for all honest ballots in both
cases, since OV utilizes the correct credentials.

The only way the attacker could distinguish the bulletin boards is from the
result, since they can calculate what the result is in BB0 from all the votes {cnd0}
they selected, and the corresponding result in BB1 from {cnd1}. The adversary
expects to see the result from {cnd0}, but in Gamem the tally algorithm is
applied to {cnd1}. To fool the adversary the challenger utilizes the existence of
the simulator implied by the zero-knowledge property of πDec. As mentioned in
Appendix A this proof proves that Dec(c1, c2) = m by showing (g, c1, pk, c2m

−1)
is a valid Diffie - Hellman tuple using the Chaum-Pedersen protocol [10]. This
proof can be simulated to show this for any value v ∈ G instead of m.

As a result, in the case that all votes are homomorphically decrypted the chal-
lenger announces the tally T0 of BB0 and creates a proof for (g, c1, pk, c2T

−1
0 )

where c1, c2 are the ‘aggregated ballots’ in BB1. In the case that each ballot



30 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

is individually decrypted and then tallied in plaintext form, the challenger cre-
ates proofs

{
(g, c1i, pk, c2icnd0i

−1)
}m
i=1

where {c1i, c2i} comprise the individual
ballots in BB1. Note that since {cnd0} and {cnd1} are equal as multiset the
challenger may always find a cnd0 for all cnd1 selected by the adversary in their
OV calls.

To conclude the proof, we also argue that our scheme satisfies the properties
of strong consistency and strong correctness of [7].

Regarding strong consistency, since our ballots do not contain voter iden-
tities as in the version of Helios studied in [7] we define an Extract algorithm
that is not required to output a voter identity. Instead, our Extract algorithm
outputs all credentials in L(i). In more details, it accepts as input the tallier

secret key skTA and parses a ballot b as (Enc(cnd; r)|πL(i)

Enc , L
(i), σ) and decrypts

Encpk(cnd; r), L
(i) = {Encpk(gxihyi)}βi=1 to obtain cnd, {gxihyi}βi=1. We also de-

fine an independent valid function IndValid that verifies the signature and the

proof πL(i)

Enc . It is easy to see that the first and second conditions of strong con-
sistency are satisfied by construction. Furthermore, an adversarial ballot box
will yield the same result both when the Tally algorithm is applied and when
the Extract algorithm is applied on the ballots and the values cnd, {gxihyi} are
counted according to the voting rules. The reason for this is that in the latter
case the credentials gxihyi will be compared in plaintext form and not through
the PET but the output will be the same. Consequently, in both cases the same
ballots will be counted.

Regarding strong correctness, it is easy to see that an honest ballot is going
to be accepted even for an adversarially created bulletin board identically to [7].
According to our scheme’s specification in Figure 2 an honestly generated ballot
will only be discarded if the adversary has managed to output an identical one
before. But this has negligible probability to occur since ElGamal and all other
primitives that are used in the construction of our ballot are probabilistic. ⊓⊔

C.3 Coercion Resistance

In order to prove coercion resistance we adopt the model of [31, 11], where a non-
adaptive adversary is assumed. Coercion resistance is defined with two games,
the real and the ideal. The real game aims to model the behavior of the adver-
sary, the honest voters and the coerced voter in a real coercion scenario, where
the adversary tries to decide whether the attack succeeded or not. The goal is
the same in the ideal game, except that A doesn’t have access to any crypto-
graphic material or the BB, therefore they have no advantage in distinguishing
the success or failure of the attack.

Theorem 8 (Coercion resistance). If the DDH assumption holds in G, then
our scheme is coercion resistant according to the model of [31].

Proof. In the real game, the challenger sets up the election and the adversary
A chooses the set of voters they wish to corrupt. Then the challenger registers



Voting with coercion resistance and everlasting privacy 31

all the voters and yields to A the secret credentials of the corrupted voters.
Next, A chooses a voter j to coerce. A random coin b is flipped, to model the
behavior of the coerced voter. If b = 0 the voter provides a fake credential to the
adversary, whereas if b = 1 the voter provides the real credential. Afterwards,
the adversary programs the voting of the corrupted and the honest voters in
whatever order it suits them. The honest voters vote according to a distribution
D which aims to model uncertainty in their behavior and the inability of A to
predict it. For instance, some voters may abstain from voting, or cast an invalid
vote. If the attacker could fully predict the behavior of the honest voters then
they would trivially win the game by checking the tally. If b = 0 the coercer
casts a ballot with the fake credential, while in the moment of privacy the voter
casts their ballot with their real credential. If b = 1 the voter hands control to
the coercer who casts a ballot with the real credential. After the tally is counted,
the adversary tries to guess b to see if their coercion attempt succeeded.

The ideal game is similar to the real one, with the difference that the coercer
always gets the real credential, does not have access to cryptographic material
and the BB, and an idealized tally is posted, containing only the valid votes
maintained by the challenger in the reduction.

We note that in both the real and ideal game there is one more vote in the
final tally if b = 0. This information cannot be used by A to distinguish whether
b = 0 or b = 1, since the honest voters behave according to the distribution D
and thus A cannot predict the total number of votes in the tally.

We can prove coercion resistance by a sequence of games, from the real to
the ideal, where the advantage of the adversary to distinguish which game they
are playing is negligible. The initial game Game0 is the real coercion resistance
game. In Game0 if b = 0 the challenger casts a ballot using the real credential
scj = (x, y), and constructs a fake credential, by choosing a random sc∗j =

(x∗, y∗) ←$ Z2
q and giving it to the coercer. If b = 1 the challenger hands the

real credential scj = (x, y) to the coercer. Then the honest and the corrupted
voters vote, as well as A using the credential (real or fake) of the coerced voter,
according to the order A instructed. The tally is produced and the adversary
must guess whether b = 0 or b = 1.

The intuition behind Game1 is that the real vote of the coerced voter doesn’t
give advantage to the coercer. Game1 is similar to Game0 with the difference
that if b = 0 the challenger casts a ballot using a random value (z1, z2) ←$ Z2

q

as a credential. We note that A cannot distinguish whether he is playing Game0
or Game1, since if b = 1 the games are identical and if b = 0 then the only
difference is the ballot bj = (m, L(j), σ) of Game0 that is replaced by the ballot

b̂j = (m̂, L̂(j), σ̂) in Game1. In this case, assuming that the credential of voter j
is in the i-th position of the list L(j) and in the i′-th position of L(0), the values(

g,
L
(j)
i1

L
(0)
i′1

= grji−r0i′ , pk,
L
(j)
i2

L
(0)
i′2

=
gxhypkrji

gxhypkr0i′
= pkrji−r0i′

)
in Game0 form a Diffie-Hellman tuple, since the real credential was used in the

VS.Vote algorithm, but in Game1 the last element of this tuple is
L̂

(j)
i2

L(0)i′2
=



32 Panagiotis Grontas, Aris Pagourtzis, and Marianna Spyrakou

gz1hz2pkr1
gxhypkr0i′ , which is a random element of G, since a random value was used as
credential in the vote algorithm. Thus the adversary cannot distinguish them,
assuming that the DDH problem is hard.

Game2 aims to model that the adversary cannot distinguish whether the
coerced voter supplied the correct or a fake credential. It is similar to the Game1
with the difference that if b = 0 the challenger provides the real credential scj
to the coercer, instead of a random value. We note that A cannot distinguish
whether he is playing Game1 or Game2, since if b = 1 the games are identical and
if b = 0 the adversary has to decide whether a tuple is a DDH tuple, similarly to
the previous case. In this case, by using the credential provided to the adversary,
the values (

g, L
(j)
i1 = gr, pk,

L
(j)
i2

gxhy
= pkr

)
in Game2 form a Diffie-Hellman tuple, since the real credential was provided, but
in Game1 the last element of this tuple is

Lj2

gx∗hy∗ , which is a random element of

G, since a fake credential was provided. Thus the adversary cannot distinguish
them, assuming that the DDH problem is hard.

Game3 aims to model that the adversary cannot obtain any information by
the actions of the honest voters. It is similar to Game2 with the difference that the
challenger casts a vote for each honest voter using random credentials instead
of their real credentials. The challenger produces a modified tally in Game3,
containing only the result of the elections, without any proofs. In the final result
the votes of coerced voters are counted and the votes of the honest voters are
counted only if they were intended to, despite that random credentials were used.
Therefore the final tally is the same as the final tally of Game2. Similarly to the
previous case, A cannot distinguish whether they are playing Game2 or Game3,
due to the hardness of the DDH problem.

We note that the ideal game is essentially Game3 since all the values included
in each ballot not constructed by A are random elements of Zq or G. As a result,
our scheme provides coercion resistance, since the adversary cannot distinguish
between the real and the ideal coercion resistance games. ⊓⊔


	Voting with coercion resistance and everlasting privacy using linkable ring signatures
	Introduction
	Preliminaries
	A linkable ring signature with unconditional anonymity
	Security Analysis
	A Voting Scheme using Linkable Ring Signatures
	Security Analysis
	Assumptions
	Verifiability
	Privacy
	Coercion Resistance

	Conclusion and future work

	Details of Proofs of Knowledge
	Security properties of our LRS scheme
	Proof of unforgeability for our LRS (Theorem 1)
	Proof of unconditional anonymity for our LRS construction (Theorem 2)
	Proof of linkability for our LRS (Theorem 3)


	Security properties of our voting scheme
	Verifiability
	Privacy
	Coercion Resistance



