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Abstract

This work builds approximate proximity searchable encryption. Secure biometric databases are the
primary application. Prior work (Kuzu, Islam, and Kantarcioglu, ICDE 2012) combines locality-sensitive
hashes, or LSHs, (Indyk, STOC ’98), and oblivious multimaps. The multimap associates LSH outputs
as keywords to biometrics as values.

When the desired result set is of size at most one, we show a new preprocessing technique and system
called ProxCode that inserts shares of a linear secret sharing into the map instead of the full biometric.
Instead of choosing shares independently, shares are correlated so exactly one share is associated with
each keyword/LSH output. As a result, one can rely on a map instead of a multimap. Secure maps are
easier to construct with low leakage than multimaps.

For many parameters, this approach reduces the required number of LSHs for a fixed accuracy. Our
scheme yields the most improvement when combining a high accuracy requirement with a biometric with
large underlying noise. Our approach builds on any secure map. We evaluate the scheme accuracy for
both iris data and random data.

1 Introduction

This work builds approximate proximity searchable encryption, called APSS [KIK12, BT21, HCD+23,
FWG+16, WYLH14, LPW+20]. See prior reviews [BHJP14, FVY+17, KKM+22, RW23a, IKK12] and work
on searchable encryption [CGPR15, KKNO16, WLD+17, GSB+17, GLMP18, KPT19, MT19, KE19, KPT20,
FMC+20,FP22,GPP23,APP+23,HKR+24]. Security biometric databases [BBOH96,Dau14,Fou] is a major
application of this type of search.

Let DB = x1, ..., xM be a collection of records. We focus on the Hamming distance metric. That is, for
x, y, the distance between x and y is the number of positions that are not equal, denoted D(x, y) = |{i|xi 6=
yi}|. The Hamming distance metric is frequently used in iris recognition [Dau09].1 For a distance parameter
t and query y, the goal of search is to find the set Res = {xi ∈ DB|D(xi, y) ≤ t}.2 For biometric databases,
one assumes for all y there exists at most one x ∈ DB such that D(y, x) ≤ t.

Prior Approaches Prior work [KIK12,BT21,HCD+23] combines locality sensitive hashes or LSHs [IM98]
and oblivious/encrypted (multi)maps [WNL+14]. LSHs map close items to the same value more frequently
than they map far items to the same value. Multimaps, MM, allow association of keywords with values xi.
A multimap has two operations:

1. MM.add(keyword, value) that associates value with keyword, and

2. MM[keyword] which returns all values previously associated with value.3

∗University of Connecticut. Email: maryam.rezapour@uconn.edu.
†University of Connecticut. Email: benjamin.fuller@uconn.edu.
1Our techniques apply to any metric with locality sensitive hashes [IM98].
2A related goal is (approximate) k-nearest neighbors where the goal is to retrieve the k closest records [BT21]. There have

been leakage abuse attacks against k-nearest neighbor systems that reveal access pattern [KPT19,KPT20,LMWY20,CCD+20].
3We use the notation of dynamic multimaps [MM17,AKM19a,AKM19b,GPPW24,GKM21,APP+23] for simplicity in the

Introduction, but our techniques are applicable to the static setting.
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For some n number of LSHs, a multimap MM, and LSH family LSH, consider the following Baseline
construction [KIK12,BT21,HCD+23]:

1. Setup(x1, ..., xM )

(a) Sample n LSHs, LSH1, ..., LSHn ← LSH.

(b) For j = 1, ..., n & i = 1, ...,M ,

MM.add(keyword = (j, LSHj(xi)), value = xi).

2. Search(y):

(a) Compute LSH1(y), ...., LSHn(y).

(b) Lookup ∪nj=1MM[(j, LSHj(y))].

Leakage of Multimaps Constructions of (dynamic) multimaps [SWP00,KMO18,GKM21,GPP23,AG22,
RW23b,APP+23,WSL+22,PPYY19]4 have nonzero leakage including query equality. Patel et al. [PPYY19]
showed that avoiding query equality requires higher overhead techniques similar to oblivious RAM (for map
leakage suppression, see [GKM21]).

The need for accurate search All LSH-based solutions have imperfect accuracy. The two accuracy
parameters are:

1. δClose measures how frequently the close record is not returned, and

2. δFar measures what fraction of the database is (incorrectly) returned.

High accuracy systems have three advantages:

1. Returned records are more likely to be relevant.

2. A decrease in the maximum number of values associated with a keyword, a key efficiency metric for
secure multimaps. If this is made to a small constant, one can use a map instead.

3. In a three party system where the querier doesn’t know the whole dataset it reduces unintentional
exposure of biometrics (discussion in Section 1.1.1).

1.1 Our Contribution

This work introduces a data preprocessing method for accurate proximity search. Our approach is to
transform the query from a disjunction to a k-out-of-n query. We call the system ProxCode for efficient
proximity search from error correcting codes. We switch to using notation of a map as our system only
associates one value with each keyword. The high-level approach proceeds in two stages:

1. Secret sharing xi and inserting shares into the map and

2. Using the coding properties of secret sharing to ensure that only a single value is associated with each
keyword in the map.

At search time, one collects ≥ k results from the map and uses these shares to reconstruct the relevant record
(or record position).

Moving to shares Consider some fixed record xi and compute the LSH values LSH1(xi), ..., LSHn(xi).
Instead of directly associating xi with these keywords, we create a linear secret sharing of xi.

5 Let ci be some
codeword such that ci,1 = i. We assume codewords are drawn from a linear code that is also a µ-out-of-n
secret sharing [Sha79]. Then one adds to the M the pairs M.add ((j, LSHj(xi)), ci,j+1) . If there are enough
matches, the client retrieves enough points on the codeword ci and can reconstruct ci and thus xi.

4This generation of low leakage maps followed attacks on the prior generation of map constructions [CGPR15,KKNO16,
ZKP16,GLMP18,GLMP19,GJW19,KPT20,DHP21,OK21].

5The system works perfectly well if one associates the value i and uses a separate mechanism to retrieve xi from i. As we
discuss in Section 4, associating xi prevents a second lookup with associated leakage [GPPW24,GPP23].
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Error Improvement (log10(n))
Rate δFar = 10−3 δFar = 10−4 δFar = 10−6

.10 -0.5 -0.2 0

.15 -0.2 0.1 0.6

.20 0.3 0.7 1.4

.25 2.1 1.6 2.4

.30 1.3 2.8 3.9

Table 1: Summary of improvement in number of required LSHs across biometric error rates (1 − ε′t) and
accuracy of the scheme with respect to false accepts denoted as δFar, fully described in Appendix A. We note
the substantial improvement for the high error rate regime. Dataset of size M = 104.

Dealing with LSH collisions The second step of our approach is associating each LSH output to a single
value. Consider two values xα and xβ such that LSHj(xα) = LSHj(xβ) for some index j. One samples the
codewords cα, cβ uniformly under the constraint that cα,j = cβ,j .

The ability to perform this sampling is guaranteed by the fact that the code is a good secret sharing
meaning that cα,1 has a uniform distribution conditioned on µ− 1 other symbols.

Each LSH collision between records xi, xj of the database causes two codewords to share a single symbol.
There is a set of good codewords as long as no record xi has no more than µ−1 LSH collisions with other xj
(More precisely, more than µ− 1 distinct symbols have collisions). Our analysis shows for the error regimes
present in biometrics one can sample a set of M codewords under this constraint using fewer LSHs than the
Baseline disjunctive search’s requirement.

Mean FHD (Fractional Hamming Distance) is the Hamming distance divided by the length of the vector.
FHD for biometrics varies between 10% − 30% depending on the biometric, collection conditions, and the
feature extractor. Ha et al. [HCD+23] point out it is necessary to consider distance higher than the mean of
biometric error rate to achieve low δClose. They consider the iris with mean FHD of ≈ 20%. Their analysis
suggests n = 80 LSHs suffices to capture the distribution mean. However, n ≈ 1000 LSHs are needed to
capture the distribution tail.

We show the improvement in the number of required LSHs in Table 1 for a dataset of size 10, 000.
This directly translates to the overall size of the |M| that must be stored. For an error rates of 25%,
our improvement of at least 101.6 ≈ 39. Ha et al.’s recent construction [HCD+23] required 26 rounds
of communication, 1571 seconds of server computation, and 35GB of storage for 5000 records. Private-
eyes [HCD+23] have indexing overhead of 22 and cryptographic of 291. Our work is reducing 22, this is
orthogonal to cryptographic improvements. Efficiency improvements are crucial for scaling secure and private
biometric databases.

The accuracy level of δFar presented in Table 1 has a slightly different meaning for the baseline and
ProxCode. Roughly for ProxCode it is the probability of a query returning a far value. For the baseline, it
is a traditional false accept rate or FAR. Our efficiency improvements are highest for high-accuracy regimes
with large underlying biometric noise. As accuracy degrades two phenomena occur:

1. Overall fewer LSHs are required and the baseline scheme outperforms ours for low noise rates, and

2. It is harder to find a set of codewords satisfying the above constraints as there are more LSH collisions.
This makes it more difficult for setup to complete.

One expects many erasures with LSH values matching nothing in the map. Throughout, we use Reed-
Solomon codes which are a good secret sharing and naturally handle a mix of erasures and errors.

This approach can be secured using any map. In this work, we consider security when instantiated with
1) a map that leaks search [LZWaT14,OK21] & access pattern [SWP00,CGKO06] and 2) an oblivious map
such as [BT21] which uses oblivious data structures [WNL+14, Mic97]. When the map reveals query and
access pattern, our scheme reveals the query and access pattern for each individual search term which we
call subquery and subaccess pattern leakage using the language of Falzon et al. [FMET22].

Further Prior Work Ha et. al [HCD+23] presented the first zero-leakage iris proximity search system
called private-eyes. Private-eyes is built using the zero-leakage k-nearest-neighbor system [BT21]. Our
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scheme sits on top of any secure map implementation such as [HCD+23, BT21]. This is why we focus our
comparison on the number of LSHs for a given accuracy level. Our scheme provides a drop in improvement
for those mechanisms.

1.1.1 Implementation

We present a prototype implementation of the above ProxCode scheme integrated into an unprotected map
(Github). We evaluate 1) the accuracy on the IITD iris data set [KP10] for realism using the ThirdEye feature
extractor [AF19a] and 2) random data to scale beyond the hundreds of biometrics in existing datasets.

There are four primary statistics that matter from the combination of biometric and the feature extractor:
the means and variance of the FHD comparison for readings of the same biometric and different biometric.
Reducing the variance of either is beneficial for us, yielding fewer LSHs. We care about how different the
means are, this is shown in Table 2. These quantities are determined by a variety of environmental factors
and the feature extractor.

For random data, setup always succeeds with predicted parameters. We generate queries with the same
distribution as in prior work [HCD+23], we observe a δClose = 0 until the query error rate is > 120% of the
mean error rate (Table 2), at this setting δClose = .2. The mean error rate is used to set parameters.

For real data, we set data empirically, for ≈ 200 irises achieving δClose ≈ .1 with n = 1000 LSHs (see
Table 4). As we discuss real data has more variance than random data requiring larger values of α and more
careful parameter tuning. For both real and random data, we observed δFar ≈ .01.

Since we use maps, our subquery and subaccess leakage is in 1-1 correspondence. We observe roughly
2000 subquery repeats on 200 queries when n ∈ [1000, 30000]. This is on queries of different irises. One
expects much higher subquery equality if multiple readings of the same iris are in the set of queries.

Implications for Client Security Throughout the body of this work, we define a traditional two-party
setting of searchable encryption where there is a data owner that outsources data to a server. This is done
for simplicity. Some searchable encryption systems operate in the three party setting where there is a data
owner, server, and a client [FMC+15, HSWW18, WP21]. In this setting, the database contents and queries
are both private. In this setting, the data owner gives the client a token that allows them to execute their
query. Our scheme shows that the client is unlikely to gain enough code symbols to learn anything about
any records far from their query. In the body, we measure for real data how many code symbols are gained
by a client across multiple queries. We compare this to the number of biometrics that are completely leaked
using the baseline setting (Section 5.3). At a high level, ProxCode requires a persistent client [GRS17] with
many queries to learn anything about any stored biometric.

Organization Section 2 introduces preliminary notation including the definition of APSS. In Section 3,
we formalize the baseline construction. Section 4 presents ProxCode and proves that it is an APSS.Section 5
presents accuracy for real and random data. Section 6 concludes and discusses future work. Appendix A
explains the methodology of parameters evaluation for Random data.

2 Preliminaries

Throughout this work we use the following notation:

1. Let λ be a security parameter,

2. Let stored records xi be values over {0, 1}γ ,

3. Let M = |DB|, the number of records,

4. We consider prime fields over prime power p, denoted Fp.
5. For a linear code, let k be the dimension, kcorrect be the required number of correct symbols, and kerror

be the maximum number of incorrect symbols. See Definition 5.

6. Let n denote the number of LSHs, and

7. If one uses an extended LSH, let α denote the number of LSHs that are concatenated.
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We use ~x = (x1, ..., x`) to denote a vector. For vectors x, y ∈ {0, 1}γ , let D(x, y) = |{i|xi 6= yi}| denote the
Hamming distance between x and y. For a positive integer x, let [x] denote the set {1, ..., x}. For a prime
power p, we use Fp to denote the field over [p]. TAR stands for True Accept Rate; in the same way FAR stands
for False Accept Rate. For protocols Prot between a client Client and a server Server we use notation(

oClient

oServer

)
← Prot

(
iClient

iServer

)

with iClient, oClient, iServer, oServer denoting the client’s and the server’s inputs and outputs respectively. Proto-
cols are written from the client’s perspective.

Definition 1 (Locality-sensitive Hashing (LSH)). Let t ∈ N, c > 1 and εt, εf ∈ [0, 1] with εt > εf. H defines
a (t, ct, εt, εf)-sensitive hash family if for any x, y ∈ {0, 1}γ one has:

• If D(x, y) ≤ t then Prh←H[h(x) = h(y)] ≥ εt
• If D(x, y) ≥ ct then Prh←H[h(x) = h(y)] ≤ εf

where D(x, y) denotes the Hamming distance between binary vectors x and y.

An extended LSH is formed by concatenating α independently sampled LSHs. This output is an LSH,
with parameters εt = ε′αt and εf = ε′αf . This is used to compute parameters.

Definition 2. A map M = (M.insert,M.retrieve) is a pair of algorithms where

1. M.insert(L,R): Adds (L,R) where L is the key and R is its associated value.

2. M.retrieve(L): Receives L and returns the last assigned value R or ⊥ if no value has been assigned.

We assume that values L and R are both binary strings of a fixed length. Looking ahead, keywords R will be
from a field Fp we assume that | log p| is at most the supported length of the map. In a multimap, denoted
as MM, MM.retrieve(L) returns all previously assigned values Ri.

2.1 Coding Theory

Definition 3 (Linear Codes [GRS22]). For prime power p, a set C ⊆ Fnp is a (n, k, kcorrect)-error correcting

code, if |C| = pk and ∀x1, x2 ∈ C it is true that

D(x1, x2) < n− kcorrect.

C is a linear code if C is a linear subspace (of dimension k) of Fnp .

We use AC to refer to a generating matrix of a linear error-correcting code, one such matrix always exists.
We will need our codes to satisfy a slightly non-standard condition that we call µ-wise independence. This
condition designates that minors of AC with at most µ rows have full rank.

Definition 4 (µ-wise independence). Let C be a (n, k, kcorrect)-linear error correcting code. For µ ≤ k, C is
µ-wise independent if ∀i ≤ k for all A′ ∈ Fi×kp minors of AC, it is true that

rank(A′) ≥ min{i, µ}.

We use the abbreviate this condition as a (n, k, kcorrect, µ)-linear independent code.

A µ-wise independent code is a linear secret sharing [Sha79] against an adversary that sees µ shares:
one selects a random codeword with a first symbol determined by a message and distributes symbols of the
codeword as shares.

In the setting that µ = k this condition requires all k × k minors to be full rank which implies that the
code is a maximum distance separable code. Reed-Solomon codes satisfy this condition. However, many
codes satisfy µ-wise independence when µ < k.
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Claim 1. Let C be a (n, k, kcorrect, µ)-linear independent error correcting code. Then there exists an efficient
procedure Inv such that given (i1, yi1 , ..., iµ, yiµ) one can sample a uniform codeword ỹ such that ỹij = yij for
j = 1, ..., µ.

Proof. Let A′ be the µ × k minor of A with rows i1, ..., iµ. By the independence condition, A′ has row
rank µ. There must exist some square minor of dimension µ × µ of A′ that has rank µ. Without loss of
generality suppose that this minor contains the first µ columns. Let Asq denote this square minor and let
ARemain denote the last k − µ columns. Then we define Inv as below:

1. Sample xµ+1, ..., xk uniformly randomly.

2. Solve 
x1
x2
...
xµ

 = A−1sq

yi1...
yiµ

−ARemain

xµ+1

...
xk


3. Output

A

x1...
xk

 .

Efficiency and consistency of Inv can be easily verified.

Definition 5. For prime power p, let C be a (n, k, kcorrect, µ)-linear error correcting code over Fnp . Let
y ∈ (Fp∪ ⊥)n and let IValid denote the locations of y that are not ⊥. For all x ∈ C define the set Decodex as
the set of all y such that

1. |{i|xi = yi}| ≥ kcorrect.

2. |{i|xi 6= yi ∧ yi 6=⊥}| ≤ kerror.

Let kerror < kcorrect be a parameter. C is a kerror-code with erasures if there exists an efficient procedure
Decode such that

1. For all x ∈ C and for all y ∈ Decodex it holds that Pr[x← Decode(y)] = 1.

2. For all y if |{i|yi 6=⊥}| ≤ kerror, Pr[x← Decode(y) ∧ x =⊥] = 1.

We abbreviate this as a (n, k, kcorrect, kerror, µ)-linear error correcting code.

Definition 5 implicitly bounds the number of erasures, it may be up to n− kcorrect − kerror. The second
condition is slightly nonstandard, it simply there to ensure that the code doesn’t attempt to decode when it
doesn’t have enough information to determine the codeword (even without errors), any code can be modified
to satisfy this condition.

Definition 6 (Reed-Solomon Codes [GRS22]). The (n, k) Reed-Solomon code over Fp is the

{C|Ci = P (i) for some k − 1 degree P}

Such codes are linear with the Vandermonde matrix representing one A (and enc algorithm).
A (n, k) Reed-Solomon code is an (n, k, kcorrect = 2k, kerror = k, µ = k) code with erasures with the

Berlekamp-Welch algorithm [WB86] representing one Decode.
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2.2 Approximate Proximity Search

We now turn to defining our cryptographic goal. We begin with the notion of a well-spread database which
captures the intuition that its records are far apart.

Definition 7 (Well-spread database). For parameters c > 1, t ∈ Z+. For some value y ∈ {0, 1}γ and
DB ∈ {0, 1}γ×M , define

Close(y,DB) = {xi | xi ∈ DB & D(xi, y) ≤ t},
Far(y,DB) = {xi | xi ∈ DB & D(xi, y) ≥ ct}.

A database DB ∈ {0, 1}γ×M is said to be (c, t)-well-spread if

∀x ∈ {0, 1}γ , |Far(x,DB)| ≥ |DB − 1|.

This implies that ∀x ∈ {0, 1}γ , |Close(x,DB)| ≤ 1.

As discussed in the Introduction, Definition 7 is a strong condition useful for analysis. It is not satisfied
by biometric data, see histograms for the IITD dataset in Figure 3(a). However, accuracy measurements
in Section 5 consider real data.

Definition 8 (Approximate Proximity Search Scheme). Consider Definition 9 security, let APSS = (APSS.Init,
APSS.Setup, APSS.Search). For c > 1, t ∈ Z+ APSS is a (t, c, q, δFar, δClose)-approximate proximity search
scheme if for all (c, t)-well-spread DB ∈ {0, 1}γM , y1, ..., yq ∈ {0, 1}γ , define

(
sk, pp

pp

)
←− APSS.Init

(
1λ

1λ

)
,(

⊥
I0

)
←− APSS.Setup

(
DB, sk

pp

)
,(

Ji

Ii

)
←− APSS.Search

(
yi, sk

Ii−1, pp

)
.

Then it is true that, ∀i, 1 ≤ i ≤ q,

Pr [Far(yi,DB) ∩ Ji = ∅] ≥ 1− δFar,
Pr [Close(yi,DB) ⊆ Ji] ≥ 1− δClose.

where Far, Close are defined as in Definition 7.

Definition 9 (Adaptive Security for Search Protocol). Let SSE = (Init,Setup,Search) be a triple of algorithms
with associated leakage functions (LSetup,LSearch). Let λ be a security parameter.

For an adversary A and simulator S define ExpSSE,A(·) and ExpS,A(L = (LSetup,LSearch)) as in Figure
1. We say SSE is semantically secure in the adaptive setting if for all PPT A, there exists a PPT simulator
S such that

|Pr[ExpSSE,A(·)) = 1]− Pr[ExpS,A(LSetup,LSearch) = 1]| ≤ ngl(λ).

We use Definition 9 for maps, multimaps, and approximate proximity schemes, which we denote at M,
MM and APSS respectively. We consider the following leakage functions:

1. LSetupSize which leaks the size of the created DB. For the case of a map this leaks the number of (keyword,
value) pairs inserted. Size is often padded to a power of 2, (e.g. [HCD+23]).

2. LSearch0 which leaks the occurrence of a query [BIPW17,BT21], and
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Experiment ExpSSE,A(·):

1.

(
sk

pp

)
← SSE.Init

(
1λ

1λ

)
.

Let tsInit be the server’s view.

2. D ← A(tsInit).

3.

(
⊥
I0

)
← SSE.Setup

(
D, sk

pp

)
.

Let ts0 be the server’s view.

4. For i = 1 to q:

(a) yi ← A(tsi−1).

(b)

(
Ji

Ii

)
←− SSE.Search

(
yi, sk

Ii−1, pp

)
. Let tsi

be the server’s view.

5. Output b← A(tsq).

Experiment ExpS,A(LSetup,LSearch):

1. tsInit ← S(1λ).

2. D ← A(tsInit).

3. ts0 ← S(LSetup(D))).

4. For i = 1 to q:

(a) yi ← A(tki−1).

(b) tsi ← S(LSearch(yi)).

5. Output b← A(tsq).

Figure 1: Adaptive Experiments for search protocols and Adversary interacting with the Simulator in the
ideal world using L. The A and S keep state between stages but these is omitted for notational clarity.

3. LSearchAccPatt which leaks identifiers returned with a query [SWP00,CGKO06]. These identifiers are consis-
tent across queries.

4. LSearchQueryEq which leaks when queries repeat in a sequence [LZWaT14,OK21].

During our construction we make n calls to the underlying map, in the case of LSearch0 this creates a
straightforward leakage function as there are n calls to that map. Below we define two modifications of the
above leakage functions. These leakage functions when one uses multiple LSHs in conjunction with a map.
That is, they apply for the baseline or ProxCode APSS system. They are function of making multiple calls
to the underlying map [KIK12, BT21, HCD+23]. For a query y and an integer n, we consider subqueries of
the form y1, ..., yn.

1. LSearchSubAccPatt for an integer n, for each returned identifier ι leaks the pair (i, ι) of each subquery yi that
caused the identifier ι to be returned where 1 ≤ i ≤ n.

2. LSearchSubQueryEq for an integer n, leaks query equality over subqueries.

3 Baseline Construction

The goal when to searching for a value y is to retrieve of Close without receiving any indices in Far. We in-
formally present the baseline LSH scheme to introduce the relevant accuracy parameters. Let LSH1, ..., LSHn
be a sampled set of LSHs and treat a record a relevant for a value y if they agree on a single LSH value.
The output is the set for 1 ≤ j ≤ n:

{xi|{(j, LSHj(xi))} ∩ {(j, LSHj(y))} 6= ∅}.

The construction is as follows:

Construction 1 (LSH & Multimap based APSS). Let t be a distance parameter, c > 1 and let DB ∈
{0, 1}γ×M . Let LSH be a (t, ct, εt, εf) be a LSH family. Let MM be a multimap. Define APSS = (APSS.Init,
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APSS.Setup, APSS.Search) as in Algorithm 1. Then following notation from Definition 8, for all y1, ..., yq,
and all well-spread DB, ∀i

Pr [Far(yi,DB) ∩ Ji = ∅] ≥ 1− δFar,
Pr [Close(yi,DB) ⊆ Ji] ≥ 1− δClose,

For

δFar = 1− (1− εf)nM ,
δClose = (1− εt)n.

That is, APSS is a (t, c, δFar, δClose)-approximate proximity search scheme.

Finding n for baseline construction For fixed εt, εf it suffices to set

log(δClose)

log(1− εt)
≤ n ≤ log(δFar)

M log(1− εf)
. (1)

In particular, in the setting when δClose ≈ δFar and for small εt, εf where log(1 − x) ≈ −x for n to exist in
Equation 1 it must be the case that εt ≥Mεf.

In the case when the LSH is an extended LSH with underlying error rates of ε′t, ε
′
f with α concatenated

copies and ε′t > ε′f then setting

α ≥ log(M)

log(ε′t/ε
′
f)
. (2)

suffices for (
ε′t
ε′f

)α
=
εt
εf
≥M.

This means that

n ≈ M log(δClose)

log(δFar)
. (3)

Note that δClose exactly corresponds with TAR for a well-spread database. However, δFar controls the overall
probability of a false accept and is a much stronger condition than controlling the FAR. In Appendix A, we
analyze the FAR of the baseline scheme for random data where each record in the database has exactly εf
probability of matching an LSH and each query that is a noisy version of a stored xi has probability exactly
εt of colliding LSH with the stored reading of the biometric. In that appendix, for the baseline scheme we use
report FAR as δFAR for consistency with ProxCode, which is presented shortly. This means we are comparing
ProxCode against a baseline scheme with a weaker correctness guarantee.

As described in the Introduction, there are three main issues with Construction 1:

1. The use of a multimap. Constructing oblivious multimaps is a difficult prospect (see discussion
in [KMO18,GKM21,GPP23,AG22,RW23b]), and

2. The use of a disjunctive query requires εf to be very small and n to be very large to support reasonable
δClose, δFar. Tables 3 and 5 highlight this comparison. Further discussion on parameter analysis can be
found in Appendix A.

3. In the three party searchable encryption scenario, unintended biometrics are (occasionally) leaked to
clients.

4 ProxCode

This section formally introduces ProxCode, proves it is secure, and proves it is accurate under the well-spread
condition (Definition 7). This condition is used for analysis but not assumed in our evaluation in Section 5.

Our construction combines LSHs and a secure map. Instead of associating LSH outputs with records, we
associate LSH outputs with shares of a linear secret sharing. One then collects multiple shares and decodes,

9



Algorithm 1 Baseline construction of APSS from LSH and MM.
All procedures from perspective of Client with calls to underlying interactive protocols..

Init

(
1λ

1λ

)
= MM.Init

(
1λ

1λ

)

APSS.Setupn

(
DB = (x1, ..., xM ), sk

pp

)
:

1. Sample n LSHs LSH1, ..., LSHn ← LSH.

2. Set DBMM = {(j, LSHj(xi)), xi}j=1,...,M,i=1,...,n.

3. Execute

(
⊥
I0

)
← MM.Setupn

(
DBMM, sk

pp

)
.

4. Output (LSH1, ..., LSHn) to Client.

APSS.Searchn

(
yi, LSH1, ..., LSHn

I(i−1)·n

)
:

1. For j = 1 to n, compute

(
xj

I(i−1)·n+j

)
← MM.Searchn

(
(j, LSHj(y))

I(i−1)·n+(j−1)

)
.

2. Output Ji = ∪nj=1xj .

our search only reveals a matching record xi when there are enough LSH matches. To do this, instead of
directly associating ((j, LSHj(xi)), xi) we encode xi onto a linear error correcting code. That is, we associate
xi with a random codeword ci such that ci,1 = xi.

To handle LSH collisions, when z = LSHj(xi) = LSH(xk), we constrain the two codewords to have the
same value at position j. That is, that ci,j = ck,j . We can do this without impacting either ci,1 or ck,1
because of the independence property of the code, which says the code is a good secret sharing (Definition 4).
We assume the existence of an Inv algorithm that maps a set of codeword symbols to a uniform codeword
with those symbols. Assuming one can sample a set c1, ..., cM then one can effectively perform an k-out-of-n
search in place of the pure 1-out-of-n search used in the Baseline scheme. We present this scheme formally
in Algorithm 2 and Construction 2. As mentioned in the Introduction, one can consider the goal to retrieve
the indices, i, or the actual values, xi (see discussion in Gui et al. [GPPW24,GPP23]). Usually in encrypted
search, one focuses on building an index data structure with the actual records being obtained through a
second oblivious structure. Our system works equally well in both settings assuming the map can hold
entire records (as long as they are distinct) since our encoding technique does not increase the size of values
inserted in the map (beyond the additional space to encode them in a field). A separate lookup of the value
xi from i often has leakage, so we associate xi to prevent the second lookup.

Construction 2. Let t be a distance and let c > 1 be a distance parameter. Let DB ∈ {0, 1}γ×M be a
(c, t)-well-spread database. Let n ∈ Z+ and µ, k ∈ Z+ such that µ ≤ k < n.

1. Let LSH be a family of (t, ct, εt, εf)-LSHs with domain of {0, 1}r.

2. Let p be a prime power such that p ≥M . Let A ∈ Fn×kp be a generating matrix of (n+1, k, kcorrect, kerror, µ)-
linear code with associated algorithms DecodeA, InvA.

3. Let M = (M.insert,M.retrieve) be a map.

Define APSS as in Algorithm 2.

10



Algorithm 2 ProxCode: APSS from maps and linear (secret-sharing) codes.
Procedures are run by Client unless calling an underlying interactive protocol.

Init

(
1λ

1λ

)
= M.Init

(
1λ

1λ

)
(
LSH1, ..., LSHn

I

)
← Setup

(
DB, sk

pp

)
:

1. Sample LSH1, ..., LSHn ← LSH. Define L ∈ ({0, 1}r)M×n where Li,j = LSHj(xi).

2. Define Eq ∈ [M ]M×n where Eqi,j = arg mini′<i(Li′,j = Li,j) where Eqi,j = 0 if no such i′ exists.

3. If there exists a row of Eq with more than µ− 1 nonzero coordinates go to Step 1 (up to l times, then
output ⊥).

4. Initialize C ∈ (Fp∪ ⊥)M×(n+1) =⊥M×(n+1)

5. For i = 1, ...,M :

(a) Ci,1 = xi.

(b) For j = 1, ..., n, let i′ = Eqi,j if i′ 6= 0, set Ci,j+1 = Ci′,j+1.

(c) Set Ci = Inv(NEmpty(Ci)). NEmpty outputs the indices and values of positions that are not ⊥.

6. DB = (j||LSHj(xi),Ci,j+1) for i = 1, ...,M, j = 1, ..., n.

7.

(
⊥
I0

)
←− M.Setup

(
DB, sk

pp

)
.

Search

(
y, LSH1, ..., LSHn, sk

I(i−1)·n, pp

)
:

1. Compute Lj = LSHj(y) for all j = 1, ..., n.

2. Initialize eerase = n.

3. For j = 1, .., n,

(a) Client retrieves

(
cj+1

I(i−1)·n+j

)
= M.Search

(
(j, Lj), sk

I(i−1)·n+(j−1), pp

)
.

(b) If cj+1 6=⊥, eerase := eerase − 1.

4. If n− eerase > kcorrect output ⊥.

5. Compute c1, ..., c` ← DecodeA(⊥ ||c2||...||cn), output c1

Definition 5 on the definition of a linear code is in supplemental material, the parameters are the length,
dimension, the number of needed correct symbols, the maximum number of errors, and the number of
independent symbols of the code. A (n, k)-Reed-Solomon code is an (n, k, kcorrect = 2k, kerror = k, µ = k)
code with erasures with the Berlekamp-Welch algorithm [WB86] representing one Decode (Definition 6).

We provide some intuition for the scheme before presenting our formal results. There are two main ideas
in Construction 2:

Shares in the Map First, we replace xi as the value inserted into the map with a codeword whose first
symbol is xi. That is, ci,1 = xi. The idea behind this change is that if one can reconstruct ci then one
can easily recover the value xi. We then insert pairs ((j, LSHj(xi)), ci,j) into the map.

Align codewords with LSH collisions We add a preprocessing step so that codewords are chosen in a
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correlated maner. We precompute using Eq the set of all LSH collisions in the database. If two values
xi, xk share some LSHj(xi) = LSHj(xk) then we will fix ci,j = ck,j . We rely on the µ independence
of the linear code to ensure that we can describe a set of codewords under these constraints (Defi-
nition 4). Theorem 1 bounds the probability that such sampling cannot complete over the choice of
LSH1, ..., LSHn. Importantly, this probability holds for every well-spread DB and does not depend on
the chosen codewords. We check this condition by examining Eq.

Once Setup completes there is now a one-to-one correspondence between LSH outputs and codeword
symbols. Let xi ∈ DB, if one searched for the value xi one would retrieve ci,2, ..., ci,n+1 which would
determine ci,1 and allow retrieval. If one searches for a value y then the returned values will be a mix of
different codewords and ⊥ where nothing in the database matched the LSH value. We first consider the
correctness of this scheme deferring security until Section 4.2.

4.1 Correctness

Theorem 1. Let c, c1, c2 > 0 be constants. Let LSH be a family of (t, ct, εt, εf)-locality sensitive hashes.
Let DB be a (c, t)-well-spread database where |DB| = M . Let n ∈ Z+, k ∈ Z+ be parameters. Let C be
a (n + 1, k, kcorrect, kerror, µ)-code with erasures over Fp where p ≥ M and let M be a map (with perfect
correctness). Suppose the following are true:

εt >
kcorrect

(1− c2)n
, (4)

εf ≤
kerror

Mn(1 + c1)
, (5)

and define

∀i ≤M, δFari = exp

(
−c21

2 + c1
· εf · n · (i− 1)

)
,

δFar = δFarM = exp

(
−c21

2 + c1
· εf · n · (M − 1)

)
,

δClose = exp

(
−c22εtn

2

)
+ δFarM−1

.

Construction 2 instantiated with C and n LSHs from LSH is an (t, c, δFar, δClose)− APSS. Furthermore,

Pr[Setup outputs ⊥] ≤

(
1−

M∏
i=2

(1− δFar,i)

)`
≤
(

1− (1− δFar)M−1
)`

Theorem 1 is proved through Lemmas 1, 2, and 3 which focus on the number of LSH matches between
close records, far records, and the ability of setup to complete. Roughly, each of these lemmas is proved
using a Chernoff bound since LSH outputs are independent (if data is fixed before sampling). The constants
c1, c2 represent the constant of the Binomial deviating from its expectation.

Lemma 1. Let all parameters be as in Theorem 1. Define

Matchj,x,x∗ =

{
1 LSHj(x) = LSHj(x

∗)

0 otherwise
.

And define Matchx,x∗ =
∑n
j=1 Matchj,x,x∗ . If D(x, x∗) ≤ t then

Pr[Matchx,x∗ < kcorrect] < exp

(
−c22

2
· εt · n

)
.

12



Proof. Let x, x∗ be two values where D(x, x∗) ≤ t. One has

∀j,Exp[Matchj,x,x∗ ] ≥
kcorrect

(1− c2)n

by Equation 4. By independence of the LSHs, Matchx,x∗ is bounded below by a (n, kcorrect
(1−c2)n ) binomial

distribution with Exp[Matchx,x∗ ] = kcorrect
(1−c2) . Then by a standard Chernoff bound, it is true that

Pr[Matchx,x∗ ≤ (n+ 1− eerase − kerror)]

= Pr[Matchx,x∗ < (1− c2)Exp[Matchx,x∗ ]]

< exp

(
−c22

2
· εt · n

)
.

This completes the proof of Lemma 1.

Lemma 2. Let all parameters be as in Theorem 1. Define random variable Matchj,DB,x as follows for
j ∈ {1, ..., n}:

Matchj,DB,x = |{xi ∈ DB|LSHj(xi) = LSHj(x)}|.

and MatchDB,x =
∑n
j=1 Matchj,DB,x, denoting the number of LSH’s where there exists some collision between

the value w′ and some record in the DB. For all x such that ∀xi ∈ DB it is true that D(x, xi) ≥ ct it is true
that

Pr[MatchDB,x > k] ≤ exp
(
−c21

2 + c1
· εf · n ·M

)
.

Proof. For each pair x, x′ such that D(x, x′) ≥ ct it is true that

Pr
LSH←Hlsh

[LSH(x) = LSH(x′)] ≤ εf.

This means that MatchDB,x is bounded above by a (nM, εf) binomial distribution. By a standard Chernoff
bound one has

Pr[MatchDB,x ≥ k] =

Pr[MatchDB,x ≥ (1 + c1)Exp[Matchx,DB]] ≤

exp

(
−c21

2 + c1
· εf · n ·M

)
This completes the proof of Lemma 2.

Lemma 3. Let all parameters be as in Lemma 2 and Theorem 1 letting

δFar,i = exp

(
−c21

2 + c1
· εf · n · (i− 1)

)
.

Then the probability that Setup outputs ⊥ is at most

Pr[Setup outputs ⊥] ≤

(
1−

M∏
i=2

(1− δFar,i)

)`
(6)

Proof. Let (x1, ..., xM ) = DB For all xi ∈ DB define DBxi = x1, ..., xi−1. By the (c, t)-well-spread condition
of DB and Lemma 2 it is true that

Pr
[
MatchDBxi ,xi ≥ k

]
≤ δFar,i.
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Setup succeeds in an iteration if it is true for all xi ∈ DB that MatchDBxi ,xi < k. Let 1xi be an indicator
random variable where 1xi = 1 if MatchDBxi ,xi < k. Then

Pr

[
M∑
i=2

1xi = 0

]
≥

M∏
i=2

(1− Pr[MatchDBxi ,xi ≥ k]).

So the chance that an iteration of setup fails is at most

Pr

[∑
xi

1xi > 0

]
≤ 1−

M∏
i=2

(1− Pr[MatchDBxi ,xi ≥ k]).

The chance that all ` iterations fail is then at most(
1−

M∏
i=2

(1− Pr[MatchDBxi ,xi ≥ k])

)`
.

This completes the proof of Lemma 3.

Proof of Theorem 1. There are three parts to proving Theorem 1 that setup completes with high probability,
that the close item is included in the result set and that far items are not included in the result set. The
probability of setup completing follows directly from Lemma 3.

Close Item in Result Set Let x be the search term where x is close to at most one item in DB denoted
as xi with corresponding codeword ci. That is, D(x, xi) ≤ t. If such a xi exists, its uniqueness exists by
Definition 7. Let ci denote the corresponding codeword. Define the following parameters:

δClose,1 = exp

(
−c22

2
· εt · n

)
,

δClose,2 = δFar,(M−1).

Let c′ denote the recovered symbols (including symbols that are ⊥). By Lemma 1 there are at least kcorrect
symbols from ci with probability 1− δClose,1. By Lemma 2 there are at most kerror symbols from the other
LSH values M − 1. By union bound, both of these conditions hold with probability 1 − (δClose,1 + δClose,2)
Thus, by Definition 5, conditioned on both of these events occurring Decode outputs ci with probability 1.

Far Items not in Result Set By Lemma 2 the probability that c′ has more than kerror symbols other
than ⊥ is at most δFar. The fact that Decode outputs ⊥ is by Step 4 of Search in Algorithm 2.

This completes the proof of Theorem 1.

4.2 Security and Leakage

This section shows that when the M in Construction 2 is an appropriate encrypted map one achieves a secure
APSS. The proofs in this section are straightforward.

We consider two leakage patterns frequently used in secure maps: 1) the zero-leakage setting where the
server learns the dataset size M and when a query occurs such as [BIPW17,BT21] and 2) access and search
pattern where the server learns identifiers associated with each query response and whether queries have
repeated [SWP00,CGKO06]. Of course, if one uses a zero-leakage map [WNL+14,BT21], the resulting APSS
is zero-leakage as well (treating n as a public system parameter). Since each query of the APSS translates to
n queries to the underlying map, we additionally leak when subqueries repeat and the subquery associated
with a returned identifier.

Lemma 4. Let λ be a security parameter. Let M = (M.Setup,M.Search) be a map that is secure according
to Definition 9 for LM = (LSetup = |M|,LSearch = (LSearchAccPatt,LSearchQueryEq)). Then the APSS = (APSS.Init,

APSS.Setup, APSS.Search) scheme defined in Construction 2 is secure according to Definition 9 for (LSetup =
n · |M|,LSearch = (LSearchSubAccPatt,LSearchSubQueryEq)).
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AM.Setup(1λ) :

1. Initialize AAPSS and receive DB ∈ ({0, 1}γ)M .

2. Run steps 1-6 of APSS.Setup(DB) from

algorithm 2 to receive vector ~LSH and
matrices L and C as described in steps 1, 2
and 6 respectively. If Step 4 outputs ⊥
output ⊥.

3. Output DBM = {(Li,j , Ci,j+1)}i=1,...,M
j=1,...,n

AM.Search( ~LSH, L, C) :

1. Receive q ∈ {0, 1}γ from AAPSS.

2. Compute q1, ..., qn = ~LSH1(q), ..., ~LSHn(q).

3. Output q1, ..., qn.

4. Receive tk and send to AAPSS.

Figure 2: Construction of AM from AAPSS.

Proof. Let AAPSS denote some PPT adversary for the APSS scheme. Our goal is to construct a SAPSS. As
noted in Figure 2 for any valid AAPSS adversary there exists some AM that is a valid M adversary. Let SM
be one such simulator for AM. Note that setup leakage is the same in both settings. For the search leakage,
(LSearchSubAccPatt,LSearchSubQueryEq) this allows SAPSS to expand the q queries into qn subqueries which is the required
leakage for SM. Then

|Pr[ExpAPSS,AAPSS
(·)) = 1]− Pr[ExpSAPSS,AAPSS

(Linit0 ,LSearchSubQueryEq,SubAccPatt]) = 1]| =
|Pr[ExpM,AM

(·)) = 1]− Pr[ExpSM,AM
(Linit0 ,LSearchQueryEq,AccPatt) = 1]|

This completes the proof of Lemma 4.

4.3 Discussion

Handling Dynamic Data Assuming a dynamic map, one can naturally handle new data x∗ being added
to the database by searching for x∗ and retrieving codeword symbols that x∗’s codeword should be consistent
with. Then one can sample the codeword (under the constraints described above) and add the missing
codeword symbols to the corresponding maps. Handling data deletion and updates requires care; maps
values have information about multiple biometrics. One way to handle deletes is to maintain a counter with
each value indicating how many records are using this value, this counter could be decremented with each
delete. The leakage and efficiency of the above depends strongly on the underlying map, and further study
is required to understand viability.

5 Implementation and Accuracy

We implemented ProxCode using Python 3.9. The source code can be found in (Github). We perform tests
on iris data to indicate viability and on random data to scale. Iris datasets are not available for large M .
Figure 3 shows histograms for the two datasets. There are two main differences between random and real
data:

1. In real data there is a large variance on the Hamming distance both between readings of the same iris
and readings of different irises.

2. In real data there is an overlap between distance comparisons of readings of the same iris and readings
of different irises. This means it is not possible to achieve a system with perfect accuracy.

5.1 Random Data

We generate parameters algorithmically in Appendix A, we include a summary in Table 3. For all tested
parameters, random data only required a single iteration for setup to complete. We choose instances from
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(a) IITD dataset (b) Random data withM = 1000 and mean same error
rate of .10

Figure 3: FHD histogram for real data and random data loss. Comparisons between readings of the same
biometric are in blue. Comparisons between readings of different biometrics are in red. The x-axis differs.
Discontinuities in the same histogram for random data are due to using a Binomial distribution to generate
errors.

parameters regime in Table 3 to evaluate accuracy and how close Setup came to failing. The parameters
chosen for testing are in bold in Table 3. For all tests the datasets chosen were i.i.d. samples from
{0, 1}1024, the output length of the ThirdEye feature extractor [AF19a, ACD+22] used for real data in the
next subsection.

For c1 = 5, Figure 4(a) shows the maximum number of eLSH matches that a record (across all M records)
shares with its predecessors is in the range of [9, 15], which is less than problematic threshold of k = 22.
For c1 = 3, Figure 4(b) shows the maximum number of matches between two records lies between 13 to 18.
This is dramatically less than the upper bound of k = 34. This confirms our analysis that Setup has a high
probability of succeeding. Both histograms are from 100 runs of Setup.

(a) Histogram of maximum number of matches for
c1 = 5, and εt = .9

(b) Histogram of maximum number of matches for c1 =
3, and εt = .9

Figure 4: Histograms of the maximum number of eLSH matches between dataset records in the Setup phase.
Results are from 100 runs of Setup. M = 104, εf = .5.

We also tested Search, over a dataset of size 104 and two sets of queries with mean error rate of 0.1 and
0.15 from a value stored in the database. Errors were drawn from a binomial distribution the above listed
fractional mean and standard deviation σ = .056. This standard deviation is drawn from recent work on
proximity search for the iris [HCD+23, Section 4]. Use of this technique means that some numbers of errors
are not possible, yielding discontinuities in the same histogram (Figure 3). Table 3 is used to set the number
of LSHs and needed matches. We randomly chose 100 database entries and generated a corresponding query
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c1 FHD TAR δFar Avg Erasures

≤ .10 1 0 .61

εt = .9

3 ≤ .12 1 0 .73
≤ .14 .95 .01 .77
≤ .10 1 0 .59

5 ≤ .12 1 0 .66
≤ .14 .90 0 .71
≤ .15 1 0 .90

εt = .85

3 ≤ .18 1 0 .92
≤ .21 84 .01 .93
≤ .15 1 0 .90

5 ≤ .18 1 0 .91
≤ .21 .93 0 .92

Table 2: Correctness on Random Data. Experiments are performed for M = 104 records and εf = .5 with
setting c1 = 3 or c1 = 5. FHD is the actual fractional Hamming distance between the query and the relevant
database item. Avg Erasures is the average fraction of codewords that contain erasures.

M = 104

δFar = 10−4 Baseline ProxCode δFar = 10−6 Baseline ProxCode

ε′f ε′t α logn α logn k δClose ε′f ε′t α logn α logn k δClose
.5 .7 61 10.3 36 7.5 27 6 × 10−4 .5 .7 69 11.5 37 7.6 25 10−3

.5 .75 51 7.3 30 5.7 28 4 × 10−4 .5 .75 58 8.2 31 5.8 28 4 × 10−4

.5 .8 44 5.2 26 4.5 30 2 × 10−4 .5 .8 50 5.7 26 4.3 20 4 × 10−3

.5 .85 39 3.7 23 3.6 29 3× 10−4 .5 .85 45 4.3 24 3.7 33 10−4

.5 .9 36 2.8 21 3.0 34 10−4 .5 .9 40 2.8 21 2.8 22 2× 10−3

Table 3: Parameters Comparison between our ProxCode and Baseline scheme where M · ε′αf .n = δFar and
(1 − ε′αt )n = δClose. In ProxCode parameters are computed as in Section A. The numbers for α, n, k are
the first found solutions. For the baseline scheme we measure FAR while in ProxCode we measure δFar this
allows the baseline scheme to have more errors for the same accuracy. Accuracy δFar ≈ 10−3 from c1 = 2
and c2 = .4. Accuracy δFar ≈ 10−4 from c1 = 3, c2 = .4 and accuracy δFar ≈ 10−6 from c1 = 5, c2 = .4.
Logarithms are base 10. Appendix A describes methodology and presents more parameter ranges in Table
5. Bold numbers are the parameters that were used in testing the implementation.

according to the above statistics.
For each set of chosen parameters, accuracy results are shown in Table 2 separated by the actual fraction

of errors between the query and the value stored in the database. We only observed incomplete or incorrect
results when the fraction of errors was over 120% of the target error rate. In the computation of the observed
δFar, we counted all recovered responses that are not the correct value whether or not it is a value in the
dataset.

5.2 Real Data

The IITD dataset [KP10] consists of 224 persons and 2240 images. We process this data using the feature
extractor ThirdEye [AF19a] and segmentation system of Ahmad and Fuller [AF19b]. We use their regime
of left irises for training and right irises for testing. After removing the right irises without two readings,
there are M = 208 right irises suitable for testing. The only statistics we use to set parameters from the
combination of the dataset and feature extractor are the means and variances of distances between readings
of the same iris and readings of different irises.

We used the same methodology that we used to compute Table 5, to find the right parameters for the
dataset of size M = 208. Table 3 parameters are computed assuming a well-spread database. Figure 3 shows
that biometrics’ distribution satisfy this condition except for the tails. Since the variance in real iris datasets
in higher than random dataset, Setup with Table 3 parameters did not succeed.
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α n k Iterations TAR δFar Subquery Equality
25 2000 30 1 .89 0 2336
30 2000 15 1 .89 .004 2074
25 1500 25 2 .88 0 1775
23 1000 25 1 .88 .004 1355
23 1000 30 1 .87 0 1338
25 1500 30 1 .87 .004 1762
25 1000 25 1 .85 .004 1192
25 1000 30 1 .82 .004 1176
30 1000 30 1 .67 .004 1043

Table 4: Correctness on IITD dataset [KP10] processed with ThirdEye feature extractor [AF19a]. Iterations
columns reports on the number of iterations needed to complete Setup. Subquery Equality reports the total
number of subquery matches.

Thus, we then manually tuned the parameters in a way that Setup succeeds with reasonable TAR during
Search. We considered α ∈ [15, 30], k ∈ [1, 30], and n = [1000, 3000]. For most of these trials, Setup could
not sample a good set of LSHs. Table 4 list parameters that both Setup, and Search had reasonable TAR.
For many parameter regimes, Setup succeeded with a TAR of 0 (when one picked a large α, k and small n).
The most promising parameters are for α = 23, n = 1000, and k = 30 with a TAR of .87 a single iteration
for Setup to succeed.

Results are shown in Table 4. In addition, Table 4 shows the number of times subquery equality was
observed over the 208 iris query set. This number is usually about the number of LSHs. For the first row in
Table 4, the matrix of subquery equality has 416000 entries with .5% of them being nonzero.

5.3 Implications of ProxCode for Client Security

Throughout this work, we defined and considered the two party SSE setting for notational simplicity. Since
ProxCode is primarily a preprocessing technique it naturally extends to a three party SSE setting. A three
party SSE consider a data owner, server, and a client [FVK+15]. In this setting, in addition to limiting
leakage to the server, the data owner wishes to limit unintended data learned by a client. The three party
setting highlights the importance of an accurate system. To demonstrate the difference between the baseline
and ProxCode we demonstrate the difference in information available between map outputs to the client.
This information is available even if one uses a fully oblivious map.

• Baseline: For fixed value n = 2000 we found the α for Baseline with comparable TAR. This value is
α = 44, producing a TAR of .923. For these values across the query set, this produced 3 false positives
across the 208 queries. Each false positive represents a biometric of a non-relevant person incidentally
exposed to the client.

• ProxCode: For parameters α = 25, n = 2000, k = 30 (first row in Table 4), we fixed a single value
xi and issued queries corresponding to the other irises in the dataset. We then measured how many
values Ci,j for 2 ≤ Ci,j ≤ n + 1 are returned by some other query. That is, we measure how many
“shares” of Ci are obtained after 207 queries for each of the other irises. This produced the average of
2.8 shares across 207 queries, with variance = 13.2, and the maximum of 31 shares. Only a single iris
had at least k codeword symbols returned after issuing 207 queries. Obtaining k symbols is necessary
for decoding (ignoring the “errors” received by the client).

To summarize, in the Baseline system a client who issues a small number of queries has a small probability
of learning some non-relevant iris. In ProxCode a client may be able to decode a single iris after 200 queries.
Both of these analysis assume client queries come from irises in the dataset. In both settings, one expects
higher success with specifically crafted queries [ZKP16,ZWX+23].
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5.4 Time Efficiency

Our savings in n will translate to any encrypted map, see discussion in the Introduction. For time, we only
measure time to run Algorithm 2 ignoring the map, note this algorithm has complexity Θ(n×M), assuming
constant cost to evaluate each LSH. Timings are on a commodity laptop with 2.6 GHz 6-Core Intel Core i7
CPU, and 32 GB 2667 MHz DDR4 RAM. We timed setup for Random datasets of size 104, and Real dataset
of size 208. For the real dataset where we set α = 23, and n = 1000, the setup time is 16 seconds. The
highest measured setup time for real data, with higher α and n, was 20 seconds. For the Random dataset, we
tested on with M = 104 and n = 631, 1000, 3982, 5012 Setup completed in 237, 434, 7415 and 9939 seconds
respectively.

6 Conclusion and Future Work

In this work, we consider approximate proximity searchable encryption in both zero and access pattern
leakage setting. Our scheme allows use of a map and reduces leakage over the baseline scheme.

This work consider Reed-Solomon codes which correct arbitrary errors. However, observed errors are not
arbitrary. Assume that the εt is tuned so that k′ > k LSH matches occur for a nearby value with good
probability. The actual errors are defined by the following process:

1. Sample M codewords c1, ..., cM (under the collision constraint defined above).

2. Consider codeword ci corresponding to a search for a value x∗ that is close to xi. Consider a fixed a
symbol j. With probability at least 1 − ε′t the symbol ci,j is correctly transmitted. Otherwise there
are two cases:

(a) With probability at most (M−1)ε′f is replaced by ci,k for some k 6= j. Each of these replacements
occur with probability at most ε′f.

(b) Otherwise, the symbol is converted to ⊥.

There are two important aspects of the above error model: 1) that errors come from the symbols of other
codewords and 2) that these codewords are not independently sampled.

It is an open problem to design codes that correct more of such errors than is possible in traditional error
models. Furthermore, it seems possible to argue some independence and randomness of the errors (Shannon
model [GRS22]) using the secret sharing properties of the code. We were not able to prove this or find a
counterexample. The sticking point was the coupled sampling of the codewords.

ProxCode has a dramatic impact on the efficiency of LSH based proximity searchable encryption. In
natural parameter settings it improves the size of the index structure by a factor of 30 leading to major
improvements in all aspects of system efficiency. We present an open-source prototype implementation that
confirms all presented analysis for random data. ProxCode also demonstrates high accuracy on real iris data
after careful parameter tuning.
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A Algorithmic Parameter Analysis for Random Data

This section compares the efficiency of the baseline scheme with ProxCode. During this discussion, we assume
that all biometrics in the database are far yielding probability εf of their LSHs matching, and that all queries
are closing yielding probability of εt of matching an LSH with the relevant stored record. These assumptions
are useful for analysis but not true in practice, see discussion in Section 5. Our evaluation focuses on the
number of required LSHs. We first compute accuracy parameters for ProxCode and then find corresponding
parameters for the baseline scheme for the same accuracy.

A.1 Evaluation Methodology

We take the smallest values for α, n, and k that satisfy equations 4 and 5 simultaneously . Our parameter
finding was done in Python 3.9.

Recall that for a (n, k)-Reed-Solomon Code to decode successfully (Definition 6) it suffices that kcorrect >
2k and kerror ≤ k. Our evaluation uses an augmented LSH so we assume for some α ∈ Z+ that εt = ε′αt and
εf = ε′αf .

We assume the bit selection LSH LSHi(x) = xi which has the property that

Pr[LSH(x) = LSH(y)] =
γ −D(x, y)

γ
= 1−D(x, y)/γ.

We test with different parameters ε′t, ε
′
f which represent the noise between different readings of the same

biometric and readings of different biometrics respectively. Errors between readings of the same biometric
and differences between readings of different biometrics both come from distributions. So for two different
values xi, xj ∈ DB, one will frequently observe D(x, y) < .5γ. Even if the average FHD between readings of
the same biometric is .1 one observes errors of at least .2. See Figure 3. This is why we test for values of
ε′f ∈ {.5, .6, .7}. We consider ε′t ∈ {.7, .75, .80, .85, .9}. Our results exclude values where no solutions could
be found with log10(n) ≤ 20. We provide a full methodology next.
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A.1.1 Detailed Methodology

For input constants c1, c2 we search for settings of α, n, k such that

(ε′t)
α >

2k

(1− c2)n
, (7)

(ε′f)
α ≤ k

Mn(1 + c1)
. (8)

Increasing α exponentially decreases both the true accept rate and false accept rate. Thus, we first find
the minimum α that produces a solution for n, k. Combining the Equations 7 and 8 one has that:

M(1 + c1)(ε′f)
α ≤ k

n
<

1

2
(1− c2)(ε′t)

α.

We compute the minimum α such that

M · (1 + c1)(ε′f)
α ≤ 1

2
(1− c2)(ε′t)

α

Now using the computed α, we find the first integer n that satisfies the following inequality:

M · (1 + c1)(ε′f)
α · n ≤

(
1

2
(1− c2)(ε′t)

α + 1

)
· n

With α, and n we can easily find the set of possible as solutions to:

M · (1 + c1)(ε′f)
α · n ≤ k < 1

2
(1− c2)(ε′t)

α · n. (9)

As we show next the value of k, is strongly connected to the error probabilities in Lemma 1 and Lemma 2.
Thus, we exclude solutions where k < 20 or k is not an integer.

Lastly, we check the probability that setup fails according to Lemma 3. We compute

δFar ≤ exp
(
−c21

2 + c1
· ε′αf · n ·M

)
≈ exp

(
−c21k

(2 + c1)(1 + c1)

)
δClose ≤ exp

(
−c22

2
· ε′αt · n

)
+ δFar ≈ exp

(
−c22k
1− c2

)
+ δFar

We estimated the minimum value of ` such that Setup has probability of at least .99 of completing within
` iterations using Equation 6.

Computing parameters for baseline scheme Recall for the baseline scheme described in Construction 1
one has δFar = (1− ε′αf )nM and δClose = (1− ε′αt )n. We solve the following two equations to compute α and
n in the Baseline scheme.

FAR = Mnε′αf ,

δClose = (1− ε′αt )n

As mentioned above, we require the baseline scheme to have the same FAR as our δFar. This is a much
weaker condition. For example, for a dataset of size M = 106 and δFar = 10−4 corresponds to a FAR ≈ 10−10.

A.2 Required Number of LSHs

Our parameter analysis focuses on three different database sizes when M = 106, 104 and M = 103 represent-
ing a country wide specialized database, a large organization, and a medium size organization.

Table 3 compares the bounds on the number and size of the LSHs (n, and α), as well as the number
of needed matches (k) in ProxCode with the same parameters in the Baseline scheme. (Recall, we allow
the baseline scheme to have FAR equal to our δFar so we allow the baseline scheme false matches with every
query.) Table 3 computes these parameters over multiple values of the constants c1, c2 which control the
accuracy of the system. In the body, Table 3 gives a summary and Table 5 presents full results. Both tables
report the base 10 log of n.
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M = 106 M = 104 M = 103

δFar = 10−3 Baseline ProxCode Baseline ProxCode Baseline ProxCode

ε′f ε′t α logn α logn k δClose α logn α logn k δClose α logn α logn k δClose

.7 .85 117 9.1 84 7.8 24 10−3 93 7.4 60 6.1 22 2× 10−3 81 6.5 48 5.2 22 2× 10−3

.7 .9 91 5.0 65 4.8 24 10−3 72 4.1 46 3.9 20 3× 10−3 63 3.7 37 3.5 21 2× 10−3

.6 .75 102 13.6 73 11.0 22 10−3 81 10.9 52 8.3 21 2× 10−3 71 9.7 42 7.1 23 10−3

.6 .8 79 8.5 57 7.5 26 8× 10−4 63 6.9 41 5.9 26 8× 10−4 55 6.2 33 5.1 26 8× 10−4

.6 .85 66 5.6 47 5.3 25 10−3 53 4.7 34 4.3 27 6× 10−4 46 4.2 27 3.8 24 10−3

.6 .9 56 3.4 40 3.7 22 2× 10−3 45 2.9 26 3.2 25 10−3 39 2.6 23 2.9 22 2× 10−3

.5 .7 67 11.1 48 9.3 20 4× 10−3 49 8.4 34 7.1 27 2× 10−3 42 7.3 27 6 26 3× 10−3

.5 .75 56 7.8 40 6.9 22 2× 10−3 41 6.0 20 3.9 36 4× 10−4 35 5.2 23 4.8 33 7× 10−4

.5 .8 49 5.7 35 5.4 27 5× 10−4 38 4.7 25 4.4 37 2× 10−4 31 4.0 20 3.9 36 4× 10−4

.5 .85 43 3.9 31 4.2 27 5× 10−4 32 3.3 22 3.5 35 5× 10−4 28 3.1 18 3.3 41 10−4

.5 .9 39 2.7 28 3.2 28 5× 10−4 29 2.4 20 2.9 38 2× 10−4 25 2.2 16 2.7 36 4× 10−4

δFar = 10−4 Baseline ProxCode Baseline ProxCode Baseline ProxCode

ε′f ε′t α logn α logn k δClose α logn α logn k δClose α logn α logn k δClose
.7 .85 129 9.9 85 7.8 21 2× 10−3 104 8.1 61 6.1 20 3× 10−3 92 7.2 49 5.2 20 4× 10−3

.7 .9 100 5.4 66 4.9 21 10−3 81 4.5 47 3.9 20 4× 10−3 72 4.1 38 3.5 21 3× 10−3

.6 .75 112 14.8 74 11.1 21 2× 10−3 91 12.1 53 8.4 20 4× 10−3 81 10.9 43 7.2 22 2× 10−3

.6 .8 87 9.3 58 7.5 21 8× 10−4 71 7.7 42 6.0 26 8× 10−4 63 6.9 34 5.2 26 8× 10−4

.6 .85 72 5.9 48 5.3 21 6× 10−4 58 4.8 34 4.2 20 3× 10−3 52 4.5 28 3.9 25 10−3

.6 .9 62 3.7 41 3.7 21 10−3 51 3.3 30 3.3 28 4× 10−4 45 2.9 24 3.0 25 10−3

.5 .7 74 12.2 49 9.4 26 3× 10−3 61 10.3 36 7.5 27 6× 10−4 54 9.2 29 6.4 25 9× 10−4

.5 .75 62 8.6 41 7.0 30 10−3 51 7.3 30 5.7 28 4× 10−4 45 6.5 24 4.9 25 10−3

.5 .8 53 5.9 35 5.2 25 3× 10−3 44 5.2 26 4.5 30 2× 10−4 39 4.7 21 4.0 29 4× 10−4

.5 .85 47 4.1 31 4.0 25 3× 10−3 39 3.7 23 3.6 29 3× 10−4 34 3.2 18 3.1 21 3× 10−3

.5 .9 43 2.9 28 3.1 26 3× 10−3 36 2.8 21 3.0 34 10−4 32 2.6 17 2.8 32 10−4

δFar = 10−6 Baseline ProxCode Baseline ProxCode Baseline ProxCode

ε′f ε′t α logn α logn k δClose α logn α logn k δClose α logn α logn k δClose
.7 .85 142 10.7 87 7.9 21 4× 10−3 119 9.2 63 6.2 20 4× 10−3 108 8.5 52 5.5 24 10−3

.7 .9 110 5.8 67 4.9 20 3× 10−3 92 5.0 49 4.1 22 2× 10−3 83 4.6 40 3.7 23 2× 10−3

.6 .75 124 16.2 76 11.3 23 2× 10−3 104 13.8 55 8.7 21 3× 10−3 94 12.6 45 7.5 22 2× 10−3

.6 .8 96 10.0 59 7.6 23 10−3 81 8.7 43 6.0 23 10−3 73 7.9 35 5.2 23 10−3

.6 .85 79 6.3 49 5.3 25 10−3 67 5.6 36 4.5 27 5× 10−4 60 5.0 29 3.9 24 10−3

.6 .9 68 3.8 42 3.8 24 10−3 58 3.6 31 3.4 28 4× 10−4 52 3.3 25 3.0 25 10−3

.5 .7 83 13.6 50 9.5 20 4× 10−3 69 11.5 37 7.6 25 10−3 63 10.7 30 6.5 24 10−3

.5 .75 69 9.5 42 7.1 24 10−3 58 8.2 31 5.8 28 4× 10−4 52 7.4 25 5.0 25 10−3

.5 .8 59 6.5 36 5.3 22 2× 10−3 50 5.7 26 4.3 20 4× 10−3 45 5.3 22 4.1 30 2× 10−4

.5 .85 53 4.7 30 3.5 23 2× 10−3 45 4.3 24 3.7 33 10−4 40 3.8 19 3.2 23 10−3

.5 .9 48 3.2 29 3.2 25 10−3 40 2.8 21 2.8 22 2× 10−3 36 2.6 17 2.6 21 2× 10−3

Table 5: Parameters Comparison between our ProxCode and Baseline scheme where M · ε′αf .n = δFar and
(1 − ε′αt )n = δClose. In ProxCode parameters are computed as in Section A. The numbers for α, n, k are
the first found solutions. For the baseline scheme we measure FAR while in ProxCode we measure δFar this
allows the baseline scheme to have more errors for the same accuracy. Accuracy δFar ≈ 10−3 from c1 = 2
and c2 = .4. Accuracy δFar ≈ 10−4 from c1 = 3, c2 = .4 and accuracy δFar ≈ 10−6 from c1 = 5, c2 = .4.
Logarithms are base 10.

Discussion The smaller the value of δFar the more ProxCode improves over the baseline scheme. Fur-
thermore, the more noise is present, represented by a decrease in εt the more ProxCode improves over the
baseline scheme.

For ε′t = .9 the difference in log n between ProxCode and in baseline scheme is negative (across all three
accuracy regimes). As error increases, for example, ε′t to .7, ProxCode presents major improvement. This
improvement is largest in higher accuracy regime with δFar = 10−6 and smaller with δFar = 10−3. The gap
between log n is similar across sizes of databases M though the absolute size has a strong dependence on M .
The summary comparison is presented in Table 1.

For instance, looking at Table 3, setting c1 = 3, and c2 = .4 results in a high accuracy setting yielding:

• δFar = 10−4.

• δClose varies in size between the order of 10−4 and 10−3.

The improvements are most pronounced when the gap between ε′t and ε′f is smallest. As an example, when
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ε′f = .6 and ε′t = .75 (represented in table 5), for M = 104 records in the Baseline scheme we need n = 1012.1

(with LSHs of size α = 91), ProxCode requires n = 108.4 (with α = 53). There are some cases where there
is a large difference between underlying LSH error rates (ε′t = .9, ε′f = .5) where ProxCode performs worse
requiring approximately 60% more LSHs. These are “easy cases” when few LSHs are required. However,
ProxCode often makes drastic improvements: when ε′f = .6 and ε′t = .80 one moves from almost a 100
million LSHs to a million. Improvements follow the same pattern for the setting of M = 103 and M = 106.

Impact of reducing α Although our prime interest is to decrease n, we can see that we also have
improvement in the value of α. This improvement is in all testing parameters. Current oblivious maps [BT21,
HCD+23] build trees and obliviously traverse them, the LSH values are used to decide which child to visit.
Decreasing α allows one to use a tree with a larger branching factor. This in turn decreases the number of
communication rounds. So decreasing α improves efficiency even if n remains the same.

Probability of setup completing Assuming ` to be the number of iterations for the Setup to succeed.
For the setting of δFar, one has (

1−
M∏
i=2

(1− δFar,i)

)`
≤ η

where η is the probability of failure. Requires that

` ≥ log(η)

log
(

1−
∏M
i=2 (1− δFar,i)

) .
For our choice of parameters δFar, and n, we always have,

1−
M∏
i=2

(1− δFar,i) ≈ 0

This behavior held true regardless of the size of the dataset, giving evidence that ` = 1 suffices. We
note that we performed this computation with floating point arithmetic and its known inaccuracies. For
our implementation, Section 5, we do observe parameters where setup takes a multiple ≤ 10 iterations to
succeed.
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