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1University of Birmingham
2Friedrich-Alexander-Universität Erlangen-Nürnberg

3TU Wien, Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract

The realm of digital health is experiencing a global surge, with mobile applica-
tions extending their reach into various facets of daily life. From tracking daily eat-
ing habits and vital functions to monitoring sleep patterns and even the menstrual
cycle, these apps have become ubiquitous in their pursuit of comprehensive health
insights. Many of these apps collect sensitive data and promise users to protect
their privacy – often through pseudonymization. We analyze the real anonymity
that users can expect by this approach and report on our findings. More concretely:

1. We introduce the notion of conditional anonymity sets derived from statistical
properties of the population.

2. We measure anonymity sets for two real-world applications and present over-
arching findings from 39 countries.

3. We develop a graphical tool for people to explore their own anonymity set.

One of our case studies is a popular app for tracking the menstruation cycle.
Our findings for this app show that, despite their promise to protect privacy, the
collected data can be used to identify users up to groups of 5 people in 97% of all the
US counties, allowing the de-anonymization of the individuals. Given that the US
Supreme Court recently overturned abortion rights, the possibility of determining
individuals is a calamity.

1 Introduction

The global landscape of digital health is undergoing an unprecedented surge, fueled by
legislative changes facilitating broader access to health data for research and the expo-
nential growth of healthcare applications. According to a study by Fortune Business
Inside, the digital health application market is projected to skyrocket from $38.89 billion
USD in 2021 to an astonishing $314.60 billion USD by 20281. This surge, however, raises
serious concerns about the protection of sensitive user information, as these applications
promise privacy safeguards while simultaneously accumulating vast datasets.

1https://www.medicaldevice-network.com/news/digital-health-apps/
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Despite these assurances, the frequent occurrence of data breaches affecting massive
user bases cannot be ignored [Fre21; Pal21]. The aftermath of such breaches, estimated
by IBM Security to cost an average of $10.10 million in the healthcare sector alone2,
underscores the urgent need for innovative privacy solutions.

It is noteworthy that many of these applications employ pseudonymization techniques
in an attempt to protect user privacy. Pseudonymization involves replacing personally
identifiable information with pseudonyms, rendering the data more challenging but not
impossible to directly attribute to individual users. An illustrative example of such a
recent data leakage is the case of the GetHealth platform, where 60 million personal data
records were disclosed [Osb21].

Our research ventures into the critical realm of privacy protection for applications
handling vast sociodemographic and medical datasets. In light of the escalating data
breaches and the prevalence of pseudonymization, we seek to address fundamental ques-
tions:

• How can we determine the individual anonymity level for users of such apps?

• What is the typical anonymity level faced by users?

We address both questions. We introduce a novel and simple mechanism to compute
anonymity sets without having access to the apps’ original data sets; we refer to this
technique as conditional anonymity sets. These sets are derived from publicly available
statistical sources. We provide the tool VisualAnon3 to explore the individual anonymity
set for a large amount of countries.

We measure the effectiveness of our approach through the examination of two repre-
sentative examples of such apps: the Flo app and a (medical) data donation app. These
case studies serve as illustrative instances to evaluate the practical implications of our
methodology. Additionally, we present overarching findings derived from a broader anal-
ysis, encompassing several countries and providing a comprehensive understanding of the
generalizability and impact of our approach in the realm of digital health data privacy.

1.1 Roe v. Wade—Privacy Matters

In the US, there are 11 states in which abortion has already been made illegal, almost
immediately followed by law enforcement trying to access relevant sensitive information
from various apps. Facebook, for example, had to hand over private chat messages of a
17-year-old girl living in Nebraska to the police. This allowed law enforcement to charge
the girl and her mother in an abortion case, as the Guardian reported [Gua].

The Flo app is one of the most popular apps for tracking the period. The app was
downloaded over 300 million times and used by roughly 50 million people every month.
Flo advertises that the app has ISO 270001 certification and refers to this certification
as “the internationally recognized standard for information security4”. This certificate
suggests to the user that the data is safe and their privacy is protected. A closer look
at Flo’s privacy statement shows that the app collects name, email address, year of

2https://www.ibm.com/reports/data-breach
3https://visualanon.org
4https://flo.health/press-center/flo-achieves-isfo-27001-certification
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birth, place of residence, and associated location information, including time zone and
language. Flo states that they can infer the gender. Furthermore, the user may choose
to share information like weight, body temperature, menstrual cycle dates, and further
information via, e.g., Apple Health.

In view of the recent decision of the Supreme Court, collecting this information is
alarming as it allows the tracking of abortion. Flo tries to solve this problem by intro-
ducing an anonymous mode [Floa] in which the name, email, and technical identifiers get
removed. However, our conditional anonymity sets reveal that this is insufficient. Due to
the unequal distribution of the population density, 97% of the counties in the US have an
average anonymity set size of less than 5 for women of age 20-60. We shared our insights
with the Flo app developers.

1.2 Data Donation App

Another example is the data donation app of the Robert Koch Institute (RKI). The RKI
is the leading institute in Germany that focuses on the investigation and prevention of in-
fectious diseases. Moreover, it is also responsible for nationwide health monitoring [Rkid;
Rkie]. Its data donation app collects health information and computes a fever curve to
predict further outbreaks and identify COVID hotspots. More than 1 million people cur-
rently use the app, and it collected over 400 million data records [Rkia; Wie+22]. The
RKI advertises the app as being pseudonymous – it uses generalization techniques to
protect the privacy of its users and assigns each user a unique ID to associate new data
with that user.

The collected attributes yield anonymity set sizes of less than 20 for only a bit more
than 5% of the general population. This number deteriorates quickly when considering
simple additional knowledge. For example, if we know that a target is a smartwatch
user, then this information yields anonymity sets smaller than 20 for more than 35% of
the cases. Furthermore, the knowledge that a target participated in the study of the
RKI uniquely identifies 87% of the participants. We shared our results with the RKI in
responsible disclosure.

1.3 Our Contribution

Our main contributions are as follows:

• We introduce the notion of conditional anonymity sets to estimate the level of
anonymity of individuals. These sets are computed from publicly available statistics
and thus do not require access to the original data set.

• We present two real-world case studies, analyzing the conditional anonymity sets
on the Flo app in the USA and the RKI’s data donation app in Germany.

• We have assembled statistical data from 39 countries all over the world, covering
over one billion people, allowing us to globally measure anonymity on the internet
using conditional anonymity sets.

• We evaluate the accuracy of our conditional anonymity sets based on a fictional
dataset of 102.5 million users.
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• We develop an online tool called VisualAnon that builds upon the collected data
and allows users to estimate their own anonymity level, and we actively develop
VisualAnon. VisualAnon is designed to serve a dual purpose: as well as raising
awareness, it is also a research tool, helping to reveal how anonymity varies across
different demographic landscapes. It supports researchers and privacy advocates
by facilitating the assessment of de-identification risks in different datasets. In
addition, policymakers and application developers can use VisualAnon to test and
improve their privacy protocols.

1.4 Ethics Discussion

All experiments presented in this work solely utilize publicly available data, as dissemi-
nated by the census bureaus of respective countries. This data is anonymized and aggre-
gated, and we only perform secondary data analyses on it. Our methodology estimates
anonymity set sizes but cannot identify actual individuals. We do not engage with nor
process any form of personal or individual-specific data5. The project gained ethics ap-
proval from the lead institution’s review board.

2 Related Work

With a vast amount of data being created and collected, our society has long identified
the need for privacy as an existential right. Our research community has since explored
and developed ways to protect our privacy in the digital age.

General Identification Attacks. Pioneered with the early work of Latanya Sweeney,
such approaches have been used in the past to deanonymize people in the US [Swe00]
and in the context of videos [NS08]. The work of Sweeney showed how to deanonymize
concrete persons by combining a medical database and an election registry, and the
work of Narayanan matched videos from an anonymized Netflix database to the publicly
available IMDB database. In contrast, conditional anonymity sets provide a methodology
for the computation of meaningful bounds for anonymity sets without access to concrete
datasets and solely based on publicly available data.

Data Reconstruction Attacks. Data reconstruction attacks (where attackers aim to
complete an incomplete dataset) differ from our method for two main reasons. Firstly, our
approach is based on statistical data, unlike these attacks, which require specific partial
data sets. Second, while data reconstruction attacks focus on identifying individuals
with a certain probability, such as ”John Doe can be re-identified with probability x”,
our research estimates anonymity within a group, such as ”a person with these attributes
has an anonymity set of 5”. Data reconstruction attacks have been studied extensively
[Ohm09; Rot10; NF14]. Recently, the work by Rocher et al. [RHM19] demonstrates the
application of machine learning to these attacks. In addition, [RHM19] presented an

5We use the term personal data in accordance with the ethics and data protection guidelines of the
European Commission (https://commission.europa.eu/system/files/2020-06/5._h2020_ethics_
and_data_protection_0.pdf)
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online tool to illustrate data reconstruction attacks using machine learning with data
from the US, England, and Wales. The tool aims to answer a question different from
VisualAnon. Furthermore, the tool of Rocher et al. [RHM19] needs to run ML training
with specific data for extension to other countries. In contrast, Visual Anon covers 39
countries and operates without the need to train machine learning models.

In a recent work [Web], Michael Hawes explores a matching attack focusing on the
reconstruction of microdata from the US census. The authors systematically reconstruct
individual-level records from published census tables by solving a system of equations
using mixed-integer linear programming. In a second step, the authors match a personal
data source file with the reconstructed tables. We want to use this work to examine the
differences between conditional anonymity sets and reconstruction attacks.

Unlike the specific attack demonstrated in [Web], conditional anonymity sets estimate
the likelihood of success for a wide range of possible deanonymisation attacks without
requiring actual reconstruction of the dataset. This stems from the fact that conditional
anonymity sets estimate the biggest anonymity a user can hope for by only revealing
minimal data, regardless of how the actual revealed data is used to break anonymity. In
addition, conditional anonymity sets can be computed only using statistical data without
relying on heavy computations. This contrasts reconstruction attacks that rely on actual
data sets and heavy computation.

In conclusion, the goal of conditional anonymity sets is to facilitate providing bounds
and guidelines without directly compromising anonymity, while the goal of reconstruction
attacks (thus also the goal of [Web]) is to show that people can actually be deanonymized
by running an attack on the anonymity.

Health Privacy. The privacy of health data is of paramount concern due to the sen-
sitivity of such data. Due to the large body of work in this area, we can only touch on
some of the more recent work.

Furthermore, many applications of differential privacy to health data exist. For ex-
ample, in the area of pharmacogenetics, Fredrikson et al. show that differential privacy
can induce inadequate warfarin dosing and expose patients to increased risk of mor-
tality [Fre+]. For genetic data, genome-wide association studies have been a primary
concern, and many papers are studying the application of differential privacy for this use
case [USF12; JS13; Yu+14; Tra+15]. In epigenetics, Backes et al. [Bac+] and Berrang
et al. [Ber+18] study linkage attacks like ours (but on concrete datasets). Backes et
al. [Bac+] also provide suitable trade-offs between utility and privacy for a local, differ-
entially private model.

3 Measuring Privacy

The main goal of our work is to understand the impact of data breaches for allegedly
anonymized (medical) data. In this section, we explore the impact of a data breach, be-
ginning with the definition and formalization of a threat model. In this model, we assume
the attacker possesses two databases D1 and D2, out of which only one is anonymized.
The adversary’s goal is the computation of a matching between both databases.

In many real-world applications and settings, the full amount of data that is collected
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and anonymized is unknown and not made public to the users. For example, the Flo app
supports an anonymous mode where “Flo user [have] the option to access the app without
name, email address, and technical identifiers6”. But how anonymous are the users in this
setting? Since precise information is missing, it is impossible to compute exact anonymity
sets. Nevertheless, the users should have an estimate of their degree of anonymity by the
(additional) information that they provide, such as age in a certain range. We introduce
conditional anonymity sets (CAS) as meaningful bounds of the anonymity set size inde-
pendent of a concrete application. We derive conditional anonymity sets from publicly
available statistical information only.

3.1 Threat Model

Our approach estimates the potential success of a concrete attacker. While the attacker
is assumed to have access to two concrete databases with user data, our estimates do
not require actual access to these databases. Instead, we demonstrate how to provide
meaningful bounds of the anonymity set sizes based on population statistics only. We
also show how these estimates relate to anonymity sets in concrete databases based on
the addition of background knowledge.

Databases: We assume that the adversary has access to two concrete databases D1 and
D2. One database D1 is not pseudonymous and contains socio-demographic information
as well as the real identity of potential victims. Such as database can either be obtained
(maliciously) by data leakages, or it is a state actor who is trying to de-anonymize some
of its citizens. The other database D2 is anonymized and contains socio-demographic
data of individuals and additional attributes such as longitudinal health data. Due to
the anonymization process, the information in the second database might be imprecise.
As an example, consider the information that the Flo app collects in its anonymous mode,
where the age is stored in buckets only.

Adversary: We focus on a PPT adversary A that may have some auxiliary information
or background knowledge and which tries to link both the databases to de-anonymize an
individual in D2 and gain additional knowledge about individuals in D1. As a concrete
example, think about the prosecution trying to de-anonymize a woman who has had
an abortion. The prosecution has its own database of citizens (D1) and forces the Flo
application to reveal its “anonymized” database (D2).

We measure the adversary’s success of de-anonymizing an individual in D2 as the
probability of them producing a correct link with its entry in D1. For this purpose, we
assume that every individual inD2 is present inD1 – slightly abusing notation that isD2 ⊆
D1. Since the adversary’s success would be 0 for any individual not being part of D1, this
assumption implicates a strictly stronger adversary. We capture additional relationships
between the two databases in the form of auxiliary information about individuals in D1.

Definition 1 (Adversary’s Success). Let D1,D2 be databases as defined in our adversarial
model. Let i be an individual in D2 and D2(i) be the data of this individual within
the database. σ(i) is the corresponding entry of i in D1, and by κ we denote auxiliary

6https://flo.health/privacy-portal/anonymous-mode-fa
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information the adversary has. We define the adversary’s success in de-anonymizing an
individual i as

success(i) = Pr[A(D2(i),D1, κ) = σ(i)],

where A is defined by the adversarial strategy.

To protect the privacy of a user i, we want to minimize success(i). Note that this
adversary has access to concrete databases and does not rely on population statistics.
Instead, we will use population statistics to provide reliable estimates on success(i).

The adversarial model we propose covers our case studies but is also applicable more
generally. As already mentioned, the databases might originate from different data leak-
ages. Alternatively, one of the databases could have been collected by the adversary
themselves (a curious app provider, signup data from an insurance company, or obtained
from prosecution, etc.). D2 might have been published for scientific purposes and could
be part of a study.

Relevance of our adversarial model Cyber attacks in the real world clearly demon-
strate that such databases are frequently obtained by hacking [Fre21; Pal21] or be made
available by human mistake [Osb21]. Data miners and brokers are trying to link such
databases and sell the resulting information in a “business worth billions” [Thi17]. In one
very recent instance, 60 million data records were leaked from the GetHealth platform.
Describing itself as a “unified solution to access health and wellness data from hundreds
of wearables, medical devices, and apps” [Osb21], their platform achieves the same goal
as the framework used by most of the health applications. The leaked data is similar in
nature and included names, dates of birth, weight, height, gender, and GPS logs, among
others.

Adversarial strategy When regarding databases containing unperturbed information,
we assume an adversary who links an entry from D2 to D1 by an exact matching of
the overlapping attributes. The adversary limits the choices by applying their auxiliary
information and, if multiple matches exist, chooses one of the remaining matches at
random. This corresponds to the adversarial strategy maximizing the adversary’s success
given that both databases contain precise information (that may still be generalized into
bins). Using the random choice, whenever the adversary is uncertain about the matching,
allows us to assume adversaries that have no background knowledge of the dataset. We
want to emphasize that our approach also works with more sophisticated metrics, such
as entropy (and min-entropy) (c.f. [ES13]). Yet, we will see in Section 4 that the random
selection is predominantly performed on small sets (e.g., this set size is below 5 for citizens
of 97% of all US counties). Therefore, we use random selection, which serves as a trade-off
between utility and precision.

3.2 Conditional Anonymity Sets

Given the adversarial model and the exact matching strategy described in Section 3.1, it
is easy to see that success(i) is inversely proportional to the number of individuals in D1

exposing the same attributes as D2(i) and satisfying the auxiliary knowledge.
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If there is only a single matching entry in D1 that is in line with the auxiliary infor-
mation, this has to be the correct link (since D2 ⊆ D1). Hence, the adversary’s success
is 1. If there are k matching entries in line with the auxiliary information, the adversary
randomly chooses one of them. The probability of choosing the correct entry – and thus
the adversary’s success – is 1

k
. We say k is the size of the anonymity set for the attributes

D(i).

Definition 2 (Anonymity Set). Given a vector of attributes x⃗ and a database D, we
define the anonymity set for x⃗ as:

AD(x⃗) = {j | D(j)
∩
= x⃗},

where D(j)
∩
= x⃗ is defined as an exact match of all overlapping attributes between D(j)

and x⃗.

We did not incorporate the auxiliary knowledge directly into the notion of anonymity
sets and will instead use it to filter the database first. Given auxiliary information κ,
we usually talk about the anonymity sets AD′(x⃗), where D′ = D|κ,x⃗ is the subset of the
original database, which is in line with the background knowledge.

For example, if the adversary knows x⃗ is a smartwatch user and the adversary knows
which individuals in D are smartwatch users, they can exclude all others to form D′.
Using our previous argumentation, we can reformulate the adversary’s success.

Proposition 1. Given an adversary A as defined in Section 3.1 with auxiliary knowledge
κ, an exact matching strategy yields an adversary’s success of

success(i) = |AD′(D2(i))|−1,

where D′ = D1|κ,D2(i).

To protect the privacy of an individual i, we want to minimize the adversary’s success

success(i). Thus, the size of the anonymity set k =
∣∣∣AD1|κ,D2(i)

(D2(i))
∣∣∣ is a good metric

for the privacy of the individual. This metric implies a form of k-anonymity for the set
of i’s attributes [Swe02]. We can calculate k from population statistics only and do not
require actual instantiations of D1 and D2. For any possible combination of attributes in
D2, we can estimate the number of individuals in a given population who exhibit these
attributes.

This brings us to the definition of conditional anonymity sets. Conditional anonymity
sets estimate anonymity sets from public population statistics. Given a particular instan-
tiation a⃗ over attributes α (e.g., gender = female), a population statistic ψ(⃗a) returns
the number of people in this population P exhibiting these attributes. It is also the size
of the anonymity set of any such individual with respect to the population: |AP (⃗a)|.

Definition 3 (Conditional Anonymity Set). Let b⃗ denote an instantiation over a non-
overlapping set of attributes β, such that α∩β = ∅. We define the conditional anonymity
set AP (⃗a | b⃗) = AP|⃗

b
(⃗a) as the anonymity set capturing the part of the population with both

these attributes. Given a conditional probability distribution Pr[β | α], we can calculate
its size as:

AP (⃗a | b⃗) = ψ(⃗a) · Pr
[⃗
b | a⃗

]
.
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Cumulative Distribution Function (CDF) A Cumulative Distribution Function
(CDF) characterizes the probability that a random variable X assumes a value less than
or equal to a given point x, expressed as

CDF(x) = Pr[X ≤ x].

In the subsequent sections, we will assess the CDF function for the distribution of Con-
ditional Anonymity Sets (CAS) sizes. The CDF facilitates the following insights:

• It enables the estimation of how many CAS are below a specific threshold.

• The steepness of the CDF indicates a higher prevalence of CAS for a given size,
while a flatter CDF suggests a lower count of CAS for the same size.

• When comparing CDFs for two CAS distributions, the disparities between the CDFs
highlight the differences between the distributions. If a CDF is shifted toward the
origin, it indicates a relatively larger number of small CAS, while a shift toward the
positive axis indicates a prevalence of larger CAS.

3.3 Comparison to Sweeney [Swe00]

In pioneering work, Latanya Sweeney showed that matching two databases, one anonymized
and one with personally identifiable information, is relatively easy. She also built an on-
line platform7 to measure anonymity when precise data about a subject, such as their
date of birth plus zip code, is leaked.

We generalize Sweeney’s basic idea from constructing intersections of precise data
sets to computing intersections of distributions over data sets. In contrast, we take the
statistical distribution of people living in an area in combination with the statistical
information about the age distribution in that area.

Because of Sweeney’s work, only bucketed information is published these days, e.g.,
year of birth (or even decade of birth) rather than the exact date of birth. However, our
work shows this is often insufficient because we can build intersections with the statistical
information provided by the governments. In many cases, these resulting anonymity sets
are very small.

3.4 Accuracy of Conditional Anonymity Sets

We evaluate the accuracy of conditional anonymity sets through a comprehensive ground
truth survey to ensure their effectiveness. We first create a synthetic dataset for Anon-
Land, a fictional country with a population of 102.5 million. The demographic attributes
of the dataset are generated based on specific distributions:

• The age distribution is modeled using a trapezoidal shape: ages from 0 to 40 are
uniformly distributed, while ages from 41 to 90 follow a triangular distribution,
reflecting a more varied age distribution in this range.

7https://aboutmyinfo.org
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• Gender is assigned by sampling a uniformly random bit with an equal chance of
being male or female.

• Height follows a normal distribution, with an average (mean) height of 180 cm for
men and 175 cm for women, and a standard deviation of 10 cm for both genders.

• Weight is normally distributed, with a mean of 80 kg for males and 70 kg for females
and a standard deviation of 10 kg for both genders.

• In order to accurately represent both densely populated and sparsely populated ar-
eas, we divide the districts into five classes. Accordingly, we create five metropolises
of five million inhabitants each, 25 cities of one million inhabitants each, 250 coun-
ties of 100,000 inhabitants each, 2,500 areas of 10,000 inhabitants each, and 2,500
villages of one thousand inhabitants each.

In the second step, we conducted a census on the people of AnonLand to derive
statistics on the district population by gender and age, as well as height and weight
statistics per age and gender. We do this census twice: once without applying differential
privacy and once applying laplacian noise with an epsilon of ϵ = 2 and a sensitivity of 1
(for histogram queries). Finally, we randomly selected five thousand random citizens (one
thousand per district class) and compared the real anonymity sets of these citizens to
the conditional anonymity sets estimated using our methodology. We select a thousand
inhabitants per district class to evaluate the accuracy of CAS for both small and big RAS
sizes.

The Impact of Differential Privacy. Our first observation is that the size of a
conditional anonymity set, which is computed with noised data, differs only marginally
from the CAS computed on the plain data. For each of our 5000 test citizens, the noised
CAS differed no more than 0.2 from the unnoised CAS.

Accuracy of the CAS. To analyze the accuracy of the CAS, we compare the CAS to the
real anonymity set (RAS) by computing the normalized error (CAS − RAS)/RAS, which
we henceforth call divergence. We depict the results for the divergence in Fig. 1.

Our first observation is that the CAS-RAS divergence narrows down with increasing
RAS size. The second observation is that the absolute divergence exceeds the value 0.25
mainly for small RAS sizes. We observe that the normalized error of the CAS is minimal
for RAS sizes above 25.

Given that the normalized error for RAS values above 25 is minimal, we focus our
analysis on the CAS when the RAS size is less than 25. Figure Fig. 2 presents a boxplot
illustrating the CAS scatter for each RAS value. Additionally, we depict the ideal relation
where CAS = RAS. We observe that the median of all CAS values is mostly below the
actual RAS size. Furthermore, the majority of the boxes have narrow interquartile ranges
around or below the ideal line, indicating that CAS sizes are close to their corresponding
RAS. For a more detailed analysis of the accuracy of CAS, we provide additional plots in
Appendix B.
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Figure 1: CAS-RAS divergence below and above 0.25 for all participants. For RAS sizes
below 100, primarily isolated outliers above an absolute divergence of 0.25 exist.

4 Case Studies

There is a plethora of health applications on the market that all collect similar data.
This section shows that storing simple and only slightly pseudonymized data in practical
applications does not provide sufficient privacy protection. The novelty here is that we
use our notion of conditional anonymity sets to estimate the level of anonymity one can
hope for, given the information provided to the apps.

We exemplarily analyze two such apps in a case study: the Flo and the RKI’s data
donation app. The Flo app tries to predict the user’s menstruation cycle by analyzing
previous cycles, body temperature, and other symptoms. The primary purpose of the
RKI app is to collect health data to predict and estimate the spread of the coronavirus
and to improve the early detection of hotspots by calculating a fever curve.

4.1 Ovulation Apps in the US

Ovulation apps are widely recognized for their usefulness in helping individuals under-
stand and track their menstrual cycles. However, the recent decision to outlaw abortion
adds a new dimension to the use of these apps. While they continue to serve their primary
purpose, the evolving legal landscape adds an unexpected layer of significance, transform-
ing them into potential security threats. In this section, we assess the emerging threat to
ovulation app users in the US This assessment aims to shed light on the implications and
risks associated with using such apps, considering the broader context of legal changes
and their impact on reproductive health decisions. We showcase this threat with the
example of the Flo app, one of the most widely used ovulation apps.
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Figure 2: Boxplot of the CAS per RAS for RAS sizes below 25. The CAS is a narrow collar
of the RAS.

4.1.1 Flo App

The Flo app was downloaded over 300 million times and used by roughly 50 million
people monthly8. It provides multiple statistics over the user’s ovulation circle, like an
ovulation calculator, a period calculator, a pregnancy calculator, and a pregnancy due
date calculator. As the Flo app is proprietary, no detailed information about the data
usage is publicly known. However, according to the privacy policy [Flob], weight, body
temperature, and menstrual cycle dates are amongst the stored data. Furthermore, the
app allows the integration of data provided by external services like Apple HealthKit or
GoogleFit.

4.1.2 Dataset

Our primary data source is the United States Census Bureau [Usc], which is responsible
for conducting the official census and providing comprehensive demographic statistics.
Specifically, we rely on the dataset derived from the American Community Survey, re-
ferred to as table S0101. This dataset contains tuples representing the attributes of the
US population, including county, sex, age, and count. While the American Community
Survey dataset provides the granularity necessary for our analysis, it includes information
on minors and lacks age group distinctions beyond 75. As a result, our analysis focuses
on age groups from 18 to 75. The population counts in this dataset reflect the year 2021.

To enrich our analysis, we include data on the height and weight of the US popula-
tion from a separate source [Ogd04]. The Centers for Disease Control and Prevention
(CDC) dataset from a 2002 survey provides means and standard errors for weight and
height across gender and age groups. In particular, we assume that height and weight
are independent of the county of residence (but not of the country). Our assumption

8https://flo.health/about-flo
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is based on the normal distribution of both height and weight around their respective
means. While height generally follows a normal distribution, weight exhibits a slight
right skew [HDHW01]. Nevertheless, for practical purposes, a normal distribution serves
as a reasonable approximation of body weight [Hei06]. To maintain physiological coher-
ence, we restrict the body mass index to the range of 17 to 30, effectively filtering out
implausible combinations of height and weight.

The American Community Survey provides data for only 840 of the 3221 official
counties. For the remaining counties, we calculate averages by dividing the remaining
state population by the number of uncounted counties in that state, multiplying the result
by the number of age groups, and finally multiplying this by the mean values of the height
and weight distributions. As a result of the calculation of these averages, the American
Community Survey already has coverage of the vast majority of the population in the
840 counties. Consequently, for the counties missing specific data, we fill each conditional
anonymity set with these calculated averages. The difference between the unfilled and
filled datasets is visualized in Figure 3.

4.1.3 Findings

We evaluate the conditional anonymity sets of U.S. citizens in three different scenarios.
In the first case, we examine the entire U.S. population without additional information.
Then, in the second case, we narrowed our focus to fertile women, estimated by restricting
the age range from 20 to 60. This particular case includes individuals directly affected
by Roe v. Wade, as described in Section 1.1. Finally, our third case explores the effects
of additional knowledge, specifically the knowledge that a woman is using the Flo app.
This third scenario simulates the potential risks associated with a data breach within
the Flo app. To upper-bound the probability that a woman in the US is using the Flo
app, we use the factor of 50/169.03. We establish this factor since there are about 169.03
million women in the US [Sta], and the Flo app has about 50 million active users. While
this only constitutes an upper bound (since not every Flo user is a woman in the US),
it still provides interesting implications to the conditional anonymity set, as we show in
the following paragraphs.

No Auxiliary Information The maximum anonymity set size is offered by Los Ange-
les County with a size of 11,026 for males between 25 and 30 years of age, between 175cm
and 180cm in height (5.7–5.9ft), and a weight of 80–85kg (176–187.3lbs). The other four
districts that are not in Los Angeles County but provide the biggest anonymity set size
are Cook County, Illinois (5,535); Harris County, Texas (4,914); Maricopa County, Ari-
zona (4,475); and San Diego County, California (3,815), all for 25-year-old males, with a
height between 175cm and 180cm (5.7–5.9ft) and a weight between 80kg and 85kg (176–
187.3lbs). The smallest anonymity set size can be found in Ada County, Idaho, for males
of 20 years with a height of 150cm (4.92ft) and a weight of 40kg (88.18lbs). A person with
these attributes has a BMI of 17.8 and hence is covered by our evaluation. The overall
average anonymity set size for the 840 counted counties (out of 3,221 official counties) is
77, but as we show in Figure 3, the average anonymity set size in each uncounted county
is around 2. Looking at the CDF for the US data (c.f. Figure 13), we observe that 20%
of the US citizens have a CAS size of less than 70, and 80% of the US citizens have a
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(a) Average set sizes, without filling uncov-
ered counties.

(b) Average set sizes, uncovered counties
are filled with the average value.

Figure 3: Average conditional anonymity set sizes for the female population between 20
and 60 years in the USA.

CAS size of below 900. The biggest difference between two anonymity sets in a single
district can be found in Dallas County, where the anonymity set for 25–30-year-old males
is 3.3 times larger than the one for 70–75-year-olds. The average difference between the
smallest and largest set per district is 2.34 times.

Another surprising observation is that San Francisco County offers only relatively low
anonymity. The largest anonymity set in this county is of size 54,292 (30–35-year-old
male inhabitants), which is a mere 35% of the smallest anonymity set in Los Angeles
County. San Francisco County also exhibits surprisingly small anonymity set sizes for
20–25-year-old inhabitants. For young people above the age of 25, the anonymity set
sizes increase significantly (c.f. Figure 16 in the Appendix).

Auxiliary Information: Females between 20 and 60 years. The maximum anony-
mity set size for females between 20 and 60 years is in Los Angeles County, California,
with a size of 9,089 for females aged between 25 and 30 years, a height of 160–165cm
(5.24–5.41ft), and a weight of 70–75kg (154,32–165,34lbs). The smallest CAS size contains
a single person in Ada County, Idaho, for 20 to 25-year-old females with a height of
185–190cm (6.06–6.23lbs) and a weight of 100–105kg (220.46–231.48lbs). The average
anonymity set size is 70, and looking at the CDF function (c.f. Figure 13), the CAS sizes
of females between 20 and 60 years are nearly identically distributed as the CAS sizes of
the overall US population without background assumptions.

Considering the ten most populous counties in the US, young women (25–30) usually
constitute the biggest anonymity sets, which is positive in light of our case study. In
Miami Dade, however, this is not the case; instead, women between 55 and 60 make up
the largest CAS, exposing young women to a greater risk of deanonymization. In fact,
in Miami Dade and King County, the smallest anonymity set consists of 20–25-year-old
women, and the largest CAS in King County is 57% larger than the set of this vulnerable
subgroup. Considering a woman in Miami Dade aged 20–25, 180–185cm of height and
80–85kg of weight, her anonymity set is only of size 96.
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Flo app users (upper bound). To find an upper bound for Flo app users, we assume
that at most 29.5% of all American females use the Flo app. This upper bound is
computed by dividing the number of 50 million Flo app users by the number of 169.03
million American females as already discussed in Section 4.1.3. As we apply this filter to
each female in the US, the minimal and maximal conditional anonymity sets remain the
same but with a size of one-third of the original CAS size. This shift is also visible in the
CDF function (c.f. Figure 13), which is equally shifted to the left, indicating the same
distribution but for smaller anonymity set sizes.

4.1.4 Impact

Coming back to the Flo app, our analysis yields that, even in “anonymous mode”, the
average CAS has a mere size of 20 (and this assumes an upper bound on Flo app users).
Even in the scenario where an adversary cannot distinguish between Flo app users and
non-users, 20% of potential users fall into a CAS of size 70 or lower. Moreover, there
exist especially vulnerable groups in 97% of all US counties, for which the CAS size is
smaller or equal to 5. We determine sparsely populated counties as the main factor
impacting anonymity set sizes but note that this is not the only risk factor. Given our
surprising results for Miami Dade County, we caution that anonymity sets can be very
location dependent. We call for better privacy protections for users of such apps. We list
potential mitigation techniques in Section 5.

4.2 Data Donation Apps in Germany

In the midst of the COVID-19 pandemic, several apps emerged to monitor the prevalence
and transmission of the virus. Given the noble cause these apps championed and the
need for collective efforts to contain the pandemic, individuals were more generous in
donating their personal data than they might have been in other circumstances. In
addition, a significant number of these apps actively advocated for and implemented
strong privacy standards. In our examination of the privacy threats posed by these
tracking apps, we focus on the example of the data donation app developed by the
Robert Koch Institute (RKI). The RKI, a respected German government agency, and
research institute dedicated to disease control and prevention, serves as a notable case
study for understanding the implications and challenges associated with the use of such
tracking applications in general.

4.2.1 RKI Data Donation App

The RKI Data Donation App has gained significant traction, with over one million users
in Germany and a colossal collection of over 400 million data records [Rkia; Wie+22].
Positioned as a pseudonymous platform, the app uses generalization techniques to protect
user privacy, assigning users a unique ID for associating new data.

During registration, the RKI app collects socio-demographic data. It then uses wear-
ables to collect longitudinal health metrics, including activity and pulse, steps, calories
burned, distance traveled, stairs climbed, sleep patterns, and body temperature over time.
To strengthen privacy measures, the RKI is adopting a strategy of data generalization
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Figure 4: Average anonymity set sizes by district given different auxiliary information in
Germany.

prior to transmission. Instead of collecting precise values, the data is stored with a cer-
tain level of granularity. Sociodemographic categories include location (district), gender
(male/female), age (in 5-year increments), height (in 5cm increments), and weight (in
5kg increments). For example, a person who is 23 years old would be categorized as
20-25 years old. Notably, all participant information is linked to a pseudonymous user
ID, providing an additional layer of privacy protection.

4.2.2 Dataset

Our data originates from the German Federal Statistical Office [Desa], the agency re-
sponsible for conducting the official census and providing comprehensive demographic
statistics. The census dataset, identified as table 12411-0018, consists of tuples denoting
the attributes of the German population, including district, gender, age, and number.
Similar to the approach taken in the US case study, our analysis focuses on age groups
between 18 and 75, with population counts from December 2020.

To enhance our insights, we augment this dataset with information on the height and
weight of the German population from table 12211-9018. The German dataset provides
tuples indicating mean weight, mean height, age, and sex from a 2017 health survey.
Supplementary statistics on the distribution of body weight and height from this survey,
provided by the German Federal Statistical Office [Desa] and detailed in Appendix C,
contribute to our analysis. We assume that height and weight are independent of district
of residence (but not of country), and we note that the differences between West and
East Germany in 1999, as analyzed by Bergmann and Mensink [BM99], were generally
small. Like in the case study for the US, we assume both height and weight are normally
distributed around the mean and restrict the body mass index to a range between 17 to
30 to filter for impossible combinations of height and weight.

The German Federal Statistical Office’s publication on using smartwatches by age
groups [Desb] becomes another dimension of our analysis. We assume independence
from district and gender, although deviations may exist in practice. Nevertheless, this
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assumption allows us to make approximate estimates and to illustrate the diminishing
anonymity in the presence of additional adversary background knowledge. In addition,
we assume that the demographic distribution of app participants is consistent with cen-
sus data. In the context of the Covid data donation app, the Robert Koch Institute
(RKI) conducted a detailed analysis and concluded that the age distribution of their
data matches the total population, with minor deviations. They also observe that female
donors are slightly younger than the national average, while male donors are slightly
older, resulting in a slightly higher proportion of women in their dataset compared to
national statistics [Rkib].

The RKI Data Donation App is specifically designed for Germany, so our analysis
focuses solely on this country. We perform a detailed examination of app-specific types of
adversarial background knowledge in three progressive steps. In the first step, we evaluate
the scenario without any additional background information. This forms the baseline for
our analysis. In the second step, we consider individuals using a smartwatch. Since
the RKI app incorporates longitudinal health data from wearables, assuming smartwatch
users provide a first and approximate estimate of potential RKI app users. In the final
step, we examine the scenario where a user has not only adopted a smartwatch but has
also installed the RKI app. This represents a more specific and refined level of background
knowledge that accounts for the user’s active engagement with the RKI app. We give an
overview of the average anonymity set sizes with the respective additional background
information in Figure 4 in the Appendix.

No Auxiliary Information. Berlin and Hamburg offer the highest protection on av-
erage, followed by cities such as Hannover, Leipzig, and Stuttgart (c.f. Figure 4a and
Figure 20). Interestingly, some large cities, such as Munich, only offer lower anonymity
set sizes despite having a higher population density than Berlin. Regarding the maximum
anonymity set sizes, all districts have at least one combination of attributes possessed by
at least 100 individuals.

The largest anonymity set overall is of size 7,903 and contains females between 65 and
70 years old and 160—165cm tall, weighing 70—75kg, living in Berlin. Figure 14 shows
the cumulative distribution function (CDF) for the anonymity set sizes. The blue line
shows the CDF, considering no auxiliary information. We can see that more than 10% of
the population has an anonymity set of size less than 40. About 30% of the population
have an anonymity set greater or equal to 300.

Auxiliary Information: Smartwatch Users. Adding seemingly trivial background
knowledge – such as which individuals are users of a smartwatch – can already result
in a detrimental loss of privacy. We compare the distribution of average anonymity
set sizes without auxiliary knowledge with the one assuming knowledge of smartwatch
users. With the exception of Berlin, none of the areas can offer an average anonymity
set size of more than 500 anymore. In fact, most of the districts now average below
50 (354 of 401 districts). We observe a similar decay of privacy for the maximum set
sizes (c.f. Figure 21). Only Berlin, Hamburg, Hannover, Frankfurt, and Cologne still
have anonymity sets beyond the size of 400. Due to the low number of smartwatch users
in the age group 65—70, the previously largest anonymity set of female pensioners has
shrunk from 7,903 to a count of 570. The new top spot is now allocated to the group
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of female citizens of Berlin aged 30—35 and being of height 165—170cm and weight
65—70kg. This group has an anonymity set size of 1,889. Figure 14 indicates that this
auxiliary information corresponds to a shift of the CDF of about one order of magnitude.
More than 30% of smartwatch users have an anonymity set of size less than 20. Only
about 15% belong to a set with more than 100 members.

Auxiliary Information: App Participants. The RKI’s blog provides detailed infor-
mation on the regional distribution of its donors [Rkic], providing us with the necessary
probability distribution to calculate the corresponding CAS. Figure 4c strikingly demon-
strates the disastrous consequences of an adversary having detailed membership informa-
tion about the app’s participants. All districts except Berlin, Hamburg, Hannover, and
Cologne offer average anonymity sets of fewer than 5 members. And even those excep-
tions do not go beyond a size of 25 on average. The maximum anonymity set size overall
can be found in Berlin and has the same combination of attributes as in the first scenario.
This time, the set has a size of a mere 57 members. Most other districts can only provide
a maximum anonymity set size of less than 5 (c.f. Figure 22 in the Appendix). The CDF
(Figure 14) shows that more than 87% of the app’s participants are uniquely identifiable
and can be de-anonymized by an adversary with success(i) = 1.

4.2.3 Impact

Our findings for the data donation app are even more concerning than those for the Flo
app. An adversary with knowledge about the app participants can uniquely identify 87%
of the users. Even if we relax the assumptions on the attacker and only assume knowledge
of seemingly harmless information such as the smartwatch user background information,
anonymity set sizes tend to be small. We can again identify vulnerable subgroups that
are especially prone to de-anonymization. One of these groups, for example, is the set
of female pensioners with smartwatches. Moreover, location also plays a crucial role.
Inhabitants of sparsely populated districts tend to be more vulnerable than inhabitants
of big cities. Overall, our findings affirm the need for better privacy protections, and we
refer to Section 5 for potential mitigations.

4.3 Visual Anon

The case studies we have provided so far focus primarily on Germany and the United
States. However, recognizing the diversity of conditional anonymity sets across multiple
countries, we aim to broaden awareness and make the impact of these sets tangible to a
wider audience. To achieve this goal, we present VisualAnon (https://visualanon.org),
an online tool designed to assess conditional anonymity sets worldwide. For the review-
ing process, we made VisualAnon anonymous. The username to access VisualAnon is
“PETS”, and the password is “VisualAnon”. Currently, we have collected statistical
data for 39 countries, encompassing a population of over one billion users who can esti-
mate their highest achievable level of privacy. In this section, we illustrate the process
of building VisualAnon and demonstrate how this online tool can effectively estimate
conditional anonymity on a global scale. Through VisualAnon, we aim to provide a
comprehensive understanding of the nuanced variations in conditional anonymity across
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countries, thus contributing to a more comprehensive and globally relevant perspective
on privacy implications.

4.3.1 Goals

The primary goal of VisualAnon is to expand the awareness of conditional anonymity
beyond our initial case studies in Germany and the US. We aim to provide an experiential
understanding of how the knowledge of only a few attributes can already lead to the
deanonymization of individuals into small and identifiable groups. Through VisualAnon,
users can interactively explore the dynamic variations in conditional anonymity set sizes
considering attributes such as age, gender, height, and weight across different districts.
These attributes, which are common in health applications, serve as a basic starting point
for our exploration. As we move forward, we intend to expand the scope by incorporating
additional attributes to enrich the analysis. By continually improving VisualAnon, we
aim to provide a more comprehensive and nuanced perspective on the challenges and
implications of conditional anonymity and understanding in this critical area.

4.3.2 Dataset

We built the dataset for VisualAnon based on our existing data from the US and Germany.
To expand its scope, we collected additional data from various sources, including Eurostat
for the European Union and Switzerland, Statistics South Africa via email, NZ.Stat for
New Zealand, the Statistics Bureau of Japan, the Australian Bureau of Statistics for
Australia, Statistics Canada, and the Census and Statistics Department for Hong Kong.

The collection of height and weight data varies from country to country, and currently,
we have extracted this information only for the US, Germany, and Japan. In cases where
height and weight data is unavailable for a specific country, VisualAnon defaults to the
German dataset. We are actively seeking and incorporating height and weight data for
additional countries to improve the tool’s global applicability and accuracy. We plan to
make our pre-processed data publicly available on the VisualAnon website to facilitate
further research on measuring anonymity. At the time of writing, VisualAnon covers
1,084,230,346 people from 39 countries, with at least one country per continent, which is
roughly 13.98% of the world population. We defer an example of the use of VisualAnon
to Appendix A.

4.4 Global Measurements

Using our rich dataset, we aim to explore the global variation in CAS across countries.
This investigation focuses exclusively on CAS determined by the attributes of district,
gender, and age, as these three factors alone significantly narrow the scope of CAS. In this
section, we present noteworthy findings from our extensive dataset and offer perspectives
that we find particularly interesting. Specifically, we address the following questions:

1. What are the countries with the smallest CAS size?

2. Is there an observable difference in CAS size between males and females?

3. To what extent is it possible for a citizen to enhance their conditional anonymity?
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We address each question in its own section, followed by a more detailed examination of
countries with notable findings. We expect, for this section, that the average CAS size
for Germany and the US are higher than in Section 4.1 and Section 4.2, since we now
don’t consider the height and weight attributes anymore.

4.4.1 The Smallest CAS Size

We begin our analysis by asking: which of our covered countries have the smallest non-
zero CAS, given the attributes of county, age, and gender? This question is answered in
Table 1, which shows all countries with a minimum CAS per gender between 1 and 100.
Australia emerges as the country with the smallest CAS size. In Acton, there is only one
male (and one female) in a given age group. It is also noteworthy that the US ranks 5th
with a CAS size of 82 males in Bastrop County, Texas, within a specific age group. This
observation is particularly remarkable considering that the American Community Survey
provides data for only 840 of the 3,221 official counties (c.f. Section 4.1).

Table 1: Minimal CAS size ( ̸= 0) for countries with a minimal CAS size of at most 100.

Country District Minimal Set

Australia Acton 1 male
Alps - East 1 female

NZ Chatham Islands Territory 3 males
Chatham Islands Territory 3 females

Canada Churchill–Keewatinook Aski, Man 5 males
Northwest Territories, NWT 10 females

Japan Nakagusuku-son 19 males
Nakagusuku-son 34 females

US Bastrop County, Texas 82 males
Riley County, Kansas 165 females

4.4.2 Gender-Specific CAS Differences

In the next question, we address gender-specific differences in the CAS. Specifically, we
want to explore possible differences between the average CAS size for males and females
per country. To answer this question, we calculate the average CAS size per country and
gender, along with the quotient between the average male and female CAS sizes. This
quotient allows us to assess gender-specific differences.

The most interesting results of our evaluation are depicted in Table 2. The top half of
the Table 2 shows countries where the male/female ratio is less than 0.9, indicating that
the average CAS size for males is more than 10% smaller than for females. Conversely,
the bottom half of Table 2 contains countries where the male/female ratio is above 1,
indicating that the average CAS size favors females.

Notably, Hong Kong stands out as the only country where the average CAS for males
exceeds that of females by more than 10%, with a remarkable quotient of 3.95. Since
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Hong Kong is so outstanding, we further explore the anonymity implications of people
living in Hong Kong in Section 4.4.4.

Table 2: Average anonymity set size by district, gender, and age. We depict countries
from our dataset where the quota of male/female is below 0.9 and above 1.

Country CAS (Male) CAS (Female) Male/Female

Latvia 9,398.46 11,349.89 0.83
Lithuania 8,276.40 9,859.30 0.84
Estonia 7,045.06 8,264.81 0.85
Hungary 14,041.77 15,690.20 0.89

Sweden 13,020.80 12,983.48 1.00
Iceland 4,381.61 4,357.64 1.01
Norway 7,465.53 7,350.08 1.02
Hong Kong 10,551.02 2,672.81 3.95

4.4.3 CAS Variance

To this point, we have estimated the minimal and average CAS sizes of each country in
our dataset. However, our analysis of the US in Section 4.1 has already shown that there
are countries where the actual CAS size deviates heavily from the average CAS size for
a country (e.g., Figure 3, where we have isolated bright zones with a high average CAS,
and most red zones with a low average CAS). Therefore, we ask how starkly the CAS
sizes deviate from the average CAS size in our collected countries.

To answer this question, we computed for each country and gender how many con-
ditional anonymity sets deviate more than 30% from the average CAS size. We then
calculated the percentage of these deviating sets over all possible CAS. If the percentage
is low, then most of the attribute combinations lead to a similar CAS size, and switching
the attribute set by, e.g., moving from one district to another has no big effects on the
own CAS. If the percentage is high, then with a high probability, changing the own at-
tribute set can influence the CAS size. In Table 3, we show the countries with a deviation
of less than 50% from their average CAS size (top half) and countries with a deviation of
more than 80% (bottom half).

Using this first result, we now want to focus further on the six countries with more
than 80% deviating attribute combinations. In particular, we want to examine how the
average CAS size changes when we remove the outmost quartiles of the CAS sizes. For
these countries, we presume that the majority of people live in isolated districts, and
hence, the average CAS size of all other districts should be much lower. We examine this
question by considering the average CAS size, the average CAS size without the upper
quartile of all CAS sizes, and the average CAS size without the upper and lower quartile
(of all CAS sizes). Table 4 shows the results of this examination, and we can see that all
six countries have much lower CAS sizes when we remove the quartile of the upper CAS
sizes. In addition, Table 4 also shows the percental decrease of the average CAS size for
each country and gender. The lower this percentage is, the smaller the remaining average
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Table 3: Countries, and the percentage of CAS that deviate more than 30% from the
mean CAS size. We show countries with less than 50% (the CAS is similar in the whole
country) and more than 80% (the CAS tends to be different).

Country Male Dev. Female Dev.

Cyprus 0.357143 0.428571
Slovakia 0.446429 0.348214
Canada 0.509026 0.499704
Latvia 0.476190 0.523810
Poland 0.544372 0.465368

New Zealand 0.797575 0.804104
Greece 0.798319 0.824930
Estonia 0.842857 0.742857
United States of America 0.858333 0.854836
Japan 0.873281 0.871206
Sweden 0.863946 0.880952

CAS after removing the quartiles, meaning that there are many small and less big CAS
sizes. We observe a notable case of the percental decrease in Japan, where the remaining
average CAS size for males is only 27% of the original average CAS size. In contrast, all
other countries show a value of at least 39%. Because of this outlier, we take a closer
look at Japan in Section 4.4.4 and Section 4.4.5.

4.4.4 Comparing Outliers.

Our previous examinations yielded the following outliers: Australia, since it has the
smallest minimal CAS size (c.f. Table 1). Hong Kong since it has an outstanding ratio
between female and male CAS sizes (c.f. Table 2). Japan since it has the biggest drop of
an average CAS when removing the highest quartile (c.f. Table 4). The US, since it has
the fifth smallest minimal CAS size (c.f. Table 1), although only 840 of the 3,221 official
counties are counted.

In this section, we inspect the cumulative distribution functions for each of these
countries to elaborate on the differences in the CAS distribution of each country. In
contrast to the evaluations in Section 4.1, and Section 4.2, we consider the CDF of the
CAS sizes only for the attributes district, gender, and age, yielding bigger CAS sizes. We
compute the graph of the CDF based on three assumptions and depict the graph of the
CDF in Figure 28:

• The first CDF assumes no background knowledge (Figure 28a).

• The second CDF depicts only females in an age range between 20 and 60 (Fig-
ure 28b).

• The third CDF depicts males in an age range between 20 and 60 (Figure 28c).

The CDF, without further assumptions, provides a baseline. We can observe that a
factor of at least 100 shifts the CDF of Australia compared to the other countries. This
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Table 4: Changes of the average CAS under different conditions for countries with a high
deviation from the mean CAS (c.f. Table 3). The first column describes the mean CAS
without conditions, the second column the mean CAS if the highest quartile is removed
from the dataset, and the third column the mean CAS if both the lower and the upper
quartile are removed. The upper half depicts the data for males and the lower half for
females.

Country Average M Lower M Mid M

New Zealand 1,867 728 (39%) 839 (44%)
Greece 6,183 2,895 (46%) 3,320 (53%)
Estonia 7,045 4,891 (69%) 5,705 (80%)
US 8,981 3,950 (43%) 4,546 (50%)
Japan 5,440 1,505 (27%) 1,781 (32%)
Sweden 13,020 6,726 (51%) 8,076 (62%)

Country Average F Lower F Mid F

New Zealand 1,939 781 (40%) 886 (45%)
Greece 6,444 2,921 (45%) 3,429 (53%)
Estonia 8,264 6,440 (77%) 6,796 (82%)
US 9,416 4,340 (46%) 4,808 (51%)
Japan 5,770 1,640 (28%) 1,960 (33%)
Sweden 12,983 6,734 (51%) 7,906 (60%)

matches our observation that Australia has the smallest minimum CAS size and indicates
that most CAS sizes in Australia are smaller than in the other countries. Furthermore,
the CDF curve of Australia is much smoother than the other lines. This indicates that
we have more data points for Australia compared to the other countries (most likely due
to smaller district sizes).

A second observation is that Japan has the flattest CDF curve. This indicates that
the distribution of the CAS sizes has a higher variance compared to the other countries,
which is in accordance with our observations in Table 4. At the same time, the CDF
curve of Hong Kong is the steepest one, indicating that the distribution of the CAS sizes
has low variance.

Our third observation arises from the difference between the male CDFs (Figure 28c)
and the female CDFs (Figure 28b). These CDFs look similar for each country except
for Hong Kong. For Hong Kong, the female CDF is shifted by a factor of 10 to the
origin. This complies with our computed male/female quotient (c.f. Table 2), which is
3.95 in Hong Kong and is the only quotient differing significantly from the value 1 which
is roughly the quotient for all other countries we investigated.

4.4.5 Case Study: Japan

We also examine the case of Japan and show that even in a densely populated country,
the conditional anonymity set (CAS) decreases to single digits for many attribute com-
binations. In contrast to Germany and the US, Japan has a higher average CAS size,
as shown in Figure 5. To facilitate the comparison, we also incorporated the attribute’s
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height and weight to compute the average CAS size for this figure. In Figure 5, we find
that there are only a few districts with a high CAS size and multiple districts with a
low CAS size. This aligns with our findings in Table 4. Furthermore, these differences
become apparent if we compare one of the most populated districts (namely Tokyo-to)
with a less populated district (namely Nakaguskuku-son). We do so in Figure 6 and see

Figure 5: Average conditional anonymity set sizes for Japan for the attributes district,
gender, age, height, weight.

that the population of Tokyo-to is by a factor of 1000 higher than in Nakaguskuku-son.
This confirms our previous findings that the density of the population within a district
is a major influence on conditional anonymity.

To illustrate an example where the conditional anonymity set (CAS) is a single-digit
number, we examine the ward Akaiwa-shi. This ward has a total population of 13,676, of
which 5,225 are males. Notably, there are only 239 individuals in the specific demographic
category of males aged 20, as shown in Figure 7. When we narrow down our assumptions
by assigning a height of 172kg, we have 57 people in the CAS, and when we set a weight
of 62kg, we are left with only 6 people in this CAS.

(a) Population Distribution for Tokyo-to. (b) Population Distribution for
Nakaguskuku-son.

Figure 6: Comparing the population distribution in Japan of the districts Tokyo-to and
Nakaguskuku-son.
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Figure 7: Male population in Akaiwa-shi, Japan.

5 Conclusion

In this work, we analyzed the degree of anonymity of several subgroups in 39 coun-
tries based on attributes that are frequently collected by health apps. We derived how
anonymity set sizes can be used to measure the adversary’s success in our model and
proposed calculating those set sizes based on population statistics only. This way, we
can quantify the privacy of individuals without having access to concrete instantiations
of the datasets.

We evaluate our approach through two case studies on popular health apps in the US
and Germany. We investigated the anonymity sets under different adversarial background
knowledge. In the USA, 97% of the counties have average anonymity set sizes of less
than 5 for women between ages 18 and 60, and the average anonymity set size for the
whole US population is even smaller. For the RKI application, assuming knowledge of
participation, the sets can be reduced to a single member for over 87% of the participants.
We also demonstrated that a simple attribute such as “owning a smartwatch” reduces
the anonymity set sizes to less than 20 for more than a third of the population. These
small anonymity sets allow unique identification and de-anonymization of the individuals
in case of data breaches.

We then present overarching findings from 39 different countries. These corroborate
our previous results: being an inhabitant of a less densely populated district significantly
impacts one’s anonymity set. Thus, sharing one’s district with a health app can often
deteriorate the expected anonymity. We also evaluate gender imbalances and find that
Eastern European countries provide larger anonymity sets to female than male inhab-
itants. In Nordic countries, we observe a reversal of this trend. We also investigate
findings in places such as Hong Kong and Japan and identify vulnerable subgroups. We
validate the accuracy of our approach using a fictional dataset of 102.5 million users.

We also developed an online tool called VisualAnon (https://visualanon.org),
which allows exploring these sets. We aim to increase awareness of conditional anonymity
and provide an easy-to-use tool for users to determine their vulnerability to deanonymiza-
tion attacks.

5.1 Possible Mitigations

While evaluating mitigation techniques goes beyond the scope of this work, we want to
highlight possible directions for future work. As outlined in Section 2, our community has
already created a large body of literature on protecting health data. This includes early
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approaches such as k-anonymity [Swe02] and l-diversity [Mac+07] as well as many vari-
ations of Differential Privacy [Dwo+10], which provides provable privacy against strong
adversaries. Unfortunately, the adoption of such techniques is scarce. A notable exception
is the use of Differential Privacy by tech giants such as Google and Apple.

While employing privacy-enhancing methods would be the preferred solution, other
simple steps could be taken to increase anonymity sets for existing applications. Such
measures include increasing the bucket size of crucial attributes or simply collecting less
data. Since sparsely populated districts are a primary factor in anonymity set sizes, this
attribute could be a good target. Moreover, our analysis and tool VisualAnon enable
app developers to tailor bucket sizes depending on vulnerable groups. If necessary, data
could be collected in variable bucket sizes to guarantee minimum anonymity set sizes, an
approach that resembles the guarantees of k-anonymity.
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A VisualAnon Example: Bristol

In this section, we demonstrate how VisualAnon estimates the conditional anonymity set
using an example from Bristol. Yet, we encourage readers to explore VisualAnon directly
at https://visualanon.org to estimate their own conditional anonymity sets. In this
sample case, we evaluate the CAS of a 25–29-year-old male from Bristol, UK, with a
height between 180–184cm and a weight between 90–94kg. VisualAnon categorizes this
request in the following result:

• 63,182,180 People live in the United Kingdom

• 428,235 of them in Bristol, City Of

• 172,750 are male

• 20,605 are in the [’25’] years bucket

• 5,248 of them are [’180’] cm high

• 573 of them weight [’90’] kg

With our example request, the candidate has a conditional anonymity set of 573 people.
Besides showing the CAS, VisualAnon also allows a user to comprehend how the CAS can
be influenced by changing each attribute or by expanding the buckets of the attributes.
We visualize the evaluation of VisualAnon for our given attributes in Figure 8. The
selected attributes are highlighted in green color.

(a) Population in the district
of Bristol, UK.

(b) Height distribution. (c) Weight distribution.

Figure 8: Example evaluation of VisualAnon for a 25–29-year-old male from Bristol, UK,
with a height between 180–184cm and a weight between 90–94kg.

B Accuracy of the CAS

In this section, we provide additional measurements on the accuracy of the CAS.

C Additional Statistics

The Statistisches Bundesamt has provided us with additional statistics on the body height
and body weight for table 12211-9018 in the Genesis database. The relevant statistics
can be found in Table 5.
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Table 5: Minimum, maximum, mean and standard deviation for table 12211-9018 pro-
vided by the German Federal Statistical Office [Desa].

Gender Age group Height (cm) Weight (kg)
Interval Mean Standard Deviation Interval Mean Standard Deviation

female

[18, 20) [100, 199] 167.6 6.8 [33, 199] 61.4 10.9
[20, 25) [100, 197] 167.6 6.8 [34, 175] 63.0 11.5
[25, 30) [100, 205] 167.3 6.6 [30, 170] 65.4 12.9
[30, 35) [117, 195] 167.2 6.6 [34, 180] 67.0 13.9
[35, 40) [120, 201] 167.4 6.6 [36, 200] 67.9 14.0
[40, 45) [100, 200] 167.2 6.7 [35, 180] 68.8 13.9
[45, 50) [100, 201] 167.2 6.6 [34, 180] 69.4 13.7
[50, 55) [120, 197] 166.7 6.4 [30, 200] 70.1 14.1
[55, 60) [122, 200] 165.8 6.4 [30, 182] 70.4 13.9
[60, 65) [120, 225] 164.8 6.3 [33, 200] 70.9 14.0
[65, 70) [100, 225] 163.9 6.2 [30, 160] 71.3 13.7
[70, 75) [120, 192] 163.8 6.1 [32, 186] 70.5 13.3

male

[18, 20) [150, 206] 181.2 7.8 [33, 178] 75.9 13.1
[20, 25) [117, 225] 181.2 7.6 [32, 200] 79.4 14.0
[25, 30) [140, 213] 180.8 7.5 [40, 200] 82.8 14.6
[30, 35) [128, 210] 180.5 7.3 [39, 200] 84.6 14.9
[35, 40) [120, 212] 180.4 7.2 [45, 200] 86.0 15.1
[40, 45) [120, 217] 180.2 7.3 [38, 200] 87.4 15.1
[45, 50) [100, 210] 179.9 7.3 [40, 200] 87.7 15.0
[50, 55) [100, 210] 179.5 7.2 [30, 200] 87.9 15.0
[55, 60) [120, 219] 178.7 7.0 [32, 197] 87.8 15.0
[60, 65) [105, 208] 177.7 6.8 [34, 200] 87.4 14.6
[65, 70) [120, 225] 176.5 6.7 [35, 200] 86.6 14.4
[70, 75) [105, 200] 175.8 6.7 [33, 200] 84.9 13.8
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Figure 9: CAS-RAS divergence for RAS sizes below 2000.

D Additional Figures

In this section, we provide additional figures from our evaluations.
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Figure 10: CAS and RAS for each user, showing the relationship and distribution across
the full range of values.
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Figure 11: CAS-RAS divergence for RAS ≤ 50, highlighting the differences in smaller RAS
values.
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Figure 12: Total CAS-RAS divergence, illustrating how the absolute divergence decreases
as RAS increases.

Figure 13: CDF of anonymity set sizes for different auxiliary information for the US data.
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Figure 14: CDF of anonymity set sizes for different auxiliary information for the German
data.

Figure 15: Population in the district of Bristol, UK.
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Figure 16: Male population distribution in San Francisco.

Figure 17: Height distribution for a 25–29-year-old male from Bristol, UK, with a height
between 180–184cm.

Figure 18: Weight distribution for a 25–29-year-old male from Bristol, UK, with a weight
between 90–94kg.
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Figure 19: Selecting Multiple ages in VisualAnon, at the example of Bristol, UK.
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Figure 20: Maximum set sizes of districts in Germany, no background knowledge.
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Figure 21: Maximum set sizes of districts in Germany, smartwatch users.
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Figure 22: Maximum set sizes of districts in Germany, RKI participants.

Figure 23: Cumulative distribution function comparison across Australia, Hong Kong,
Japan, US, and Germany without any background knowledge.

38



Figure 24: Cumulative distribution function for females aged 20–60 years in Australia,
Hong Kong, Japan, US, and Germany.

Figure 25: Height distribution of Japanese males aged 20-30 years from Akaiwa-shi,
Japan, with a height between 170-175cm.
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Figure 26: Comparison of the cumulative distribution functions of Australia, Hong Kong,
Japan, and the US based on the attributes district, gender, and age for males, 20–60 years
old.

Figure 27: Weight distribution of Japanese males aged 20-30 years from Akaiwa-shi,
Japan, with a weight between 60-65kg.
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(a) No background knowledge.

(b) Females, 20–60 years old.

(c) Males, 20–60 years old.

Figure 28: Comparison of the cumulative distribution functions of Australia, Hong Kong,
Japan, and the US based on the attributes district, gender, and age with different back-
ground assumptions.

41


	Introduction
	Roe v. Wade—Privacy Matters
	Data Donation App
	Our Contribution
	Ethics Discussion

	Related Work
	Measuring Privacy
	Threat Model
	Conditional Anonymity Sets
	Comparison to Sweeney sweeney2000simple
	Accuracy of Conditional Anonymity Sets

	Case Studies
	Ovulation Apps in the US
	Data Donation Apps in Germany
	Visual Anon
	Global Measurements

	Conclusion
	Possible Mitigations

	VisualAnon Example: Bristol
	Accuracy of the CAS
	Additional Statistics
	Additional Figures

