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Abstract. In this work we study the efficiency of Zero-Knowledge (ZK) arguments of knowledge,
particularly exploring Multi-Verifier ZK (MVZK) protocols as a midway point between Non-
Interactive ZK and Designated-Verifier ZK, offering versatile applications across various domains.
We introduce a new MVZK protocol designed for the preprocessing model, allowing any constant
fraction of verifiers to be corrupted, potentially colluding with the prover. Our contributions
include the first MVZK over rings. Unlike recent prior works on fields in the dishonest majority
case, our protocol demonstrates communication complexity independent of the number of
verifiers, contrasting the linear complexity of previous approaches. This key advancement
ensures improved scalability and efficiency. We provide an end-to-end implementation of our
protocol. The benchmark shows that it achieves a throughput of 1.47 million gates per second
for 64 verifiers with 50% corruption, and 0.88 million gates per second with 75% corruption.

1 Introduction

A Zero-Knowledge (ZK) proof is a protocol between a prover and a verifier which enables the first to
convince the second that a given statement is true, without leaking anything beyond the validity
of the statement. For instance, let us say Alice wants to prove to Bob that she knows a specific
password to access a restricted area without actually revealing the password to Bob. Using a ZK
proof, Alice can demonstrate her knowledge of the password without disclosing the password
itself. ZK proofs exhibit a wide array of applications spanning various domains. In Cryptocurrencies
and Blockchain Technology, ZK proofs verify transactions while concealing sender, recipient, and
transaction amounts [BS+14; Bün+20], preserving privacy in decentralized systems. They also
feature prominently in Privacy-Preserving Technologies, facilitating anonymous credentials or
digital signatures [Boo+23] by validating properties without disclosing actual information. In cloud
computing and verifiable computation, ZK proofs ensure data integrity and confidentiality, enabling
secure computations, including machine learning tasks [Xin+23], without exposing sensitive
information. Furthermore, from seminal works [GMW87] to recent financial applications [Pol+23],
ZK proofs establish malicious security in secure multiparty computation, proving their worth against
malicious adversaries.

Recent development of IOP-based zk-SNARKs demonstrate efficient proof generation [Gol+23;
XZS22; WHV24]. However, the scalability remains an issue for these schemes and all other non-
interactive ZK proofs. Specifically, the memory overhead grows with the increase of the statement
size. In order to generate proofs for complicated statements such as zkEVM or zkML, prior bench-
marks often require machines with at least hundreds of GBs of memory. This bottleneck prevents
these schemes from being deployed in the commodity hardware, and incurs high financial cost for
ZK applications.

On the other hand, recent development of designated verifier ZK proofs shows high prover
efficiency and scalability [Wen+21b; Yan+21; Bau+21; DIO20]. By allowing a constant rounds of
communication, they enable the streaming of proofs and result in throughput of tens of million gates
per second. More importantly, the memory overhead of these schemes ranges from several hundred
MBs to a few GBs no matter how large the statement is. Their applications include the proof of
large-scale deep neural network inferences [Wen+21a] and database SQL query processing [Li+23].
However, they only allow a single designated verifier and thus are not suitable for proving to a
group of verifiers. For instance, private aggregation systems require a user to validate its input



to multiple servers using ZK proofs [CGB17; Add+22; Rat+23]. Also, blockchain oracles verify
sensitive off-chain user data by verifying the ZK proofs from users [Zha+20].

In this context, multi-verifier zero-knowledge (MVZK) proofs are developed [YW22; Bau+22a;
AKP22; Zho+23], which allow for multiple verifiers to jointly verify a statement of a prover while
maintaining its privacy. The soundness guarantee of MVZK requires that the honest verifiers should
not be convinced even if a corrupted prover colludes with a set of corrupted verifiers. The zero-
knowledge property requires that the corrupted verifiers learn no information about an honest
prover’s witness. Crucially, regarding performance, MVZK proofs inherit the prover efficiency and
scalability from interactive ZK proofs, which enables large-scale ZKP to a large number of verifiers.
Furthermore, they are more communication efficient than executing an interactive proof with each
verifier separately, so they offer a good trade-off between the communication complexity of 2-party
interactive proofs, and the computational costs of NIZKs. Unfortunately, prior MVZK works either
only support a minority of corrupted verifiers [YW22; Bau+22a; AKP22], or they assume the worst
case in which all-but-one verifiers are corrupted [Zho+23]. Such a “hard line” imposes quite some
restrictions in practice: there are settings where it is not reasonable to assume an honest majority,
but still assuming all-but-one party is corrupted is an overkill. It is currently not clear how to
improve efficiency of MVZK by assuming more than a single honest party, without reaching the
majority threshold.

1.1 Our Contribution

This work bridges the gap between NIZK and DVZK by examining the efficiency of ZK proofs in
scenarios where a prover needs to demonstrate validity of a given statement to multiple verifiers.
We propose an efficient and scalable MVZK protocol that tolerates any constant fraction of corrupted
verifiers, which may include the dishonest majority case but does not include the extreme case of
only one honest party. Its performance is comparable to the most efficient IOP-based zk-SNARKs
and VOLE-based interactive ZK proofs, while scaling from million-size to billion-size circuits with a
flat memory usage of a few GBs.

More specifically, we consider the task of MVZK for the setting in which the adversary corrupts
t out of the n verifiers, where t = n(1 − ϵ), for any ϵ ∈ (0, 1). Our scheme also tolerates the
prover-verifier collusion. The total prover-to-verifiers communication grows as O(|C|/ϵ), while
the verifiers only communicate O(n · polylog(|C|)) among each other, where |C| is the size of the
circuit to be checked. Note that for the case in which ϵ = 1/n, which corresponds to an adversary
that corrupts t = n(1 − 1/n) = n − 1 parties, prover-verifier communication is linear O(|C|n).
However, for ϵ = Θ(1), this communication becomes is O(|C|), which is independent of n. A constant
ϵ translates into the adversary only corrupting a constant fraction of parties, or equivalently, a
constant fraction of parties being honest. For example, the adversary may corrupt 80% of the
parties, which ensures 20% of the parties are honest. This is an appropriate model for settings
with a medium-to-large number of parties, where it may be difficult for the adversary to corrupt
all-but-one of the participants, but assuming honest majority may not be viable. We remark that
the prior works of [YW22; Bau+22a; AKP22] assume honest majority (t < n/2), and [Zho+23]
assumed dishonest majority, but where only one party is assumed to be honest, which is too strong
and prevents them from achieving certain efficiency features we enjoy.

Our contributions can be summarized as follows:
– ZK over Rings: Normally, ZK proofs are given for arithmetic circuits over finite fields due to their

amenable algebraic structure, but several other rings, like integers modulo 2k, may offer benefits
in practice (e.g. [Dam+19]). Our work is the first one to consider MVZK proofs over more general
rings, for any constant fraction of the corrupted verifiers including collusion with the prover. The
rings we consider, the so-called Galois rings, include as particular cases the ring from above, as
well as finite fields.

– Asymptotic Analysis: Our protocol is divided in an offline phase, independent of the witness,
and the online phase. For the online phase, our protocol exhibits communication complexity
independent of n, a crucial factor for scalability and a notable advantage compared to the work
of [Zho+23], which requires linear communication in n. Regarding computation, [Zho+23] relies
on more computationally expensive techniques, namely homomorphic encryption and generic
NIZKs in the preprocessing phase. In contrast, we rely on recent highly optimized techniques for
vector oblivious linear evaluation (VOLE).
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– Round Complexity: The online phase in our approach consists of prover P sending the proof,
followed by two rounds of interaction between verifiers. This complexity aligns with that of the
work by [Zho+23].5

– Honest majority Regime: Given our protocol’s flexibility for any ϵ, it can effectively operate in
the honest majority setting as well (ϵ > 1/2). While our primary focus remains on the dishonest
majority case, this potential improvement in the honest majority regime can be a byproduct
of our work. Notably, while the communication complexity of the work in [Bau+22a] in the
honest majority case scales linearly with n, in our case, it remains independent of n resulting in
significantly improvements. The communication in the work of [YW22], set for ϵ≫ 1/2, does not
grow with n (as ours), but as we discuss in Section 5.1 our underlying constants are better.

– Implementation and Experiments: We provide an end-to-end implementation of our protocol
and benchmark its performance with different number of parties, corruption thresholds and
network settings. The results show high efficiency and scalability compared to related works and
implementations.
We refer readers to Section 5 for an in-depth comparison covering all the mentioned aspects,

including the preprocessing phase.

Applications. Our MVZK proofs boast numerous applications. Below, we delineate some specific
key uses. Private aggregation systems such as Prio/Prio+/ELSA [CGB17; Add+22; Rat+23] utilize
a network of servers for collecting and aggregating user data. To ensure data accuracy and protect
against potential attacks, users are required to validate their data with these servers. This validation
process is accomplished through secret-shared non-interactive proof techniques. However, the
existing protocol in Prio, while assuming dishonest majority across the verifiers, it assumes that the
prover will not collaborate with any verifier, posing limitations. In contrast, our protocol presents a
potentially more efficient alternative, even if a user/prover collaborates with a majority of servers.
See Section 5.2 for more discussion. Generally speaking, our MVZK proofs can be utilized in lieu
of generic Secure Multi-Party Computation involving input or predicate validation, especially in
scenarios where a dishonest majority, but a constant amount of honest parties, is expected.

In the blockchain setting, oracles are independent nodes that verify off-chain information.
Privacy-preserving oracle solutions such as DECO [Zha+20] enable oracles to verify any computation
over private data using zero-knowledge proofs, which prevents oracles from learning users’ sensitive
information, such as the bank account balance. Currently, the DECO product uses interactive ZKP
based on VOLE6 because the proof involves a circuit of size tens of billions of gates, which is hard to
deal with by existing NIZK. But, it only proves to one oracle at a time. Our MVZK protocol enables a
blockchain user to prove such a complicated statement to multiple oracles simultaneously without
better efficiency.

1.2 Technical Overview

In this section, we provide a brief technical overview and highlight our main technical contributions.
Consider a prover P who holds a witness x and n verifiers V1, . . . ,Vn who want to verify a statement
C(x) = 0 for a public arithmetic circuit C(·). For simplicity in the exposition, we assume that both
x and the circuit C are defined over a finite field F, with the general ring case handled in the
formal description of our protocol. Previous multi-verifier zero-knowledge proofs [Bau+22a; YW22;
CGB17; AKP22] align with the following paradigm:
1. P secret-shares the input x—under some linear secret-sharing (SS) scheme—towards the n

verifiers, which we denote by [x].
2. For every multiplication gate wγ ← g×(wα, wβ), P secret-shares the output of the gate [wγ ].

Given that, by using the linearity of the SS scheme the verifiers can locally obtain shares of the
output [wγ ] of every addition gate gate wγ ← g+(wα, wβ), this effectively means the verifiers
have shares of every wire value in the circuit.

3. What remains is to check that the circuit is computed correctly. This amounts to checking that
(1) its output is 0, and (2) the multiplication gates satisfy the correct multiplicative relation

5 As we will elaborate on, the work of [Zho+23] can have one less round if communication is increased from
linear to quadratic Ω(n2).

6 DECO Research Series https://blog.chain.link/deco-introduction/.
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wγ = wα · wβ . For this, the parties interact in some protocol that takes as input the shares of the
wires they hold, and outputs accept/reject.

Previous works use different secret-sharing schemes in conjunction with alternative ways of
checking the products. Baum et al. [Bau+22a] propose MVZK protocols with O(n|C|) communi-
cation and corruption threshold t < n/3; the use of Shamir SS with t < n/3 enables the parties
to perform one product non-interactively while guaranteeing error-detection, meaning corrupted
parties cannot modify the underlying secrets. The work of Yang and Wang [YW22] achieves O(|C|)
communication (and the prover does not need to participate once the input is secret-shared) with
threshold t < n(1/2 − ϵ) for ϵ ∈ (0, 1/2); for this they use packed secret-sharing in conjunction
with packed Beaver triples, used for multiplications. Corrigan-Gibbs and Boneh [CGB17] achieve
soundness against t = n− 1 corrupted verifiers, but it assumes that the prover and verifiers do not
collude. Zhou et al. [Zho+23] eliminate this assumption, but it requires O(n|C|) communication
and requires heavy MPC computation during its preprocessing phase. In these last two cases, since
they are set in the dishonest majority regime, additive secret-sharing with message authentication
codes (MACs) is used.

Our goal is to obtain MVZK against dishonest-majority verifiers for t = n(1 − ϵ), preserving
soundness even if P colludes with t verifiers. We do follow the general template from above, but
we aim for a prover-verifier communication complexity of O(|C|/ϵ) (which for ϵ = Θ(1) becomes
independent of n), and a verifier-to-verifier communication of O(n · polylog|C|) (linear in n, but
sublinear in |C|). In our work, P will distribute additive sharings of the wire values, which we denote
by ⟨x⟩ for x ∈ F. However, we cannot let P simply distribute sharings of each wire since this would
cost O(|C|n) communication, while we are aiming at O(|C|/ϵ). Furthermore, additive secret-sharing
is not robust, in the sense that corrupted parties can modify their shares and thereby alter the
underlying secret, which could enable a corrupted prover who colludes with some corrupted verifiers
to pass the verification even if the right multiplicative relations do not hold. As in general-purpose
dishonest-majority MPC, this is dealt with via information-theoretic message authentication codes
(IT-MACs), which consists of enhancing the sharings ⟨x⟩ with ⟨x ·∆⟩, where ∆ is a random key which
is unknown to the adversary, and is secret-shared as ⟨∆⟩. We denote this by JxK = (⟨x⟩, ⟨x ·∆⟩).
Letting P distribute sharings directly would require P to know the key ∆, which breaks security in
the case in which P is corrupted.

Following the paradigm from previous MVZK works—and as usual in MPC when considering
a party who provides input—we do not let P directly secret-share the extended witness, and
instead this party receives a mask u, which is secret-shared among the parties as JuK. Then P
distributes the difference between the wire values and u towards the parties, who can locally
add the shares of u, obtaining authenticated shares of all wire values, as required [Bea95]. At
this point, two main challenges arise. On the one hand, directly sending the |C| differences to
the verifiers is too communication heavy since this would entail O(n|C|) messages, while we are
aiming for O(|C|/ϵ). Secondly, the verifiers need to generate |C| authenticated sharings JuK with
communication O(n ·polylog|C|), which is sublinear in |C|, and furthermore they need to reconstruct
this mask to P with communication O(|C|/ϵ). These issues are addressed with a combination of
pseudorandom correlation generators (PCGs), together with packed secret-sharing, as we elaborate
on below.

IT-MACs and Programmable VOLE. First, we observe that correlations of the form JuK = (⟨u⟩, ⟨u ·
∆⟩) can be derived from pairwise vector oblivious linear evaluation (VOLE) correlations. In n-party
VOLE, each Vi holds ui, and for each pair of parties (Vi,Vj), they share correlations wi

j = vj
i +ui ·∆j ,

where Vi holds (ui,wi
j) and Vj holds (vj

i , ∆
j). If we define u =

∑n
i=1 u

i and ∆ =
∑n

i=1 ∆
i, we can

regard the above correlation as sharings JuK = (⟨u⟩, ⟨u ·∆⟩).
Now, our construction will require that P learns {ui}ni=1, where the dimension of these vectors

is m ≈ |C|. A naive solution is to let each verifier Vi send its ui to P after the VOLE executions, but
this requires O(nm) = O(n|C|) communication in total, which is too high. Instead, we rely on a
variant of VOLE, programmable VOLE [RS22], in which each vector ui is obtained by applying a
pseudorandom function Expand : S → Fm to a succinct seed seedi chosen from a seed space S. With
this tool at hand, P can send each verifier Vi a seed seedi ∈ S, which they use to run programmable
VOLE, hence obtaining JuK. Due to the succinctness of the seeds, these communication costs become
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irrelevant for our goals, and furthermore P can compute the desired ui ← Expand(seedi). We point
out that P does not learn ∆ or u ·∆, which is crucial for security.

Distributing Extended Witnesses. We denote the secret values that P distributes at Steps 1-2 as
extended witnesses x for x ∈ F|C|. After the execution of the programmable n-party VOLE, the
verifiers hold sharings JuK, and P is supposed to send certain information that allows the parties
to compute JxK. In prior works, P computes the difference δ = x− u ∈ F|C| and broadcasts this
to verifiers. Using the linearity of IT-MACs, they can locally compute JxK = JuK + δ. However, this
requires at least total O(n|C|) communication since each verifier needs to receive O(|C|) values
(regardless of how the broadcast channel is instantiated). To reduce this to O(|C|/ϵ), we draw
inspiration from SuperPack [Esc+23]—which considers MPC for a similar corruption threshold as
us—by making use of packed secret-sharing [FY92] to save in communication.

In more detail, let us denote a packed Shamir sharing of degree d as [r]d, with the secret r ∈ Fσ.
We will take σ = n · ϵ and the degree d will either be (n − 1), which ensures privacy against t
corrupted parties since t = n− nϵ, or d = σ − 1, which is the minimum degree to store σ secrets.
We exploit packed SS as follows. Suppose the parties have a series of shared random vectors [ri]n−1

for i ∈ [|C|/σ], where P knows ri. To distribute the extended witnesses, P first arranges it into
m′ = |C|/σ groups defined as x = (x1, . . . ,xm′), where each xi is in Fσ. For i ∈ [m′], P computes
δi = xi − ri and distributes [δi]σ−1 to the verifiers. Here a degree-(σ − 1) packed Shamir sharing is
sufficient since we do not need to protect the secrecy of δi. As also observed in SuperPack, packed SS
can be locally converted into additive shares of each secret, so from [δi]σ−1 and [ri]n−1 all verifiers
can locally compute {⟨δi,j⟩}σj=1 and {⟨ri,j⟩}σj=1, which allows them to compute ⟨w̃i,j⟩ = ⟨δi,j⟩+⟨ri,j⟩.
The total communication from the prover to the verifiers is (|C|/σ) · n = |C| · ϵ, as required.

There are two crucial aspects missing for the idea above to work, with the first being that
the verifiers should have [ri]n−1 for i ∈ [m′], where P knows ri. Here, we use the following
pivotal observation from SuperPack: any random additive sharing ⟨u⟩ where Vi holds ui can be
re-interpreted as a random packed sharing of some secret [r]n−1, by letting Vi’s share of r be ui itself.
Each of the entries in the secret r would be determined by the appropriate linear combination of
(u1, . . . , un) using the corresponding Lagrange coefficients. Now, recall from the previous discussion
that, with the help of programmable VOLE, each verifier’s share ui is derived from seedi that P
sampled and sent to Vi. We think of the verifiers not as having additive sharings ⟨u⟩, but actually
packed sharings [ri]n−1 for i ∈ [m′], which can be converted locally from the additive sharings ⟨u⟩
based on the aforementioned SuperPack technique. In particular, P can locally derive (r1, . . . , rm′)
from the distributed seeds, setting up the stage for the verifiers to obtain ⟨w̃i,j⟩ with reduced
communication. Finally, we show that from n-party VOLE correlations, all verifiers manage to locally
obtain {⟨ri,j ·∆⟩}i∈[m′],j∈[σ]. Effectively, all verifiers hold {Jri,jK}i∈[m′],j∈[σ] in the end.

The second core issue to be addressed is that what the parties need is not only ⟨w̃i,j⟩, but actually
{Jw̃i,jK}i∈[m′],j∈[σ], for what they miss the authentication ⟨δi,j ·∆⟩. To this end, we let all verifiers
further prepare the following Shamir sharings: {[∆|j ]t}σj=1, where [∆|j ]t refers to a (non-packed,
standard) Shamir sharing where ∆ is evaluated at the j-th evaluation point. We note that for
i ∈ [m′] and j ∈ [σ], the verifiers can locally compute [δi]σ−1 · [∆|j ]t to obtain a degree-(n − 1)
Shamir sharing where the secret stored at the j-th position is δi,j ·∆. At this point, the verifiers can
locally convert this sharing to an additive sharing ⟨δi,j ·∆⟩ by Lagrange evaluation, and further add
⟨wi,j ·∆⟩ = ⟨δi,j ·∆⟩+ ⟨ri,j ·∆⟩, obtaining the desired authenticated sharing.

Difficulties in the Ring Case and our Solution. As shown in [EXY22; Abs+20; Abs+19; Bon+19],
the ring Zpk behaves similarly to Fp when it comes to Shamir secret-sharing.7 In particular, for a
constant p such as p = 2, relevant for Z2k , we can only use packed SS over a large enough extension
ring, and at this point each secret becomes an element in such extension. If we denote by d be
the extension degree, directly sharing values in the base ring using packed Shamir sharings over
the extension ring would increase communication by a factor of d. To avoid such an increase in
communication, we use a single extension element to “encode” d values over the base ring, by using
the standard correspondence between degree-d extension elements and vectors of dimension d over

7 These works are set in the honest majority regime, while our work is for dishonest majority. However, these
references are relevant for us since they use Shamir secret-sharing which, as we discuss, is one of the core
tools we make use of. This is enabled in the dishonest majority regime thanks to adapting the observations
from SuperPack [Esc+23].
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the base ring. This way, each packed Shamir sharing is effectively storing not only σ ring extension
elements, but d · σ values over the base ring. This allows us to keep the same communication
complexity as that in the field case.

Unfortunately, this modification renders the above way of computing the MACs for the differences
δ invalid: Recall that in the field case, we use [δi]σ−1 · [∆|j ]t to compute the MAC for the j-th secret
of δi, say δi,j . In the ring case, δi,j is an element in the extension ring, which contains d elements
(δi,j,1, . . . , δi,j,d) over the base ring. Our goal is to compute the MAC for each δi,j,k. However, since ∆
is also in the extension ring, multiplying δi,j with ∆ does not give us δi,j,k ·∆ for all k. Our solution
is to interpret ∆, which is an element over the extension ring, as a vector of d elements over the
base ring, say (∆1, . . . ,∆d). Then, we generate [∆ℓ|j ]t for all ℓ ∈ [d]. Note that this is a (non-packed,
standard) Shamir sharing over the extension ring, where the secret is ∆ℓ, an element of the base
ring. The main observation is that ∆ℓ · δi,j = ∆ℓ · (δi,j,1, . . . , δi,j,d) = (∆ℓ · δi,j,1, . . . ,∆ℓ · δi,j,d), and
thus, by computing [δi]σ−1 · [∆ℓ|j ]t, we obtain packed Shamir sharings of (∆ℓ · δi,j,1, . . . ,∆ℓ · δi,j,d).
These can be locally converted into additive sharings {⟨∆ℓ · δi,j,k⟩}k∈[d]. After doing this for all
ℓ ∈ [d], for each k ∈ [d], we obtain {⟨∆ℓ · δi,j,k⟩}ℓ∈[d]. From this all parties can locally compute
⟨∆ · δi,j,k⟩, as desired. Compared with the field case, we only need to generate [∆ℓ|j ]t for all ℓ ∈ [d].
The increased amount of communication is independent of the circuit size.

Recursive Verification. Our discussion so far has focused on letting the verifiers obtain authenticated
shares of the extended witness, which corresponds to steps 1-2 in our generic template from earlier
in the section. What remains is step 3: verifying that the extended witness represents a valid circuit
computation. Furthermore, we must do this with sublinear communication O(n · polylog|C|). To this
end we follow the approach from two previous MVZK works [Bau+22a; YW22], extending their
ideas so that they work in the dishonest-majority context with potential prover-verifier collusion.
The high-level idea is to use polynomials to represent all wire values, reducing the problem to
checking multiplicative relations of polynomials, which can be done succinctly with the help of the
Schwartz–Zippel lemma. To balance between the computation and communication overhead, these
works also utilize the recursive check [Bon+19]. Our online protocol (Section 4.2) also includes
a Fiat-Shamir transformation derived from [YW22], which reduces the number of rounds. Given
space constraints, and since our approach is very close in techniques to these prior works, we refer
the reader to Section 4.1 where the detailed protocols can be found. An technical overview can still
be found in Appendix A.

1.3 Related Work

The task of multiple parties verifying the validity of a witness held by a prover has received
noticeable attention in the literature. Not many works study the dishonest majority case. Here,
while one approach involves leveraging maliciously secure MPC protocols within the dishonest-
majority setting [Ben+11; Dam+12; GPS22; Esc+23], this method typically results in inefficient
constructions with substantial round complexity. In contrast, the work presanted in [Zho+23]
introduces an MVZK protocol explicitly tailored for the dishonest majority setting, but as we have
mentioned it tailores the worst-case scenario of one single honest party and it is mostly of theoretical
relevance.

For the honest majority case, ample literature can be found. First, as before, one can use
any maliciously secure honest-majority MPC protocol [GIP15; Boy+20; GSZ20; Goy+21; GPS21;
Esc+22], but this technique results in considerably elevated communication and computation
expenses. In contrast, specialized MVZK protocols offer better efficiency. Applebaum, Kachlon, and
Patra [AKP22] and Baum et al. [Bau+22a] each introduced MVZK protocols under the assumption
that a majority of verifiers maintain honesty. In their work, Applebaum, Kachlon, and Patra [AKP22]
primarily focused on a theoretical approach, emphasizing “Minicrypt”-type assumptions necessary
to attain round-optimal MVZK protocols. Furthermore, the work by Abe, Cramer, and Fehr [ACF02]
and Groth and Ostrovsky [GO07] presented non-interactive MVZK protocols that accommodate
corruption thresholds of at most t < n/3 and t < n/2 verifiers, respectively. However, their protocols
are dependent on public-key operations. Conversely, Baum et al. [Bau+22a] used a secret-sharing-
based approach, aiming to develop highly efficient MVZK protocols. However, their protocols can
withstand a small number of corrupted verifiers, either t < n/3 or t < n/4. The work of [YW22]
achieved MVZK protocols based on secret-sharing too when the threshold of corrupted verifiers is
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t < n/2 with communication complexity of (1/2 + o(1))n field elements per multiplication gate,
across all verifiers. They also proposed a solution for t < n(1/2− γ) with 0 < γ < 1/2, and here the
total communication complexity is O(1) field elements per multiplication gate.

Other related works, while similar, differ from our approach. For instance, a related concept
is distributed ZK as explored in [Bon+19]. This concept involves scenarios where the statement
x remains unknown to any specific verifier but is instead secretly shared. However, the protocols
introduced in that work only support a restricted class of languages and work in the honest majority
case or does not allow collusion between the prover and the verfiers. The work of [Boy+20] can be
viewed as an MVZK protocol in the honest majority case but it has worst efficiency than [YW22].

Finally, we point out that ZK with multiple verifiers has not been explored over more general
rings than finite fields, despite notable works such as [LXY23; Bau+22b] considering such rings in
the standard two-party setting where there is one verifier and one prover.

2 Preliminaries

Basic Settings. We consider a prover P and n verifiers V1, . . . ,Vn, among which t = n(1− ϵ) can
be actively corrupted, where ϵ ∈ (0, 1). Let R be a ring of the form Z/pkZ for some prime p and
an integer k ≥ 1. We consider the task of verifying circuits C : R|I| → {0, 1} over R. Formally,
this is captured by a functionality, which we denote by FZK, which is defined as follows: take
input ω ∈ R|I| from P, if C(ω) = 0, return accept to (V1, . . . ,Vn), and otherwise, return reject. In
this work, we only assume that there is a secure point-to-point communication channel between
every pair of parties (including both the prover and verifiers). In particular, we do not require the
existence of a reliable broadcast channel among the parties.

Galois Rings. For the whole paper we let K = GR(pk, d) be the degree-d Galois ring extension
of Z/pkZ such that pd ≥ 2κ, where κ is the security parameter. Formally, K is the quotient ring
R[X]/(f(X)) where f(X) is a monic polynomial overR that is irreducible over Fp when taken modulo
p. For k = 1, Galois rings are simply field extensions. In fact, a crucial fact we will use throughout
our work is that GR(pk, d) is, in a way, equivalent to Fpd : it is possible to perform unique polynomial
interpolation over GR(pk, d) in the same way as over Fpd , which in turns enables essential techniques
such Schwartz-Zippel lemma, widely used for compressing checks. We refer the reader to several
works that have used Galois rings for more details on these structures [EXY22; Abs+20; Abs+19;
Bon+19].

Secret Sharing Schemes. Let σ = n − t = nϵ be the number of honest parties. Taking K =
GR(pk, d) with pd > n + σ (which is the case since pd > 2κ ≫ n + σ), there exists a subset
{β1, . . . , βσ, α1, . . . αn} where all pairwise non-zero differences are invertible in K, and this enables
packed Shamir secret sharings with α’s as the “shares evaluation points” and β’s as the “secret-
evaluation points” [Abs+19]. More precisely, for x ∈ Kσ we use the notation [x]δ when each verifier
Vi has f(αi) for some polynomial f over K of degree at most δ such that x = (f(β1), . . . , f(βσ)).
Any secret x ∈ Kσ can be shared with a degree t + (σ − 1) = n − 1 polynomial without leaking
anything to the adversary, and any public vector c ∈ Kσ can be “shared” with a degree σ − 1
polynomial, which we exploit in our protocols to be able to multiply public values by secret-shared
vectors. Finally, [·] is standard packed secret-sharing [FY92], except that it is described over Galois
rings, and so all of the usual properties hold: local addition and local multiplication while summing
up the degrees.

For x ∈ K, we use ⟨x⟩ to denote an additive secret-sharing of x among the n verifiers, and we
denote JxK = (⟨x⟩, ⟨∆ · x⟩, ⟨∆⟩), where ∆ ∈ K is a random global key. Sometimes we use this for
x ∈ R, which is covered by the notation since R ⊆ K. For a shared vector [x]n−1 with x ∈ Kσ,
the parties can locally obtain additive shares of each entry ⟨xi⟩, where xi ∈ K. Since K ∼= Rd,
this can in turn be locally converted to additive shares of each ⟨xij⟩, where xi is interpreted as
(xi1, . . . , xid) ∈ Rd.

Assumed Functionalities. We assume some standard functionalities. FCoin enables the verifiers to
sample public random coins, and FCommit allows a verifier to commit to some input, revealing it at a
later stage.
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3 Preprocessing Phase

In this section, we introduce the preprocessing of our protocol. We consider the verification circuit
over a ring R of the form of Z/pkZ where p is a prime and k ≥ 1. We let K = GR(pk, d) be the
degree-d Galois ring extension of Z/pkZ such that pd ≥ 2κ, where κ is the security parameter.

3.1 Programmable Vector OLE

In this work we make use of a programmable vector oblivious linear evaluation (VOLE) functionality
Fprog

VOLE, which involves only two parties PA and PB. For an output length m, it allows PA with
input u ∈ Rm and PB with input ∆ ∈ K to compute additive shares of u · ∆. At the end of the
protocol, PA and PB hold w and v ∈ Km, respectively, such that w = u ·∆+ v. Compared to an
ordinary VOLE protocol, the programmability aspect refers to the fact that the functionality allows
PA to choose their input u by providing a short seed seed ∈ S, which is expanded with a function
Expand : S → Rm. S is defined as the seed space and depends on the instantiation of Fprog

VOLE. We
borrow the functionality Fprog

VOLE from Le Mans [RS22], which is defined specifically over fields, and
extend it to the general ring case. We provide an instantiation of this functionality in Appendix B.

Functionality 1: Fprog
VOLE

Parameters: A seed space S. An expansion function Expand : S →Rm. Two parties PA and PB .
Initialize: Upon receiving init from PA and (init,∆) from PB , store ∆ and ignore all subsequent init
commands.
Extend: Upon receiving (extend, seed) from PA in which seed ∈ S, and extend from PB , do:
1. Compute u← Expand(seed).
2. Sample uniform v ← Km and compute w = u ·∆+ v.

– If PB is corrupted, receive v from A and compute w = u ·∆+ v.
– If PA is corrupted, receive w from A and compute v = w − u ·∆.

3. If PB is corrupted, receive a set I from A. If seed ∈ I, send success to A and continue. Else, send
abort to both parties, output seed to PB and abort.

4. Output (u,w) to PA and v to PB .
Global key query: If PA is corrupted, receive (guess,∆′) from A in which ∆′ ∈ Fpr . If ∆′ = ∆, send
success to A and ignore all subsequent global-key query. Otherwise, send abort to both parties and
abort.

3.2 Multi-Party Vector Oblivious Linear Evaluation

In Le Mans [RS22], the functionality Fprog
VOLE is used to instantiate an n-party VOLE functionality that

allows all parties to efficiently generate authenticated random additive sharings. At a high level, the
n-party VOLE functionality generates programmed random VOLE pairs (as described in Fprog

VOLE) for
every pair of parties such that the i-th party uses the same seedi and ∆i in all VOLE pairs.

We modify the functionality in Le Mans [RS22] to allow a designated party P (which will be used
as the prover in our case) to choose the expansion function from a predefined class of expansion
functions and sample the seeds for all verifiers. In this way, P can obtain all shares by expanding
the seeds locally. We require that a randomly sampled expansion function from the predefined class
of expansion functions is a PRG. We describe our n-party VOLE functionality FnVOLE as follows. To
instantiate FnVOLE, we modify the protocol in [RS22] to let P sample the seeds and distribute them
to all verifiers.

Functionality 2: FnVOLE

Parameters: A seed space S. A class of expansion functions defined over S → Rm. n + 1 parties
P,V1, . . . ,Vn.
Initialize:
1. For i ∈ [n], upon receiving init from Vi, sample uniform ∆i ← K and send it to Vi. If Vi is corrupted,

receive ∆i ∈ K from Vi. Ignore all subsequent init commands from Vi.
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2. If P is corrupted, receive Expand from the class of expansion functions from P . Otherwise, sample a
random function as Expand from the class of expansion functions. Then, send Expand to all parties.

Extend: This procedure can be repeated multiple times. Receive (extend,m) from all parties and do:
1. Depending on whether P is corrupted, do the following.

– If P is corrupted, receive seedi from P and set seed
i
= seedi for all i ∈ [n].

– Otherwise, uniformly sample seedi ← S for all i ∈ [n]. For each corrupted verifier Vi, send
seedi to A and receive seed

i
. For each honest verifier Vi, set seed

i
= seedi.

Compute ui ← Expand(seed
i
) for all i ∈ [n].

2. For all i and j ∈ [n]\{i}, sample uniform vj
i ← K

m and compute wi
j = ui ·∆j + vj

i .
– If Vj is corrupted, receive vj

i from Vj , and compute wi
j = ui ·∆j + vj

i .
– Otherwise, if Vi is corrupted, receive wi

j from Vi and compute vj
i = wi

j − ui ·∆j .

3. For all i ∈ [n], output seedi to P and (seed
i
,ui, {wi

j}j ̸=i) to Vi.
4. For all i ∈ [n] and j ∈ [n]\{i}, output vj

i to Vj .

Protocol 1: ΠnVOLE

Parameters: Ring R, degree-d Galois ring K, a seed space S, a class of expansion functions defined
over S →Rm, and parties P,V1, . . . ,Vn.
Initialize:
1. Each verifier Vi uniformly samples ∆i ∈ K. For each pair (i, j) such that i ̸= j and i, j ∈ [n], Vi

sends init and Vj sends (init,∆j) to Fprog
VOLE.

2. P uniformly samples Expand from the predefined set of expansion functions and sends Expand to
V1, . . . ,Vn. Then each of V1, . . . ,Vn computes H(Expand) and sends it to each other to check the
consistency of Expand. If a verifier receives different hash values from other verifiers, this verifier
aborts.

Extend: This procedure can be repeated multiple times. On an agreed output length m, do:
1. For i ∈ [n], P samples a uniform seed seedi and sends it to Vi.
2. For each pair (i, j) such that i ̸= j and i, j ∈ [n], Vi sends (extend, seedi) and Vj sends extend to
Fprog

VOLE. For ℓ ∈ [m+1], Fprog
VOLE returns (ui

ℓ, w
i
j,ℓ) to Vi and vji,ℓ to Vj where ui

m+1 ∈ K. Here we take
the output length of Expand in Fprog

VOLE to be m+d and view the last d outputs inR as an element inK.
Vi and Vj can locally compute wi

j,m+1, v
j
i,m+1 respectively such that wi

j,m+1 = ui
m+1 ·∆j + vji,m+1.

Consistency Check: Verifiers V1, . . . ,Vn check the correctness of generated authenticated values.
1. Send (rand,K) to FCoin, which returns χ ∈ K.
2. Each verifier Vi computes ui =

∑m
ℓ=1 χ

ℓ · ui
ℓ + ui

m+1 and defines ⟨u⟩ = (u1, . . . , un).
3. For i ∈ [n], Vi randomly samples ⟨bi⟩ = (b1i , . . . , b

n
i ) such that bi =

∑n
j=1 b

j
i = 0. It distributes

shares to other verifiers.
4. All verifiers locally compute ⟨û⟩ = ⟨u⟩+

∑n
i=1⟨bi⟩ and send their shares to all verifiers. Then all

verifiers compute the secret û from other verifiers’ shares.
5. For i ∈ [n], Vi invokes FCommit with inputs

ui, {Zi
j}j ̸=i = {wi

j}j ̸=i, Z
i
i = (ui − û) ·∆i −

∑
j ̸=i

vij ,

where wi
j =

∑m
ℓ=1 χℓ · wi

j,ℓ + wi
j,m+1 and vij =

∑m
ℓ=1 χℓ · vij,ℓ + vij,m+1.

6. After receiving the commitments from all other verifiers, all verifiers check the consistency of
all received messages (including ⟨û⟩ and all commitments). This is done by letting each verifier
compute a hash of his received messages and send the hash result to all verifiers. If a verifier
receives different hash values from other verifiers, this verifier aborts.

7. All verifiers open their commitments of ui, {Zi
j}nj=1 and each verifier Vk checks the following:

– û
?
=

∑n
i=1 u

i

– For all j ∈ [n]\{k}, Zj
k

?
= vkj + uj ·∆k.

– For all j ∈ [n],
∑n

i=1 Z
i
j

?
= 0.

If any check fails, Vk aborts.
Output: The output of each party is specified as follows.

– P outputs seedi for all i ∈ [n].
– Each Vi outputs seedi, {ui

ℓ}ℓ∈[m], {wi
j,ℓ}ℓ∈[m],j ̸=i, and {vij,ℓ}ℓ∈[m],j ̸=i.
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We show that ΠnVOLE securely computes FnVOLE against the following two types of adversaries:

– The first type corrupts up to t verifiers among (V1, . . . ,Vn), but not P. This corresponds to the
case where the prover is honest and up to t verifiers collude.

– The second type corrupts up to t verifiers among (V1, . . . ,Vn) together with P . This corresponds
to the case where the prover is corrupted and colludes with up to t verifiers.

Theorem 1. Assume that a random function from the class of expansion functions in ΠnVOLE and
FnVOLE is a PRG. Protocol ΠnVOLE securely realizes FnVOLE in the presence of a malicious adversary A
who can corrupt P and up to t-out-of-n verifiers among (V1, . . . ,Vn) in the (Fprog

VOLE,FCoin)-hybrid and
random oracle model.

We refer the readers to Section C.1 for the proof.

Remark 1. In ΠnVOLE, we ask the prover P to send the description of Expand to all verifiers. This is to
avoid the assumption of CRS for the parameters in the LPN assumption we use over rings. To be more
concrete, the expansion function is derived from the parameters of the LPN assumption. And the
expansion function is a pseudorandom generator only if the parameters of the LPN assumption are
randomly sampled. We note that the expansion function is used to generate random authenticated
additive sharings that are used to protect the secrecy of P . Thus it is sufficient to ask P to sample the
expansion function. We also let P choose the seeds for all verifiers. This allows P to start computing
the differences that are shared to the verifiers in the online phase. Note that when P is corrupted,
the expansion function may not be a PRG and the seeds may not be chosen from random. This is
fine since we do not need to protect the secrecy of P when he is corrupted. In the security proof of
our construction, we only assume that the expansion function is a PRG and the seeds are uniformly
sampled when P is honest.

Another instantiation (which is used in our experiment) is to assume that all parties start with
uniformly random parameters for the LPN assumption. In this case, all parties automatically agree
on the expansion function and it is a PRG due to the LPN assumption. And with this instantiation,
one optimization is to let each verifier Vi generate his own seed seedi rather than receiving it from
P. Then all verifiers send their seeds at the end of ΠnVOLE (which can be done in parallel with Step
(5) in ΠPrep). This allows us to remove the first round communication from P to all verifiers.

3.3 Preprocessing Protocol

In the preprocessing, all parties prepare random authenticated additive sharings. This is done by
invoking FnVOLE. Recall that in FnVOLE,

– Each verifier Vi holds ∆i. We set ∆ =
∑n

i=1 ∆
i

– For all ℓ ∈ [m], for every pair of verifiers (Vi,Vj), Vi holds ui
ℓ, w

i
j,ℓ and Vj holds vji,ℓ such that

wi
j,ℓ = ui

ℓ ·∆j + vji,ℓ.

Recall that there are at most t corrupted verifiers. Following the observation in [Esc+23], all
verifiers can view (u1

ℓ , . . . , u
n
ℓ ) as a degree-(n − 1) packed Shamir sharing that stores σ = n − t

random values. Let rℓ = (rℓ,1, . . . , rℓ,σ) denote the secret vector of this packed Shamir sharing. All
verifiers can locally convert it to σ additive sharings ⟨rℓ,1⟩, . . . , ⟨rℓ,σ⟩. In particular, by using wi

j,ℓ, v
j
i,ℓ,

all verifiers can locally compute ⟨∆ · rℓ,1⟩, . . . , ⟨∆ · rℓ,σ⟩. In this way, we obtain σ authenticated
random sharings Jrℓ,1K, . . . , Jrℓ,σK, where Jrℓ,iK = (⟨rℓ,i⟩, ⟨∆ · rℓ,i⟩). In total, we obtain m · σ random
authenticated random sharings. Note that the prover P can compute the secret vector rℓ for all ℓ
as well. Jumping ahead, with these random authenticated additive sharings, P will distribute the
actual wire values by distributing the differences between the wire values and the secrets of these
random authenticated additive sharings.

We also let each verifier Vi share his authentication key ∆i. We naturally view ∆i ∈ K as a vector
of d elements (∆i

1, . . . ,∆
i
d) in R. For each j ∈ [d] and ℓ ∈ [σ], we ask Vi to share ∆i

j using a Shamir
secret sharing over K such that the secret is stored at position ℓ, denoted by [∆i

j |ℓ]t. These degree-t
Shamir sharings are used to compute the MACs for the differences distributed by the prover in the
online phase. We summarize the preprocessing protocol as follows.
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Protocol 2: ΠPrep

Define an arithmetic circuit C with |I| input wires and |C| multiplication gates. Let c be the number
of random authenticated additive sharings needed during the online consistency check. Define M =
⌈(|I|+ |C|+ c · d)/σ⌉, where recall that d is the extension degree of K with respect toR and σ = n− t
is the number of honest verifiers.
1. For i ∈ [n], the verifier Vi sends init to FnVOLE, which returns ∆i ∈ K to Vi. Define ∆ =

∑
i∈[n] ∆

i.
Vi also receives the expansion function Expand from FnVOLE.

2. P sends (extend,M) to FnVOLE and receives {seedi}ni=1. For i ∈ [n], Vi sends (extend,M) to FnVOLE,
which returns seed

i
, ui, {wi

j ,v
i
j}j ̸=i to Vi. For all Vi,Vj , Vi holds ui,wi

j and Vj holds ∆j ,vj
i such

that vj
i = ui ·∆j +wi

j .
3. For all ℓ ∈ [M ], all verifiers run the following steps to obtain random authenticated additive

sharings.
(a) All verifiers view (u1

ℓ , u
2
ℓ , . . . , u

n
ℓ ) as a degree-(n − 1) packed Shamir sharing. Let rℓ =

(rℓ,1, . . . , rℓ,σ) be the secret vector of this packed Shamir sharing. Specifically, these exists
a degree-(n − 1) polynomial f(·) that satisfies f(αi) = ui

ℓ for i ∈ [n] and f(βj) = rℓ,j for
j ∈ [σ], where α1, . . . , αn, β1, . . . , βk form an exceptional sequence.

(b) Verifiers locally convert [rℓ]n−1 to an additive sharing ⟨rℓ,j⟩ via polynomial evaluation to βj -th
coordinate for j ∈ [σ]. Concretely, denote i-th share of [rℓ]n−1 to be [rℓ]

i
n−1 and Li(·) to be

the i-th Lagrange polynomial. We have ⟨rℓ,j⟩ = (Li(βj) · [rℓ]
i
n−1)

n
i=1.

(c) Each verifier Vi1 computes his share of ⟨∆ ·rℓ,j⟩ by Li1(βj) ·ui1
ℓ ·∆

i1 +
∑

i2 ̸=i1
(Li2(βj) ·vi1i2,ℓ−

Li1(βj) · wi1
i2,ℓ

). The correctness follows from the fact that

n∑
i1=1

∑
i2 ̸=i1

(Li2(βj) · vi1i2,ℓ − Li1(βj) · wi1
i2,ℓ

)

=

n∑
i1=1

∑
i2 ̸=i1

(Li1(βj) · vi2i1,ℓ − Li1(βj) · wi1
i2,ℓ

)

=

n∑
i1=1

∑
i2 ̸=i1

Li1(βj) · ui1
ℓ ·∆

i2

=

n∑
i1=1

Li1(βj) · ui1
ℓ · (∆−∆i1)

= ∆ · rℓ,j −
n∑

i1=1

Li1(βj) · ui1
ℓ ·∆

i1 .

(d) Since {ui}ni=1 are fully determined by {seedi}ni=1, P follows the similar steps to compute rℓ,j
for all ℓ ∈ [M ] and j ∈ [σ].

(e) All verifiers convert the last c ·d authenticated additive sharings inR to c authenticated additive
sharings in K.

4. Each verifier Vi views ∆i ∈ K as a vector of d elements in R. For i ∈ [n], j ∈ [d], ℓ ∈ [σ], Vi
constructs and distributes a degree-t Shamir secret sharing [∆i

j |ℓ]t. Verifiers compute [∆j |ℓ]t =∑n
i=1 [∆

i
j |ℓ]t.

5. Each verifier Vi samples a random κ-bit string noncei and sends it to the prover P.

Remark 2. We note that the random authenticated additive sharings are obtained by performing
local computation on the data verifiers received from FnVOLE. In FnVOLE, when P is honest, corrupted
verifiers may use different seeds from those generated by P. Note that corrupted verifiers also
receive the correct seeds from P, which means that the adversary can also compute the correct
shares corrupted verifiers should hold. Eventually, this will translate to additive attacks to the wire
values shared by P in the online phase, which will be caught by the online verification.

Remark 3. In the preprocessing phase, we do not check the degree-t Shamir sharings of the MAC
keys shared by all verifiers. It means that corrupted verifiers can share different MAC keys from
those sent to FnVOLE. This is OK because these sharings are only used to compute additive sharings
of the MAC values of the differences (between the actual wire values and the secrets of random
authenticated additive sharings) shared by P in the online phase. Since the differences are public
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values, corrupted verifiers can still compute the correct shares of the additive sharings of the MAC
values. Thus, even if corrupted verifiers share incorrect MAC keys, we can always assume that
they eventually hold correct shares (although they may choose to not use correct shares in the
computation).

Remark 4. In the preprocessing, we ask each verifier to provide a nonce to the prover. These nonces
are used to bind the shares chosen by the prover. In the online phase, the prover will generate
random challenges via Fiat-Shamir by taking all nonces as input.

4 Online Phase

Define an arithmetic circuit C with |I| input wires and |C| multiplication gates. Let c be the number
of random authenticated additive sharing needed during the consistency check (which will be
specified later). Let N = |I|+ |C|. Recall that in the preprocessing phase, all verifiers have prepared
random authenticated additive sharings {JriK}Ni=1 in R together with c random authenticated
additive sharings in K. In particular, the shares are generated from the seeds sampled by P. Thus,
P can compute the secrets of all sharings.

In the online phase, the prover P will first share the actual wire values to all verifiers. P
first computes all wire values in C. Then for each input wire of C and the output wire of each
multiplication gate, we assign one random authenticated random sharing. For each of these wires, P
computes the difference λ between the actual wire value v and the secret r of the random additive
sharing. By distributing all differences, all verifiers can obtain an authenticated additive sharing
for each wire value. However, doing this naively would cost O(|C| · n) communication. Our idea is
to use degree-(σ − 1) packed Shamir sharings in K to share those differences. Here we choose the
degree to be σ − 1 so that we can use the degree-t Shamir sharing of the MAC keys prepared in the
preprocessing phase to let all verifiers locally compute additive sharings of the MAC values of these
differences. Also, a degree-(σ − 1) packed Shamir sharing is fully decided by the shares of honest
verifiers, where recall that σ = n− t is the number of honest verifiers. To be more concrete, for each
group of σ · d values D = {λi,j}i∈[σ],j∈[d] in R, P views them as σ elements λ1, . . . ,λσ in K and
then computes the degree-(σ − 1) packed Shamir sharing [D]σ−1 determined by those σ elements.
Finally P distributes the shares of [D]σ−1 to all verifiers.

To compute the MAC values of the differences shared by P, observe that by computing [D]σ−1 ·
[∆ℓ|i]t, we obtain a degree-(n − 1) Shamir sharing of (λi,1, . . . , λi,d) · ∆ℓ (Recall that ∆ℓ ∈ R).
Then all verifiers can locally compute an additive sharing of λi,j · ∆ℓ. By dong this for all ℓ, all
verifiers can locally compute an additive sharing of λi,j ·∆. Thus eventually, all verifiers can compute
authenticated additive sharings of all wire values in C.

To check the correctness of the computation, we adapt the techniques in [Bon+19; GSZ20]
from the MPC setting with honest majority over fields to our setting and extend it to the Galois ring
case. We make it secure against dishonest-majority verifiers by equipping the shared elements with
information-theoretic MACs. We give the protocol description in the next subsection for the check
of multiplication relations.

4.1 Inner Product Check

In this subsection, we describe the protocols for checking an inner-product tuple of dimension
N . In the beginning, all verifiers hold an inner-product tuple where each value is shared by an
authenticated additive sharing, denoted by ({(JxiK, JyiK)}Ni=1, JzK). The goal is to check whether
z =

∑N
i=1 xi · yi. The idea in [Bon+19; GSZ20] is to recursively reduce the dimension of the

inner-product tuple until it becomes a multiplication tuple. The dimension-reduction step is done
with the help from the prover and appears in πVerifyIPProc. In the last round of dimension reduction,
the prover will share a random multiplication triple to ease the check of the final triple, which is
described in πVerifyIPFinal.
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Procedure 1: πVerifyIPProc

Parameters: Input dimension mℓ, compression parameter m and output dimension ℓ. Let H : {0, 1}∗ →
K be a random oracle.
Input: An authenticated inner-product triple ({(JxiK, JyiK)}mℓ

i=1, JzK) such that z =
∑mℓ

i=1 xi · yi.
Output: An authenticated inner-product triple ({(JaiK, JbiK)}ℓi=1, JcK) such that c =

∑ℓ
i=1 ai · bi.

Protocol:
1. Split {JxiK}mℓ

i=1 and {JyiK}mℓ
i=1 into m sub-vectors each of dimension ℓ, and denote them as

{(JxjK, JyjK)}mj=1, in which xj ,yj are of dimension ℓ.
2. P fetches the next unused m − 1 random authenticated additive sharings in K prepared in

the preprocessing phase and denotes them as (Jr1K, . . . , Jrm−1K). For j ∈ [m − 1], P computes
zj =

∑ℓ
i=1 xj [i] · yj [i] and sends bj = zj − rj to verifiers. Verifiers compute JzjK = bj + JrjK.

3. Parties compute JzmK = JzK−
∑m−1

j=1 JzjK.
4. Compression phase.

(a) Interpolate degree-(m− 1) polynomials

(Jf1(·)K, . . . , Jfℓ(·)K), (Jg1(·)K, . . . , Jgℓ(·)K)

such that fi(j) = xj [i], gi(j) = yj [i] for i ∈ [ℓ], j ∈ [m].
(b) P fetches the next unused m− 1 authenticated values and denotes them as (r̃1, . . . , r̃m−1). For

j ∈ [m− 1], P computes dj =
∑ℓ

i=1 fi(m+ j) · gi(m+ j) and sends cj = dj − r̃j to verifiers.
Verifiers compute JdjK = cj + Jr̃jK.

(c) Parties interpolate the degree-2(m− 1) polynomial Jh(·)K such that h(j) = zj for j ∈ [m] and
h(j) = dj−m for j ∈ [m+ 1, 2m− 1].

5. Parties compute
η ← H(IP,mℓ, ηprev, {bj}m−1

j=1 , {cj}m−1
j=1 ),

in which the first two parameters are used as the identifier and ηprev is the hash result from the
previous invocation of H. If η ∈ [m], all parties abort. Parties output ({(JaiK, JbiK)}ℓi=1, JcK) such
that ai = fi(η), bi = gi(η) and c = h(η).

Procedure 2: πVerifyIPFinal

Parameters: Input dimension m. Let H : {0, 1}∗ → K be a random oracle.
Input: An authenticated inner product triple ({(JxiK, JyiK)}mi=1, JzK) such that z =

∑m
i=1 xi · yi.

Output: An authenticated multiplication triple (JaK, JbK, JcK) such that c = a · b.
Protocol:
1. P uniformly samples a triple (xm+1, ym+1, zm+1) such that zm+1 = xm+1 · ym+1. Fetch the next 3

unused authenticated values and denote them as (Jr̂1K, Jr̂2K, Jr̂3K). P sends (b̂1, b̂2, b̂3) := (xm+1 −
r̂1, ym+1 − r̂2, zm+1 − r̂3) to all verifiers. Verifiers compute Jxm+1K = b̂1 + Jr̂1K, and Jym+1K =
b̂2 + Jr̂2K and Jzm+1K = b̂3 + Jr̂3K.

2. Interpolate degree-m polynomials (Jf(·)K, Jg(·)K) such that f(j) = xj , g(j) = yj for j ∈ [m+ 1].
3. P fetches the next unused m − 1 authenticated values and denotes them as (Jr1K, . . . , Jrm−1K).

For j ∈ [m − 1], P computes zj = xj · yj and sends bj = zj − rj to verifiers. Verifiers compute
JzjK = bj + JrjK.

4. Parties compute JzmK = JzK−
∑m−1

j=1 JzjK.
5. P fetches the next unused m authenticated values and denotes them as (Jr̃1K, . . . , Jr̃mK). For

j ∈ [m], P computes dj = fi(m+ j+1) · gi(m+ j+1) and sends cj = dj − r̃j to verifiers. Verifiers
compute JdjK = cj + Jr̃jK.

6. All parties interpolate a degree-2m polynomial Jh(·)K such that h(j) = zj for j ∈ [m + 1] and
h(j) = dj−m for j ∈ [m+ 2, 2m+ 1].

7. Parties compute
η ← H(IP,m, ηprev, {b̂j}3j=1, {bj}m−1

j=1 , {cj}mj=1),

in which the first two parameters are used as the identifier and hprev is the hash result from
the previous invocation of H. If η ∈ [m], all parties abort. Parties output (JaK, JbK, JcK) such that
a = f(η), b = g(η) and c = h(η).

8. P sends a, b, c to all verifiers.

All verifiers use the authentication to check that P reveals the correct reconstruction results and
check whether (a, b, c) satisfy the multiplication relation. The security is due to the random multi-
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plication triple shared by the prover in the last round of the dimension reduction. We present the
whole protocol for verifying an inner-product tuple in πVerifyIP. The number of random authenticated
additive sharings in K we need is c = 2ν(m− 1) + 4, where ν = ⌈logm N⌉.

Procedure 3: πVerifyIP

Input: Authenticated additive secret sharings of an inner product triple (JxK, JyK, JzK) of dimension N
such that z =

∑N
i=1 xi · yi, the compression parameter m.

Verify:
1. P and V1, . . . ,Vn invoke the Procedure πVerifyIPProc with input (JxK, JyK, JzK) and compression

parameter m, and recursively invoke it with the output from the previous invocation, until the
output dimension is less than or equal to m.

2. Verifiers invoke the Procedure πVerifyIPFinal which outputs a single multiplication triple (JaK, JbK, JcK)
together with (a, b, c).

3. For i ∈ [n], Pi constructs ⟨θi1⟩, ⟨θi2⟩, ⟨θi3⟩ such that θi1 = θi2 = θi3 = 0. It distributes shares to other
verifiers. This step can be done in the preprocessing phase.

4. All verifiers compute ⟨o1⟩ = ⟨∆ · a⟩ − a · ⟨∆⟩+
∑n

i=1⟨θ
i
1⟩, ⟨o2⟩ = ⟨∆ · b⟩ − b · ⟨∆⟩+

∑n
i=1⟨θ

i
2⟩, and

⟨o3⟩ = ⟨∆ · c⟩ − c · ⟨∆⟩+
∑n

i=1⟨θ
i
3⟩. Then for i ∈ [n], Pi invokes FCommit with input oi1, o

i
2, o

i
3.

5. Verifiers check that they receive the same messages from P and the same commitments. This is
done by letting each verifier compute a hash of his received messages and send the hash result to
all other verifiers. If a verifier receives different hash values from other verifiers, this verifier aborts.

6. All verifiers open the above commitments. If
∑n

i=1 o
i
1 =

∑n
i=1 o

i
2 =

∑n
i=1 o

i
3 = 0 and c = a · b, all

verifiers accept. Otherwise, all verifiers abort.

4.2 Online Protocol

Protocol 3: ΠOnline

Define an arithmetic circuit C with |I| input wires and |C| multiplication gates. Let N = |I|+ |C|, m be
the compression parameter, and c = 2⌈logm N⌉(m− 1) + 4 be the number of random authenticated
additive sharings in K needed during the inner-product check. Let H : {0, 1}∗ → {0, 1}κ be a random
oracle. Let PRG : {0, 1}κ → {0, 1}∗ be a pseudorandom generator.
1. Preprocess: P and V1, . . . ,Vn call ΠPrep to prepare N random authenticated additive sharings in
R and c random authenticated additive sharings in K. For all j ∈ [d] and ℓ ∈ [σ], all verifiers hold
[∆j |ℓ]t. In addition, each verifier Vi holds noncei and P holds nonce1, . . . , noncen.

2. Distribute Circuit Wire Values: For each group of σ · d wires, let {vi,j}i∈[σ],j∈[d] denote the wire
values to be shared by P.
(a) P fetches the first σ · d unused random authenticated additive sharings in R, denoted by
{Jri,jK}i∈[σ],j∈[d]. P computes λi,j = vi,j − ri,j for all i ∈ [σ], j ∈ [d]. Then P views λi =
(λi,1, . . . , λi,d) as an element in K and computes a degree-(σ − 1) packed Shamir sharing of
(λ1, . . . ,λσ), denoted by [D]σ−1. P distributes the shares of [D]σ−1 to all verifiers.

(b) All verifiers locally convert [D]σ−1 to additive sharings ⟨λ1⟩, . . . , ⟨λσ⟩, and then convert these
k additive sharings in K to σ · d additive sharings {⟨λi,j⟩}i∈[σ],j∈[d] in R.

(c) For all i ∈ [σ], ℓ ∈ [d], all verifiers locally compute [D]σ−1 · [∆ℓ|i]t and locally convert it to
additive sharings {⟨λi,j ·∆ℓ⟩}j∈[d] in R. Then for all i ∈ [σ], j ∈ [d], all verifiers locally convert
{⟨λi,j ·∆ℓ⟩}ℓ∈[d] to an additive sharing ⟨λi,j ·∆⟩ in K.

(d) All verifiers locally compute Jvi,jK = Jri,jK + Jλi,jK for all i ∈ [k], j ∈ [d].
3. Procedure for Fiat-Shamir:

(a) For i ∈ [n], P computes comi = H(Vi, si, noncei) where si are the shares distributed to Vi in
Step 2.

(b) P sends (com1, . . . , comn) to all verifiers.
(c) For i ∈ [n], Vi verifies comi. If the check fails, it aborts.
(d) All verifiers check that they receive the same (com1, . . . , comn) from P . This is done by letting

each verifier compute a hash of his received messages and send the hash result to all other
verifiers. If a verifier receives different hash values from other verifiers, this verifier aborts.

(e) All parties compute s = H(Mult, com1, . . . , comn), where the first parameter is used as the
identifier.

4. Verification of Multiplications: All verifiers follow the circuit structure and compute an authen-
ticated additive sharings for all wire values. Note that the missing wires are all from the outputs
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of addition gates, which can be computed locally from the input authenticated additive sharings.
Let m1 denote the number of multiplication gates. For ℓ ∈ [m1], denote (JvαℓK, JvβℓK, JvγℓK) as the
shares of input and output wire values of the ℓ-th multiplication gate.
(a) Parties compute uniform coefficients (χ1, . . . , χm1)← PRG(s). They construct an inner product

triple

JxK = (χ1 · Jvα1K, . . . , χm1 · Jvαm1
K)

JyK = (Jvβ1K, . . . , Jvβm1
K)

JzK =
m1∑
i=1

χi · JvγiK

(b) Recall that m is the compression parameter. If the dimension of the vectors (JxK, JyK) is not
multiple of m, the verifiers pad zeros at the end of (JxK, JyK) until their dimension is m · ⌈m1

m
⌉.

(c) Verifiers invoke πVerifyIP to check (JxK, JyK, JzK). If all verifiers accept the check, they output
accept.

Theorem 2. Assume that a random function from the class of expansion functions in FnVOLE is a PRG.
Protocol ΠOnline securely realizes FZK in the presence of a malicious adversary A who can corrupt P
and up to t-out-of-n verifiers among (V1, . . . ,Vn) in the (FnVOLE,FCommit)-hybrid and random oracle
model.

We refer the readers to Section C.2 for the proof.

Remark 5. Unlike the previous honest-majority MVZK protocol by Yang and Wang [YW22], we do
not assume the existence of a broadcast channel to let the prover distribute the extended witness
and verification material to the parties. Note that, for security with abort, broadcast channels can be
easily instantiated over point-to-point channels by having the parties cross-check that they receive
the same message by sending the hash of the message to each other. This is the approach we
implicitly take in our work. If we were to assume a broadcast channel, we may remove the extra
rounds required for cross-checking (which would be “hidden” in the instantiation of the broadcast
channel), but this would not save communication since the number of downloaded bits by each
party would be the same.

5 Performance Study

In this section we study the performance of our protocol, and compare it with respect to related
work. Recall that our multiverifier ZK construction supports any number of active corruptions
t < n(1− ϵ), for any constant 0 < ϵ < 1. Since in the honest majority regime where ϵ > 1/2 one can
design protocols based only on information-theoretic primitives such as threshold secret-sharing
(e.g. [YW22; Bau+22a]), without resotring to public-key operations such as VOLE as in here, we
are particularly interested in the performance of our construction in the dishonest majority context,
in which ϵ ≤ 1/2. In this case, the only related work in the context of multiverifier ZK is [Zho+23],
which as we will see is mostly of theoretical interest, with our work outperforming theirs but at
least two orders of magnitude. First, in Section 5.1 we study the communication complexity of our
protocol and compare it to related works. Finally, in Section 5.2 we present experimental results
derived from our end-to-end implementation.

5.1 Communication Complexity

We first study the communication costs of our protocol. Since all related works in multiverifier
ZK are set over fields, we focus in this case for this analysis, and we assume for simplicity that
|F| > 2κ. For measuring communication we ignore costs that are sublinear on the circuit size |C| or
the number of verifiers n. This typically includes calls to random beacon functionalities, amortized
consistency checks, recursive checks, Fiat-Shamir hashes, etc. We let |I| be the number of inputs
and |C| the size of the circuit, measured in number of multiplications.

15



First, we measure the communication of our protocol (ΠOnline + ΠPrep). Our preprocessing ΠPrep

requires M = ⌈(|I|+ |C|+ c · d)/σ⌉ VOLE pairwise correlations from FnVOLE, where σ = n− t = ϵn
is the number of honest parties, and c is the number of additive sharings needed for the consistency
check, which is sublinear in |C| and hence we ignore it. Generating each of these using ΠnVOLE

corresponds (ignoring the cost of the consistency check, which is independent of |C|) to each pair
of parties calling Fprog

VOLE with length ≈M . Using our instantiation Wolverine-based protocol Πprog
VOLE

that appears in the full version of this work, this cost is sublinear in M , and hence we ignore it for
the purpose of the estimation of the communication costs.8 For the online phase, P sends to each
verifier (|I|+ |C|)/σ elements, for a total of n(|I|+ |C|)/(ϵn) = (|I|+ |C|)/ϵ elements.

Crucially, we see that for a fixed ϵ, communication is constant independently of n, which is
an essential property for scalability, and is one of the major selling points of our construction.
Furthermore, the more honest parties there are, that is, the larger that ϵ becomes, the better this
constant is. We see then that our protocol benefits from having more honest parties, even without
reaching honest majority. Let us compare now to [Zho+23]. This protocol is designed for maximal
adversary dishonest majority. For a fair comparison, we take the number of verifiers in their work
to be n′ = t + 1 ≈ n(1 − ϵ), since they only need one honest verifier to ensure security. The
preprocesssing in ΠSIF in [Zho+23] is based on that from the BDOZ protocol [Ben+11], which the
authors assume as a black-box. This uses semi-homomorphic encryption and zero-knowledge proofs,
which are more expensive than VOLE, and yet for this comparison we omit their communication
costs. Still, the offline phase in [Zho+23] requires P to learn the “masks” after BDOZ has been
executed (protocol ΠPrep in [Zho+23, Fig. 5]), which requires each verifier to send 3|C| + |I|
elements to P. For the online phase, P sends |I|+ 2|C| elements to each verifier, so n′(|I|+ 2|C|)
total. Then, for the verification the verifiers need to reconstruct to each other 2|C| elements.9 This
is done in [Zho+23] by everyone sending to everyone in one round, since their work is mostly
interested in minimizing round count. This is quadratic in n′. Removing the round requirement, this
can be improved to 4n′|C| by using an intermediate king for reconstruction, increasing their rounds
by 1. We use this for our communication estimates (which plays in their favor).

Summing up, the communication for ΠSIF [Zho+23] is n(1 − ϵ)(7|C| + |I|). Note that, for
constant ϵ, communication is linear in n, with a high constant multiplying the circuit size. Further-
more, larger ϵ only helps [Zho+23] reduce the “slope” of the linear growth. In Section 5.2 we
present experimental results for our protocol, but note that we do not compare experimentally
with [Zho+23], which is mostly of theoretical interest. Their linear growth, coupled with the fact
that [Zho+23] relies on computationally more expensive techniques than ours (HE and generic
NIZKs used in [Ben+11] in contrast to recent optimized techniques for VOLE as in ours), are enough
evidence that our protocol drastically outperforms that of [Zho+23]. In Table 1 we present some
concrete communication costs for our protocol with respect to [Zho+23] (and also other works),
which puts this massive gap in evidence. We discuss this more thoroughly below.

Finally, we remark that in terms of rounds of communication, our protocol stands well. In the
offline phase, the verifiers only need to receive the Expand function and the seeds from P, and
they interact with each other to setup the VOLE correlations required by ΠPrep. With our Wolverine-
based instantiation of Fprog

VOLE, discussed in the full version of this work, which is the one we use
in our end-to-end implementation, we obtain 6 rounds in total, including sending the nonces to
P. The online phase only requires P to send the proof, followed by two round of interactions10

between the verifiers to commit-and-open in order to check its correctness. This round complexity
is comparable to that from [Zho+23]: they assume BDOZ [Ben+11] preprocessing for the offline
phase, which already adds a few rounds, and they add one more on top for their offline phase. In
the online phase then they have only two rounds, although, as we discussed before, this would lead
to a communication cost of Ω(n2|C|). For linear communication (which is already not very good
concretely, as reported in Table 1), one extra round must be added, matching ours.

8 This is only for communication, since later in Section 5.2 we discuss our end-to-end implementation which
includes the full instantiaton of Fprog

VOLE as well as the sublinear check.
9 We note that our protocol only involves sublinear communication among verifiers (and in fact the same

holds for [Bau+22a; YW22], which are honest majority).
10 This is achieved if assuming a broadcast channel, and 3 rounds otherwise. We note that [Zho+23] also

assumes a broadcast channel.
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Comparison in the honest majority regime As we have mentioned, the honest majority setting
enables for more lightweight techniques that do not use public key cryptography, and this is exploited
by the work of Baum et al. [Bau+22a], which proposes two protocols for t < n/4 and t < n/3,
and Yang and Wang [YW22], which presents a protocol for t < n(1 − ϵ) but only for ϵ ∈ (1/2, 1)
(that is, honest majority). However, as have mentioned, our protocol works for t < n(1− ϵ) for any
ϵ, including honest majority ϵ ∈ (1/2, 1). Hence, even though this is not our original target regime,
it is still meaningful to study the communication of our protocol with respect to these in [YW22;
Bau+22a]. Towards this end, let us first study the communication of these protocols.

Π4t in [Bau+22a], t < n/4. This protocol does not exploit the gap ϵ, so we use the minimum
amount of verifiers required for the desired ratio: n′ ≈ 4t = 4n(1− ϵ). In the offline phase, each
verifier sends ≈ n′ · |C|+|I|

3/4·n′ = 4
3 (|C|+ |I|) shares to all other verifiers.11 In the online phase, P

sends the proof to each verifier whose size is |C|+ |I| elements. The cost of the verification is
constant in |C|, hence we ignore it. Overall, multiplying by n′, the total is 28

3 n(1− ϵ)(|C|+ |I|)
Π3t in [Bau+22a], t < n/3. Here we take n′ ≈ 3t = 3n(1− ϵ). In the offline phase, each verifier

sends ≈ n′ · |C|+|I|
2/3·n′ = 3

2 (|C| + |I|) elements. In the online phase, P sends the proof to each
verifier whose size is |C|+ |I|. The cost of the verification is logarithmic in |C|, hence we ignore
it. Overall, multiplying by n′, the total is 15

2 n(1− ϵ)(|C|+ |I|)
Πpss

snimvzk in [YW22], t ≈ n(1− ϵ) for ϵ ∈ (1/2, 1). For the proof, P sends ≈ (|C|+ |I|)/((ϵ− 1/2)n)
shares to each verifier.12 The circuit verification cost is O(n log |C|) and hence we omit it. The
total is then (|C|+ |I|)/(ϵ− 1/2).

In Table 1, we present the communication of these protocols and ours, including the one
from [Zho+23], for a threshold t ≈ n(1− ϵ), for different values of ϵ and n, and a circuit of size
230 with 220 inputs over a 64-bit field. Note that Π4t only supports ϵ > 3/4, Π3t only supports
ϵ > 2/3, and Πpss

snimvzk only supports ϵ > 1/2; we write “N/A” for values outside these ranges. We
note several key points from this table. As we noted already, we see the results in [Zho+23] are
mostly of theoretical interest: for n = 25 and 10% honest parties, [Zho+23] requires already 1.4 TB
of communication while we only need 86 GB, and for n = 200 this is already 10.8 TB vs the same 86
GB for us. Now, note that the communication of [YW22], as ours, does not increase with n for a
fixed ϵ. However, the underlying constants are better in our case: our communication is roughly half
the one from [YW22], which stems from the fact that we can “pack” twice as many secrets in packed
secret-sharing. This is because we leverage VOLE for products instead of Shamir multiplicativity
as in [YW22], which requires a smaller polynomial degree and hence a worse packing parameter.
Instead, in our work we are able to use a maximal degree of n− 1. Finally, communication with
respect to the protocols in [Bau+22a] is even better: their communication scales with n, while
ours remains constant, and for example for 80% honest parties out of n = 25, the communication
in Π3t from [Bau+22a] takes ≈ 400 GB, while ours only takes 10.7 GB. For n = 200 ours takes
(approximately) the same 10.7 GB, while Π3t increases to 3.2 TB.

These results show that our protocol not only presents the most efficient multiverifier ZK protocol
in the dishonest majority setting, but it also has the potential to drastically improve the performance
over prior works in the honest majority regime, which is a very interesting byproduct of our work
given that our main target is the dishonest majority case. We already see from Table 1 massive
improvements in terms of communication. We leave it to future work to explore whether our
techniques can be also beneficial in the honest majority regime in terms of end-to-end runtimes,
given the nature of the tools used in our work (e.g. VOLE) being different than these by [YW22;
Bau+22a], which are specifically optimized for honest majority (e.g. Shamir secret-sharing). We
analyze the comparison between [Bau+22a] and our work in Section 5.2. As an additional note,
we observe that the work of [YW22] has not been implemented and so we find it harder to provide
an estimate.

11 Each share is signed, which adds communication. We ignore this, which plays in their favor.
12 This hides extra (constant, but not necessarily small) factors in [YW22] arising from circuit transformation,

needed to accommodate for the use of packed secret-sharing. We avoid this in our work since we only used
packing for compressing the proof, but for verification we rely on additive secret-sharing.
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n ϵ Π3t [Bau+22a] Π4t [Bau+22a] Πpss
snimvzk [YW22] ΠSIF [Zho+23] Ours

25

0.9 200.6 GB 161.2 GB 21.5 GB 150.3 GB 9.6 GB
0.8 401.3 GB 322.4 GB 28.7 GB 300.7 GB 10.7 GB
0.6 N/A N/A 86.0 GB 601.4 GB 14.3 GB
0.4 N/A N/A N/A 902.1 GB 21.5 GB
0.2 N/A N/A N/A 1.2 TB 43.0 GB
0.1 N/A N/A N/A 1.4 TB 86.0 GB

50

0.9 401.3 GB 322.4 GB 21.5 GB 300.7 GB 9.6 GB
0.8 802.5 GB 644.9 GB 28.7 GB 601.4 GB 10.7 GB
0.6 N/A N/A 86.0 GB 1.2 TB 14.3 GB
0.4 N/A N/A N/A 1.8 TB 21.5 GB
0.2 N/A N/A N/A 2.4 TB 43.0 GB
0.1 N/A N/A N/A 2.7 TB 86.0 GB

100

0.9 802.5 GB 644.9 GB 21.5 GB 601.4 GB 9.6 GB
0.8 1.6 TB 1.3 TB 28.7 GB 1.2 TB 10.7 GB
0.6 N/A N/A 86.0 GB 2.4 TB 14.3 GB
0.4 N/A N/A N/A 3.6 TB 21.5 GB
0.2 N/A N/A N/A 4.8 TB 43.0 GB
0.1 N/A N/A N/A 5.4 TB 86.0 GB

200

0.9 1.6 TB 1.3 TB 21.5 GB 1.2 TB 9.6 GB
0.8 3.2 TB 2.6 TB 28.7 GB 2.4 TB 10.7 GB
0.6 N/A N/A 86.0 GB 4.8 TB 14.3 GB
0.4 N/A N/A N/A 7.2 TB 21.5 GB
0.2 N/A N/A N/A 9.6 TB 43.0 GB
0.1 N/A N/A N/A 10.8 TB 86.0 GB

Table 1. Communication costs of our protocol with respect to related works for a circuit of size |C| = 109 with
|I| = 106 inputs. n is the total number of verifiers, and ϵ is the fraction of honest verifiers. “N/A” means the
given protocol does not support such high corruption thresholds.

5.2 Implementation and Experiments

We evaluate the performance of an end-to-end C++ implementation of our multi-verifier zero-
knowledge proof protocol over finite fields. The implementation is based on EMP-toolkits [WMK16]
and Intel HEXL [Boe+21]. The polynomial interpolation and evaluation are optimized by the
number theoretic transform (NTT) provided by Intel HEXL, and we use an NTT-friendly field
p = 259 − 228 + 1. All experiments are executed in AWS EC2 c5.metal machines with 96 vCPU and
192 GiB RAM unless otherwise specified. We emulate the throttled network bandwidth and latency
using the Linux netem tool. For experiments with ≤ 32 verifiers, all parties reside at 1 machine and
are executed by different processes. For larger-scale experiments, we split verifiers into multiple
machines due to memory constraints. The verifier implementation utilizes two threads for pair-wise
VOLE protocol execution, which prevents parties from staying idle.

End-to-end performance and parameters We benchmark the performance of our protocol with
various combinations of (n, σ), and σ/n is the ratio of honest verifiers. To utilize the optimization
by NTT, we choose both (n, σ) to be powers of 2. For each parameter set, we fix the bandwidth
to be 1Gbps and evaluate an arithmetic circuit of 230 multiplication gates. Table 2 shows the
throughput (million gates per second) of the protocol with these parameter choices. When fixing
the number of parties, the throughput increases if σ increases. This is because both computation
and communication overhead are inversely proportional to σ. On the other hand, if the ratio of
honest parties σ/n is fixed, the throughput is almost unchanged no matter how large (n, σ) are.
This property enables the protocol to scale to a large number of parties because its efficiency does
not degrade with the increase of n.

σ/n 4 8 16 32 64

50% 1.51 1.59 1.61 1.43 1.47
25% - 0.94 0.97 0.83 0.88
12.5% - - 0.55 0.45 0.49
6.25% - - - 0.25 0.27

Table 2. Throughput (×106 gates/second) of MVZK protocol in 1Gbps network. The 1st row indicates the
number of parties.
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Performance with network emulation We test the throughput of our protocol in different network
conditions and show the results in Table 3. In the first experiment, the bandwidth is throttled to
5Gbps, 1Gbps, 500Mbps and 100Mbps, respectively. We execute our ZKP with 32 verifiers and
evaluate a circuit of 230 gates. The communication overhead is dominated by O(n|C|/σ) field
elements sent from P to verifiers. When bandwidth is larger than 500Mbps, the throughput only
slightly degrades with the decrease of bandwidth. In the second experiment, the bandwidth is fixed
to 1Gbps, and we simulate the network latency of 2, 10, 30, and 60ms. Due to the constant-round
feature of our protocol, the performance is not impacted by the network delay.

Bandwidth 5Gbps 1Gbps 500Mbps 100Mbps

Throughput 1.18 0.84 0.72 0.18

Latency 2ms 10ms 30ms 60ms

Throughput 0.83 0.82 0.80 0.80

Table 3. Throughput (×106 gates/second) of MVZK protocol in different network settings.

Scalability and memory overhead The memory overhead of our protocol is linear to the number
of verifiers, and is proportional to the memory usage when verifying the statement in plaintext.
Hence the protocol is able to achieve high scalability by evaluating the circuit chunk-by-chunk
instead of processing the whole circuit in memory. We demonstrate this feature by a proof of
matrix multiplication: for public matrix C ∈ Fd×d

p , P proves the knowledge of two private matrices
A,B ∈ Fd×d

p such that A ·B = C. We use a native matrix multiplication circuit of size d3 gates.
By setting (n, σ) = (32, 8), bandwidth 1Gbps and network latency 60ms, we show the running

time and memory usage of the proof with varying matrix dimensions in Table 4. The running time
is approximately linear to the circuit size (d3) and the memory overhead is minorly affected by
the increase of d. Indeed, most memory consumption stems from storing VOLE correlations. The
verifiers need to store additional authentication messages; thus, their RAM usage is higher than P.
Furthermore, the memory overhead can be reduced by adjusting the LPN parameters, which saves
the memory but increases the communication overhead. In real-world scenarios, it offers a flexible
choice in terms of the trade-off between memory and communication overhead.

Comparison to previous MVZK The prior MVZK proposed by Baum et al. [Bau+22a] lies in the
honest-majority regime and is implemented for small fields. Results in [Bau+22a, Table 2] show
that for 7 verifiers and 1/3 corruptions, it takes 326.48ms for end-to-end protocol execution when
proving million-size circuits, which results in a comparable throughput of 3×106gates/s. Our closest
result is the case of 8 verifiers and 50% corruption, which achieves 1.59Mg/s. We estimate that if our
protocol is reduced to the same number of corruption and field size, its communication overhead
will be further reduced by 32×. Meanwhile, [Bau+22a, Table 3] shows that for n = 100 and 1/3
corruptions, its protocol Π3t results in a throughput of 0.67× 106gates/s. Though our experiments
do not scale to n = 100, we conclude from Table 2 that once the ratio σ/n is fixed, the running time
of our protocol does not degrade with the increase of n. Hence we estimate the throughput of our
protocol still maintains > 1.4× 106gates/s when scaling from 64 to 100 parties, which performs
better than it in [Bau+22a] even with more corruptions.

We state the dramatic advantages of our protocol against Zhou et al. [Zho+23] in Section 5.1 by
showing the estimated gap in communication in Table 1. The benchmark by Zhou et al. only scales
to 7 verifiers. Its throughput is around 0.03× 106gates/s (estimated from [Zho+23, Table 3]), while
our protocol achieves throughput around 0.5× 106gates/s with even higher corruption threshold.

Comparison to interactive ZKP We compare the running time of our MVZK with Quicksil-
ver [Yan+21], which is a single-verifier VOLE-ZK with low memory overhead and high efficiency.
In the scenario when there are σ honest verifiers, we assume P proves the same statement to
n−σ+1 = 25 verifiers sequentially, which guarantees that it interacts with at least 1 honest verifier.
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We ignore the polynomial optimization of Quicksilver and only test for generic circuit computation.
Its running time for the same tasks is shown in the last column of Table 4. Comparing two protocols,
our MVZK decreases the running time by 3.3×-4.4× and communication overhead by 6.25×.

Comparison to IOP-based implementations Recent development of IOP-based proof systems
(e.g., Brakedown [Gol+23], Orion [XZS22] and Ligetron [WHV24]) show high efficiency and low
memory overhead compared to other SNARKs. While none of these implementations are open-
sourced, we compare our MVZK with these schemes by the prior benchmarks provided by [WHV24,
Figure 6e-6f]. It shows that the throughput (prover efficiency) of these ZKP are in the range of
0.3− 1.6× 106gates/s. In a machine with 16GB memory size, these ZKPs are able to process circuits
of 222 − 225 gates. [WHV24, Figure 6f] also shows that the memory overhead of these schemes are
nearly linear to the size of the circuit. While some of these banchmarks enable multi-threading, our
MVZK achieves throughput close to these scheme with a single thread (Table 2). Meanwhile, our
MVZK preserves the memory efficiency of interactive ZKP with a flat memory overhead even for
billion-size circuits (Table 4). Note that we can not compare with the garbage collection-enabled
Ligetron because its performance for large circuits (>225 gates) is unknown.

Comparison to distributed zk-SNARK EOS [Chi+23] is a private zkSNARK delegation scheme
that outsources the proof generation to a set of workers without revealing the witness. It improves
the proof generation time and scalability of zkSNARK. It provides a stronger functionality than
designated MVZK since its workers produce public-verifiable proofs that can be verified by anyone.
We compare the performance of EOS and MVZK for the task of solely proving a statement to a fixed
set of verifiers. According to the performance report of EOS, it takes around 1000s for two workers
to evaluate a statement of size 225 under a 3Gbps network. This number excludes the preprocessing
time. Using the same time budget, our end-to-end MVZK is able to prove to 32 verifiers with 75%
corruption of a circuit of size 230, or with 93.75% corruption of a circuit of size 228. Note that each
EOS worker runs in a machine with 192GB RAM and 96 cores, while all of our verifiers only utilize
192GB RAM and 96 cores in total.

Dim.
Time Memory (GB) [Yan+21]

(×103s) Prover Per Verifier (×103s)

512 0.22 2.69 5.67 0.73
768 0.58 2.70 5.70 2.46
1024 1.34 2.72 5.73 5.82
1280 2.56 2.73 5.77 11.38

Table 4. Running time and memory overhead of our MVZK protocol for the proof of matrix multiplication.

In the following, we compare our MVZK with other relevant works of which a proper publicly-
available benchmark is unattainable. Their implementations are either hardcoded to prove very
specific statements (e.g., Prio SNIP for secure aggregation [CGB17] and VOLE-in-the-Head for PQ
signatures [Bau+23]), or their practical instantiation is not in the same security model as ours (e.g.,
distributed ZK [Boy+19b]).

Comparison with Prio SNIP The secret-shared non-interactive proofs (SNIPs) proposed in
Prio [CGB17] can be viewed as a multi-verifier ZK. If we consider that Prio SNIP is equipped
with optimizations proposed by its follow-up works [Bon+19; Boy+20], our MVZK shares the same
asymptotic communication and computation complexity with Prio. However, our MVZK preserves
the soundness property against malicious adversaries who corrupt both the prover and up to t < n
verifiers, while Prio does not tolerate prover-verifier collusion. Meanwhile, although we can use our
techniques to endow Prio with security against prover-verifier collusion, it would result in O(n|C|)
communication even if t < (1− ϵ)n for a constant ϵ, while our MVZK only needs O(|C|) in this case.
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Comparison with distributed ZK Even though the term Distributed ZK (DZK) itself is not very
well defined, it generally refers to the fully linear IOP (FLIOP) approach proposed in [Bon+19;
Boy+20; Boy+19b; Boy+21], used in the context of proving statements over secret-shared data.
One of the core technical contributions of our work is enabling a prover to secret-share efficiently
an extended witness over a set of verifiers. Once this is done, the check the verifiers engage in is
not very different from that in DZK, and in fact, part of our verification protocol πVerifyIPProc shown
in Figure 3 is inspired by FLIOPs. However, our construction specifically leverages the fact that
the prover P, who holds the witness, has established certain VOLE correlations with the verifiers,
which enables secret-sharing not only the extended witnesses but also the messages in the FLIOP
much more efficiently than in other instantiations of the FLIOP model. Our work can be used in
the scenario of secure aggregation, client-server model MPC, and blockchain oracles to let a client
prove the input validity.

Comparison with VOLE-in-the-Head VOLE-in-the-Head (VitH) is a NIZK built upon Quicksilver
with O(|C|) proof size [Bau+23]. When using VitH to realize MVZK, each verifier still needs to
receive an O(|C|)-size proof, which results in O(n|C|) communication overhead in total, whereas
ours is only O(|C|). Moreover, our protocol enjoys streaming properties and thus has better memory
efficiency and scalability because of the streaming setting. Experiments in Table 4 show that our
MVZK has a flat memory usage with the increase of circuit size. On the other hand, VitH is a one-shot
protocol with memory overhead linear to the circuit size. Thus, VitH would need a large machine
for billion-size circuits benchmarked in our experiments. Our scheme can easily adapt to a smaller
RAM budget by adjusting the VOLE parameters.
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A Technical Overview (Continued)

Running the Recursive Check At this point the verifiers have authenticated sharings JwK for every
wire w coming from an input or multiplication gate. The parties derive authenticated shares for
every wire in the circuit by locally handling addition gates, thanks to the linearity of J·K. The goal
now is for them to check that these values satisfy the correct relations, meaning: if (JxiK, JyiK) are
inputs to the i-th multiplication gate, and JziK is the output, then it should hold that zi = xi · yi. Also
if JwK is a wire from an output gate, then w = 0. The check for the output gates is quite standard and
consists of the verifiers opening a random linear combination of the output gate wires, so we focus
our discussion on the multiplication gates instead. For this, we design an interactive protocol among
{P,V1, . . . ,Vn} that receives as input {(JxiK, JyiK, JziK)}|C|

i=1, where P knows the underlying secrets,
and the verifiers accept if zi = xiyi for i ∈ [|C|], rejecting otherwise. The protocol requires O(log |C|)
rounds and O(log |C|) field elements of communication, but it can be made non-interactive via
Fiat-Shamir, as we discuss shortly. In its first version the protocol also requires interaction in every
round between P and {V1, . . . ,Vn}, but we discuss how to remove this shortly.

Our verification protocol can be regarded as an instantiation of the fully-linear IOP paradigm
from [Bon+19]. However, instead of relying on the FLIOP language, we take a more pragmatic
approach and present a self-contained verification protocol. This is in par to recent works that use
custom “recursive checks” [GSZ20; Goy+21; Esc+22; Esc+23]. Consider a functionality FCoin that
samples uniformly random values to both the prover and all verifiers.13 First, the parties sample

13 This functionality is used to sample “challenges”, and although we do need it for the checks involving the
instantiation of FnVOLE from Fprog

VOLE, we do not need it for the recursive correctness check, since we will
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uniformly random values α1, . . . , α|C| ∈ F, and instead of checking that xi ·yi = zi for every i ∈ [|C|],
they check that

∑|C|
i=1 αixiyi =

∑|C|
i=1 zi, which can be written as an inner product x · y = z. If at

least one product is incorrect, this inner product will also be incorrect with probability at least
O(1− 1/|F|).

Let 0 < m < |C| be a positive integer, which we refer to as the compression parameter, and
suppose for simplicity that m divides |C|, say |C| = m · ℓ. First, let us arrange JxK as a 2-dimensional
array {xi,j}i∈[ℓ],j∈[m], and similarly for y. The idea is to reduce the check of one inner product of
dimension mℓ, to one inner product of dimension ℓ. There are two steps to this: (1) reduce this
task to checking m inner products, each of dimension ℓ, and (2) reduce these inner products to
only checking one inner product, also of dimension ℓ. For the first step begin by noting that z is
(allegedly) equal to

∑m
j=1 zj , where zj =

∑ℓ
i=1 xi,jyi,j for j ∈ [m]. These are the m inner products

of dimension ℓ we reduce the initial check to, but the only caveat is that the verifiers do not have
sharings of the result of each product uj . To address this, P simply distributes sharings {JzjK}mj=1

(following the same approach as when P distributed the extended witness), and the parties check
that

∑m
j=1 zj = z. If the m dot products zj =

∑ℓ
i=1 xi,jyi,j for j ∈ [m] are verified to be correct,

then it follows that x · y = z. An optimization we use is that, instead of checking that
∑m

j=1 zj = z
(which would involve a zero-test similar to the one used to verify the correctness of output gates), P
only shares JzjK for j ∈ [m− 1], and the verifiers set JzmK = JzK−

∑m−1
j=1 JzjK, which automatically

forces this condition.
Now, to turn the m secret-shared dot products zj =

∑ℓ
i=1 xi,jyi,j for j ∈ [m] into one dot product

of dimension ℓ, the parties write (xi,1, . . . , xi,m) for i ∈ [ℓ] as the evaluation (fi(1), . . . , fi(m)) of
a degree-(m − 1) polynomial fi(X), and similarly yi,j = gi(j). Let h(X) :=

∑ℓ
i=1 fi(X)gi(X), which

is a degree-2(m − 1) polynomial that should satisfy h(j) = zj for j ∈ [m]. Note that the parties
can locally compute Jfi(η)K and Jgi(η)K for any η ∈ F, since they have authenticated shares of
enough evaluations of fi and gi. However, for h they only have m evaluations, but the degree
of h is 2(m − 1). To address this P distributes shares of (2(m − 1) + 1) −m = m − 1 additional
evaluations of h, say (Jh(m+ 1)K, . . . , Jh(2m− 1)K). At this point the verifiers call FCoin to sample a
random challenge η ∈ F, and they compute locally {Jfi(η)K}ℓi=1, {Jgi(η)K}ℓi=1, Jh(η)K. These values
should satisfy h(η) =

∑ℓ
i=1 fi(η)gi(η), which is a single secret-shared dot product of dimension ℓ.

Furthermore, thanks to Schwartz-Zippel Lemma, this dot product can only be valid with probability
O(m/|F|) if at least one of the original dot products is incorrect.

Removing Interaction from P via Fiat-Shamir The recursive check from above can be interpreted
as a direct instantiation of the FLIOPs from [Bon+19]. However, our main distinctive aspect is
how we turn this interactive protocol into a non-interactive one. This is crucial for our application:
our techniques are suitable for the case in which the number of verifiers is relatively large, so
minimizing the amount of communication not only among verifiers but between the prover and the
verifiers is very well motivated. Towards this, first note that our interactive proof is “public coin” in
the sense that the only interaction needed involves the functionality FCoin. As usual in interactive
proofs, for soundness, it is imperative that the prover cannot guess these challenges before sending
the messages in the previous rounds. For this, the Fiat-Shamir transform suggests to use a random
oracle output H(·) of previous messages as the challenge, which prevents the prover from choosing
earlier messages based on future challenges.

In our multiverifier setting this idea does not work directly. The main issue is that, in our case,
the prover sends different messages to different verifiers, so it is unclear what “messages” should
be passed through the RO. For example, it cannot be a concatenation of all messages across all
verifiers since a given verifier Vi will be missing the other verifier’s messages and hence will not
be able to compute the challenge on their own, or it cannot be just a subset of messages since this
gives a corrupted prover the ability to freely choose some messages without affecting the challenge,
which may break soundness. This complication was also noted in the work of Yang and Wang
[YW22], which is similar to ours except it is set in the (suboptimal) honest majority regime. As
in [YW22, Section 3.3], let us denote the messages that P sends privately to each verifier Vi by Msgi.

ultimately use Fiat-Shamir to sample these challenges. However, we only discuss Fiat-Shamir towards the
end of this section, so we describe the functionality here.
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In [YW22], P commits to these messages towards all verifiers by broadcasting {ci = H(Msgi)}ni=1,
and then each Vi verifies locally that ci is indeed the evaluation of Msgi under H, aborting if this
is not the case. If no verifier aborts, then the challenge is set to be H′(c1, . . . , cn). Note that, even
though a corrupted P has the freedom to fix any ci for a corrupted Vi (since corrupted verifiers
may not check the correctness of the commitments), P still needs to compute ci correctly for every
honest verifier Vi, meaning that P must choose the messages to honest verifiers before learning the
challenge. In [YW22] this is sufficient: in that work there is a majority of honest verifiers, and the
potential “errors” introduced by P are all fully determined by the messages sent to honest verifiers;
the ability to change corrupted parties’ messages does not give the adversary any advantage.

Unfortunately, this idea does not work in our case. As noted above, the adversary can freely
choose the commitments ci for corrupted Vi’s, so the only “unpredictable” values determining the
challenge H′(c1, . . . , cn) are the ci’s for honest verifiers Vi. However, unlike the honest majority
setting, a corrupted P can set valid commitments to valid messages in advance, before committing
to the errors, and only set the errors after the challenge has been learned. Let us argue why this is
the case. First, note that one type of messages that P sends are difference shares [δ]σ−1. These have
low degree σ − 1, and the underlying “secret” δ is determined by the σ = n − t honest verifiers’
shares alone. Hence, in this type of messages, a corrupted P cannot really cheat: as in [YW22], P
has to commit to the difference δ in advance, before learning the challenge.

The attack vector lies instead in a different type of messages that P sends: the seeds. For
simplicity in the discussion suppose that the number of multiplications is exactly σ (the packing
parameter) so that only one random mask r ∈ Fσ is needed, and furthermore, suppose that its
degree-(n− 1) shares [r]n−1 = (u1, . . . , un) are not derived from the seeds that P sends, but rather
P sends each share ui directly to Vi. A corrupted P can fix in advance the n− t shares ui of honest
verifiers Vi to a random value, hence learning the challenge in the process. The issue is that at
this point the adversary is not committed to the extended witness! Indeed, as we saw P can set
the ui’s for corrupted Vi’s entirely arbitrarily without modifying the challenge, and, unlike the
honest majority setting, changing these shares change the underlying mask r and hence change the
committed extended witness x = δ + r. The concrete attack is then to set this r in such a way that
the extended witness x passes the check in spite of being an incorrect witness. Crucially, note that
the t values ui the adversary can choose are enough to set r ∈ Fσ (and hence x) to any value of its
choice in a 1-1 correspondence.

Our solution to this problem lies in ensuring the prover cannot change the challenge only as
a functon of the seeds. To achieve this, before the prover sends the proof but after providing the
seeds, we ask the verifiers to send nonces to P , which are included as input to the RO for computing
the challenge. The fact that these are sampled after P sends the seeds effectively commits the prover
to these values, preventing the attack highlighted above. This only adds one extra round from the
verifiers to the prover before the beginning of the proof.

B Instantiating Programmable Vector OLE (Fprog
VOLE) over Rings

In this section we discuss our instantiation of the programmable VOLE functionality Fprog
VOLE, de-

fined as Functionality 1. Even though the literature contains many works in the direction of VOLE
over fields, much less is known for the case of more general rings, specifically Galois rings. Moz-
zarella [Bau+22b] provides VOLE constructions for Z/pkZ, but it does not easily generalize to
Galois rings due to their dependency on the “SPDZ2k trick” [Cra+18], which is naturally described
over Z/pkZ. Recently, the work of [LXY23] provides several VOLE instantiations over Galois rings by
generalizing the ones from Wolverine [Wen+21b]. Unfortunately, we cannot use directly the proto-
cols from [LXY23] to instantiate our functionality Fprog

VOLE since they do not achieve programmability,
which is the property that enables the sender to provide a succinct seed that is expanded to obtain
the vector that is multiplied by the scalar. In our context, this property is crucial to let the prover
choose the underlying messages of the VOLE and communicate them to the verifiers succinctly.

Programmability is used in both Le Mans [RS22] and Superpack [Esc+23] to “link” VOLE
instances to OLE instances used to obtain multiplication triples. In [RS22, Appendix D], the authors
provide an instantiation of Fprog

VOLE over fields (that is, they obtain VOLE with programmability) by
building on Wolverine [Wen+21b], as in [LXY23]. Once again, the ideas in [RS22] are insufficient
for our use-case since they are restricted to fields. At a high level, our approach to instantiate
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Fprog
VOLE is to start from Wolverine [Wen+21b], using the observations from [RS22] to achieve

programmability, and these from [LXY23] to instantiate this over Galois rings. In what follows we
describe at a high level how such instantiation of Fprog

VOLE over Galois rings would work. This is the
protocol we use in our proof-of-concept implementation, discussed in Section 5.2. Since most of it
follows in a relatively simple manner from existing works, namely [RS22; LXY23; Wen+21b], we
keep our discussion rather high level.

Our instantiation of Fprog
VOLE in [RS22] follows the same skeleton as [RS22; LXY23; Wen+21b],

and is divided into two steps. First, in Section B.1 we instantiate a functionality for chosen-input
single-point subfield VOLE, which can be regarded as a general vector OLE functionality where
the vector multiplying the scalar has only one non-zero entry that lies in a subfield, which is
chosen by one of the parties. Here we can essentially use the instantiation from [LXY23], adding
programmability on top, which we discuss in Section B.1. The second part, discussed in Section B.2,
consists of using single-point VOLE for instantiating Fprog

VOLE. To this end, a few instances of single-
point VOLE are used as a “seed” that is then expanded into a proper (programmable) VOLE, where
the vector multiplying the scalar is not sparse anymore, but (indistinguishable from) random. This
involves applying a PRF that has certain “homomorphic” properties, which is instantiated from
the Learning Parity with Noise (LPN) assumption. While [RS22] uses the dual version of the LPN
assumption, for efficiency purposes we use the primal version instead, which is done in [LXY23].
Once again, we add programmability on top.

For the rest of the section we let R = Z/qZ where q is a prime power and K = GR(q, d).
Moreover, we have been using so far n and t to refer to the number of parties and adversarial
threshold respectively, but since this section is only related to two parties, we will “free” these
symbols and use them for other purposes in what follows. We will also “free” the symbol k, used so
far to denote the exponent of the prime in q. This allows us stick to notation used in previous works,
which we believe to be useful for the reader familiar with previous works. For the purpose of this
section we will index vectors from 0, and use x[a, b) to denote the (sub)vector (xa, . . . , xb−1).

B.1 Single-Point Subring VOLE

We begin by defining the chosen-input single-point subring VOLE functionality F ci
spsVOLE as Func-

tionality 3. This functionality involves a sender PA and a receiver PB , and it allows the sender PA

to obtain (u,w) ∈ Rm ×Km, while PB obtains (∆,v) ∈ K ×Rm. This is similar to Fprog
VOLE except

that here u ∈ Km is a vector with only one non-zero entry, which is an invertible element of R (not
from K).14 Importantly, PA can choose u, and PB can choose ∆ (hence the “ci”—chosen input—in
the functionality notation). This functionality is similar to others in prior works, and we highlight
their differences:

– Fp,d
spsVOLE in [Wen+21b, Fig. 6], instantiated by Πp,d

spsVOLE in [Wen+21b, Fig. 7]. This is set over
fields only and it samples u and ∆ internally. In our case these are provided by PA and PB

respectively.

– FGR(2k,d)
spVOLE in [LXY23, Fig. 17], instantiated by Π

GR(2k,d)
spVOLE in [LXY23, Fig. 10]. This is defined over

Galois rings as ours but (1) samples u and ∆ internally, and (2) the non-zero entry in u is in K,
while in our case it is in R∗. In addition, the authors use their functionality FGR(2k,d)

spVOLE to model
the base VOLE needed for the extension, so their functionality contains two types of extend
commands: extend, for “small” VOLE queries, and SP-Extend for “long” but sparse (i.e. only one
non-zero entry) VOLE queries. We model the base VOLE separately, see Section B.1.

– F ci
spsVOLE in [RS22, Fig. 20], instantiated by Πci

spsVOLE in [RS22, Fig. 21]. This is defined over
fields while ours is set over Galois rings.

14 The invertibility requirement is superfluous in the case of finite fields, where every non-zero element is
invertible. However, as shown in [LXY23; Liu+22], this turns out to be important later when analyzing the
security of LPN in this context.
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Functionality 3: F ci
spsVOLE

Parameters: Rings R = Z/qZ and K = GR(q, d), a length n, and party identifiers PA, PB .
Initialize: On receiving Init from PA and (Init,∆) from PB , store the global key ∆ ∈ K, and ignore all
subsequent Init commands.
Extend: On receiving (extend, n, α ∈ [n], β ∈ R∗) from PA and extend from PB , do:

1. If PB is honest, sample v ← Kn. Else, receive v from A.
2. Set u ∈ Rn such that u[i] = 0 for i ̸= α, and u[α] = β. Compute w = v +∆ · u ∈ Rn.
3. If PB is corrupt, receive a set I ⊆ [0, n) from A. If α ∈ I, send success to PB and continue. Else,

send abort to both parties, output α to PB and abort.
4. Output (u,w) to PA and v to PB .

Global-key query: If PA is corrupted, receive (guess,∆′) from the adversary with ∆′ ∈ K. If ∆′ = ∆,
send success to PA and ignore any subsequent global-key query. Otherwise, send abort to both parties
and abort.

As we saw above, none of the instantiations in [Wen+21b; RS22; LXY23] are sufficient for
our purposes. However, they can be easily adapted. We choose to start from protocol ΠGR(2k,d)

spVOLE

in [LXY23, Fig. 10], which almost instantiates our functionality F ci
spsVOLE, except it does not allow

(honest) PA and PB to choose u and ∆ respectively, and it does not guarantee that u ∈ Rm.
Fortunately, this is easy to address.

Base VOLE All of the instantiations above follow the same template to obtain single-point VOLE:
start from a short VOLE instance to set the VOLE correlation at the non-zero entry, and use a
GGM-based puncturable PRF to extend this correlation to cover the zero entries as well. Here, we
discuss the base VOLE functionality FsVOLE we will use, which is presented below as Functionality 4.

Functionality 4: FsVOLE

Parameters: Rings R = Z/qZ and K = GR(q, d), length m, and party identifiers PA, PB .
Initialize: On receiving Init from PA, and (Init,∆) from PB , store the global key ∆ ∈ K, and ignore
all subsequent Init commands.
Base VOLE: This procedure can be run multiple times. On receiving (base, ℓ) from PA and PB , do:

1. If PB is honest, sample y ← Kℓ. Otherwise, receive y ← Kℓ from A
2. If PA is honest, sample x ← Rℓ and compute w := y +∆ · x ∈ Kℓ. Otherwise receive x ∈ Rℓ

and w ∈ Kℓ from A, and then recompute y = w −∆ · x ∈ Kℓ

3. Send (x,w) to PA and y to PB .

Global-key query: If PA is corrupted, receive (guess,∆′) from the adversary with ∆′ ∈ K. If ∆′ = ∆,
send success to PA and ignore any subsequent global-key query. Otherwise, send abort to both parties
and abort.

FsVOLE is a minor variant of the corresponding base VOLE functionality considered in each of
the three previous works:

– Functionality Fp,d
sVOLE in [Wen+21b, Fig. 1]. In our case, (1) we consider Galois rings while

theirs is only for fields, and (2) we allow PB to choose ∆ instead of having it sampled by the
functionality. Also, they keep a dictionary and instead of a base call, they have an extend call,
since this functionality is not only used to get the base OLE correlations, but it is also the one
they ultimately instantiate (see [Wen+21b, Thm. 4]). In our case we have a functionality FsVOLE

for the base OLE, and a separate Fprog
VOLE that models VOLE extension.

– Functionality FGR(2k,d)
VOLE in [LXY23, Fig. 1]. In our case, (1) we allow PB to choose ∆ instead of

having it sampled by the functionality, and (2) we let the vector x sampled by the functionality
be in Rℓ rather than Kℓ (hence the “s”—which stands for subring—in our functionality name
FsVOLE). As in [Wen+21b] the authors also keep a dictionary and use a extend call.

– Functionality FsVOLE in [RS22, Fig. 19]. In our case, we consider Galois rings while theirs is only
for fields. They also use a dictionary and an extend command, although they do not use it as
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in [Wen+21b; LXY23] since they only use FsVOLE for the base VOLE, and not for the extension.
We believe our approach of calling this “base” to be clearer.

Note that FsVOLE will only be called for short lengths, with the “heavy lifting” being performed
by our instantiation Πprog

VOLE of Fprog
VOLE; hence, efficiency is not a major concern. We can instantiate

FsVOLE in a variety of ways:

– From (N − 1)-out-of-N OT, as in [LXY23, Section 4.1], which extends SoftSpokenOT [Roy22]
to Galois rings.

– Extending the field-based VOLE from [Wen+21b, Fig. 5]. This uses correlated oblivious product
evaluation with errors (COPEe) as a building block, introduced and constructed from oblivious
transfer in [KOS16]. Fortunately, such primitive has also been defined and instantiated over
Galois rings in [EXY22].15

Remark 6. In the functionality FGR(2k,d)
sfVOLE from [LXY23, Fig. 15], the authors consider a modified

version of FGR(2k,d)
VOLE ([LXY23, Fig. 1]) that allows the key ∆ to be in Fpd instead of K = GR(pk, d),

which optimizes computation. We can also apply such optimization in our work.

Instantiating single-point VOLE To instantiate F ci
spsVOLE, we take the protocol ΠGR(2k,d)

spVOLE in [LXY23,
Fig. 10] as a starting point. We will make use of FsVOLE, and also a standard OT functionality FOT,
and a functionality to check equality on values held by the two parties FEQ. See [Wen+21b; LXY23;
RS22] for details.

We obtain our protocol Πci
spsVOLE that instantiates F ci

spsVOLE in the (FsVOLE,FOT,FEQ)-hybrid

model, by performing the following modifications to Π
GR(2k,d)
spVOLE ([LXY23, Fig. 10]):

1. Replace the “Extend” calls to FGR(2k,d)
VOLE ([LXY23, Fig. 1]) by base calls to FsVOLE.

2. In the initialization phase, PA sends Init to FsVOLE but PB sends (Init, ∆) instead of just Init.

This does not change the intrinsics of the protocol, and it is straightforward to adapt the proof of
Theorem 5 in [LXY23] to show that our resuting protocol, which we denote by Πci

spsVOLE, is secure.

B.2 Programmable VOLE from Single-Point Subring VOLE

Having an instantiation of F ci
spsVOLE at hand, we can proceed to discussing how to use it in order

to instantiate Fprog
VOLE. As in previous works [LXY23; RS22; Wen+21b], this is the “VOLE-extension”

step that extends a small vector OLE correlation given by FsVOLE, together with several “sparse”
instances given by F ci

spsVOLE, and obtains a long “dense” (programmable) VOLE instance, and this is
instantiated using the LPN assumption. Here, we do not discuss LPN, nor prove the security of our
protocol under this assumption, since it will follow from previous works. For a thorough discussion
on LPN over rings we refer the reader to [LXY23, Section B], or [Liu+22].16

For our exposition, it suffices to know that LPN involves a uniformly sampled matrix A ∈
Kk×n, where we think of k ≪ n. Note that the only programmable VOLE extension protocol
(over fields) [RS22] uses the dual version of the LPN problem, same as [Boy+18; Boy+19a;
CRR21]. This leads to less communication than the primal version at the expense of increased
computation times. However, it is known that in practice this trade-off does not play well, with
constructions based on primal-LPN offering the best concrete efficiency, even if they have slightly
higher communication [Sch+19]. Due to this, instead of following the description from [RS22], we
stay closer to works such as [Wen+21b; Sch+19] that make use of the primal-LPN assumption. To

15 Technically, [Wen+21b] modifies the COPEe in [KOS16] to achieve the “subfield” property required there.
Along the same lines, we would need to modify [EXY22] to include the “subring” property. This is straight-
forward and is approached in a similar way as in [RS22].

16 Note that we take the matrix A to be defined over R, while in [LXY23] it is taken over the Galois ring
extension K. This is because the authors in [LXY23] were not concerned with subring VOLE, which we are
here. This does not affect security: K = GR(q, d) is an R-module or rank d, so an LPN instance where the
matrix is in R and the other elements are in K corresponds to d instances over R.
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the best of our knowledge, our protocol Πprog
VOLE is the first explicit description of a programmable

VOLE protocol based on primal LPN over fields (let alone over Galois rings), which is more
computationally efficient than the dual LPN-based construction from [RS22].

We describe our protocol Πprog
VOLE as Protocol 4 below. Πprog

VOLE can be seen as a modified version of
the following protocols:

– Πp,d
sVOLE in [Wen+21b, Fig. 8], which is restricted to fields and is not programmable.

– Π
GR(2k,d)
VOLE in [LXY23, Fig. 11], which uses Galois rings but is not programmable and does

not take the factor multiplying ∆ to be in R as in our case, but in K. Also, the authors only
call ΠGR(2k,d)

spVOLE ([LXY23, Fig. 10]), while we, as in [Wen+21b], need to call both F ci
spsVOLE and

FsVOLE. This is because, as we have mentioned, in [LXY23] the base VOLE is incoporated in the
single-point VOLE functionality, while in our case these are separate functionalities.

– Πprog
VOLE in [RS22, Fig. 23], which is programmable but is restricted to fields.

Protocol 4: Πprog
VOLE

Parameters: Rings R = Z/qZ and K = GR(q, d). Fix n, k, t, and define ℓ = n− k and m = n/t, where
we assume t | n. Consider a matrix A ∈ Rk×n used for the primal LPN assumption, and also parties
identifiers PA, PB .
Initialize: The parties do the following:

1. On input (Init), PA sends Init to F ci
spsVOLE and FsVOLE, and on input (Init,∆), PB sends (Init,∆) to

F ci
spsVOLE and FsVOLE.

2. PA and PB send (base, k) to FsVOLE, which returns (x,z) ∈ Rk × Kk to PA and y ∈ Kk to PB

such that z = y +∆ · x.

Extend: PA on input (extend, seed), and PB on input extend, do the following:

1. PA parses seed as (β1, . . . , βt) ∈ (R∗)t, samples random (α1, . . . , αt) ∈ [m]t, and sends
(extend,m, αi, βi) for i ∈ [t] to F ci

spsVOLE, receiving ei, ci) ∈ Rm ×Km, where ei[αi] = βi, and all
the other entries are zero.

2. PB sends extend to F ci
spsVOLE t times, getting bi ∈ Km such that ci = bi +∆ · ei for i ∈ [t]. If either

party receives abort from F ci
spsVOLE in any of these executions, they abort.

3. Let e = (e1∥ · · · ∥et) ∈ Rn, c = (c1∥ · · · ∥ct) ∈ Kn and b = (b1∥ · · · ∥bt) ∈ Kn.
– PA locally computes u′ = x ·A+ e ∈ Rn and w′ = z ·A+ c ∈ Km

– PB locally computes v′ = y ·A+ b ∈ Km.
4. PA updates x ← u′[0 : k) and z ← w′[0 : k), and PB updates v′ ← y[0 : k), storing these for

future extend calls.
5. PA outputs u = u′[k : n)a and w = w′[k : n), while PB outputs v = v′[k : n).

a Note that this defines what the function Expand looks like: it is parameterized by the matrix
A ∈ Rk×n, it takes a seed seed ∈ (R∗)t, derives e from it returns u = (x ·A+ e)[k : n)

The differences between Πprog
VOLE and Π

GR(2k,d)
VOLE in [LXY23, Fig. 11] are mostly cosmetic, and

security of Πprog
VOLE is proven in the exact same way as [LXY23, Thm. 6].

C Proofs for Theorem 1 and Theorem 2

C.1 Proof of Theorem 1

Proof. Let VA (resp. VH) be the set of corrupted verifiers (resp. honest verifiers). We have |VA| ≤ t
and |VH| ≥ n− t. We construct a PPT simulator S that runs A and is given access to FnVOLE.
Initialize: For i ∈ VH and j ∈ VA, S simulates Fprog

VOLE and receives a ∆j
i ∈ K from Vj . Let Vi⋆ ∈ VH

be the honest verifier with the smallest index. S forwards ∆j
i⋆ to FnVOLE with the init command.

If P is honest, S receives Expand from FnVOLE and sends it to all verifiers on behalf of P . Then S
follows the rest of steps to check the consistency of Expand. If P is corrupted, S honestly follows
the protocol. If all honest verifiers do not receive the same Expand but the check passes, S aborts.
Extend:
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1. If P is corrupted, for each Vi ∈ VH, S receives seedi from P and sets seed
i
= seedi. If P is

honest, S receives {seedi}i∈VA from FnVOLE and sends them to corrupted verifiers.
2. S emulates Fprog

VOLE for each pair of verifiers (Vi,Vj) if exactly one of them is in VA.
– Case 1: Vi ∈ VA. S receives seedij from Vi and wi

j ∈ Km+1 from A. Then S replies
(Expand(seedij),w

i
j) to Vi. For the global key query made by Vi, S always returns abort to

both verifiers and abort.
– Case 2: Vj ∈ VA. S receives vj

i ∈ Km+1 from A and replies vj
i ∈ Km+1 to Vj . For the guess

of the seed, if P is honest, S always returns abort, outputs a random value as the seed to Vj ,
and aborts. If P is corrupted, S learns seedi and follows the functionality honestly.

For each Vi ∈ VA, S sets seed
i

to be seedii⋆ , where recall that Vi⋆ ∈ VH is the honest verifier
with the smallest index. Then S sends {seedi}i∈VA to FnVOLE. If P is corrupted, S also sends
{seedi}i∈VH to FnVOLE.

Consistency Check:

1. S emulates FCoin and sends a uniformly random value χ ∈ K to corrupted verifiers.
2. For each Vi ∈ VH, S acts as Vi to send random values to corrupted verifiers as their shares of
⟨bi⟩. S also receives the shares of ⟨bi⟩ of honest verifiers from each Vi ∈ VA.

3. S computes ûi for each honest verifier as follows.
– If P is corrupted, then S has received seedi for each Vi ∈ VH. For each Vi ∈ VH, S computes
ui =

∑m
ℓ=1 χ

ℓ · ui
ℓ + ui

m+1. Then S samples a random additive sharing ⟨bi⟩ of 0 based on the
shares of corrupted verifiers (which have been sent to corrupted verifiers). Then compute
ûi = ui +

∑n
j=1 b

i
j .

– If P is honest, S samples uniform ûi for all Vi ∈ VH.
S sends ûi to corrupted verifiers for all Vi ∈ VH. Then S receives ûi from Vi ∈ VA and computes
û =

∑n
i=1 û

i.
4. S emulates FCommit and records (ũi, {Z̃i

j}j ̸=i, Z̃
i
i ) for i ∈ VA. Then S prepares the messages

committed by honest verifiers.
– When P is corrupted, S has computed ui for Vi ∈ VH. When P is honest, for each Vi ∈ VH,
S samples a random additive sharing ⟨bi⟩ of 0 based on the shares of corrupted verifiers
(which have been sent to corrupted verifiers). Then compute ui = ûi −

∑n
j=1 b

i
j .

– For each Vi,Vj ∈ VH and i ̸= j, S samples a random value as Zi
j = wi

j . For each Vi ∈ VH
and Vj ∈ VA, S computes Zi

j = wi
j = ui ·∆j

i + vji , where vji =
∑m

ℓ=1 χ
ℓ · vji,ℓ + vji,m+1.

– For each Vi ∈ VH, if û =
∑

j∈VH
uj +

∑
j∈VA

uj
i , where uj

i =
∑m

ℓ=1 χ
ℓ · uj

i,ℓ + uj
i,m+1 and

(uj
i,1, . . . , u

j
i,m+1)← Expand(seedji ),

then S sets Zi
i = −

∑
j ̸=i w

j
i , where for each Vj ∈ VA, wj

i =
∑m

ℓ=1 χ
ℓ · wj

i,ℓ + wj
i,m+1.

Otherwise, S samples a random value as ∆i and computes Zi
i = −

∑
j ̸=i w

j
i + (

∑
j∈VH

uj +∑
j∈VA

uj
i − û) ·∆i.

5. S follows the protocol to check the consistency of all received messages (including the sharing
⟨û⟩ and all commitments). If all honest verifiers do not receive the same messages but the check
passes, S aborts.

6. S follows the protocol to open ui, {Zi
j}nj=1 for each Vi ∈ VH and checks whether û =

∑
i∈VH

ui+∑
i∈VA

ũi. If not, S aborts. Otherwise, for each Vi ∈ VH and Vj ∈ VA, if ũj ̸= uj
i , S aborts

on behalf of Vi, where uj
i =

∑m
ℓ=1 χ

ℓ · uj
i,ℓ + uj

i,m+1 and (uj
i,1, . . . , u

j
i,m+1)← Expand(seedji ). If

Expand(seedji ) ̸= Expand(seed
j
), S also aborts. S checks whether

∑n
i=1 Z

i
j = 0 for all j ∈ [n]. If

not, S aborts. If P is honest and there exists Vi ∈ VH such that ∆j
i ̸= ∆j

i⋆ , where recall that
Vi⋆ ∈ VH is the honest verifier with the smallest index, S aborts.

Output:

– If P is corrupted and S does not abort, for all Vi ∈ VH and Vj ∈ VA, S sets v̂ji,ℓ = ui
ℓ ·∆

j
i + vji −

ui
ℓ ·∆

j
i⋆ for all ℓ ∈ [m] and sends v̂j

i = (v̂ji,1, . . . , v̂
j
i,m) to FnVOLE. For all Vi ∈ VA and Vj ∈ VH,

S sends wi
j = (wi

j,1, . . . , w
i
j,m) to FnVOLE. For all Vi,Vj ∈ VA and i ̸= j, S sends all-0 vector as

vj
i to FnVOLE.
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– If P is honest and S does not abort, for all Vi ∈ VH and Vj ∈ VA, S sends vj
i = (vji,1, . . . , v

j
i,m)

to FnVOLE. For all Vi ∈ VA and Vj ∈ VH, S sends wi
j = (wi

j,1, . . . , w
i
j,m) to FnVOLE. For all

Vi,Vj ∈ VA and i ̸= j, S sends all-0 vector as vj
i to FnVOLE.

We show the security of ΠnVOLE by a series of hybrids.
Hybrid0: This is the same as the real-world execution.
Hybrid1: In this hybrid, S honestly simulates Fprog

VOLE, FCoin, and FCommit. The distribution of
Hybrid1 is identical to that of Hybrid0.

Hybrid2: In this hybrid, in the initialization step, if all honest verifiers do not receive the
same Expand from P, S aborts. Assume that H is a collision-resistant hash function, Hybrid2 is
computationally indistinguishable to Hybrid1.

Hybrid3: In this hybrid, S simulates the response of Fprog
VOLE to the global key query and the seed

query as described above. For the global key query, when PB is honest, since ∆ is randomly sampled
from K, the probability that ∆′ = ∆ is negligible. For the seed query, when PA is honest and P is
honest, since seed is randomly sampled from S, the probability that seed ∈ I is negligible. Thus,
Hybrid3 and Hybrid2 are statistically close.

Hybrid4: In this hybrid, when simulating Fprog
VOLE, S delays the computation of wi

j,ℓ when Vi is
honest, and delays the computation of vji,ℓ when Vj is honest: After χ are generated, S generates wi

j

and vji with respect to ui
j and ∆j

i . Only at the output step, S generates wi
j,ℓ and vji,ℓ with respect to

ui
j,ℓ and ∆j

i for all ℓ ∈ [m]. The distribution of Hybrid4 is identical to that of Hybrid3.

Hybrid5: In this hybrid, when P is honest, S simulates P by only generating {seedi}i∈VH at the
output step. For each Vi ∈ VH, S samples a random value as ui. Assuming that Expand is a PRG, the
distribution of Hybrid5 is computationally indistinguishable from that of Hybrid4.

Hybrid6: In this hybrid, for each honest verifier, S simulates ui, ûi, ⟨bi⟩ as described above. The
distribution of Hybrid6 is identical to that of Hybrid5.

Hybrid7: In this hybrid, in Step 6 during the consistency check, if all honest verifiers do not
receive the same messages for ⟨û⟩ and all commitments, S aborts. Assume that H is a collision-
resistant hash function, Hybrid7 is computationally indistinguishable to Hybrid6.

Hybrid8: In this hybrid, S simulates Zi
i for each Vi ∈ VH as described above. Observe that

Zi
i = (ui − û) ·∆i −

∑
j ̸=i

vij

= (ui − û) ·∆i −
∑
j ̸=i

(wj
i − uj

i ·∆
i)

= (
∑
j∈VH

uj +
∑
j∈VA

uj
i − û) ·∆i −

∑
j ̸=i

wj
i .

If û =
∑

j∈VH
uj +

∑
j∈VA

uj
i , then Zi

i = −
∑

j ̸=i w
j
i . Otherwise, Zi

i = (
∑

j∈VH
uj +

∑
j∈VA

uj
i −

û) ·∆i −
∑

j ̸=i w
j
i . Hybrid8 is identical to that of Hybrid7.

Hybrid9: In this hybrid, after opening ui, {Zi
j}nj=1, for each Vi ∈ VH and Vj ∈ VA, if ũj ̸= uj

i ,

S aborts on behalf of Vi. If Expand(seedji ) ̸= Expand(seed
j
), S aborts. If P is honest and ∆j

i ̸= ∆j
i⋆

for some i ∈ VH, S also aborts. We argue that Hybrid9 and Hybrid8 are statistically close. It is
sufficient to show that when S aborts in Hybrid9, with overwhelming probability, S also aborts in
Hybrid8.

– When ũj ̸= uj
i , since ∆i is random and unknown to corrupted verifiers, with overwhelming

probability, ũj ·∆i + vij ̸= Z̃j
i . Therefore, in this case, S aborts in Hybrid8 with overwhelming

probability.

– When Expand(seedji ) ̸= Expand(seed
j
) where recall that seed

j
= seedji⋆ , since χ is uniformly

random, with overwhelming probability uj
i ̸= uj

i⋆ . Then either uj
i ̸= ũj or uj

i⋆ ̸= ũj . In this case,
S aborts in Hybrid8 with overwhelming probability as well.

32



– Given that S does not abort in the above two cases, we have Expand(seedji ) = Expand(seed
j
) for

all Vj ∈ VA and Vi ∈ VH, and û =
∑n

i=1 u
i. When P is honest and ∆j

i ̸= ∆j
i⋆ , we have

n∑
ℓ=1

Zℓ
j = Zi

j + Zi⋆

j +
∑

ℓ̸=i,i⋆

Zℓ
j

= ui ·∆j
i + vji + ui⋆ ·∆j

i⋆ + vji⋆ +
∑

ℓ ̸=i,i⋆

Zℓ
j .

Since ui and ui⋆ are two random values given the constraint that
∑n

ℓ=1 u
ℓ = û, and these two

values are not known to corrupted verifiers, with overwhelming probability
∑n

ℓ=1 Z
ℓ
j ̸= 0.

In summary, Hybrid9 and Hybrid8 are statistically close.
Hybrid10: In this hybrid, S simulates the output step. The difference is that honest verifiers

obtain their outputs from FnVOLE.

– When P is corrupted, if S does not abort, then Expand(seedji ) = Expand(seed
j
) for all Vj ∈ VA

and Vi ∈ VH. In Hybrid9, each Vi ∈ VH takes wi
j,ℓ = ui

ℓ · ∆
j
i + vji,ℓ and vij,ℓ = wj

i,ℓ − uj
ℓ · ∆i

for all j ̸= i and ℓ ∈ [m] as output. When Vj ∈ VH, ∆j
i = ∆j , vij,ℓ is a random value, and

wi
j,ℓ = ui

ℓ · ∆j + vji,ℓ, which have the same distribution as those generated by FnVOLE. When
Vj ∈ VA, wi

j,ℓ = ui
ℓ ·∆

j
i + vji,ℓ = ui

ℓ ·∆
j
i⋆ + (ui

ℓ ·∆
j
i + vji,ℓ − ui

ℓ ·∆
j
i⋆) and vij,ℓ = wj

i,ℓ − uj
ℓ ·∆i.

By providing ui
ℓ ·∆

j
i + vji,ℓ − ui

ℓ ·∆
j
i⋆ and wj

i,ℓ to FnVOLE, the outputs of Vi in both hybrids are
identical.

– When P is honest, if S does not abort, then Expand(seedji ) = Expand(seed
j
) and ∆j

i = ∆j
i⋆ for

all Vj ∈ VA and Vi ∈ VH. Following the same analysis, the outputs of honest verifiers have the
same distribution.

Thus, Hybrid10 and Hybrid9 are identically distributed. Note that Hybrid10 corresponds to the
ideal-world execution.

C.2 Proof of Theorem 2

Proof. Let VA (resp. VH) be the set of corrupted verifiers (resp. honest verifiers) among (V1, . . . ,Vn).
We have |VA| ≤ t and |VH| ≥ n− t = σ. We first consider the case where P is honest. We construct
a PPT simulator S that runs A and is given access to FZK.

Preprocess: In ΠPrep, S emulates the Functionality FnVOLE.

1. It receives global key shares {∆i}i∈VA .
2. It samples a random expansion function Expand and distributes the function to all parties.
3. It samples random seeds {seedi}i∈VA , sends them to A, and receives {seedi}i∈VA .
4. For every pair of verifiers (Vi,Vj), if Vi is corrupted, S receives wi

j . If Vj is corrupted, S receives
vj
i . Then S prepares the outputs of corrupted verifiers.

Then S follows the protocol to compute the shares of corrupted verifiers of each authenticated
additive sharing using {seedi}i∈VA . S computes the correct shares of corrupted verifiers of each
additive sharing using {seedi}i∈VA and computes the difference between the actual secret and the
correct secret. Note that this difference is that the summation of the differences between the actual
share and the correct share of each corrupted verifier. This difference is the additive error caused by
corrupted verifiers in FnVOLE.

Next, for each Vi ∈ VH, S generates random values as the shares of [∆i
j |ℓ]t of corrupted verifiers

for all j, ℓ. For each Vi ∈ VA, S receives the shares of [∆i
j |ℓ]t of honest verifiers for all j, ℓ.

Finally, S generates random values as the nonces of honest verifiers and receives nonces from
corrupted verifiers.

Distribute circuit wire values: For each group of σ · d wires, S samples uniform {λi,j}i∈[σ],j∈[d]

and computes [D]σ−1. Then S distributes the shares to all verifiers.
For each [∆ℓ|i]t, let [∆H

ℓ |i]t =
∑

j∈H[∆j
ℓ |i]t and [∆A

ℓ |i]t =
∑

j∈A[∆
j
ℓ |i]t. Then [∆ℓ|i]t = [∆H

ℓ |i]t +
[∆A

ℓ |i]t. Note that S learns the shares of [∆H
ℓ |i]t of corrupted verifiers, and learns the shares of

[∆A
ℓ |i]t of honest verifiers.
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– S computes the shares of [D]σ−1 · [∆H
ℓ |i]t of corrupted verifiers and then computes the shares

of {⟨λi,j ·∆H
ℓ ⟩}j∈[d] of corrupted verifiers.

– S computes the shares of [D]σ−1 · [∆A
ℓ |i]t of honest verifiers and then computes the shares of

{⟨λi,j ·∆A
ℓ ⟩}j∈[d] of honest verifiers. Since S knows ∆A

ℓ , S computes λi,j ·∆A
ℓ and arbitrarily

sets the shares of corrupted verifiers based on the secret and the shares of honest verifiers for
all j ∈ [d].

S computes the shares of {⟨λi,j ·∆ℓ⟩}j∈[d] of corrupted verifiers.
Finally, S computes the shares of Jvi,jK of corrupted verifiers following the protocol. S sets the

additive error of vi,j to be the additive error of ri,j computed in the first step.
Procedure for Fiat-Shamir:

1. S honestly emulates the random oracle H.
2. S acts as the prover P to compute comi for i ∈ [n] by querying H. It sends {comi}i∈[n] to all

verifiers.
3. S follows the protocol and computes s.

Verify multiplication: S follows the protocol and traces the shares of corrupted verifiers and
the additive errors of JxK, JyK, JzK. Then S simulates Procedure πVerifyIP.

1. Simulate the inner product compression:
(a) In πVerifyIPProc and πVerifyIPFinal, S acts as a prover to send random differences bjs and cjs to

verifiers in VA.
(b) S honestly emulates the random oracle H.
(c) S follows the protocol and traces the shares of corrupted verifiers and the additive errors of

JaK, JbK, JcK.
(d) S randomly samples a, b and computes c = a · b. Then S sends (a, b, c) to all verifiers on

behalf of P.
2. Simulate the revealing process: Let δa, δb, δc be the additive errors. S simulates the checking

process as follows.
(a) For each Vi ∈ VH, S samples random values as the shares of ⟨θi1⟩, ⟨θi2⟩, ⟨θi3⟩ of corrupted

verifiers and sends them to corrupted verifiers. For each Vi ∈ VA, S receives the shares of
⟨θi1⟩, ⟨θi2⟩, ⟨θi3⟩ of honest verifiers. S arbitrarily sets the shares of ⟨θi1⟩, ⟨θi2⟩, ⟨θi3⟩ of corrupted
verifiers based on the secrets θi1 = θi2 = θi3 = 0 and the shares of honest verifiers.

(b) S computes the shares of ⟨o1⟩, ⟨o2⟩, ⟨o3⟩ of corrupted verifiers.
(c) S emulates the Functionality FCommit and receives õi1, õ

i
2, õ

i
3 of corrupted verifiers.

(d) S follows the protocol to check the consistency of all received messages. If honest verifiers
do not receive the same messages but the check passes, S aborts.

(e) If δa, δb, δc are all 0, S sets o1 = o2 = o3 = 0. Otherwise, S samples a random ∆ ∈ K and
computes o1 = ∆ · δa, o2 = ∆ · δb, o3 = ∆ · δc. Then S samples the shares of ⟨o1⟩, ⟨o2⟩, ⟨o3⟩
of honest verifiers based on the shares of corrupted verifiers computed by S and the secrets
o1, o2, o3.

(f) S follows the protocol to open the commitments of honest verifiers to {oi1, oi2, oi3}i∈VH . If
δa, δb, δc are not all 0 but the check passes, S aborts.

We prove that the protocol execution in the real world is indistinguishable from the above
simulation by a sequence of hybrids.

Hybrid0: This is the same as the real-world execution.
Hybrid1: In this hybrid, S emulates FnVOLE as follows. S delays the generation of the outputs of

honest verifiers until they are needed. S also uses uniformly random shares rather than expanding
from seeds. When P is honest, Expand is randomly sampled from the predefined class of expansion
functions. By assumption, Expand is a PRG. Thus, Hybrid1 is computationally indistinguishable
from Hybrid0. Note that after replacing shares of honest verifiers by uniformly random values,
the secrets of authenticated additive sharings are uniformly random given the shares of corrupted
verifiers. This is because for a degree-(n− 1) packed Shamir sharing that stores σ = n− t secrets,
given the shares of corrupted verifiers, there is a one-to-one map between the secrets and the shares
of honest verifiers.
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Hybrid2: In this hybrid, for each Vi ∈ VH, S first generates the shares of [∆i
j |ℓ]t of corrupted

verifiers. Then when the shares of honest verifiers are needed, S generates the shares of honest
verifiers accordingly. Hybrid2 is identically distributed to Hybrid1.

Hybrid3: In this hybrid, S computes the additive error to the secret of each authenticated additive
sharing by using {seedi}i∈VA and {seedi}i∈VA . This makes no change to the output distribution.

Hybrid4: In this hybrid, for each group of σ · d wires, S samples uniform {λi,j}i∈[σ],j∈[d]. Then S
computes ri,j = vi,j−λi,j . As we have argued in Hybrid1, ri,j is uniformly random. The distribution
of ri,j remains unchanged. After determining the secrets {ri,j}i∈[σ],j∈[d], S can compute the shares
of honest verifiers accordingly (due to the one-to-one map). Hybrid4 is identically distributed to
Hybrid3.

Hybrid5: In this hybrid, S computes the shares of corrupted verifiers for each ⟨λi,j · ∆ℓ⟩ as
described above. From the description, the computed shares satisfy that together with honest
verifiers’ shares, they form a valid additive sharing ⟨λi,j ·∆ℓ⟩. This makes no change to the output
distribution.

Hybrid6: In this hybrid, S computes the shares of Jvi,jK of corrupted verifiers following the
protocol. S also sets the additive error of vi,j to be the additive error of ri,j computed in Hybrid3.
Then the computed shares satisfy that together with the shares of honest verifiers, they form a valid
sharing Jvi,j + δvi,j K, where δvi,j is the computed additive error. This makes no change to the output
distribution.

Hybrid7: In the verification of multiplications, S traces the shares of corrupted verifiers and
the additive errors. In πVerifyIP, when sharing JzjK using JrjK, S first samples a random value as bj
and then computes the secret rj = zj − bj . After that, S computes the shares of honest verifiers
following Hybrid4. Hybrid7 is identically distributed to Hybrid6.

Hybrid8: In this hybrid, in πVerifyIPFinal, S first randomly samples a, b, c such that c = a · b, and
then computes xm+1, ym+1, zm+1. Hybrid8 is identically distributed to Hybrid7.

Hybrid9: In this hybrid, S simulates the checking process. S first computes the secret values to
be reconstructed. In (3), the shares of corrupted verifiers generated by S for ⟨θi1⟩, ⟨θi2⟩, ⟨θi3⟩ satisfy
that together with honest verifiers’ shares, they form valid additive sharings of 0. Since at least one
additive sharing of 0 is prepared by honest verifiers, ⟨o1⟩, ⟨o2⟩, ⟨o3⟩ are random additive sharings of
o1, o2, o3. In (5), if honest verifiers do not receive the same messages but the check passes, S aborts.
Since H is a random oracle, this happens with negligible probability.

In (6), we should have o1 = ∆ · δa, o2 = ∆ · δb, o3 = ∆ · δc. S follows the above to simulate the
shares of honest verifiers. If δa, δb, δc are not all 0 but the check passes, S aborts. Note that the MAC
keys of honest verifiers are uniformly random and unknown to corrupted verifiers. The probability
that

∑
i∈VA

õij +
∑

i∈VH
oij = 0 for all j ∈ [3] is negligible. In summary, Hybrid9 is computationally

indistinguishable from Hybrid8.
Hybrid10: In the last hybrid, S no longer generates the shares of honest verifiers, which are not

used in the simulation. This corresponds to the ideal world.

Now we move to the case where P is corrupted. Since honest verifiers do not have inputs, if
|VA| < t, we may run the first t − |VA| honest verifiers following the protocol and view them as
corrupted verifiers. In the following, we assume that |VA| = t.

Preprocess: In ΠPrep, S emulates the Functionality FnVOLE.

1. It receives global key shares {∆i}i∈VA and the expansion function Expand. Then it distributes
the expansion function to all parties.

2. It receives seeds {seedi}i∈P from A.
3. For every pair of verifiers (Vi,Vj), if Vi is corrupted, S receives wi

j . If Vj is corrupted, S receives
vj
i . Then S prepares the outputs of corrupted verifiers.

Then S follows the protocol to compute the shares of corrupted verifiers of each authenticated
additive sharing. S also computes the shares of honest verifiers of each additive sharing (without
the MAC part). Then using the shares of all verifiers, S computes the secrets of each authenticated
additive sharing.

Next, for each Vi ∈ VH, S generates random values as the shares of [∆i
j |ℓ]t of corrupted verifiers

for all j, ℓ. For each Vi ∈ VA, S receives the shares of [∆i
j |ℓ]t of honest verifiers for all j, ℓ.
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Finally, S generates random values as the nonces of honest verifiers and sends the nonces to P.
Distribute circuit wire values: For each group of σ · d wires, S receives the shares of [D]σ−1 of

honest verifiers, which are exactly σ shares. Then S computes the whole sharing and the secret D.
Next, S computes all wire values shared by P.

For each [∆ℓ|i]t, let [∆H
ℓ |i]t =

∑
j∈H[∆j

ℓ |i]t and [∆A
ℓ |i]t =

∑
j∈A[∆

j
ℓ |i]t. Then [∆ℓ|i]t = [∆H

ℓ |i]t +
[∆A

ℓ |i]t. Note that S learns the shares of [∆H
ℓ |i]t of corrupted verifiers, and learns the shares of

[∆A
ℓ |i]t of honest verifiers.

– S computes the shares of [D]σ−1 · [∆H
ℓ |i]t of corrupted verifiers and then computes the shares

of {⟨λi,j ·∆H
ℓ ⟩}j∈[d] of corrupted verifiers.

– S computes the shares of [D]σ−1 · [∆A
ℓ |i]t of honest verifiers and then computes the shares of

{⟨λi,j ·∆A
ℓ ⟩}j∈[d] of honest verifiers. Since S knows ∆A

ℓ , S computes λi,j ·∆A
ℓ and arbitrarily

sets the shares of corrupted verifiers based on the secret and the shares of honest verifiers for
all j ∈ [d].

S computes the shares of {⟨λi,j ·∆ℓ⟩}j∈[d] of corrupted verifiers.
Finally, S computes the shares of Jvi,jK of corrupted verifiers following the protocol.
Procedure for Fiat-Shamir:

1. S honestly emulates the random oracle H.
2. For each Vi ∈ VH, S honestly checks the correctness of comi.
3. S honestly follows the protocol to check (com1, . . . , comn). If not all honest verifiers receive the

same values but the check passes, S aborts.

Verify multiplication: S follows the protocol and traces the shares of corrupted verifiers. S also
follows the protocol to compute the shares of honest verifiers of each additive sharing (without the
MAC part). Then S simulates the checking process in πVerifyIP.

1. For each Vi ∈ VH, S samples random values as the shares of ⟨θi1⟩, ⟨θi2⟩, ⟨θi3⟩ of corrupted verifiers
and sends them to corrupted verifiers. For each Vi ∈ VA, S receives the shares of ⟨θi1⟩, ⟨θi2⟩, ⟨θi3⟩
of honest verifiers. S arbitrarily sets the shares of ⟨θi1⟩, ⟨θi2⟩, ⟨θi3⟩ of corrupted verifiers based on
the secrets θi1 = θi2 = θi3 = 0 and the shares of honest verifiers.

2. S computes the shares of ⟨o1⟩, ⟨o2⟩, ⟨o3⟩ of corrupted verifiers.
3. S emulates the Functionality FCommit and receives õi1, õ

i
2, õ

i
3 of corrupted verifiers.

4. S follows the protocol to check the consistency of all received messages. If honest verifiers do
not receive the same messages but the check passes, S aborts.

5. Let ã, b̃, c̃ denote the reconstruction results received from P. If (ã, b̃, c̃) = (a, b, c), S sets o1 =
o2 = o3 = 0. Otherwise, S samples a random ∆ ∈ K and computes o1 = ∆ · (a − ã), o2 =
∆ · (b− b̃), o3 = ∆ · (c− c̃). Then S samples the shares of ⟨o1⟩, ⟨o2⟩, ⟨o3⟩ of honest verifiers based
on the shares of corrupted verifiers computed by S and the secrets o1, o2, o3.

6. S follows the protocol to open the commitments of honest verifiers to {oi1, oi2, oi3}i∈VH . If
(ã, b̃, c̃) ̸= (a, b, c) but the check passes, S aborts.

Checking the Emulation Random Oracles: S checks the following. We only consider distinct
queries in the following. (By construction, for the same query, S will give the same reply as the
actual random oracle.)

– If S returns the same result for two different queries, S aborts.
– For each Vi ∈ VH, if S receives a query (Vi, si, noncei) before sending noncei and noncei is

identical to the one he sends to P, S aborts.
– For each query in the form of (Mult, com1, . . . , comn), if for some later query, S replies comi for

any i, S aborts.
– For each query in the form of (IP,mℓ, ηprev, {bj}m−1

j=1 , {cj}m−1
j=1 ) or (IP,m, ηprev, {b̂j}3j=1, {bj}

m−1
j=1 , {cj}mj=1),

if for some later query, S replies ηprev, S aborts.
– If the wire values computed by S are invalid, S aborts. Otherwise, S computes the witness and

sends the witness to FZK.

36



We prove that the protocol execution in the real world is indistinguishable from the above
simulation by a sequence of hybrids.

Hybrid0: This is the same as the real-world execution.
Hybrid1: In this hybrid, S emulates FnVOLE as follows. S delays the generation of the outputs of

honest verifiers until they are needed. Hybrid1 is identically distributed to Hybrid0.
Hybrid2: In this hybrid, for each Vi ∈ VH, S first generates the shares of [∆i

j |ℓ]t of corrupted
verifiers. Then when the shares of honest verifiers are needed, S generates the shares of honest
verifiers accordingly. Hybrid2 is identically distributed to Hybrid1.

Hybrid3: In this hybrid, S computes the additive shares of all verifiers by using {seedi}i∈P .
Then S computes the secret of each authenticated additive sharing. S also computes the shares of
corrupted verifiers of each authenticated additive sharing (including the MAC part).

Hybrid4: In this hybrid, for each group of σ · d wires, S receives the shares of [D]σ−1 of honest
verifiers. Then S computes the whole sharing and the secrets {λi,j}i∈[σ],j∈[d]. Next, S computes all
wire values shared by P. Computing these values makes no change to the output distribution.

Hybrid5: In this hybrid, S computes the shares of corrupted verifiers for each ⟨λi,j · ∆ℓ⟩ as
described above. From the description, the computed shares satisfy that together with honest
verifiers’ shares, they form a valid additive sharing ⟨λi,j ·∆ℓ⟩. This makes no change to the output
distribution.

Hybrid6: In this hybrid, S computes the shares of Jvi,jK of corrupted verifiers following the
protocol. This makes no change to the output distribution.

Hybrid7: In this hybrid, S simulates the procedure for Fiat-Shamir. If all honest verifiers do not
receive the same (com1, . . . , comn) but the check passes, S aborts. Since H is a random oracle, this
happens with negligible probability. Hybrid7 is computationally indistinguishable from Hybrid6.

Hybrid8: In this hybrid, S traces the shares of corrupted verifiers in the verification of multi-
plications. Then S computes the secret values to be reconstructed by using the additive shares of
all verifiers. S simulates the checking process as described above. In (4), the shares of corrupted
verifiers generated by S for ⟨θi1⟩, ⟨θi2⟩, ⟨θi3⟩ satisfy that together with honest verifiers’ shares, they
form valid additive sharings of 0. Since at least one additive sharing of 0 is prepared by honest
verifiers, ⟨o1⟩, ⟨o2⟩, ⟨o3⟩ are random additive sharings of o1, o2, o3. In (5), if honest verifiers do not
receive the same messages but the check passes, S aborts. Since H is a random oracle, this happens
with negligible probability.

In (6), we should have o1 = ∆ · (a− ã), o2 = ∆ · (b− b̃), o3 = ∆ · (c− c̃). S follows the above
to simulate the shares of honest verifiers. If (ã, b̃, c̃) ̸= (a, b, c) but the check passes, S aborts. Note
that the MAC keys of honest verifiers are uniformly random and unknown to corrupted verifiers.
The probability that

∑
i∈VA

õij +
∑

i∈VH
oij = 0 for all j ∈ [3] is negligible. In summary, Hybrid8 is

computationally indistinguishable from Hybrid7.
Hybrid9: In this hybrid, S checks the emulation of the random oracle. We only consider distinct

queries in the following.

– If S returns the same result for two different queries, S aborts.
– For each Vi ∈ VH, if S receives a query (Vi, si, noncei) before sending noncei and noncei is

identical to the one he sends to P, S aborts.
– For each query in the form of (Mult, com1, . . . , comn), if for later query, S replies comi for any i,
S aborts.

– For each query in the form of IP,mℓ, ηprev, {bj}m−1
j=1 , {cj}m−1

j=1 or (IP,m, ηprev, {b̂j}3j=1, {bj}
m−1
j=1 , {cj}mj=1),

if for later query, S replies ηprev, S aborts.

We argue that Hybrid9 is computationally indistinguishable from Hybrid8. First, since H is a
random oracle and its output length is λ bits. For every two different queries, the probability that
H outputs the same result is negligible. Since the number of queries made by A is bounded by
polynomial, the first point happens with negligible probability. Second, since noncei is randomly
chosen by S, the probability that noncei is correctly guessed by P before S sending it to P is
negligible. Third, since the output of H is uniformly distributed, the probability that H outputs a
particular string is negligible. Since the number of queries in the form of (Mult, com1, . . . , comn)
made by A is polynomial, the third point happens with negligible probability. Finally, for the same
reason as that for the third point, the last point happens with negligible probability.

Thus, Hybrid9 and Hybrid8 are computationally indistinguishable.
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Hybrid10: In this hybrid, if the wire values computed by S are invalid but the check passes, S
aborts. We argue that Hybrid10 and Hybrid9 are computationally indistinguishable.

– For Vi ∈ VH, we say (Vi, si, noncei) is a valid query if noncei is the correct nonce provided by Vi.
– We say a query in the form of (Mult, com1, . . . , comn) is valid if for all Vi ∈ VH, comi is the

answer of some valid query.
– We say a query in the form of (IP,mℓ, ηprev, {bj}m−1

j=1 , {cj}m−1
j=1 ) or (IP,m, ηprev, {b̂j}3j=1, {bj}

m−1
j=1 , {cj}mj=1)

is valid if ηprev is the answer of some valid query. In particular, if it is for the i-th compression,
then ηprev should be the answer of some valid query for the (i− 1)-th compression. Here, when
i = 1, ηprev should be the answer of some valid query starting with Mult.

Thus, for a valid query, we can trace back to an initial query for each Vi ∈ VH, which contains
the shares of Vi of the differences.

– We say the reply to a valid query in the form of

(Mult, com1, . . . , comn)

is bad, if the wire values are invalid but the tuple obtained in Step 4.(a) satisfy the inner-product
relation.

– We say the reply to a valid query in the form of

(IP,mℓ, ηprev, {bj}m−1
j=1 , {cj}m−1

j=1 )

or
(IP,m, ηprev, {b̂j}3j=1, {bj}m−1

j=1 , {cj}mj=1)

is bad, if the input authenticated triple in πVerifyIPProc (or πVerifyIPFinal) is incorrect but the output
authenticated triple is correct.

For the first case, when χ1, . . . , χm1
are uniformly random, the obtained tuple is correct with

probability at most 1/2κ. When χ1, . . . , χm1
are obtained from the PRG, the obtained tuple is correct

with negligible probability (or otherwise one can distinguish the output from the PRG and a random
string by checking whether the obtained tuple is correct). Thus, the probability of a bad reply is
negligible. For the second case, in πVerifyIPProc, if the input authenticated triple is incorrect, the
number of bad replies is bounded by 2(m − 1). In πVerifyIPFinal, if the input authenticated triple is
incorrect, the number of bad replies is bounded by 2m. Thus, the probability of a bad reply is
negligible.

Note that if there are no bad replies, then honest verifiers accept the check if and only if the wire
values computed by S are valid, in which case S can compute the witness of the common statement.
Thus Hybrid10 is computationally indistinguishable from Hybrid9.

Hybrid11: In the last hybrid, if S does not abort, S computes the witness of the common
statement and sends it to FZK. This corresponds to the ideal world. According to the argument in
Hybrid10, the witness computed by S is valid. Thus, Hybrid11 is identically distributed to Hybrid10.
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