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Abstract

Subgroup decision techniques on cryptographic groups and pairings have been critical for numer-
ous applications. Originally conceived in the composite-order setting, there is a large body of work
showing how to instantiate subgroup decision techniques in the prime-order setting as well. In this
work, we demonstrate the first barrier to this research program, by demonstrating an important setting
where composite-order techniques cannot be replicated in the prime-order setting.

In particular, we focus on the case of 𝑞-type assumptions, which are ubiquitous in group- and
pairing-based cryptography, but unfortunately are less desirable than the more well-understood static
assumptions. Subgroup decision techniques have had great success in removing 𝑞-type assumptions,
even allowing 𝑞-type assumptions to be generically based on static assumptions on composite-order
groups. Our main result shows that the same likely does not hold in the prime order setting. Namely,
we show that a large class of 𝑞-type assumptions, including the security definition of a number of
cryptosystems, cannot be proven secure in a black box way from any static assumption.

1 Introduction

Cryptographic groups and pairings have been some of the most impactful tools for both the theory and
practice of cryptography. A cryptographic group G is a (cyclic) mathematical group with efficient group
operations and some hardness, typically at least the hardness of the discrete logarithm problem: computing
𝑥 from 𝑔,𝑔𝑥 ∈ G. Sometimes these groups come with extra structure, such as pairings where the group
additionally has a bilinear map into a different group.

Composite-order groups. Composite-order groups, and especially composite-order pairings, have been
very useful extensions of the original prime-order setting. Originally proposed by [BGN05], composite-
order groups/pairings have found many applications, from homomorphic encryption [BGN05] to identity-
based encryption [LW10, LW11], to adaptive security [Wat09a], and much more.

The key feature of a composite-order group is that it allows for subgroup hiding: the factors of the
group order are assumed to be unknown, creating hidden subgroups of the group G. This approach allows
for terms to be undetectably moved between the hidden subgroups.

Unfortunately, composite-order groups come with a significant cost, namely the need to have the fac-
tors of the group order hidden. This is problematic due to sub-exponential-time factoring algorithms [BLP92].

1



In order to account for these attacks, parameter sizes must be significantly blown up. Compounded with
the fact that pairings are already expensive operations, pairings over composite-order groups are extremely
slow. Finding elliptic curves supporting composite-order pairings is also a non-trivial task. More ab-
stractly, factoring is an assumption seemingly unrelated to the “usual” hardness of groups and pairings,
where the intuition comes from the hardness of discrete logarithms. In particular, it is consistent with
current knowledge that factoring is actually easy, while typical assumptions in prime-order groups could
remain hard on, say, elliptic curves based groups. Thus, assuming composite-order groups can be thought
of as making two very different assumptions.

Mapping composite-order to prime groups. Due to the issues just mentioned, there has been a sig-
nificant effort made to try to simulate subgroup hiding techniques in prime-order groups [CS03, Gjø04,
GS08, OT09, Wat09b, Fre10, Lew12, LM15, SC12]. The basic idea is that the common DDH assumption is
equivalent to saying that it is hard to decide if (𝑔𝑏, 𝑔𝑐) lies in the cyclic group generated by (𝑔,𝑔𝑎). Thus,
DDH implies subgroup hiding in the larger group G′ = G2. This observation has led to several infor-
mal claims that the composite order groups and this simulation using prime-order groups are functionally
equivalent1. This claim is backed up by numerous examples of where subgroup decision techniques have
been successfully carried out in the prime-order setting.

The case of 𝑞-type assumptions. While the discrete logarithm problem is essentially always assumed
in cryptographic groups and pairings, usually discrete logarithms alone are not enough, and instead much
stronger assumptions must be made. Numerous such security assumptions have been made on groups and
pairings. In this work, we will be considering two main types:

• Static Assumptions: These are assumptions where the number of group elements in the assumption
is fixed, independent of various aspects of the adversary or scheme, such as how many queries the
adversary makes during the security experiment. The canonical example of a static assumption is
the decisional Diffie-Hellman assumption (DDH), which assumes that (𝑔,𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) is computation-
ally indistinguishable from (𝑔,𝑔𝑎, 𝑔𝑏, 𝑔𝑐), where 𝑎,𝑏, 𝑐 are independent random elements. Subgroup
hiding in composite-order groups is another example.

• 𝑞-Type Assumptions: These are assumptions where the number of group elements in the assumption
is variable, depending on 𝑞. In typical applications, 𝑞 will be a function of the number of queries the
adversarymakes to the experiment. For example, the𝑞-Strong decisional Diffie-Hellman assumption
assumes that given𝑔,𝑔𝑥 , 𝑔𝑥2

, · · · , 𝑔𝑥𝑞 , 𝑔𝑥𝑞+1 is indistinguishable from a random group element. Other
𝑞-type assumptions may often include other terms that depend on 𝑥 as well as other variables.

The community has a strong preference for static assumptions, with 𝑞-type assumptions being much
less desirable. This preference for static assumptions arises from several considerations:

• Underlying assumptions cannot be proven unconditionally, given the current status of complexity
theory. As such, making an assumption requires a leap of faith, and the fewer assumptions used the
better. 𝑞-type assumptions are viewed as families of individual assumptions, one for each value of 𝑞.
As such, assuming a 𝑞-type assumption amounts to making infinitely many assumptions, whereas a
static assumption is simply one assumption.

1[Fre10]: “functionality that can be achieved in composite-order groups under the subgroup decision assumption can also be
achieved in prime-order groups under either the DDH or the decision linear assumption.” [GS08]: “Assumption [sic.] in
composite-order groups, and SXDH can typically be exchanged for one another.”
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• As 𝑞 grows, 𝑞-type assumptions typically become “less secure” in terms of concrete attack perfor-
mance [Che06], and become “stronger” (that is, worse) assumptions in terms of reducibility between
instances. In order to account for this degradation of the assumption, larger parameter sizes must be
used, weakening performance. As 𝑞 usually depends on the number of queries an adversary makes,
𝑞 can be quite large.

A major area of study, therefore, has been to eliminate 𝑞-type assumptions from cryptographic pro-
tocols. It turns out that composite-order groups/subgroup hiding has been very useful for this goal.
In [CM14] and follow-up works [CMM16, Wee16], this approach was even adapted into a very useful
framework called “Deja Q” for proving 𝑞-type assumptions themselves from static assumptions. In partic-
ular, by making constant-sized assumptions on composite-order groups, typical 𝑞-type assumptions can
often be proven in those groups, meaning that schemes based on these 𝑞-type assumptions can automati-
cally be based on static assumptions in composite-order groups.

Missing pieces. Despite thewide-spread ability of prime-order variants of subgroup decision to simulate
the composite-order version, there are some crucial missing pieces.

• Most notably, the Deja Q framework has never been successfully translated to the prime order setting.
In particular, there is no known way to prove the hardness of typical 𝑞-type assumptions from any
constant-sized assumption over prime-order groups, in contrast to the composite-order case.

• In terms of specific applications, protocols like [BGW05, Del07] for broadcast encryption that rely
on 𝑞-type assumptions have no equivalent realization in the prime-order setting over a constant-
sized assumption. Broadcast encryption protocols that can be proven on prime-order pairings with
constant sized assumptions such as [Wee21] have much larger secret keys. Secret keys in [BGW05]
are constant-sized.

This work. In this work, we ask whether there is something inherent to the missing pieces outlined
above, or whether composite order subgroup-techniques can indeed be always translated to the prime-
order setting. In particular, can typical 𝑞-type assumptions be proved hard in prime-order groups under
fixed-sized assumptions? More generally, can composite-order techniques always be translated to the
prime-order setting?

Perhaps surprisingly based on the above discussion, we find that the answer is probably “no.” We show
a black-box separation between typical 𝑞-type assumptions and every fixed size assumption on prime-
order groups. Our separation can be interpreted as showing the impossibility of a reduction between the
assumptions. This result stands in stark-contrast to the composite case, where all mentioned reductions
above are black box. Thus, our impossibility shows that the existing intuition regarding subgroup decision
in composite vs prime order groups is false in full generality, and there are certain proof techniques that
only work in the composite-order setting. Deja Q mentioned above is one example. Our impossibility is
quite general, and also applies to many protocols such as [BGW05, Del07] to show that they cannot be
based on fixed-sized assumptions.

Along the way, we formalize what it means to be a black-box reduction in a generic group model.
We explain that the existing formalizations of generic group models are inadequate for reasoning about
reductions. We therefore provide a new formalization that we believe captures the essence of a generic
group model reduction.
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1.1 Technical Overview

Black Box Reductions in Groups. We consider a family of “black box” reduction in groups. These
reductions are black box in two ways:

• First, the reductions must, informally, be independent of the group representation. This means,
roughly, that the reduction can make queries to the group operations, but otherwise cannot depend
in any way on how the group works.

• Second, the reduction must be black box in terms of the adversary. This means that the reduction
must work for any adversary, even one that is inefficient. Moreover, the reduction can only make
black box use of the adversary, querying it on inputs and observing the outputs. The reduction itself
must be efficient, even though the adversary need not be.

This corresponds to the notion of ‘fully black box’ reductions [IR89, RTV04] for the setting of groups.
In Section 1.3, we give a brief overview of why the existing formalism for generic group model reductions
is inadequate; we take care of these issues in Section 3. But for the purposes of this high-level overview of
our main result, we can put these details aside.

Our main result. Our main result is the following:

Theorem 1.1 (Informal). There is no black box reduction between any 𝑞-type assumption and any true
constant-sized assumptions on prime-order groups.

Here, a 𝑞-type assumption is, informally, one where the adversary gets (among other elements) the
terms𝑔𝑤, 𝑔𝑤𝑥 , · · · , 𝑔𝑤𝑥𝑞 for presumably unknown𝑤, 𝑥 . Moreover, we informally require that 𝑥 is somehow
tied to the hardness of the assumption, so that if the adversary can find 𝑥 , then the adversary can break
the assumption.

For concreteness, we will assume that the generator 𝑔 is fixed. Note that uniform vs fixed 𝑔 can change
the nature of the assumption, as explored by [BMZ19]; in our case, we can randomize the generator by
raising to𝑤 , so this distinction is irrelevant for us.

We now explain how we prove this result, which follows the meta-reduction paradigm [BV98]. Let 𝑝
be the order of G, and let 𝑔 be the fixed generator. Consider some fixed-size assumption 𝐹 which can be
used to prove our 𝑞-type assumption. This means 𝐹 provides 𝑛 group elements (ℎ1 = 𝑔𝑣1, · · · , ℎ𝑛 = 𝑔𝑣𝑛 ),
as well as potentially some non-group-based information 𝑎. Since 𝐹 is fixed-size, 𝑛 is a constant.

Now suppose that there is a black box reduction between 𝐹 and a 𝑞-type powers assumption 𝑄 . This
means that there exists a reduction algorithm 𝑅 such that, for any potential 𝑞 and any potential adversary
𝐴 for𝑄 , 𝑅𝐴,G breaks assumption 𝐹 . Here, the notation 𝑅𝐴,G indicates that 𝑅 makes black box use of G and
𝐴 (which in turn makes queries to G). Importantly, 𝑅 must exist for any adversary 𝐴, even ones that are
potentially inefficient (both in computation time and query complexity).

We now claim that if such a reduction exists, then assumption 𝐹 is actually false. Thus, there is no way
to actually justify 𝑄 with a black box reduction from any true 𝐹 . Note that we cannot rule out reductions
with false assumptions, since a false assumption gives a contradiction, and any contradiction can be used
to prove any statement.

To prove this claim, let 𝑞 > 𝑛. Note that if the only terms given out by 𝑄 are 𝑔𝑤, 𝑔𝑤𝑥 , · · · , 𝑔𝑤𝑥𝑞 , then
the assumption is actually an assumption of size 𝑞 + 1. Moreover, if 𝑤 = 1, then the 𝑔𝑤 term is just 𝑔,
and so the assumption has size only 𝑞. This means the assumption can be proven from an assumption of
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size 𝑛 = 𝑞, namely the assumption itself, via trivial reduction. Therefore, assuming 𝑞 > 𝑛 is necessary in
general for a lower-bound.

We now design our adversary 𝐴. On input 𝑔𝛼0, · · · , 𝑔𝛼𝑞 , 𝐴 performs a brute-force search to recover
𝛼0, · · · , 𝛼𝑞 . It then sees if there is a 𝑤 and 𝑥 such that each 𝛼𝑖 = 𝑤𝑥𝑖 . If this check fails, 𝐴 outputs ⊥. If
the check passes, we know that 𝑥 must be unique (since in particular, 𝑥 = 𝛼𝑖/𝛼𝑖−1). In this case 𝐴 uses 𝑥
to efficiently break the assumption 𝑄 (recall that we assumed 𝑄 to be broken if 𝑥 is known).

Now consider a supposed black box reduction 𝑅 which uses 𝐴 to break 𝐹 . Note that 𝑅𝐴,G breaks 𝐹 , but
is inefficient due to 𝐴 needing to brute force search for 𝑥 . We will use 𝑅 to design an efficient algorithm
𝑀 which breaks 𝐹 efficiently. Algorithm𝑀 runs 𝑅, which in turn makes queries to 𝐴, but we show that𝑀
can efficiently answer all queries 𝑅 makes to 𝐴 without needing to actually run the inefficient algorithm
𝐴.

Consider running 𝑅 until it makes a query to 𝐴. Denote this query by (𝑔𝛼0, · · · , 𝑔𝛼𝑞 ) for unknown
quantities 𝛼𝑖 . Recall that 𝑅 makes black box use of the group, which means that the only way it can create
new group elements is through making queries to the group, and we can observe all such queries. The
input elements to 𝑅 consist of 𝑔, together with the challenge provided by 𝐹 , namely ℎ1 = 𝑔𝑣1, · · · , ℎ𝑛 = 𝑔𝑣𝑛 .
For notational consistency, we will let ℎ0 = 𝑔 = 𝑔𝑣0 where 𝑣0 = 1. By tracing the group operations 𝑅 makes,
we can trace each 𝑔𝛼𝑖 to the input elements ℎ 𝑗 , writing 𝑔𝛼𝑖 =

∏
𝑗 ℎ

𝑇𝑖,𝑗
𝑗 for some known values 𝑇𝑖, 𝑗 . We can

re-write this in matrix-vector notation as 𝛼 = T · v, where T is known, but 𝛼 and v are as of yet unknown.
Our goal is to use knowledge of T to simulate the action of the adversary 𝐴, but to do so efficiently.

But how can we do this, given that 𝐴 computes 𝛼 via brute force, but we do not know anything about the
actual values of 𝛼 and cannot brute force their values due to being efficient?

Our key observation is that, because 𝑞 > 𝑛, the matrix T ∈ Z(𝑞+1)×(𝑛+1)𝑝 has only rank at most 𝑛 + 1,
meaning the columns of T do not span the entire space of possible 𝛼 . Thus, we do learn something about
the vector 𝛼 since it must be in the column-span of T. It turns out that this is enough information to
respond to the query.

In particular, fix any set of 𝑛+2 distinct elements 𝑥0, · · · , 𝑥𝑛+1 ∈ Z𝑝 . Then, consider the column vectors
(1, 𝑥ℓ , 𝑥2ℓ , · · · , 𝑥

𝑞
ℓ ) as ℓ varies. These vectors form an (𝑛 + 2) × (𝑞 + 1) Vandermonde matrix, which must be

full rank. Since 𝑞 ≥ 𝑛 + 1, the rank is therefore 𝑛 + 2, meaning the 𝑛 + 2 vectors are linearly independent.
As such, these vectors span a subspace of dimension 𝑛 + 2 > 𝑛 + 1. This means that the vectors cannot all
simultaneously be in the column-span of T, which only has rank (at most) 𝑛 + 1.

What we see, then, is that there are at most 𝑛+1 distinct values 𝑥 such that the vector (1, 𝑥, 𝑥2, · · · , 𝑥𝑞)
is in the column-span of T. Moreover, we can find this set of 𝑥 efficiently, as follows. Consider the matrix
obtained by concatenating to T the column vector (1, 𝑋, · · · , 𝑋𝑞) for a formal variable 𝑋 . Then, take the
first 𝑛 + 2 rows, which forms a square matrix. Compute the determinant of this matrix, which becomes a
degree𝑛+2 polynomial in𝑋 . By solving this polynomial for𝑋 over the finite field Z𝑝 [Ber71, Rab80, CZ81],
we can find the ≤ 𝑛 + 1 solutions for 𝑥 .

Now that we have a list of candidates for 𝑥 , we can simulate the brute-force step of 𝐴, which is the
only inefficient part. We note that, as described above, 𝐴 expects the actual element 𝑥 , whereas we only
get a list of candidates including 𝑥 . However, in the setting considered above, we can narrow down the
list of candidates to the actual value 𝑥 . Indeed, for any 𝑥 , we can test if the exponent vector 𝛼 has the form
(𝑤,𝑤𝑥, · · · ,𝑤𝑥𝑞) for some 𝑥 , by checking if 𝑔𝛼𝑖+1 = (𝑔𝛼𝑖 )𝑥 for all 𝑖 . There will be a unique 𝑥 such that this
is the case.

Thus, we can efficiently simulate any query that 𝑅 makes to 𝐴. Since 𝑅 itself is efficient, this means
the overall running time of our simulation 𝑀 is efficient, and 𝑀 has the same input/output behavior as
𝑅𝐴,G. In particular, since 𝑅 is guaranteed to break 𝐹 , so is𝑀 . Thus, 𝐹 is actually insecure, since there is an
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efficient attack.
In the body, we generalize the above discussion to consider both interactive constant-sized assumptions

and interactive 𝑞-type assumptions, as well as to extend our notion of 𝑞-type assumptions to allow for
general polynomials in 𝑥 instead of just powers. We also extend the lower-bound to groups with a pairing,
and also consider the case where a group G′ that is built from a group G, and the 𝑞-type assumption lives
in G′ while the constant-size assumption lives in G.

1.2 Takeaway: Why Deja Q fails.

Given that Deja Q allows for proving certain 𝑞-type assumptions in composite-order groups, it is clear that
our meta-reduction must fail in the composite order case. This leads to two questions: what is it about
our meta-reduction that fails, and why is it that Deja Q is able to actually achieve a positive result in the
composite order setting?

The first question is straightforward: in the step where we efficiently compute 𝑥 , we needed the ability
to find roots of polynomial equations over Z𝑝 . In the composite-order setting with 𝑝 being a composite
with unknown factors, finding such roots is as hard as factoring. The subgroup hiding assumption for
composite-order groups in particular implies that factoring is hard. Thus, in the composite-order setting,
this step is inefficient, which breaks the meta reduction.

For the second question, the key difference is that, for composite-order groups, it is possible to inde-
pendently rerandomize all subgroups, which is not possible in the prime-order setting. In more detail: if
the group-order is 𝑁 = 𝑝𝑞, the two subgroups have order 𝑝 and 𝑞, respectively, and are generated by
𝑔𝑞 = 𝑔𝑝 and 𝑔𝑝 = 𝑔𝑞 . Suppose we are given ℎ, and we compute ℎ𝛼 for a uniform 𝛼 ∈ Z𝑁 . Using the
Chinese Remainder Theorem, we can write ℎ = 𝑔

𝑥𝑞
𝑞 × 𝑔

𝑥𝑝
𝑝 where 𝑥𝑞 ∈ Z𝑞 and 𝑥𝑝 ∈ Z𝑝 . We can also write

ℎ𝛼 as 𝑔𝑥𝑞𝛼𝑞𝑞 × 𝑔𝑥𝑝𝛼𝑝𝑝 where (𝛼𝑝 , 𝛼𝑞) ∈ Z𝑝 × Z𝑞 are in bijection with 𝛼 ∈ Z𝑁 . As a result, raising ℎ to the 𝛼
perfectly and independently rerandomizes both the Z𝑝 component and Z𝑞 component of ℎ. Note that the
rerandomization happens, even thought the subgroups themselves are hidden.

On the other hand, suppose G2 is separated into hidden subgroups generated by 𝑔1 = (𝑔,𝑔𝑎) and
𝑔2 = (𝑔−𝑎, 𝑔) 2. We can likewise write any ℎ ∈ G2 as 𝑔𝑥11 ×𝑔

𝑥2
2 where × is component-wise. However, there

is no obvious way, without knowledge of the actual subgroups (that is, knowledge of 𝑎) to independently
re-randomize both 𝑥1 and 𝑥2. Indeed, the only thing that seems reasonable to do is raise ℎ to a random
𝛼 ∈ Z𝑝 . But this gives ℎ𝛼 = 𝑔𝑥1𝛼1 × 𝑔𝑥2𝛼2 . Observe that this fully rerandomizes 𝑥1 and 𝑥2 in isolation, but
the results are still correlated. In particular, the ratio 𝑥1/𝑥2 is preserved under rerandomization.

This independent randomization of each subgroup is crucially used in the Deja Q techniques. Namely,
they use subgroup-hiding to place the 𝑞-type assumption terms into two subgroups. By rerandomization,
these terms end up being independent instances of the 𝑞-type assumption. Then they use subgroup hiding
again to add the terms from one subgroup to the other. After repeating this several times, the end result is
that one has the sum of many independent instances of the 𝑞-type assumption, which by some statistical
analysis ends up being just a vector of truly random group elements.

If we had the ability to independently rerandomize all subgroup in the prime-order setting, then we
would be able to carry out the Deja Q arguments. Our lower bound shows that this is impossible, and thus
there is no way to independently rerandomize all subgroups in the prime-order setting.
2The second subgroup is arbitrary for the purposes of this overview, but we chose the subgroup that is orthogonal to (𝑔,𝑔𝑎).
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1.3 On Generic Group Models

Here, we briefly discuss how to formalize generic group models and reductions in them. See Section 3 for
more details.

There are actually two generic group models in the literature, Shoup’s [Sho97] and Maurer’s [Mau05].
While both offer some formalization of algorithms that are “independent of the representation”, they do so
in different ways: Shoup’s model assumes the group is given as a random embedding of the additive group
Z𝑝 into bit-strings, whereas Maurer’s enforces a type system that prevents the adversary from interacting
with the group except in the prescribed way. Zhandry [Zha22] re-interpreted these generic groups and
gave them new names: Random Representation (RR) for Shoup’s, and Type Safe (TS) for Maurer’s. [Zha22]
also explored the relationships between these group, finding that they are often equivalent but sometimes
different.

A particular setting not considered by [Zha22] is that of reductions between assumptions. We observe
that it is fairly simple to formalize a notion of reduction following the TS/Maurer style generic group that
matches the intuition of a black box generic reduction. However, the obvious way of formalizing a black
box RR/Shoup style generic reduction is a bit problematic. Indeed, such a reduction would say that, for
any (potentially inefficient) algorithm𝐴 interacting with a RR generic group (that is, a random embedding
of Z𝑝 ) and solving some problem 𝑄 , there must exist a reduction algorithm 𝑅 that makes queries to 𝐴
and solving some problem 𝐹 . The issue is that this reduction is only guaranteed to work on algorithms
interacting with a random embedding, and the reduction may fail on any specific embedding. For example,
maybe the reduction decides to fail if the string representation of the group element 𝑔𝑥 has a certain form,
say that it is a point on an elliptic curve. A random string is exponentially unlikely to lie on the given
curve, so the reduction will succeed in the random representation model. Meanwhile, the reduction would
fail when the group G is instantiated with the given elliptic curve. This seems to not capture what we
actually want from a reduction, which is that it works for all groups.

Therefore, we re-imagine Shoup’s model as a Generic Representation (GR) model. An adversary for
some assumption in the GR model is one that makes group operation queries to the group, and works for
any realization of the group, even inefficient ones. This means that the adversary must work both for effi-
cient groups like elliptic curves, but also random representations like those in the RR/Shoup model. Unlike
the TS/Maurer model, a GR adversary actually gets the bit representation of group elements, regardless of
which group is being considered. In order to prove lower bounds in the GR model, one option is to simply
prove a lower bound relative to a random representation; in other words, prove a RR/Shoup lower bound.
But proofs do not need to rely on this random structure, either, and other options may be possible.

A black box reduction in the GR model is then a reduction that makes group operations queries to the
group, and turns any GR model adversary into another GR model adversary by only making black box use
of the adversary.

With this definition of a GR model in hand, we prove that, for “single-stage games”, a GR model re-
duction is equivalent to an RR model reduction. Here, single-stage games are roughly any assumption
that is defined by an interactive game between a challenger and a single adversary. This is in contrast to
multi-stage games, where the challenger interacts with multiple non-communicating adversaries. Single-
stage games capture almost all assumptions made in the literature, and more of the common cryptographic
security definitions.

Note that [Zha22] showed that TS and RR adversaries for single-stage games are equivalent, which
in turn is easily adapted to show that TS and GR adversaries are equivalent for single-stage games. But
while a reduction acts as an adversary for a single-stage game, the reduction is also itself interacting with
another adversary, and the success criteria for the reduction is a function of both the behavior of that other
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adversary as well as the probability it wins its game. Therefore, in this sense, a reduction acts more as an
adversary in a multi-stage game, as there is no simple game-based definition of when the reduction is valid.
Nevertheless, we are able to show that TS and GR reductions are equivalent for single-stage games, despite
adversaries for general multi-stage games not being equivalent.

1.4 On Algebraic Reductions

The algebraic group model (AGM) [FKL18] is another idealized model for groups that seen as lying “be-
tween” the standard and generic group models. This model allows the adversary full access to the group
(rather than just query access), but requires that for every group element produced by an adversary, the
adversary can “explain” that group element as a linear combination of the group elements seen so far. As
clarified by [Zha22], this is true for the TS generic group model, but the AGM is actually incomparable to
the RR model.

We observe that our separation also applies to reductions in the AGM. Namely, our separation used
the fact that the reduction 𝑅 was generic to write each query made by 𝑅 as a linear combination its inputs.
But this information is simply the “explanation” demanded by the AGM, meaning an algebraic reduction
𝑅 must supply this information. Thus, even though algebraic reductions have non-black-box access to the
group, our impossibility still rules them out.

2 Preliminaries

2.1 Notation

Here we will introduce the notation we will use later in the paper. We will use 𝑥 R← 𝑋 to denote sampling
a random variable 𝑥 from a set𝑋 . For a set of polynomials P = {𝑝𝑖 (𝑥)}, deg(P) will refer to the maximum
degree of any polynomial 𝑝𝑖 ∈ P. dim(P) will refer to the dimension of the polynomials {𝑝𝑖 (𝑥)} in the
vector space Z𝑝 [𝑥]. We will say quantity 𝑡 = 𝑡 (𝜆) � 𝑡 ′ = 𝑡 ′(𝜆) if 𝑡 − 𝑡 ′(𝜆) is nonnegligible.

Cryptographic Games. We will use the term cryptographic game and assumption interchangeably. A
cryptographic game G is specified by a pair (Chal, 𝑡) where Chal is a probabilistic interactive algorithm,
typically called a challenger, and 𝑡 : Z+ → [0, 1] is a function. We will consider what are referred to as
“single stage” games, where there is only a single adversary A. Chal gets as input the security parameter
𝜆, and then interacts with A. At the end of the interaction, Chal outputs a bit 𝑏. The adversary wins if
𝑏 = 1. The advantage ofA, denoted AdvA , is a function of 𝜆 that is equal to the probabilityA wins, minus
𝑡 (𝜆). We say that (Chal, 𝑡) is “secure” for a class of algorithms if, for every A in the class, the advantage
of A is negligible in 𝜆. If we do not specify the class of algorithms, we take the algorithms to be those of
polynomial running time.

Our notion of a game captures both assumptions as well as the security of cryptosystems.

Black Box Reductions. Let (Chal0, 𝑡0) and (Chal1, 𝑡1) be two games. Here, we formalize what it means
to prove the security of (Chal1, 𝑡1) from the security of (Chal0, 𝑡0).

Specifically, a black box reduction from (Chal0, 𝑡0) to (Chal1, 𝑡1) assigns, to any potential adversary
A with non-negligible advantage against (Chal1, 𝑡1), a probabilistic polynomial time oracle algorithm R.
Importantly, the reduction assigns an R to every possible adversary, even ones that are inefficient. R can
make oracle queries toA, butR itself is always efficient, even ifA is not. SinceA is potentially interactive,
this takes care to formalize. We can think of an interactiveA as a non-interactive procedure that takes as
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input a pair (𝑟,𝑇 ) and produces a message𝑚. Here, 𝑟 are the random coins of A, which we can assume
are chosen at the beginning of the game, and 𝑇 is the list of messages received so far by A. 𝑚 is then the
next message produced by A, which is a deterministic function of the messages received and the initial
randomness 𝑟 .

The interfaceR sees is the following. There is a private random oracleO, whichR does not see. Instead,
R can make queries of the form (𝑖,𝑇 ). In response, R receivesA(O(𝑖),𝑇 ). We can think of 𝑖 as indexing an
instance ofA, with the private random coins ofA being O(𝑖). Then R can carry out the interaction with
A by repeatedly queryingA(O(𝑖), ·) on the various partial transcripts. Note that this formulation captures
reductions that can rewind the adversary and run the adversary multiple times on the same randomness
but different inputs. We denote the algorithm R making queries of this form by RA .

The guarantee of a black-box reduction is that, for any (potentially inefficient) adversary A with non-
negligible advantage against (Chal1, 𝑡1), then RA has non-negligible advantage against (Chal0, 𝑡0).

3 Generic Group Models

Here, we recall the two typical generic group models, modeled after the works of Maurer [Mau05] and
Shoup [Sho97], respectively. We will ultimately show that, for the purposes of this work, the two models
can be thought of as equivalent, though as explained by [Zha22] they are not equivalent in all contexts.
Since they will be equivalent for us, after this section we will focus exclusively on Maurer’s model.

3.1 The Type Safe (TS)/Maurer Model [Mau05]

Here, we define the Type Safe (TS)model, which is a reinterpretation ofMaurer’s [Mau05] due to Zhandry [Zha22].
This will be the main model used in this work. Later, we will show in a formal sense that the TS model is
equivalent to the model we consider based on Shoup’s model [Sho97].

TS Algorithms. Much of this paragraph is taken almost verbatim from [Zha22], except that we replace
“element gates” with queries. Let 𝑝 ∈ Z be a positive integer. A TS algorithm 𝐴 will be given as a circuit.
Unlike a standard binary circuit, the circuit for 𝐴 will have the following features:

• There will be two kinds of wires, bit wires and element wires. Bit wires take values in {0, 1}, whereas
element wires take values in Z𝑝 ∪ {⊥}.

• There will be “bit gates” that map bits to bits. These gates cannot take element wires as input. Any
universal gate set is allowed for the bit gates.

• Additionally, we allow circuits to make queries, and the inputs/outputs of these queries may include
element wires:

– Labeling Query. This takes as input dlog2(𝑝)e bit wires, and interprets them as 𝑥 ∈ Z𝑝 . The
response to this query is an element wire, containing 𝑥 . This element wire will be thought of
as corresponding to the value 𝑔𝑥 . If the input wires do not correspond to an 𝑥 ∈ Z𝑝 , the output
wire will contain ⊥.

– Group OperationQuery. This takes as input 2× dlog2(𝑝)e bit wires and 2 element wires. The
bit wires are interpreted as 𝑎1, 𝑎2 ∈ Z𝑝 . Let 𝑥1, 𝑥2 be the contents of the element wires. The
query response is an element wire, set to 𝑎1𝑥1 + 𝑎2𝑥2. If any of the bit or element input wires
do not correspond to elements of Z𝑝 , then the output wire is set to ⊥.
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– EqualityQuery. This takes as input two element wires, and replies with a bit wire. If the input
wires both contain the same 𝑥 ∈ Z𝑝 , the output wire is set to 1. In all other cases (including ⊥
inputs) the output is 0.

Notation. Values encoded in bit wireswill be denoted as𝑥 , and È𝑥Éwill be used to denote values encoded
in element wires.

We somewhat abuse notation, and for an algorithm 𝐴 in the TS model, we will sometimes write 𝐴GTS .
Our cost metric for circuits in the TS model will give each gate and query unit cost. Note that this de-
parts somewhat from [Zha22], which only counts labeling and group operation queries. The cost metric
of [Zha22] essentially counts query complexity. Our notion counts all operations, not just queries.

The notion above easily extends to interactive algorithms, where the incoming and outgoing wires can
contain both element wires and bit wires.

Note that, for any TS algorithm 𝐴GTS , and any actual cryptographic group G, we can turn 𝐴 into a
“plain model” algorithm𝐴G. Let 𝑔 be a fixed generator ofG. We replace every element wire (input, output,
and internal) in𝐴GTS containing 𝑥 with collection of wires containing 𝑔𝑥 . We can then replace the labeling,
group operation, and equality queries in 𝐴GTS with the actual implementations of these operations in G.
We will somewhat abuse notation, and treat the algorithms 𝐴GTS and 𝐴G interchangeably.

We also allow a TS model algorithm𝐴GTS to interact with a non-TS model algorithm 𝐵. In this case, the
actual interaction is between 𝐵 and the plain model algorithm 𝐴G, according to the above transformation
on 𝐴.

Type SafeGames. AType Safe Game (TSGame) is given by a pair (CGTS, 𝑡), whereCGTS is a TS algorithm.
For any cryptographic group G, a TS Game gives rise to a game defined over that group, given by (CG, 𝑡).

Type Safe Adversaries. A Type Safe Adversary (TS Adversary) for a TS Game (CGTS, 𝑡) is a TS algo-
rithm 𝐴GTS that interacts with (CGTS, 𝑡). We say that a game (CGTS, 𝑡) is “hard” in the TS model if, for all
polynomial-time TS adversaries 𝐴GTS , the advantage of 𝐴GTS interacting with (CGTS, 𝑡) is negligible.

Type Safe Black Box Reductions. A Type Black Box Safe Reduction (TS-BB Reduction) from TS game
(CGTS0 , 𝑡0) to TS game (CGTS1 , 𝑡1) is a black box reduction for TS algorithms. That is, for each (potentially
inefficient) adversary A with non-negligible advantage 𝜖1 against (CGTS1 , 𝑡1), there exists a non-negligible
function 𝜖0 and a polynomial-time algorithm R such that RGTS,A has advantage 𝜖0 against (CGTS0 , 𝑡0). Note
that, in the interaction between R and A, we allow R to see and respond to the queries A makes to GTS;
R could choose to forward the queries to GTS, but it could also answer them differently.

3.2 Generic Representation (GR)/Shoup Model [Sho97]

Here, we describe our Generic Representation (GR) model. This can be thought of as a reinterpretation of
Shoup’s model, which was called the Random Representation model by [Zha22]. The difference is that we
remove any explicit mention of random representations as used in [Sho97] and [Zha22].

GR Algorithms. Let 𝑝 ∈ Z be a positive integer, and ℓ ≥ log2(𝑝) be an integer. A GR algorithm 𝐴 will
be given as a circuit. Unlike a standard binary circuit which can make the following queries

• Labeling Query. This takes as input dlog2(𝑝)e bits 𝑥 , and outputs 𝐿 ∈ {0, 1}ℓ . Think of 𝐿 as being
equal to 𝑔𝑥 .
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• Group Operation Query. This takes as input 𝑎1, 𝑎2, ℎ1, ℎ2 ∈ {0, 1}2×dlog2 (𝑝 ) e+2×ℓ bits, and replies
with a string 𝐿 ∈ {0, 1}ℓ . We will think of ℎ1, ℎ2 being group elements, and 𝐿 = ℎ𝑎11 × ℎ

𝑎2
2 .

We somewhat abuse notation, and for an algorithm𝐴 in the GR model, we will sometimes write𝐴GGR . Our
cost metric for circuits in the GR model will give each gate or query unit cost. The notion above easily
extends to interactive algorithms.

Note that, for any GR algorithm 𝐴GGR , and any actual cryptographic group G whose elements can be
represented as bits of length ℓ , we can turn 𝐴 into a “plain model” algorithm 𝐴G. To do so, simply answer
each labeling query with the actual value 𝑔𝑥 , and answer each group operation query with the actual value
ℎ𝑎11 × ℎ

𝑎2
2 . We will somewhat abuse notation, and treat the algorithms 𝐴GTS and 𝐴G interchangeably.

We also allow aGRmodel algorithm𝐴GGR to interact with a non-GRmodel algorithm𝐵. In this case, the
actual interaction is between 𝐵 and the plain model algorithm 𝐴G, according to the above transformation
on 𝐴.

GenericRepresentationGames. AGeneric RepresentationGame (GRGame) is given by a pair (CGGR, 𝑡),
where CGGR is a GR algorithm. For any cryptographic group G, a GR Game gives rise to a game defined
over that group, given by (CG, 𝑡). Note that in this work, we will not need to consider GR Games.

Generic Representation Adversaries. A Generic Representation Adversary (GR Adversary) for a GR
Game (CGGR, 𝑡) is a GR algorithm 𝐴GTS that interacts with (CGGR, 𝑡). The advantage of 𝐴 is the infimum
over all (potentially inefficient) groups G of the advantage of 𝐴G interacting with (CG, 𝑡), where 𝐴G and
CG are the standard model versions of the algorithms 𝐴 and C. We say that a game (CGGR, 𝑡) is “hard” in
the GR model if, for all polynomial-time GR adversaries 𝐴GGR , the advantage of 𝐴GGR against (CGGR, 𝑡) is
at most negligibly more than 𝑡 .

Generic Representation Black Box Reductions. A Generic Representation Box Safe Reduction (GR-
BB Reduction) from GR game (CGGR0 , 𝑡0) to GR game (CGGR1 , 𝑡1) is a black box reduction for Generic Rep-
resentation adversaries. That is, for every (potentially inefficient) GR algorithm AGGR for (CGGR1 , 𝑡1) with
non-negligible advantage 𝜖1, there exists a non-negligible function 𝜖0 and a polynomial-time GR algorithm
R such that RGGR,A has advantage 𝜖0 against (CGGR0 , 𝑡0). Note that, in the interaction between R and A,
we allow R to see and respond to the queries A makes to GGR; R could choose to forward the queries to
GGR, but it could also answer them differently.

3.3 Relationship BetweenThe Models

Here, we show that, for the purposes of this paper, the TS and GR models are equivalent. First, we observe
that any TS algorithm 𝐴GTS can be converted into a GR algorithm 𝐴GGR , by replacing labelling and group
operations queries with the corresponding queries in GGR, and implementing the equality check with an
actual string equality subroutine.

There are two equivalences we will consider: first we will consider the equivalence of TS and GR
adversaries, and then we will consider the equivalence of TS and GR reductions. Note that [Zha22] show
the equivalence of TS and Shoup’s model for single-stage games, and this equivalence readily extends to
show the equivalence of TS adversaries andGR adversaries. However, [Zha22] does not apply to reductions,
which is the main consideration in this work.
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Equivalence of Models for Security. Let (CGTS, 𝑡) be a TS game, which can be converted into a GR
game (CGGR, 𝑡) as described above.

Lemma 3.1 (Adapted from [Zha22]). (CGTS, 𝑡) is hard in the TS model if and only if (CGGR, 𝑡) is hard in the
GR model for sufficiently large ℓ .

Proof. We only sketch the proof since it follows straightforwardly from [Zha22]. In one direction, consider
a TS adversary𝐴GTS . We can turn it into a GR adversary𝐴GGR as described above. 𝐴GGR maintains the same
advantage as 𝐴GTS .

In the other direction, let ℓ > log2(𝑝) + 𝜔 (log 𝜆). Consider a GR adversary 𝐴GGR , such that, for any
potentially inefficient groupG,𝐴G has non-negligible advantage against (CG, 𝑡). Wewill letG be a random
group that is isomorphic to Z𝑝 . That is, choose a random injection 𝐿 : Z𝑝 → {0, 1}ℓ , and letG be the set of
images of 𝐿, such that 𝐿 is an isomorphism between Z𝑝 and G. Then we know that 𝐴G has non-negligible
advantage against (CG, 𝑡).

We construct an adversary BGTS against (CGTS, 𝑡). BGTS creates a table𝑇 of pairs of element wires and
random strings. It then runs 𝐴, except that every time 𝐴 makes a labeling query on input 𝑥 , BGTS makes
a labeling query on 𝑥 to obtain an element wire containing 𝑥 . It then uses equality queries to see if there
is already an element wire containing 𝑥 in 𝑇 . If so, it responds to A with the associated random string in
{0, 1}ℓ . Otherwise, it creates a new string and adds the pair consisting of the element wire containing 𝑥
and the new random string to 𝑇 .

For group operation queries, BGTS will look up to see if the two group elements appear as random
strings in the table 𝑇 . If so, it will take the two corresponding element wires, and apply the appropriate
group operation query, to get a new output element wire. As with labeling queries, it then looks to see if
that element wire already existed in 𝑇 , and if so give A the corresponding random string. Otherwise, it
creates a new random string and adds the pair consisting of the element wire and random string to 𝑇 .
BGTS will perfectly simulate A, as long as AG never queries on a string 𝑦 that is in the image of

the injection 𝐿, without first seeing 𝑦 as the result of a labeling or group operation query. But since 𝐿 is
injective into a sparse range, this can only occur with negligible probability. Hence, the advantage of BGTS
is negligibly close to the advantage of AG. □

Observe that in the proof of Lemma 3.1, the algorithm BGTS has the formWGTS,A , whereW is a
“wrapper” algorithm that is independent ofA. Here, the notationWGTS,A means thatW is a TS algorithm
that additionally interacts with the algorithm A, intercepting not only all communication A makes with
the game, but also all queries to GGR. We can likewise view the other direction as designing a wrapper
algorithm as well. This will be important in the next part.

Equivalence for Reductions. While the equivalence between adversaries follows straightforwardly
from [Zha22], the case of reductions was not considered in [Zha22].

Let (CGTS0 , 𝑡0), (CGTS1 , 𝑡1) be two TS games, which can be converted into GR games (CGGR0 , 𝑡0), (CGGR1 , 𝑡1).

Lemma 3.2. There is a TS-BB reduction from (CGTS0 , 𝑡0) to (CGTS1 , 𝑡1) if and only if there is a GR-BB reduction
from (CGGR0 , 𝑡0) to (CGGR1 , 𝑡1).

Proof. We prove one direction, the other being a straightforward adaptation of the same idea. Suppose
there exists a TS-BB reduction from (CGTS0 , 𝑡0) to (CGTS1 , 𝑡1). We now construct a GR-BB reduction from
(CGGR0 , 𝑡0) to (CGGR1 , 𝑡1). Let AGGR be a (potentially inefficient) GR algorithm against (CGGR1 , 𝑡1) with non-
negligible advantage. By Lemma 3.1, we can turn AGGR into a (potentially inefficient) TS algorithm BGTS
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with non-negligible advantage against (CGTS1 , 𝑡1). As observed above, BGTS has the formWGTS,A , running
A as a sub-routine and intercepting all messages sent by A as well as all queries A makes to GGR. We
then construct the reduction R guaranteed by the assumption that there is a TS-BB reduction. We then
have that RGTS,W has non-negligible advantage against (CGTS0 , 𝑡0). Here, R intercepts all messages sent by
W as well as all queriesW makes to GTS.

We next apply Lemma 3.1 again to turn R into an algorithm § which has non-negligible advantage
against (CGGR0 , 𝑡0). Observe again that in the proof of Lemma 3.1, we can write § as VGGR,R, where V
interacts with R as a sub-routine, intercepting all messages as well as queries to GTS. Recall that R in turn
interacts withW by intercepting all communication and queries to GTS, which in turn interacts with A
by intercepting all communication and queries to GGR. We can combine everything outside of A into a
single algorithm TGGR,A which intercepts all communication fromA as well as queries to GGR. This T is
then the promised algorithm associated to A by the reduction. □

3.4 Pairings

We will also consider generalizing the generic group model to generic bilinear groups. In the case of the
TS model, this will also include target group element wires (denoted È𝑥É𝑇 ), group operation and equality
gates which operate on these as element wires, as well as a pairing gate

• Pairing Gate. This takes as input 2 element wires È𝑥1É , È𝑥2É, and outputs the value È𝑥1 ·𝑥2É𝑇 onto
a target wire. If either of the inputs are ⊥, the gate outputs ⊥ as well.

We can similarly define a generic bilinear GR model. The equivalence between the models established
in Lemmas 3.1 and 3.2 both carry over almost immediately to the bilinear setting.

We also observe that any algorithm in the ordinary type safe generic group model is also an algorithm
in the the type safe generic bilinear group model. Likewise for the generic representation model..

3.5 On Groups Built From Other Groups

Here, we consider the possibility of building groups from other groups. For example, when viewing DDH
as a subgroup decision assumption, the subgroup decision assumption holds in the group G2, while the
DDH assumption that justifies it lies in the group G. However, we argue that any “natural” group build
from G must essentially be the group G𝑘 for some integer 𝑘 .

Let G′ be a group built from a group G. Suppose the group G′ is build as follows: each element ℎ𝛽
in G′ consists of a tuple (𝑔f (𝛽 ) ) where f (𝛽) is a function which takes as input an exponent 𝛽 for G′, and
outputs a vector of exponents for G. Here, the notation 𝑔f (𝛽 ) means the vector of group elements obtained
by raising 𝑔 to each of the exponents in f (𝛽).

Suppose further that to multiply two elements ℎ𝛽 = 𝑔f (𝛽 ) and ℎ𝛾 = 𝑔f (𝛾 ) , the group G′ computes ℎ𝛽+𝛾
as a linear combination of the the terms in 𝑔f (𝛽 ) , 𝑔f (𝛾 ) , and g. In other words, we have that f (𝛽 + 𝛾) =
A · f (𝛽) + B · f (𝛾) + v for some known matrices A,B and known vector v.

We then first observe we can assume A = B, without loss of generality. This is because A · f (𝛽) + B ·
f (𝛾) + v = f (𝛽 +𝛾) = f (𝛾 + 𝛽) = A · f (𝛽) +B · f (𝛾) + v, and therefore A · f (𝛽) +B · f (𝛾) = A′ · (f (𝛽) + f (𝛾)),
where A′ = (A + B)/2. Thus, we can always replace A,B with their mean A′.

Now that we have f (𝛽 + 𝛾) = A(f (𝛽) + f (𝛾)) + v, we explain that can also assume A = I. This is
because f (𝛽 + 𝛾 + 𝛿) = A(f (𝛽 + 𝛾) + f (𝛿)) + v = A2f (𝛽) + A2f (𝛾) + Af (𝛿) + Av + v. But we also have
that f (𝛽 + 𝛾 + 𝛿) = A(f (𝛽) + f (𝛾 + 𝛿)) = Af (𝛽) + A2f (𝛾) + A2f (𝛿) + Av + v. Subtracting gives that
(A −A2) (f (𝛽) − f (𝛿)) = 0. We break into three cases:
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1. A = I. In this case, by shifting the exponents f (𝛽) to g(𝛽) = f (𝛽) + v, we then have that g(𝛽 + 𝛾) =
f (𝛽 + 𝛾) + v = f (𝛽) + f (𝛾) + 2v = g(𝛽) + g(𝛾). Now we have that G′ = G𝑘 .

2. A ≠ I but A2 = A. In this case, A cannot have full rank. But since any f (𝛽) can be written as
f (𝛽) = f (𝛽 + 0) = A(f (𝛽) + f (0)), we must have each f (𝛽) is in the column-span of A. But then
we can write some components of f (𝛽) for any 𝛽 as linear combinations of other components. In
particular, there must exist a full-rank matrix C that is taller than it is wide, such that f (𝛽) = Cf ′(𝛽).
In particular, C as the same column-span asA. Moreover, sinceC has full (column) rank, there must
exist a matrix D that is wider than it is tall such that D · C = I.
From such a group, we can construct a group G′′ where a group element (ℎ′)𝛽 is just 𝑔f ′ (𝛽 ) . We
then multiply elements by observing that f ′(𝛽 + 𝛾) = DAC(f ′(𝛽) + f ′(𝛾)). Let A′ = DAC. We
observe that (A′)2 = A′. Thus, we’ve essentially shown that the group G′ is equivalent to a group
G′′ over a smaller group of elements. Either A′ is full-rank, or we can repeat this process several
times until we’ve arrived at an equivalent group G′′′ defined by a matrix A′′ that is full rank but
have (A′′)2 = A′′. At this point, we are in Case 1.

3. A2 ≠ A. This means that there is a linear subspace that contains 𝑓 (𝛽)− 𝑓 (𝛾) for all 𝛽,𝛾 . In particular,
this means there is an affine space that contains 𝑓 (𝛽) for all 𝛽 . In other words, we can write f (𝛽) =
g(𝛽) + w, where g(𝛽) lies in a subspace. By shifting the exponent f (𝛽) by w, we can construct a
different subgroup G′′ where the exponents are g(𝛽). Then, just as in the previous case, we can
shrink this subgroup down to a smaller group where the exponents are g′(𝛽) and these do not lie in
any subspace. Iterating several times, eventually we end up with a group that is in Case 1

Thus, we see that by performing affine transformations on the group, we can reduce to the case where
the group is just G𝑘 . Thus, it seems that the only way to generically build a group out of G is to simply
have the group be G𝑘 .

Note that we have not completely ruled out any other possible way of building the group G′ from
G. We could, for example, have the elements of G′ have bit-string parts that do not correspond to group
elements. Then the way multiplication combines group elements could depend on the bit-string parts of
the input. We could also perform various equality tests on the input elements, and base the multiplication
operation on that. Finally, the group operation in G′ could depend on the actual bit-string representation
of the group elements in G. However, it is not clear how to use any of these approaches to actually build
a group that whose security is tied to the underlying group G.

4 Types of Group-Based Assumptions

Here, we define both static and 𝑞-type assumptions. Our definitions will be very general, which makes
our impossibility stronger.

Definition 4.1. We say an assumption G = (C, 𝑡) is of fixed-size 𝑛 if the total number of group elements
produced by C is ≤ 𝑛 for any adversary.

In order to define 𝑞-type assumptions, we first give some additional notation. For an assumption G =
(C, 𝑡), we can decompose the logic of C as follows. First, we can assume C samples all of its randomness at
the beginning of the experiment. Then we can specify C by a collection of functions F = {𝑓 (·) : {0, 1}∗ →
Z𝑝 },H = {ℎ(·) : {0, 1}∗ → {0, 1}∗} , a success function 𝐵. Then the game defined by C works as follows:
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• C samples randomness X R← {0, 1}∗

• For a polynomial number of rounds 𝑖 ∈ [𝑅]

– Let 𝑇𝑖 be the transcript of outputs given by A by round 𝑖
– C sends È𝑓𝑇𝑖 (X)É , ℎ𝑇𝑖 (X) to A
– A sends a response message𝑚𝑖 =

{�
𝑚0

𝑖

�
,𝑚1

𝑖

}
• C outputs a bit 𝑏 = 𝐵(𝑇𝑅,X).

We are now ready to define 𝑞-type assumptions.

Definition 4.2. We refer to a hardness assumption G as a 𝑞-type assumption if, as part of challenger
randomness X, there exists a 𝑥0 ∈ Z𝑝 . In addition, for all executions {𝑇1,𝑇2, . . .} of G, there exists a
function 𝑓 ′(X), as well as a set of polynomials 𝑆 𝑓 ′ = {𝑠𝑖 (𝑥0)} where:

1. deg(𝑆 𝑓 ′) ∈ poly(𝜆)

2. dim(𝑆 𝑓 ′) ≥ 𝑞

3. 𝑠𝑖 (𝑥0) · 𝑓 ′(X) = 𝑓𝑇𝑗 (X) for some transcript 𝑇𝑗

Furthermore, there exists an (efficient) algorithm ABreak such that in the following game:

• C samples randomness X R← {0, 1}∗, including ®𝑥 R← Z𝑛𝑝

• For a polynomial number of rounds 𝑖 ∈ [𝑅]

– Let 𝑇𝑖 be the transcript of outputs given by ABreak by round 𝑖
– C sends È𝑓𝑇𝑖 (X)É , ℎ𝑇𝑖 (X) to ABreak

– If 𝑑𝑖𝑚(𝑆 𝑓 ′) ≥ 𝑞 for the first time, send an 𝑥∗ to ABreak

– ABreak sends a response message𝑚𝑖 =
{�
𝑚0

𝑖

�
,𝑚1

𝑖

}
• C outputs a bit 𝑏 = 𝐵(𝑇𝑅,X).

If the probability Pr[𝑥∗ = 𝑥0] is noticeable, then the probability C outputs 1 is� 𝑡 .

The requirement ofABreak provides a lower bound on the ‘strength’ of what is required for an assump-
tion for to be 𝑞-type. One can imagine a ‘nominally’ q-type assumption where an adversary is given

𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧 , 𝑔𝑧
2

, 𝑔𝑧
3

. . . 𝑔𝑧
𝑞

and tasked with distinguishing 𝑔𝑥𝑦 from random. This is clearly implied by DDH by embedding the DDH
challenge as 𝑥,𝑦. By requiring that knowledge of the ‘q-type exponent’ allows for the assumption to
be broken, we rule out these trivial assumptions while still capturing common 𝑞-type assumptions such
as 𝑞-(bilinear) Diffie-Hellman exponent [BBG05, BGW05], 𝑞-(bilinear) Diffie-Hellman inversion [MSK02,
BB04a], or 𝑞-weak/strong Diffie-Hellman [MSK02, BB04b].
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5 Results

First, we formalize the key observation that limits the distribution of valid inputs to a 𝑞-type assumption
conditional on how it is constructed from challenge elements.

Lemma 5.1. Let 𝑝 (·) = (𝑝1, 𝑝2, . . . , 𝑝𝑛) be a vector of linearly independent univariate polynomials of degree
at most𝑚 − 1 ≥ 𝑛 over field F. The intersection of 𝑝 (·) with any ≤ 𝑛 − 1 dimensional subspace of F𝑛 is at
most𝑚 − 1

Proof. Assume for sake of contradiction there are𝑚 unique field elements 𝑥1, 𝑥2, . . . 𝑥𝑚 ∈ F contained in
some 𝑛 − 1 dimensional subspace of F𝑛

Let the𝑚 × 𝑛 matrix 𝑴 be where 𝑀𝑖, 𝑗 = 𝑝𝑖 (𝑥 𝑗 ) - i.e. the rows of 𝑴 are exactly the evaluation of 𝑝 (·)
on these elements. Now consider the𝑚 ×𝑚 Vandermonde matrix

𝑽 =


1 𝑥1 𝑥21 · · · 𝑥𝑚−11
1 𝑥2 𝑥22 · · · 𝑥𝑚−12
...

...
...

. . .
...

1 𝑥𝑚 𝑥2𝑚 · · · 𝑥𝑚−1𝑚


As 𝑥1, 𝑥2, . . . 𝑥𝑚 are unique, this matrix has rank 𝑚. For each polynomial 𝑝𝑖 (𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 +

. . . 𝑐𝑚−1𝑥𝑚−1, let ®𝑝𝑖 = [𝑐0, 𝑐1, . . . 𝑐𝑚−1] ∈ Z𝑚𝑝 . Since {𝑝1, 𝑝2, . . . 𝑝𝑛} are linearly independent, as are vectors
®𝑝1, ®𝑝2, . . . ®𝑝𝑛 . Observe ®𝑞𝑖 = 𝑽 · ®𝑝𝑖 is simply the evaluation of 𝑝𝑖 on points 𝑥1, 𝑥2, . . . 𝑥𝑚 . Since these are
linearly independent vectors under an invertible map, they too must be invertible. Therefore, the matrix

𝑽 · [ ®𝑝T
1 | ®𝑝T

2 · · · | ®𝑝T
𝑛]

has column rank (and thus rank) 𝑛. Thus, they cannot be contained within an 𝑛 − 1 dimensional subspace.
□

Nowwe are ready to state our main theorem - a black box separation between 𝑞-type assumptions and
assumptions of size < 𝑞 − 1.

Theorem 5.2. Suppose there exists a reduction from a 𝑞-type assumption Q as per Definition 4.2 to a fixed
size assumption as per F Definition 4.1 of size 𝑛 < 𝑞 − 1. Then there exists a GGM algorithm which breaks
assumption F.

Proof. Let Q be parameterized by polynomial family F = {𝑓𝑖 (·)} and probability threshold 𝑡Q. Recall also
there exists an 𝑥0-dependent ‘breaking adversary’ABreak. Let F be parameterized by probability threshold
𝑡F.

Suppose there is a reduction B, when given access to a solver S which can break assumption Q with
noticeable probability, breaks assumption F with noticeable probability. Then there exists an efficient
algorithm AF which breaks assumption F with noticeable probability, which we describe below. We will
write AF as 3 separate algorithms (AB,AS,AO) with a shared state. AB interacts directly with the F
challenger via simulating B, while AS answers the queries the simulated reduction algorithm B makes
with its solverS by usingABreak. Finally,AO replaces the element gates used by the (simulated) reduction
B and ABreak.

These algorithms will share a dictionary D : G→ Z𝑛+1𝑝 from element wires to bit wires, which A will
initialize as empty. 3

3This can be implemented by in the Maurer/TS GGM model by simply equality checking every entry
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• AB runs reduction algorithm BS(·) .

• For rounds 𝑖 ∈ [𝑛]

– Receive È𝑥𝑖É and 𝑦𝑖 from CF
– Set D[È𝑥𝑖É] = 𝑒𝑖 (the 𝑖𝑡ℎ canonical basis vector on Z𝑛+1𝑝 )
– Forward È𝑥𝑖É and 𝑦𝑖 to B, receiving response message𝑚𝑖

– Return𝑚𝑖 to CF

• B outputs a bit 𝛽 ′, which AB sends to F challenger.

Figure 1: Program AB (·).

• AS runs breaking adversary ABreak of Q

• For rounds 𝑖 ∈ [𝑅Q]

– Let 𝑇𝑖 be the transcript of outputs thus far.
– Receive È𝑥𝑖É , 𝑦𝑖 from B
– If ∃𝑆 𝑓 ′ : dim(𝑆 𝑓 ′) ≥ 𝑞 (as per in Definition 4.2) for the first time:

∗ Let 𝑆 𝑓 ′ = {𝑠 𝑗 } 𝑗∈[𝑞 ] .
∗ Define the matrix 𝑴 ∈ Z𝑞×(𝑛+1)𝑝 where row 𝑴 𝑗 = D[

�
𝑥𝑖 𝑗

�
] : 𝑓𝑇𝑖 𝑗 (X) = 𝑠 𝑗 (𝑥0) · 𝑓 ′(X)

∗ Compute the set of solution 𝑋 † = {𝑥†𝑖 } such that

(𝑠1(𝑥†𝑖 ), 𝑠2(𝑥
†
𝑖 ), . . . 𝑠𝑞 (𝑥

†
𝑖 )) ∈ Span(col(𝑴))

∗ Define set

𝑋 ∗ = {𝑥∗ ∈ 𝑋 † | ∀𝑗, 𝑘 ∈ [𝑞] :
�
𝑥𝑖 𝑗

�
/𝑠 𝑗 (𝑥∗) = È𝑥𝑖𝑘É /𝑠𝑘 (𝑥∗)}

∗ Return a uniform element 𝑥∗ R← 𝑋 ∗ to ABreak.
– Forward to ABreak, and return response𝑚𝑖 .

Figure 2: Program AS (·).
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• Labeling Gate. Take in wires encoding 𝑥 . Use regular labeling gate to compute È𝑥É. Add
D[È𝑥É] = 𝑥 · 𝑒𝑛+1 to the dictionary and return È𝑥É.

• Group Operation Gate. Take in wires encoding 𝑎1, 𝑎2, È𝑥1É , È𝑥2É. Use group operation gate
to compute È𝑎1𝑥1 + 𝑎2𝑥2É. Look up 𝑣1 = D[È𝑥1É], 𝑣2 = D[È𝑥2É], add D[È𝑎1𝑥1 + 𝑎2𝑥2É] =
𝑎1𝑣1 + 𝑎2𝑣2 to the dictionary, and return È𝑎1𝑥1 + 𝑎2𝑥2É.

• Equality Gate. Implement as normal.

Figure 3: Replacement Gates O(·).

Lemma 5.3. |𝑋 † | ≤ deg(𝑆 𝑓 ′)

Proof. Note that since 𝑴 has 𝑛 + 1 columns, we can bound dim(col(𝑴)) ≤ 𝑛 + 1. Since 𝑞 > 𝑛 + 1, the
number of solutions follows from Lemma 5.1. □

Lemma 5.4. A is efficient.

Proof. First, we can see that AB and AO both do a constant amount of work for each interaction and
group operation performed by B respectively. Since B is efficient, it follows that these two are as well.
Finally, observe that apart from forwarding responses between B andABreak, the group operations ofAS
just include the dictionary lookups to construct𝑴 and the division checks to filter𝑋 ∗ from𝑋 †. The former
is only done 𝑞 times (once per row of 𝑴), while the latter also only needs to be checked for the deg(𝑆 𝑓 ′)
elements of 𝑋 † (from Lemma 5.3), both of which are efficient. □

Lemma 5.5. A breaks assumption F with probability� 𝑡F.

Proof. We will argue the advantage ofA against F through a small sequence of experiments. Let E𝑖 be the
event that CF returns 1 in experiment 𝑖 .

• Exp0 This is the original security game of assumption F against A.

• Exp1 In this experiment, AS is modified to inefficiently generate 𝑋 ∗ without dictionary D.
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– A1
S runs breaking adversary ABreak of Q

– For rounds 𝑖 ∈ [𝑅Q]

∗ Let 𝑇𝑖 be the transcript of outputs thus far.
∗ Receive È𝑥𝑖É , 𝑦𝑖 from B
∗ If ∃𝑆 𝑓 ′ : dim(𝑆 𝑓 ′) ≥ 𝑞 (as per in Definition 4.2) for the first time:

· (Inefficiently) recover 𝑥𝑖 𝑗 : 𝑓𝑇𝑖 𝑗 = 𝑠 𝑗 · 𝑓 ′ from
�
𝑥𝑖 𝑗

�
· Compute set

𝑋 ∗ = {𝑥∗ ∈ Z𝑝 | ∃𝑤 ∈ Z𝑝 where ∀𝑗 𝑤 · 𝑠 𝑗 (𝑥∗) = 𝑥𝑖 𝑗 }

· Return a uniform element 𝑥∗ R← 𝑋 ∗ to ABreak.
∗ Forward È𝑥𝑖É , 𝑦𝑖 to ABreak, and return response𝑚𝑖 .

Figure 4: Program A1
S (·).

Lemma 5.6. Pr[E0] = Pr[E1]

Proof. Observe that these experiments only differ in how set 𝑋 ∗ is computed (which we will refer to as 𝑋 ∗0
and 𝑋 ∗1 respectively). Thus, it suffices to show that 𝑋 ∗0 = 𝑋 ∗1 . The containment 𝑋 ∗0 ⊆ 𝑋 ∗1 is easy to see, as
we can set the term

�
𝑥𝑖 𝑗

�
/𝑠 𝑗 (𝑥∗) to be the𝑤 in 𝑋 ∗1 .

Conversely to show 𝑋 ∗1 ⊆ 𝑋 ∗0 , we will first need to show the ‘correctness’ of our dictionary D.

Claim 5.7. Let È𝑥𝑖É for 𝑖 ∈ [𝑛] be the group elements sent from CF, and let È𝑥É be an element wire in A.
Then D[È𝑥É] = ®𝑣 ≠ ⊥, and moreover, 𝑥 = 〈(𝑥1, 𝑥2, . . . 𝑥𝑛, 1), ®𝑣〉.

Proof. We observe that since AB and AS never produce any new group elements on their own, any È𝑥É
either comes from the challenger CF or through running B, ABreak. We can verify that in either of these
cases, this invariant is maintained for any new group elements produced.

• È𝑥É is received from CF - In this case, È𝑥É = È𝑥𝑖É for some 𝑖 ∈ [𝑛]. From AB , we can see
D[È𝑥É] = 𝑒𝑖 , and 〈(𝑥1, 𝑥2, . . . 𝑥𝑛, 1), 𝑒𝑖〉 is indeed 𝑥𝑖 .

• È𝑥É is produced by a labeling gate (in B,ABreak) - In this case, ®𝑣 = 𝑥 · 𝑒𝑛+1, so we can see
〈(𝑥1, 𝑥2, . . . 𝑥𝑛, 1), 𝑥 · 𝑒𝑛+1〉 = 𝑥

• È𝑥É is produced by a group operation gate (in B,ABreak) - Let 𝑎1, 𝑎2, È𝑦1É , È𝑦2É be the inputs
to this group operation gate. We can inductively reason for ®𝑣1 = D[È𝑦1É], ®𝑣2 = D[È𝑦2É], that
〈(𝑥1, 𝑥2, . . . 𝑥𝑛, 1), ®𝑣1〉 = 𝑦1 and 〈(𝑥1, 𝑥2, . . . 𝑥𝑛, 1), ®𝑣2〉 = 𝑦2. Thus,

〈(𝑥1, 𝑥2, . . . 𝑥𝑛, 1), 𝑎1 ®𝑣1 + 𝑎2 ®𝑣2〉 = 𝑎1〈(𝑥1, 𝑥2, . . . 𝑥𝑛, 1), ®𝑣1〉 + 𝑎2〈(𝑥1, 𝑥2, . . . 𝑥𝑛, 1), ®𝑣1〉
= 𝑎1𝑦1 + 𝑎2𝑦2
= 𝑥
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□

Let 𝑥∗ ∈ 𝑋 ∗1 , and consider the vector

®𝑢 = (𝑥𝑖1/𝑤, 𝑥𝑖2/𝑤, . . . 𝑥𝑖𝑛/𝑤, 1/𝑤) ∈ Z𝑛+1𝑝 .

By the above claim, 〈®𝑢,𝑴 𝑗 = D[
�
𝑥𝑖 𝑗

�
]〉 = 𝑥𝑖 𝑗 /𝑤 = 𝑠 𝑗 (𝑥∗). Thuswe can conclude𝑴 ·®𝑢T = (𝑠1(𝑥∗), 𝑠2(𝑥∗), . . . 𝑠𝑞 (𝑥∗))T,

so 𝑥∗ ∈ 𝑋 †. Since
�
𝑥𝑖 𝑗

�
/𝑠 𝑗 (𝑥∗) = È𝑤É, it will not be filtered out when sampling 𝑋 ∗0 .

□

Lemma 5.8. Pr[E1] � 𝑡F

Proof.

Claim 5.9. A1
S is an algorithm which breaks the assumption Q security game with nonnegligible advantage.

Proof. Since A1
S exactly forwards the inputs from the challenger to and from ABreak, it suffices to check

that 𝑥∗ = 𝑥0 with noticeable probability - which by definition means Break succeeds with noticeable advan-
tage. Recall that since 𝑓𝑇𝑖 𝑗 (X) = 𝑓 ′(X)·𝑠 𝑗 (𝑥0), we can take𝑤 = 𝑓 ′(X) to see that 𝑥0 ∈ 𝑋 ∗. From Lemma 5.3,
𝑥0 is output with probability ≥ 1

deg(𝑆𝑓 ′ ) . From Definition 4.2, deg(𝑆 𝑓 ′) ∈ poly(𝜆), so Pr[𝑥∗ = 𝑥0] is notice-
able. □

Since B is a reduction, from the last claim, B[A1
S] has nonnegligible advantage in the assumption F

security game. SinceAB exactly forwards the input/outputs of B,A has nonnegligible advantage in this
game as well.

□

Taking together Lemmas 5.6 and 5.8, the advantage of A in assumption F is� 𝑡F. □

Combining Lemmas 5.4 and 5.5, we get an efficient adversary which breaks assumption F.
□

5.1 Generalizing to Bilinear Groups

We can naturally extend our definition of hardness assumptions to bilinear groups by simply allowing both
the challenger and adversary to send target group elements È𝑔𝑇𝑖 (X)É𝑇 , È𝑚2

𝑖 É𝑇 respectively.

Theorem 5.10. Suppose there exists a reduction from a bilinear 𝑞-type assumption Q to a fixed size assump-
tion F of size 𝑛 :

(𝑛+2
2

)
< 𝑞. Then there exists a generic bilinear group algorithm which breaks assumption

F.

Our result and techniques from above readily generalizes to the generic bilinear (and indeed 𝑘-linear
for fixed 𝑘) groups. The presence of the bilinear map mean that our meta-reduction, rather than recording
group elements as linear function of the challenge inputs, needs to consider quadratic functions as well.
However, we can effectively ‘linearize’ this by simply mapping all group elements 𝑥𝑖 received from C as
linear functions in degree ≤ 2 monomials of (𝑥1, 𝑥2, . . . 𝑥𝑛). As a result, our polynomial set S𝑓 ′ is now
bound by a

(𝑛+2
2

)
dimensional subspace, which gives us the parameters of our theorem. For the complete

definition and proof of this theorem, see Appendix A.
We remark that this gap from being able to rule out reductions to 𝑂 (𝑛) sized assumptions in generic

groups to 𝑂 (𝑛2) in generic bilinear groups is not just a limitation of our proof techniques, and is in fact
inherent. Consider the following two assumptions:
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Assumption 5.11. Sample 𝑥 R← Z𝑝 . Given

𝐴1 = È𝑥É , 𝐴2 =
�
𝑥2
�
. . . 𝐴𝑞−1 =

�
𝑥𝑞−1

�
, 𝐵1 = È𝑥𝑞É , 𝐵2 =

�
𝑥2𝑞

�
. . . 𝐵𝑞−1

�
𝑥𝑞 (𝑞−1)

�
Distinguish 𝑇 =

�
𝑥2𝑞

2
�
from random.

Assumption 5.12. Sample 𝑥 R← Z𝑝 Given

𝐶1 = È𝑥É𝑇 ,𝐶2 = È𝑥2É𝑇 ,𝐶3 = È𝑥3É𝑇 . . .𝐶𝑛 = È𝑥𝑞2−1É𝑇

Distinguish 𝑇 ′ = È𝑥2𝑞2É𝑇 from random.

These assumptions are both clearly true in the generic group model, but we can in fact reduce the
security of Assumption 5.12 to Assumption 5.11 by simply setting𝐶𝑖 = 𝑒 (𝐵b𝑖/𝑞c, 𝐴𝑖 mod 𝑞) (where𝐴0, 𝐵0 =
È1É) and 𝑇 ′ = 𝑒 (𝑇, È1É).

6 Applications

Our results apply to a broad range of both cryptographic assumptions as well as schemes, some of which
we will highlight below.

Corollary 6.1. There does not exist a generic reduction from 𝑞-Strong Diffie Hellman Assumption to a fixed-
size assumption.

Proof. Recall the 𝑞-SDH assumption from [BB04b]: given È𝑥É ,
�
𝑥2
�
. . . , È𝑥𝑞É, compute tuple (𝑐,

�
1

𝑥+𝑐
�
).

Claim 6.2. 𝑞-SDH is a 𝑞-type assumption per Definition 4.2.

Proof. As a static assumption, we can immediately see that È𝑥É ,
�
𝑥2
�
. . . , È𝑥𝑞É represents a𝑞−dimensional

set of polynomials which the adversary always receives. In addition, consider the following adversary.

• For rounds 𝑖 ∈ [𝑅]

– Receive group element 𝐴𝑖 =
�
𝑥𝑖0
�

– If group element 𝑥∗ is received, check that 𝐴𝑥∗
1 = 𝐴2. If so, return (1, È1/(𝑥∗ + 1)É, other-

wise output ⊥

Figure 5: Program ABreak.
Observe that when 𝑥0 = 𝑥∗ (which is checkable via exponentiating provided group elements), ABreak can
simply construct the challenge for an arbitrary 𝑐 , thus succeeding with probability Pr[𝑥0 = 𝑥∗], which is
nonnegligible.

□

Now that we have shown 𝑞-SDH falls within our 𝑞-type framework, the corollary follows immediately
from Theorem 5.2.

□

21



Corollary 6.3. There does not exist a generic reduction from 𝑞-Bilinear Diffie Hellman Exponent Assumption
to a fixed-size assumption.

Proof. Recall the 𝑞-BDHE assumption from [BB04a]: given È𝑦É , È𝑥É ,
�
𝑥2
�
. . . ,

�
𝑥𝑞−1

�
,
�
𝑥𝑞+1

�
, . . .

�
𝑥2𝑞

�
,

distinguish È𝑦𝑥𝑞É𝑇 from a random target group element.
As before, the result follows immediately from applying our theoremTheorem 5.10, so long as we show

the 𝑞-BDHE is in fact a 𝑞-type assumption.

Claim 6.4. 𝑞-BDHE is a 𝑞-type assumption per Definition A.2.

Proof. As a static assumption, we can immediately see that È𝑥É ,
�
𝑥2
�
. . . ,

�
𝑥𝑞−1

�
,
�
𝑥𝑞+1

�
, . . .

�
𝑥2𝑞

�
repre-

sents a 2𝑞 − 1-dimensional set of polynomials which the adversary always receives. In addition, consider
the following adversary.

• For rounds 𝑖 ∈ [𝑅]

– Receive group element 𝐴𝑖 =
�
𝑥𝑖0
�
, 𝐵 = È𝑦É, challenge element 𝑇

– If group element 𝑥∗ is received, check that 𝐴𝑥∗
1 = 𝐴2. If not, return ⊥

– Construct 𝐴𝑞 = È𝑥∗𝑞É, and compute 𝑇 ∗ = 𝑒 (𝐴𝑞, 𝐵). Return 1 iff 𝑇 = 𝑇 ∗.

Figure 6: Program ABreak.
Observe that when 𝑥0 = 𝑥∗ (which once again is checkable via exponentiating the provided group ele-
ments), ABreak can simply construct the challenge element È𝑥𝑞0 · 𝑦É𝑇 using È𝑦É, thus succeeding with
probability Pr[𝑥0 = 𝑥∗], which is nonnegligible.

□

□

Corollary 6.5. There does not exist a generic reduction from the security of the broadcast encryption scheme
of [BGW05] to a fixed-size assumption.

Proof. Our framework of 𝑞-type assumptions also captures interactive security games, and as such our
results extend to these games as well.

We will restate the ecurity of broadcast when instantiated with [BGW05]:

• C samples 𝑥,𝑦 R← Z𝑝
• A outputs challenge set 𝑆∗ ⊆ [𝑛]

• C sends public key È𝑥É ,
�
𝑥2
�
, . . . È𝑥𝑛É ,

�
𝑥𝑛+2

�
, . . .

�
𝑥2𝑛

�
, È𝑦É and private keys È𝑦 · 𝑥𝑖É for 𝑖 ∉ 𝑆∗.

• A sends decryption queries which C answers

• A requests the challenge:

– A sends set 𝑆 ⊆ 𝑆∗

– C samples 𝑡 R← Z𝑝 and sends

È𝑡É ,

��𝑡 · (𝑦 +∑
𝑗∈𝑆

𝑥𝑛+1− 𝑗
)��
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– C samples a random bit 𝑏 R← {0, 1}, and sends challenge

𝑇𝑏 = È𝑥𝑛+1É𝑇 , 𝑇1−𝑏 R← G𝑇

• A sends more decryption queries which C answers

Claim6.6. Security game of the broadcast encryptionwhen instantiated with [BGW05] is a𝑞-type assumption
Definition A.2.

Proof. Once again, it is easy to see that the public keyA receives contains È𝑥É ,
�
𝑥2
�
, . . . È𝑥𝑛É ,

�
𝑥𝑛+2

�
, . . .

�
𝑥2𝑛

�
,

a 2𝑛 − 1-dimensional set of polynomials in 𝑥 . Now we can construct ABreak as follows:

• Send challenge set 𝑆∗ = [𝑛]

• Receive public key È𝑥É ,
�
𝑥2
�
, . . . È𝑥𝑛É ,

�
𝑥𝑛+2

�
, . . .

�
𝑥2𝑛

�
, È𝑦É

• Receive candidate 𝑥∗. Check that È𝑥É · 𝑥∗ =
�
𝑥2
�
. Otherwise abort.

• Request challenge on 𝑆 = [𝑛]. If 𝑇0 = È𝑥∗𝑛+1É𝑇 return 0, otherwise return 1.

Figure 7: Program ABreak.
As with our prior assumptions, learning 𝑥∗ = 𝑥0 allows us to directly compute the encapsulated key,

and thus breaking the security of the broadcast scheme.
□

Thus, we can conclude via Theorem 5.10 that the security of [BGW05] cannot be reduced to a fixed
size assumption.

□
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A Generalizing to Bilinear Groups

Here we show the complete definitions and proof of our theorems generalized to bilinear groups.

A.1 Assumptions

Similar to the plain GGM case, we can specify a hardness assumption on bilinear groups by a collection of
functions F = {𝑓 (·) : {0, 1}∗ → Z𝑝 },G = {𝑔(·) : {0, 1}∗→ Z𝑝 },H = {ℎ(·) : {0, 1}∗ → {0, 1}∗} , a success
function 𝐵. Then the game defined by C works as follows:

• C samples randomness X R← {0, 1}∗

• For a polynomial number of rounds 𝑖 ∈ [𝑅]

– Let 𝑇𝑖 be the transcript of outputs given by A by round 𝑖
– C sends È𝑓𝑇𝑖 (X)É , È𝑔𝑇𝑖 (X)É𝑇 , ℎ𝑇𝑖 (X) to A

– A sends a response message𝑚𝑖 =
{�
𝑚0

𝑖

�
,𝑚1

𝑖 , È𝑚2
𝑖 É𝑇

}
• C outputs a bit 𝑏 = 𝐵(𝑇𝑅,X).

Definition A.1. We say an assumption G = (C, 𝑡) on bilinear groups is of fixed-size 𝑛 if the total number
of group elements (including both the source and target group) produced by C is ≤ 𝑛 for any adversary.

Definition A.2. We refer to a hardness assumption on bilinear groupsG as a 𝑞-type assumption if, as part
of challenger randomness X, there exists a 𝑥0 ∈ Z𝑝 . In addition, for all executions {𝑇1,𝑇2, . . .} of G, there
exists a function 𝑓 ′(X), as well as a set of polynomials 𝑆 𝑓 ′ = {𝑠𝑖 (𝑥0)} where:

1. deg(𝑆 𝑓 ′) ∈ poly(𝜆)

2. dim(𝑆 𝑓 ′) ≥ 𝑞

3. 𝑠𝑖 (𝑥0) · 𝑓 ′(X) = 𝑓𝑇𝑗 (X) or = 𝑔𝑇𝑗 (X) for some transcript 𝑇𝑗

Furthermore, there exists an (efficient) algorithm ABreak such that in the following game:

• C samples randomness X R← {0, 1}∗, including ®𝑥 R← Z𝑛𝑝

• For a polynomial number of rounds 𝑖 ∈ [𝑅]

– Let 𝑇𝑖 be the transcript of outputs given by ABreak by round 𝑖
– C sends È𝑓𝑇𝑖 (X)É , È𝑔𝑇𝑖 (X)É𝑇 , ℎ𝑇𝑖 (X) to ABreak

– If 𝑑𝑖𝑚(𝑆 𝑓 ′) ≥ 𝑞 for the first time, send an 𝑥∗ to ABreak

– ABreak sends a response message𝑚𝑖 =
{�
𝑚0

𝑖

�
,𝑚1

𝑖

}
• C outputs a bit 𝑏 = 𝐵(𝑇𝑅,X).

If the probability Pr[𝑥∗ = 𝑥0] is noticeable, then the probability C outputs 1 is� 𝑡 .
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A.2 Theorem for Bilinear Groups

We are now ready to formally prove Theorem 5.10, restated below:

Theorem A.3. Suppose there exists a reduction from a bilinear 𝑞-type assumption Q as per Definition A.2 to
a fixed size assumption as per F Definition A.1 of size 𝑛 :

(𝑛+2
2

)
< 𝑞. Then there exists a GGM algorithm which

breaks assumption F.

Proof. LetQ be parameterized by polynomial families F = {𝑓𝑖 (·)},G = {𝑔𝑖 (·)} and probability threshold 𝑡Q.
Recall also there exists an 𝑥0-dependent ‘breaking adversary’ABreak. Let F be parameterized by probability
threshold 𝑡F.

Suppose there is a reduction B, when given access to a solver S which breaks assumption Q with
noticeable probability, breaks assumption F with noticeable probability. Then there exists algorithm AF

which breaks assumption Fwith noticeable probability as well, which we describe below. Wewill writeAF

as 3 separate algorithms (AB,AS,AO) with a shared state. AB interacts directly with the F challenger
via simulatingB, whileAS answers the queries the simulated reduction algorithmB makes with its solver
S by usingABreak. Finally,AO replaces the element gates used by the (simulated) reduction B andABreak.

These algorithmswill share two dictionariesD : G𝑇 → 𝑝1(𝑥1, 𝑥2, . . . 𝑥𝑛) andD𝑇 : G𝑇 → 𝑝2(𝑥1, 𝑥2, . . . 𝑥𝑛)
mapping element wires to linear and quadratic polynomials on random variables 𝑥1, . . . 𝑥𝑛 respectively,
which A will initialize as empty.

We define function 𝜌 [𝑟1, . . . 𝑟𝑛] (·) from degree 2 polynomials on variables (𝑥1, . . . , 𝑥𝑛) to Z
(𝑛+22 )
𝑝 ob-

tained by mapping the evaluation of each unique monomial term on input (𝑟1, . . . 𝑟𝑛) to a unique index
∈

[ (𝑛+2
2

) ] 4. We will use 𝜌 (·) as shorthand for 𝜌 [®1] (·), which returns a vector of coefficients. We will also
define 𝑃2(𝑥1, . . . , 𝑥𝑛) to be the quadratic polynomial with coefficient 1 on every monomial (i.e. 𝜌 (𝑃2) = ®1).

• AB runs reduction algorithm BS(·) .

• Start a counter ctr = 1

• For rounds 𝑖 ∈ [𝑅F]

– Receive È𝑤𝑖É , 𝑦𝑖 and È𝑧𝑖É𝑇 from CF
∗ If È𝑤𝑖É ≠ ⊥, set D[È𝑤𝑖É] = 𝑥ctr and increment ctr+ = 1

∗ If È𝑧𝑖É𝑇 ≠ ⊥, set D𝑇 [È𝑧𝑖É𝑇 ] = 𝑥ctr and increment ctr+ = 1

– Forward È𝑤𝑖É , 𝑦𝑖 and È𝑧𝑖É𝑇 to B, receiving response message𝑚𝑖

– Return𝑚𝑖 to CF

• B outputs a bit 𝛽 ′, which AB sends to F challenger.

Figure 8: Program AB (·).

4We can count the number of unique monomials on 𝑛 variables of degree 𝑑 as putting 𝑑 identical ‘balls’ in 𝑛 +1 bins (one for each
variable and an additional one for 1). This is a well-known combinatorics problem with formula

(𝑛+𝑑
𝑑

)
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• AS runs breaking adversary ABreak of Q

• For rounds 𝑖 ∈ [𝑅Q]

– Let 𝑇𝑖 be the transcript of outputs thus far.
– Receive È𝑤𝑖É , 𝑦𝑖 , È𝑧𝑖É𝑇 from B
– If ∃𝑆 𝑓 ′ : dim(𝑆 𝑓 ′) ≥ 𝑞 (as per in Definition A.2) for the first time:

∗ Let 𝑆 𝑓 ′ = {𝑠 𝑗 } 𝑗∈[𝑞 ] .

∗ Define the matrix 𝑴 ∈ Z𝑞×(
𝑛+2
2 )

𝑝 as follows
· If 𝑓𝑇𝑖 𝑗 (·) = 𝑠 𝑗 (·) 𝑓 ′(·), then set row 𝑴 𝑗 = 𝜌 (D[

�
𝑤𝑖 𝑗

�
]) and test element È𝑟 𝑗É𝑇 =

𝑒 (
�
𝑤𝑖 𝑗

�
, È1É)

· If 𝑔𝑇𝑖 𝑗 (·) = 𝑠 𝑗 (·) 𝑓 ′(·), then set row 𝑴 𝑗 = 𝜌 (D𝑇 [È𝑧𝑖 𝑗É𝑇 ]) and test element È𝑟 𝑗É𝑇 =
È𝑧𝑖 𝑗É𝑇

∗ Compute the set of solution 𝑋 † = {𝑥†𝑖 } such that

(𝑠1(𝑥†𝑖 ), 𝑠2(𝑥
†
𝑖 ), . . . 𝑠𝑞 (𝑥

†
𝑖 )) ∈ Span(col(𝑴))

∗ Define set

𝑋 ∗ = {𝑥∗ ∈ 𝑋 † | ∀𝑗, 𝑘 ∈ [𝑞] : È𝑟 𝑗É𝑇 /𝑠 𝑗 (𝑥∗) = È𝑟𝑘É𝑇 /𝑠𝑘 (𝑥∗)}

∗ Return a uniform element 𝑥∗ R← 𝑋 ∗ to ABreak.
– Forward to ABreak, and return response𝑚𝑖 .

Figure 9: Program AS (·).

• Labeling Gate. Take in wires encoding 𝑤 . Use regular labeling gate to compute È𝑤É. Add
D[È𝑤É] = 𝑤 to the dictionary and return È𝑤É.

• Group Operation Gate. Take in wires encoding 𝑎1, 𝑎2, È𝑤1É , È𝑤2É. Use group operation
gate to compute È𝑎1𝑤1 + 𝑎2𝑤2É. Add D[È𝑎1𝑥1 + 𝑎2𝑥2É] = 𝑎1 · D[È𝑥1É] + 𝑎2 · D[È𝑥2É] to the
dictionary, and return È𝑎1𝑤1 + 𝑎2𝑤2É. Update analogously for Group Operation gate in target
group using D𝑇 .

• Equality Gate. Implement as normal.

• Pairing Gate. Take in wires È𝑤1É , È𝑤2É. Use pairing gate to compute È𝑤1 ·𝑤2É𝑇 . SetD𝑇 [È𝑤1 ·
𝑤2É𝑇 ] = D[È𝑤1É] · D[È𝑤2É] and return È𝑤1 ·𝑤2É𝑇 .

Figure 10: Replacement Gates O(·).

Lemma A.4. |𝑋 † | ≤ deg(𝑆 𝑓 ′)

Proof. Note that since 𝑴 has
(𝑛+2
2

)
columns, we can bound dim(col(𝑴)) ≤

(𝑛+2
2

)
. Since 𝑞 >

(𝑛+2
2

)
, the
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number of solutions follows from Lemma 5.1. □

Lemma A.5. A is efficient.

Proof. First, we can see that AB and AO both do a constant amount of work for each interaction and
group operation performed by B respectively. Since B is efficient, it follows that these two are as well.
Finally, observe that apart from forwarding responses between B andABreak, the group operations ofAS
just include the dictionary lookups to construct𝑴 and the division checks to filter𝑋 ∗ from𝑋 †. The former
is only done 𝑞 times (once per row of 𝑴 , while the latter also only needs to be checked for the deg(𝑆 𝑓 ′)
elements of 𝑋 † (from Lemma A.4), both of which are efficient. □

Lemma A.6. A breaks assumption F with probability� 𝑡F.

Proof. We will argue the advantage ofA against F through a small sequence of experiments. Let E𝑖 be the
event that CF returns 1 in experiment 𝑖 .

• Exp0 This is the original security game of assumption F against A.

• Exp1 In this experiment, AS is modified to inefficiently generate 𝑋 ∗ without dictionaries D,D𝑇 .

– A1
S runs breaking adversary ABreak of Q

– For rounds 𝑖 ∈ [𝑅Q]

∗ Let 𝑇𝑖 be the transcript of outputs thus far.
∗ Receive È𝑤𝑖É , 𝑦𝑖 , È𝑧𝑖É𝑇 from B
∗ If ∃𝑆 𝑓 ′ : dim(𝑆 𝑓 ′) ≥ 𝑞 (as per in Definition 4.2) for the first time, for 𝑗 ∈ [𝑞]

· If 𝑓𝑇𝑖 𝑗 (·) = 𝑠 𝑗 (·) 𝑓 ′(·), set test element È𝑟 𝑗É𝑇 = 𝑒 (
�
𝑤𝑖 𝑗

�
, È1É)

· If 𝑔𝑇𝑖 𝑗 (·) = 𝑠 𝑗 (·) 𝑓 ′(·), set test element È𝑟 𝑗É𝑇 = È𝑧𝑖 𝑗É𝑇
· (Inefficiently) Recover 𝑟 𝑗 from È𝑟 𝑗É𝑇
· Compute set

𝑋 ∗ = {𝑥∗ ∈ Z𝑝 | ∃𝑐 ∈ Z𝑝 where ∀𝑗 𝑐 · 𝑠 𝑗 (𝑥∗) = 𝑟 𝑗 }

· Return a uniform element 𝑥∗ R← 𝑋 ∗ to ABreak.
∗ Forward È𝑤𝑖É , 𝑦𝑖 , È𝑧𝑖É𝑇 to ABreak, and return response𝑚𝑖 .

Figure 11: Program A1
S (·).

Lemma A.7. Pr[E0] = Pr[E1]

Proof. Observe that these experiments only differ in how set 𝑋 ∗ is computed (which we will refer to as 𝑋 ∗0
and 𝑋 ∗1 respectively). Thus, it suffices to show that 𝑋 ∗0 = 𝑋 ∗1 . The containment 𝑋 ∗0 ⊆ 𝑋 ∗1 is easy to see, as
we can set the term È𝑟É𝑇 /𝑠 𝑗 (𝑥∗) to be the È𝑤É𝑇 in 𝑋 ∗1 .

Conversely to show𝑋 ∗1 ⊆ 𝑋 ∗0 , let 𝑥
∗ ∈ 𝑋 ∗1 , wewill first need to show the ‘correctness’ of our dictionaries

D,D𝑇 .
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Claim A.8. Let È𝑤𝑖É , È𝑧𝑖É𝑇 be the group elements sent from CF, and let 𝑟ctr be the discrete log of the ctr𝑡ℎ

group element (either𝑤𝑖 or 𝑧𝑖 ). Consider È𝑤É , È𝑧É𝑇 element wires in A. Then

• D[È𝑤É] = 𝑝𝑤 (𝑥1, 𝑥2, . . . 𝑥𝑛) ≠ ⊥

• 𝑝𝑤 is a linear polynomial where 𝑝𝑤 (𝑟1, 𝑟2, . . . 𝑟𝑛) = 𝑤

• D𝑇 [È𝑧É] = 𝑝𝑧 (𝑥1, 𝑥2, . . . 𝑥𝑛)

• 𝑝𝑧 is a quadratic polynomial where 𝑝𝑧 (𝑟1, 𝑟2, . . . 𝑟𝑛) = 𝑧

Proof. We observe that since AB and AS never produce any new group elements on their own, any
È𝑤É , È𝑧É𝑇 either comes from the challenger CF or through running B, ABreak. We can verify that in
either of these cases, this invariant is maintained for any new group elements produced.

• È𝑤É is received from CF - In this case, suppose È𝑤É is the ctr𝑡ℎ group element received for some
ctr ∈ [𝑛]. From AB , we can see D[È𝑤É] = 𝑥ctr which is indeed linear, and since 𝑟ctr is set to𝑤 , this
evaluates to𝑤 . This holds analogously for target group elements È𝑧É𝑇 .

• È𝑤É is produced by a labeling gate (in B,ABreak) - In this case, D[È𝑤É] is set to a constant𝑤 .

• È𝑤É is produced by a group operation gate (in B,ABreak) - Let 𝑎1, 𝑎2, È𝑤1É , È𝑤2É be the in-
puts to this group operation gate. We can inductively reason that D[È𝑤1É](𝑟1, . . . 𝑟𝑛) = 𝑤1 and
D[È𝑤2É](𝑟1, . . . 𝑟𝑛) = 𝑤2. Thus,

D[È𝑤É](𝑟1, . . . 𝑟𝑛) = 𝑎1D[È𝑤1É](𝑟1, . . . 𝑟𝑛) + 𝑎2D[È𝑤2É](𝑟1, . . . 𝑟𝑛)
= 𝑎1𝑤1 + 𝑎2𝑤2

= 𝑤

Note that a linear combination of polynomials does not increase the maximum degree, so D[È𝑤É]
is still linear. This holds analogously for target group elements È𝑧É𝑇 .

• È𝑧É is produced by a pairing gate (in B,ABreak) - Let È𝑤1É , È𝑤2É be the inputs to this gate. We
can inductively reason that D[È𝑤1É](𝑟1, . . . 𝑟𝑛) = 𝑤1 and D[È𝑤2É](𝑟1, . . . 𝑟𝑛) = 𝑤2. Thus,

D𝑇 [È𝑧É𝑇 ] (𝑟1, . . . 𝑟𝑛) = D[È𝑤1É](𝑟1, . . . 𝑟𝑛) · D[È𝑤2É](𝑟1, . . . 𝑟𝑛)
= 𝑤1 ·𝑤2

= 𝑧

Since D[È𝑤1É],D[È𝑤2É] are both linear polynomials, their product is quadratic.

□

Now consider the vector
®𝑢 =

1

𝑐
· 𝜌 [𝑟1, . . . 𝑟𝑛] (𝑃2).

Observe that for any polynomial 𝑝 (·), 〈®𝑢, 𝜌 (𝑝)〉 is exactly 1
𝑐 𝑝 (𝑟1, . . . 𝑟𝑛) (For each index 𝑖 in Z(

𝑛+2
2 )

𝑝 , con-
sider the monomial 𝑐𝑖𝑥𝑖1𝑥𝑖2 ∈ 𝑝 (·) corresponding to that entry. ®𝑢𝑖 is exactly 1

𝑐 𝑟𝑖1𝑟𝑖2 by definition of 𝑃2,
and 𝜌 (𝑝)𝑖 is exactly 𝑐𝑖 · 1. Thus, they contribute exactly 𝑐𝑖

𝑐 𝑟𝑖1𝑟𝑖2 to the inner product). Thus, we can
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conclude from this observation and our above claim that 〈®𝑢,𝑴 𝑗 〉 = 𝑟 𝑗/𝑐 = 𝑠 𝑗 (𝑥∗). and hence 𝑴 · ®𝑢T =
(𝑠1(𝑥∗), 𝑠2(𝑥∗), . . . 𝑠𝑞 (𝑥∗))T meaning 𝑥∗ ∈ 𝑋 †. Since È𝑟 𝑗É𝑇 /𝑠 𝑗 (𝑥∗) = È𝑐É𝑇 , it will not be filtered out when
sampling 𝑋 ∗0 .

□

Lemma A.9. Pr[E1] � 𝑡F

Proof.

Claim A.10. A1
S is an algorithm which breaks the assumption Q security game with nonnegligible advan-

tage.

Proof. Since A1
S exactly forwards the inputs from the challenger to and from ABreak, it suffices to check

that 𝑥∗ = 𝑥0 with noticeable probability. Recall that since 𝑟 𝑗 = 𝑓 ′(X) · 𝑠 𝑗 (𝑥0), we can take 𝑐 = 𝑓 ′(X),
to see that 𝑥0 ∈ 𝑋 ∗. From Lemma 5.3, 𝑥0 is output with probability ≥ 1

deg(𝑆𝑓 ′ ) . From Definition 4.2,
deg(𝑆 𝑓 ′) ∈ poly(𝜆), so Pr[𝑥∗ = 𝑥0] is noticeable. □

Since B is a reduction, from the last claim, B[A1
S] has nonnegligible advantage in the assumption F

security game. SinceAB exactly forwards the input/outputs of B,A has nonnegligible advantage in this
game as well.

□

Taking together Lemmas A.7 and A.9, the advantage of A in assumption F is� 𝑡F. □

Combining Lemmas A.5 and A.6, we get an efficient adversary which breaks assumption F.
□
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