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Abstract. The Crossbred algorithm is currently the state-of-the-art method for
solving overdetermined multivariate polynomial systems over F2. Since its publication
in 2015, several record breaking implementations have been proposed and demonstrate
the power of this hybrid approach. Despite these practical results, the complexity
of this algorithm and the choice of optimal parameters for it are difficult open
questions. In this paper, we prove a bivariate generating series for potentially
admissible parameters of the Crossbred algorithm.
Keywords: Gröbner basis · polynomial system · MQ problem · exhaustive search
· Crossbred

1 Introduction
Given a polynomial system of m polynomials and n variables over a finite field Fp, solving
the system is proven to be NP-complete [FY79]. However, not all polynomial systems
are hard to solve since the behaviour of algorithms allowing to solve them depends on
the relative values of m and n. If m ≥ n(n − 1)/2 or if n ≥ m(m + 1), it is possible
to solve a polynomial systems with these parameters in polynomial time [TW12]. Most
often in cryptography, we are confronted to solving polynomial systems for which m ≥ n.
Commonly used methods to solve these systems are algorithms for computing Gröbner
basis: Buchberger’s algorithm [Buc65] or linear algebra-based algorithms (F4 [Fau99],
F5 [Fau02], XL [CKPS00]).

In this paper, we focus on the Multivariate Quadratic Problem (MQ), which means that
we consider polynomials of degree 2. In the case of small finite fields (for example F2, F3 or
F5), exhaustive search becomes a viable way to solve a polynomial system (FES [BCC+10]).
It is also used to assign certain variables before running the linear algebra-based algorithm
for solving the system (FXL [CKPS00], BooleanSolve [BFSS13], Crossbred [JV17]). In
particular, we are interested in the case where the polynomial system is defined over F2.

The complexity analysis of the Crossbred algorithm is not clear, but the authors of
the algorithm claim it to be similar to that of FXL [CKPS00] or BooleanSolve [BFSS13],
without giving a proof. However, Joux and Vitse’s original implementation as well as
more recent open-source implementations [NNY18, NNY17, BS23] were used to break
records several times on overdetermined systems coming from the Fukuoka Type I MQ
challenge [Yas15]. For a polynomial system F , the running time of the algorithm heavily
depends on three input parameters, D, d and k. In a precomputation step based on linear
algebra on the degree D Macaulay matrix, the algorithm constructs r polynomials of total
degree D and of degree d in the first k variables. After that, the last n− k variables are
assigned in F and the degree d Macaulay matrix is computed for the system obtained in
this way. After specification, the new polynomials obtained in the precomputation step
are also appended as rows in this matrix. If the resulting degree d system in the first k
variables may be solved (for instance by linearization), then we are done.
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A set of parameters D, d and k are called admissible if the degree d system obtained
after specialization can be solved with echelonisation. Without a proper complexity
analysis, it is far from obvious to determine admissible parameters for the algorithm, and
even harder to determine optimal choices. To the best of our knowledge, all existing
implementations over F2 have focused on D ≤ 5 and d = 1, which means that the system
obtained after specialization is linear. From a practical point of view, it is difficult to
handle higher values of D and d, since as soon as D ≥ 4 lots of linear dependencies
start to appear in the Macaulay matrix and the matrices are large enough that it is no
longer possible to construct them due to memory issues. This is a common problem when
implementing Gröbner basis algorithms, most of the computation time is lost in useless
operations. For example, in the F5 algorithm, Faugère [Fau02] and later Bardet in her
PhD thesis [Bar04], proposed two criteria to remove all linear dependencies, for regular
and semi-regular polynomial systems, respectively.

In this paper, we first restate these criteria for the special form of Macaulay matrices
of degree D appearing in the Crossbred algorithm and show that we can remove linear de-
pendencies after specialization. Secondly, we propose a simplified variant of the algorithm,
called Block Crossbred , which may be seen as a homogeneous variant of the algorithm, be-
fore specialisation. We compute a bivariate generating series whose coefficients correspond
to the number of newly generated polynomials in the precomputation step of the algorithm
for input parameters D, d and k, under semi-regularity assumptions. From this analysis,
we deduce the generating series for the Crossbred algorithm, again under a semi-regularity
hypothesis. We conclude by showing sets of admissible parameters for Crossbred obtained
by looking at the coefficients of the series. Finally, we implemented in Sage and ran the
Crossbred algorithm on the smallest sets of these parameters, to confirm our theoretical
findings.

Related work. Recently, there have been several attempts to study the complexity of
Crossbred. first Duarte [Dua23] computes a bivariate generating series for the preprocessing
step of the algorithm. The author introduces the notion of semi-regularity for homogenous
systems of polynomials, but this notion is not used anywhere in his proof. On one hand, the
polynomials appearing in the rows of the Macaulay matrices in Crossbred are affine, and on
the other hand the proofs do not keep track of reductions to zero in the algorithm. Secondly,
Nakamura [Nak24] claims a completely different series from the one in [Dua23, JV17].
Finally, the recent preprint [BCT+24] revisits the notion of semi-regularity and focuses
on admissible parameters for Crossbred under semi-regularity assumptions, provided that
the bivariate generating series conjectured in the literature is correct. We stress here
that the correct assumption for Crossbred, which is a hybrid algorithm, is that of strong
semi-regularity. Roughly speaking, this means that after assigning n− k variables in the
initial system, the derived system in k variables is semi-regular, for almost all assignments.
Theorem 1 in [Nak24] and Theorem 2 in [BCT+24] came close to this idea, but the authors
focus on a fixed assignment instead of looking at all possible assignments.

Our work is completely independent from that of Duarte, but we certainly do not claim
originality for this approach. Most of the techniques used in this paper are standard in
the literature (see [Fau02, Bar04]) and we adapted them to the case of Crossbred.

This paper is organised as follows. In Section 2 we introduce the notion of semi-regular
sequences of polynomials and briefly survey linear algebra based algorithms and the
Crossbred algorithm. From that, we state our criteria for reduction to zero and present
the Block Crossbred algorithm in Section 3. In Section 4 we show that there are now
reductions to zero in the Block Crossbred algorithm if the two criteria are used. Based on
this result, we compute the generating series of our algorithm in Section 5. Finally, under
semi-regularity assumptions, we deduce a proof for the bivariate generating series of the
original Crossbred in Section 6. We apply our results to compute admissible parameters
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for Crossbred in Section 7.2.
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2 Background and Notation

In this section, we will introduce the notation and terminology used throughout the paper.

Notation We will use the polynomial ring R = Fp[x1, . . . , xn], where Fp is any finite
field. We choose an admissible monomial ordering on R. We write xb = xb1

1 xb2
2 · · ·xbn

n

with b = (b1, . . . , bn). Then |b| =
∑n

i=1 bi is the degree of the monomial (also called total
degree) and is written deg(xb). We denote by degk the degree over the first k variables (i.e.
degk(xb) =

∑k
i=1 bi). The leading term of a polynomial f with respect to the chosen order

is denoted by LT (f). The total degree and the degree over k of f are the total degree and
the degree over the first k variables, respectively, of its leading term LT (f) with respect
to the chosen order.

We use the glex order with x1 ≥ x2 . . . ≥ xn (i.e. xa >glex xb if |a| > |b| or |a| = |b|
and the leftmost non-zero coefficient of a− b is positive).

Macaulay matrices, initially introduced by Lazard [Laz], are at the heart of all linear
algebra-based algorithms for computing Gröbner basis. The Macaulay matrix is defined as
follows.

Definition 1. Fix an admissible monomial ordering on R. Given a homogeneous (affine)
system of polynomials F = {f1, . . . , fm} in R, we associate to it the Macaulay matrix
of degree D (resp. ≤ D), denoted by MacD,m(F) (resp. Mac≤D,m(F)) and defined as
follows: the columns of MacD,m(F) (resp. Mac≤D,m(F)) are indexed by the monomials in
Fp[x1, . . . , xn] of degree D (resp. of degree ≤ D), sorted in decreasing order from left to the
right following the chosen order. Each row in this matrix is labeled by a tag ⟨u, fi⟩, where u
is a monomial in Fp[x1, . . . , xn] and fi ∈ F such that deg(ufi) = D (resp. deg(ufi) ≤ D),
and contains the polynomial ufi written as a vector of coefficients of monomials.

Example 2.1. Consider the polynomial system F = {f1, f2} with f1, f2 ∈ F2[x1, x2, x3]
given by:

f1 = x1x3 + x2x3 + x2 + 1,

f2 = x1x2 + x1 + x3 + 1.

Since the goal is to compute roots of this polynomial system in F2, we add the polynomials
x2

1−x1, x2
2−x2 and x2

3−x3 to this system. This is equivalent to constructing the Macaulay
matrix in F2[x1, x2, x3]/ < x2

1 − x1, x2
2 − x2, x2

3 − x3 > . Then the corresponding Macaulay
matrix of degree 3 is :
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Mac≤3,2(F) =

x1x2x3 x1x2 x1x3 x2x3 x1 x2 x3 1



f1 0 0 1 1 0 1 0 1
f2 0 1 0 0 1 0 1 1

x1f1 1 1 1 0 1 0 0 0
x2f1 1 0 0 1 0 0 0 0
x3f1 0 0 1 0 0 0 1 0
x1f2 0 1 1 0 0 0 0 0
x2f2 0 0 0 1 0 1 0 0
x3f2 1 0 1 0 0 0 0 0

2.1 Linear algebra-based Gröbner basis algorithms and their com-
plexity

Let I an ideal in R and let us fix a monomial order ordering on R. We denote by LT (I)
the set of all leading terms of non-zero polynomials in I. A Gröbner basis for I is a finite
set of generators G = {g1, . . . gs} such that the monomial ideal generated by elements of
LT (I) is given by:

⟨LT (I)⟩ = {LT (g1), . . . , LT (gs)}.

Gröbner basis algorithms based on linear algebra compute the row echelon form of the
Macaulay matrix for a certain degree d of the system F . The first nonzero element of
each row corresponds to a leading monomial of an element of I, belonging to LT (I). For
large enough d, Dickson’s lemma [DCO97, §2.4, Thm. 5] implies that the collection of
those monomials up to degree d generates LT (I) and thus the polynomials corresponding
to those rows together form a Gröbner basis of I with respect to the chosen monomial
ordering.

During the echelonization process, it may happen that a given row yields zero when
reduced modulo the basis under construction. This is called reduction to zero in the
literature. Ideally, one would like to avoid spending time on computations for rows whose
result is zero. For this, several criteria have been proposed and allow to avoid the effective
computation of useless reductions [Buc65, Fau02]. We briefly recall here the criteria used
in the F5-like algorithms [Fau02, Bar04], which guarantee that there are no reductions to
zero during the algorithm for semi-regular sequences of polynomials.

Let us first consider F = {f1, . . . , fm} a homogenous system of polynomials in
Fp[x1, . . . , xn] with deg fi = di. The General Criterion [Fau02], used by the algorithm for
polynomial systems defined over any field Fp, states that a row in Macd,m(F) labeled by
(u, fi) is a linear combination of previous rows if the monomial u is the leading term of a
polynomial in ⟨f1, . . . , fi−1⟩. Therefore, the algorithm constructs the matrix Macd,i(F)
by adding to the matrix Macd,i−1(F) all rows containing polynomials ufi except for
those where u is a leading term of a row in M̃acd−di,i−1(F), the row echelon form of
Macd,i−1(F).

Faugère shows that if the sequence of polynomials is regular, then the only reductions
to zero during the execution of the algorithm for finite fields with char(Fp) > 2 are those
detected by the General Criterion. For a system of polynomials F = {f1, . . . , fm} in
F2[x1, . . . , xn], if the goal is to find solutions in F2, we may as well add to this system
the equations {x2

1 − x1, . . . , x2
n − xn}. Working with the system F ∪ {x2

1 − x, . . . x2
n − x}

in R = F2[x1, . . . , xn] is equivalent to working with the polynomial system F in Rn =
R/⟨x2

1 − x, . . . x2
n − x⟩. Consequently, when running the F5 algorithm, we also need to

remove all reductions to zero coming from the fact that f2 = f , for any f ∈ Rn. The
Frobenius Criterion [Fau02] states that a row of Macd,m(F) labeled by (u, fi) is a linear
combination of previous rows if the monomial u is the leading term of a monomial in
⟨f1, . . . , fi⟩.
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Bardet [Bar04] extends these two criteria for reductions to zero to sequences of poly-
nomials where m > n by introducing the notion of semi-regularity. We recall this notion
here, but let us first introduce some more notation.

For d ≥ 0, we denote by Fp[x1, . . . , xn]d the Fp-vector space of homogeneous polynomials
of degree d. Let I be an ideal of dimension 0 generated by the sequence F = {f1, . . . fm}
and denote by Id = Fp[x1, . . . , xn]d ∩ I. Then there exists D ≥ 0 such that

dimFp (Id) = dimFp (Fp[x1, . . . , xn]d) ,

for all d ≥ D [DCO97] and we define Dreg to be the smallest degree with this property.
Since the homogeneous part of highest degree of field equations x2

i −xi is x2
i , we consider

the ring Rh
n = F2[x1, . . . , xn]/⟨x2

1, . . . , x2
n⟩. Any homogeneous polynomial of degree d in Rh

n

verifies f2 = 0. Following Bardet [Bar04], we directly state the definition of a semi-regular
sequence of polynomials defined over F2.

Definition 2. A sequence of homogeneous polynomials {f1, . . . , fm} in Rh
n is called

semi-regular over F2 if:

1. ⟨f1, . . . , fm⟩ ≠ Rh
n,

2. For all i ∈ {1, . . . , m} if gifi = 0 in Rh
n/⟨f1, . . . , fi−1⟩ and deg(gifi) < Dreg, then

gi ∈ ⟨f1, . . . fi−1, fi⟩.

Given a power series S ∈ Z[[X]], the notation [S] denotes the series obtained by
truncating S just before the index of its first non-positive coefficient. Bardet computes the
Hilbert series of the ideal generated by a semi-regular sequence of homogeneous polynomials
F = {f1, . . . fm} of degrees d1, . . . , dm in Rh

n to be:

HFR/I =
[

(1 + X)n∏m
i=1(1 + Xdi)

]
. (1)

The degree of regularity of the system is given by the index of the first non-positive
coefficient of the series in Equation (1).

As shown by Bardet [Bar04], if the sequence is semi-regular and the two criteria are
used for recursively constructing the Macaulay matrices, then there are no reductions to
zero in the matricial version of the F5 algorithm (called Matrix F5 in [Bar04]), until the
degree d = Dreg − 1 is reached. When degree Dreg is reached, the algorithm ouputs a
Gröbner basis with respect to the chosen monomial order. Consequently, the complexity
the Gröbner basis computation using the Matrix F5 algorithm is:

O
((

n + Dreg − 1
n

)ω)
,

where ω is a linear algebra constant.
If the system is affine, it suffices to examine its homogeneous part of highest degree

to ensure that there are no degree falls during the execution of the algorithm. Following
again [Bar04], we give the following definition.

Definition 3. Let {f1, . . . , fm} be an affine sequence of polynomials and denote by f top
i

the homogeneous part of highest degree of fi, 1 ≤ i ≤ m. Then {f1, . . . fm} is called
semi-regular if the sequence {f top

1 , . . . , f top
m } is semi-regular.

In practice, if the system F is affine, Gröbner basis algorithms will perform Gaussian
elimination on Macaulay matrices Mac≤d,m(F), with d ≥ 0. Then we call witness degree
the smallest degree for which linear algebra will produce a Gröbner basis. To estimate this
index, we look at the affine Hilbert series of the ideal I. To define this series, we consider:

I≤d = I ∩R≤d,



6 The Complexity of the Crossbred Algorithm

where R≤d = ⊕0≤d′≤dRd′ . Then the affine Hilbert series is defined as follows:

HF a
R/I(X) =

∑
d≥0

dim(R≤d/I≤d)Xd. (2)

Then the witness degree is the smallest integer d > 0 such that R≤d = I≤d.
The following result is folklore, but we state it here for completeness.

Lemma 1. Let F = {f1, . . . , fm, x2
1 − x, . . . , x2

n − xn} be an affine semi-regular sequence
defined over F2. Then its affine Hilbert series is given by the formula:[

(1 + X)n

(1−X)
∏m

i=1(1 + Xdi)

]
.

Proof. By [DCO97, Ch. 9, Th. 12 (ii)], HF a
R/I(X) = HFRh/Ih(X), where Rh =

F2[x1, . . . , xn, h] and Ih is the homogenized ideal of I, i.e. the ideal generated by ho-
mogenizing the polynomials generating I with respect to a new variable h. By [BFSS13,
Prop. 6], the Hilbert series of Ih is given by

HFRh/Ih(X) =
[

(1 + X)n

(1−X)
∏m

i=1(1 + Xdi)

]
.

In other words, the witness degree of an affine semi-regular system of polynomials in
F2[x1, . . . , xn] is given by the first non-positive coefficient of the series whose truncation is
given in Lemma 1.

Finally, to analyze the complexity of Crossbred, we will make the standard as-
sumption that the input system F for the algorithm is strong semi-regular (see for
instance [BFSS13]). Roughly speaking, this means that for almost all possible assigne-
ments xk+1 = ak+1, . . . , xn = an, for some k > 0, the sequence

{f1(x1, . . . , xk, ak+1, . . . , an), . . . , fm(x1, . . . , xk, ak+1, . . . an)}

is semi-regular. We slightly adapt here the definition in [BFSS13].

Definition 4. Let F = {f1, . . . , fm} be a semi-regular sequence of polynomials in
F2[x1, . . . , xn] and let 0 ≤ γ ≤ 1 such that k = (1 − γ)n. We say that this sequence
is γ-strong semi-regular if

S(I) = {(ak+1, . . . an) ∈ Fn−k
2 |

{f1(x1, . . . , xk, ak+1, . . . , an), . . . , fm(x1, . . . , xk, ak+1, . . . an)} is not semi-regular}

has cardinality O(2−γn).

In Section 7.1 we show a series of experiments which support the claim that random
systems are γ-strong semi-regular.

2.2 The Crossbred algorithm
In a nutshell, the Crossbred algorithm [JV17] for fixed input parameters D, d and k, works
as follows:

1. Construct r new polynomials p1, . . . , pr of total degree D and of degree d over the
first k variables. These polynomials are added to the original system.

2. Specify the last n− k variables in the system obtained in this way.
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3. Try to solve the system after specification. If no solution is found, we continue the
exhaustive search and change the value of the last n− k variables.

The precomputation step of Crossbred described at (1) performs linear algebra on
certain submatrices of the Macaulay matrices introduced in Definition 1. We introduce
these submatrices, as well as the submatrices we use in our simplified version of Crossbred
in Section 3 in the following definition.

Definition 5. Given a homogeneous (resp. affine) system of polynomials F = {f1, . . . , fm}
in R, let Mack

D,d,m(F) (resp. Mack
≤D,≥d,m(F)) be the submatrix of the Macaulay matrix

MacD,m(F) (resp. Mac≤D,m(F)) whose rows correspond to products of the form ufi, 1 ≤
i ≤ m with degk u = d− 1 (resp. degk u ≥ d− 1). Let Mk

D,d,m(F) (resp. Mk
≤D,≥d,m(F))

be the submatrix of Mack
D,d,m(F) (resp. Mack

≤D,≥d,m(F)) whose columns correspond to
monomials M with degk M = d + 1 or degk M = d− 1 (resp. degk M ≥ d + 1).

Notation Given a polynomial f ∈ Fp[x1, . . . , xn], we denote by f∗ any polynomial in
Fp[x1, . . . , xk] obtained from f after specifying the variables xk+1, . . . , xn. Similarly, given
F = {f1, . . . , fm}, we denote by F∗ = {f∗

1 , . . . , f∗
m}.

The pseudocode of the Crossbread algorithm is given in Algorithm 1. Note that for
step (3) there exist multiple ways to solve the resulting system. In this paper, we only
consider the resolution via linearisation on the resulting Macaulay matrix of degree d of
the specialized system. In other words, we think of each monomial in the system as an
unknown, and try to solve the linear system obtained in this way.

Algorithm 1: The Crossbred algorithm
Data: Polynomial system F of m equations of n variables, and D, d, k
Result: A solution of the system (or nothing otherwise)
Construct Mack

≤D,≥d,m(F) and Mk
≤D,≥d,m(F)

Compute a basis (v1, . . . , vr) of the left kernel of Mk
≤D,≥d,m(F)

Construct polynomials p1, . . . , pr corresponding to vi · Mk
≤D,≥d,m(F)

for i = (i1, i2, . . . , in−k) ∈ Fn−k
2 do

Evaluate the last n− k variables in each f ∈ F at (i1, i2, . . . , in−k) and
compute F∗

Compute Macd,m(F∗)
Evaluate the polynomials pi at (i1, i2, . . . , in−k) and append them to the
matrix Mac≤d,m(F∗)

if the resulting system is consistent then
return the solution

end
else

continue
end

end

2.2.1 Another look at the preprocessing step

To better understand the preprocessing step of Algorithm 1, we look at it from a different
angle. We construct the matrix Mack

≤D,≥d,m(F) for the glex order. From left to right, we
order the columns corresponding to monomials of degree D, D − 1, . . . , d + 1, d and d− 1
over the first k variables.
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Mk
≤D,≥d,m

(F)

(0) New polynomials

Figure 1: Partial Gaussian elimination of Mack
D,d,m(F)

Notation We denote by Mk
≤D,≥d (Mk

D,d) the set of monomials m with deg(m) ≤ D and
degk(m) ≥ d (with deg m = D and degk m = d, respectively).

Instead of computing the kernel of Mk
≤D,≥d,m(F), an equivalent way to generate

new polynomials in the preprocessing step of Algorithm 1 is to partially echelonize
Mack

≤D,≥d,m(F), such that the submatrix given by its first #Mk
≤D,≥d,m rows is in row

echelon form. New polynomials are obtained by taking the rows that have zero entries on
the columns corresponding to monomials of degree ≥ d + 1 over the first k variables, as
shown in Figure 1.

2.2.2 Limitations of the Crossbred algorithm

From a theoretical point of view, the complexity of the Crossbred algorithm is

O
((

n + D − 1
D

)ω

+ qn−k

(
k + d

d

)ω)
.

To the best of our knowledge, the question of determining a set of parameters (d, D) which
are admissible, i.e. which ensure that the algorithm terminates, remains open. An even
harder question is to determine an optimal choice of parameters d and D, which would
minimize both its running and its memory cost.

In [JV17], the authors mostly experimented with D = 3 and expressly stated that
when D ≥ 4, linear dependencies appears between the rows of Mack

≤D,≥d,m(F) Indeed,
for larger degree D, we need to take in account trivial relations of the form fifj = fjfi.
As such, the Crossbred algorithm gets slower from this point as it does useless operations.
A way to improve the algorithm would be to remove those dependencies before performing
linear algebra operations. This problem is already addressed in [Fau02] where Faugère
propose new criterion to remove those dependencies. More specifically, we consider the
criterion as proposed in [Bar04] and adapt it to the Crossbred algorithm.

3 A simplified version of Crossbred
Our first goal is to remove linear dependencies of the form fifj = fjfi and f2 = f which
appear while running the preprocessing step performed on the matrix Mack

≤D,≥d,k(F) in
the Crossbred algorithm. For that, let us we first consider a quadratic homogeneous system
of polynomials F = {f1, . . . , fm}. We will adapt Algorithm 1 to generate recursively
matrices Mack

d1,d2,m(F) and Mk
d1,d2,m, for all d1 ≤ D and d2 ≤ D. During the process,
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we will apply two criteria to sieve out polynomials that give reductions to zero when
performing linear algebra on this matrix.

Notation We denote by M̃ac
k

D,d,m(F) the row-reduced echelon form of the matrix
Mack

D,d,m(F).
The following proposition is an adaptation of Faugère’s General Criterion [Fau02] to

the matrices used in our algorithm and by extension, to those used in Crossbred.

Proposition 1. (The General Criterion) Let d ≤ d2 ≤ d1 ≤ D. For any row labeled by
(t, fj) in M̃ac

k

d1−2,d2−2,m−1(F) having the monomial t′ with degk t′ = d− 1 as a leading
term, the row labeled by (t′, fm) is a linear combination of previous rows in Macd1,m(F)
and the polynomial generated from this row in the preprocessing step of the Crossbread
algorithm is a linear combination of rows of the matrix Mac≤d2,m(F∗).

Proof. Assume that t′ = LT (f), where f =
∑m−1

j=1 gjfj with gj polynomials with deg gifi =
d1 − 2 and degk gi = d2 − 3. We may then write

t′fm = ffm − (f − LT (f))fm

=
m−1∑
j=1

(gjfm)fj − (f − LT (f))fm.

Hence we have:

t′fm =
m−1∑
j=1

(∑
i

ui,j + vi,j + wi,j

)
fj −

(∑
i

ui,m + vi,m + wi,m

)
fm, (3)

with degk(ui,j) = d2 − 1, degk(vi,j) = d2 − 2 and degk(wi,j) = d2 − 3 and ui,m < t′.
The number of columns of Mk

≤D,>d,m(F) is given by t = M≤ D> d. As explained
in Section 2.2.1, in order to generate the new polynomials in the Crossbred algorithm it
suffices to partially echelonize the first t rows in Mack

≤D,≥d,m(F) and extract the sub-
matrix corresponding to rows that only have zero coefficients on these t columns. If the
row labeled (t′, fm) yields a new polynomial, then this polynomial is given by:

p = t′fm +
m∑

i=1
ui,jfj .

Using Equation (3), we have :

p =
m−1∑
j=1

(∑
i

vi,j + wi,j

)
fj −

(∑
i

vi,m + wi,m

)
fm

=
m∑

j=1

(∑
i

vi,j + wi,j

)
fj .

After specification, we have :

p∗ =
m∑

j=1

(∑
i

v∗
i,j + w∗

i,j

)
f∗

j .

Note that v∗
i,jf∗

j and w∗
i,jf∗

j are rows of Mac≤d,m(F∗). We conclude that the polynomial
generated with the row labeled (t′, fm) is a linear combination of rows of Mac≤d2,m(F∗).
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As explained in Section 2.1, for polynomial systems defined over F2 another set of
linear dependencies appear due to the fact that for any polynomial f we have f2 = f .
The following proposition is an adaption of the Frobenius criterion to the matrices used in
Crossbred.

Proposition 2. (The Frobenius Criterion) Let d ≤ d2 ≤ d1 ≤ D. For any row labeled by
(t, fj) in M̃ac

k

d1−2,d2−2,m(F) having the monomial t′ as a leading term, the row labeled
by (t′, fm) is a linear combination of previous rows in Macd1,m(F) and the polynomial
generated with this row in the preprocessing step of the Crossbred algorithm is a linear
combination of rows of Mac≤d2,m(F∗).

Proof. Let t′ = LT (f), where f =
∑m

j=1 hjfj with hj polynomials with deg hjfj = d1 − 2
and degk hj = d2 − 3. We may then write :

t′fm = ffm − (f − LT (f))fm

=
m∑

j=1
(hjfm)fj − (f − LT (f))fm

=
m−1∑
j=1

(hjfm)fj + hmf2
m − (f − LT (f))fm

=
m−1∑
j=1

(hjfm)fj + hmfm − (f − LT (f))fm.

Hence t′fm can be written as a sum of polynomials ufj with either j ≤ m and degk u =
{d2 − 3, d2 − 2, d2 − 1} or j = m and u < t′ with respect to the chosen monomial ordering.
The rest of the proof is similar to that of the General Criterion (Proposition 1).

We may now present a simplified version of Algorithm 1, which takes in a homogenous
system of polynomials F and is based on linear algebra on the matrix Mack

D,d,m(F) (instead
of Mack

≤D,≥d,m(F) as in Crossbred). We recursively construct matrices Mack
d1,d2,m(F),

for d ≤ d2 ≤ d1 ≤ D, and apply the criteria in Propositions 1 and 2 in the process. The
pseudocode of our algorithm, that we call Block Crossbred , is given in Algorithm 2. We
will see in Section 5 that this algorithm has the advantage that it is easier to analyze than
the original Crossbred.

How to generate Mack
d1,d2,m′(F). The GenMat method computes the matrix Mack

d1,d2,m′(F)
by adding to Mack

d1,d2,m′−1(F) all rows labeled (u, fm′) where u is a monomial with
deg u = d1 − 2 and degk(u) = d2 − 1 that does not satisfy the conditions in the General
and Frobenius criteria (i.e. u is not a leading term of a row in M̃ac

k

d1−2,d2−2,m′−1(F).)

GenPoly. The GenPoly method takes in the matrix Mk
d1,d2,m to generate new polyno-

mials that will be added to the initial system F . To do that, we first compute the left kernel
LK of the matrix Mk

D,d,m(F) is a null matrix. We then obtain new polynomials thanks
to the operation LK ·Mack

D,d,m(F). This computation is similar to the preprocessing step
of the Crossbred algorithm, each row of the resulting matrix represents a polynomial of
total degree D and of degree d over the first k variables.

4 Semi-regular sequences and Block Crossbred
A first step towards understanding the complexity of the Block Crossbred , and eventually
that of Crossbred, is to evaluate the cost of its preprocessing step. In order to compute
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Algorithm 2: Block Crossbred
Data: A polynomial system F of m homogeneous polynomials of n variables over

F2, three parameters D, d, k
Result: A solution of the system (if it exists)
for d1 from 2 to D do

for d2 from 1 to d− 1 do
for m′ from 1 to m do

Mack
d1,d2,m′(F)← GenMat(Mack

d1,d2,m′−1(F))

Compute the echelon form M̃ac
k

d1,d2,m′(F)
end

end
end
Generate Mk

D,d,m(F) from Mack
D,d,m(F)

F ′ ← GenPoly(Mk
D,d,m(F))

for (i1, i2, . . . , in−k) ∈ Fn−k
2 do

Partially evaluate each polynomial f ∈ F at (i1, i2, . . . , in−k)
Compute Mac≤d,m(F∗)
Partially evaluate the polynomials in F ′ at (i1, i2, . . . , in−k) and append them
to Macd,m(F∗)

if the system is consistent then
return the solution

end
end

the number of new polynomials generated by the GenPoly procedure, which depends
on the dimensions of the kernels of the matrices Mack

D,d,m(F) and Mk
D,d,m(F), we need

to account for reductions to zero while constructing these matrices. We will use here a
standard assumption in the literature, that of semi-regularity.
We define

Rk
d1,d2

= Fp[xk+1, . . . , xn]d1−d2 [x1, . . . , xk]d2 ,

and

Ik
d1,d2

= Id1 ∩Rk
d1,d2

,

regarded as Fp-vector spaces.

Proposition 3. There exists a tuple (D1, D2) such that

dimK Rk
D1,D2

= dimK Ik
D1,D2

.

Proof. It is well known that for all D ≥ Dreg we have ID = K[x1, . . . , xn]D. Fix D = Dreg.
Then for any (d1, d2) such that d1 ≥ Dreg we have that

Rk
d1,d2

⊆ Id1 = K[x1, . . . , xn]d1 .

It follows that Ik
d1,d2

= Id1 ∩Rk
d1,d2

= Rk
d1,d2

.

This proposition suggests that there exists a set of parameters (d, D) with d < D ≤ Dreg

such that the left kernel of the matrixMk
D,d,k(F) has positive dimension, i.e. the GenPoly

procedure generates a positive number of new polynomials. Note that d < D ≤ Dreg is
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the only interesting case for Crossbred anyway, since when D = Dreg the cost of the linear
algebra in the preprocessing is asymptotically close to that of linear algebra in the F5
algorithm.

Whenever the sequence of polynomials F is γ-strong semi-regular, we will show that
there are no reductions to zero in the GenMat procedure of the Block Crossbred algorithm.

Proposition 4. Let F = {f1, . . . , fm} be a homogeneous system of polynomials such that
the ideal I = ⟨f1, . . . , fm⟩ has dimension 0. Let 0 < k < n and 0 < γ ≤ n such that
k = (1− γ)n. Assume that the sequence F is γ-strong semi-regular and denote by dwit(k)
the witness degree of F∗ for all (ak+1, . . . an) ∈ Fn−k

2 \S(I). Then there are no reductions
to zero in the matrix Mack

d1,d2,k(F) constructed by the GenMat procedure of the Block
Crossbred algorithm with d2 ≤ d < dwit(k) and d1 ≤ D < Dreg.

Proof. Assume that there is a reduction to 0 in the matrix Mack
d1,d2,m(F), with d1 <

Dreg. Then there exist gi and hj , j ∈ {1, . . . i − 1}, such that gifi =
∑i−1

j=1 hjfj , with
deg gifi = d1 and gi, hj ∈ Rk

d1−2,d2−1. From the semi-regularity hypothesis, it follows that
gi =

∑i−1
j=1 h′

jfj . Since the sequence is γ-strong semi-regular, there is no fall of the degree
over the first k variables for the specialized system, for d2 < dwit(k). We deduce that
degk(h′

j) = d2 − 3, hence LT (gi) is the leading term of a row in Mack
d1−2,d2−2,m−1(F).

These are exactly the rows that are removed when applying the General and the Frobenius
Criteria. As such, there is no reduction to zero in the Block Crossbred up to the degree
Dreg.

5 A bivariate generating series for Block Crossbred
In this section, we investigate the complexity of the Block Crossbred algorithm for solving
a system of polynomials. To this purpose, we have to estimate first the number of new
polynomials obtained when running the GenPoly procedure in Algorithm 2.

Let F = {f1, . . . fm} be a system of homogenous quadratic polynomials in R and
denote by Uk

d1,d2,m, d1, d2 ≥ 0, the number of rows of the matrix Mack
d1,d2,m(F), and thus

of Mk
d1,d2,m(F). The number of columns of Mk

d1,d2,m(F) is given by Mk
d1,d2+1, which

corresponds to the number of monomials v of total degree d1 such that degk v = d2 + 1.
We define the following sequence:

hk
d1,d2,m =


Uk

d1,d2,m −Mk
d1,d2+1, si d1 ≥ d2 ≥ 0,

−Mk
d1,0, si d1 > 0, d2 = −1,

0 in all other cases.
(4)

The dimension of this space gives the number of new "independent" polynomials
generated in the preprocessing step of Algorithm 2.

Proposition 5. If hk
d1,d2,m > 0 and there are no reductions to zero in Mack

d1,d2,m(F),
then then the number of polynomials computed with the GenPoly procedure is hk

d1,d2,m.

Proof. Since hk
d1,d2,m > 0 and the matrix Mk

d1,d2,m(F) has full rank, we have that
hk

d1,d2,m = corank Mk
d1,d2,m(F).

Proposition 6. Assume that there are no reductions to zero in the Block Crossbred algo-
rithm. Then the sequence hk

d1,d2,m satisfies the following recurrence relation:

hk
d1,d2,m = hk

d1,d2,m−1 − hk
d1−2,d2−2,m, (5)

with the initial condition hk
d1,d2,0 = −Mk

d1,d2+1, for all d1, d2 ∈ Z.
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Proof. The number of rows added to Mack
d1,d2,m−1(F) to get Mack

d1,d2,m(F) is equal to
the number of monomials u with deg(u) = d1 − deg(fm) = d1 − 2 and degk(u) = d2 − 1.
From this number we subtract the number of monomials which satisfy the General and the
Frobenius Criterion. As such, the number of rows of the matrix Mack

d1,d2,m(F) verifies
the following equation :

Uk
d1,d2,m − Uk

d1,d2,m−1 = Mk
d1−2,d2−1 − Uk

d1−2,d2−2,m.

By using this formula and Equation (4) we get:

hk
d1,d2,m − hk

d1,d2,m−1 = −hk
d1−2,d2−2,m,

which concludes the proof.

Using the recurrence relation in Equation (5) we may now compute the generating
bivariate series which will allow us to determine admissible parameters for Algorithm 2.

Theorem 7. Let Hk
m,n(X, Y ) =

∑
d1≥0,d2≥0 hk

d1,d2,mXd1Y d2 be the bivariate series with
coefficients defined by Equation (4). This series is given by:

Hk
m,n(X, Y ) = 1

Y

[
(1 + X)n−k − (1 + XY )k(1 + X)n−k

(1 + X2Y 2)m

]
.

Proof. Since the values of k and n are fixed and let Hm(X, Y ) = Hk
m,n(X, Y ) and write

hd1,d1,m instead of hk
d1,d2,m. Moreover, we define

Ĥm(X, Y ) =
∑

d1≥0,d2≥0
hd1−2,d2−2,mXd1Y d2 .

Then, we have

Ĥm(X, Y ) =
∑

d1≥0,d2≥0
Uk

d1−2,d2−2,mXd1Y d2 −
∑

d1≥0,d2≥0
Mk

d1−2,d2−1Xd1Y d2

= X2Y 2
∑

d1≥0,d2≥0
Uk

d1,d2,mXd1Y d2

− X2Y 2
∑

d1≥0,d2≥0
Mk

d1,d2+1Xd1Y d2 −X2Y
∑
d1≥0

Mk
d1,0Xd1

= X2Y 2
∑

d1≥0,d2≥0
hd1,d2,mXd1Y d2 −X2Y

∑
d1≥0

Mk
d1,0Xd1

= X2Y 2Hm(X, Y )−X2Y
∑
d1≥0

Mk
d1,0Xd1 .

Using the recurrence relation obtained in Equation (5) we obtain:

Hm(X, Y ) =
∑

d1≥0,d2≥0
hd1,d2,mXd1Y d2

=
∑

d1≥0,d2≥0
hd1,d2,m−1Xd1Y d2 −

∑
d1≥0,d2≥0

hd1−2,d2−2,mXd1Y d2

= Hm−1(X, Y )− Ĥm(X, Y )
= Hm−1(X, Y )−X2Y 2Hm(X, Y ) + X2Y

∑
d1≥0

Mk
d1,0Xd1 .
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Hence we get

Hm(X, Y ) = (1 + X2Y 2)−1Hm−1(X, Y ) + X2Y

1 + X2Y 2

∑
d1≥0

Mk
d1,0Xd1

= (1 + X2Y 2)−mH0(X, Y )− 1− (1 + X2Y 2)m

Y (1 + X2Y 2)m

∑
d1≥0

Mk
d1,0Xd1 .

By Equation (4), for a fixed value fo k, we have that hd1,d2,0 = −Mk
d1,d2+1. Hence we get :

H0(X, Y ) = −
∑

d1≥0,d2≥0
Mk

d1,d2+1Xd1Y d2 .

Since Mk
d1,d2+1 =

(
k

d2+1
)(

n−k
d1−d2−1

)
(with the convention that

(
n−k

d1−d2−1
)

= 0 for d2 ≥ d1)
we get: ∑

d1≥0,d2≥0
Mk

d1,d2+1Xd1Y d2 =
∑

d1≥0,d2≥0

(
k

d2 + 1

)(
n− k

d1 − d2 − 1

)
Xd1Y d2

=
∑
d2≥0

(
k

d2 + 1

)
Y d2

∑
d1≥0

(
n− k

d1 − d2 − 1

)
Xd1

=
∑
d2≥0

(
k

d2 + 1

)
Y d2Xd2+1

∑
d1≥0

(
n− k

d1

)
Xd1

=
∑
d2≥0

(
k

d2 + 1

)
Y d2Xd2+1(1 + X)n−k

= (1 + X)n−k

Y

∑
d2≥0

(
k

d2 + 1

)
Y d2+1Xd2+1

= (1 + X)n−k

Y

∑
d2≥0

(
k

d2

)
Y d2Xd2 − 1


= (1 + X)n−k

Y

(
(1 + XY )k − 1

)
.

In conclusion, we have :

Hm(X, Y ) = − (1 + X)n−k

Y (1 + X2Y 2)m

(
(1 + XY )k − 1

)
− 1− (1 + X2Y 2)m

Y (1 + X2Y 2)m

∑
d1≥0

Mk
d1,0Xd1

= 1
Y (1 + X2Y 2)m

[
−(1 + XY )k(1 + X)n−k + (1 + X2Y 2)m(1 + X)n−k

]
= 1

Y

[
(1 + X)n−k − (1 + XY )k(1 + X)n−k

(1 + X2Y 2)m

]
.

6 From Block Crossbred to Joux-Vitse’s Crossbred
The matrix Mack

≤D,≥d,m(F) is constructed by concatenating the matrices Mack
d1,d2,m(F),

d ≤ d2 ≤ d1 ≤ D, constructed in Algorithm 2. This observation allows us to computed the
corank of the matrix Mk

≤D,≥d,m(F) in terms of the coefficients of the generating series
H(X, Y ) examined in Proposition 7.
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Proposition 8. Assuming that there are no reductions to zero in the preprocessing step of
the Crossbred algorithm, the corank of the matrix Mk

≤D,≥d,m(F) is given by the following
formula:

corank(Mk
≤D,≥d,m(F)) =

∑
d1≤D,d2≥d,m

hk
d1,d2,m,

where the sequence hk
d1,d2,m is defined by Equation (4).

Proof. Indeed, we have that:

corank(Mk
≤D,≥d,m(F)) = #Rows(Mk

≤D,≥d,m(F))−#Col(Mk
≤D,≥d,m(F)) =

=
∑

d1≤D,d2≥d

Uk
d1,d2

−
∑

d1≤D,d2≥d

Mk
d1,d2+1 =

∑
d1≤D,d2≥d,m

hk
d1,d2,m.

We are now in position to compute the generating bivariate series which will eventually
allow us to determine admissible parameters for Algorithm 1.

Proposition 9. For fixed values of m, n and k the bivariate series Gk
m,n(X, Y ) =∑

d1≥0,d2≥0

(∑
d′

1≤d1,d′
2≥d2

hk
d′

1,d′
2,m

)
Xd1Y d2 is given by the formula:

Gk
m,n(X, Y ) = −

Y Hk
m,n(X, Y )

(1−X)(1− Y ) . (6)

Proof. Since m, n and k are fixed, we compute the bivariate series G(X, Y ) = Gk
m,n(X, Y )

as follows:

G(X, Y ) =
∑

d1≥0,d2≥0

 ∑
d′

1≤d1,d′
2≥d2

hd′
1,d′

2,m

Xd1Y d2 .

First note that∑
d′

1≤d1,d′
2≥d2

hd′
1,d′

2,mXd1Y d2 =hd1,d2,mXd1Y d2 +
∑

d′
1≤d1−1

hd′
1,d2,mXd1Y d2

+
∑

d′
2≥d2+1

hd′
1,d2,mXd1Y d2 +

∑
d′

1≤d1−1,d′
2≥d2+1

hd′
1,d′

2,mXd1Y d2 .

It follows that

G(X, Y ) =
∑

d1,d2

hd1,d2,mXd1Y d2 + X

Y

∑
d1≥0,d2≥0

 ∑
d′

1≤d1−1,d′
2≥d2+1

hd′
1,d′

2,m

Xd1−1Y d2+1

+
∑

d1≥0,d2≥0

 ∑
d′

1≤d1−1

hd′
1,d2,m

Xd1Y d2 +
∑

d1≥0,d2≥0

 ∑
d′

2≥d2+1

hd1,d′
2,m

Xd1Y d2 .

(7)

We denote by S the sequence

S(X, Y ) =
∑

d1≥0,d2≥0

 ∑
d′

1≤d1−1

hd′
1,d2,m

Xd1−1Y d2 ,
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and by T the sequence

T (X, Y ) =
∑

d1≥0,d2≥0

 ∑
d′

2≥d2+1

hd1,d′
2,m

Xd1Y d2+1.

Then we write

S(X, Y ) =
∑

d1≥1,d2≥0
hd1−1,d2Xd1−1Y d2 +

∑
d1≥1,d2≥0

∑
d′

1≤d1−2

hd′
1,d2Xd1−1Y d2

=
∑

d1≥0,d2≥0
hd1,d2Xd1Y d2 + X

∑
d1≥0,d2≥0

∑
d′

1≤d1−2

hd′
1,d2Xd1−2Y d2

= H(X, Y ) + XS(X, Y ),

and get that
S(X, Y ) = H(X, Y )

1−X
. (8)

To compute T (X, Y ) we follow a similar approach:

T (X, Y ) =
∑

d1≥0,d2≥0

∑
d′

2≥d2+1

hk
d1,d′

2,mXd1Y d2+1 =
∑

d1≥0,d2≥1

∑
d′

2≥d2

hk
d1,d′

2,mXd1Y d2

=
∑

d1≥0,d2≥0

∑
d′

2≥d2

hk
d1,d′

2,mXd1Y d2 −
∑
d1≥0

∑
d′

2≥0

hk
d1,d′

2,mXd1

=
∑

d1≥0,d2≥0

∑
d′

2≥d2+1

hk
d1,d′

2,mXd1Y d2 +
∑

d1≥0,d2≥0

∑
d′

2=d2

hk
d1,d′

2,mXd1Y d2

−
∑
d1≥0

∑
d′

2≥0

hk
d1,d′

2,mXd1 = 1
Y

T (X, Y ) + H(X, Y )−H(X, 1).

We conclude that :

T (X, Y ) = Y

Y − 1 [H(X, Y )−H(X, 1)] .

Now let us focus on the series

Ĝ =
∑

d1≥0,d2≥0

 ∑
d′

1≤d1−1,d′
2≥d2+1

hd′
1,d′

2,m

Xd1−1Y d2+1,

which appears in the second term of the sum in Equation (7). We have that

Ĝ =
∑

d1≥0,d2≥0

 ∑
d′

1≤d1,d′
2≥d2+1

hd′
1,d′

2,mXd1Y d2+1


=

∑
d1≥0,d2≥0

 ∑
d′

1≤d1−1,d′
2≥d2+1

hd′
1,d′

2,m

Xd1Y d2+1 +
∑

d1≥0,d2≥0

 ∑
d′

2≥d2+1

hd1,d′
2,m

Xd1Y d2+1.

We have

Ĝ(X, Y ) = XĜ(X, Y ) + T (X, Y ),
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hence we compute

Ĝ(X, Y ) = 1
1−X

T (X, Y ).

Finally, we obtain

G(X, Y ) = H(X, Y ) + X

Y (1−X)T (X, Y ) + XS(X, Y ) + 1
Y

T (X, Y )

= H(X, Y ) + XS(X, Y ) + 1
(1−X)Y T (X, Y ). (9)

We plug in the expressions obtained in Equations (8) and (6) in the last equality in
Equation (9) and conclude that

G(X, Y ) = H(X, 1)
(1−X)(1− Y ) −

Y H(X, Y )
(1−X)(1− Y ) .

For a fixed value of k, the non-zero coefficients of Gk
m,n give us values of (d1, d2) for

which the left kernel of Mack
≤d1,≥d2,k(F) is non-trivial. Consequently, for these pairs

(d1, d2) the number of polynomial generated during the pre-processing step, taking into
account the criteria, is given by the coefficient of Xd1Y d2 .

Example 6.1. We are interested in solving polynomial systems with m = 166 polynomials
and n = 83 variables, which is the set of parameters for the current record of a polynomial
system that was solved over F2 in the Fukuoka Type I MQ challenge [BS23]. By choosing
k = 30, we get the following series :

G30
166,83(X, Y ) = − 30X − 1889X2 − 269X2Y − 56566X3 − 13606X3Y + 920X3Y 2

− 1050324X4 − 304584X4Y + 80624X4Y 2

+ 30944X4Y 3 +O(X5).

With this series, we know the number of polynomials generated by the pre-processing of
the Crossbred algorithm (when applying criterion) for parameters (4, 3, 30) is 30944.

6.1 Admissible parameters
Now that we know how many polynomials are generated by the pre-processing step of
the algorithm, we need to check if it generate enough polynomials for the algorithm to
terminate. To tackle the question of determining admissible parameters for Crossbred, let
us look at a toy example.

Example 6.2. For a system of m = 49 polynomials and n = 23 variables, if we choose
k = 18, the corresponding series is :

G18
49,23(X, Y ) = −18X − 212X2 − 104X2Y − 846X3 − 558X3Y + 66X3Y 2 +O(X4).

Choosing parameters (D, d) = (3, 2), we will generate 66 polynomials. Assuming these
polynomials are linearly independent after specification of the last n−k variables, we claim
that this is not enough to linearize the specified system. Indeed, since d = 2, the Macaulay
matrix Mac≤2,49(F∗) has M18

≤2 = 172 columns. After adding the 66 new polynomials, this
matrix has 115 rows. We conclude that (D, d) = (3, 2) and k = 18 are not admissible
parameters for this polynomial system.
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Notation Let R′ = Fp[x1, . . . , xk]. Let F = {f1, . . . fm} be a system of polynomials
in R and denote as usual by I the ideal generated by f1, . . . , fm. Then we denote by
I∗ = ⟨f∗

1 , . . . , f∗
m⟩, where f∗

i are obtained by specifying the variables xk+1, . . . , xn at any
values (a1, . . . , an−k) ∈ Fn−k

2 .

As explained in Section 2, the witness degree of an affine semi-regular polynomial
system with k variables and m equations is given by the index of the first non-positive
coefficient of the generating series in Lemma 1. We denote the value of this index by
dwit(k). Obviously, if F is γ-strong semi-regular, this implies that for any d < dwit(k), all
rows of Mac≤d,m(F∗) are linearly independent.

When d ≥ dwit(k), the matrix Mac≤d,m(F∗) has more rows than columns and it has
full rank. In this case, d is not interesting as input parameter for the Crossbred algorithm
since we do not need any new polynomials generated in the pre-processing step. Indeed,
in this case it suffices to perform exhaustive search, assign the last n− k variables in the
system and solve it (for instance by linearisation on the Mac≤d,m(F∗) matrix).

This leads to the following definition.

Definition 6. Let F = {f1, . . . , fm} be a sequence of polynomials in F2[x1, . . . , xn] and k
and γ are such that 0 ≤ k = (1− γ)n ≤ n and F is γ-strong semi-regular. The parameters
D, d and k are called potentially admissible for the Crossbred algorithm if the following
hold:

(1) d < dwit(k),

(2) D < Dreg,

(3) For all (ak+1, . . . , an) ∈ Fn−k
2 \S(I) and the ideal I∗ = ⟨f∗

1 , . . . , f∗
m⟩ obtained by

evaluating f1, . . . , fm at (ak+1, . . . , an) we have that:∑
d1≤D,d2≥d

hk
d1,d2,m + dim I∗

≤d ≥ dim R′
≤d.

We now show that if the system F is γ-strong semi-regular, we compute the generating
series which determines potentially admissible parameters for the Crossbred algorithm.

Theorem 10. Let F = {f1, . . . , fm} be a γ-strong semi-regular sequence of polynomials
in F2[x1, . . . xn]. Then k, D and d are potentially admissible parameters for the Crossbred
algorithm if the coefficient corresponding to XDY d of the following bivariate series

Jk
m,n(X, Y ) = 1

(1−X)(1− Y )

[
(1 + X)n−k(1 + XY )k

(1 + X2Y 2)m
− (1 + X)n

(1 + X2)m
(10)

−( 1
Y
− 1)(1 + X)n−k − (1 + Y )k

(1 + Y 2)m

]
is non-negative.

Proof. Using Definition 6, to determine potentially admissible parameters we look at the
coefficients of the following bivariate series :

Gk
m,n(X, Y )−

∑
D,d≥0

dim(R′
≤d/I∗

≤d)XDY d, (11)

where I∗ = ⟨f∗
1 , . . . , f∗

m⟩ is the ideal obtained by specializing f1, . . . , fm at any (ak+1, . . . , an) ∈
Fn−k

2 \S(I). Using Lemma 1 we have that:∑
0≤d

(
dim R′

≤d/J≤d

)
Y d = (1 + Y )k

(1− Y )(1 + Y 2)m
. (12)
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Then by replacing Gk
m,n(X, Y ) with its expression computed in Proposition 7, we get the

series claimed in the statement of the theorem.

Example 6.3. Let’s take the same polynomials system as in example 6.1. We compute
the degree of regularity of F and the witness degree dwit(k) of F∗ and get Dreg = 9 and
dwit(30) = 3. We compute Jk

m,n(X, Y ) for this sytem :

J30
166,83(X, Y ) = − 30X − 1889X2 − 300X2Y − 56566X3 − 13637X3Y + 620X3Y 2

− 1050324X4 − 304615X4Y + 80324X4Y 2 + 31564X4Y 3 +O(X5)

Following the condition given in definition 6, we know that (D, d, k) = (4, 3, 30) is not
a potentially admissible parameter as d = dwit(30) = 3. On the other hand, parameter
(D, d) = (3, 2) is potentially admissible as it satisfies every condition of definition 6.

In Section 7 we show experimental evidence supporting the conjecture that potentially
admissible parameters are indeed admissible (see Table 3).

7 Experiments
7.1 γ-strong semi-regularity
In this subsection, we show experimental evidence supporting the claim that random
polynomials system are γ-strong semi-regular. In particular, we will see that a random
polynomial system, which we know to be semi-regular [BFS03], is still semi-regular after
specification with high probability. Furthermore, we will also try to give an upper bound
for γ.

To test the semi-regularity of the specialised system F∗, we look at the rank of the
associated Macaulay matrix for each degree up to the witness degree dwit(k). In Table 1 we
show that experimental result confirms our assumption. In the fourth column of this Table,
we give the value of the witness degree dwit(k), computed using the series in Lemma 1.
In the fifth column, we give the value of γ, rounded with three decimals. In the seventh
column, we computed the numbers of rows and columns of Mac≤d,m(F∗) and its rank, for
successive values of d. Since the matrix has less rows than columns and it has full rank for
d < dwit(k), we conclude that F∗ is semi-regular and F is γ-strong semi-regular.

Note that this does not hold for every value of γ. Indeed, if the witness degree dwit(k)
is small enough (dwit(k) ≤ 2), then linear dependencies will appear in degree 2 in the
specialised system. That lead us to compute a lower bound on k (which is equivalent
to an upper bound on γ). To find it, we search k such that the number of columns of
Mac≤2,m(F∗) is less that the number of rows, which gives the following inequality :

k2 + k + 2(1−m) < 0 (13)

The polynomial on the left hand-side of Equation (13) has two roots:

k1,2 = −1±
√

8m− 7
2

We ignore k2 since it is negative and get that k1 yields a lower bound on the values of
k for which F is γ-strong semi-regular series. For m = 49, this is equal to k1 ≈ 9.31. As
such, for a system F of 49 polynomials, if k ≤ 9 (which corresponds to γ ≈ 0.609), then F
is not γ-strong semi-regular as the specialised system is not semi-regular.
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Table 1: Experimental data for γ-strong semi-regularity
m n k dwit(k) γ d (# rows, # columns) Rank of Mac≤d,m(F∗)
49 23 18 4 0.217 2 (49, 172) 49

3 (931, 988) 931
4 (8428, 4048) ≈ 4048

49 23 17 3 0.261 2 (49, 154) 49
3 (882, 834) ≈ 834

49 23 12 3 0.478 2 (49, 79) 49
3 (637, 299) ≈ 299

53 25 19 4 0.24 2 (53, 191) 53
3 (1060, 1160) 1060
4 (10123, 5036) ≈ 5036

7.2 Admissible parameters for Crossbred
We implemented Algorithm 1 in Magma including the General and the Frobenius criterion
when constructing Macaulay matrices (see Prop. 1 and 2) and ran experiments over
pseudo-random polynomial systems. Polynomials systems used in the experiments are
obtained by using Sedlacek’s implementation [Sed22] of Beullens’s differential attack on
Rainbow instances [DS05, Beu22]. We also experimented with polynomials systems from
the Fukuoka Type I MQ challenge [YDH+15, Yas15].

Data in Tables 2, 3 and 4 is obtained by generating polynomials in the preprocessing
step of Algorithm 1 for different choices of parameters. In these Tables we use the following
notation :

• As usual D, d and k are the input parameters for the algorithm and m and n denote
the number of polynomials and the number of variables of the system, respectively.

• r corresponds to the number of polynomial generated by the precomputation step of
the Crossbred algorithm.

• Mk
≤d denotes the number of monomials of degree ≤ d over k variables. This is the

number of polynomials needed to successfully solve the degree d system obtained
after assigning the last n− k variables, by linearization.

Recall that during the exhaustive search step of the algorithm we evaluate the newly
generated polynomials in the last n− k variables and add them to the degree d Macaulay
matrix of the specialized system Mac≤d,m(F∗). Then we count how many independent
polynomials there are for each iteration of the exhaustive search. Each of the couples for
an entry in the last column of Table 2 stands for the number of independent polynomials
and the number of iterations of the exhaustive search for which we obtained this value.
In Table 2, we experimented using 5 polynomial systems obtained using the generator
in [Sed22], using a different seed each time to ensure that these systems are distinct.

Table 2: Example with 5 polynomial systems
seed (D, d) m n k r Mk

≤d 2n−k (#Ind. pol., #Iteration)
261 (4, 1) 59 28 20 108 21 256 (20, 1) (21, 255)
262 (4, 1) 59 28 20 108 21 256 (20, 1) (21, 255)
263 (4, 1) 59 28 20 108 21 256 (20, 1) (21, 255)
264 (4, 1) 59 28 20 108 21 256 (20, 1) (21, 255)
265 (4, 1) 59 28 20 108 21 256 (20, 2) (21, 254)

- (4, 1) 59 28 20 108 21 256 (20, 1.2) (21, 254.8)

As expected, for each of the 5 polynomial systems in the Table the preprocessing step
of Algorithm 1 outputs exactly the same numbers of polynomials, which is 108. Since
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n = 28 and k = 20, we search through 2n−k = 256 different values for the last n − k
variables. We see that for all possible values, except for one or two, the maximal number
of independent polynomial after specification is 21 = k + 1. This is similar to the test
of consistency done in [BFSS13] in the sense that if the ideal I∗ has no solution, then
corank(Mac≤1,59(F∗) = 0, which means that the matrix has full rank. Otherwise, if the
ideal I∗ has a solution, then corank(Mac≤1,59(F∗) ̸= 0 which implies the matrix will not
reach full rank. We see that each seed has one solution except for seed 265 which has two
solutions.

The last row in Table 2 computes the average number of independent polynomials
obtained after specification, for this set of 5 polynomial systems.

In Table 3 we re-do the experiment and compute the same average, for different sets of
admissible parameters. Whenever m = 2n, the data is obtained with polynomials from the
Fukuoka MQ challenge. To obtain this data for the Fukuoka MQ challenge, we took the
five available polynomial systems available in [Yas15] for any n and m, and computed the
average of the result for each system. Every polynomial system gave the same result in
the experiment. When m ̸= 2n, the data is obtained with polynomials systems generated
by Sedlacek’s implementation. For that, we generated distinct polynomials systems with
different seeds. The number of generated polynomials is the same for each seed, which was
expected, and the number of solution in each system varies between one or two depending
on the seed.

Finally, Table 4 shows similar experiments for non-admissible parameters, i.e. when
m + r < Mk

≤d. In this case, we see that the m + r polynomials of degree d are independent
after specification, which confirms our γ-strong semi-regularity hypothesis.

Table 3: Experimental data on the Crossbred algorithm for admissible parameters
(D, d) m n k r Mk

≤d 2n−k (#Ind. pol., #Iteration) Dreg dwit(k)
(4, 2) 49 23 18 3608 172 32 (171, 1.3) (172, 30.7) 4 4
(4, 2) 49 23 17 4130 154 64 (153, 1.1) (154, 62.9) 4 3
(4, 2) 40 20 17 2240 154 8 (153, 1) (154, 7) 4 4
(4, 1) 49 23 18 1944 19 32 (18, 1.3) (19, 30.7) 4 4
(4, 1) 49 23 17 2216 18 64 (17, 1.1) (18, 62.9) 4 3
(4, 1) 40 20 17 1568 18 8 (17, 1) (18, 7) 4 4
(3, 1) 47 22 11 256 12 2048 (11, 1.2) (12, 2046.8) 4 3
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