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Abstract. Ring signatures are one of the crucial cryptographic prim-
itives used in the design of privacy-preserving systems. Such a signa-
ture scheme allows a signer to anonymously sign a message on behalf
of a spontaneously formed group. It not only ensures the authenticity
of the message but also conceals the true signer within the group. An
important extension of ring signatures is linkable ring signatures, which
prevent a signer from signing twice without being detected (under some
constraints). Linkable ring signatures offer advantages in applications
where full anonymity might jeopardise the intended purpose, such as
privacy-oriented cryptocurrencies like Monero.

In this work, we introduce post-quantum ring signature (DualRing-PRF)
and linkable ring signature (DualRingL-PRF) schemes whose security
solely rely on symmetric-key primitives (namely, Legendre PRF and
power residue PRF). Our construction of the ring signature departs from
previous approaches with similar security assumptions, offering the most
competitive signature sizes for small and medium-sized rings. In partic-
ular, for a ring size of 16, DualRing-PRF has a communication overhead
1.4 times smaller than the state-of-the-art scheme proposed by Goel et
al. [PETS’21]. Furthermore, we demonstrate the extension of DualRing-
PRF to incorporate linkability and non-slanderability. Compared to the
existing one-time traceable ring signature (a variant of linkable ring sig-
nature) by Scafuro and Zhang [ESORICS’21], our construction supports
many-time signing and achieves significantly smaller signature sizes when
ring size exceeds 16. This advantage becomes more pronounced as the
ring size increases.

Keywords: Ring Signature, Linkability, Post-Quantum, Symmetric Key
Primitives



1 Introduction

A ring signature scheme allows a signer to sign a message while preserving
anonymity behind a spontaneously chosen group, commonly known as a “ring”.
A verifier can check the validity of the signature but cannot identify the actual
signer among all possible ring members. The notion was initially formalized in
[37], and ring signatures, along with its related notions such as ad-hoc identifi-
cation have been extensively studied since then [1, 17, 4, 39, 11, 24, 13, 2, 23].

The ring signature scheme stands out as a pivotal cryptographic tool in
the development of privacy-preserving systems. The initial motivation was to
facilitate anonymous disclosure of secrets (also known as whistleblowing). For
example, a government agency can employ the scheme to sign information with
respect to the ring of all agents. The signed information can then be verified as
originating from a reputable source without exposing the actual signer.

An important extension of a ring signature scheme is linkability, a feature
that prevents a signer from discreetly signing twice without being detected.
Linkable ring signatures [30] are especially beneficial in applications where full
anonymity could compromise the intended purpose, such as in e-voting [41]. In
fully anonymous voting systems, for instance, a voter can potentially accumulate
the necessary minimum number of distinct votes by repeatedly submitting its
votes. Linkable ring signatures provide an efficient method of detecting such
fraudulent multi-voting behaviors.

Most existing ring signatures and linkable ring signatures depend on secu-
rity assumptions like large integer factorisation and discrete logarithm, which
are vulnerable to quantum attacks (e.g., Shor’s algorithm [40]). Given the wide
range of privacy-oriented applications, it is imperative to develop post-quantum
counterparts for (linkable) ring signature schemes that are both concretely ef-
ficient and secure. There has recently been a sequence of works that construct
quantum-resistant ring signatures by utilizing lattice-based cryptography [31, 19,
43, 33, 32, 18, 7] and symmetric-key primitives such as block ciphers and hash
functions [28, 16, 38, 22]. While lattice-based ring signatures have a smaller
communication overhead, schemes based on symmetric-key primitives rely on
arguably weaker security assumptions, such as collision-resistant hash functions,
pseudorandom functions, and block ciphers, providing more confidence in their
security.

1.1 Our Contributions

Contribution I. DualRing-PRF: Post-Quantum Ring Signature. We
present a novel construction of a post-quantum ring signature based on symmetric-
key primitives, characterized by the smallest communication overhead com-
pared to state-of-the-art schemes with similar security assumptions for small
and medium-sized rings (i.e., rings of size from 2 to 1000).4 Our protocol ex-
tends the DualRing framework [43] to accommodate Legendre PRF and power

4 Efficiency of ring signatures for small and medium-sized rings is crucial in real-
world applications due to their inherent limitations. That is, for a ring with size
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Ring Size n = 24 26 210 211 Assumption Link NS

[7] 31 32 34 34.5

Lattice-based
Assumptions

✓ ✓

[18] < 11 11 < 18 < 18 ✓ ✗

[33] < 16 < 18 18 < 19 ✗ ✗

[43] 4 5 20 36 ✗ ✗

[32] < 13 13 < 14 < 14 ✗ ✗

[16] 597 838 1352 1440
Low-MC

✗ ✗

[28] ∼ 175 ∼243 ∼388 ∼404 ✗ ✗

[22] 48 51 57 58 ✗ ✗

[38]* 32 131 2048 4096 Hash ✓* ✓*

DualRing-PRF 34 37 56 74 Legendre/Power

Residue PRFs
✗ ✗

DualRingL-PRF 42 45 64 66 ✓ ✓

Table 1. Signature Size (in KB) Comparison Among Post-Quantum (Link-
able/Traceable) Ring Signatures based on Symmetric-Key Primitives for 128-bit Secu-
rity. [38] is one-time traceable ring signature.

residue PRF in a non-trivial manner. The extension stems from our observation
of the modular design inherent in the key identification scheme based on Leg-
endre/power residue PRFs. Specifically, it involves a three-move identification
protocol with non-negligible soundness error, complemented by a zero-knowledge
proof to enhance the overall soundness of the three-move identification process.

However, in contrast to Type-T* canonical identification schemes (e.g., Schnorr
identification) which are straightforwardly supported by DualRing, the addi-
tional zero-knowledge proof potentially reveals the identity of the real signer.
To address this challenge, we propose a novel solution using the cut-and-choose
[28] technique and seamlessly integrate it with MPC-in-the-head [26] based zero-
knowledge proofs. As shown in Table 1, our design yields the most competitive
signature size among all symmetric-key primitives based ring signatures for ring
sizes ranging from 16 to 1024.
Contribution II. Linkable DualRing-PRF. We extend DualRing-PRF to a
linkable ring signature scheme (DualRingL-PRF) that achieves linkability and
non-slanderability. The properties are crucial for applications which require ef-
ficient detection of double signing, where a malicious user attempts to sign two
messages with respect to the same event. Our approach leverages the versatil-
ity of MPC-in-the-head [26] and optimizes it for Legendre/power residue PRFs
based signatures. Consequently, our scheme features a 4KB linking tag and adds
4 - 12KB to the signature size. Comparing our construction with the state-of-
the-art one-time traceable ring signature [38] (see Table 1), our linkable ring

N , (linkable) ring signatures require at least N operations for both signing and
verification, as well as the storage of N public keys. These limitations restrict the
size of the ring, making it challenging to scale. On the other hand, for very small
ring sizes, such as 2 to 10, the anonymity guarantee is too weak. For instance, after
the release of Monero version 0.13, the smallest ring size was fixed at 16 to ensure
transaction anonymity. Therefore, as stated in [43], one could argue that the most
relevant ring size in practice falls between 10 and 2000.
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signature exhibits significantly shorter signatures for ring sizes exceeding 16.
This advantage becomes more pronounced as ring sizes increase.
Contribution III. Implementations. We implemented DualRing-PRF using
Python with a single thread and benchmarked its performance on a MacBook
Pro equipped with the Apple M1 MAX chip. Our implementation offers three
different parameter sets for both power residue and Legendre PRF-based ring
signatures, allowing for a trade-off between signature size and running time.
Despite the inherent performance degradation of Python, we demonstrate that
for generating a ring signature with a ring size of 256, the power-residue PRF-
based DualRing-PRF requires 26 to 88 seconds while the Legendre PRF-based
scheme requires 55 - 183 seconds.

1.2 Technical Overview

Building Blocks Our construction involves three building blocks, DualRing
[43], MPC-in-the-head [26], and LegRoast [8].
DualRing DualRing is a generic ring signature construction with the formation
of two rings: a ring of commitments and a ring of challenges. It can be seen
as a compiler which compiles a special type of Σ-protocol, called the Type-T∗

canonical identification scheme, to a ring signature. In particular, the Type-T∗

canonical identification (e.g., Schnorr’s identification) is a three-move public-key
authentication protocol whose verification algorithm V can be divided to two
algorithms V1 and V2 such that V = V1⊙V2 for some group operation ⊙, where
V1 is additive or multiplicative homomorphic. The benefit of using the DualRing
compiler is that the compiled ring signature consists of a single response and n
challenges for a ring of size n, unlike in [1], where the ring signature comprises
a single challenge and n responses.
MPC-in-the-Head. MPC-in-the-head is a technique utilized for constructing
public-coin zero knowledge proofs of knowledge using MPC protocols. In a nut-
shell, the prover simulates an N -party functionality representing an NP relation
R(x,w) in the head. Here, x denotes the statement hard-wired into the cir-
cuit, while w is the witness secretly shared among virtual parties. The function
outputs 1 if and only if R(x,w) = 1. After the simulation, the prover sends
the verifier commitments to each virtual parties’ input shares, secret random
tapes and communicated messages during the simulation of the MPC protocol
(commonly referred to as views). Additionally, it sends the output shares of
the parties, which should reconstruct to 1. Subsequently, the verifier randomly
chooses a subset of commitments to be opened and verifies that the committed
messages are consistent with an honest execution of the MPC protocol accord-
ing to the opened input shares, random tapes, and previously received output
shares.
LegRoast. LegRoast/PorcRoast is a post-quantum signature scheme which en-
ables a signer to prove the knowledge of a secret key in relation to the output of
Legendre/power residue PRF using the MPC-in-the-head paradigm. Let p be a
large odd prime and t be an integer such that t|p−1. The t-th power residue PRF
(defined in Section 2.1) is a one-way function denoted by Lt

K(·) : Fp × Fp → Zt

4



(note when t = 2, it is the Legendre PRF). Owing to the limitation that the
PRF only produces log2(t) bit of output, the public key should consist of many
PRF evaluations denoted as pk = (pk1, . . . , pkL) = (LK(I1), . . . ,LK(IL)) for
some fixed arbitrary list I = (I1, . . . , IL). The (relaxed) key identification prob-
lem can thus be described as follows: given a public key consists of L Legendre
PRF outputs, prove the knowledge of a value K ′ such that for a large fraction
of B ≤ L symbols, LK′(Ib) = LK(Ib) for all b ∈ [B] simultaneously.

In LegRoast, the key identification scheme is constructed by applying the
MPC-in-the-head based zero-knowledge proof that demonstrates the existence
of correctly computed ob, where ob = (K ′ + Ib)rb for some randomness rb ∈ Fp,
such that Lt

0(ob) = pkIb + Lt
0(rb) for all b ∈ [B]. Note that {Ib}b∈[B] are a

random fraction of I that is randomly chosen by the verifier once the prover
commits toK ′ and {rb}b∈[B]. The completeness holds owing to the multiplicative
homomorphism of the PRFs: Lt

0(a · b) = Lt
0(a)+Lt

0(b), and the soundness of the
key identification protocol follows the soundness of the underlying MPC-in-the-
head. The corresponding signature scheme is obtained by applying Fiat-Shamir
transformation to the identification scheme.

Our Approach We now outline our approaches for constructing efficient (link-
able) ring signatures based on the aforementioned building blocks. Our main ob-
servation is that the key identification scheme based on Legendre/power-residue
Pseudo-Random Functions (PRFs) in LegRoast [8] can be modularized. Namely,
the scheme comprises two segments:

1. A three-move protocol that is reminiscent to the Type-T∗ canonical identi-
fication scheme.

2. An MPC-in-the-head-based zero-knowledge proof demonstrating the correct
computation of the response generated by the three-move protocol.

In essence, by employing the DualRing compiler, we can transform the Leg-
endre, power-residue PRF-based Type-T∗ canonical identification scheme into a
DualRing-type ring signature. Leveraging the fact that DualRing generates a sin-
gle response, we only need to validate it using a single MPC-in-the-head-based
zero-knowledge proof. Since the size of the underlying MPC-in-the-head con-
tributes to the most of the signature size, this compilation process will lead to a
slight increase in communication complexity compared to the original LegRoast
signature.

However, the compiled ring signature loses its anonymity because the verifier
of the resulting ring signature must use the real signer’s challenge from the
Type-T∗ canonical identification scheme to validate the MPC-in-the-head-based
zero-knowledge proof. To tackle this issue, we propose a novel solution that
utilizes the well-known cut-and-choose technique [28] to securely conceal the
real signer’s challenges in the zero-knowledge proof.

At a high-level, we have the real signer splits all challenges generated from
the Type-T∗ canonical identification into secret shares. These shares are then
utilized by the signer to construct the MPC-in-the-head proof. Consequently,
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rather than employing the challenge itself, the verifier can use the shares to
authenticate the proof, thereby ensuring the anonymity of the signer.

However, the signer must additionally convince the verifier that the shares of
challenges are generated honestly. This can be achieved by allowing the signer
to generate more challenge shares than required. Subsequently, the signer ac-
cumulates and commits to the seeded permutation of shares using some vector
commitment scheme (e.g., Merkle tree). Upon receiving the commitments of
these shares, the verifier requests the signer to disclose a random subset of these
shares along with its seed for permutation. Given that the challenges are public
values, the verifier can readily verify whether the shares are computed honestly.
The remaining unopened shares can then be used in the MPC-in-the-head pro-
tocol.
Post-Quantum Linkable Ring Signature. The underlying idea of linkable
ring signature schemes is to allow the signer to compute a linking tag (denoted
as tag) using both the event ID and the secret key. A crucial requirement is to
ensure that the tag is computed using the same key as employed in the signa-
ture. Compiling any MPC-in-the-head-based ring signatures into linkable ring
signatures is straightforward, as MPC-in-the-head serves as a generic method
for proving arbitrary circuits. In other words, let R(w, x1, . . . , xℓ) be the NP
relation that is proven by the MPC-in-the-head in ring signature schemes, and
R(w′, tag) be the NP relation with secret input w′ and public input tag. Then,
an MPC-in-the-head based linkable ring signature scheme proves the following
relation:

(R(w, x1, . . . , xℓ) = 1) ∧ (R(w′, tag) = 1) ∧ (w = w′) (1)

Although the construction adds a constant overhead to the original ring signature
scheme, its straightforward application can result in a circuit size that is at least
twice as large, leading to significant communication overhead. We demonstrate
that by reusing the witness shares and combining the responses with a random
linear combination, the linkable ring signature can be constructed with only a
small increase (4 - 12 KB) in the signature size.

1.3 Related Works

There are two commonly used approaches for building ring signature schemes.5

Accumulator-based Ring Signature. The approach, exemplified by the work
in [17], typically combines cryptographic accumulators with one-way domains
and zero-knowledge proofs. The main advantage of this approach is the ability
to achieve sublinear signature sizes relative to the size of the ring. However,
many existing accumulators require a trusted setup, which is often undesirable.

5 We have selected these two paradigms because they are commonly employed in the
development of symmetric-key primitives based post-quantum ring signatures, which
is relevant to this work. For a more comprehensive survey of ring signatures, we refer
the reader to [12] and [9].

6



On the other hand, accumulators with transparent setups, such as Merkle tree-
based accumulators, can result in considerably large signatures, despite their
good asymptotic performance.

Σ-Protocol based Ring Signature. The approach, represented by [1], allows
the signer to generate n− 1 “decoy” signatures sequentially and closes the ring
by creating a “real” signature using the secret key. Generally, this paradigm does
not necessitate a trusted setup and can be more efficient than accumulator-based
ring signatures for small-size rings. However, the signature size is linearly depen-
dent on the ring size, making the scheme impractical when the ring size is large.
Recent advancements have addressed the limitation. Notably, “Stacking Sigmas”
[23] achieved an logarithmic signature size in this paradigm by utilizing par-
tially binding vector commitments. Another work, DualRing [43], enhanced the
paradigm by leveraging the special properties of many well-known Σ-protocols
(e.g., Schnorr’s identification and GQ identification [25]), which are called Type-
T∗ canonical identification schemes. Consequently, the signature contains ℓ chal-
lenges and a single response, as opposed to ℓ responses and a single challenge
in the original scheme [1], where ℓ denotes the size of the ring. Such improve-
ment is profound since in many Σ-protocols (especially post-quantum ones), the
response is much larger than the challenges.

Due to the absence of algebraic structures in symmetric-key primitives, [16,
28] followed the first design approach, which leverages accumulators with one-
way domain to construct ring signature schemes. The high-level idea is to enable
the signer to prove to the verifier its knowledge of a pre-image of an accumulated
value in zero-knowledge. As such, their work heavily relies on accumulators (e.g.,
Merkle tree) and zero-knowledge proofs for generic circuits. Concretely, given a
set of ℓ public keys PK = pk1, . . . , pkℓ, the signer computes the accumulated
value acc by arranging the public keys as the leaves of a Merkle tree. Notably, for
every pkj ∈ PK, there exists a unique membership proof authj . The signer then
utilizes an MPC-in-the-head based zero-knowledge proof to demonstrate that
for some π ∈ [ℓ], it has the knowledge of the secret key skπ corresponding to a
public key pkπ, and that authπ is a valid membership proof with respect to acc.
Anonymity is ensured due to the zero-knowledge property of the underlying proof
system, while the unforgeability is guaranteed by the (knowledge) soundness. It
is worth noting that the construction introduced in [16] assumes black-box access
to the zero-knowledge proof, allowing one to improve the protocol by applying
a more efficient MPC-in-the-head proof [28]. A similar construction can also be
found in [10], which presents ID-based ring signature schemes.

While the previously mentioned schemes exhibit logarithmic communication
complexity, their concrete performance falls below satisfactory standards. The
situation arises since verifying a Merkle membership proof in the MPC-in-the-
head framework entails evaluating hash functions in the circuit, which is ex-
pensive. Goel et al. [22] addressed the problem by moving Merkle membership
proof verification outside of the MPC circuit using the cut-and-choose technique,
resulting in a significant decrease in signature sizes.
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Scafuro and Zhang[38] introduced a one-time (the security such as unforge-
ability, anonymity, and non-frameability is guaranteed only if the signer uses the
secret key at most once) traceable ring signature scheme by leveraging Naor’s
bit commitment scheme and its trapdoor variant [36]. The underlying idea of
this scheme is that knowing the trapdoor of the commitment scheme enables
the signer to equivocate the commitment to any given string. Specifically, the
signer, denoted Sπ, selects a set of ℓ − 1 random strings and assigns the value
of xπ to some garbage value. Then, the signer generates n − 1 binding com-
mitments to (xj)j∈[n]/{π} and an equivocal commitment to xπ. Subsequently,
the signer proceeds to evaluate the random oracle on input of the message,
the ring, and the commitments (c1, . . . , cℓ), yielding a challenge z. In order for
the signature to be accepted, the signer must show that the bit-wise XOR of
{x1, . . . , xn} is equal to z. In pursuit of this, the signer equivocates xπ to x′

π

such that z = x1⊕ . . .⊕x′
π ⊕ . . .⊕xn and shows to the verifier that xj is a valid

opening of cj for all j ∈ [ℓ].

2 Preliminaries

Notations. We denote by λ the security parameter. We say that a function
negl : N→ N is negligible if, for every positive polynomial p(·) and all sufficiently
large integer z, it holds that negl(z) < 1/p(z). We denote by [d] the set of

integers {1, . . . , d}. For a set A, let a
$← A denote that a is uniformly chosen at

random from A. The notation [·] stands for additive secret-shared values with
full threshold, and [·]i for the i-th share held by MPC-in-the-head party Pi.
Our signature schemes make use of Merkle tree based accumulators, which are
formally presented in Appendix A.

2.1 Legendre PRF and Power Residue PRF

The Legendre symbol is a multiplicative function that maps an element a ∈ Fp

to the value of 0, 1, or −1, depending on whether a is a quadratic residue modulo
p.

(
a

p

)
=


1, if a = b2 (mod p) for some b ∈ F∗

p

0, if a = 0 (mod p)

−1, otherwise

The (keyed) Legendre PRF is then defined by mapping the Legendre symbol
with a secret shift K to {0, 1} as follows:

LK(a) =

⌊
1

2

(
1−

(
K + a

p

))⌋
∈ {0, 1}.
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It is easy to see that the Legendre PRF LK defined above has multiplicative
homomorphism. Namely, for non-zero a, b ∈ F∗

p,

L0(a · b) = L0(a) + L0(b).

To improve PRF throughput, Damg̊ard proposed to use higher power residue
symbols instead of quadratic residue symbols [15]. Specifically, for an integer
t and a prime p such that t|(p − 1), compute the t-th power residue symbol
a 7→ a(p−1)/t mod p, yielding a log2(t)-bits output per PRF call, in contrast to
the single-bit output obtained by the Legendre PRF. The definition of the t-th
power residue PRF is shown as follows.

Definition 1 (t-th Power Residue PRF). Let p be an odd prime and t be
an integer such that p ≡ 1 mod t. Let g ∈ F∗

p be the generator. We define the
t-th power residue symbol Lt

K(·) : Fp → Zt with the hidden shift K as

Lt
K(a) =

{
i, if (a+K) ̸≡ 0 mod p and (a+K)/gi = zt mod p

0, if (a+K) ≡ 0 mod p

It is worth noting that when t = 2, the power residue PRF is equivalent to the
Legendre PRF.

To simplify the notation, we extend the definitions of the Legendre PRF and
power residue PRF to be ‘list-wise’. Namely, given a list I = {I1, . . . , IL} ∈ FL

p ,

denote the PRF evaluations as Lt
K(I) = (Lt

K(I1), . . . ,Lt
K(IL)) ∈ ZL

t . For the
sake of completeness, we incorporate the (relaxed) NP-relations for the Legendre
PRF and power residue PRF as defined in [8] into our work.

Definition 2 (Legendre / t-th Power Residue PRF Relation [8]). For
an odd prime p, a positive integer t with t|(p − 1), and a list I = (I1, . . . , IL),
where Iℓ ∈ Fp for all ℓ ∈ [L], we define the Legendre / t-th power residue PRF
relation RLt as

RLt = {(Lt
K(I),K) ∈ ZL

t × Fp|K ∈ Fp}.

In order to facilitate the development of efficient signature schemes that prove
knowledge of the secret key in the context of the Legendre PRF / k-th power
residue PRF, Beullens et al. [8] introduced a relaxed version (Definition 3) of
the original relation.

Definition 3 (β-approximate PRF relation ([8])). Given β ∈ [0, 1], an odd
prime p, a positive integer t|(p−1), and a list I of L elements uniformly chosen
from Fp at random, we define the β-approximate PRF relation RβLt as

RβL = {(s,K) ∈ ZL
t × Fp|∃a ∈ Zt : dH(s+ (a, . . . , a),Lt

K(I)) ≤ βL}

where dH(·, ·) denotes the Hamming distance.
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According to [8, Theorem 1], the β-approximate Legendre PRF relation is as
hard as Legendre PRF relation with the probability at least 1−2p·Pr[B(L, 1/2+
1/
√
p+2/p) ≥ (1−β)L] over the choice of I, where B(n, q) denotes the binomial

distribution with n samples each with success probability q. Simply put, with the
proper choice of the parameter L (sufficiently large) and β (sufficiently small) [8],
if there exists a PPT algorithm that is able to find the β-approximate witness
K, then K is also a witness of the exact Legendre PRF relation.

Security of Legendre/Power Residue PRFs. It is known that if the adver-
sary is allowed to query the PRF in the quantum mechanism superposition, the
hidden shift can be determined in polynomial-time, using a single query [14, 42].
However, if the oracle can only be queried classically, there exists a memory-
less collision search algorithm with O(

√
p log p) Legendre symbol evaluations

when
√
p log p queries are available [29]. Recent works concurrently improved

the attack, either by exploiting the multiplicative property of the Legendre func-
tion [6, 27] or by allowing input-independent pre-computations [34]. Frixons and
Schrottenloher [21] studied the quantum algorithms for the hidden shift problem
with respect to the Legendre PRF. In particular, their attack can reach a time

complexity 2O(
√

log2 p) 3√p, while using 3√p classical queries and a sub-exponential
number of qubits memory.

Above attacks cannot be applied to key recovery of signature schemes based
on the Legendre PRF (and power residue PRF) such as LegRoast [8]. The main
reason is that the adversary can only obtain the public key, which is a small
number of uncontrolled random outputs of the PRF. Thus, it is infeasible for
the adversary to query the PRF at the superposition, making the attacks pre-
sented in [14, 42] inapplicable. In addition, attacks showed in [21, 34] require a
massive number of classical queries (O( 3√p)), which is significantly larger than
the number of revealed public key symbols. Thus, we may only consider attacks
that have a limited number of queries.

When L is less than the optimal number of queries, the memoryless collision
search presented in [29] results in the attack with time complexity O(p log p

L ),

while the table-based collision search showed in [6, 27] has run time O(p log2 p
L2 )

and O(p log p log log p
L2 ), respectively. These complexities are exponential in relation

to the security parameter, especially when L is significantly smaller than p. It
is crucial to emphasise that the enhancements proposed in [6, 27] are reliant on
the sequential characteristics of Legendre PRF queries. Thus, it remains an open
problem whether these attacks can be extended to random point queries.

For power residue symbols, the possibly best known attack is due to [6], in
which the number of queries is bounded by L ≤ 4√p, and the time complexity is

O( p log2 p
L2 log2 t

) power residue symbol evaluations with O(L2 log t) memory, especially

for small t. A better attack when t is a large value with run time O( p log2 p
Lt log2 t

) and

O(L log t) memory.
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2.2 Ring Signature and Linkable Ring Signature

Ring Signature. We begin the section by introducing the syntax of a ring
signature scheme. Let PK = (pk1, pk2, pk3, . . . ) denote the set of all public keys
added to the system and a ring of size ℓ is denoted as PK ⊆ PK such that
|PK|= ℓ.

Definition 4 (Syntax of Ring Signature). A ring signature scheme is a tuple
of PPT algorithms (Setup, KGen, Sign, Verify) with message space M that are
described as follows:

– pp← Setup(1λ): On input a security parameter λ in unary, outputs a set of
public parameters denoted as pp.

– (sk, pk)← KGen(pp): On input the public parameters generated from Setup,
outputs a public key pk and the corresponding secret key sk. From now on,
public parameters are implicit inputs to the following algorithms.

– σ ← Sign(PK,m, skπ): On input a list PK ⊆ PK of ℓ public keys, a message
m ∈ M, and a secret key skπ corresponds to pkπ where pkπ ∈ PK, outputs
a signature σ.

– 0/1← Verify(PK,m, σ): On input a list PK of ℓ public keys, a message m
and a ring signature σ, outputs a bit 0/1 indicating the validity of σ on the
message m with respect to the ring PK.

Definition 5 (Perfect Completeness). (Setup, KGen, Sign, Verify) are (per-
fectly) complete if for adversary A, it holds:

Pr

1 = Verify(PK,m, σ)

∣∣∣∣∣∣∣∣∣∣
pp← Setup(1λ)
{ski, pki}i∈[ℓ] ← KGen(pp)
(PK,m)← A(pp, {ski, pki}i∈[ℓ])
σ ← Sign(PK,m, skπ) with
pkπ ∈ PK

 = 1

Before defining unforgeability and anonymity, we introduce the following or-
acles, which together model the ability of the adversaries in breaking the security
of the schemes.

• pki ← JO(⊥): The joining oracle, on request, adds a new user to the system.
It returns the public key pki ∈ PK of the new user.

• ski ← CO(pki): The corruption oracle. On input a public key pki ∈ PK that
is a query output of JO, returns the corresponding private key ski.

• σ ← SO(PK,m, π): On input a list of ℓ public keys PK, a message m ∈M,
and the signer index π, returns a valid signature σ.

Our security proofs are in the random oracle model. Hence, random oracles
are also simulated. We now define the unforgeability game as follows. Unforge-
ability. Unforgeability is defined as the following game between the extractor B
and the adversary A in which A is given access to oracles JO, CO,SO and the
random oracle.

11



1. B generates and gives A the system parameters pp.
2. A may query the oracles according to any adaptive strategy.
3. A gives B a set PK of ℓ public keys, a message m ∈M, and a signature σ.

A wins the game if

1. Verify(PK,m, σ) = 1;
2. all of the public keys in PK are query outputs of JO;
3. no public keys in PK have been input to CO; and
4. σ is not a query output of SO.

We denote by

Advunf
A (λ) = Pr[A wins the unforgeability game]

Definition 6 (Unforgeability w.r.t. Insider Corruption). For any poly-
nomial time adversary A, a ring signature satisfies unforgeability w.r.t. inside
corruption if Advunf

A (λ) is negligible.

Anonymity. Anonymity is defined as the following game between the challenger
B and the adversary A, in which A is given access to oracles JO and the random
oracle along with all randomnesses to generate secret keys (A can generate all
signatures with the secret keys, hence it does not need the oracle access to SO).

1. B generates and gives (A) the system parameters pp.
2. A may query JO and random oracle according to any adaptive strategy

(note that A knows all secret keys).
3. A gives B a set PK of ℓ public keys (can contain adversarally generated

public keys), a message m ∈ M, two indices i0, i1 ∈ [ℓ]. B randomly selects
a bit b ∈ {0, 1} and computes σ ← Sign(PK,m, skib) and returns σ to A.

4. A outputs a guess b′ ∈ {0, 1}.

We denote by

Advanon
A (λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
Definition 7 (Anonymity against Full Key Exposure). For any polyno-
mial time adversary A, a ring signature is anonymous against full key exposure
if Advanon

A (λ) is negligible.

A linkable ring signature scheme consists of an additional Link algorithm,
which determines whether two signatures are generated by the same signer with
respect to the same event. In addition to the verification completeness defined in
the ring signature, a linkable ring signature scheme requires linking completeness:
if two signatures are signed for the same event according to specification, then
they are linked if and only if the two signatures share a common signer. On
top of unforgeability and anonymity, a linkable ring signature should also satisfy
linkability and non-slanderability. Namely, linkability requires that it is infeasible

12



for a signer to generate two signatures correspond to the same event ID such that
they are determined to be unlinked. Non-slanderability ensures that no signer
can generate a signature which is determined to be linked with another signature
that is not generated by the signer. In other words, it prevents adversaries from
framing honest users.

Linkable Ring Signature. A linkable ring signature scheme adds a Link al-
gorithm to the syntax definition of ring signature. Furthermore, the Sign and
Verify algorithms takes an additional input of an event ID eID. We show the
syntax definition of a linkable ring signature as follows.

Definition 8 (Syntax Definition of Linkable Ring Signature). A linkable
ring signature scheme, is a tuple of five algorithms, include (Setup, KGen, Sign, Verify, Link).

• pp← Setup: Same as Setup in Definition 4.
• (sk, pk)← KGen: Same as KGen in Definition 4.
• σ ← Sign(PK,m, skπ, eID): On input a set of ℓ public keys, a message
m ∈M, a secret key skπ, and an event ID eID, produces a signature σ.
• 0/1 ← Verify(PK,m, σ, eID): On input a set of ℓ public keys, a message
m ∈ M, a signature σ and an event ID eID, outputs 1 if the signature is
valid. Otherwise, outputs 0.
• 0/1← Link((PK1,m1, σ1), (PK2,m2, σ2), eID): On input two sets of ℓ1 and
ℓ2 public keys PK1,PK2, two messages m1,m2 ∈ M, two valid signatures
(σ1, σ2), and an event ID eID, outputs 1 if unlinked. Otherwise, 0.

Linkability Linkability is defined in the following game between the challenger
B and an adversary A in which A is given JO, CO,SO and the random oracle:

1. B generates and gives A the system parameters pp.
2. A may query the oracles according to any adaptive strategy.
3. A gives B an event ID eID, two sets of ℓ1, ℓ2 public keys PK1 and PK2,

messages m1,m2 and signatures σ1, σ2.

A wins the game if

1. all public keys in PK1 ∪ PK2 are query outputs of JO.
2. Verify(PKi,mi, σi, eID) = 1 for i = 1, 2 such that σi are not outputs of
SO;

3. CO has been queried less than two times (i.e., A can have at most one secret
key); and

4. Link(σ1, σ2) = 1 (i.e., two signatures are unlinked).

We denote by

Advlink
A (λ) = Pr[A wins the game]

13



Definition 9 (Linkability). For any polynomial time adversary A, a linkable
ring signature scheme satisfies linkability if Advlink

A (λ) is negligible.

Non-Slanderability Non-slanderability is defined in the following game be-
tween a challenger B and the adversary A in which A is given access to oracles
JO, CO,SO and the random oracle.

1. B generates and gives A the system parameters pp.
2. A may query the oracles according to any adaptive strategy.
3. A gives B an event ID eID, a message m, a set of ℓ public keys PK, where

the public key of an insider pkπ ∈ PK has not been queried to CO or has
not been included as the insider public key of any query to SO. B uses
the private key skπ corresponding to pkπ to run Sign(PK,m, skπ, eID) and
produces a signature σ′ to A.

4. A queries oracles with arbitrary interleaving. Except pkπ cannot be queried
to CO, or included as the insider public key of any query to SO. In particular,
A is allowed to corrupt any public key except for pkπ.

5. A delivers a set of ℓ∗ public keys PK∗, a messagem∗, and a signature σ∗ ̸= σ′.

A wins the game if

1. Verify(PK∗,m∗, σ∗, eID) = 1;
2. σ∗ is not an output of SO;
3. all of the public keys in PK∗,PK are query outputs of JO;
4. pkπ has not been queried ot CO; and
5. Link(σ∗, σ′) = 0 (i.e., two signatures are linked).

We denote by

AdvNS
A (λ) = Pr[A wins the game].

Definition 10 (Non-Slanderability). For any polynomial time adversary A,
a linkable ring signature satisfied non-slanderability if AdvNS

A (λ) is negligible.

3 Post-Quantum (Linkable) Ring Signature

In this section, we describe our construction of DualRing-PRF, a post-quantum
ring signature from the Legendre/power residue PRFs (see Section 2.1).

3.1 DualRing-PRF

We extends the DualRing framework [43] to incorporate the Legendre and Power
Residue PRFs based post-quantum signature scheme called LegRoast [8]. The
setup of our protocol is shown in Algorithm 1. Algorithm 2 shows the steps for
key generation. We split the sign algorithm to three parts, as shown in Algorithm
3, 4, 5. The verification algorithm is shown in Algorithm 6 and 7. To improve
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overall readability in signature generation and verification algorithms, we dis-
tinguish the steps related to the application of the Dual-Ring compiler [43] by
highlighting them in blue. Steps involving the application of cut-and-choose are
highlighted in red, while steps from the original LegRoast protocol are presented
in the default text color.
Protocol Overview. Let us denote ℓ as the size of the ring, τ as the number
of parallel executions, M as the number of cut-and-choose instances, and N
as the number of virtual parties. For simplicity, we provide an overview of the
interactive version of our protocol, which can be rendered non-interactive by
applying the Fiat-Shamir heuristic [20].

In the first phase, the signer Sπ for π ∈ [ℓ] begins by sampling ℓ− 1 random
seeds (cj)j∈[ℓ]/{π} for the non-signers, which are used to expand challenge indices

(I
(b)
j )b∈[B]. For each parallel execution, the signer secretly shares the witness K,

randomness (r(b))b∈[B], multiplication triples a, b, c such that c = a × b, and
masks (maskk)k∈[M ] to N virtual parties. All parties record the shares in their
view and commit to them. Next, the signer constructs the commitment ring by
computing residuosity symbols T (b) = Lt

0(r
(b)) −

∑
j∈[ℓ]/{π} pkI(b)

j
. The signer

sends virtual parties’ commitments and residuosity symbols to the verifier. The
verifier replies with a short challenge seed h1 and the signer closes the challenge
ring by computing cπ = h1[:16] ⊕

⊕
j∈[ℓ]/π cj .

6 The signer then expands cπ to

obtain the challenge indices (I
(π)
b )b∈[B].

Subsequently, the signer computes the share adjustments, denoted as ∆I
(b)
k,j ,

for all ring members (I
(b)
j )b∈[B] and masks (maskk)k∈[M ]. In the context of

the addition secret sharing, the share adjustments are computed as ∆I
(b)
k,j =

I
(b)
j −

∑N
i=1[maskk]i. The signer commits to share adjustments and accumulates

permuted commitments using Merkle-tree. The accumulator (a.k.a. Merkle root)
is then sent to the verifier. The verifier randomly selects M−1 masks to open for
each parallel computation, while the signer proceeds to compute the responses

ob = (K + I
(b)
π )rb for all b ∈ [B]. They engage in the MPC-in-the-head protocol

for sacrificing based verification [3] of E = 0, where

E = K ·
B∑

b=1

λ(b)r(b) +

B∑
b=1

λ(b)(o(b) − I(b)π r(b)). (2)

Once the prover sends the commitment of N views generated during the execu-
tion of MPC-in-the-head, the verifier randomly selects N − 1 parties to corrupt.
The prover sends all shares used by the corrupted parties, M − 1 opened masks

maskk, along with the offset (∆I
(b)

k̄,j
)b∈[B] (where k̄ ∈ [M ] is the index of the un-

opened mask) and the accumulator proof, responses (ob)b∈[B], and all ℓ challenge
seeds cj to the verifier, who then checks

1. if commitments are consistent with the opened shares;

6 Slash the first 16 bytes of h1to XOR with {cj}j∈[ℓ]/π.
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2. if opened views are consistent with each other by executing the MPC-in-the-
head honestly with the opened shares;

3. if recomputed share adjustments from I
(b)
j and maskk are consistent with the

accumulator for M − 1 revealed masks;

4. if the accumulator proof of ∆I
(b)

k̄,j
is valid.

5. if T (b) = Lt
0(o

(b))−
∑

j∈[ℓ]/{π} pkI(b)
j

.

The formal security proofs including unforgeability and anonymity of DualRing-
PRF are shown in Appendix B.

Algorithm 1: DualRing-PRF Setup

1 pp← Setup(1λ)
2 On input a security parameter λ, computes the following public

parameters:
3 - A large odd prime p,
4 - An integer t ≥ 2 such that t|(p− 1),
5 - An integer L (the length of the public key),
6 - A list I = (I1, . . . , IL) where Il are randomly chosen from Fp for all

l ∈ [L],
7 - An integer B ≤ L (the number of residue symbols that will be

checked at random),
8 - An integer N (the number of parties),
9 - An integer τ (the number of parallel executions).

10 - An integer M (the number of total cut-and-choose instances)

11 - Hash functions: Ha : {0, 1}∗ → {0, 1}2λ for a ∈ {sd, mask,∆, 1, 2, 3, 4}
12 - Parameter accpp generated by executing Acc.Gen(1λ).
13 - A PRG function Expand.
14 Output pp = (p, t, L, I, B,N, τ,M,Hsd,Hmask,H∆,H1,

H2,H3,H4, accpp, Expand).

Algorithm 2: DualRing-PRF Key Generation

1 (sk, pk)← KGen(pp)
2 On input the public parameters pp, computes secret key and public key as

follows:
3 - Randomly select K from F∗

p and set sk = K,
4 - Compute pk = Lt

K(I).
5 Output (sk, pk).
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Algorithm 3: DualRing-PRF Sign - Part I

1 (σ)← Sign(PK,m, skπ)
2 Phase 1. Commit to mask, witness, randomness and triples

3 Pick a random salt salt
$← {0, 1}2λ.

4 Pick random challenges for non-signers cj
$← {0, 1}λ for j ∈ [ℓ]/{π}.

5 for e ∈ [τ ] do

6 Sample mask root seed sd
(MASK)
e

$← {0, 1}λ, and expand sd
(MASK)
e

to obtain (sd
(MASK)
e,1 , . . . , sd

(MASK)
e,M ) using a tree-based PRG.

7 for k ∈ [M ] do

8 Compute mask shares ([maske,k]i)i∈[N ] from sd
(MASK)
e,k with

tree-based PRG.

9 Sample MPC root seed sd
(MPC)
e

$← {0, 1}λ and compute

(sd
(MPC)
e,i , . . . , sd

(MPC)
e,N ) from sd

(MPC)
e with tree-based PRG.

10 for i ∈ [N ] do
11 Sample MPC shares by expanding the seeds

([Ke]i, [r
(1)
e ]i, . . . , [r

(B)
e ]i, [ae]i, [be]i, [ce]i)← Expand(sd

(MPC)
e,i ).

12 Commit to MPC seeds C
(MPC)
e,i ← Hsd(salt, e, i, sd

(MPC)
e,i ).

13 for k ∈ [M ] do
14 Commit to mask shares

C
(MASK)
e,k,i ← Hmask(salt, e, k, i, [maske,k]i)

15 Compute key adjustment ∆Ke ← K −
∑N

i=1[Ke]i and set
[Ke]1 ← [Ke]1 +∆Ke.

16 Compute triple adjustment

∆ce = (
∑N

i=1[ae]i) · (
∑N

i=1[be]i)− (
∑N

i=1[ce]i) and set
[ce]1 = [ce]1 +∆ce.

17 for j ∈ [ℓ]/{π} do
18 Expand challenge cj , (I

(1)
e,j , . . . , I

(B)
e,j )← Expand(cj).

19 for b ∈ [B] do

20 Compute residuosity symbols T
(b)
e = Lt

0(r
(b)
e )

−
∑

j∈[ℓ]/{π} pkI(b)e,j

, where r
(b)
e =

∑N
i=1[r

(b)
e ]i.

21 σ1 ← (((C
(MASK)
e,k,i )k∈[M ], C

(MPC)
e,i )i∈[N ], (T

(b)
e )b∈[B],∆Ke,∆ce)e∈[τ ].
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Algorithm 4: DualRing-PRF Sign - Part II

1 Phase 2. Compute mutual challenge and challenge offsets
2 Compute h1 ← H1(salt,m,PK, σ1).
3 Compute real signer’s challenge cπ = h1[1, 128]⊕

⊕
j∈[ℓ]/{π} cj . (h1[1, 128]

denotes the use of the first 128 bits of h1.)

4 Expand cπ, (I
(1)
e,π, . . . , I

(B)
e,π )← Expand(cπ).

5 for e ∈ [τ ] do
6 for k ∈ [M ] do

7 Compute maske,k =
∑N

i=1[maske,k]i.
8 for j ∈ [ℓ] do
9 for b ∈ [B] do

10 Compute offset ∆I
(b)
e,k,j ← I

(b)
e,j − maske,k.

11 Commit to offsets C
(∆)
e,k,j = H∆(salt, e, k, (∆I

(1)
e,k,j , . . . , I

(B)
e,k,j)).

12 Randomly samples a permutation ϕe,k.
13 Accumulate the permuted commitments using Merkle tree:

acce,k ← Acc.Eval(pp, C
(∆)

e,k,ϕe,k(1)
, . . . , C

(∆)

e,k,ϕe,k(ℓ)
)

14 Combine M accumulators using a hash function
acce = Hacc(salt, e, (acce,1, . . . , acce,M )).

15 Set σ2 ← (acce)e∈[τ ].

16 Phase 3. Compute opened executions for cut-and-choose
17 Compute h2 ← H2(h1, σ2).
18 Expand h2: (k̄e)e∈[τ ] ← Expand(h2) such that k̄e ∈ [M ].

19 Phase 4. Compute output values
20 for e ∈ [τ ] do
21 for b ∈ [B] do

22 o
(b)
e = (K + I

(b)
e,π)r

(b)
e .

23 Set σ3 ← (o
(1)
e , . . . , o

(B)
e )e∈[τ ].

24 Phase 5. Compute challenges for sacrificing based verification
25 Compute h3 ← H3(h2, σ3).

26 Expand hash (ϵe, λ
(1)
e , . . . , λ

(B)
e )e∈[τ ] ← Expand(h3), where ϵe, λ

(b)
e ∈ Zp.
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Algorithm 5: DualRing-PRF Sign - Part III

1 Phase 6. Commit to views of sacrificing protocol
2 for e ∈ [τ ] do
3 for i ∈ [N ] do
4 Compute shares [αe]i ← [ae]i + ϵe[Ke]i and

[βe]i ← [be]i +
∑B

b=1 λ
(b)
e [re]

(b)
i .

5 Compute αe ←
∑N

i=1[αe]i and βe ←
∑N

i=1[βe]i.
6 for i ∈ [N ] do
7 for b ∈ [B] do
8 if i = 1 then

9 Define the challenge share [I
(b)
e ]i ← [maske,k̄e

]i +∆I
(b)

e,k̄e,π
.

10 else

11 Define the challenge share [I
(b)
e ]i ← [maske,k̄e

]i.

12 Compute [ze]i ←
∑B

b=1−λ
(b)
e [r

(b)
e ]iI

(b)

e,k̄e,pi
and

[ze]
′
i ←

∑B
b=1−λ

(b)
e [r

(b)
e ]i[I

(b)
e ]i.

13 Compute ze =
∑N

i=1[ze]i and ∆ze = ze −
∑N

i=1[ze]
′
i.

14 if i = 1 then

15 [ze]
′
i = [ze]

′
i +∆ze +

∑B
b=1 λ

(b)
e o

(b)
e .

16 Compute check share values
[γe]i ← αe[be]i + βe[ae]i − [ce]i + ϵe[ze]

′
i.

17 Set σ4 ← (αe, βe, ([αe]i, [βe]i, [γe]i)i∈[N ])e∈[τ ].

18 Phase 7. Challenge on sacrificing protocol
19 Compute challenge h4 ← H4(h3, σ4).
20 Expand challenge (̄ie)e∈[τ ] ← Expand(h4), where īe ∈ [N ].

21 Phase 8. Opening executions for cut-and-choose and MPC views
22 for e ∈ τ do

23 Define seeds
(MPC)
e be the log2 N seeds in tree to compute sd

(MPC)
e,i for

i ̸= īe.

24 Define seeds
(MASK)
e be the log2 M seeds in tree to compute sd

(MASK)
e,k

for k ̸= k̄e.
25 Define maskse,k̄e

be the log2 N seeds in tree to compute [maske,k̄e
]i for

i ̸= īe.
26 Define permse be the log2 M seeds to compute permutation initiation

vector ϕe,k for k ̸= k̄e.
27 Define authe,k̄e

be the Merkle tree proof computed from

Acc.Proof(pp, acce,k̄e
, C

(∆)

e,k̄e,ϕe,k̄e
(π)

).

28 Define ∆I
(b)

e,k̄e
← ∆I

(b)

e,k̄e,π
for all b ∈ [B].

29 Set signature σ =

(salt, h2, h4,(permse, seeds
(MASK)
e , maskse,k̄e

, authe,k̄e
, seeds

(MPC)
e ,∆Ke,

∆ce,∆ze, (o
(b)
e ,∆I

(b)

e,k̄e
)b∈[B], αe, βe, C

(SD)

e,̄ie
, C

(MASK)

e,k̄e ,̄ie
)e∈[τ ], (cj)j∈[ℓ]).
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Algorithm 6: DualRing-PRF Verify - Part I

1 (0/1)← Verify(PK,m, σ)
2 σ =

(salt, h2, h4,(permse, seeds
(MASK)
e , maskse,k̄e

, authe,k̄e
, seeds

(MPC)
e ,∆Ke,

∆ce,∆ze, (o
(b)
e ,∆I

(b)

e,k̄e
)b∈[B], αe, βe, C

(SD)

e,̄ie
, C

(MASK)

e,k̄e ,̄ie
)e∈[τ ], (hj)j∈[ℓ]).

3 for j ∈ [ℓ] do

4 (I
(1)
e,j , . . . , I

(B)
e,j )e∈[M ] ← Expand(cj).

5 Expand h2, h3, h4: (k̄e)e∈[τ ] ← Expand(h2);

(ϵe, λ
(1)
e , . . . , λ

(B)
e )e∈τ ← Expand(h3); (̄ie)e∈τ ← Expand(h4), where

h3 = H3(h2, (o
(1)
e , . . . , o

(B)
e )e∈[τ ]).

6 for e ∈ [τ ] do

7 Use seedse to compute sd
(MPC)
e,i and maskse,k̄e

to compute [maske,k̄e
]i

for i ̸= īe.
8 for i ∈ [N ]/{̄ie} do
9 Sample shares

([Ke]i, [r
(1)
e ]i, . . . , [r

(B)
e ]i, [ae]i, [be]i, [ce]i)← Expand(sd

(MPC)
e,i ).

10 Recompute the commitment C
(MPC)
e,i ← Hsd(salt, e, i, sd

(MPC)
e,i ).

and C
(MASK)

e,k̄e,i
← Hmask(salt, e, k̄e, i, [maske,k̄e

]i).

11 if i = 1 then
12 Adjust the share [Ke]i ← [Ke]i +∆Ke and [ce]i ← [ce]i +∆ce.

13 for b ∈ [B] do

14 Set [I
(b)
e ]i ← [maske,k̄e

]i.
15 if i = 1 then

16 Adjust the share [I
(b)
e ]i ← [maske,k̄e

]i +∆I
(b)

e,k̄e
.

17 Recompute shares [αe]i ← [ae]i + ϵe[Ke]i,

[βe]i ← [be]i +
∑B

b=1 λ
(b)
e [r

(b)
e ]i, and

[ze]i ←
∑B

b=1−λ
(b)
e [r

(b)
e ]i[I

(b)
e ]i.

18 if i = 1 then

19 [ze]i ← [ze]i +
∑B

b=1 λ
(b)
e o

(b)
e +∆ze.

20 Recompute check value shares
[γe]i ← αe[be]i + βe[ae]i − [ce]i + ϵe[ze]i.

21 Compute missing shares: [αe ]̄ie ← αe −
∑

i ̸=īe
[αe]i,

[βe ]̄ie ← βe −
∑

i̸=īe
[βe]i, and [γe ]̄ie ← αeβe −

∑
i ̸=īe

[γe]i

22 for b ∈ [B] do

23 T
(b)
e ← Lt

0(o
(b)
e )−

∑ℓ
j=1 pkI(b)e,j

.
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Algorithm 7: DualRing-PRF Verify - Part II

1 for e ∈ [τ ] do
2 Use permse to compute permutation initialisation vectors ϕe,k and

seeds
(MASK)
e to compute sd

(MASK)
e,k for k ̸= k̄e.

3 for k ∈ [M ]/{k̄e} do
4 Compute all mask shares ([maske,k]i)i∈[N ] using sd

(MASK)
e,k .

5 for i ∈ [N ] do

6 Commit to mask shares C
(MASK)
e,k,i ← Hmask(salt, e, k, i, [maske,k]i)

7 Compute maske,k =
∑N

i=1[maske,k]i).
8 for j ∈ [ℓ] do
9 for b ∈ [B] do

10 Compute ∆I
(b)
e,k,j = I

(b)
e,j − maske,k.

11 Compute C
(∆)
e,k,j = H∆(salt, e, k, (∆I

(1)
e,k,j , . . . ,∆I

(B)
e,k,j)).

12 Compute acce,k ← Acc.Eval(pp, C
(∆)

e,k,ϕe,k(1)
, . . . , C

(∆)

e,k,ϕe,k(ℓ)
)

13 Recompute C
(∆)

e,k̄e
← H∆(salt, e, k̄, (∆I

(1)

e,k̄e
, . . . ,∆I

(B)

e,k̄e
)).

14 Use C
(∆)

e,k̄e
as the leaf node and authe,k̄e

as the authentication path to

recompute acce,k̄e
.

15 Recompute acce = Hacc(salt, e, (acce,1, . . . , acce,M )).

16 Compute h1 =
⊕ℓ

j=1 cj , and check if

h1
?
= H1((salt,m,PK, ((C(MASK)

e,k,i )k∈[M ], C
(MPC)
e,i )i∈[N ], (T

(b)
e )b∈[B],

∆Ke,∆ce)e∈[τ ]).

17 Check if h2
?
= H2(h1, (acce)e∈[M ]).

18 Check if h4
?
= H4(h3, (αe, βe, (αe,i, βe,i, γe,i)i∈[N ])e∈[τ ]).

19 Output accept if and only if all checks pass.
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3.2 Linkable DualRing-PRF

We optimise the technique for DualRing-PRF to significantly reduce the com-
munication overhead in the linkable variant of DualRing-PRF (referred to as
DualRingL-PRF). Recall that our construction instantiates the NP relation with
Legendre/power residue PRFs, as introduced in Section 1.2.

Let eID denote the event ID and hID = H(eID) denote the digest of the
event ID. We compute the linking tag as follows:

1. We expand hID to obtain a unique set of L elements I′ = {I ′1, . . . , I ′L}.
2. The linking tag is computed as tag = Lt

K(I ′1), . . . ,Lt
K(I ′L), where K is the

user’s secret key.

Note that the length of the linking tag is the same as the length of a public key.
Our main idea is to let the signer compute a response o′b = (K + I ′b)r

′
b along

with the original ob = (K + I
(b)
π )rb using the same secret key K. Then, we

apply the MPC-in-the-head based zero-knowledge proof to show that both o′b
and ob are correctly computed for all b ∈ [B]. Naively, the approach results in a
communication overhead that is twice of the original ring signature scheme, since
the signer runs the zero-knowledge proof twice (one for proving ob and one for
o′b). We exploit the idea of random linear combination to optimise the signature
size for our linkable ring signature. That is, instead of proving two responses
separately, we prove the following equation using the MPC-in-the-head based
zero-knowledge proof:

0 =

B∑
b=1

(
λb(ob − (K + I(b)π )rb) + λ′

b(o
′
b − (K + I ′b)r

′
b)
)
.

Note that for fixed ob and o′b, if ob ̸= (K + I
(b)
π )rb, then E =

∑B
b=1(ob − (K +

I
(b)
π )rb) where E = 0 has error probability 1/p. Similarly, let E′ =

∑B
b=1(o

′
b −

(K + I ′b)rb), then E′ = 0 has probability 1/p if o′b ̸= (K + I ′b)r
′
b. For uniformly

chosen (λb, λ
′
b)b∈[B] that are independent with each other, the probability that

E + E′ = 0 is at most 1/p.
We construct a linkable DualRing-PRF (DualRingL-PRF) which can effec-

tively determine whether two signatures are generated by the same signer, with
respect to an event ID. The setup phase of DualRingL-PRF remains the same
as shown in Algorithm 1, except that we define an additional hash function
HID : {0, 1}∗ → {0, 1}λ, which on input an event ID, outputs a short digest.
The key generation remains unchanged (refer to Algorithm 2). The process of
Link algorithm is shown as follows:

On input two valid signatures σ1 and σ2 with respect to (PK1,m1) and
(PK2,m2), parse σ1 = (. . . , tag1) and σ2 = (. . . , tag2). The algorithm outputs
0 (linked) if tag1 = tag2. Otherwise, output 1 (unlinked).

We present the signing and verification of the linkable DualRing-PRF in
Algorithm 8 and 9, respectively. The formal security proofs including linkability
and non-slanderability of DualRingL-PRF are shown in Appendix C.
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Algorithm 8: Linkable DualRing-PRF Sign

1 (σ)← Sign(PK,m, skπ, eID)
2 Compute hID = HID(eID) and I′ = (I ′1, . . . , I

′
L)← Expand(hID), where

Il ∈ Fp for l ∈ [L].
3 Compute the linking tag tag = Lt

K(I′).
4 Proceed with line 4 - 11 as shown in Algorithm 3.
5 for e ∈ [τ ] AND i ∈ [N ] do
6 Replace line 12 in Algorithm 3 with

([Ke]i, [r
(1)
e ]i, . . . , [r

(B)
e ]i, [r

(1)′
e ]i, . . . , [r

(B)′
e ]i, [ae]i,

[be]i, [ce]i)← Expand(sd
(MPC)
e,i ).

7 Note that we require
∑N

i=1 r
(b)
e ̸=

∑N
i=1 r

(b)′
e .

8 Continue with line 13 - 21 as shown in Algorithm 3, and add an additional
step as follows:

9 for b ∈ [B] do

10 T
(b)′
e = Lt

0(r
(b)′
e ) where r

(b)′
e =

∑N
i=1[r

(b)′
e ]i.

11 Replace line 22

with:σ1 ← ((C
(MASK)
e,k,i )k∈[M ], C

(MPC)
e,i )i∈[N ], (T

(b)
e , T

(b)′
e )b∈[B],∆Ke,

∆ce)e∈[τ ].
12 Continue with line 1 - 3 in Algorithm 4 and add an additional step after

line 3 as follows: I′: (I(1)
′

e , . . . , I
(B)′
e )e∈[τ ] ← Expand(h1).

13 Continue with line 4 -22 as shown in Algorithm 4 and add an additional
step after line 22 as follows:

14 for e ∈ [τ ] AND b ∈ [B] do

15 Compute additional response o′b = (K + I
(b)′
e )r

(b)′
e .

16 Replace line 23 with: σ3 ← (o
(1)
e , . . . , o

(B)
e , o

(1)′
e , . . . , o

(B)′
e )e∈[τ ].

17 Continue with line 24 - 25 as shown in Algorithm 4.
18 Replace line 26 in Algorithm 4 with

(ϵe, λ
(1)
e , . . . , λ

(B)
e , λ

(1)′
e , . . . , λ

(B)′
e )← Expand(h3).

19 Replace line 2 - 6 in Algorithm 5 with:
20 for e ∈ [τ ] do
21 for i ∈ [N ] do
22 Compute shares [αe]i ← [ae]i + ϵe[K]i and

[βe]i ← [be]i +
∑B

b=1 λ
(b)
e [r

(b)
e ]i + λ

(b)′
e [r

(b)′
e ]i.

23 Continue with line 6 - 11.
24 Replace line 12 - 13 as

[ze]i ←
∑B

b=1−(λ
(b)
e [r

(b)
e ]iI

(b)

e,k̄e,π
+ λ

(b)′
e [r

(b)′
e ]iI

(b)′
e ) and

[ze]
′
i ←

∑B
b=1−(λ

(b)
e [r

(b)
e ]i[I

(b)
e ]i + λ

(b)′
e [r

(b)′
e ]iI

(b)′
e )

25 Continue with line 13 and replace line 14 - 15:
26 if i = 1 then

27 [ze]i = [ze]i +
∑B

b=1 λ
(b)
e o

(b)
e + λ

(b)′
e o

(b)′
e .

28 Continue with line 16 - 28 and replace line 29 as

σ = (salt, h2, h4,(permse, seeds
(MASK)
e , maskse,k̄e

, authe,k̄e
,

seeds
(MPC)
e ,∆Ke,∆ce,∆ze, (o

(b)
e , o

(b)′
e ,∆I

(b)

e,k̄e
)b∈[B], αe, βe, C

(SD)

e,̄ie
,

C
(MASK)

e,k̄e ,̄ie
)e∈[τ ], (cj)j∈[ℓ]) and output the linking tag tag.
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Algorithm 9: Linkable DualRing-PRF Verify

1 (0/1)← Verify(PK,m, σ, eID)
2 Compute hID = HID(eID) and (I ′1, . . . , I

′
L)← Expand(hID).

3 Proceed with line 1 - 3 in Algorithm 6.

4 Add the following step after line 3: Compute h1 ←
⊕ℓ

j=1 cj and expand

hash (I
(1)′
e , . . . , I

(B)
e ′)e∈[τ ] ← Expand(h1).

5 Replace line 4 with: (k̄e)e∈[τ ] ← Expand(h2);

(ϵe, λ
(1)
e , . . . , λ

(B)
e , λ

(1)′
e , . . . , λ

(B)′
e )e∈τ ← Expand(h3);

(̄ie)e∈τ ← Expand(h4), where

h3 = H3(h2, (o
(1)
e , . . . , o

(B)
e , o

(1)′
e , . . . , o

(B)′
e )e∈[τ ]).

6 Continue with line 5 - 7, replace line 8 with

([Ke]i, [r
(1)
e ]i, . . . , [r

(B)
e ]i, [r

(1)′
e ]i, . . . , [r

(B)′
e ]i, [ae]i, [be]i,

[ce]i)← Expand(sd
(MPC)
e,i ).

7 Continue with line 9 - 15, replace line 16 - 18 with:

8 [αe]i ← [ae]i + ϵe[K]i, [βe]i ← [be]i +
∑B

b=1 λ
(b)
e [r

(b)
e ]i + λ

(b)′
e [r

(b)′
e ]i, and

[ze]i ←
∑B

b=1−(λ
(b)
e [r

(b)
e ]i[I

(b)
e ]i + λ

(b)′
e [r

(b)′
e ]iI

(b)′
e ).

9 if i = 1 then

10 [ze]i = [ze]i +
∑B

b=1 λ
(b)
e o

(b)
e + λ

(b)′
e o

(b)′
e .

11 Continue with Line 19 - 22, add the following step after line 22:

T
(b)′
e = Lt

0(o
(b)′
e )− tag

I
(b)′
e

.

12 Continue with line 23 in Algorithm 6 and 1 - 14, remove line 15, and
replace line 16 with

h1
?
= H1((salt,m,PK, ((C(MASK)

e,k,i )k∈[M ], C
(MPC)
e,i )i∈[N ], (T

(b)
e , T

(b)′
e )b∈[B],

∆Ke,∆ce)e∈[τ ]).
13 Continue with line 17 - 19.
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4 Performance Evaluation

We implemented the DualRing-PRF in Python and benchmark the performance.
Our experiments are run on a Macbook Pro with Apple M1 Max chip and
32GB memory. We provide multiple choice of parameters that creates a trade-
off between signature size and signing speed.

4.1 Choice of Parameters

For both DualRing-PRF and linkable DualRing-PRF (DualRingL-PRF), we
choose the prime p to have size approximately 2λ, where λ is the security pa-
rameter. Specifically, when targeting 128-bit security, we use the Mersenne prime
p = 2127−1. For power residue PRFs, we follow the parameter choice in LegRoast
[8], which uses t = 254 such that the power residue symbol can be effectively
represented by a single byte.

We choose L = 215 for Legendre PRF and L = 212 for power-residue PRF
as in LegRoast [8], which results in public key size of 4KB. To ensure that
β-approximate PRF relation (Definition 3) is as hard as the original relation
(Definition 2), we choose β = 0.449 for the Legendre PRF and β = 0.967 for the
power-residue PRF (same as in LegRoast).

The unforgeability proof shows that the best attacking strategy is to query

H1 on many inputs and choose the query for which T
(b)
e = Lt

0(o
(b)
e )−

∑ℓ
j=1 pkI(b)

e,j

hold for the most executions. Suppose this is the case for τ ′ out of τ executions.
Then, for the remaining τ−τ ′ executions, the adversary computes one dishonest

share adjustments for I
(b)
e,π and queries H2, in the hope of getting an output

(k̄e)e∈[τ ] that asks him to open all honestly computed share adjustments. This

succeeds with probability M−(τ−τ ′). Let us assume that this is the case for τ ′′

executions. The adversary then makes one of the virtual parties cheat in the
MPC protocol in each of the τ − τ ′ − τ ′′ executions, and hope that (̄ie)e∈[τ ]

opens non-cheating parties. This succeeds with probability N−(τ−τ ′−τ ′′).

Therefore, to achieve λ bits of security, we take parameters B,M,N and τ
such that

2λ ≤ min
τ ′∈{0,...,τ},τ ′′∈{0,...,τ−τ ′}

(Pr[B(τ, (1− β)B) ≥ τ ′]−1

+ Pr[B(τ − τ ′, 1/M) ≥ τ ′′]−1 +Nτ−τ ′−τ ′′
) (3)

To choose parameters, we fix an integer for M and varying N , then we
compute values of B and τ that satisfies the inequality 3. Note that the choice
of N controls a trade-off between algorithm running time and signature size.
Namely, if N is large, then the soundness error for MPC-in-the-head is small,
hence requires less number of repetitions, which results in a smaller signature
size. We show the parameter choice and corresponding signature size in Table
2. We choose the same parameters for linkable DualRing-PRF, which results in
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linking tag of the same size as the public key.7 We refer the readers to Appendix
D for a detailed signature size analysis.

We illustrate the signing time of DualRing-PRF based on Legendre (left) and
power-residue PRFs (right) in Figure 1.8 The evaluation shows that, DualRing-
PRF based on power-residue PRF with fast parameters result in similar signing
time as DualRing-LB (i.e., approximately 25 seconds for a ring of size 256).

N B τ M n = 24 26 28 210 tag |πL|
L-Fast 16 10 74 27 67 72 80 97

4
12

L-Medium 64 10 58 28 58 62 69 84 10
L-Slow 256 11 46 29 53 57 63 77 9

PR-Fast 16 5 59 27 44 49 55 71
4

5
PR-Medium 64 6 43 28 37 41 47 61 4
PR-Slow 256 7 34 29 34 37 42 56 4

Table 2. Parameter Choices for (Linkable) DualRing-PRF. Sizes are presented by KB.
N = # of MPC parties, B = # of checked PRF symbols, τ = # of protocol repetition,
M = cut-and-choose parameter, n = ring size, ”tag” = the size of linking tag; |πL| =
the additional proof size for linkable DualRing-PRF.

Despite the fact that DualRing-PRF and linkable DualRing-PRF are not
comparable with lattice-based ones in terms of signature sizes, our scheme relies
on different post-quantum security assumptions. As also evident from NIST’s
selection of SPHINCS+ [5] for standardisation despite its significant efficiency
disadvantages compared to lattice-based alternatives. As such, exploring post-
quantum cryptographic primitives based on a range of security assumptions
becomes critically important.

Fig. 1. Signing Time for DualRing-PRF based on Power-Residue and Legendre PRFs.

7 L controls the trade-off between signature size and public key size. Smaller L results
in smaller public key but larger signature. We refer the readers to [8, Remark 1] for
more details.

8 The verification time of DualRing-PRF is approximately equal to (though slightly
smaller than) the signing time, and therefore is not included in the evaluation.
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5 Conclusion

In this work, we present symmetric-key primitives based post-quantum (link-
able) ring signatures that have the most competitive signature sizes among the
schemes based on the similar security assumption for small and medium rings.
Our ring signature is 1.4 times smaller than the state-of-the-art symmetric-key
based ring signature [22]. Comparing with one-time traceable ring signature [38],
our construction not only supports many-time signing, but also achieves signifi-
cantly smaller signature sizes when ring size exceeds 16. This advantage becomes
more pronounced as the ring size increases.

5.1 Future Works

The significant performance gap between lattice-based and symmetric-key based
ring and linkable ring signatures persists. Exploring methods to narrow this gap
could be an interesting topic for further research.
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Appendix

A Merkle Tree based Accumulator

In this work, we use a Merkle hash proof system [35] as an accumulator scheme
to accumulate vectors with high entropy. An accumulator scheme constructed
from the Merkle tree consists of the following algorithms

1. accpp ← Acc.Gen(1λ) : On input a security parameter λ, the algorithm selects
a hash function HMT from the collision-resistant hash function family, where
HMT : {0, 1}2λ × {0, 1}2λ → {0, 1}2λ and returns accpp := (HMT).

2. acc← Acc.Eval(accpp, Y ): On input the public parameter accpp and a set of
ℓ (assume for simplicity that ℓ is a power of 2) elements Y = {y1, . . . , yℓ} ∈
{0, 1}2λ×ℓ, compute the accumulated value acc as follows:
– For each j ∈ [log(ℓ)] and s ∈ [ℓ/2j ], compute yjs = HMT(y

j−1
2s−1 ∥ yj−1

2s ).

Set acc = y
log(ℓ)
1 .

3. auth← Acc.Proof(acc, Y, yi) : On input an accumulated value acc, a set of
ℓ elements Y = (y1, . . . , yℓ), and an element yi, the algorithm computes the
proof as follows:
– Initialize auth = {(i, sibling(y0i ))}, and for each j ∈ [log(ℓ)], set auth =

auth ∪ {(⌈i/2j⌉, sibling(yj⌈i/2j⌉))}. Return auth as the proof of yi ∈ Y

being accumulated with accumulator acc.
4. 0/1← Acc.Ver(yi, acc, auth): On input an element yi, an accumulator acc,

and an authentication path auth, the algorithm parses auth = ((i0, x
0), . . . , (ilog(ℓ), x

log(ℓ))),
it computes the following:
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– If i0 is even, compute y1 = HMT(yi ∥ x0), else compute y1 = HMT(x
0 ∥ yi).

– For each j ∈ [log(ℓ)], if ij is even, compute yj = HMT(y
(j−1) ∥ xj), else

compute yj = HMT(x
j ∥ y(j−1))

– If ylog(ℓ) = acc, output 1. Else, output 0.

The Merkle tree based accumulator satisfies completeness (i.e., the verifi-
cation of honestly computed proof auth will always return 1) and soundness
(i.e., there is no polynomial time adversary can find an element y′ /∈ Y such
that 1 = Acc.Ver(y′, acc, auth) with non-negligible probability, where acc =
Acc.Eval(accpp, Y )).

B Formal Security Analysis of DualRing-PRF

In this subsection, we will present the unforgeability and anonymity proofs for
DualRing-PRF. Unlike DualRing [43], which reduces the unforgeability to the
special impersonation under key only attack, we directly reduce the unforgeabil-
ity of DualRing-PRF to the hardness of β-approximate PRF relation. Namely,
given a valid DualRing-PRF signature with respect to the challenge public key
set S∗ = (pk∗1 , . . . , pk

∗
ℓ ), there exists an efficient extractor that extracts at least

one of the witnesses. In the following security proof, we use B(n, q) to denote
the binomial distribution with n samples, each with success probability q. For
two random variables A,B, we write A ≺ B if for all x ∈ (−∞,+∞), we have
Pr[A > x] ≤ Pr[B > x].

Theorem 1. Assuming the Merkle-tree based accumulator is binding and hid-
ing, our ring signature scheme (DualRing-PRF) is unforgeable in the random
oracle model, if the β-approximate PRF relation (Definition 3) is hard.

Proof. Let hash functions defined in Algorithm 1 be modeled as random ora-
cles and fix a constant β ∈ [0, 1]. Denote A as a PPT adversary breaking the
unforgeability w.r.t. insider corruption of DualRing-PRF with probability ϵ. We
build B that is given system parameters pp, n challenge β-approximate PRF
instances S∗ = (pk∗1 , . . . , pk

∗
n), outputs at least one β-approximate witness K∗

j

corresponds to pk∗j for j ∈ [ℓ].
Simulation of Random Oracles. B maintains a list of input-output pairs for
random oracle queries and a list of “bad” outputs denoted as BadH which stores
all random oracle outputs. If the query was made before by A, then B responses
with the same answer. Otherwise, B returns a uniformly random output which
is added to BadH, and records the new input-output pair in the list.
Simulation of Joining Oracle JO. Assume A can query JO at most ℓ′ times,
where ℓ′ ≫ ℓ. B randomly choose a subset S∗ contains ℓ indices. B assigns pk∗j ∈
S∗ for j ∈ [ℓ] to these ℓ indices. For the remaining ℓ′− ℓ indices, B generates the
public key and private key pairs according to the algorithm. Upon j-th querying
for j ∈ [ℓ′], B returns the corresponding public key. Let S = {pk1, . . . , pkℓ′} be
the set of registered public keys.
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Simulation of Corruption Oracle CO. On input pk, B checks pk ∈ S∗. If
yes, B aborts.9 Otherwise, B outputs the corresponding secret key.
Simulation of Signing Oracle SO. On input a message M , a set of public
keys PK = (pk1, . . . , pkℓ), and the signer index π, B outputs ⊥ if pkπ /∈ PK.
Furthermore, if pkπ ∈ S/{S∗} then B returns σ ← Sign(PK,M, skπ).

Otherwise, let H1 be a programmable random oracle, B computes the fol-
lowing:

1. B randomly selects (h1, . . . , hℓ)
$← {0, 1}2λ and

2. Expand the challenges (I
(1)
e,j , . . . , I

(B)
e,j ) ← Expand(hj), where I

(b)
e,j ∈ I for

b ∈ [B], j ∈ [ℓ].

3. B randomly selects a “fake” secret key K ′ $← Fp and follows the steps in

Signing Phase 1 by replacing K with K
′
and computes T

(b)
e = L0(o

(b)
e ) −∑ℓ

j=1 pk
(b)
Ie,j

, where o
(b)
e = (K ′ + I

(b)
e,π)r

(b)
e . Finally, B obtains σ1.

4. B computes c1 =
⊕

j∈[ℓ] hj and programs H1 to set the output to c1 with

respect to the input (salt,m, PK, σ1). If c1 ∈ BadH, B aborts. Otherwise, B
continues to compute σ according to Phase 2-8 of the protocol.

Challenge. When A returns a forgery (PK ′,M ′, σ′), if PK ′ ⊈ S∗, B aborts.
Otherwise, B interprets

σ′ = (salt, c2, c4, (permse, seeds
(MPC)
e , seeds(MASK)

e , maskse,k̄e
,

authe,k̄e
,∆Ke,∆ce, (o

(b)
e ,∆I

(b)

e,k̄e
)b∈[B], αe, βe, C

(SD)

e,̄ie
,

C
(MASK)

e,k̄e ,̄ie
)e∈[τ ], (hj)j∈[ℓ]).

B goes through the random oracle query transcript and finds the input-output

query pair ((salt, e, i, sd
(MPC)
e,i ), C

(MPC)
e,i ) for all e ∈ [τ ], i ∈ [N ]. B computes:

([Ke]i, [r
(1)
e ]i, . . . , [r

(B)
e ]i, [ae]i, [be]i, [ce]i)← Expand(sd

(MPC)
e,i )

Furthermore, B defines

(r(1)e , . . . , r(B)
e , ae, be)←

N∑
i=1

([r(1)e ]i, . . . , [r
(B)
e ]i, [ae]i, [be]i)

Ke ←
N∑
i=1

([Ke]i) + ∆Ke

ce ←
N∑
i=1

([ce]i) + ∆ce

9 We assume ℓ′ is large enough such that the probability of A queries any public
key in S∗ is negligible. Specifically, let nc be the number of queries A made to the
corruption oracle, then ℓ′ ≫ ncℓ.
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B checks if Ke is a β-approximate witness. If it is, B outputs Ke. Otherwise,
B declares failure and exits. If A has running time T , then B runs in time
T + O(qh + qs), where qh denotes the total number of queries to the random
oracle and qs denotes the total number of queries to the signing oracle.

We now show that if A wins the unforgeability w.r.t. insider corruption game
with probability ε, the B outputs a β-approximate witness with probability at
least ε− e(qh, qs).
Cheating in Phase 1. Let (Qbest1 , cbest1) be the best query-response pair that
A received from H1. We define the meaning of “best” to be the query input-
output pair that maximizes the number of e ∈ [τ ] such that

Lt
0((Ke + I(b)e,π)r

(b)
e ) = T (b)

e +

n∑
j=1

pk
I
(b)
e,j

for all b ∈ [B]. (4)

One can consider this situation as, for some (fixed and possibly invalid) witness

Ke and randomness r
(b)
e picked by A, the residuosity (either quadratic or t-th

power) of (Ke + I
(b)
e,π)r

(b)
e , where I

(b)
e,π is chosen uniformly at random, happens to

be the same as T
(b)
e +

∑n
j=1 pkI(b)

e,j
for all b ∈ [B]. We show that if B outputs

⊥, then the number of these “lucky” indices is bounded. More precisely, let
#G1(Q1, c1) be the number of parallel executions such that Equation (4) holds.
Then we show #G1(Qbest1 , cbest1)|⊥≺ X(H1), where X(H1) is defined as

X(H1) = max(XH1
1 , . . . , XH1

q1 ) (5)

for the number of random oracle queries to H1 being q1, and X
(H1)
i are i.i.d as

B(τ, (1− β)B).
For distinct queries to H1 of the form Q1 = (salt,m,PK, σ1), where

σ1 ← (((C
(MASK)
e,k,i )k∈[M ], C

(MPC)
e,i )i∈[N ], (T

(b)
e )b∈[B],∆Ke,∆ce)e∈[τ ], (6)

if Q1 is defined in the random oracle query transcript, then let

β(b)
e (Q1) = dH

Lt
L(Ke) + (Lt

0(r
(b)
e ), . . . ,L(t)

0 (r(b)e )), T (b)
e +

n∑
j=1

pk
I
(j)
e,b

 ,

where dH denotes the Hamming distance. Otherwise (Q1 is not defined in the

random oracle query transcript), β
(b)
e (Q1) = 1. If B aborts, then none of Ke

computed in the challenge phase is a β-approximate witness, meaning that

β
(b)
e (Q1) > β for all e ∈ [M ], and b ∈ [B]. Since the challenge c1 is chosen

uniformly random, which implies that hπ = c1⊕
⊕

j∈[n]/{π} hj is uniformly ran-

dom. By the property of Expand function, (I
(b)
e,π)b∈[B],e∈[τ ] are also uniformly

random from I. Hence, the probability, for a certain e, such that Equation (4)
holds is ∏

b∈[B]

(1− β(b)
e (Q1)) ≤ (1− β)B .
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Therefore, we have #G1(Q1, c1)|⊥≺ XQ1
, where XQ1

∼ B(τ, (1 − β)B). Fi-
nally, since G1(Qbest1 , cbest1) is the maximum over at most q1 queries to H1, it

follows that #G1(Qbest1 , cbest1)|⊥ ≺ X(H1), whereX(H1) = max(X
(H1)
1 , . . . , X

(H1)
q1 ),

and X
(H1)
i ∼ B(τ, (1− β)B).

Cheating in Phase 2. Let (Qbest2 , cbest2) be the best query-response pair that
A received from H2. This is the pair where #G2(Q2, c2) is maximum, where
Q2 = (c1, (acce)e∈[τ ]). If there is no Q1 such that (Q1, c1) was recorded in the
query-response transcript of H1, then G2(Q2, c2) is bad (since this query cannot
result in a valid siganture). Otherwise, letQ1 be defined same as σ1 (see Equation

(6)). If there exists (e, b) ∈ [M ] × [B] such that Lt
0(o

(b)
e ) ̸= T

(b)
e +

∑ℓ
j=1 pkI(b)

e,j
,

then this query cannot result in a valid signature either. Therefore, we define
G2(Q2, c2) is the set of e ∈ [τ ]/G1(Q1, c1) for which

I(b)e,π ̸= maske,k̄e
+∆I

(b)

e,k̄e,π
. (7)

Consider this being the case where A guesses the unrevealed mask correctly for

some e ∈ [τ ]. Indeed, if A computes for more than 1 dishonest ∆I
(b)
e,k,j for any j ∈

[ℓ], it will get caught. Thus, it can manipulate the ∆I
(b)

e,k̄e,π
for at most 1 execution

to cause the proof generated in Phase 3 being accepted. Since k̄e is chosen
uniformly at random, the probability that the inequality (7) occurs is 1/M .
Note that A may also cheat in the execution of Merkle tree commitments by
finding collisions. However, compare to 1/M , the probability of finding collisions
is negligible. Thus, if B outputs ⊥, the number of good indices is bounded:
#G2(Q2, c2)|#G1(Q1,c1)=τ

′
1
≺ τ1 + XQ2

where XQ2
∼ B(τ − τ

′

1, 1/M). Since for

integers a ≤ b and q ∈ [0, 1], we have B(b, q) ≺ a + B(b − a, q). This implies
that #G2(Q2, c2)|#G1(Qbest1 ,cbest1 )=τ1≺ τ1 +XQ2

, where XQ2
∼ B(τ − τ1, 1/M).

Since #G2(Qbest2,cbest2
) is the maximum over at most q2 values of G2(Q2, c2), it

follows that

#G2(Qbest2cbest2)|#G1(Qbest1
,cbest1 )=τ1≺ τ1 +X(H2).

Finally, by conditioning on ⊥ and summing over all τ1, we get

#G2(Qbest2cbest2)|⊥≺ #G1(Qbest1cbest1)|⊥+X(H2) ≺ X(H1) +X(H2),

where X(H2) = max(X
(H2)
1 , . . . , X

(H2)
q2 ) and X

(H2)
i ∼ B(τ −X(H1), 1/M).

Cheating in Phase 3. Let #G3(Qbest3 , cbest3) be the best query-response pair
A received from H3, which is the pair for which #G3(Q3, c3) is maximum, for

Q3 = (c2, (o
(b)
e )b∈[B],e∈[τ ]. If there does not exist Q2 such that (Q2, c2) is queried

in H2, then all indices are bad. Otherwise, let Q2 = (c1, (acce)e∈[τ ]). If there

exists accumulated ∆I
(b)
e,k,j for (j, e, k, b) ∈ [ℓ]× [τ ]× [M ]× [B] and k ̸= k̄e, such

that I
(b)
e,j ̸= maske,k +∆I

(b)
e,k,j , then we say G3(Q3, c3) = {}, since this results in

an invalid siganture. Otherwise, we say G3(Q3, c3) is the set of executions e ∈ [τ ]
for which αe · βe = γe. We prove that in the case that B outputs ⊥, the number
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of good indices is bounded. Note that for fixed ae, be, ce,Ke, (r
(b)
e )b∈[B], maske

and (∆I
(b)
e,k,j)k∈[M ],j∈[ℓ],b∈[B], the function

αe(ϵe)βe(λ
(b)
e )− γe(ϵe, λ

(b)
e )

is a quadratic polynomial in (ϵe, λ
(1)
e , . . . , λ

(B)
e ). Moreover, this is the zero poly-

nomial iff ce = aebe and o
(b)
e = (Ke + (maske,k̄e

+ ∆I
(b)

e,k̄e,π
))r

(b)
e for all b ∈

[B]. If e /∈ G2(Q2, c2) and e /∈ G1(Q1, c1), then to make sure L0(o
(b)
e ) =

T
(b)
e +

∑ℓ
j=1 pkI(b)

e,j
, A computes o

(b)
e ̸= (Ke + (maske,k̄e

+ ∆I
(b)

e,k̄e,π
))r

(b)
e , where

maske,k̄e
+∆I

(b)

e,k̄e,π
= I

(b)
e,π. By Schwartz-Zipple lemma, where a uniformly random

choice of c3 = {ϵe, λ(b)
e }e∈[τ ],b∈[B] ∈ Fτ(1+B)

p , the probability that e ∈ G3(Q3, c3)
is at most 2/p. From the similar arguments in Phase 2, we have that

#G3(Qbest3cbest3)|⊥ ≺ #G2(Qbest2cbest2)|⊥+X(H3)

≺ X(H1) +X(H2) +X(H3),

where X(H3) = max(X
(H3)
1 , . . . , X

(H3)
q3 ) and X

(H3)
i ∼ B(τ−X(H1)−X(H2), 2/p).

Cheating in Phase 4. Define G4(Q4, c4) being the set of e ∈ [M ] that are
good, where Q4 = (c3, (αe, βe, ([αe]i, [βe]i, [γe]i)i∈[N ])e∈[τ ]) that A makes to H4.
If there does not exist (Q3, c3) that was queried to H3, then all indices are bad
as this leads to invalid signature. Consider e that was not in any of Gi(Qi, ci) for
i ∈ [1, 3], then to make the signature accepted, A must guess īe (the unopened
party) correctly, with probability 1/N as īe is chosen uniformly from [N ]. In
fact, if there are less than N − 1 honest parties, then this will be caught by
the verifier, which results in an invalid signature. If there are N honest parties,
then γe ̸= αeβe, which also results in invalid signature. Following from previous
arguments, we have that

#G4(Qbest4cbest4)|⊥ ≺ #G3(Qbest3cbest3)|⊥+X(H4)

≺ X(H1) +X(H2) +X(H3) +X(H4),

where X(H4) = max(X
(H4)
1 , . . . , X

(H4)
q4 ) and X

(H4)
i ∼ B(τ − X(H1) − X(H2) −

X(H3), 1/N).
Abort Probability We now analyze the abort probability of B due to colli-
sion. In other words, B aborts if there exists a randomly chosen output that
was already recorded in BadH. To do this, we first analyze the number of en-
tries that can be recorded in BadH. The random oracles simulated by B are
Hsd,Hmask,H∆,HMT,Hacc,H1,H2,H3 and H4.

• Phase 1. Let qsd and qmask denote the number of queries A made to Hsd

and Hmask in Phase 1, respectively. On every input query to Hsd (Hmask), B
randomly selects a input x ∈ {0, 1}2λ and adds x to BadH. Hence, Phase 1
adds qsd + qmask entries to BadH.
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• Phase 2. Let q1 be the number of queries A made to H1, where the input

query is of the form (salt,m,PK, σ1). B interprets σ1 = (((C
(MASK)
e,k,i )k∈[M ], C

(MPC)
e,i )i∈[N ], . . . )e∈[τ ]

and adds C
(MASK)
e,k,i , C

(MPC)
e,i to BadH. B randomly selects x ∈ {0, 1}2λ as the

response and adds x to BadH. Let q∆ and qacc be the number of queries to
H∆ and Hacc, respectively. Let qMT be the number of queries to the random
oracle that generates the Merkle tree. Then, the total number of entries that
are added to BadH is (τ ·N · (M + 1) + 1)q1 + q∆ + 3qMT + (M + 1)qacc.

• Phase 3. Let q2 be the number of queries to H2. Then for the query of the
form (c1, (acce)e∈[τ ]), B samples x ∈ {0, 1}2λ and adds at most (τ + 2)q2
entries to BadH.

• Phase 5. Let q3 be the number of queries to H3. Then for the query of the
form (c2, . . . ), B samples x ∈ {0, 1}2λ and adds at most 2q3 entries to BadH.
• Phase 7. Let q4 be the number of queries to H4. Then for the query of the
form (c3, . . . ), B samples x ∈ {0, 1}2λ and adds at most 2q4 entries to BadH.

For the aborting probability of the signing oracle, the case that B aborts is
the simulated σ1 was queried before. Since salt is selected uniformly random for
every signature generation, the probability that σ1 was queried before is at most
q1qs
22λ

, where qs denotes the number of signing oracle queries. Let the (maximum)
size of BadH be denoted as qh = qsd + qmask + q∆ + 3qMT + (M + 1)qacc + τ · N ·
(M + 1) + 1)q1 + (τ + 2)q2 + 2q3 + 2q4, the aborting probability of B owing to

collision is then
q2h+q1qs

22λ
.

To Conclude. If A wins the unforgeability game w.r.t. insider corruption with
probability ϵ and challenge set S∗, then B outputs a β-approximate witness with
probability ϵ− e(qh, qs), where

e(qh, qs) =
q2h + q1qs

22λ
+ Pr[X(H1) +X(H2) +X(H3) +X(H4) = τ ]

Indeed, by the law of total probability we have

Pr[A wins] = Pr[A wins ∧ B aborts]

+ Pr[A wins|⊥] + Pr[A wins ∧ B outputs witness]

≤ Pr[B aborts] + Pr[A wins|⊥] + Pr[B outputs witness]

≤ e(qh, qs) + Pr[B outputs witness]

Theorem 2. Our ring signature scheme (DualRing-PRF) is anonymous against
full key exposure in the random oracle model.

Proof. Let hash functions defined in Algorithm 1 be modeled as random oracles.
B runs signature setup to generate pp and gives pp to A. B simulates the oracles
similarly as in unforgeability game. Except that in anonymity game, the key
generation oracle generates all keys using the algorithm KGen (i.e., there is no
challenge key sets). Furthermore, A is allowed to corrupt all keys generated from
KO.
Challenge. A gives B a message m∗, a set of public keys PK∗, and two signer
indices i0, i1 w.r.t. the same ring PK∗. B simulates the signature as follows:
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1. B picks random challenges for each ring member h1, . . . , hℓ ∈ {0, 1}λ, where
ℓ = |PK∗|.

2. B expands the challenges to obtain (I
(1)
e,j , . . . , I

(B)
e,j )e∈[τ ] for j ∈ [ℓ].

3. B randomly selects responses o
(b)
e

$← Fp and computes T
(b)
e = Lt

0(o
(b)
e ) −∑ℓ

j=1 pkI(b)
e,j

for all b ∈ [B]and e ∈ [τ ]. (i.e., this step makes sure that the

residuosity check passes).
4. B randomly samples a “fake” secret key K ′ and computes σ1 following the

description of Phase 1, except that (T
(b)
e )b∈[B],e∈[τ ] is computed as in previous

step.
5. B computes c1 = h1 ⊕ . . .⊕ hℓ and programs the oracle H1 to output c1 on

input (salt,m∗,PK∗, σ1). If (salt,m
∗,PK∗, σ1) was queried before, then

B aborts. Otherwise, B continues.
6. B randomly samples c2 and (k̄e)e∈[τ ] ← Expand(c2).
7. For every e ∈ [τ ] and k ∈ [M ]/{k̄e}, B follows the protocol honestly.
8. For k = k̄e, B does the following:

(a) Randomly selects (I
(1)

e,k̄e
, . . . , I

(B)

e,k̄e
)

$← I.
(b) Computes ∆I

(b)

e,k̄e
such that o

(b)
e = (K ′+maske,k̄e

+∆I
(b)

e,k̄e
)r

(b)
e . Note that

o
(b)
e and K ′ was the fake response and witness chosen in the first phase.

(c) Commits to ∆I
(b)

e,k̄e
according to the protocol and accumulates the com-

mitment with ℓ− 1 garbage values to obtain acce,k̄e
.

9. Follow the protocol to obtain acce for all e ∈ [τ ].
10. Program the random oracleH2 such that on input (c1, (acce)e∈[τ ]) it outputs

c2 that was chosen previously. If c2 ∈ BadH. If (c1, (acce)e∈[τ ]) was queried
before, then B aborts.

11. Follow the rest of the protocol to obtain the signature σ.

B outputs σ to A and a randomly chosen bit bit
Output A outputs a guess bit′. Observe that bit is not used in the generation
of σ, hence A wins with probability 1/2.
Probability Analysis. We now analyze the probability that B does not abort
in the above simulation. For q1 queries made to H1, q2 queries made to H2,
and qs queries made to signing oracle, B aborts with the following probability.
Firstly, due to the uniformly random salt of length 2λ bit, with probability
≤ q1/2

2λ ≤ (q1 + qs)/2
2λ for each signing query. Hence, over all qs signing

queries with probability ≤ qs · (q1 + qs)/2
2λ. Similarly if c1 is uniform in 22λ for

each sign query, then the bad event happens with probability ≤ qs ·(q2+qs)/2
2λ.

Then the total abort probability is ≤ qs · (q1 + q2 + 2qs)/2
2λ.

Hence, if B does not abort, then no PPT adversary A can win the anonymity
game with probability over 1/2.

C Formal Security Analysis of DualRingL-PRF

Theorem 3. (Linkability) Our linkable ring signature (DualRingL-PRF) is link-
able in the random oracle model, if the β-approximate PRF relation (Definition
3) is hard.
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Proof. We try to derive some contradictions based on the assumption that A
can produce two valid signatures that are unlinked with just one private key.
We use the same setting as the proof in Theorem 1, except that we only allow
the adversary A query the corruption oracle CO once. Namely, A only knows
one secret key. Let us assume that the corrupted secret key has index π ∈ [ℓ]. In
the proof, we show that if A is able to computes two signatures with respect to
the same event that are unlinked (under the condition where A only knows one
secret key), then there exists an extractor algorithm B that extracts two valid
β-approximate witnesses of the Legendre/power residue PRFs.

Suppose A produces two valid signatures σ1, σ2 with respect to the rings
PK1,PK2 and messagesm1,m2 which are valid and unlinked (i.e., tag1 ̸= tag2).
The extractor B follows the steps described in the proof of Theorem 1 and
extracts two valid secret keys K1 and K2.

Since tag1 ̸= tag2, then with overwhelming probability that K1 ̸= K2, which
contradicts with the assumption that A only knows one secret key.

Theorem 4. (Non-Slanderability) Our linkable ring signature scheme is nons-
landerable in the random oracle mode, if the β-approximate PRF relation (Def-
inition 3) is hard.

Proof. Suppose the adversary A can query any oracle except that it cannot
submit a chosen public key pkπ to CO. A gives B pkπ, a list PK such that
pkπ ∈ PK,

Let us assume that B generates a linkable ring signature σ using skπ with
respect to PK, a message m, and an event ID eID. In return, B generates a
signature σ = (. . . , tag) using skπ and gives it to A. A continues to query
oracles except it is not allowed to submit pkπ to CO. Suppose A produces a
valid signature σ′ that is not the output from SO and is linked with σ. Then,
from Theorem 1 and Theorem 3, the extractor can extract a valid witness skπ
corresponding to pkπ, which contradicts with the assumption.

D Signature Size Analysis

We begin by demonstrating the estimation of signature size in DualRing-PRF.
A signature is composed of the following elements:

– 2λ-bits salt salt and challenges h2, h4.

– λ-bits 2× log(M) seeds permse and seeds
(MASK)
e , where e ∈ [τ ].

– λ-bits 2× log(N) seeds maskse,k̄e
and seeds

(MPC)
e , where e ∈ [τ ].

– Field elements ∆Ke,∆ze,∆ce, (o
(b)
e ,∆Ie,k̄e

)b∈[B], αe and βe. According to
our choice of parameter, the field element is of size approximately λ-bits.

– 2λ-bits commitments C
(SD)

e,̄ie
and C

(MASK)

e,k̄e ,̄ie
for e ∈ [M ].

– ℓ λ-bis challenges, where ℓ is the size of the ring.

Thus, the signature size |σ| of DualRing-PRF is:

|σ|= 6λ+ τ · λ(2 logM + 2 logN + 2B + 9) + ℓλ
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Our Linkable ring signature adds additional B · τ responses to the proof,

denoted as (o
(b)′
e )b∈[B],e∈[τ ], where each response is approximately λ-bits, and

the linking tag is of the same size as the public key. Hence, the size |σ′| for
DualRingL-PRF is:

|σ′|= |σ|+Bτλ+ L · log(t)
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