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Abstract—In this work, we present various hardware
implementations for the lightweight cipher ASCON, which
was recently selected as the winner of the NIST organized
Lightweight Cryptography (LWC) competition. We cover
encryption + tag generation and decryption + tag verifi-
cation for the ASCON AEAD and also the ASCON hash
function. On top of the usual (unprotected) implementation,
we present side-channel protection (threshold countermeasure)
and triplication/majority-based fault protection. To the best
of our knowledge, this is the first protected hardware
implementation of ASCON with respect to side-channel and
fault inject protection. The side-channel and fault protections
work orthogonal to each other (i.e., either one can be turned
on/off without affecting the other). We present ASIC and
FPGA benchmarks for all our implementations (hash and
AEAD) with/without countermeasures for varying input sizes.

Index Terms—ASCON, Hardware Implementation, Side-
Channel Attack, Threshold Implementation, Fault Attack,
Countermeasure

I. INTRODUCTION

In the contemporary era of electronic communication,
confidentiality, and integrity/authentication act as the two
vital components. To this end, various cryptographic prim-
itives are proposed in the literature. While the realm of
cryptography is a few decades old, there is a relatively
new trend in designing the so-called ‘lightweight’ ciphers,
which aim at providing strong security despite having a
low device (hardware and/or software) footprint. Recently,
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the US government’s National Institute of Standards and
Technology (NIST) has organized the ‘Lightweight Cryptog-
raphy’1 (LWC) project in order to further boost research and
ultimately set a standard. From many submissions, ASCON
[2] has been selected as the winner. Therefore, in the coming
days, one could expect to see a rapid increase in the usage of
ASCON in various industry applications as well as it being a
prime candidate for academic research2. Amid this situation,
a natural question that comes to mind is the hardware cost of
implementing this cipher. Also, because the cipher is mainly
intended to be used in resource-constrained embedded
devices (such as Internet-of-Things appliances), one has to
consider the impact of the physical attacks. These attacks
come in two flavors, namely ‘side-channel analysis’ [4], [5]
and ‘fault analysis’ [6]. Consequently, one has to further
consider the cost of implementing adequate countermeasures.
However, being relatively new, there is not many research
works attempting hardware implementation/optimization of
ASCON, as found during our literature survey (Section I-B).
This prompted us to do a thorough, systematic, easy-to-
use, and publicly accessible implementation of ASCON in
hardware. Our codes are written from scratch and do not
have any other dependency.

A. Our Contributions

In this work, we present various hardware (Verilog)
implementations of ASCON [2], which is a lightweight
hash function and AEAD (authenticated encryption with
associated data) family3. We consider regular (unprotected)

1https://csrc.nist.gov/Projects/lightweight-cryptography.
2Notably, it is used in a post-quantum cipher [3].
3In summary, a hash function takes an arbitrary length message and

returns a fixed-length output. An AEAD consists of two ends: at one end
(the sender) encryption + tag generation is done, and on the other end
(the recipient) decryption + tag verification is done.
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implementations as well as side-channel and fault attack
protection.

In summary, we implement and benchmark the following:

(α) Unprotected ASCON (encryption + tag generation,
decryption + tag verification; and hashing).

(β) Side-channel attack resistant ASCON using threshold
implementation.

(γ) Fault attack resistant ASCON using triplica-
tion/majority.

(δ) Combined side-channel and fault attack protected
ASCON using threshold and triplication/majority.

Our implementations use a simple interface. The side-
channel and fault protections can be turned on/off easily
depending on the use case (it is not necessary that both the
countermeasures have to be used all the time) by making
minimal adjustments to the interface. Our source codes are
accessible as an open-source project4.

B. Previous Works

The hardware implementation of ASCON has been ex-
plored before, for instance, in [7], [8], [9], [10], [11].
However, as far as we can tell, no side-channel-protected
(threshold) implementation exists. Also, the common coun-
termeasure against fault (that relies on triplication/majority)
has not been explored before. The following papers [7], [8],
[9] implement only the unprotected version of ASCON and
in [10], [11], protection for fault injection attacks has not
been implemented.

II. ASCON DESCRIPTION

The ASCON family has 2 variants — ASCON-128 (block
size = 64 bits) and ASCON-128A (block size = 128 bits).
Both of those take a 128-bit key and nonce and have a 320-
bit state. The ciphertext and the 128-bit tag are generated
after (encryption + tag generation), and the plaintext is
recovered from the ciphertext as well as the tag is verified
in (decryption + tag verification).

A. Permutation

The main strength of ASCON lies in the permutation
process. pn represents the number of rounds for the
permutation. There are two types of permutation of i)
pa consisting of a rounds (used for initialization and
finalization) and ii) pb consisting of b rounds (used for
data processing).

The 320-bit state S of the ASCON is divided into 5
registers of 64 bits each. S = x0||x1||x2||x3||x4. These
5 registers are then sent for further processing. Each
permutation round is further divided into three layers –
the constant addition layer, the substitution layer, and the
linear diffusion layer.

4https://github.com/aneeshkandi14/ascon-hw-public. This repository
contains multiple threshold implementations of the SBox, any of which can
be ported to the actual implementation (some of these are benchmarked
in Table II.

1) Constant XOR Layer: In this layer, a constant term is
added with the x2 register word. The constant term added
depends on the current round number of the permutation. For
pa, round constant cr is used and for ρb, round constant
ca−b+r is used, where r is the number of rounds. The
number of rounds and related constants are given in Table
I.

TABLE I: Round constants and number of rounds for ASCON

ρ12 ρ8 ρ6 Constant ρ12 ρ8 ρ6 Constant
0 000000000000000000f0 6 2 0 00000000000000000096

1 000000000000000000e1 7 3 1 00000000000000000087

2 000000000000000000d2 8 4 2 00000000000000000078

3 000000000000000000c3 9 5 3 00000000000000000069

4 0 000000000000000000b4 10 6 4 0000000000000000005a

5 1 000000000000000000a5 11 7 5 0000000000000000004b

2) Substitution Layer: This layer implements the 5-bit
SBox operation of the ASCON which is the only non-linear
operation within the permutation. The ASCON SBox can be
given by the following 5-bit look-up table: (4, b, 1f, 14,
1a, 15, 9, 2, 1b, 5, 8, 12, 1d, 3, 6, 1c, 1e, 13, 7, e, 0, d,
11, 18, 10, c, 1, 19, 16, a, f, 17).

3) Linear Diffusion Layer: This layer is used to shuffle
the bits of each register internally with the help of right
rotation and XOR. It is performed with the operations:

x0 ← x0 ⊕ (x0 ≫ 19) ⊕ (x0 ≫ 28)
x1 ← x1 ⊕ (x1 ≫ 61) ⊕ (x1 ≫ 39)
x2 ← x2 ⊕ (x2 ≫ 1) ⊕ (x2 ≫ 6)

x3 ← x3 ⊕ (x3 ≫ 10) ⊕ (x3 ≫ 17)
x4 ← x4 ⊕ (x4 ≫ 7) ⊕ (x4 ≫ 41)

B. Authenticated Encryption with Associated Data: (Encryp-
tion + Tag Generation) and (Decryption + Tag Verification)
ASCON is a family of authenticated encryption and

(verified) decryption scheme which can be parameterized
by 4 variables; namely the key (K), rate (r) and number
of rounds (a and b) for the permutation computation.
The key length is, k ≤ 128 bits and other parameters
vary depending on the type of ASCON. Inputs for the
authenticated encryption are plaintext P , associated data A,
key K, and nonce N (k-bits); and outputs are the ciphertext
C and tag T . Inputs for the verified decryption are key K,
nonce N (k-bits), ciphertext C, and tag T ; and output is
plaintext P if the tag is successfully verified, otherwise, an
invalid response is returned (indicated as ⊥).

The operation of ASCON can be divided into four sub-
routines, namely:

1) Initialization
2) Processing associated data
3) Processing plaintext/ciphertext
4) Finalization
Upon initialization, the algorithm is set up by creating

a state of 320 bits by concatenating the fixed initialization
vector, key, and the nonce, which are then passed through
a rounds of permutation and XOR operation of the least
significant (320− r) bits with the key padded with 0’s (on
the left) before proceeding to the next stage.

In the next stage, associated data is absorbed into the
algorithm by dividing it into data sets of r bits each and
the last data set is padded with a 1 followed by 0’s to make
the length equal to r.
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The next stage processes the plaintext in a similar way
and in addition, it generates ciphertexts in encryption and
does the opposite for decryption. Processing of associated
data and plaintext both have b rounds of the permutation.

The finalization stage generates a tag in encryption which
is used in the finalization stage of decryption to verify if
the processed data is correct.

C. Hashing

ASCON Hashing is based on the so-called SPONGE
construction and is parameterized by 4 variables — maximal
output length (h), rate (r), and internal number of rounds
(a and b) for the permutation computation. Based on the
value of parameter b, we have two variants of Hashing —
ASCON-Hash (b = 6) and ASCON-HashA (b = 8). The
input for the hashing algorithm is message data M and the
output is the hash data H .

The operations can be divided into three sub-routines,
namely:

1) Initialization
2) Absorbing message
3) Squeezing
At the initialization stage, the algorithm is initialized by

creating a state of 320 bits by padding the fixed initialization
vector with 0’s on the LSB side, which is then passed
through a rounds of permutation.

In the next stage, the message data is absorbed into
the algorithm similar to the plain text processing stage
mentioned above. It uses b rounds of permutation.

In the last stage, the ASCON state is first passed through
a permutation rounds which generates the first block of
hash data. The output is then passed through b rounds of
permutations till all the blocks of hash data are generated.

III. (UNPROTECTED) HARDWARE IMPLEMENTATION

A. Substitution Layer

The substitution layer employs a 5-bit SBox (see Sec-
tion II). Possibly the most straightforward approach to
implementing the SBox is by utilizing a look-up table.
However, this method incurs a significant area cost.

An alternative approach involves using the coordinate
functions. In general, it can be stated that the coordinate
function-based implementation takes much less area than
what would be required for a look-up-based implementation.
Expressed in the algebraic normal form, the coordinate
functions of the ASCON SBox are as given:

y0 = x4x1 ⊕ x3 ⊕ x2x1 ⊕ x2 ⊕ x1x0 ⊕ x1 ⊕ x0

y1 = x4 ⊕ x2x3 ⊕ x3 ⊕ x3x1 ⊕ x2 ⊕ x1x2 ⊕ x1 ⊕ x0

y2 = x4x3 ⊕ x4 ⊕ x2 ⊕ x1 ⊕ 1

y3 = x4x0 ⊕ x3x0 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0

y4 = x4x1 ⊕ x4 ⊕ x3 ⊕ x1x0 ⊕ x1

B. Linear Layer

The linear layer, which is discussed in Section II, can
be realized using the right rotation and XOR. In our
implementation, we opted to use only the XOR opera-
tion. This approach requires 2 XOR operations for each

row, resulting in a total of 640 XOR operations for the
entire layer5. Although both methods need the same area,
XOR implementation is more flexible in terms of code.
Additionally, it is easier to transform it into the threshold
implementation of the linear layer using the latter method.

IV. PROTECTION AGAINST SIDE-CHANNEL ATTACKS

Side-channel attacks, particularly those relying on in-
formation from power consumption or electromagnetic
emanation, are of prominent concern while dealing with the
physical security of the ciphers [4], [15], [16]. It has been
systematically shown that a cipher with sufficient classical
security claims falls short against an adversary equipped
with a side-channel attack set-up. Therefore, understanding
the attacks and finding low-cost countermeasures are among
the top research priorities.

Side-channel attacks are based on the connection between
the (a priori or learned) model and any intermediate variable
in the implementation that might be leaking. Therefore, the
countermeasures attempt to destroy the linkage of the model
and the intermediate variables.

A. Theory of Threshold Implementation

The Threshold Implementation (TI) technique is
renowned for its application in side-channel protected
hardware. In the threshold-protected version of a cipher,
the state of the cipher S is described by d + 1 shares
S0, S1, . . . , Sd; so that S ≡ S0 ⊕ S1 ⊕ · · · ⊕ Sd. Each
share is separately randomized, thereby removing the
data dependent leakage. All the shares undergo separate
processing with individually randomized inputs and are
subsequently combined (through XOR of all the shares) at
the end to cancel out their individual randomness. For more
details, one may refer to, e.g., [15], [17], [18].

RC0 RC1 RC2

State S

Updated State S

SBOX0 SBOX1 SBOX2

LL0 LL1 LL2

Sha
re 0

Share 2

S
h
a
re

1

Figure 1: ASCON permutation under 3-share threshold (schematic)

Typically, the TI of an affine function is considered
straightforward to implement, while that of a non-linear
(in most block ciphers, the only non-linear component

5Equivalently, the linear layer can also be implemented using 320
XOR3 operations. The problem of implementation with higher input XOR
gates is studied in the literature [12], [13]. Also, note that the same binary
matrix format is considered in [14].
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is the SBox) function is considered a strenuous task to
accomplish. The TI of a given SBox can be realized either
through without decomposition (the SBox is implemented
as a combinational circuit) or with decomposition (the SBox
is implemented as a sequential circuit) [18].

The ASCON permutation, for instance, consists of three
stages as mentioned in Section II-A. Each share has a
distinct constant addition layer, substitution layer, and linear
layer that are cleverly designed so that the output of all three
shares can be merged at the conclusion of the permutation
phase to yield the same state value as in unprotected ASCON.

The schematic of the ASCON permutation with threshold
is presented in Figure 1, which demonstrates how state
S is divided into three shares. Each of the shares is then
processed with distinct permutation processes, where RCi
represents the round constant layer, SBOXi represents the
substitution layer, and LLi represents the linear layer for
share i. See Figure 3 for the schematic representation of
ASCON permutation as a flow-chart.

B. ASCON SBox Threshold

The SBox, being the only non-linear component, is
considered the hardest to implement in threshold. The
minimum number of shares needed is 1 more than the
algebraic degree of the SBox (thus, we need at least 3
shares). Also note that the total number of monomials in the
combined shares is related to the product of the number of
shares and the total number of monomials in the coordinate
functions.

Our implementation uses a first-order (3 shares) ASCON
SBox sharing generated using our in-house algorithm,
which is described in [18]. Five sharing options were
generated by shuffling the monomials by randomization.
The corresponding benchmarks for those are shown in Table
II. Subsequently, we chose sbox3 for our implementation
because it occupies the least area (marked in Table II). The
sharing is given afterward.

TABLE II: ASIC (STM 130nm) benchmarks for ASCON SBox

SBox Cells Area Critical Dynamic
(µm2) Path (ps) Power (nW)

sbox1 76 1002 641 10369
sbox2 77 1015 641 11670
sbox3 68 897 656 11720
sbox4 83 1088 641 9420
sbox5 75 989 724 12829

a) Share 0:

y00 = x40x12 ⊕ x42x10 ⊕ x42x12 ⊕ x32 ⊕ x20x12 ⊕ x20 ⊕ x22x10 ⊕ x22x12

⊕ x22 ⊕ x10x00 ⊕ x10x02 ⊕ x10 ⊕ x12x00 ⊕ x12

y10 = x42 ⊕ x31x22 ⊕ x31x11 ⊕ x31x12 ⊕ x32x21 ⊕ x32x22 ⊕ x32x11 ⊕ x32x12

⊕ x21x11 ⊕ x21x12 ⊕ x22x11 ⊕ x11

y20 = x40x32 ⊕ x42x30 ⊕ x42 ⊕ x22 ⊕ x12

y30 = x40x01 ⊕ x40 ⊕ x41x00 ⊕ x30x01 ⊕ x31x00 ⊕ x31 ⊕ x21 ⊕ x11 ⊕ x01

y40 = x40x12 ⊕ x40 ⊕ x42x10 ⊕ x42x12 ⊕ x42 ⊕ x32 ⊕ x10x02 ⊕ x10 ⊕ x12x00

b) Share 1:
y01 = x40x10 ⊕ x40x11 ⊕ x41x10 ⊕ x41x11 ⊕ x30 ⊕ x20x10 ⊕ x20x11 ⊕ x21x10

⊕ x21 ⊕ x10x01 ⊕ x11x00 ⊕ x11 ⊕ x00 ⊕ x01

y11 = x41 ⊕ x30x21 ⊕ x30x10 ⊕ x30x11 ⊕ x30 ⊕ x31x20 ⊕ x31x21 ⊕ x31x10

⊕ x31 ⊕ x20x11 ⊕ x21x10 ⊕ x21 ⊕ x10 ⊕ x00 ⊕ x01

y21 = x41x32 ⊕ x41 ⊕ x42x31 ⊕ x42x32 ⊕ x21 ⊕ x11

y31 = x40x00 ⊕ x40x02 ⊕ x42x00 ⊕ x42 ⊕ x30x00 ⊕ x30x02 ⊕ x30 ⊕ x32x00

⊕ x32 ⊕ x20 ⊕ x22 ⊕ x10 ⊕ x00

y41 = x41x11 ⊕ x41x12 ⊕ x41 ⊕ x42x11 ⊕ x31 ⊕ x11x02 ⊕ x11 ⊕ x12x01

⊕ x12x02 ⊕ x12

c) Share 2:
y02 = x41x12 ⊕ x42x11 ⊕ x31 ⊕ x21x11 ⊕ x21x12 ⊕ x22x11 ⊕ x11x01

⊕ x11x02 ⊕ x12x01 ⊕ x12x02 ⊕ x02

y12 = x40 ⊕ x30x20 ⊕ x30x22 ⊕ x30x12 ⊕ x32x20 ⊕ x32x10 ⊕ x32 ⊕ x20x10

⊕ x20x12 ⊕ x20 ⊕ x22x10 ⊕ x22x12 ⊕ x22 ⊕ x12 ⊕ x02

y22 = x40x30 ⊕ x40x31 ⊕ x40 ⊕ x41x30 ⊕ x41x31 ⊕ x20 ⊕ x10 ⊕ 1

y32 = x41x01 ⊕ x41x02 ⊕ x41 ⊕ x42x01 ⊕ x42x02 ⊕ x31x01 ⊕ x31x02 ⊕ x32x01

⊕ x32x02 ⊕ x12 ⊕ x02

y42 = x40x10 ⊕ x40x11 ⊕ x41x10 ⊕ x30 ⊕ x10x00 ⊕ x10x01 ⊕ x11x00 ⊕ x11x01

Given the coordinate functions (Section III-A), note that
the following conditions are satisfied (refer to [18] for
relevant discussion):
• Sharing of input variables: xi =

⊕2
j=0 xij for i =

0, 1, 2, 3, 4.
• Correctness:

⊕2
j=0 yij = yi for i = 0, 1, 2, 3, 4.

• Non-completeness: At least one variable from
{xi,0, xi,1, xi,2} is missing in each of yj,0, yj,1, yj,2 for
all i, j ∈ {0, 1, 2, 3, 4}. For instance, in our case (i.e.,
sbox3), x01, x11, x21, x30, x31 and x41 are missing
in y00. Similar inferences can be drawn to the other
output shares as well.

• Uniformity: All non-zero entries in the xi

(∀i) versus yj,k (∀j, k) frequency distribution
table are equal. For instance, it can be
verified that y2 contains the following
monomials: {x32x41, x32x42, x31x41, x30x41,
x31x42, x20, x42, x41, x30x40, x12, x22, x21,
x30x42, x11, x40, x10, x31x40, 1, x32x40}; and
each has the frequency of 256 in the distribution table.

There is another way to employ the threshold implemen-
tation for a given SBox, that involves decomposing it into
two lower degree SBoxes. However, the ASCON SBox is
quadratic (similar to that of BAKSHEESH [19]), so it is not
possible to employ this method.

V. PROTECTION AGAINST FAULT INJECTION ATTACKS

Since fault injection attacks [6] rely on some form of
error propagation, the idea is to use redundancy. The same
circuit is replicated (could be in the temporal domain or in
the spatial domain) and depending on the power, we may
need to duplicate or triplicate:
• Duplicate and compare works against Differential Fault

Attack (DFA).
• Triplicate and take majority works against Statistical

Ineffective Fault Attack (SIFA), although duplication-
based SIFA countermeasures do exist (see [20], [21]).

In our implementation, we employed triplication and
majority-based countermeasure techniques. Specifically, all
the procedures are executed thrice, and the final output is
determined by selecting the majority output from the three.
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In a case where the three results are distinct, a random
output is produced. Figure 2 illustrates the working of the
triplication countermeasure. F1, F2, and F3 are the three
instances of ASCON whose output is finally combined with
the majority operation.

Majority Operation

F1 F2 F3

Top Module

Figure 2: Triplication based countermeasure (schematic)

VI. ARCHITECTURE AND INTERFACE

No

Yes

Yes

No

Yes

S

RESET

x0, x1, . . . , x4 ← 0, 0, . . . , 0
ctr ← 0

rst = 0?

start = 0?

{x0, x1, . . . , x4} = S

ctr =
rounds?

ready = 1 STOP

Round Constant Layer

Substitution Layer

Linear Layer

ctr = ctr+1

Figure 3: Finite state diagram for ASCON permutation (with round
counter)

A. Inputs and Outputs

The input data consist of the key, 128-bit nonce, associ-
ated data (AD), plain text (Pt), control signals, and random
numbers (generated using an external entropy source, which
is not considered within the scope). The output data consists
of the cipher text (Ct), 128-bit tag, and ready signals to
indicate the end of the processing. Some of the important
signals are explained below:

• keyxSI signal is of width 6 bits. The LSB bit
carries the key information, and the other 5 bits carry
random numbers, which are utilized for threshold
implementation.

• noncexSI, plain_textxSI, and
associated_dataxSI signals are of width
6 bits, and the distribution of the bits is similar to
key.

• encryption_startxSI and
decryption_startxSI are 1-bit control
pulses that signal the start of encryption/decryption,
respectively.

• r_64xSI signals are of 14 bits width, r_128xSI
signals are of 3 bits width, and r_ptxSI signals are
of 3 bits width carrying random numbers which are
utilized for threshold implementation.

• message_authentication is a 1 bit output sig-
nal. It is 0 when the tag received from encryption + tag
generation process is not matching the tag generated
by the decryption + tag verification process.

Figure 4 represents the top-level diagram of the pro-
posed ASCON architecture, which includes all the signals
mentioned above.

B. Parameters

The followings parameters can be tuned to any specific
configuration:
• k is the key size
• r is the rate (or the block size)
• a and b internal number of rounds which vary based

on the ASCON variant
• l is the length of associated data
• y is the length of plain text
• TI is set to 1 for threshold implementation; else 0
• FP is set 1 for fault protection; else 0
Figure 3 shows a finite state diagram representation

of the ASCON permutation. The finite state of ASCON
permutation process begins with a reset state where the
round counter is set to 0. The state then waits for the
permutation_start signal to be activated before pro-
ceeding to divide the ASCON state S into five registers,
which are updated after every round. Each round consists of
three stages, namely round constant addition, substitution
layer, and linear layer, as described in Section II. At the
end of each round, the counter variable ctr is incremented
by 1.

Figure 5 depicts the finite state diagram for the ASCON
encryption process. The finite state of ASCON encryption
process begins with RESET state, where all signals are reset
to 0. The process then proceeds to the IDLE state, where
the ASCON state is initialized based on the key, nonce, and
cipher configuration. The system remains in this state until
the encryption_start pulse is activated.

Upon receiving the start pulse, the system enters the
INITIALIZE state, where the initialization process occurs.
The next state, ASSOCIATED_DATA, is where the associ-
ated data is processed. The associated data is processed in
multiple blocks, and the permutation process runs on each
block one after the other. Once all the blocks are processed,

5



keyxSI

noncexSI

plain

textxSI

associated
dataxSI

r 64xSI

encryption
start

decryption
start

5

5

5

5

14

Unwrapper

k

128

y

l

64

key

nonce

plain text

associated data

encryption start

decryption start

r0...13

Round

Counter Permutation

5
ctr

P
in

P
o
u
t

p
e
rm

u
ta

ti
o
n

st
a
rt

p
e
rm

u
ta

ti
o
n

re
a
d
y

Wrapper

3
2
0 3

2
0

128

y

tag

cipher text

Top Module

Ascon core

cipher

textxSO

encryption
ready

decryption
ready

message

authentication

tagxSOEncryption + Decryption

with FP and TI

3

3r 128xSI

r ptxSI

Figure 4: Top level diagram of ASCON hardware

the system enters the PTCT state, where the plain text is
processed, and cipher text is generated. This stage is similar
to the ASSOCIATED_DATA stage. The final stage is the
FINALIZE state, where the tag is generated. After this,
the system enters the DONE state, where it waits for new
data and the next start signal.

C. Entropy Requirement

In order to attain the desired security, it is essential that
the some randomness is used (which is generated by an
external source of entropy). We need randomness here for
the following three purposes (see Section VI-B for the
notations):

1) Fault protection. In cases where all three outputs
differ, a random number is produced as the output of.
The number of random bits used: 2× 128 + 2y.

2) Tag mismatch. If the message_authentication
signal is 0, then the output (plain text) of decryption
+ tag verification is a random number. The number of
random bits used: 128 + y.

3) Threshold. The masking algorithm uses random
bits at different stages of the ASCON encryp-
tion/decryption/permutation processes. The number of
random bits used: 4k + 4× 128 + 4l + 4y + 14× 64.

Therefore, we count the total number of random bits required
as: 4k + 4l + 7y + 1792.

VII. ASIC AND FPGA BENCHMARKS

In Table III, we show the benchmark results for the
following configurations on ASIC (STM 130nm) and FPGA
(Kintex-7) with the following settings: (α) unprotected
ASCON, (β) ASCON with TI, (γ) ASCON with fault pro-
tection, (δ) ASCON with TI and fault protection. The
variant used here is ASCON-128 with a length of 32
bits for both plain text (Pt) and associated data (AD).
The results indicate that the ASIC implementation of
ASCON with threshold requires approximately 4.5× the
area of (α), while the implementation with fault protection
requires approximately 2.83× the area of (α), and the
implementation with both threshold and fault protection
requires approximately 12.57× the area (α).

However, in FPGA implementation, we noticed that the
area of ASCON with threshold is approximately 3.15× the
area of (α), while the implementation with fault protection
remains almost same. We speculate that this behavior might
be attributed to the tool’s optimization process, wherein it
could be removing the extra copies during its optimization
steps.

TABLE III: ASCON-128 hardware benchmarks (unprotected and
protected)

(a) ASIC (STM 130nm)

Configuration Cells Area Critical Dynamic
(µm2) Path (ps) Power (mW)

Unprotected 12853 184289 20853 1.34
TI 57898 763912 20504 9.00
FP 36389 519621 20840 3.79

FP and TI 161531 2080207 20956 28.8

(b) FPGA (Kintex-7)

Configuration LUT FF Frequency (MHz)
Unprotected 2809 1830 181.82

TI 8841 5419 158.73
FP 2817 1830 181.82

TI and FP 8841 5419 158.73

The ASIC and FPGA benchmarks for (encryption +
tag generation) and (decryption + tag verification) are
presented in Tables IV and V respectively, showcasing
both the protected and unprotected configurations. The
data highlights that the area required in the threshold
implementation (TI) configuration is approximately 3.52×
larger compared to the configuration without threshold
implementation in both circuits.

In Table VI, we show the benchmark for ASCON hash
on Kintex-7 FPGA and STM 130nm ASIC technologies.
We include unprotected hash and protected hash in the
benchmark for comparison. The ASCON-Hash variant is
used, with the length of the message being 40 bits and the
length of the hash output being 256 bits.

Table VII shows the area occupied in number of cells
using the TSMC 65nm technology, for varied sizes of
(Pt, AD) for both protected and unprotected versions of
ASCON-128. Similarly, Table VIII shows the area of
protected and unprotected versions of ASCON-Hash with

6
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Figure 5: Finite state diagram for ASCON hardware implementation

TABLE IV: Encryption + Tag generation benchmarks for
ASCON-128

(a) ASIC

Configuration Cells Area Critical Dynamic
(µm2) Path (ps) Power (mW)

Unprotected 7585 107317 36523 0.97
TI 27067 393279 36294 4.48
FP 22034 297077 36537 2.68

TI and FP 75647 1053039 36124 12.66
(b) FPGA

Configuration LUT FF Frequency (MHz)
Unprotected 1232 822 200.00

TI 4332 2452 156.74
FP 1232 822 200.00

TI and FP 4623 2448 153.85

varying message size.
In Table IX, we summarise our area benchmarks for the

circuits. The numbers indicate the ratio of the cells/LUT
of the circuit corresponding with that of its unprotected
version.

Figure 6 shows the plot of latency against varying
(plaintext, associated data) sizes for ASCON-AEAD (Figure
6a) and ASCON-Hash (Figure 6b). An increase in the
lengths of the AD and PT fields is associated with a
corresponding increase in latency. This behavior aligns with
the design of ASCON, where the number of permutation

TABLE V: Decryption + Tag Verification benchmarks for
ASCON-128

(a) ASIC (STM 130nm)

Configuration Cells Area Critical Dynamic
(µm2) Path (ps) Power (mW)

Unprotected 7609 108864 36975 0.86
TI 28441 399630 37517 4.54
FP 21727 301658 36731 2.48

TI and FP 77376 1067886 36522 12.51
(b) FPGA

Configuration LUT FF Frequency (MHz)
Unprotected 1216 821 188.68

TI 4423 2445 163.93
FP 1216 821 188.68

TI and FP 4423 2445 163.93

rounds scales with the input size.
Figure 7 shows the TSMC 65nm ASIC amoeba view of

the layout diagrams of ASCON-128 with PT and AD of
32 bits each. Comparing the two images, it can be seen
that the substitution and the linear layers occupy a large
amount of area in the protected implementation.

VIII. CONCLUSION AND OUTLOOK

This work presents a full-stack hardware suite for ASCON
hash and AEAD [2]. There seems to be no comprehensive
side-channel and fault attack-protected hardware implemen-
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TABLE VI: ASCON-Hash hardware benchmarks (unprotected
and protected)

(a) ASIC (STM 130nm)

Configuration Cells Area Critical Dynamic
(µm2) Path (ps) Power (mW)

Unprotected 4980 76765 7423 0.53
TI 24058 321471 8568 3.78
FP 15674 239740 8862 1.86

TI and FP 69679 925986 10377 11.79
(b) FPGA (Kintex-7)

Configuration LUT FF Frequency (MHz)
Unprotected 847 911 192.31

TI 4795 2719 172.11
FP 847 911 192.31

TI and FP 4840 2719 172.41

TABLE VII: Area benchmarks for ASIC (TSMC 65nm) with
varying (Pt, AD) sizes for ASCON-128

(a) Unprotected

AD size Plaintext size
32 64 128 256

32 13611 14677 17423 21951
64 13817 15021 17691 22139
128 14155 15340 17829 22379
256 14615 15728 18363 22916

(b) TI

AD size Plaintext size
32 64 128 256

32 53173 55691 64739 78151
64 54266 57803 66439 79285
128 55225 58334 68232 79821
256 57264 61571 70067 82816

(c) FP

AD size Plaintext size
32 64 128 256

32 38234 41392 49875 63989
64 38643 42228 50531 64233
128 39269 42756 50624 64637
256 39865 43226 51414 65477

(d) TI and FP

AD size Plaintext size
32 64 128 256

32 149078 157240 184447 223151
64 151867 162987 188732 224129
128 152982 162367 191092 223376
256 155365 168424 193454 229068

tation of this cipher, so we expect our work will become
useful in the future.

Note that we exclusively consider triplication-based
SIFA countermeasure for the interest of simplicity. The
overall area can be reduced by using a more complicated
duplication-based SIFA countermeasure as explained in [20],
[21]. This can be covered in a future scope.

A hardware application programming interface for LWC
is proposed by GMU [22]. It is possible to make our code
compliant to the API (somewhat comparable to [23]), and
this task is left as a future work.

Finally, one may be interested in evaluating the effect
of side-channel attacks on unprotected implementation and
how the protected implementation resists it.
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