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Abstract. This paper introduces transparent and efficient arguments
for Hadamard products between committed vectors from two source
groups. For vectors of length n, the proofs consist of O(logn) target
group elements and O(1) additional elements. The verifier’s workload is
dominated by O(logn) multi-exponentiations in the target group and
O(1) pairings. We prove our security under the standard SXDH assump-
tion. Additionally, we propose an aggregator for Groth16 pairing-based
zk-SNARKs and a proof aggregation technique for the general case of the
KZG pairing-based polynomial commitment scheme using our Hadamard
product arguments. Both applications support logarithmic-sized aggre-
gated proofs without requiring an additional trusted setup, significantly
reducing the verifier’s pairing operations to O(1).

1 Introduction

The role of inner product and Hadamard product, also known as entry-wise prod-
ucts, is fundamental in modern cryptography. These operations are crucial for
supporting a wide array of cryptographic primitives, including zero-knowledge
proofs and commitment schemes [5,25,7,8].

In Groth’s work [14], an extensive framework for zero-knowledge arguments
is introduced, primarily emphasizing the reduction of Hadamard products to
inner product relations. This scheme employs a modified form of Pedersen com-
mitments [23] and integrates randomization and batch-verification techniques
to streamline diverse linear algebra relations into inner product relations. The
randomization technique is succinctly explained as follows: consider a randomly
chosen scalar r ∈ F. Introduce a binary operator ∗, which maps from Fn × Fn

to F and is defined as a ∗b = a(b ◦ r)T , where r = (1, r, r2, · · · , rn−1). An inter-
esting property emerges: if a ∗ b = c ∗ d, it implies a ◦ b = c ◦ d, with an error
bound of at most (n−1)/|F|. Incorporating this randomization technique enables
the demonstration of Hadamard Product Arguments(HPA) from Inner Product
Arguments(IPA), expressed as ⟨ar,b⟩ = ⟨cr,d⟩. Consequently, leveraging effi-
cient IPA, such as [7,8] allows the establishment of efficient HPA protocols. The



Bulletproofs [7] achieves transparency but requires a linear verification cost for
the verifier. Conversely, Bünz et al. [8], achieves sublinear verification times but
necessitates a trusted setup. Both approaches face limitations due to the verifier
computing the commitment keys: unstructured keys, while transparent, impose
a linear computation cost on the verifier, whereas structured keys reduce the
verifier’s computation on commitment keys but require an additional trusted
setup.

Dory [20], a recent advancement in the field, introduces efficient inner prod-
uct arguments, ensuring transparency, and providing sublinear verification time.
Leveraging the properties of Type III pairing (F,G1,G2,GT , e, g, h), and with
precomputation of commitment keys performed during an offline phase, Dory
effectively delegates the implicit computation of challenge-dependent commit-
ment keys to the prover. The application of Groth’s randomization technique
to Dory theoretically enables the design of a transparent HPA protocol with
sublinear verification time. Unfortunately, Dory currently faces challenges in ac-
commodating Groth’s randomization, primarily because the verifier lacks direct
control over the keys during the online phase of the protocol, making the verifi-
cation of randomized values infeasible.

Algorithm 1 Dory-Reduce [20]

Precompute: χ = ⟨ck1, ck2⟩,
∆1L = ⟨ck1L, ck

′
2⟩, ∆1R = ⟨ck1R, ck

′
2⟩,

∆2L = ⟨ck′
1, ck2L⟩, ∆2R = ⟨ck′

1, ck2R⟩
Input: (C,D1, D2 ; a,b) ∈ R2m,ck1,ck2

P → V : D1L = ⟨aL, ck
′
2⟩, D1R = ⟨aR, ck

′
2⟩,

D2L = ⟨ck′
1,bL⟩, D2R = ⟨ck′

1,bR⟩
V → P : β ←$ F
P : a∗ ← a+ βck1, b∗ ← b+ β−1ck2

P → V : C+ = ⟨aL,bR⟩, C− = ⟨aR,bL⟩
V → P : α←$ F
P : a′ ← αa∗

L + a∗
R, b′ ← α−1b∗

L + b∗
R

V : C′ ← C + χ+ βD2 + β−1D1 + αC+ + α−1C−
D′

1 ← αD1L +D1R + αβ∆1L + β∆1R

D′
2 ← α−1D2L +D2R + α−1β−1∆2L + β−1∆2R

Output: (C′, D′
1, D

′
2) ; a′,b′) ∈ R2m−1,ck′

1,ck
′
2

In particular, Dory leverages the benefits of symmetry within both the key
and message spaces by employing the AFGHO commitment scheme [1]. When
the message resides in Gn

1 , the commitment key resides in Gn
2 (and vice versa).

Consequently, messages and commitment keys can be merged using a random
challenge β, yielding a∗ = a + βck1 ∈ Gn

1 and b∗ = b + β−1ck2 ∈ Gn
2 (re-

fer to Algorithm 1). This approach delegates the computation of the key to
the prover, thus reducing the verification time for the verifier. However, when
applying Groth’s randomization technique, b ◦ r is replaced with b, leading to
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b∗ = b ◦ r + β−1ck2. The resulting reduced-length (folded) vector b′ is then
expressed as follows:

α−1(bL ◦ rL) + (bR ◦ rR) + α−1β−1ck2L + β−1ck2R ∈ G
n
2
2

(refer toAlgorithm 1). Consequently, the i-th entry of vector b′ now includes ri

and r
n
2 +i−1. Thus, the verifier cannot computeD′2 = ⟨ck′1,b′⟩ using commitment

values D2L and D2R, and furthermore, cannot verify whether the prover has
correctly computed b ◦ r and folded commitment key ck′.

In our research, we tackle this limitation by introducing an elimination fold-
ing technique. This technique maintains sublinear computation for the verifier,
ensuring transparency, and achieves proper randomization of vectors through
folding, all while preserving the Hadamard product a ◦ b = u ∈ Gn

T .
To provide further detail, given witness vectors a and ar, along with a random

challenge r ← F, the verifier aims to verify that ar and (1, r, r2, · · · , rn−1)◦a are
equal. To achieve this, we employ an iterative halving process for the degree of
r through a folding technique, ultimately deriving scalar a and ar. Verification
of their equality ensures that ar is indeed equal to r ◦ a (Further details about
the elimination folding technique, refer to section 1.3).

1.1 Our Contributions

Hadamard Product Arguments. We propose an efficient Hadamard product
argument, named ΠHP. The ΠHP maintains transparency and ensures a verifi-
cation time of Oλ(log n), sublinear proof size, and Oλ(n) proving time. To the
best of our knowledge, this work represents the first sublinear-size HPA with
a transparent setup. Moreover, we establish the security of our scheme under
the SXDH assumption. To achieve this, we propose the elimination folding tech-
nique. This novel method enables the effective folding of the vector and the
elimination of half of the exponents from the random vector r. Consequently,
both the resulting vectors ar and r◦a simplify to scalars, ensuring identical val-
ues due to the removal of randomness in r. This advancement empowers efficient
verification, confirming whether ar equals r ◦ a, and stands as a crucial element
in the development of our efficient Hadamard product arguments protocol.

Efficient aggregation of pairing equations using Hadamard product
arguments. In this work, we introduce an efficient method for aggregating in
the verification of pairing equations using Hadamard product arguments. Our
key contributions are as follows:

– We address the most general case where all ai, bi, ci, di are distinct. Here, ai,
bi, ci, and di are elements of the groups involved in the pairing operation.
Traditional methods of randomized aggregation (as [18,4]) become ineffi-
cient in this setting. We propose a novel approach using Hadamard product
arguments, which reduces the number of pairing operations required for ver-
ification. This makes the verification process more efficient.
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Table 1: Comparsion of asymptotic performance of Hadamard Product Argu-
ments

Protocol Transparency P’s time Proof size V’s time Security assumption

Our ΠHP Yes Oλ(n) Oλ(logn) Oλ(logn) SXDH

Bootle et al. [6] Yes O(n) O(nϵ) O(nϵ) IOP

Bulletproofs [7] Yes O(n) O(logn) O(n) DL

Voproof [27] No O(n logn) O(1) O(1) VO

Xie et al. [26] No O(n) O(logn) O(logn) PIOP

Bünz et al. [8] No Oλ(n) Oλ(logn) Oλ(logn) ASDBP, SDH, GGM

Poppins [19] No Oλ(n) Oλ(logn) Oλ(logn) BSDH, EPKE

Daza et al. [10] No Oλ(n) Oλ(logn) Oλ(logn) q-A-DLOG

Lipmaa et al. [22] No Oλ(n logn) O(1) Oλ(1) AGM, PDL

– Our technique can be applied to various cryptographic protocols that rely
on pairing equations, such as digital signatures, zero-knowledge proofs, and
commitment schemes. By improving the efficiency of these schemes, our
method facilitates faster and more practical implementations.

– We demonstrate that our approach significantly enhances scalability and
performance in the verification of pairing equations. By reducing the com-
putational burden on the verifier, our method ensures faster verification
processes, which is critical for large-scale cryptographic applications. The
reduction in pairing operations leads to substantial improvements in both
time and resource efficiency.

Through these contributions, we provide a framework that not only advances
the state-of-the-art in proof aggregation but also offers practical benefits for a
wide range of cryptographic protocols and applications.

Proof Aggregation. We propose an aggregator for Groth16 [16] pairing-based
zk-SNARKs and a proof aggregation technique for the most general case of the
KZG[18] pairing-based polynomial commitment scheme using our ΠHP. Both
applications support logarithmic-sized aggregated proof without requiring an
additional trusted setup and significantly reduce the verifier’s O(n) pairing op-
erations to O(1) pairing operations.

Implementation. To demonstrate the efficiency of our proposed ΠHP, we im-
plement and optimize it using batch proving techniques. The evaluation results
reveal that ΠHP employs a logarithmic verifier, a notable improvement over the
linear verifier associated with Bulletproofs [7].

1.2 Applications

This subsection introduces applications where our Hadamard product arguments
can be applied. Consider a scheme with a verification equation e(a, b) = e(c, d).
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Verifying n pairing equations, i.e., e(ai, bi) = e(ci, di) for i ∈ [n], requires the ver-
ifier to perform 2n pairing operations. However, if in the aforementioned pairing
equations, all bi (b := bi) are the same (as in BLS multi-signature [4]), the prover
can aggregate ai into a single proof using a challenge r ←$ F. Consequently, the
system of pairing equations reduces to e(

∏
ar

i−1

i , b) =
∏n

i=1 e(ci, di)
ri−1

, thus
reducing the verifier’s pairing operations from 2n to n+1. Additionally, if all di
(d := di) are also the same (as in the case of the same crs and point for KZG

commitment [18]), we obtain the pairing equation e(
∏

ar
i−1

i , b) = e(
∏

cr
i−1

i , d).
This allows the verifier to verify all n verification equations with just 2 pairing
operations.

We consider the most general case where all ai, bi, ci, di are distinct. That
is, we address the case of having n verification equations of the form e(ai, bi) =
e(ci, di). In this case, randomized proof aggregation is no longer efficient, but
verifier-efficient proof aggregation is achievable using our Hadamard product
arguments.

Aggregation for Groth16 Groth16 [16] presents an efficient zk-SNARK based
on pairings, where the verifier verifies the equation e(A,B) = e(C,D) · e(S,H)
using the proof π = (A,B,C) (for detailed explanation, refer to Appendix A).
Therefore, to aggregate n instances of Groth16, the verifier needs to verify the
pairing equations e(Ai, Bi) = e(Ci, Di) · e(Si, Hi) for all i ∈ [n]. We consider
each proof as a vector and contemplate their Hadamard product: A ◦ B =
C ◦D+ S ◦H. Our approach reduces the verifier’s required pairings from O(n)
to O(1), efficiently improving the verification time for aggregation (for detailed
explanation, refer to Section 5).

KZG commitment Aggregation for distinct crs KZG commitment [18] is a
widely used polynomial commitment. Its verification involves pairing equations,
where the verifier checks e(C − ga, h) = e(π, hz−s) (for detailed explanation,
refer to Appendix B). As mentioned earlier, in the most general case where
crs, polynomials, and points are all different, the above equation manifests into
n pairing equations as follows: for all i ∈ [n], e(Ci − gai , h) = e(πi, h

zi−si). Sim-
ilarly, we can consider this as vectors and apply Hadamard product arguments:
C ◦ h = πππ ◦H (for detailed explanation, refer to Section 6).

1.3 Technical Overview

Let a, c ∈ Gn
1 and b,d ∈ Gn

2 be vectors. Define r := (1, r, r2, · · · , rn−1) for a
random challenge r ∈ F. The verifier aims to confirm the equation a ◦b = c ◦d.
Traditional methods involve verifying n concurrent pairing equations e(ai, bi) =
e(ci, di), which, however, entail the disadvantage of requiring n pairing opera-
tions for the verifier. To reduce verification costs, we transform both sides of the
equation into an inner product form incorporating the random challenge r. We
restructure the provided vectors as follows:

ar ← r ◦ a, cr ← r ◦ c.
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Now, we employ inner products for comparison. Let X = ⟨ar,b⟩ ∈ GT be the
inner pairing product. Simisamplely, X ′ := ⟨cr,d⟩ ∈ GT . Then verifying X = X ′

ensures
∑

ri−1e(ai, bi) =
∑

ri−1e(ci, di), implying a ◦ b = c ◦ d with high
probability. Therefore, to complete the argument of knowledge for the Hadamard
product, we need to verify the following three equations:

(1) X = X ′, (2) ar = r ◦ a, (3) cr = r ◦ c.

The first equation (1) can be directly verified by the verifier using the given
instancesX andX ′. The remaining equation (2) (and the same method is applied
to equation (3), as our Hadamard product equations are symmetric) is verified
using a novel folding technique called elimination folding. Our folding technique
folds the vectors while removing the random challenge r included in the vector
ar. As a result, the fully folded vector ar becomes a group element in G1 with
all r removed, which equals the value of folding a entirely. Set the commitment
key for vector a ∈ Gn

1 to ck2 ←$ Gn
2 . Simisamplely, set the commitment key for

vector b ∈ Gn
2 to ck1 ←$ Gn

1 .
For the witness a and b, our argument of knowledge for the Hadamard prod-

uct consists of the following steps:

– (reformatting) Upon receiving a random challenge r from the verifier, the
prover computes ar := r ◦ a ∈ Gn

1 and calculates C = ⟨a,b⟩, X = ⟨ar,b⟩,
and K = ⟨k,b⟩, along with the commitments D1 = ⟨a, ck2⟩, D2 = ⟨ck1,b⟩,
D3 = ⟨ar, ck2⟩, and D4 = ⟨k, ck2⟩. Here, a folding key k is a newly intro-
duced vector used to reduce the length of the key ck1.

– (elimination folding) The folding process in our protocol serves two main
purposes: reducing the length of vectors (messages and keys) and halving
the degree of the random challenge r. Since the left-half vector aL = rL ◦aL
and the right-half vector arR = rR◦aR, we can fold the vectors using random
challenges α and r as follows: a′ ← αaL+aR, a′r ← αarL+ r−

n
2 arR (= rL ◦

a′). Thus, through the folding process, we reduce the length of vectors and
the degree of the random r in ar by half. Repeating this folding m := log n
times eliminates all the r values that were initially present in ar. Our protocol
delegates the folding of key ck2 to the prover by including it in the message
b. However, since message a has already been reformatted into ar, we cannot
add key ck1 to it, and therefore, we cannot delegate the folding of ck1 to
the prover. To tackle this issue, we use a vector k ∈ Gn

1 for folding ck1. As a
result, we separate the folding operations of the message a and the key ck1,
enabling us to delegate them individually to the prover.
(i) (combine the message and the key)

b∗ ← b+ β−1ck2, k∗ ← k+ βck1.
(ii) (r-elimination folding)

a′ ← αaL + aR, b′ ← α−1b∗L + b∗R,
a′r ← αa′rL + r−

n
2 a′rR, k′ ← αk∗L + k∗R.

– (pairing check) After completing m rounds of the reduction process, the
vectors a, b, ar, k, and the keys ck1, ck2 are transformed into group elements
a, ar, k, ck1 ∈ G1, and b, ck2 ∈ G2, respectively. Notably, as a consequence
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of the r reduction in our folding protocol, a becomes equivalent to ar. As a
result, the verifier can ensure the validity of ar = r ◦ a by verifying C = X
and D1 = D3.

For each witness pair (a,b) and (c,d), the verifier, after reformatting to obtain
X and X ′, checks if X = X ′. Next, the verifier and prover execute a reduction
and finalcheck to verify ar = r ◦ a and cr = r ◦ c. In conclusion, we establish
a ◦ b = c ◦ d.

a,b, c,d

Reformatting:
ar ← r ◦ a
cr ← r ◦ c

Check:
⟨ar,b⟩ = ⟨cr,d⟩

Elimination Folding
& Pairing Check:
=⇒ ar = r ◦ a

Elimination Folding
& Pairing Check:
=⇒ cr = r ◦ c

a ◦ b = c ◦ d

Fig. 1: Our approach to Hadamard product arguments

1.4 Related Works

Hadamard Product Arguments. Groth introduces the first transparent ar-
gument system for various linear algebraic relations, including the Hadamard
product, in [14]. The proving time isO(n2), and the verification time isO(n) with
O(n) communication, where n denotes the vector length. Bayer and Groth ex-
tend this argument system to multi-Hadamard product arguments in [2], achiev-
ing efficiency of O(mn) for the prover, O(n+m) for the verifier, and O(n+m)
for communication cost, where m vectors have a length of n.

Another approach to constructing efficient Hadamard product arguments is
based on a trusted setup, which generates a Common Reference String (CRS)
[15,21,11,9,19]. Groth in [15] presents Hadamard product arguments with Θ(n2)
proving time, Θ(1) verifying time, and communication cost, but with a CRS size
of Θ(n2). Subsequently, [21] improves the CRS size to Θ(n) without sacrificing
other performance metrics, and [11] further enhances the efficiency of proving
time to Θ(n log n). In LegoSNARKs [9], Hadamard product arguments with a
Commit and Prove paradigm (which combines two relations with shared inputs
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into one) are presented. Their Hadamard product argument has O(n) proving
time and O(log n) verifying time. In Poppins [19], a multi-Hadamard product ar-
gument is introduced, improving upon the one presented by Bayer [2]. Poppins’s
variant of the multi-Hadamard product argument outsources the verifier’s final
check by leveraging the inner product argument of [8], achieving O(nm2) prover
complexity and O(log n + m) verifier complexity. While gaining benefits from
verification efficiency, the precondition for a trusted setup arises, which was not
needed in Bayer and Groth’s original multi-Hadamard product argument [2].

Groth16 Proofs Aggregation. Bünz et al. [8] and Snarkpack [13] intro-
duce proof aggregation schemes enabling the aggregation of n Groth16 [16] zk-
SNARKs proofs with O(log n) proof size and verifier time. Both approaches, by
Bünz et al. and Snarkpack, necessitate a specific trusted setup to construct the
structured reference string required for verifying such aggregated proofs. They
share the conceptual premise that pairing-based SNARKs like Groth16 can be
proven and verified solely using algebraic operations [8]. This implies that they
can consolidate nGroth16 verification equations into one randomized verification
equation using inner product arguments.

KZG commitments Aggregation Plonk [12] and Boneh et al. [3] delve into
aggregation techniques using KZG commitments. Plonk introduces a method to
aggregate KZG commitments for the same point across different polynomials.
This enables efficient combination when multiple polynomials have evaluation
values at the same point. In this case, the proof size scales with the number
of polynomials, yet the verifier only requires 2 pairing operations. Conversely,
Boneh et al. investigate the aggregation of KZG commitments for different points
across different polynomials. This presents a technique to efficiently combine
commitments when each polynomial has evaluation values at different points.
Similar to Plonk, the verifier utilizes only 2 pairing operations, and the proof
size is reduced to a constant.

Building upon these foundational works, we extend the aggregation capa-
bilities to handle the most general case where each polynomial has evaluation
values at different points, and additionally, each polynomial may be associated
with different common reference strings (crs). This method allows the verifier to
still require only 2 pairing operations while supporting a logarithmic proof size
relative to the number of polynomials and points involved.

2 Preliminaries

2.1 Notations

Let [n] = {1, 2, . . . , n}. We denote vectors using lowercase boldface letters, such
as a, and their components are expressed as a = (a1, a2, . . . , an). The inner
product of vectors a and b is denoted as ⟨a,b⟩, and their Hadamard product is
represented as a◦b. Concatenation of vectors a and b is denoted as (a∥b). For a
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vector a of even length, we use aL and aR to represent its left and right halves,
respectively. If S is a set, “x ←$ S” indicates sampling x uniformly at random
from S. We utilize Type III pairing (Fp,G1,G2,GT , e, g, h) with the following
properties:

1. G1,G2,GT are groups of prime order p with generators g ∈ G1 and h ∈ G2,
2. The pairing e : G1 × G2 → GT is a non-degenerate bilinear map,
3. The value e(g, h) generates GT .

In Type III pairings, we use the following inner pairing product operation [8]:

⟨·, ·⟩ : Gn
1 × Gn

2 → GT , ⟨a,b⟩ =
n∏

i=0

e(ai, bi)

2.2 Assumptions

Definition 1 (Symmetric external Diffie-Hellman (SXDH) [1]). The Sym-
metric XDH (or SXDH) assumption holds for a Type III pairing (Fp,G1,
G2, GT , e, g, h) if the decisional Diffie–Hellman (DDH) assumption holds for
(Fp,G1, g) and (Fp,G2, h).

Lemma 1. Let (Fp,G1,G2,GT , e, g, h) be a Type III pairing satisfying SXDH
assumption and n = poly(λ). Then, given vector b←$ Gn

i∈{1,2,T} there is no non-
uniform polynomial-time adversary A which can compute a non-trivial a ∈ Fn

such that ⟨a,b⟩ = 0.

Lemma 2. Let (Fp,G1,G2,GT , e, g, h) be a Type III pairing satisfying SXDH
assumption. Then, given a1, a2 ←$ G1 there is no non-uniform polynomial-time
adversary A which can compute non-trivial b1, b2 ∈ G2 such that e(a1, b1) +
e(a2, b2) = 0. In general, for a given vector a ←$ Gn

1 , there is no adversary
which can compute non-trivial vector b ∈ Gn

2 such that ⟨a,b⟩ = 0. Similarly,
there exists no non-uniform polynomial-time adversary which can compute non-
trivial vector a ∈ Gn

1 such that ⟨a,b⟩ = 0 for b←$ Gn
2 .

Definition 2 (AFGHO commitment [1]). The AFGHO vector commitment
scheme is a structure preserving commitment to group elements. For some mes-
sage m ∈ Gn

1 , the triple of PPT algorithms (KeyGen,Commit,Open) are defined
as follows:

• pp← KeyGen(1λ) = {ck←$ Gn
2 , Hi ←$ Gi}

• (C, o)← Commit(pp;m) = {r ←$ F; (⟨m, ck⟩+ r · e(H1, H2), r)}
• 1/⊥ ← Open(pp;C,m, o) = {⟨m, ck⟩+ o · e(H1, H2)

?
= C}

Definition 3 (Computational binding). A triple of three algorithms (Key-
Gen,Commit,Open) provides computational binding property if for any PPT ad-
versary A having knowledge of ck:

Pr

Open(ck, C,m, o)∧
Open(ck, C,m′, o′)∧
m ̸= m′

∣∣∣∣∣∣ (C,m, o,m′, o′)← A(ck)

 ≤ negl(1λ).
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Definition 4 (Perfect hiding). A triple of three algorithms (KeyGen,Commit,Open)
provides perfect hiding property if for all unbounded adversary A = (A0,A1):

Pr

b = b′

∣∣∣∣∣∣
ck← KeyGen(1λ) ∧ (a0,a1, st) = A0(ck)∧
b←$ {0, 1} ∧ (C, o)← Commit(ck,ab)∧
b′ ← A1(C, st)

 =
1

2
.

Definition 5 (Doubly homomorphism). A triple of three algorithms (Key-
Gen,Commit,Open) provides doubly homomorphism if it satisfies the following
conditions:

– The sets (K, +), (M, +), and (Image(CM),+) form abelian groups.
– For any ck, ck′ ∈ K and m,m′ ∈M, it holds that:
• Commit(ck;m) + Commit(ck;m′) = Commit(ck;m+m′)
• Commit(ck;m) + Commit(ck′;m) = Commit(ck+ ck′;m)

Note that, AFGHO commitment is perfectly hiding, computationally binding,
and doubly homomorphic.

2.3 Zero-Knowledge Succinct interactive arguments of knowledge

We follow the presentation in [24,20]. Let (P,V) be a pair of interactive PPT
algorithms. In zero-knowledge succinct arguments of knowledge, the prover P
wants to convince V that some statement holds and she/he has the key knowledge
of why the statement holds without leaking any information of the knowledge.

Definition 6 (Public coin succinct interactive arguments of knowl-
edge). A succinct interactive argument of knowledge scheme for a NP language
R is a protocol between (P, V) with following properties:

– Completeness : An argument is complete if given true statement x ∈ R,
for any witness w and r ∈ {0, 1}∗,
Pr[⟨P(pp, w),V(pp, r)⟩(x) = 1] = 1.

– Soundness : An argument is sound if for x /∈ R, any PPT Prover P∗, and
for all r ∈ {0, 1}∗,
Pr[⟨P∗(pp),V(pp, r)⟩(x) = 1] ≤ negl(λ).

– Knowledge soundness : An argument is knowledge sound if for any PPT
adversary A, there exists a PPT extractor E such that ∀x ∈ R,∀r ∈ {0, 1}∗,
if Pr[⟨A(pp),V(pp, r)⟩(x) = 1] ≥ negl(λ), then Pr[SatR(x, EA(pp, x)) = 1] ≥
negl(λ).

– Succinctness : An argument is succinct if the communication between P
and V is sublinear in |w|.

– Public coin : An argument is public coin if each V’s messageM←$ C, for
C is some fixed set.

Definition 7. An interactive argument (Gen,P,V) for R is honest-verifier
statistical zero-knowledge (HVSZK) if there exists a PPT algorithm S(x, z)
called the simulator, running in time polynomial in |x|, such that for every x ∈
R, w ∈ Rx, and z ∈ {0, 1}∗, the statistical distance between the distributions
tr⟨P(w),V(z)⟩(x) and S(x, z) is negl(λ).
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Definition 8 (Witness-extended emulation [17,25,20]). An public coin in-
teractive argument (Gen,P,V) for R has witness-extended emulation if for all
deterministic polynomial time programs P∗ there exists an expected polynomial
time emulator E such that for all non-uniform polynomial time adversaries A
and all zV ∈ {0, 1}∗, the following probabilities differ by at most negl(λ):

P

[
A(t, x) = 1

∣∣∣∣ pp← Gen(1λ) ∧ (x, zP)← A(pp)∧
t← tr⟨P∗(zP),V(zV)⟩(x)

]
and

P

A(t, x) = 1∧
(Accept(t) = 1⇒ SatR(x, w) = 1)

∣∣∣∣∣∣
pp← Gen(1λ)∧
(x, zP)← A(pp)∧
(t, w)← EP∗(zP)(x)


The witness-extended emulation implies the soundness and knowledge sound-
ness.

Definition 9 (Tree extractability (arguments) [20]). A (2µ+1)-move in-
teractive protocol (P,V) with Verifier message space C is (W, ϵ)-tree extractable
if there exists a PPT algorithm extracting a witness from (w1, · · · , wµ)-tree of ac-
cepting transcripts with failure probability ≤ ϵ,

∏
wi ≤W and maxi(wi) ≤ ϵ|C|.

Definition 10 (Tree extractability (reductions) [20]). We say an inter-
active protocol reducing x ∈ R to x′ ∈ L′ is (W, ϵ)-tree extractable if the
composition of this arguments with a final P message revealing a witness x′ for
x′ is a (W, ϵ)-tree extractable arguments for R.

3 Hadamard Prodcut Arguments

In this section, we propose an efficient and transparent Hadamard product ar-
gument, referred to as ΠHP. For easy of understanding, we omit the expressions
only for zero-knowledge and hiding in commitments here. However, our protocol
can be easily extended to zero-knowledge arguments, and these extensions can
be found in Appendix D.

Definition 11 (Relation for Hadamard Prodcut Arguments). For a given
commitment keys ck1 ←$ Gn

1 , ck2 ←$ Gn
2 , the relation RHP

n,ck1,ck2
is defined by (D1, D2, D

′
1, D

′
2 ∈ GT ; a, c ∈ Gn

1 ,b,d ∈ Gn
2 )

∣∣∣∣∣∣∣∣∣∣
D1 = ⟨a, ck2⟩,
D2 = ⟨ck1,b⟩,
D′1 = ⟨c, ck2⟩,
D′2 = ⟨ck1,d⟩,
a ◦ b = c ◦ d
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3.1 Reformatting Algorithm

To verify the Hadamard product relation a◦b = c◦d, we employ a polynomial-
based approach. This method utilizes two polynomials, X =

∑n
i=1 r

i−1e(ai, bi)
and X ′ =

∑n
i=1 r

i−1e(ci, di), constructed with a randomly chosen r ←$ F. Com-
paring the coefficients of these polynomials confirms the equality of all entries.
In simple terms, the prover and verifier follow the steps below.

1. The prover transmits the inner pairing products ⟨a,b⟩,⟨c,d⟩ and D1, D2,
D′1 and D′2 which are commitments of a,b, c,d.

2. The verifier selects a random challenge r and sends it to the prover.

3. The prover calculates the vector r = (1, r, r2, · · · , rn−1) and computes ar =
r ◦a and cr. Additionally, the prover sets k and k′ as the identity vectors in
Gn
1 .

4. The prover sends the inner pairing product ⟨ar,b⟩, ⟨k,b⟩, ⟨cr,d⟩, ⟨k′,d⟩,
and AFGHO commitments to ar and k, as well as cr and k′, to the verifier.

If not stated otherwise, in this paper, we denote D1, D2, D′1 and D′2 as
AFGHO commitments of vectors a, b, c, and d with commitment keys ck1 and
ck2. Then, our reformatting algorithm Σref is designed as follows.

Algorithm 2 Σref : Reformatting Algorithm

Input: (D1, D2, D
′
1, D

′
2;a,b, c,d)

P → V : C = ⟨a,b⟩, C′ = ⟨c,d⟩
V → P : r ←$ F
P : r← (1, r, r2, . . . , rn−1), ar ← r ◦ a, cr ← r ◦ c, k← 1, k′ ← 1 ∈ Gn

1

P → V : X = ⟨ar,b⟩, K = ⟨k,b⟩, D3 = ⟨ar, ck2⟩, D4 = ⟨k, ck2⟩,
X ′ = ⟨cr,b⟩, K′ = ⟨k′,b⟩, D′

3 = ⟨cr, ck2⟩, D′
4 = ⟨k′, ck2⟩

Output: (C,X,K,Dt∈[4], C
′, X ′,K′, D′

t∈[4] ; a,b,ar,k, c,d, cr,k
′)

In Σref, the prover obtains new vectors ar and cr as new witnesses, incorpo-
rating a random challenge r. Additionally, key vectors k and k′ are introduced to
the witness for elimination folding. Our scheme involves appending commitment
keys ck2 to the witness vector b and performing folding operations (equivalently,
reducing for vector length). This is possible because both vectors belong to the
same space Gn

2 , enabling the prover to delegate the folding of commitment keys
to the verifier and reduce verification costs through precomputation. However,
the new witness vector ar, already multiplied by the random challenge r in each
component, cannot have commitment keys ck1 added and folded (which compli-
cates efficient verification by the verifier). Therefore, we introduce a new vector
k (and k′) to efficiently fold the key ck1. k is initially set as the identity vector
in group Gn

1 at the beginning of the protocol and undergoes addition and folding
with the key ck1. The verifier can verify the folding operation solely through the
commitments, and if necessary, complete calculation of the i-th folding vector k.
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The verifier checksX = X ′ from instances (C,X,K,Dt∈[4]) and (C ′, X ′,K ′, D′t∈[4]).
Now, the remaining task is to verify whether the two witness vectors ar and cr
are correctly constructed from r.

3.2 Elimination Folding Algorithm

Specifically, the verifier needs to confirm that ar = r ◦ a and cr = r ◦ c. As
these equations are symmetric, the same verification scheme can be applied to
each equation independently. Therefore, in this section, we devise an algorithm
to verify ar = r ◦ a for (C,X,K,Dt∈[4];a,b,ar,k).

Our algorithm folds the witness (a,b,ar,k) to halve the length of the vectors.
Unlike other folding schemes, ours eliminates the factor r multiplied to ar during
folding (referred to as the elimination folding technique). This ensures that the
folded a and ar are identical, confirming that ar correctly underwent Hadamard
product with a using r. We denote this elimination folding algorithm as Σelim.
The Σelim relation is defined as follows:

Definition 12 (Relation for Elimination Folding). Let i = 1, 2. For a
given commitment keys cki ←$ Gn

i and a random challenge r ∈ F, the relation
RElim

r,n,ck1,ck2
is defined as follows: (C,X,K,Dt∈[4] ∈ GT ;

a,ar,k ∈ Gn
1 ,b ∈ Gn

2 )

∣∣∣∣∣∣∣∣
ar = (1, r, r2, · · · , rn−1) ◦ a,
C = ⟨a,b⟩, X = ⟨ar,b⟩, K = ⟨k,b⟩,
D1 = ⟨a, ck2⟩, D2 = ⟨ck1,b⟩,
D3 = ⟨ar, ck2⟩, D4 = ⟨k, ck2⟩


After the reformatting, (C,X,K,Dt∈[4]) are computed. In Σelim, instead of

the verifier, the prover combines the keys ck1 and ck2 with k and the message b,
respectively, to fold the keys. This process involves interactive computation for
verifying statements within the relation and simultaneously reduces the witness
a, b, ar, and k by half in size, utilizing a random challenge supplied by the
verifier.

1. The prover calculates the inner pairing product values XL, XR, D3L, D3R,
D′t,L, D

′
t,R of halves for all t ∈ [4] and sends these values to the verifier.

2. The verifier chooses a random challenge β ←$ F and sends it to the prover.
3. Using β, the prover combines the witness b with the commitment key ck1

to create a new vector b∗. The prover also combines the key ck1 with k to
create a new vector k∗.

4. The prover calculates the cross-terms C±, X±,K± of halves and sends them
to the verifier.

5. The verifier chooses another random challenge α ←$ F and sends it to the
prover.

6. The prover folds the vectors a, b∗, ar, and k∗ using α and r.
7. The verifier verifies that the sum of values received in step 1 matches the

previous round’s instance and computes C ′, X ′,K ′, D′t∈[4] using α, β, and r.
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Algorithm 3 Σelim : Elimination Folding Algorithm

Precompute: ck′
1 ← ck1L, ck′

2 ← ck2L, χ = ⟨ck1, ck2⟩
for I ∈ {L,R}, ∆1I = ⟨ck1I , ck

′
2⟩, ∆2I = ⟨ck′

1, ck2I⟩
Input: (C,X,K,Dt∈[4];a,b,ar,k) ∈ RElim

r,n,ck1,ck2

P → V : for I ∈ {L,R},
XI = ⟨arI ,bI⟩, D3I = ⟨arI , ck2I⟩,
D′

1I = ⟨aI , ck
′
2⟩, D′

2I = ⟨ck′
1,bI⟩, D′

3I = ⟨arI , ck
′
2⟩, D′

4I = ⟨kI , ck
′
2⟩

V → P : β ←$ F
P : b∗ ← b+ β−1ck2, k∗ ← k+ βck1

P → V : C+ = ⟨aL,b
∗
R⟩, C− = ⟨aR,b

∗
L⟩,

X+ = ⟨arL,b
∗
R⟩, X− = ⟨arR,b

∗
L⟩,

K+ = ⟨k∗
L,b

∗
R⟩, K− = ⟨k∗

R,b
∗
L⟩

V → P : α←$ F
P : a′ ← αaL + aR, b′ ← α−1b∗

L + b∗
R,

a′
r ← αarL + r−

n
2 arR, k′ ← αk∗

L + k∗
R

V : Check if X = XL +XR, D3 = D3L +D3R

C′ ← C + β−1D1 + αC+ + α−1C−
X ′ ← XL + r−

n
2 XR + β−1(D3L + r−

n
2 D3R) + αX+ + α−1r−

n
2 X−

K′ ← K + χ+ βD2 + β−1D4 + αK+ + α−1K−
D′

1 ← αD′
1L +D′

1R,
D′

2 ← α−1D′
2L +D′

2R + α−1β−1∆2L + β−1∆2R

D′
3 ← αD′

3L + r−
n
2 D′

3R,
D′

4 ← αD′
4L +D′

4R + αβ∆1L + β∆1R

Output: (C′, X ′,K′, D′
t∈[4];a

′,b′,ar
′,k′) ∈ RElim

r,n
2
,ck′

1,ck
′
2

Theorem 1. Let i = 1, 2. For ck′i ←$ Gn/2
i , Σelim is a HVSZK, public-coin,

succinct interactive argument of knowledge for RElim
r,n/2,ck1,ck2

with (9, 12/|F|)-
tree extractability under SXDH.

Proof. First and foremost, succinctness and the public coin property are imme-
diate. Refer to Theorem 6 in the Appendix for the validity of HVSZK.
Completeness : Using the properties of AFGHO commitment, completeness
can be easily verified as follows:

C ′ = ⟨a′,b′⟩ = ⟨αaL + aR, α
−1b∗L + b∗R⟩ = C + β−1D1 + αC+ + α−1C−,

X ′ = ⟨ar′,b′⟩ = ⟨αarL + r−
n
2 arR, α

−1b∗L + b∗R⟩
= XL + r−

n
2 XR + β−1(D3L + r−

n
2 D3R) + αX+ + α−1r−

n
2 X−,

K ′ = ⟨k′,b′⟩ = ⟨αk∗L + k∗R, α
−1b∗L + b∗R⟩

= K + χ+ βD2 + β−1D4 + αK+ + α−1K−,

D′1 = ⟨a′, ck′2⟩ = ⟨αaL + aR, ck
′
2⟩ = αD′1L +D′1R,

D′2 = ⟨ck′1,b′⟩ = ⟨ck′1, α−1b∗L + b∗R⟩
= α−1D′2L +D′2R + α−1β−1∆2L + β−1∆2R,
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D′3 = ⟨ar′, ck′2⟩ = ⟨αarL + r−
n
2 arR, ck

′
2⟩ = αD′3L + r−

n
2 D′3R,

D′4 = ⟨k′, ck′2⟩ = ⟨αk∗L + k∗R, ck
′
2⟩ = αD′4L +D′4R + αβ∆1L + β∆1R.

Tree extractability : From Definition 9, we start with µ = 2 and set w1 =
w2 = 3. Thus, we have a tree of accepting transcripts for 3 values of β, and
each β has 3 corresponding values of α. The failure scenario arises if any of
these challenges are 0, which happens with a probability of ≤ 9/|F|. Next, we
interpolate C±, X±, and K± as Laurent polynomials in GT [β, β

−1] of degree 1
and order 1. Moreover, we perform interpolation for a′ and ar

′ as polynomials
in GT [α] of degree 1, and b′ and k′ as Laurent polynomials in GT [α, β] of degree
1 and order 1. Let s = r−

n
2 . For each leaf, considering D′3 = αD′3L + sD′3R =

⟨ar′(α), ck′2⟩, we deduce that ar′(α) = αarL+sarR by comparing the coefficients
corresponding to α. Additionally, deriving from the equationD′4 = αD′4L+D′4R+
αβ∆1L+β∆1R = ⟨k′, ck′2⟩, we can deduce that k′(α, β) = αkL+kR+αβck1L+
βck1R. It’s worth highlighting that from D′1 and D′2, the following relations
emerge: a′(α) = αaL+aR and b′(α, β) = α−1bL+bR+α−1β−1ck2L+β−1ck2R.
Finally, we proceed to substitute these expressions into C ′, X ′, and K ′:

C ′ = C + β−1D1 + αC+ + α−1C− = ⟨a′(α),b′(α, β)⟩
= ⟨a,b∗⟩+ α⟨aL,b∗R⟩+ α−1⟨aR,b∗L⟩
= ⟨a,b⟩+ β−1⟨a, ck2⟩+ α⟨aL,b∗R⟩+ α−1⟨aR,b∗L⟩,

X ′ = XL + sXR + β−1(D3L + sD3R) + αX+ + α−1sX−

= ⟨ar′(α),b′(α, β)⟩
= ⟨αarL + sarR, α

−1b∗L + b∗R⟩
= ⟨arL,bL⟩+ s⟨arR,bR⟩+ β−1(⟨arL, ck2L⟩+ s⟨arR, ck2R⟩)
+ α⟨arL,b∗R⟩+ α−1s⟨arR,b∗L⟩,

K ′ = K + χ+ βD2 + β−1D4 + αK+ + α−1K− = ⟨k′(α, β),b′(α, β)⟩
= ⟨αk∗L + k∗R, α

−1b∗L + b∗R⟩
= ⟨k,b⟩+ χ+ β⟨ck1,b⟩+ β−1⟨k, ck2⟩+ α⟨k∗L,b∗R⟩+ α−1⟨k∗R,b∗L⟩.

Upon comparing the coefficients for 1, α, α−1, β, β−1 (notably, s is a known value
and easily divisible), we arrive at the following expressions:

C = ⟨a,b⟩, K = ⟨k,b⟩, D1 = ⟨a, ck2⟩, D2 = ⟨ck1,b⟩, D4 = ⟨k, ck2⟩,
X = XL +XR = ⟨arL,bL⟩+ ⟨arR,bR⟩ = ⟨ar,b⟩,
D3 = D3L +D3R = ⟨arL, ck2L⟩+ ⟨arR, ck2R⟩ = ⟨ar, ck2⟩

The final concept we’re going to establish is ar = r ◦ a. We are already aware of
the fact that ar

′ = αarL + sarR and a′ = αaL + aR. Based on the assumption,
ar
′ = r′ ◦ a′, where r′ = rL = (r0, r1, · · · , r n

2−1). This yields:

αarL + sarR = r′ ◦ (αaL + aR) = r′ ◦ αaL + r′ ◦ aR.

15



By comparing coefficients involving α, we conclude that arL = r′ ◦ aL and
sarR = r′ ◦ aR. Additionally, arR = s−1(r′ ◦ aR) = (r

n
2 , r

n
2 +1, · · · , rn−1) ◦ aR.

Hence, we establish that ar = r ◦ a. Therefore, the provided witness (a,b,ar,k)
satisfies the desired properties for (C,X,K,Dt∈[4]).

3.3 Pairing Check Algorithm

After completing the reduction m := log n times, the prover obtains a witness a,
b, ar, k. The folded witnesses belong to the groups G1, G2, and the verifier can
verify ar = r ◦a through only one pairing operation. Our verification algorithm,
Σcheck, utilizes the instance C = e(a, b), X = e(ar, b), D1 = e(a, ck2), D3 =
e(ar, ck2) for the verifier to confirm the pairing equations e(a, b) = e(ar, b) and
e(a, ck2) = e(ar, ck2).

1. The verifier sends a random challenge c←$ F to the prover.
2. Utilizing the random challenge c, the prover randomizes a, b, ar, k, and sends

the resulting values E1 ∈ G1 and E2 ∈ G2 to the verifier. Here, particularly,
E1 is defined as ca+c3a+c5ar+c7k. Separating the same a with challenges c
and c3, the verifier substitutes C and X into the two C terms obtained from
expanding the pairing equations to check if C and X are equal (similarly for
D1 = D3).

3. To simultaneously verify the correctness of witness and key folding, the ver-
ifier utilizes a random d ←$ F to perform pairing operations by adding E1

and d · ck1, and similarly E2 and d−1 · ck2.
4. The term c4e(a, b) that appears when expanding the pairing equation should

be c4C if our reduction algorithm operates correctly, but this value should
also be c4e(ar, b), i.e., c

4X. Hence, the verifier substitutes C with X, and D1

with D3 respectively, into the verification equation. If this pairing equation
holds, it indicates that ar = a, ensuring the correct application of elimination
folding, i.e., ensuring that the vector ar equals r ◦ a.

Algorithm 4 Σcheck : Pairing Check Algorithm

Precompute: χ = e(ck1, ck2)
Input: (C,X,K,Dt∈[4]; a, b, ar, k) ∈ RElim

r,1,cki

V → P : c←$ F
P → V : E1 ← ca+ c3a+ c5ar + c7k, E2 ← cb,
V : d←$ F, accept if :

e(E1 + d · ck1, E2 + d−1 · ck2)
= χ+ c2C + c4(1 + c2)X + c8K +cd−1D1 + c3d−1(1 + c2)D3 + c7d−1D4

Theorem 2. Let i = 1, 2. For cki ←$ Gi, Σcheck is a HVSZK, public-coin, suc-
cinct interactive argument of knowledge for RElim

r,1,ck1,ck2
with (27, 27/|F|)-tree ex-

tractability under SXDH.
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Proof. Succinctness and the public coin property are evident. Refer to Theorem
7 in the Appendix for the validity of HVSZK.
Completeness : Given that r = (r0) in RElim

r,1,ck1,ck2
, we have a = ar. This

implies X = e(ar, b) = e(a, b) = C and D1 = e(a, ck2) = e(ar, ck2) = D3 in
RElim

r,1,ck1,ck2
. Hence, completeness is demonstrated as follows:

e(E1 + d · ck1, E2 + d−1 · ck2)
= e(ca+ c3a+ c5ar + c7k + d · ck1, cb+ d−1 · ck2)
= χ+ c2(C + c2X + c4X + c6K) + cdD2 + cd−1(D1 + c2D3 + c4D3 + c6D4)

Tree extractability : In our scenario, we set µ = 2 and designate w1 = 9 and
w2 = 3. Consequently, we find ourselves with a structure comprising accepting
transcripts for 9 distinct values of c, and within each c value, there exists 3
corresponding accepting values of d. The event of failure arises if any of these 27 d
values turns out to be 0. This unfortunate outcome transpires with a probability
that is ≤ 27/|F|. Across all the presented transcripts, it remains constant that
C,X,K, and Dt∈[4] hold fixed. Furthermore, it is possible to interpolate E1 and
E2 as polynomials of degree 8 concerning c. This interpolation is expressed as:
E1(c) = d1+ca+c3a+c5ar+c7k+

∑4
i=1 c

2iUi and E2(c) = d2+cb+
∑7

i=1 c
j+1Uj .

For each distinct c value, the conclusive verification encompasses terms reliant
solely on d in the forms of d, 1, d−1. This verification takes the shape of an
equality check involving Laurent polynomials marked by degrees and orders of 1.
The distinctive aspect here is that this discrepancy disappears for three distinct
selections of d, thereby compelling the coefficients for each degree to be equal
independently. Thus, for each of the 9 challenge values of c:

e(E1(c), ck2) = P1 + c(D1 + (c2 + c4)D3 + c6D4) (1)

e(ck1, E2(c)) = P2 + cD2 (2)

e(E1(c), E2(c)) =

3∑
i=1

c2i−1Qi + c7P3 + c2(C + (c2 + c4)X + c6K) (3)

Equation (1) represents an equality of polynomials in GT [c] of degree 8, which
is valid at 9 points. Therefore, the coefficients on both the left-hand side and
the right-hand side must be equal. Let’s expand the coefficients to reveal their
equivalence:

e(E1(c), ck2) = e
(
d1 + ca+ c3a+ c5ar + c7k +

∑
c2iUi, ck2

)
= P1 + cD1 + c3D3 + c5D3 + c7D4 +

∑
c2ie(Ui, ck2)

Thus, by comparing coefficients, we deduce thatD1 = e(a, ck2), D3 = e(ar, ck2) =
e(a, ck2), D4 = e(k, ck2), and e(Ui, ck2) = 0 for all i ∈ [4]. Similarly, comparing
the coefficients of e(ck1, E2(c)) and P2 + cD2 leads us to D2 = e(ck1, b) and
e(ck1, Vj) = 0 for all j ∈ [7]. As a result, we obtain the relationships: a = ar,
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Ui = Vj = rUi
= rVj

= 0, and thus E1(c) = d1 + ca + c3a + c5ar + c7k and
E2(c) = d2 + cb. This allows us to identify tuple (a, b, ar, k) that adhere to our
constraints for (D1, D2, D3, D4). Substituting the expressions for E1 and E2 into
Equation (3), we get:

e(E1(c),E2(c)) = e(d1 + ca+ c3a+ c5ar + c7k, d2 + cb)

= R+ cQ1 + c3Q2 + c5Q3 + c7P3 + c2C + c4X + c6X + c8K

Since this equality holds in GT [c] at 9 distinct values, we can equate the coef-
ficients of the powers of c on both sides. So, we obtain the following equations:
C = e(a, b), X = e(a, b) = e(ar, b), K = e(k, b). From these equations, we have
(a, b), (ar, b), and (k, b) satisfying our constraints on C,X,K. Additionally, since
a = ar, ar fulfills the requirement ar = r0◦a. We conclude that (a, b, ar, k) forms
a valid witness for (C,X,K,Dt∈[4]) ∈ RElim

r,1,ck1,ck2
.

3.4 Hadamard Product Arguments

In this section, we introduce an efficient Hadamard product argument ΠHP char-
acterized by transparency and sublinear verification time. Our ΠHP determines
whether the Hadamard product a◦b = c◦d ∈ Gn

T holds solely based on commit-
ments of vectors. Leveraging doubly homomorphic commitments via the AFGHO
commitment [1], our scheme guarantees security under the SXDH assumption.

In this protocol, since the commitment keys ck1 ←$ Gn
1 and ck2 ←$ Gn

2 are
public, the verifier can precompute all the inner pairing products {∆1L, ∆1R,
∆2L, ∆2R, χ} with respect to these keys before executing the elimination folding
algorithm Σelim. This proactive step significantly reduces the verification time of
the verifier to logarithmic size. Our ΠHP conducts precomputation of all inner
pairing products required in the reduction algorithm before the reformatting
step. This approach streamlines the verification process, enhancing efficiency.
Using the provided commitments in the instance, the prover and verifier engage
in Σref to compute new witnesses and commitments, integrating the challenge
r. Subsequently, the verifier verifies if the resulting X and X ′ are identical. In
essence, X = X ′ implies

∑n
i=1 r

i−1e(ai, bi) =
∑n

i=1 r
i−1e(ci, di). Consequently,

with an error probability of (n − 1)/|F|, it ensures that e(ai, bi) = e(ci, di) for
all i.

Subsequently, the prover and verifier iteratively apply Σelim m = log n times
to the left and right relations (C,X,K,Dt∈[4]), (C

′, X ′,K ′, D′t∈[4]) respectively.
This iterative application facilitates elimination folding to each vector, effectively
removing all random challenges r. Finally, through the execution of Σcheck, the
verifier verifies the pairing equations, ensuring that the prover correctly com-
puted the witnesses ar and cr.

Theorem 3. Let n = 2m and i = 1, 2. For cki,0 ←$ Gn
i , the ΠHP is a HVSZK,

public-coin, succinct interactive argument of knowledge for RHP
n,ck1,0,ck2,0

with

(6 · 9m+1, 57 · 9m/|F|)-tree extractability under SXDH.
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Algorithm 5 ΠHP : Hadamard Product Arguments

Precompute: for all 0 ≤ j ≤ m− 1, compute
ck1,j+1 = (ck1,j)L, ck2,j+1 = (ck2,j)L,

for all 0 ≤ j ≤ m, compute
χj = ⟨ck1,j, ck2,j⟩,

and for all 0 ≤ j ≤ m− 1, compute
∆1L,j = ⟨(ck1,j)L, ck2,j+1⟩, ∆2L,j = ⟨ck1,j+1, (ck2,j)L⟩,
∆1R,j = ⟨(ck1,j)R, ck2,j+1⟩, ∆2R,j = ⟨ck1,j+1, (ck2,j)R⟩

Input: (D1, D2, D
′
1, D

′
2;a,b, c,d) ∈ RHP

2m,ck1,0,ck2,0

P,V : Σref(D1, D2, D
′
1, D

′
2;a,b, c,d)

→ (C,X,K,Dt∈[4];a,b,ar,k) ∈ RElim
r,2m,ck1,0,ck2,0

and (C′, X ′,K′, D′
t∈[4];a

′,b′,a′
r,k

′) ∈ RElim
r,2m,ck1,0,ck2,0

V : Check if X = X ′

For 1 ≤ j ≤ m :
P,V : Σelim(C,X,K,Dt∈[4])→ (C,X,K,Dt∈[4]) ∈ RElim

r,2m−j ,ck1,j,ck2,j

P,V : Σelim(C
′, X ′,K′, D′

t∈[4])→ (C′, X ′,K′, D′
t∈[4]) ∈ RElim

r,2m−j ,ck1,j,ck2,j

P,V : Σcheck(C,X,K,Dt∈[4])→ result1
P,V : Σcheck(C

′, X ′,K′, D′
t∈[4])→ result2

V : Accept if (result1 = 1 ∧ result2 = 1)

Proof. This follows directly fromTheorem 1 andTheorem 2. In this protocol,
we have (W, ϵ) = (9, 12) for m = log n rounds of Σelim and (27, 27) for 1 round
of Σcheck. Therefore, W equals 27 · 9m, while the error ϵ amounts to 12(1 +
9 + · · · + 9m−1) + 27 · 9m ≈ 28.5 · 9m, as outlined in Lemma 4 of [20]. We use
Σelim and Σcheck on the left and right sides, respectively, so ultimately, (W, ϵ) =
2 · (27 · 9m, 28.5 · 9m) = (6 · 9m+1, 57 · 9m).

3.5 Analyis

In Figure 2, we benchmark the efficacy of our proposed ΠHP against both
Bulletproofs[7] and Bünz et al.[8]. While all three HPAs exhibit linear prover
complexities, they differ in their verifier complexities. Specifically, the Bullet-
proofs operates with a linear verifier complexity, whereas both the Bünz et al.
and our ΠHP utilize a logarithmic verifier complexity. However, the Bünz et al.
requires a trusted setup. For vector sizes exceeding 213, our ΠHP demonstrates
superior verification efficiency compared to the Bulletproofs. In scenarios where
prover performance is the primary concern, the Bulletproofs proves to be the
most performant. Conversely, for applications where both proof generation and
verification efficiency are critical, our ΠHP stands out as the optimal choice.

4 Batching Scheme for Elimination Folding

In this section, we propose a scheme for batching our elimination algoritm Σelim.
Specifically, we suggest a process to combine two given Σelim relations into one
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Fig. 2: Performance of Hadamard product arguments varying vector length

relation. SinceΠHP executes two Σelim protocols, our batching scheme can double
the verification speed of the Hadamard product arguments we propose.

Suppose (C,X,K,Dt∈[4];a,b,ar,k) and (C ′, X ′,K ′, D′t∈[4];a
′,b′,a′r,k

′) rep-

resent elimination folding relations within RElim
r,n,ck1,ck2

. Then, we can derive the
batching interactive arguments:

Algorithm 6 Batch-Σelim

Input: (C,X,K,Dt∈[4], C
′, X ′,K′, D′

t∈[4];a,b,ar,k,a
′,b′,a′

r,k
′)

P → V : ZC = ⟨a,b′⟩+ ⟨a′,b⟩
ZX = ⟨ar,b

′⟩+ ⟨a′
r,b⟩

ZK = ⟨k,b′⟩+ ⟨k′,b⟩
V → P : δ ←$ F
P : a′′ ← δa+ a′, b′′ ← δb+ b′

a′′
r ← δar + a′

r, k′′ ← δk+ k′

V : C′′ ← δ2C + δZC + C′

X ′′ ← δ2X + δZX +X ′

K′′ ← δ2K + δZK +K′

D′′
t∈[4] ← δDt∈[4] +D′

t∈[4]

Output: (C′′, X ′′,K′′, D′′
t∈[4];a

′′,b′′,a′′
r ,k

′′) ∈ RElim
r,n,ck1,ck2

Theorem 4. Let i = 1, 2. For cki ←$ Gn
i , Batch-Σelim is a HVSZK, public-coin,

succinct interactive argument of knowledge for (RElim
r,n,ck1,ck2

)2 with (3, 3/|F|)-tree
extractability under SXDH.

Proof. Our proof can be found in Appendix D.6.

By batching two Σelim relations into one, we can design Hadamard product
arguments by executing only half of Σelim and Σcheck. The optimized version of
our ΠHP is as follows.
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Algorithm 7 Optimized Hadamard Product Arguments

Precompute: for all 0 ≤ j ≤ m− 1, compute
ck1,j+1 = (ck1,j)L, ck2,j+1 = (ck2,j)L,

for all 0 ≤ j ≤ m, compute
χj = ⟨ck1,j, ck2,j⟩,

and for all 0 ≤ j ≤ m− 1, compute
∆1L,j = ⟨(ck1,j)L, ck2,j+1⟩, ∆2L,j = ⟨ck1,j+1, (ck2,j)L⟩,
∆1R,j = ⟨(ck1,j)R, ck2,j+1⟩, ∆2R,j = ⟨ck1,j+1, (ck2,j)R⟩

Input: (D1, D2, D
′
1, D

′
2 ; a,b, c,d) ∈ RHP

2m,ck1,0,ck2,0

P,V : Σref(D1, D2, D
′
1, D

′
2;a,b, c,d)

→ (C,X,K,Dt∈[4];a,b,ar,k)
and (C′, X ′,K′, D′

t∈[4];a
′,b′,a′

r,k
′) ∈ Relim

r,2m,ck1,0,ck2,0

V : Check if X = X ′

P,V : Batch-Σelim((C,X,K,Dt∈[4];a,b,ar,k), (C
′, X ′,K′, D′

t∈[4];a
′,b′,a′

r,k
′))

→ (C′′, X ′′,K′′, D′′
t∈[4];a

′′,b′′,a′′
r ,k

′′) ∈ Relim
r,2m,ck1,0,ck2,0

For 1 ≤ j ≤ m :
P,V : Σelim(C

′′, X ′′,K′′, D′′
t∈[4])→ (C′′, X ′′,K′′, D′′

t∈[4]) ∈ Relim
r,2m−j ,ck1,j,ck2,j

P,V : Σcheck(C,X,K,Dt∈[4])→ result
V : Accept if (result = 1)
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Fig. 3: Performance comparison of opt-ΠHP and ΠHP

5 Groth16 Proof Aggregation

In this section, we aggregate n proofs into a O(log n)-size proof using the ΠHP

protocol without any additional trusted setup. Our aggregation protocol, Gro16.Agg,
supports proof aggregation for pairing-based SNARKs. Specifically, we present
algorithms supporting proofs of Groth16 zk-SNARKs in this paper.

In Groth16 [16], the verifier uses the proof π = (A,B,C) ∈ G1 × G2 × G1

received from the prover to verify a single equation:

e(A,B) = e(gα, hβ) + e

 ℓ∑
j=0

S
aj

j , hγ

+ e(C, hδ)
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where Sj = g
βuj(z)+αvj(z)+wj(z)

γ . (For detailed information on Groth16 Construc-
tion, please refer to Appendix A). Let πi = (Ai, Bi, Ci), i ∈ [n], be n Groth16
proofs. For each Groth16 proof, the verifier must compute the following pairing
equation using the verification key vki = (gα, hβ , {Si,j}, hγ , hδ):

∀i ∈ [n], e(Ai, Bi) = e(gα, hβ) + e

 ℓ∑
j=0

S
ai,j

i,j , hγ

+ e(Ci, h
δ).

This can be defined as a relation as follows:

Definition 13 (Relation for n Groth16). The relation for n-length Groth16
proofs πi with respect to a verification key vk = (gα, hβ, {Sj}, hγ , hδ): For all
i ∈ [n], 

(
{ai,j ,CM(Ai),CM(Bi),CM(Ci)}; {πi}

)
:

e(Ai, Bi) = e(gα, hβ) + e

(
ℓ∑

j=0

S
ai,j

i,j , hγ

)
+ e(Ci, h

δ)


Typically, due to the different values of all Bi (or Ai), it is impossible to

aggregate them by forming a linear combination using a random challenge. We
consider each component as a vector and transform n equations into Hadamard
pairing product form to simultaneously prove n equations.

We form a vector composed of n Groth16 proofs πi = (Ai, Bi, Ci) as follows:
A = (A1, A2, · · · , An) ∈ Gn

1 ,B = (B1, B2, · · · , Bn) ∈ Gn
2 ,C = (C1, C2, · · · , Cn) ∈

Gn
1 . Thus, the n individual proofs can be combined into a single proof denoted as

π = (A,B,C). We define P ∈ Gn
1 as the vector obtained by repeating gα n times.

Similarly, Q ∈ Gn
2 is the vector obtained by repeating hβ n times, H ∈ Gn

2 is the
vector obtained by repeating hγ n times, and D ∈ Gn

2 is the vector obtained by
repeating hδ n times. Let S be a verification vector defined as ℓ∑

j=0

S
a1,j

i,j , · · · ,
ℓ∑

j=0

S
an,j

i,j

 ∈ Gn
1 .

Then, these n pairing equations are equivalent to a single Hadamard pairing
product equation:

A ◦B = P ◦Q+ S ◦H+C ◦D.

Similar to the Hadamard pairing product argument, the above equation can be
proven using a random challenge r ←$ F, demonstrating that

⟨Ar,B⟩ = ⟨Pr,Q⟩+ ⟨Sr,H⟩+ ⟨Cr,D⟩.

where

Ar = (1, r, r2, · · · , rn−1) ◦A,

Pr = (1, r, r2, · · · , rn−1) ◦P,

Sr = (1, r, r2, · · · , rn−1) ◦ S,
Cr = (1, r, r2, · · · , rn−1) ◦C.
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In this equation, by utilizing vk, the verifier can compute the term ⟨Pr,Q⟩ +
⟨Sr,H⟩. Therefore, similar to the Hadamard pairing product relation, we define
the relation in Gro16.Agg as follows:

Definition 14 (Relation for Gro16.Agg). The relation for Gro16.Agg is de-
fined as follows: Let

– U := {ai,j}1≤i≤n0≤j≤ℓ be an instance matrix.

– vk := (gα, hβ , Sj , h
γ , hδ) be a verification key.

Then Rgran, ck1, ck2 with vk is a

(U, D1, D2, D
′
1 ; A,B,C)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D1 = ⟨A, ck2⟩,
D2 = ⟨ck1,B⟩,
D′1 = ⟨C, ck2⟩,
P = (gα, gα, · · · , gα),
Q = (hβ , hβ , · · · , hβ),
H = (hγ , hγ , · · · , hγ),
D = (hδ, hδ, · · · , hδ),

S =

(
ℓ∑

j=0

S
a1,j

i,j , · · · ,
ℓ∑

j=0

S
an,j

i,j

)
,

A ◦B = P ◦Q+ S ◦H+C ◦D



.

To verify the above relation, similar to the Hadamard pairing product, refor-
matting is performed, and additionally, the verifier must compute Φ. To achieve
this, the prover generates a vector D and computes its commitment D′2, which
is then sent to the verifier. The prover and verifier execute the reformatting al-
gorithm Σref using (D1, D2, D

′
1, D

′
2;A,B,C,D). Additionally, the verifier com-

putes Φ = ⟨r ◦P,Q⟩+ ⟨r ◦ S,H⟩ using the verification key vk.

Algorithm 8 Gro16.Ref : Reformatting for Gro16.Agg

Input: (U, D1, D2, D
′
1;A,B,C)

P : D← (hδ, hδ, · · · , hδ)
P → V : D′

2 = ⟨ck1,D⟩
P,V : Σref(D1, D2, D

′
1, D

′
2;A,B,C,D)

→ (C,X,K,Dt∈[4], C
′, X ′,K′, D′

t∈[4])
V : Compute P = (gα, gα, · · · , gα),

Q = (hβ , hβ , · · · , hβ)
H = (hγ , hγ , · · · , hγ),

S =

(
ℓ∑

j=0

S
a1,j

i,j , · · · ,
ℓ∑

j=0

S
an,j

i,j

)
,

Φ = ⟨(1, r, r2, · · · , rn−1) ◦P,Q⟩+ ⟨(1, r, r2, · · · , rn−1) ◦ S,H⟩
Output: (Φ,C,X,K,Dt∈[4], C

′, X ′,K′, D′
t∈[4])

After the reformatting process, the verifier obtains the instance (Φ, C, X, K,
Dt∈[4], C

′, X ′, K ′, D′t∈[4]). Similar to ΠHP, the verifier checks X = X ′+Φ. This
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ensures A ◦B = P ◦Q+S ◦H+C ◦D with an error probability of (n− 1)/|F|.
Finally, the verifier verifies if the witness Ar and Cr are computed correctly
by executing Σelim and Σcheck. With this, we verify all n Groth16 verification
equations. Our proof aggregation scheme Gro16.Agg does not require a trusted
setup and has a verification time of Oλ(log n). Additionally, it has proof size
O(log n) and proof generation time Oλ(n), demonstrating its efficiency.

Algorithm 9 Gro16.Agg: Groth16 proof aggregation

Input: (U, D1, D2, D
′
1;A,B,C)

P,V : Run Gro16.Ref(U, D1, D2, D
′
1;A,B,C)

→ (Φ,C,X,K,Dt∈[4], C
′, X ′,K′, D′

t∈[4])
V : Check if X = X ′ + Φ
For i = 1, 2 :
P,V : Run ΠHP(D1, D2, D

′
1, D

′
2)→ result

V : Accept if result = 1

Theorem 5. Let n = 2m and i = 1, 2. For cki ←$ Gn
i , the Gro16.Agg is a

HVSZK, public-coin, succinct interactive argument of knowledge for RAGG
n,vk,cki

with (6 · 9m+1, 57 · 9m/|F|)tree extractability under SXDH.

Proof. The proof is straightforward by Theorem 3.

5.1 Analysis

In this section, we compare our aggregation scheme, Gro16.Agg, with SnarkPack
[13]. SnarkPack is designed based on TIPP (target inner pairing product) and
MIPP (multiexponentiation inner product) [8], requiring an additional trusted
setup. In contrast, our scheme, influenced by Dory [20], achieves Hadamard
product arguments while maintaining transparency.

Both protocols have the same asymptotic complexity (Oλ(n) proving time,
Oλ(log n) verification time, O(log n) proof size), but our scheme offers greater
security due to its transparency. Table 2 illustrates the asymptotic performance
comparison between [13] and our work. Here, n represents the number of Groth16
proofs. Notably, our scheme does not require additional trusted setups for proof
aggregation, yet the P’s time, V’s time, and proof size align with those of Snark-
Pack. Both schemes are designed based on pairings. SnarkPack proposes the
ASDGH (Auxiliary Structured Double Group Pairing) as a security assumption,
which requires additional GGM (Generic Group Model). However, our Gro16.Agg
guarantees soundness solely based on the SXDH assumption without requiring
GGM.

Figure 4 compares the specific performance of our aggregation scheme against
SnarkPack. The figure demonstrates consistent equivalence in proving time for
both schemes. While evaluations for proof numbers exceeding 218 were not con-
ducted on a 32GB RAM M1 Pro MacBook, extrapolation from observation
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trends suggests they would likely exhibit similar performance. In terms of ver-
ification efficiency, SnarkPack consistently achieves faster results. However, our
approach also demonstrates commendable practical efficiency. Thus, in applica-
tions where both security and practical speed are crucial, our scheme proves to
be more beneficial.
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Fig. 4: Performance of Groth16 aggregation varying number of proof

Table 2: Comparison of asymptotic performance of Groth16 aggregation
Protocol additional trusted setup P’s time Proof size V’s time CRS size

SnarkPack [13] ✓ Oλ(n) O(logn) Oλ(logn) O(n)
Gro16.Agg ✗ Oλ(n) O(logn) Oλ(logn) O(n)

6 KZG Proof Aggregation

In this section, we introduce the KZG.Agg for aggregating KZG commitments
using our ZKP ΠHP. Our scheme KZG.Agg aims to minimize verification costs
by reducing the pairing operations performed by the Verifier to a constant size.

In the KZG commitment scheme, the verifier computes the pairing equation
for verification:

e(C − ge, h) = e(π, hz−s)

In this section, we explore the generation of KZG proofs πi with random chal-
lenges si ←$ F in the general KZG commitment scheme. Additionally, we con-
sider the scenario where all polynomials are committed using different commit-
ment keys (the same si, fi(x), or commitment keys’ usage can be considered for
specific cases). Consequently, in our setting, the verifier needs to compute the
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following n pairing equations:

e(C1 − ge1 , h) = e(π1, h
z1−s1),

e(C2 − ge2 , h) = e(π2, h
z2−s2),

...

e(Cn − gen , h) = e(πn, h
zn−sn).

(In this section, we assume that all polynomials have the same degree.) Since
the left side uses the same h, we can compress the single pairing equation by
computing a linear combination C =

∑n
i=1 r

i−1(Ci−gei) using challenge r ←$ F:

e(C, h) = e(π1, h
z1−s1) · e(π2, h

z2−s2)r · · · e(πn, h
zn−sn)r

n−1

However, this still requires O(n) pairing operations. Therefore, to efficiently
prove n KZG commitments, we employ a Hadamard product argument ΠHP. In
our setting, the n pairing equations are represented in a Hadamard product form
a◦b = c◦d, utilizing only the commitments of each vector, allowing verification
of all KZG commitments with just one pairing operation where a, b, c, d are
defined as follows.

a := (C1 − ge1 , C2 − ge2 , · · · , Cn − gen) ∈ Gn
1

b := (h, h, · · · , h) ∈ Gn
2

c := (π1, π2, · · · , πn) ∈ Gn
1

d :=
(
hz1−s1 , hz2−s2 , · · · , hzn−sn

)
∈ Gn

2

Our goal is to verifier-efficiently compute commitments for each vector a, b,
c, d. Each vector is committed using commitment keys ck1 and ck2 along with
AFGHO commitments. Specifically:

CM(ck2;a) = ⟨a, ck2⟩, CM(ck1;b) = ⟨ck1,b⟩,
CM(ck2; c) = ⟨c, ck2⟩, CM(ck1;d) = ⟨ck1,d⟩

If the verifier computes commitments directly, each commitment requires n pair-
ing operations. To reduce this, we utilize properties of pairings and the doubly
homomorphic property of AFGHO commitments.

1. For CM(ck2;a), we have the reduced equation

⟨(C1, C2, · · · , Cn) , ck2⟩ − e(g,
∏

ck
ej
2j).

Thus, the verifier can compute e(g,
∏

ck
ej
2j) using 1 pairing operation and n

group exponentiation operations, and then use the receivedX = ⟨(C1, C2, · · · , Cn) , ck2⟩
from the prover to compute CM(ck2;a).

2. Since h is public, the verifier can precompute the commitment CM(ck1;b) =
⟨ck1, (h, h, · · · , h)⟩.
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3. The commitment CM(ck2; c) = ⟨(π1, π2, · · · , πn), ck2⟩ serves as the commit-
ment for the proof, which the verifier can obtain from the prover without
any additional computation.

4. Lastly, CM(ck1;d) follows a similar reduced equation as CM(ck2;a):

⟨ck1, (h
z1 , hz2 , · · · , hzn)⟩ − e

(∏
ck

sj
1j , h

)
In this equation, the first term can be precomputed by the verifier, and the
second term can be computed with just one pairing operation. Therefore,
the verifier can efficiently compute CM(ck1;d).

Algorithm 10 KZG Aggregator

Precompute: D2 = ⟨ck1, (h, h, · · · , h)⟩, Y = ⟨ck1, (h
z1 , hz2 , · · · , hzn)⟩

P : For all i ∈ [n], Ci ← cm(fi(x);pki) and cm← (C1, C2, · · · , Cn)
P → V : X = ⟨cm, ck2⟩
V → P : s1, · · · , sn ←$ F
P → V : For all i ∈ [n], ei ← fi(si)

P : For all i ∈ [n], πi ← g
fi(zi)−ei

zi−si and πππ ← (π1, π2, · · · , πn)
P → V : D′

1 = ⟨πππ, ck2⟩
V : e← (e1, e2, · · · , en), s← (s1, s2, · · · , sn)
V : D1 = X + e(g, ck2

e)
D′

2 = Y + e(ck1
s, h)

Output: (D1, D2, D
′
1, D

′
2;a,b, c,d)

Prover and verifier execute the KZG Aggregator to obtain the relation (D1,D2,D
′
1,

D′2;a,b,c,d) ∈ RHP
n,ck1,ck2

. This enables the use of ΠHP, and our KZG proof ag-
gregation scheme KZG.Agg is completed by executing KZG Aggregator and ΠHP.

Algorithm 11 KZG.Agg : KZG Proof Aggregation

P,V : KZG Aggregator(srs; {fi(x)})→ (D1, D2, D
′
1, D

′
2;a,b, c,d)

P,V : ΠHP(D1, D2, D
′
1, D

′
2;a,b, c,d)

6.1 Analysis

Generally, n KZG aggregations require the verifier to perform 2n pairing oper-
ations, resulting in high verification costs. In this subsection, we compare and
analyze the performance of KZG commitment aggregation schemes [12], [3], and
our KZG.Agg to address this drawback.
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Table 3 shows the opening performance of each protocol for n distinct poly-
nomials f1(x), f2(x), · · · , fn(x) and points s1, s2, · · · , sn (we consider only cases
where all polynomials have the same degree d). [12] proposed a batch KZG
scheme that allows efficient verification for n polynomials fi(x). However, it is
efficient only when the openings are for the same point s, and the verification
cost increases with the number of distinct points si. In this case, the proof size is
O(dn), and the verifier needs O(n) group multiplications. [3] improved on this by
enabling efficient aggregation of openings for fi and n distinct points si. [3] re-
duced the proof size to a constant and decreased the prover’s cost from O(dn) to
O(d), making it independent of the number of openings. Our aggregation scheme
considers a more general case, supporting KZG opening aggregation where the
polynomials, points, and srs are all distinct. Our KZG.Agg has a proof size of
O(log n) for the general case and can be verified with O(log n)GT operations and
only 3 pairing operations. Compared to the two aggregation schemes above, our
results reduce the verifier’s cost from O(n)G1 to O(log n)GT . This means it is
more efficient in terms of verification, requiring only 3 pairing operations, which
is comparable to the operations needed by the previous schemes. Additionally,
our scheme effectively supports KZG aggregation even when all srs are distinct,
in which case the size of the srs increases proportionally to n as O(dn).

Table 3: Comparison of opening complexity of KZG aggregation
[12] [3] Our KZG.Agg

P’s work O(dn)G1 O(d)G1 O(n)P , O(dn)G1

Proof size O(n)G1 O(1)G1 O(logn)GT

V’s work O(n)G1, 2P O(n)G1, 2P O(logn)GT , 3P

Support for distinct
polynomials

✓ ✓ ✓

Support for distinct
points

✗ ✓ ✓

Support for distinct
srs

✗ ✗ ✓

srs size O(d)G1 O(d)G1 O(d)G1

(distinct srs case) (✗) (✗) (O(dn)G1)
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10. Daza, V., Ràfols, C., Zacharakis, A.: Updateable inner product argument with log-
arithmic verifier and applications. In: Public-Key Cryptography–PKC 2020: 23rd
IACR International Conference on Practice and Theory of Public-Key Cryptogra-
phy, Edinburgh, UK, May 4–7, 2020, Proceedings, Part I 23. pp. 527–557. Springer
(2020)

11. Fauzi, P., Lipmaa, H., Zhang, B.: Efficient modular nizk arguments from shift
and product. In: Cryptology and Network Security: 12th International Conference,
CANS 2013, Paraty, Brazil. Springer (2013)

12. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive (2019)

13. Gailly, N., Maller, M., Nitulescu, A.: Snarkpack: practical snark aggregation. In:
Financial Cryptography and Data Security: 26th International Conference, FC
2022, Grenada, May 2–6, 2022, Revised Selected Papers. Springer (2022)

14. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Advances
in Cryptology-CRYPTO 2009: 29th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2009. Proceedings. Springer (2009)

15. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Asi-
acrypt. vol. 6477, pp. 321–340. Springer (2010)

16. Groth, J.: On the size of pairing-based non-interactive arguments. In: Advances
in Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II 35. pp. 305–326. Springer (2016)

17. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuf-
fle. In: Advances in Cryptology–EUROCRYPT 2008: 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Istan-
bul, Turkey, April 13-17, 2008. Proceedings 27. pp. 379–396. Springer (2008)

18. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Advances in Cryptology-ASIACRYPT 2010: 16th

29



International Conference on the Theory and Application of Cryptology and In-
formation Security, Singapore, December 5-9, 2010. Proceedings 16. pp. 177–194.
Springer (2010)

19. Kothapalli, A., Masserova, E., Parno, B.: Poppins: a direct construction for asymp-
totically optimal zksnarks. Cryptology ePrint Archive (2020)

20. Lee, J.: Dory: Efficient, transparent arguments for generalised inner products and
polynomial commitments. In: TCC 2021. Springer (2021)

21. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Theory of Cryptography: 9th Theory of Cryptography
Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Springer (2012)

22. Lipmaa, H., Siim, J., Zajac, M.: Counting vampires: from univariate sumcheck to
updatable zk-snark. In: International Conference on the Theory and Application
of Cryptology and Information Security. pp. 249–278. Springer (2022)

23. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Annual international cryptology conference. Springer (1992)

24. Setty, S.: Spartan: Efficient and general-purpose zksnarks without trusted setup.
In: Annual International Cryptology Conference. pp. 704–737. Springer (2020)

25. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zk-
snarks without trusted setup. In: 2018 IEEE Symposium on Security and Privacy
(SP). pp. 926–943. IEEE (2018)

26. Xie, J., Hu, Y., Yu, Y.: Hadamard product argument from lagrange-based univari-
ate polynomials. Cryptology ePrint Archive (2024)

27. Zhang, Y., Szepeniec, A., Zhang, R., Sun, S.F., Wang, G., Gu, D.: Voproof: efficient
zksnarks from vector oracle compilers. In: Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. pp. 3195–3208 (2022)

A Groth16: Non-interactive linear proofs for quadratic
arithmetic programs

In this section, we introduce Groth16 [16], a pairing-based Non-Interactive Zero-
Knowledge (NIZK) argument. Groth16 is a zk-SNARK for quadratic arithmetic
programs, characterized by constant-sized proofs and proofs being group ele-
ments. A quadratic arithmetic program defines the subsequent binary relation,
setting a0 = 1:

R =

 (x,w)

∣∣∣∣∣∣∣∣
x = (a1, a2, · · · , aℓ)
w = (aℓ+1, aℓ+2, · · · , am)
m∑
i=0

aiui(x) ·
m∑
i=0

aivi(x) ≡
m∑
i=0

aiwi(x) mod t(x)
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Groth.Setup(1λ,R)

α, β, γ, δ ←$ Z∗
p, z ←$ Z∗

p,

σ1 =
(
g
α
, g

β
, g

δ
,

{
g
zi
}n−1

i=0

,

{
g

βui(z)+αvi(z)+wi(z)
γ

}ℓ

i=0

,

{
g

βui(z)+αvi(z)+wi(z)
δ

}m

i=ℓ+1

,

{
g

zit(z)
δ

}n−2

i=0

)
σ2 =

(
h
β
, h

γ
, h

δ
,

{
h
zi
}n−1

i=0

)
crs = (QAP, (σ1, σ2))

vk =

(
P = g

α
, Q = h

β
,

{
Si = g

βui(z)+αvi(z)+wi(z)
γ

}ℓ

i=0

, H = h
γ
, D = h

δ

)
td = (z, α, β, γ, δ)

return (crs, td)

Groth.Prove(crs, x,w)

x = (a1, · · · , aℓ), a0 = 1

w = (aℓ+1, · · · , am)

u(x) =
∑m

i=0 aiui(x)

uw(x) =
∑m

i=ℓ+1 aiui(x)

v(x) =
∑m

i=0 aivi(x)

vw(x) =
∑m

i=ℓ+1 aivi(x)

w(x) =
∑m

i=0 aiwi(x)

ww(x) =
∑m

i=ℓ+1 aiwi(x)

h(x) =
u(x)v(x)− w(x)

t(x)

r, s←$ Z∗
p

fw =
βuw(z) + αvw(z) + ww(z)

δ

a = α + u(z) + rδ

b = β + v(z) + sδ

c = fw +
t(z)h(z)

δ
+ sa + rb− srδ

A = g
a
, B = h

b
, C = g

c

return π = (A,B,C)

Groth.Verify(vk, x, π)

π = (A,B,C)

ux(x) =
∑ℓ

i=0 aiui(x)

vx(x) =
∑ℓ

i=0 aivi(x)

wx(x) =
∑ℓ

i=0 aiwi(x)

fx =
βux(z) + αvx(z) + wx(z)

γ

check e(A,B) = e(P,Q) · e(gfx , H) · e(C,D)

Groth.Sim(td, x)

a, b←$ Z∗
p

A = g
a
, B = h

b

c =
ab− αβ − βux(z)− αvx(z)− wx(z)

δ

C = g
c

return π = (A,B,C)

B KZG Polynomial Commitment Scheme

Let para =
(
p,G1,G2,GT , e, g, h, z

)
be a system parameters.
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KZG.Setup(para)

srs = (gz
i

, hzi)

return srs

KZG.Commit(srs, f(x))

C = gf(z)

return C

KZG.Open(srs, f(x), s)

q(x) =
f(x)− f(s)

x− s

a = f(s)

π = gq(z)

return (a, π)

KZG.Verify(srs, C, s, a, π)

check e(C − ga, h) = e(π, hz−s)

return 1/0

Fig. 5: KZG Polynomial Commitment Scheme

C Dory: An inner product argument with a logarithmic
Verifier

In this section, we introduce Dory [20], an inner product arguments with sub-
linear verification time. Dory exploits the properties of AFGHO commitments
to achieve efficient inner product arguments with verification time reduced to
Oλ(log n).

Dory consists of two main sub-protocols. The first sub-protocol, the Reduce
protocol, reduces the length of the given witness vectors a ∈ Gn

1 and b ∈ Gn
2 by

half. The prover and verifier interactively reduce the length of the vectors using
commitments. After a logarithmic number of iterations, the vector size becomes
1, and the Reduce step terminates. Subsequently, in the second sub-protocol,
the Scalar-Product protocol, the verifier confirms correct computation through
pairing operations.

We introduce Dory’s Language, Reduce protocol, and Scalar-Product proto-
col sequentially.

C.1 Language for Dory

Definition 15. The Language for Dory defined as follows:

(C,D1, D2) ∈ Ln,ck1,ck2,H1,H2 ⊂ G3
T

⇐⇒ ∃(a ∈ Gn
1 ,b ∈ Gn

2 , rC , rD1 , rD2 ∈ F) :

C = ⟨a,b⟩+ rC · e(H1, H2),

D1 = ⟨a, ck2⟩+ rD1 · e(H1, H2),

D2 = ⟨ck1,b⟩+ rD2 · e(H1, H2)

C.2 Dory-Reduce
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Algorithm 12 Dory-Reduce

Precompute: HT = e(H1, H2), χ = ⟨ck1, ck2⟩
∆1L = ⟨ck1L, ck

′
2⟩, ∆1R = ⟨ck1R, ck

′
2⟩,

∆2L = ⟨ck′
1, ck2L⟩, ∆2R = ⟨ck′

1, ck2R⟩,
witness: (a,b, rC , rD1 , rD2) ∈ L2m,ck1,ck2,H1,H2

P : rD1L , rD1R , rD2L , rD2R ←$ F
P → V : D1L = ⟨aL, ck

′
2⟩+ rD1LHT , D1R = ⟨aR, ck

′
2⟩+ rD1RHT ,

D2L = ⟨ck′
1,bL⟩+ rD2LHT , D2R = ⟨ck′

1,bR⟩+ rD2RHT

V → P : β ←$ F
P : a∗ ← a+ βck1, b∗ ← b+ β−1ck2,

rC ← rC + βrD2 + β−1rD1

P : rC+ , rC− ←$ F
P → V : C+ = ⟨aL,bR⟩+ rC+HT , C− = ⟨aR,bL⟩+ rC−HT

V → P : α←$ F
P : a′ ← αa∗

L + a∗
R, b′ ← α−1b∗

L + b∗
R,

r′D1
← αrD1L + rD1R , r′D2

← α−1rD2L + rD2R ,
r′C ← rC + αrC+ + α−1rC−

V : C′ ← C + χ+ βD2 + β−1D1 + αC+ + α−1C−
D′

1 ← αD1L +D1R + αβ∆1L + β∆1R

D′
2 ← α−1D2L +D2R + α−1β−1∆2L + β−1∆2R

V : Accept if (C′, D′
1, D

′
2) ∈ L2m−1,ck′

1,ck
′
2,H1,H2

witness: (a′,b′, r′C , r
′
D1

, r′D2
)

C.3 Scalar-Product

Algorithm 13 Scalar-Product

Precompute: HT = e(H1, H2), χ = ⟨ck1, ck2⟩
witness: (a, b, rC , rD1 , rD2) ∈ L1,ck1,ck2,H1,H2

P : rP1 , rP2 , rQ, rR ←$ F, d1 ←$ G1, d2 ←$ G2

P → V : P1 = e(d1, ck2) + rP1HT , P2 = e(ck1, d2) + rP2HT ,
Q = e(d1, b) + e(a, d2) + rQHT ,
R = e(d1, d2) + rRHT

V → P : c←$ F
P → V : E1 ← d1 + ca, E2 ← d2 + cb,

r1 ← rP1 + crD1 , r2 ← rP2 + crD2 ,
r3 ← rR + crQ + c2rC

V : d←$ F, accept if:
e(E1 + d · ck1, E2 + d−1 · ck2)

= χ+R+ cQ+ c2C + dP2 + cdD2 + d−1P1 + cd−1D1

−(r3 + dr2 + d−1r1)HT
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D Zero-Knowledge Arguments

In this section, we introduce the zero-knowledge arguments of our protocols
omitted in the main text. The blue color indicates the zero-knowledge. These
include the relation for Half-Hadamard pairing product arguments, reformatting
algorithm, final check algorithm, and batching scheme, presented in sequence.
The remaining protocol, ΠHP, can be expressed as combinations of the zero-
knowledge arguments introduced above, so they are omitted.

D.1 Relation for Hadamard Product Arguments with
zero-knowledge

Definition 16. Let i = 1, 2. For a given cki ←$ Gn
i , r ←$ F, Hi ←$ Gi, the

relation RElim
r,n,cki,Hi

is defined by


(D1, D2, D

′
1, D

′
2 ∈ GT ;

a, c ∈ Gn
1 ,b,d ∈ Gn

2 ,
rD1

, rD2
, rD′

1
, rD′

2
∈ F)

∣∣∣∣∣∣∣∣∣∣
D1 = ⟨a, ck2⟩ + rD1 · e(H1, H2),
D2 = ⟨ck1,b⟩ + rD2 · e(H1, H2),
D′1 = ⟨c, ck2⟩ + rD′

1
· e(H1, H2),

D′2 = ⟨ck1,d⟩ + rD′
2
· e(H1, H2)

a ◦ b = c ◦ d


D.2 Reformatting for Hadamard Product Arguments

Algorithm 14 Σref with zero-knowledge

Input: (D1, D2, D
′
1, D

′
2 ; a,b, c,d)

P : rC , rX , rK , rDt∈[4]
, rC′ , rK′ , rD′

t∈[4]
←$ F

P → V : C = ⟨a,b⟩+ rC · e(H1, H2),
C′ = ⟨c,d⟩+ rC′ · e(H1, H2)

V → P : r ←$ F
P : ar ← (1, r, r2, · · · , rn−1) ◦ a, k← 1 ∈ Gn

1 ,
cr ← (1, r, r2, · · · , rn−1) ◦ c, k′ ← 1 ∈ Gn

1

P → V : X = ⟨ar,b⟩ + rX · e(H1, H2), K = ⟨k,b⟩ + rK · e(H1, H2),
D3 = ⟨ar, ck2⟩ + rD3 · e(H1, H2), D4 = ⟨k, ck2⟩ + rD4 · e(H1, H2),
X ′ = ⟨cr,d⟩ + rX · e(H1, H2), K′ = ⟨k′,d⟩ + rK′ · e(H1, H2),
D′

3 = ⟨cr, ck2⟩ + rD′
3
· e(H1, H2), D′

4 = ⟨k′, ck2⟩ + rD′
4
· e(H1, H2)

Output: (C,X,K,Dt∈[4];a,b,ar,k, rC , rX , rK , rDt∈[4]
)

and (C′, X ′,K′, D′
t∈[4]; c,d, cr,k

′, rC′ , rX , rK′ , rD′
t∈[4]

)

34



D.3 Relation for Elimination Folding with zero-knowledge

Definition 17. Let i = 1, 2. For a given cki ←$ Gn
i , r ←$ F, Hi ←$ Gi, the

relation RElim
r,n,cki,Hi

is defined by

(C,X,K,Dt∈[4] ∈ GT ;
a,ar,k ∈ Gn

1 ,b ∈ Gn
2 ,

rC , rX , rK , rDt∈[4]
∈ F)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ar = (1, r, r2, · · · , rn−1) ◦ a,
C = ⟨a,b⟩ + rC · e(H1, H2),
X = ⟨ar,b⟩ + rX · e(H1, H2),
K = ⟨k,b⟩ + rK · e(H1, H2),
D1 = ⟨a, ck2⟩ + rD1

· e(H1, H2),
D2 = ⟨ck1,b⟩ + rD2 · e(H1, H2),
D3 = ⟨ar, ck2⟩ + rD3 · e(H1, H2),
D4 = ⟨k, ck2⟩ + rD4

· e(H1, H2)


D.4 Elimination Folding Algorithm with zero-knowledge

Theorem 6. Let i = 1, 2. For ck′i ←$ Gn/2
i , Hi ←$ Gi, Σelim is a HVSZK,

public-coin, succinct interactive argument of knowledge for RElim
r,n/2,ck1,ck2,Hi

with

(9, 12/|F|)-tree extractability under SXDH.

Revised:

Proof (Proof of HVSZK). The validity of HVSZK holds since all messages except
XL, XR, D3L, and D3R from P to V consist of uniformly random elements of
GT , and thus can be trivially simulated. The variables XL, XR, D3L, and D3R

can also be simulated by initially sampling XL and D3L from GT , followed by
computing XR ← X −XL and D3L ← D3 −D3R.

D.5 Pairing Check Algorithm with zero-knowledge

Theorem 7. Let i = 1, 2. For cki ←$ Gi, Hi ←$ Gi, Σcheck is a HVSZK, public-
coin, succinct interactive argument of knowledge for RElim

r,1,ck1,ck2,H1,H2
with (27, 27/|F|)-

tree extractability under SXDH.

Proof (Proof of HVSZK). To construct a simulator, the following steps are un-
dertaken:

1. Sample Q1, Q2, Q3, E1, E2, P3 from GT .

2. Compute the challenge c using V’s coins.
3. Sample r1, r2, r3 from F.
4. Compute P1, P2, R as follows: P1 = e(E1, ck2)−c(D1+c2D3+c4D3+c6D4),

P2 = e(ck1, E2)− cD2, and R = e(E1, E2)− c(Q1 + c2Q2 + c4Q3 + c6P3)−
c2(C + c2X + c4X + c6K).

35



Algorithm 15 Σelim with zero-knowledge

Input: (C,X,K,Dt∈[4];a,b,ar,k , rC , rX , rK , rDt∈[4]
)

Precompute : H = e(H1, H2), χ = ⟨ck1, ck2⟩
∆1L = ⟨ck1L, ck

′
2⟩, ∆2L = ⟨ck′

1, ck2L⟩
∆1R = ⟨ck1R, ck

′
2⟩, ∆2R = ⟨ck′

1, ck2R⟩
P : rXL , rXR , rD3L , rD3R , rD′

1L
, rD′

1R
,

rD′
2L

, rD′
2R

, rD′
3L

, rD′
3R

, rD′
4L

, rD′
4R
←$ F

P → V : XL = ⟨arL,bL⟩ + rXLH, XR = ⟨arR,bR⟩ + rXRH
D3L = ⟨arL, ck2L⟩ + rD3LH, D3R = ⟨arR, ck2R⟩ + rD3RH
D′

1L = ⟨aL, ck
′
2⟩ + rD′

1L
H, D′

1R = ⟨aR, ck
′
2⟩ + rD′

1R
H

D′
2L = ⟨ck′

1,bL⟩ + rD′
2L

H, D′
2R = ⟨ck′

1,bR⟩ + rD′
2R

H

D′
3L = ⟨arL, ck

′
2⟩ + rD′

3L
H, D′

3R = ⟨arR, ck
′
2⟩ + rD′

3R
H

D′
4L = ⟨kL, ck

′
2⟩ + rD′

4L
H, D′

4R = ⟨kR, ck
′
2⟩ + rD′

4R
H

V → P : β ←$ F
P : b∗ ← b+ β−1ck2, k∗ ← k+ βck1, r∗K ← rK + βrD2 + β−1rD4

P : rC± , rX± , rK± ←$ F
P → V : C+ = ⟨aL,b

∗
R⟩ + rC+H, C− = ⟨aR,b

∗
L⟩ + rC−H

X+ = ⟨arL,b
∗
R⟩ + rX+H, X− = ⟨arR,b

∗
L⟩ + rX−H

K+ = ⟨k∗
L,b

∗
R⟩ + rK+H, K− = ⟨k∗

R,b∗
L⟩ + rK−H

V → P : α←$ F
P : a′ ← αaL + aR, b′ ← α−1b∗

L + b∗
R

a′
r ← αarL + r−

n
2 arR, k′ ← αk∗

L + k∗
R

rC′ ← rC + β−1rD1 + αrC+ + α−1rC−

rX′ ← rXL + r−
n
2 rXR + β−1(rD3L + r−

n
2 rD3R) + αrX+ + α−1r−

n
2 rX−

rK′ ← r∗K + αrK+ + α−1rK−

rD′
1
← αrD′

1L
+ rD′

1R
, rD′

2
← α−1rD′

2L
+ rD′

2R

rD′
3
← αrD′

3L
+ r−

n
2 rD′

3R
, rD′

4
← α−1rD′

4L
+ rD′

4R

V : X
?
= XL +XR, D3

?
= D3L +D3R

C′ ← C + β−1D1 + αC+ + α−1C−
X ′ ← XL + r−

n
2 XR + β−1(D3L + r−

n
2 D3R) + αX+ + α−1r−

n
2 X−

K′ ← K + χ+ βD2 + β−1D4 + αK+ + α−1K−
D′

1 ← αD′
1L +D′

1R

D′
2 ← α−1D′

2L +D′
2R + α−1β−1∆2L + β−1∆2R

D′
3 ← αD′

3L + r−
n
2 D′

3R

D′
4 ← αD′

4L +D′
4R + αβ∆1L + β∆1R

Output: (C′, X ′,K′, D′
t∈[4] ; a′,b′,a′

r,k
′, rC′ , rX′ , rK′ , rD′

t∈[4]
)

D.6 Batching Scheme with zero-knowledge

Theorem 8. Let i = 1, 2. For cki ←$ Gn
i , Hi ←$ Gi, Batch-Σelim is a HVSZK,

public-coin, succinct interactive argument of knowledge for (RElim
r,n,ck1,ck2,Hi

)2

with (3, 3/|F|)-tree extractability under SXDH.

Proof. Since Succinctness, the Public Coin property, Completeness, Soundness
and HVSZK of this protocol are immediate, It is enough to show tree extractabil-
ity. We have µ = 1 and set w1 = 3. We are given witnesses for 3 distinct chal-
lenges δ. We interpolate a, b, ar, and k as quadratics in δ. Then from Lemma 6
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Algorithm 16 Σcheck with zero-knowledge

Input: (C,X,K,Dt∈[4]; a, b, ar, k , rC , rX , rK , rDt∈[4]
)

Precompute : H = e(H1, H2), χ = e(ck1, ck2)
P : rP1 , rP2 , rP3 , rQ1 , rQ2 , rQ3 , rR ←$ F, d1 ←$ G1, d2 ←$ G2

P → V : P1 = e(d1, ck2) + rP1H, P2 = e(ck1, d2) + rP2H,
P3 = e(k, d2) + rP3H,
Q1 = e(d1, b) + e(a, d2) + rQ1H, Q2 = e(a, d2) + rQ2H,
Q3 = e(ar, d2) + rQ3H, R = e(d1, d2) + rRH

V → P : c←$ F
P → V : E1 ← d1 + ca+ c3a+ c5ar + c7k, E2 ← d2 + cb,

r1 ← crD1 + c3(1 + c2)rD3 + c7rD4 + rP1 ,
r2 ← crD2 + rP2 ,
r3 ← c2rC + c4(1 + c2)rX + c8rK

+c(rQ1 + c2rQ2 + c4rQ3 + c6rP3) + rR
V : d←$ F, accept if :

e(E1 + d · ck1, E2 + d−1 · ck2)
= χ+ c2C + c4(1 + c2)X + c8K + cd−1D1

+ c3d−1(1 + c2)D3 + c7d−1D4

+ c(Q1 + c2Q2 + c4Q3 + c6P3) + d−1P1 + cdD2 + dP2

+ R− (d−1r1 + dr2 + r3)H

Algorithm 17 Batch-Σelim

Input: (Ci, Xi,Ki, Di,t∈[4];ai,bi,ari,ki, rCi , rXi , rKi , rDi,t∈[4]
)i∈[2]

Precompute : H = e(H1, H2)
P : rZC , rZX , rZK ←$ F
P → V : ZC = ⟨a1,b2⟩+ ⟨a2,b1⟩ + rZCH,

ZX = ⟨ar1,b2⟩+ ⟨ar2,b1⟩ + rZXH,
ZK = ⟨k1,b2⟩+ ⟨k2,b1⟩ + rZKH

V → P : δ ←$ F
P : a← δa1 + a2, b← δb1 + b2,

ar ← δar1 + ar2, k← δk1 + k2

rC ← δ2rC1 + δrZC + rC2 ,
rX ← δ2rX1 + δrZX + rX2 ,
rK ← δ2rK1 + δrZK + rK2

rDt∈[4]
← δrD1,t + rD2,t

V : C ← δ2C1 + δZC + C2,
X ← δ2X1 + δZX +X2,
K ← δ2K1 + δZK +K2,
Dt∈[4] ← δDi,t +D2,t

Output: (C,X,K,Dt∈[4];a,b,ar,k, rC , rX , rK , rDt∈[4]
)

in [20], the contribution of the quadratic terms to Dt∈[4] = δD1,t +D2,t is iden-
tically zero, and so from Lemma 3 in [20] there are no quadratic terms. Hence
a = δa1 + a2, b = δb1 + b2, ar = δar1 + ar2 and k = δk1 + k2 for some ai, bi,
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ari, and ki. We define the following interpolations:

rC(δ) = rC2
+ δrZC

+ δ2rC1
,

rX(δ) = rX2
+ δrZX

+ δ2rX1
,

rK(δ) = rK2 + δrZK
+ δ2rK1

Substituting in a, b, ar, k:

C(δ) = δ2C1 + δZC + C2 = ⟨a(δ),b(δ)⟩+ rC(δ)H

= δ2[⟨a1,b1⟩+ rC1
H] + δ[⟨a1,b2⟩+ ⟨a2,b1⟩+ rZC

H] + [⟨a2,b2⟩+ rC2
H],

X(δ) = δ2X1 + δZX +X2 = ⟨ar(δ),b(δ)⟩+ rX(δ)H

= δ2[⟨ar,b⟩+ rX1H] + δ[⟨ar1,b2⟩+ ⟨ar2,b1⟩+ rZX
H] + [⟨ar2,b2⟩+ rX2H],

K(δ) = δ2K1 + δZK +K2 = ⟨k(δ),b(δ)⟩+ rK(δ)H

= δ2[⟨k1,b2⟩+ rK1
H] + δ[⟨k1,b2⟩+ ⟨k2,b1⟩+ rZK

H] + [⟨k2,b2⟩+ rK2
H].

As this holds for three values of δ, Lemma 6 in [20] implies that the two poly-
nomials have identical coefficients, yielding:

Ci = ⟨ai,bi⟩+ rCi
H,

Xi = ⟨ari,bi⟩+ rXi
H,

Ki = ⟨ki,bi⟩+ rKi
H

Since ari = r ◦ ai, we deduce:

ar = δar1 + ar2 = δr ◦ a1 + r ◦ a2 = r ◦ (δa1 + a2) = r ◦ a.

Thus, we have extracted the required witnesses.
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