
FaultyGarble: Fault Attack on Secure Multiparty Neural Network Inference

Mohammad Hashemi, Dev Mehta, Kyle Mitard, Shahin Tajik, Fatemeh Ganji
Worcester Polytechnic Institute

{mhashemi,dmmehta2,krmitard,stajik,fganji}@wpi.edu

Abstract—The success of deep learning across a variety of
applications, including inference on edge devices, has led to
increased concerns about the privacy of users’ data and deep
learning models. Secure multiparty computation allows parties
to remedy this concern, resulting in a growth in the number
of such proposals and improvements in their efficiency. The
majority of secure inference protocols relying on multiparty
computation assume that the client does not deviate from the
protocol and passively attempts to extract information. Yet
clients, driven by different incentives, can act maliciously to
actively deviate from the protocol and disclose the deep learning
model owner’s private information. Interestingly, faults are
well understood in multiparty computation-related literature,
although fault attacks have not been explored. Our paper
introduces the very first fault attack against secure inference
implementations relying on garbled circuits as a prime example
of multiparty computation schemes. In this regard, laser fault
injection coupled with a model-extraction attack is successfully
mounted against existing solutions that have been assumed to
be secure against active attacks. Notably, the number of queries
required for the attack is equal to that of the best model-
extraction attack mounted against the secure inference engines
under the semi-honest scenario.

Keywords-Multiparty Computation, Garbled Circuits, Ma-
licious Adversary, Neural Network Inference, Laser Fault
Attack.

I. INTRODUCTION

Machine learning (ML), and in particular deep neural
networks (NNs), is widely adopted to create models that
perform image recognition, identify fraudulent transactions,
natural language processing, and even drug discovery- to
name a few [1], [2]. Similar to other ML tasks, training and
inference are two typical phases involved in NN applications.
While a large amount of data is used to determine the
best parameter values of an NN during the training phase,
the already trained NN is applied to a new input in the
inference phase. Here we focus on inference tasks at the
edge, where the existing solutions either need clients to
send potentially sensitive data to servers or the model owner
stores their proprietary NN model on clients’ devices. The
latter is of great importance due to growing needs for
edge computing, which provides avenues to reduce network
congestion through computing near users as well as reducing
communication needed to reach resource-hungry services
cf. [3]. This can be achieved, of course, at the cost of
possible IP infringement, and consequently, harming the NN
owners’ business model or revealing information about the
training data and model weights [2]. In view of this, it is not

surprising that physical attacks have been mounted against
edge devices embodying NN models [4], [5], [6], [7], [8],
[9], [10]. Secure inference is the response to this challenge,
where the client and the NN owner interact so that the client
obtains the prediction result without disclosing any other
information about the client’s input or the model weights
(inputs’ privacy) [11].

To realize secure inference, numerous studies have been
devoted to secure multiparty computation (MPC), especially
secure two-party computation [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20]. Thanks to their competitive
performance in terms of online latency and accuracy, the
application of MPC in NN inference would continue to gain
momentum. Albeit the fact that MPC-based NN inference
can guarantee the security of the user’s data and NN model
(see Figure 1 for an overview), implementation attacks can
compromise that. The question is whether these attacks are
beyond the adversary models of MPC protocols.

It is arguably inaccurate if one assumes that such attacks
are out of the scope of adversary models in secure two-
party computation. When it comes to passive implementation
attack, e.g., side-channel analysis, or as called in [21] side-
information leakage, has been considered in the literature.
Concretely, it is argued that “Privacy is rarely absolute,” [21],
meaning that some side channels leak during the execution
of the protocols. Such side channels include the size of
the circuit, its topology, or even the circuit itself cf. [21],
[22], [23]; nevertheless, the parties’ inputs should not be
disclosed, although recent work has posed a serious chal-
lenge to this [24], [25]. Specifically, the passive side-channel
analysis in these works has led to the private information
leakage through power consumption of the device or the
execution time of the protocol [24], [25].

Regarding susceptibility of schemes to active implemen-
tation attacks, i.e., fault attacks, MPC-related literature has
understood faults as corruption either in the circuit or the
inputs cf. [26], [27], [28], [29], [30], [31]. Faults -or as
sometimes referred to Byzantine faults- differ from uninten-
tional machine failures and are concerned with the attacks
mounted by an external entity or a subset of the participating
parties [30]. Fault attacks aim to disclose parties’ private
inputs or cause the result of the computation to be incorrect,
violating privacy and correctness, respectively. To deal with
faults, the notions of “robust” and “fair” execution were
introduced [26], [32], which have found application in secure
NN inference. Fairness ensures that either all parties or

Figure 1: Overview of our attack scenario. The client has
physical access to the device at the edge running the garbled
NN to perform inference. The server represents the NN
owner whose private inputs are NN weights.

none learn the output [33], [34]. Besides, robustness, aka
guaranteed output delivery, has been another crucial aspect
of running a protocol in the face of active attacks. In
this context, the malicious parties should not be able to
disrupt outputs’ delivery to other parties, i.e., carrying out
a “denial of service” attack [30]. What can be concluded
from this is that physical security has been overlooked in
the implementation of MPC protocols. The question that
naturally follows this discussion is whether there is any
fault attack that targets inputs’ privacy without violating
privacy and correctness, which cannot be avoided even after
considering fairness and robustness.
Contributions. Our paper gives a positive answer to the
question above for secure two-party NN inference realized
by garbled circuits (GCs), e.g., [12], [11] (see Section II for
their protocol). To this end, the following contributions can
be enumerated.
1) Our paper introduces the first fault attack against ma-
liciously secure NN inference engines protected through
garbled circuits. The fault attack reduces the security of the
scheme to that of an unprotected one, allowing the adversary
to mount a model-extraction attack. Our attack cannot be
stopped by usual countermeasures ensuring robust and fair
execution. The complexity of our attack depends only on the
number of network parameters to be extracted, and not on
other factors, e.g., the depth of the network. The number of
faults is also only linear in the number of parameters.
2) The attack is launched against an implementation of
NN inference engines on an FPGA with a general-purpose
processor. Such implementation has been widely adopted in
the literature [12], [35], [36], [37], [38], [39], [40]. Besides
the attack vector exploited in our paper, other possible points
of interest from fault analysis’ point of view are discussed.
3) Finally, we discuss possible countermeasures and future
research direction in that regard.

II. BACKGROUND AND ADVERSARY MODEL

A. Background on Garbled Circuits

Yao’s GC. Yao’s GC is a predominant example of MPC
with two parties, garbler and evaluator, which is also referred

Figure 2: A generic garbling scheme G =
(Gb,En,De,Ev, ev) cf. [21]. Note that capital letters
on the arrows represent garbled (protected) values/functions
while lowercase represents raw (unprotected) ones. ev
denotes the typical, unprotected evaluation of the function
f against the input x to obtain the output y. F , X , e and d
are the counterparts of these in the garbling scheme G that
yields y after decoding Y .

to as the secure function evaluation (SFE) method for
Boolean circuits [41], [42], [43]. We highlight the primary
building blocks and optimizations within this scheme.
Oblivious transfer (OT). In the 1-out-of-2 OT protocol, a
sender P1 has two messages m0 and m1. A receiver P2 with
a selection bit i ∈ {0, 1} learns mi, but not m1−i, while P1

does not learn i.
Garbling. Garbled circuits enable two parties to compute
the correct output of some agreed-upon function f applied to
their private inputs without revealing anything else. We use
the notions and definitions provided in [21] to formalize this
protocol to support modular and practical analyses. In this
context, a garbling algorithm Gb is a randomized algorithm
involving a degree of randomness. Gb(f) produces a triple
of functions (F, e, d) ← Gb(f) that accepts the function
f : {0, 1}n → {0, 1}m and the security parameter k. Gb(f)
has the following properties. In practice, F is composed
of garbled tables, encoded four-entry truth table of circuit
gates, whose input wires are L0,1

G and L0,1
E . The encoding

function e converts an initial input x ∈ {0, 1}n into a
garbled input X = e(x), which is given to the function
F to generate the garbled output Y = F (X). Here, e
encodes a list of tokens (labels), one pair for each bit in
x ∈ {0, 1}n: En(e, ·) uses the bits of x = x1 · · ·xn to select
from e = (X0,1

1 , X0,1
2 , · · · , X0,1

n) and obtain the sub-vector
X = Xx1

1 , · · · , Xxn
n . By reversing this process, the decoding

function d generates the final output y = d(Y), which
must equal f(x). In other words, f combines probabilistic
functions d ◦ F ◦ e. More precisely, the garbling scheme
G = (Gb,En,De,Ev, ev) consists of five algorithms as
shown in Figure 2, where the strings d, e, f , and F are
used by the functions De, En, ev, and Ev.

B. MIPS Processor Overview

The MIPS (microprocessor without interlocked pipeline
stages) [44] architecture is a RISC (reduced instruction

set computing) [45] processor architecture known for its
simplicity and efficiency. This architecture is widely used
when implementing GCs [37], [35], [46], [18]. The MIPS
architecture uses 32 general-purpose registers, each 32 bits
wide, for data processing [47]. These registers are designated
as $0 to $31, with register $0 hardwired to zero for simpli-
fying operations. The other registers serve various purposes,
including holding temporary values, function arguments,
return values, and addresses [48]. MIPS supports arithmetic
and logic operations such as addition, subtraction, multipli-
cation, division, AND, OR, XOR, and NOT [47], performed
directly on register values. It follows a load/store model,
requiring data to be loaded from memory into registers or
stored from registers into memory for manipulation [47].
MIPS instructions are uniform in size, each being 32 bits
long, aiding in the efficient design of the instruction de-
coder [44].

There are three primary instruction formats in MIPS [44]:
R-Type (register), I-Type (immediate), and J-Type (Jump).
R-Type is used for arithmetic and logical instructions and
includes opcode (6 bits), source register rs (5 bits), second
source register rt (5 bits), destination register rd (5 bits),
shift amount shamt (5 bits), and function code funct (6
bits). I-Type is used for operations with immediate values
and includes opcode (6 bits), source register rs (5 bits),
destination register rt (5 bits), and a 16-bit immediate
value. J-Type is used for jump instructions and includes
opcode (6 bits) and a 26-bit address.

C. Background on Garbled NN Inference

The implementation of the NN model using GC includes
two main modules: (1) the linear layer and (2) the ReLU
activation function (AF). In adapting the ReLU function
within GC, the binary representation of the input x is a
fundamental step. This input is expressed over n bits as
x =

∑n−1
i=0 xi2

i, where each xi is a binary digit, either “0”
or “1”. The most significant bit (MSB(x)), xn−1, serves as
the sign indicator in a two’s complement system, signifying
the input as negative when xn−1 = 1. To accommodate the
ReLU function for GCs, similar to the prior GC NN frame-
works [16], [49], [11], [14], a garbled multiplexer (MUX)
circuit becomes crucial. This MUX selectively outputs either
the actual input x or zero based on the MSB. The operation
of the MUX is encapsulated by the logic: if the MSB is “0”
(indicating non-negativity), the output should be x; if the
MSB is “1” (indicating negativity), the output should default
to zero. The functional logic of the MUX is as follows:

MUX(x, MSB(x)) = (1− MSB(x)) · x

This setup ensures that inputs deemed negative result in a
zero output, according to the ReLU function’s definition.

The linear layers of NN model implementation include
the multiplication functions. The steps for implementing
multiplication in GC are as follows: first, the weights and

the input of the neuron are encrypted to their corresponding
labels. In the next step, a bitwise garbled AND operation is
executed to create partial products. Then, at the last step,
a garbled addition circuit is executed to sum the partial
products.

D. Adversary Model

Adversary model from MPC perspective. When it comes
to the adversary models, some schemes assume that both
the client and the NN owner follow the protocol rules, i.e.,
honest-but-curious (HbC) parties. On the other hand, a ma-
licious adversary deviates from the protocol arbitrarily [50].
Malicious activities involve using corrupted inputs or circuits
to extract information about the other party’s inputs. If
the NN owner cheats and is caught acting maliciously,
the consequences would be very serious due to public
accountability [11], [50]. Clients, on the contrary, can use a
wide range of setups under their control to act maliciously
to extract the NN model’s parameters and obtain a similar
model.

In this context, the malicious behavior of both parties
has been formulated in the literature [51], [52], where the
client’s malicious behavior has been mainly studied under
the notion of input consistency. Constructing an incorrect,
garbled circuit maliciously is particularly associated with
the malicious party who generates the circuits, i.e., the NN
owner in our scenario, not the client.
Our adversary model follows that of a client-server setting,
where the client acts maliciously and attempts to extract the
model’s weights held by the server cf. [53], [12], [11]. In
accordance with related studies on secure MPC-based NN
inference, the neural network configuration is known to both
client and server. In line with this, the client either has
knowledge of the processor layout or is able to profile the
processor on the chip to target points of interest. We stress
that this is a reasonable assumption, as the processor circuit
itself is not supposed to be protected through MPC. Still,
the NN model’s parameters are proprietary to the NN owner,
i.e., the server. We further assume that the malicious client
is capable of mounting physical fault attacks, such as laser
fault injection, against the edge device running garbled NN.
In this regard, the client holds the raw value of her inputs
and the NN model output. She takes advantage of the intrin-
sic characteristics of maliciously-secure inference protocols,
where the client evaluates the neural network in a layer-by-
layer fashion on a general-purpose processor, see, e.g., [11],
[12], [35], [36], [37], [38], [39], [40]. This is a key driver
of our attack because by injecting fault into instructions,
the adversary can change their functionality and extract the
weights in a divide-and-conquer way. In this regard, our
attack discloses the weights of NNs that are composed of
alternating linear (fully connected, convolutional, etc.) and
non-linear ReLU layers as typical blocks of NNs.

III. METHODOLOGY

A. Model Extraction Attacks

One of the earliest attempts to extract NN models’ weights
has been presented by Carlini et al. [54], where the NN was
not embedded in any MPC protocol. By carefully choosing
inputs that differ slightly and observing the changes in the
outputs, the attack identifies critical points where the ReLU
activation function (AF) changes its behavior. Such critical
points reveal information about the model’s parameters. The
process is repeated layer by layer, allowing the client to
reconstruct the entire neural network with high precision
and significantly fewer queries than traditional methods. This
attack is extended in [11] to target secure inference protocols
that rely on additive secret sharing in the HbC setting.
Similar to the attack in [54], layer-by-layer evaluation of
NNs is the main ingredient in mounting the attack against
those protocols. The attack starts with the last layer of the
NN and moves toward the first one, where for each layer,
the client malleate its shares fed to the intermediate layers.
Malleating means adding a small, controlled amount to the
intermediate layer input, which changes the final output. By
observing these changes, the client can extract the model’s
actual weights after receiving the final output, which is
decoded and in plaintext at the final stage of the protocol.
While Carlini et al. [54] leverages the ReLU linear part,
the attack in [11] exploits weaknesses in the protocol’s
implementation and forces ReLU to behave linearly. Both
attacks achieve efficient model extraction, but focus on
different vulnerabilities.

B. Fault Injection for Model Extraction

Our attack can be seen as a fault-assisted cryptanalysis
against garbled NN protocols. Concretely, we focus on NN
models containing ReLU, where the protocol evaluates the
NN model layer-by-layer. The NN models coming under our
attack are fully connected, where -for the sake of simplicity
and comparison- the linear layers do not have any additive
bias value as also considered in [11]. In contrast to the target
in [11], the intermediate values in the garbled NN inference
engine are either “0” or “1,” making the attack even more
straightforward, as explained below.

1) Recovering the last layer’s weights: Figure 3 illus-
trates the interactions between the NN owner and the ma-
licious client when computing the kth layer of the garbled
NN on the client’s inputs x to obtain the output y. As the
first step in launching our attack, the malicious client aims
to extract the last layer weights, i.e., k = ℓ. The client sets
her input value x = {0}n.
Evaluation as usual. At this stage, the client oblivi-
ously receives an array of encrypted input labels X =
(X0,1

1 , X0,1
2 , · · · , X0,1

n), the encrypted inputs labels corre-
sponding to x = {0}n (see Figure 3). The client then
honestly evaluates the model until the last layer, i.e., the

Figure 3: A high-level flow of an iterative GC-based NN
inference. L0,1

G,k and L0,1
E,k: garbler’s and client’s labels for

kth layer (1 ≤ k ≤ ℓ). x and X: client’s raw and garbled
inputs received via OT; y: client’s raw outputs; L: the
intermediate layer garbled output.

last layer, as Mℓ(ReLU(Mℓ−1(· · · ReLU(M1(x))))), where
Mk := (AND, XOR) represents the neural network linear
layer operations i.e., an AND followed by ADD operation.
Mℓ ∈ Rm×t (its image is Rm) denotes the last layer with
t connections and m classes to be determined by the NN.
Figure 3 illustrates the linear layer execution of the last layer,
Mℓ, for one neuron. To calculate the jth last layer neuron
output, Yj , the garbler label, L0,1

G,ℓ which is the last layer
weights, are multiplied by the client label, L0,1

E,ℓ which is
the output of the previous intermediate layer, as follows

Yj = L0,1
G,ℓL

0,1
E,ℓ, 1 ≤ j ≤ m,

where m is the number of neurons in the last layer. Af-
ter this step, the client holds the garbled output, Y =
[Y1, Y2, · · · , Ym]. Using the received decryption label from
the garbler, d, the client decrypts Y and finds its raw output
value as (y1, y2, · · · , ym) = De(d, Y).
Weight disclosure through fault injection. The decrypted
output yj (1 ≤ j ≤ m) gives no information about the last
layer weights wℓ (the decrypted version of the L0,1

G,ℓ) as the
input to the NN and the biases are “0.” Now, if the client
injects a fault to change the AND in the last layer to XOR,
the decrypted output yj = wℓ ⊕ 0 = wℓ (the clients knows
the input x = {0}n); hence, observing the decrypted output
reveals the weights in the last layers.

2) Recovering intermediate layers’ weights: At this stage,
the client has already extracted the weights in the last layers,
e.g., for one neuron in that layer wℓ. The extraction of the
intermediate layers is similar to the last layer but requires an
additional step: forcing all the ReLU AFs after the targeted
intermediate layer to behave linearly or like a buffer. After
the extraction of the last layer weights, wℓ, the client extracts
the intermediate layer weights layer by layer, Mℓ−1 · · ·M1.
Weight disclosure through fault injection. As for the last
layer, the client sets its input to x = {0}n and evaluates the
NN model honestly. Suppose the target intermediate layer is
the kth layer: Mk(ReLU(Mk−1(· · · ReLU(M1(x))))), where
1 ≤ k ≤ ℓ − 1. This process includes a linear operation,
Mk, and a non-linear operation, ReLU = (1 − MSB(x)).x;

see Figure 3. At this layer, the client injects the fault in the
AND operation of the linear layer, Mk, to change it to XOR,
similar to the last layer. We denote this faulty linear layer
by M ′

k. The output of the intermediate layer, L, is L =
ReLU(M ′

k(L
0,1
G,k, L

0,1
E,k)) = ReLU(L0,1

G,k ⊕ L0,1
E,k), which can

be written as follows after integrating the bit-wise operation
of ReLU:

L = (1− MSB(L0,1
G,k ⊕ L0,1

E,k)) AND (L
0,1
G,k ⊕ L0,1

E,k)

The ReLU function outputs “0” on negative values; there-
fore, to propagate the negative weights to L, the client injects
another fault into ReLU to force it to behave linearly, i.e.,
as a buffer. In doing so, instead of (1 − MSB(x)) ANDx,
ReLU operates as (1 OR MSB(x)) ANDx (see Section III-C
for details). This way, the output of (1 OR MSB(x)) ANDx is
altered to (1 ANDx) = x, which means the functionality of
the ReLU becomes a buffer. As a result, we have

L = (1 OR MSB(L0,1
G,k ⊕ L0,1

E,k)) AND (L
0,1
G,k ⊕ L0,1

E,k)

= (L0,1
G,k ⊕ L0,1

E,k).

L is given to the following intermediate layers, where the
ReLU functions of the neurons receiving L are faulty:

Yj = Mℓ(Mℓ−1(· · ·Mk+1(L
0,1
G,k ⊕ L0,1

E,k))),

where in Mℓ · · ·Mk+1, wℓ · · ·wk+1 are known values ex-
tracted in previous steps. Hence, after decoding, the output
of the NN model can be derived by:

yj = wℓwℓ−1 · · ·wk+1(wk ⊕ 0) = wℓwℓ−1 · · ·wk+1︸ ︷︷ ︸
Known

wk.

This process can be repeated until all layers weights are
extracted, refer to V-A for the queries and fault injection
requirements for this.

C. Fault Injection into Garbled NN Inference Engines

Implementing GC inference engines on general-purpose
processors like MIPS [44] or ARM [55] offers significant
benefits, including practicality and efficiency. Moreover,
advanced development tools and software co-design enhance
accessibility and reduce development time [43]. Here, to
explain our attack in a straightforward manner, we focus
on one of the most commonly used general-purpose imple-
mentations using MIPS I architectures [35], [37]. However,
we should note that our attack is not limited to this type of
general-purpose processor and can be mounted against other
implementations on architectures with a similar instruction
set. We first elaborate on the possible locations of fault
injection to achieve our attack’s desired functionality then
choose one of these candidate locations to launch our attack
as an example. For this, we use the definitions provided in
Section II-B, and the architecture illustrated in Figure 4;
see [56] for more information on MIPS I instruction set.

Figure 4: An abstract illustration of general-purpose pro-
cessor architectures, inspired by [35], and possible fault
injection locations.

Program counter (PC). During the processor’s instruction
execution, the first step is to run Instruction Fetch (IF) to
fetch the instruction from the instruction memory. The PC,
which holds the address of the current instruction, provides
this address to the instruction memory. The instruction at
that address is then returned, and the PC is incremented by
4 to point to the next instruction. The client can inject a
fault to change the PC value and force the core to fetch an
alternate instruction, such as XOR instead of AND operation
in the linear layer execution.
Decoded instruction. In the second step, instruction decode
(ID), the fetched instruction is decoded to understand what
operation it is supposed to perform. Changing the funct
register is the second possible location for fault injection. In
this case, the client launches the fault attack to change the
function of the instruction within funct register, to force
the core to execute an arbitrary function.

Read memory registers. In the third step, register read
(RR), the values in the source registers (rs and rt) are read
from the register file, which stores the 32 general-purpose
registers. In the case of an unprotected NN model evaluation
protocol, the client can change the value of the source
registers to a desired value. However, in the context of GC
protocol, the client cannot modify the value to a known
specific value due to the GC intrinsic protection of data
through garbling [21].
ALU. In the fourth step, execution (EX), the ALU performs
the operation specified by the instruction. The ALU Control
determines the specific operation based on the funct field
and the opcode. For instance, if the funct field indicates
an ADD operation, the ALU adds the values read from the
source registers and stores the result. This step is the third
possible location of fault injection in the context of GC, as
the client can alter the ALU logic or control flow to force
the core to execute an alternate function, such as forcing the
ReLU to behave linearly as a buffer.

Figure 5: A high-level illustration of the control signals,
ALU procedure, and the location of our fault attack.

The destination register. In the fifth step, Memory Access
(MEM), memory is accessed if needed, which is generally
not required for R-type instructions as they do not involve
memory access. In the final step, write back (WB), the result
of the ALU operation is written back to the destination reg-
ister. Similar to the fault injection in read memory registers,
the client can change the value of the destination register in
an unprotected NN model evaluation protocol; nevertheless,
since the data is garbled in the context of GC, the client
cannot change it to a desired known value.

Among these possible fault injection locations, we elab-
orate on the fault injection against the decoded instruction
as an example. We emphasize that this does not rule out
the possibility that the client can exploit other possible fault
locations.

D. Fault Injection in NN model’s Decoded Instruction

We divide our attack into two parts: (1) change the
operation of the linear layer from AND to XOR to extract the
last layer weights and to propagate the intermediate layer
weights to the next layers, and (2) force ReLU to behave
linearly so that it acts as a buffer instead of ReLU. The latter
prevents ReLU from changing the negative intermediate
weights values to zero in order to extract the intermediates
layer’s weights (see Section III-B). Figure 5 depicts a
high-level presentation of control signals, ALU procedure,
and our attack fault injection location. To launch the first
part of our attack, the manipulation of the ALU function
(AND → XOR), we inject the fault in the func register,
illustrated in Figure 5, during the execution of the last
linear layer. This fault injection results in changing the ALU
functionality from AND to XOR, where the reason is explained
in Section III-B. This change ensures the propagation of the
target weight to the last layer. Table I contains the list of the
ALU functions in the R-Type instructions.

Recovering the last layer’s weights: As shown in
Table I, the register value corresponding to AND, 6′b000110,
has only one-bit difference with the register value corre-
sponding to XOR, 6′b000111 (the least significant bit (LSB)
is different). In practice, to launch the attack, the client

Table I: ALU function register value in MIPS I architecture

Function Binary Code Function Binary Code
NOTHING 6’b000000 OR 6’b000101
ADD 6’b000001 AND 6’b000110
SUBTRACT 6’b000010 XOR 6’b000111
LESS THAN 6’b000011 NOR 6’b001000
LESS SIGNED 6’b000100

tracks the instruction decode path and determines the func
register location on the die. At the beginning of the time
window corresponding to the execution of the last layer, the
client targets the first bit of the func register. Afterward, the
operation of XOR takes place at the core, and the last layer
weights are propagated to the core output.

Recovering intermediate layers’ weights: To extract the
intermediate layers’ weights, the attack must first change the
operation of the target intermediate layer from AND to XOR,
similar to the attack against the last layer; then, she forces
all the ReLU functions from the layer that she targets on to
behave linearly, like a buffer. As explained in Section III-C,
the ReLU function in the context of GC is implemented as
(1− MSB(x))ANDx. Hence, the ReLU function is compiled
within the MIPS I instruction set as the following two
operations: SUB $result, $Constant_1, $MSB; or
AND $ReLUOutput, $result, $x; The client aims
to change the first operation from 1−MSB(x) to 1ORMSB(x),
the ReLU function turns from (1−MSB(x)) ANDx to 1 ANDx
as the OR of any value with 1 equals 1 and the AND with 1
buffers the input to the output.

To obtain the faulty ReLU, the client changes the func
register from SUB (6′b000010) to OR (6′b000101). To do
this, the client injects the fault in the 3 LSB bits of the
func register to flip them, 010 → 101. After that, first,
the core calculates the OR logic of the MSB(x) register and
Constant_1, which always results in Constant_1, then
executes the AND operation on the Constant_1 and x.
As the AND operation between x and Constant1 value
always gives x, the value of x is then propagated to the
output, unchanged. This process is repeated for each weight,
which requires multiple faults and queries as discussed in
Section V-A.

IV. EXPERIMENTAL SETUP

A. Device Under Test

A Genesys 2 development kit was employed for the laser
fault injection experiment. This kit contains an AMD/Xilinx
Kintex 7 (XC7K325T-2FFG900C) FPGA fabricated with
28 nm technology. The FPGA die is in a flip-chip package.
By removing the fan and heat spreader, access was gained
to the backside silicon of the FPGA (see Figure 6). No
additional modifications were made to the package or board,
e.g., silicon polishing. The FPGA core was operated at 1.0 V,
and the clock frequency was 200 MHz for all experiments.

Figure 6: Iterative magnification of the device under the AlphaNOV setup (from left to right): the Genesys2 board and the
die shown is the Kintex 7 FPGA with the heatsink removed; the middle image depicts the die using the 20X lens to show
the corner where the FF for fault is placed; Lastly, the right-most image is captured using the 50X lens, illustrating the fault
injection at the point of interest (the white dot corresponds to the laser shot).

B. Laser Setup

We used an ALPhANOV S-LMS [57] setup for near-
infrared (NIR) microscopy and laser fault injection. The
microscope consists of a camera system for capturing images
and a lens on an XYZ stage to focus on a region. We used
20X and 50X magnification lenses for the experiment. The
20X lens is a standard Resolution (NA=0.6) with a typical
field of 480 × 380 µm, while the 50X lens is an Ultra High
Resolution (NA=0.7) with a typical field of 190 × 150 µm.
The combined setup is controlled using the software and
hardware switches to control the XYZ stage and camera
options. The software provides an IR view of the die, which
can be used for navigation. To capture the live feed of the
laser shots, the integration time for the image was kept at
0.1 ms with a frame rate of 60 Hz (the refresh rate of the
display).

The laser source used for the experiment is the High Pulse
Performance PDM laser source. The wavelength of the laser
is 1064 nm. The peak current used for the fault is 1 A, while
the pulse width is 250 ns with a frequency of 100 kHz. The
laser is controlled by the AplhaNOV control software in
combination with viewing the die using the camera software.
The combination results in a live feed to laser shots on the
desired fault region (a screenshot shown in 6).

C. Hardware Implementation

The FPGA and the microscope with controlling de-
vices form our experimental setup. Before programming the
FPGA, the laser setup is prepared by focusing the lens on the
desired location for the laser shot. The FPGA bitstream is
programmed then using Vivado 2021 [58] from a computer.
Once programmed, the design will generate a trigger signal
connected to the AplhaNOV laser module. This trigger
signal is used to control the laser pulse timing. The laser
is shot continuously using the settings mentioned in the
laser setup. The Genesys 2 development board has user-
programmable outputs used as flags to show a successful

fault. For more details, please see Section V-C.

V. RESULTS

A. Complexity of the Attack: Number of Faults and Queries

Here, we elaborate on the number of queries and faults
required to extract the weights of some common NN models
as discussed in the most relevant literature [11], [54]. To
extract the last layer weights, the client only needs 1 fault
per weight as L0,1

G,ℓ is the corresponding label of 0 and 0
multiplied by any value results in 0; therefore, only the
weight of the faulty neuron with AND→ XOR is propagated
to the output. Hence, for extracting the weights in the last
layer, #fault = pℓ, where pℓ is the number of parameters
in the last layer.

To extract the intermediate weights, the same fault as in
the last layer must be injected to propagate the target weight
to the ReLU input. Another fault must be injected in the
target layer’s ReLU to make it a buffer. Additionally, one
fault in all the neurons’ linear calculation from the target
layer to the last layer, Mk,Mk+1, · · · ,Mℓ, must be injected
to propagate the target weight value. Furthermore, the ReLU
of these layers has to be forced to act linearly like a buffer,
which results in an additional fault. Hence, we calculate the
number of faults to extract the NN model as follows:

#faults = (ℓ(ℓ− 1)/2︸ ︷︷ ︸
ReLU

+ ℓ(ℓ− 1)/2︸ ︷︷ ︸
AND→XOR

)·(p−pℓ)+pℓ = O(ℓ2p)

where p is the total number of the NN model parameters,
pℓ is the number of parameters in the last layer, and ℓ is
the number of the NN model layers. Moreover, the number
of queries is the same as the number of parameters, as per
parameter, input is given to the NN; therefore, the query
complexity of the attack is similar to that of a state-of-the-art
model extraction attack, although we target a much harder
scheme protected against the malicious adversary.

Table II shows the comparison between our attack against
GC NN inference protected against the malicious adversary,

Table II: Query and fault complexity of our attack vs.
[11] and [54] (the number of faults is only applicable to
our attack). While our attack targets maliciously-secure NN
inference engine, [11] and [54] consider HbC-secure and
unprotected designs, respectively, which are indeed simpler
to be attacked.

Network
Dimensions # Parameters #Queries #Fault[11] [54] Ours
784-128-1 100,480 100,480 221.5 100,480 200,832
784-32-1 25,120 25,120 219.2 25,120 50,208

10-10-10-1 210 210 216 210 610
10-20-20-1 620 620 217.1 620 1820

the cryptanalysis in [11] that has been mounted against HbC-
secure inference engine, and the cryptanalysis in [54], which
targets unprotected NN models. [11] and [54] did not launch
any fault attack against NN models; therefore, the number
of faults is only applicable to our attack. In Table II, our
attack requires up to 30× fewer queries compared to [54]. It
matches the queries requirement in [11] to extract the entire
NN model weights, even though their attack has launched
on an HbC-secure NN model while our attack is launched
against a maliciously-secure NN model. This shows that the
client can extract a maliciously secure NN model without
extra query requirements. Our attack, however, requires the
fault injection, which the client can do.

B. Simulation Results

To evaluate the success of our attack against garbled NN
inference engines, we first simulate the impact of the fault.
We implemented a proof-of-concept multi-layer perception
(MLP), hereafter called target model, with two hidden lay-
ers, each with 5 neurons, a last layer with 10 neurons, and an
input layer with 5 inputs, similar to benchmark MLPs [18],
[12], [59] (for results on scalability of the attack, see
Section V-A). We used the GC Lite MIPS implementation
proposed in [60] to evaluate the target model. In doing so,
given an input, we can observe the labels and the output
in order to assess the impact of fault injection. To compile
the MLP to MIPS I instructions, we use GNU cc [61] as
advised in [35]. To simulate the fault injection, we utilize
SystemVerilog assertion (SVA) in Vivado Suite 2023 [62].
We set the clock period to 50ns. In the simulation results,
the value of the alu_func register follows the order of
ALU functions in Table I, starting from 0 to 8.

Figure 7 shows the simulation results for the alu_func
register during the execution of the target model using
MIPS I. The blue rectangle is the alu_func register
value during the execution window of one neuron in the
first hidden layer, including the neuron multiplication and
the ReLU . The purple rectangle shows the execution of
one multiplication (AND = 6′b000110) followed by one
summation (ADD = 6′b000010). The yellow rectangle shows
the execution of the ReLU at the end of the neuron multi-

Figure 7: Simulation of the alu_func register during the
computation of one neuron in the first layer (blue: the
execution window of one neuron, purple: the execution
window of one multiplication and summation corresponding
to each connected input; yellow: the execution of the ReLU).

Figure 8: Simulation of the alu_func register during
the computation of one neuron in the last layer (blue: the
execution window of one neuron; purple: the execution
window of one multiplication and summation corresponding
to each connected input).

plication, which includes a subtraction (SUB = 6′b000011)
and a multiplication (ADD = 6′b000010). The blue execution
window is repeated for each connected input value. As it
can be observed in Figure 7, each neuron execution in the
first hidden layer of the target model takes 12 clock cycles:
two clock cycles for each input connected to a neuron (10
clock cycles for 5 inputs), and 2 clock cycles for the ReLU
. Hence, the execution of each neuron in the hidden layer
takes 12 × 50ns= 600ns, where 50ns is our defined clock
period. The target model includes two hidden layers and 5
neurons in each layer; therefore, the same execution process
shown in Figure 7 takes 6000ns in total. Afterward, the linear
layer and the last layer are executed.

Figure 8 shows the simulation of the alu_func register
in the execution window of one neuron placed in the target
model’s last layer. The blue rectangle is the alu_func
register value during that period, whereas the purple rect-
angle shows the execution of one multiplication (AND =
6′b000110) followed by one summation (ADD = 6′b000010).
According to Figure 8, the execution time of each neuron
in the last layer takes 2 clock cycles per connection. With
5 connections per neuron, 10 clock cycles passed to run the
computation of a neuron, equal to 500ns. The target model’s
last layer includes 10 neurons; therefore, the execution
process shown in Figure 7 takes 500 × 10 = 5000ns in
total.

1) Fault injection in the last layer: We target the second
neuron of the last layer as an example to demonstrate the
successful change in alu_func due to the fault injection;

Figure 9: Simulation of the alu_func register during the
computation of one neuron in the last layer after fault
injection (blue: the execution window of one neuron, purple:
the changed data register value due to the fault injection,
orange: the value of the alu_func after fault injection).

see Figure 9 for the result. The orange rectangle depicts
the effect of fault injection in the alu_func register. The
fault is injected on the LSB of alu_func register, and as a
result, alu_func register value changed from 6 to 7, which
means the core executes the XOR = 6′b0000111 instead of
the AND = 6′b0000110.

The purple rectangle shows the changed output data after
the fault injection. To assess the impact of our attack, we
obtain the garbled output label for the target neuron (the
second neuron in the last layer). The weight of this neuron
is intentionally set to 1 to observe the output when changing
AND and XOR on the label 0 and weight 1. Before the attack,
according to Figure 8, the core generates “0x092d4010,”
which is the corresponding label of 0 calculated as 0AND1 =
0 based on the output given by the tool [60]. After injecting
the fault, as illustrated in Figure 9, the core generates
“0x0241200c.” This value corresponds to the label of 1
according to the results we get from the tool [60]. This value
is generated as the result of the operation XOR on input 0
and weight value 1, 0⊕ 1 = 1, which confirms the success
of our attack to extract the second neuron on the last layer.
To extract the weights of the rest of the neurons in the last
layer, the same steps with the same fault location can be
launched but in a different time frame.

2) Fault injection in the intermediate layers: Launching
our attack against intermediate layers includes repeating
steps of injecting fault against the last layer on the target
intermediate layer and extra fault injection to force the ReLU
in the rest of the path to the last layer to behave linearly, as
a buffer.

To force the ReLU to behave linearly, we target the first
neuron in the first hidden layer, where Figure 10 shows the
simulation results for that. The orange rectangle illustrates
where the fault is injected into the alu_func register
during the execution of the ReLU. As it is observable in
Figure 10, the operation of SUB = 6′b000010 is changed
to OR = 6′b000101 after the fault injection. This means
the ReLU operation is changed from (1− MSB(x)) ANDx to
(1 OR MSB(x)) ANDx = 1 ANDx = x. This changes the ReLU
function to a buffer and propagates the output of the target
neuron to the output of the ReLU. To check its effect, we

Figure 10: Simulation of the alu_func register during the
computation of one neuron in the first intermediate layer
(blue: the execution window of one neuron; purple: the
changed data register value due to the fault injection; orange:
the value of the alu_func after fault injection).

intentionally set the intermediate weights to −1 and all its
input to 1; hence, the neuron outputs −5, as it is connected to
five inputs. The core passes the neuron output to the ReLU,
and the ReLU’s output becomes 0, as its input is a negative
value. After the fault injection, we observe the changes in
the LSB of the ReLU output. If the ReLU’s output is 0,
the LSB is the label corresponding to that value. If the
output of the ReLU is a negative value, the LSB becomes
1, as the core uses the extended sign format, which is the
two’s complement of the positive value: 5 = 0b101 and
−5 = 0b011.

As observable in Figure 10, the value of the data register
LSB becomes “0x024340c4,” which is the label correspond-
ing to value 1 according to the labels generated by the
tool [63]. However, the data register LSB in the absence of
any fault register is “0x0afffffa”, according to the results
illustrated in Figure 7, the corresponding label of value 0
generated by the tool [60]. This confirms that our fault
injection changes the functionality of the ReLU to a buffer.
Using this step and the fault injection on the linear layer, a
client can extract the entire NN model weights by injecting
fault (see Section III-B for the steps in the cryptanalysis).

C. Laser Fault Injection Results

The laser fault injection is used to validate the practicality
of the results presented in section V-B. The design used for
the laser fault is the same MIPS implementation with the
neural network program stored in the program memory. The
flip-flop for the opcode is located in slice X1Y138 of the
Kintex 7 FPGA This slice is located at one of the corners
of the FPGA; see Figure 6. First, the 20X lens is used to
navigate to the corner, and then the 50X lens to localize the
target slice and irradiate the laser. Our target is the opcode
FF for the last layer to demonstrate that we can flip the bit to
change the instruction from AND to XOR. Once flipped, we
expect the same behavior as shown in the simulated fault. To
ensure that the fault only affects the target bit and not other
portions of the circuit, we deployed flag outputs to check
for multiple stages of the fault and the correct output. These
flags also help us to filter out transient faults. First, the most
simple flag is the fault bit, i.e., the bit of the opcode that we

are faulting. Next, we used an output to compare the ALU
output with the desired known faulty value after the fault
injection. Lastly, we checked the next instruction output to
see if the program continued working correctly. From our
experiment, we got all 3 outputs to trigger, demonstrating
successful weight extraction from the last layer. Following
the same procedure, the laser fault injection could also be
applied to other layers.

VI. DISCUSSION

A. Why Cut-and-choose Fails to Prevent Our Attack

Countermeasures devised to stop malicious parties lever-
age various techniques, with cut-and-choose constructions
being one of the most prominent ones [23], which we
focus on due to its widespread application in schemes. The
principle behind the cut-and-choose technique is simple but
effective: a set of circuits presumably computing the same
function are generated and sent to the client. After selecting
some of the circuits to be evaluated, the client inspects
to verify that all the check circuits have been generated
correctly. Despite its efficacy in preventing malicious circuit
generation, it does not account for the client’s malicious
behavior.

In fact, the cut-and-choose approach [64] forces the party
generating the garbled circuit, i.e., garbler, to stick with the
correct circuit. From the theory point of view, this indicates
that cut-and-choose would not thwart our attack. From a
practical perspective, one should consider when to launch
an attack if a scheme’s security is boosted through cut-
and-choose. Under this scenario, first, the garbler constructs
a large number of garbled circuits sent to the client, who
chooses a subset of the circuits to open and check. If all of
these circuits are correct, the second step is as follows: the
client runs the protocol against all the remaining circuits and
takes the majority output value as the output. Our malicious
adversary follows these steps accurately, but inject faults into
only one circuit in the second step and observe the output
to extract the weights. This process clearly does not violate
the principle of the maliciously secure GCs.

B. Vulnerabilities of Other General-purpose Processors

General-purpose processors, including MIPS [44],
ARM [55], x86 [65], PowerPC [66], SPARC [67], and
RISC [45], all utilize the fundamental fetch-decode-execute
cycle to process instructions. During the fetch stage, the
processor retrieves the instruction from memory based on
the PC. In the decode stage, the instruction is interpreted to
determine the operation to be performed by the core. The
results of the decode stage are stored in a set of registers
as control signals, similar to the func register explained in
Section II-B, which direct the ALU to execute the specified
arithmetic or logical operation using the provided operands.
This systematic approach ensures efficient processing of a
wide range of tasks.

These control signal registers, containing crucial opera-
tional directives for the ALU, can become targets of fault
injection attacks if an adversary identifies their locations on
the hardware platform. Since the architectural information
for these processors is publicly available [44], [55], [66],
[65], [67], [45], adversaries can potentially manipulate the
ALU function operands register, func registers, leading to
the manipulation of the ALU operations. Despite the differ-
ences in the design of the architectures mentioned above,
the fetch-decode-execute cycle remains a core operational
process across them. Hence, our attack could potentially be
conducted against these architectures by adjusting the value
of the func register to the desired ALU operation value.
This should be done according to the target architecture
instruction sets information, as described in Section III-C.

C. Possible Countermeasures

Our attack’s success is based on our knowledge of the
NN model function and the general-purpose processor ar-
chitectures. Knowing these two key factors, the client can
find the correct location to inject a fault and extract the
NN model assets, although it might be protected through
GC. A possible way of combating our attack is to evaluate
it in the context of private function evaluation (PFE). In
the PFE setting, the function is also garbled along with the
data to prevent the attacker from knowing how the function
is computed. An implementation of PFE can be found in
the GarbledCPU [37], [46], [18]. Although effective against
our attack, it suffers from tremendous resource overhead, a
burden for cost-efficient implementation.

Another possible countermeasure is the interactive fault-
tolerant maliciously secure GC frameworks. Two ex-
amples of such frameworks are MiniLEGO [68] and
TinyLEGO [31]. Utilizing the XOR-homomorphic com-
mitments [68], they can mitigate fault injection attacks
against implementations. In such settings, the circuit’s XOR-
homomorphic commitments ensure that each gate’s output
is a function of the entire path reaching it in the circuit
instead of solely the gate’s inputs. Therefore, if any fault
occurs in any part of the path, the outputs of the gates on
the path to the target gate become invalid as they no longer
follow the XOR-homomorphic properties of the commitment
scheme. Needless to say, these frameworks impose the
computation overhead and require massive communication
between parties.

VII. CONCLUSION

In this paper, we present the first fault attack against se-
cure NN inference implementations relying on GC, a prime
example of MPC schemes. Our work demonstrates that laser
fault injection, along with a model-extraction attack, can
effectively break the security of existing solutions. This
implies that the private inputs of the NN owner, i.e., the
NN’s parameters, are disclosed. Remarkably, the number of

queries required for our attack is equivalent to that of the
state-of-the-art model-extraction attacks, although garbled
NN inference is much harder to target than what has been
considered in the literature. This highlights a critical vul-
nerability of current secure inference protocols that depend
on MPC. Our findings emphasize the urgent need for robust
countermeasures to address fault injection threats. We have
further discussed possible countermeasures to ensure the
privacy and security of deep learning models and user data
in practical applications. Given the shortcomings of possible
countermeasures, future research should focus on developing
advanced fault-tolerant techniques to fortify secure MPC
frameworks against such attacks.

REFERENCES

[1] Q. Zhang, C. Xin, and H. Wu, “Privacy-preserving deep
learning based on multiparty secure computation: A survey,”
IEEE Internet of Things Journal, vol. 8, no. 13, pp. 10412–
10429, 2021.

[2] Z. Á. Mann, C. Weinert, D. Chabal, and J. W. Bos, “Towards
practical secure neural network inference: the journey so far
and the road ahead,” ACM Computing Surveys, vol. 56, no. 5,
pp. 1–37, 2023.

[3] W. G. Hatcher and W. Yu, “A survey of deep learning:
Platforms, applications and emerging research trends,” IEEE
access, vol. 6, pp. 24411–24432, 2018.

[4] J. Breier, X. Hou, D. Jap, L. Ma, S. Bhasin, and Y. Liu,
“Practical fault attack on deep neural networks,” in Proc. of
the 2018 ACM SIGSAC Conf. on Comp. and Communications
Security, pp. 2204–2206, ACM, 2018.

[5] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse
engineering of neural network architectures through elec-
tromagnetic side channel,” in 28th USENIX Security Symp.
(USENIX Security 19), pp. 515–532, 2019.

[6] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte,
“Ram-jam: Remote temperature and voltage fault attack on
fpgas using memory collisions,” in 2019 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pp. 48–
55, IEEE, 2019.

[7] X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin, and Y. Liu,
“Security evaluation of deep neural network resistance against
laser fault injection,” in 2020 IEEE Intrl. Symposium on the
Physical and Failure Analysis of Integrated Circuits (IPFA),
pp. 1–6, IEEE, 2020.

[8] J. Breier, D. Jap, X. Hou, S. Bhasin, and Y. Liu, “Sniff:
reverse engineering of neural networks with fault attacks,”
IEEE Transactions on Reliability, vol. 71, no. 4, pp. 1527–
1539, 2021.

[9] S. Tajik and F. Ganji, “Artificial neural networks and fault
injection attacks,” in Security and Artificial Intelligence: A
Crossdisciplinary Approach, pp. 72–84, Springer, 2022.

[10] D. M. Mehta, M. Hashemi, D. S. Koblah, D. Forte, and
F. Ganji, “Bake it till you make it: Heat-induced power
leakage from masked neural networks.” Cryptology ePrint
Archive, Paper 2023/076, 2023.

[11] R. Lehmkuhl, P. Mishra, A. Srinivasan, and R. A. Popa,
“Muse: Secure inference resilient to malicious clients.,” in
USENIX Security Symposium, pp. 2201–2218, 2021.

[12] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter,
and F. Koushanfar, “{XONN}:{XNOR-based} oblivious deep
neural network inference,” in 28th USENIX Security Symp.
(USENIX Security 19), pp. 1501–1518, 2019.

[13] S. Hussain, B. Li, F. Koushanfar, and R. Cammarota, “Tiny-
garble2: Smart, efficient, and scalable yao’s garble circuit,”
in Proc. of the 2020 WKSP on Privacy-Preserving Machine
Learning in Practice, pp. 65–67, 2020.

[14] B. D. Rouhani, S. U. Hussain, K. Lauter, and F. Koushanfar,
“Redcrypt: Real-time privacy-preserving deep learning infer-
ence in clouds using fpgas,” ACM Trans. on Reconfigurable
Technology and Systems (TRETS), vol. 11, no. 3, pp. 1–21,
2018.

[15] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure:
Scalable provably-secure deep learning,” in Proc. of the 55th
annual design automation Conf., pp. 1–6, 2018.

[16] M. Ball, B. Carmer, T. Malkin, M. Rosulek, and N. Schi-
manski, “Garbled neural networks are practical,” Cryptology
ePrint Archive, 2019.

[17] X. Chen, Z. Chen, B. Dong, S. Wei, L. Chen, and D. He,
“Fobnn: Fast oblivious binarized neural network inference,”
arXiv preprint arXiv:2405.03136, 2024.

[18] M. Hashemi, S. Roy, D. Forte, and F. Ganji, “Hwgn 2: Side-
channel protected nns through secure and private function
evaluation,” in Security, Privacy, and Applied Cryptography
Engineering: 12th Intrl. Conf., SPACE 2022, Jaipur, India,
December 9–12, 2022, Proceedings, pp. 225–248, 2022.

[19] J. Sander, S. Berndt, I. Bruhns, and T. Eisenbarth, “Dash: Ac-
celerating distributed private machine learning inference with
arithmetic garbled circuits,” arXiv preprint arXiv:2302.06361,
2023.

[20] Z. Chen and X. Chen, “Secure computation framework for
multiple data providers against malicious adversaries,” arXiv
preprint arXiv:2007.14915, 2020.

[21] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations
of garbled circuits,” in Proc. of the 2012 ACM Conf. on
Computer and Comm. security, pp. 784–796, 2012.

[22] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “One-time
programs,” in Annual Intrl. Cryptology Conf., pp. 39–56,
Springer, 2008.

[23] Y. Lindell and B. Pinkas, “Secure two-party computation via
cut-and-choose oblivious transfer,” J. of cryptology, vol. 25,
pp. 680–722, 2012.

[24] I. Levi and C. Hazay, “Garbled circuits from an sca perspec-
tive: Free xor can be quite expensive. . .,” IACR Transac-
tions on Cryptographic Hardware and Embedded Systems,
vol. 2023, no. 2, p. 54–79, 2023.

[25] M. Hashemi, D. Forte, and F. Ganji, “Time is money, friend!
timing side-channel attack against garbled circuit construc-
tions,” in Intrl. Conf. on Applied Cryptography and Network
Security, pp. 325–354, Springer, 2024.

[26] D. Beaver and S. Goldwasser, “Multiparty computation with
faulty majority,” in Conf. on the Theory and Application of
Cryptology, pp. 589–590, Springer, 1989.

[27] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Complete-
ness theorems for non-cryptographic fault-tolerant distributed
computation,” in Providing sound foundations for cryptog-
raphy: on the work of Shafi Goldwasser and Silvio Micali,
pp. 351–371, 2019.

[28] D. Beaver, “Secure multiparty protocols and zero-knowledge
proof systems tolerating a faulty minority,” J. of Cryptology,
vol. 4, pp. 75–122, 1991.

[29] Y. Aumann and Y. Lindell, “Security against covert ad-
versaries: Efficient protocols for realistic adversaries,” J. of
Cryptology, vol. 23, no. 2, pp. 281–343, 2010.

[30] Y. Lindell, “Secure multiparty computation,” Communications
of the ACM, vol. 64, no. 1, pp. 86–96, 2020.

[31] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, and R. Tri-
filetti, “Tinylego: An interactive garbling scheme for ma-
liciously secure two-party computation,” Cryptology ePrint
Archive, 2015.

[32] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge
complexity of interactive proof-systems,” in Providing sound
foundations for cryptography: On the work of shafi gold-
wasser and silvio micali, pp. 203–225, 2019.

[33] N. Koti, M. Pancholi, A. Patra, and A. Suresh, “{SWIFT}:
Super-fast and robust {Privacy-Preserving} machine learn-
ing,” in 30th USENIX Security Symposium (USENIX Security
21), pp. 2651–2668, 2021.

[34] L. K. Ng and S. S. Chow, “Sok: Cryptographic neural-
network computation,” in 2023 IEEE Symposium on Security
and Privacy (SP), pp. 497–514, IEEE, 2023.

[35] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schnei-
der, and F. Koushanfar, “Tinygarble: Highly compressed and
scalable sequential garbled circuits,” in 2015 IEEE Symp. on
Security and Privacy, pp. 411–428, IEEE, 2015.

[36] E. M. Songhori, M. S. Riazi, S. U. Hussain, A.-R. Sadeghi,
and F. Koushanfar, “Arm2gc: Succinct garbled processor for
secure computation,” in Proc. of the 56th Annual Design
Automation Conf. 2019, pp. 1–6, 2019.

[37] E. M. Songhori, T. Schneider, S. Zeitouni, A.-R. Sadeghi,
G. Dessouky, and F. Koushanfar, “Garbledcpu: A mips pro-
cessor for secure computation in hardware,” in 2016 53nd
ACM/EDAC/IEEE Design Automation Conf. (DAC), pp. 1–6,
IEEE, 2016.

[38] V. Kolesnikov, J. B. Nielsen, M. Rosulek, N. Trieu, and
R. Trifiletti, “Duplo: unifying cut-and-choose for garbled
circuits,” in Proceedings of the 2017 ACM SIGSAC Conf. on
Computer and Communications Security, pp. 3–20, 2017.

[39] J. Mo, J. Gopinath, and B. Reagen, “Haac: A hardware-
software co-design to accelerate garbled circuits,” in Pro-
ceedings of the 50th Annual Intrl. Symposium on Computer
Architecture, pp. 1–13, 2023.

[40] V. Kolesnikov, “Free if: How to omit inactive branches and
implement s-universal garbled circuit (almost) for free,” in
Intrl. Conf. on the Theory and Application of Cryptology and
Information Security, pp. 34–58, Springer, 2018.

[41] Y. Lindell and B. Pinkas, “A proof of yao’s protocol for secure
two-party computation. eccc report tr04-063,” in Electronic
Colloquium on Computational Complexity (ECCC), 2004.

[42] Y. Lindell and B. Pinkas, “A proof of security of yao’s
protocol for two-party computation,” J. of cryptology, vol. 22,
no. 2, pp. 161–188, 2009.

[43] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic,
“Sok: General purpose compilers for secure multi-party com-
putation,” in 2019 IEEE symposium on security and privacy
(SP), pp. 1220–1237, IEEE, 2019.

[44] G. Kane, mips RISC Architecture. Prentice-Hall, Inc., 1988.
[45] D. A. Patterson and C. H. Sequin, “Risc i: A reduced instruc-

tion set vlsi computer,” in 25 years of the Intrl. symposia on
Computer architecture (selected papers), pp. 216–230, 1998.

[46] M. Hashemi, S. Roy, F. Ganji, and D. Forte, “Garbled eda:
Privacy preserving electronic design automation,” in Proceed-
ings of the 41st IEEE/ACM Intrl. Conf. on Computer-Aided
Design, pp. 1–9, 2022.

[47] J. L. Hennessy and D. A. Patterson, Computer architecture:
a quantitative approach. Elsevier, 2011.

[48] D. A. Patterson and J. L. Hennessy, Computer organization
and design ARM edition: the hardware software interface.
Morgan kaufmann, 2016.

[49] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan,
“GAZELLE: A low latency framework for secure neural
network inference,” in 27th USENIX Security Symp. (USENIX
Security 18), pp. 1651–1669, 2018.

[50] Y. Lindell, “Fast cut-and-choose-based protocols for mali-
cious and covert adversaries,” J. of Cryptology, vol. 29, no. 2,
pp. 456–490, 2016.

[51] H. Carter, B. Mood, P. Traynor, and K. Butler, “Secure
outsourced garbled circuit evaluation for mobile devices,” J.
of Computer Security, vol. 24, no. 2, pp. 137–180, 2016.

[52] Y. Lindell and B. Riva, “Blazing fast 2pc in the offline/online
setting with security for malicious adversaries,” in Proceed-
ings of the 22nd ACM SIGSAC Conf. on Computer and
Communications Security, pp. 579–590, 2015.

[53] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Stealing machine learning models via prediction {APIs},”
in 25th USENIX security symposium (USENIX Security 16),
pp. 601–618, 2016.

[54] N. Carlini, M. Jagielski, and I. Mironov, “Cryptanalytic
extraction of neural network models,” in Annual Intrl. cryp-
tology Conf., pp. 189–218, Springer, 2020.

[55] ARM, “Architecture reference manual,” ARMv7-A and
ARMv7-R edition, 2012.

[56] S. Rhoads, “Plasma-most mips i (tm) opcodes: Overview,”
http://www. opencores. org/projects. cgi/web/mips/, 2006.

[57] AlphaNOV, “S-LMS.” [Online]https://www.alphanov.com/
en/products-services/single-laser-fault-injection [Accessed:
Dec.1, 2023], 2023.

[58] Xilinx, Inc., “v2021.1.” [Online]https://www.xilinx.com/
products/design-tools/vivado.html [Accessed May.15, 2024],
2021.

[59] P. Mohassel and Y. Zhang, “Secureml: A system for scalable
privacy-preserving machine learning,” in 2017 IEEE sympo-
sium on security and privacy (SP), pp. 19–38, IEEE, 2017.

[60] E. Songhori, H. Siam, and S. Riazi, “Tinygarble frame-
work.” [Online]https://github.com/esonghori/TinyGarble [Ac-
cessed May.15, 2024], 2019.

[61] R. Stallman et al., Using and porting GNU CC, vol. 675.
Free Software Foundation, 1998.

[62] AMD, “v2021.1.” [Online]https://www.xilinx.com/products/
design-tools/vivado.html [Accessed May.23, 2024], 2023.

[63] L. Braun and W. Zakarias, R, “Tinylego framework.”
[Online]https://github.com/AarhusCrypto/TinyLEGO
[Accessed May.15, 2024], 2019.

[64] Y. Lindell and B. Riva, “Cut-and-choose yao-based secure
computation in the online/offline and batch settings,” in
Advances in Cryptology–CRYPTO 2014: 34th Annual Cryp-
tology Conf., Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part II 34, pp. 476–494, Springer, 2014.

[65] Intel, “Intel®64 and ia-32 architectures software developer’s
manual,” Volume 3A: System Programming Guide, Part, 2024.

[66] Apple Computer, Inc. and Intrl. Business Machines Corpora-
tion and Motorola, Inc., PowerPC Microprocessor Common
Hardware Reference Platform: A System Architecture. Mor-
gan Kaufmann, 1995.

[67] R. P. Paul, SPARC architecture, assembly language program-
ming, and C. Prentice Hall PTR, 1999.

[68] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S.
Nordholt, and C. Orlandi, “Minilego: Efficient secure two-
party computation from general assumptions,” in Advances
in Cryptology–EUROCRYPT 2013: 32nd Annual Intrl. Conf.
on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings 32, pp. 537–
556, Springer, 2013.

[Online] https://www.alphanov.com/en/products-services/single-laser-fault-injection
[Online] https://www.alphanov.com/en/products-services/single-laser-fault-injection
[Online] https://www.xilinx.com/products/design-tools/vivado.html
[Online] https://www.xilinx.com/products/design-tools/vivado.html
[Online]https://github.com/esonghori/TinyGarble
[Online] https://www.xilinx.com/products/design-tools/vivado.html
[Online] https://www.xilinx.com/products/design-tools/vivado.html
[Online]https://github.com/AarhusCrypto/TinyLEGO

	Introduction
	Background and Adversary Model
	Background on Garbled Circuits
	MIPS Processor Overview
	Background on Garbled NN Inference
	Adversary Model

	Methodology
	Model Extraction Attacks
	Fault Injection for Model Extraction
	Recovering the last layer's weights
	Recovering intermediate layers' weights

	Fault Injection into Garbled NN Inference Engines
	Fault Injection in NN model's Decoded Instruction

	Experimental Setup
	Device Under Test
	Laser Setup
	Hardware Implementation

	Results
	Complexity of the Attack: Number of Faults and Queries
	Simulation Results
	Fault injection in the last layer
	Fault injection in the intermediate layers

	Laser Fault Injection Results

	Discussion
	Why Cut-and-choose Fails to Prevent Our Attack
	Vulnerabilities of Other General-purpose Processors
	Possible Countermeasures

	Conclusion
	References

