
Volatile and Persistent Memory for zkSNARKs
via Algebraic Interactive Proofs

Alex Ozdemir Evan Laufer Dan Boneh
Stanford

aozdemir@cs.stanford.edu

Abstract—In verifiable outsourcing, an untrusted server runs
an expensive computation and produces a succinct proof (called
a SNARK) of the results. In many scenarios, the computation
accesses a RAM that the server maintains a commitment to
(persistent RAM) or that is initially zero (volatile RAM). But,
SNARKs for such scenarios are limited by the high overheads
associated with existing techniques for RAM checking. We
develop new proofs about volatile, persistent, and sparse per-
sistent RAM that reduce SNARK proving times. Our results in-
clude both asymptotic and concrete improvements—including
a proving time reduction of up to 51.3× for persistent RAM.
Along the way, we apply two tools that may be of independent
interest. First, we generalize an existing construction to convert
any algebraic interactive proof (AIP) into a SNARK. An AIP
is a public-coin, non-succinct, interactive proof with a verifier
that is an arithmetic circuit. Second, we apply Bézout’s identity
for polynomials to construct new AIPs for uniqueness and
disjointness. These are useful for showing the independence of
accesses to different addresses.

1. Introduction

In verifiable outsourcing, a weak client outsources a
computation to a powerful server [1, 2]. The server returns
the result of the computation and a proof that the compu-
tation was done correctly. The proof is succinct: it is small
and easy to verify.

Verifiable outsourcing is widely deployed in the context
of decentralized systems, such as blockchains, where it is
used to greatly reduce the amount of replicated effort to
verify a computation. In this setting, an off-chain service
performs a computation, such as processing a batch of trans-
actions, and produces a succinct proof that the computation
was done correctly. The result of the computation along
with the succinct proof are posted on chain, and every
validator in the network verifies the proof instead of redoing
the computation from scratch. Having a succinct proof is
important: its short size reduces total on-chain storage, and
its fast verification time saves validator work.

In these deployments—and in many other applications
of verifiable outsourcing—the outsourced computation reads
from and writes to some persistent state. For example: a
RAM that holds the account balances of every participant in
a payment system. The computation operates on some initial

memory state M , which is a map from a set of addresses
{1, . . . , N} to values. To reduce storage and verification
costs, the weak client (or blockchain) stores a succinct digest
d of M , e.g., the root of a Merkle tree. The server stores all
of M , and executes the computation to derive a new state
M ′. The server sends a new digest d′ to the client, along
with a proof that running the computation on a starting state
consistent with d gives a final state consistent with d′.

The proof used here is called a SNARK, which we define
in more detail in Section 2. In existing SNARKs, proof size
and verification time are very small: for example, a few
hundred bytes and a few milliseconds [3]. However, proving
costs—both time and memory—are enormous: generally
thousands of times higher than that of the original computa-
tion [4–6]. While costs can be defrayed with parallelism [7–
12], they are still substantial, so optimizing SNARKs is an
essential and active area of research [2–4, 13–25].

Most of the above research focuses on SNARKs for
computations expressed as arithmetic circuits. Since many
computations are not circuits, there has been significant
research into extending SNARKs to richer computational
models including control flow [4, 6, 9], persistent state [26–
31], lookup tables [32–41], and RAM [6, 42–46]. These
extensions aim to make SNARKs more practical, by improv-
ing their compatibility with existing software toolchains.
However, they also introduce significant overhead.

We develop improved SNARKs for three kinds of RAM:
• The foregoing has discussed the case in which a SNARK

proves the correctness of a computation that accesses a
RAM of size N whose initial and final state are commit-
ted to with a digest. We call this a persistent RAM.

• Second, we consider a sparse persistent RAM, in which
N is very large (e.g., N ≈ 2256), but at most C (e.g.,
C ≈ 220) cells are non-zero at a time. This case nat-
urally arises when addresses are hashes of unstructured
identifiers (e.g., an email).

• Third, we consider a RAM that is initialized to zero for
each computation, and whose final state is uncommitted.
We call this a volatile RAM. This case is essential for
SNARKs of RAM program execution.
We obtain significant asymptotic and concrete improve-

ments. First, for volatile RAM, we give the first construction
with proving cost independent of N . Second, for persistent
RAM, our implementation reduces concrete proving costs

by up to 51.3× relative to the state of the art [30]. Finally,
we estimate that our sparse persistent RAM reduces costs
by up to 143× over approaches based on prior ideas [30].

Our improvements rely on three ideas. First, we build on
a special kind of SNARK called a commit-and-prove (CP)
SNARK, which allows for efficient commitments to (and
proofs about) moderately sized arrays [47]. CP-SNARKs
are promising because they do not require expensive crypto-
graphic operations to be encoded as an arithmetic circuit—
unlike state commitments for SNARKs based on Merkle
trees or RSA accumulators [30]. However, a CP-SNARK
does not immediately provide a RAM, because the array
cannot be accessed at data-dependent locations.

Second, we give new interactive proofs to show that a
sequence of RAM accesses is consistent with (committed)
initial and final memory states. In doing this, one challenge
that emerges is proving that accesses (or groups thereof)
have unique addresses (or disjoint address sets). We show
that using interaction and randomness gives better proofs
for these properties, by leveraging Bézout’s identity for
polynomials. Our proofs are public-coin, non-succinct, and
interactive. In them, the verifier’s final test is an arithmetic
circuit, so we call them algebraic interactive proofs (AIPs).

Third, we adapt a recent SNARK, Mirage [48], so that
it can be used to compress an AIP into a SNARK. In this
transformation, SNARK proving time depends on the size
of the verification circuit for the AIP. Thus, by optimizing
the AIP verifier, we reduce final proving times.

Our contributions are:
• We give new AIPs for the consistency of a sequence of

RAM accesses, where the RAM is volatile (§4), persistent
(§5), or sparse and persistent (§6). We define and prove
security for all of our protocols.

Our proofs apply Bézout’s identity for univariate poly-
nomials to prove various uniqueness and disjointness
properties, which may be of independent interest.

• We construct CP-Mirage+: a generalization of Mirage that
converts a (public-coin, multi-round, non-succinct, non-
zero-knowledge) AIP into a CP-zkSNARK.1 We define
and prove security for our construction (§7).

• We implement (§8) and evaluate (§9) our constructions.

For persistent RAM, our implementation performs best
on midsize RAMs (210 ≤ N ≤ 220), where it reduces
proving time by up to 51.3×, relative to prior work.

For volatile RAM, our construction is an asymptotic
improvement: its proving costs are independent of N ,
while prior constructions scale as (logN)/(log logN).
However, the concrete improvement for N ≤ 260 is
modest: at most a 32.9% proving time reduction.

We also compare our sparse RAM against constructions
based on prior ideas, via estimates of rank-1 constraint

1Our goal is efficiency, which requires only a CP-SNARK. Yet, CP-
Mirage+ also guarantees zero-knowledge, making it a CP-zkSNARK.

counts (a standard cost model; §3). For large RAMs of
moderate capacity (210 ≤ C ≤ 220), we predict an
improvement of up to 143×.

In the rest of the paper, we discuss background and
related work (§2), define an arithmetization for AIPs (§3),
and then present our contributions (§4–§9).

2. Background and related work

Notation. Let F be a finite field of prime order p, (with
p ≈ 2255), represented as {0, . . . , p−1}. The order of ω ∈ F,
denoted |ω|, is the minimal natural n > 0 such that ωn = 1.
Let [i] denote {1, . . . , i} for i ∈ N. For vectors x,y, let
(x,y) denote their concatenation: (x1, . . . , xm, y1, . . . , yn).
For boolean b and any values t, f , let ite(b, t, f) be t if
b is true and f otherwise (“if-then-else”). Let toF(b) =
ite(b, 1, 0) ∈ F. Let Fn×m denote n by m matrices of
elements from F.

Let G1,G2,GT be cyclic groups of order p, generated
by G1, G2, GT , with the group operation +. Let e : G1 ×
G2 → GT be a pairing: an efficient, non-trivial bi-linear
map. For vector x ∈ Fn and group element G let xG =
(x1G, . . . , xnG).
Bézout’s identity. Let F<n[X] denote the set of univariate
polynomials in X with coefficients in F, of degree less than
n. Let f, g, h be univariate polynomials in X of any degree.
Bézout’s identity states that there exist polynomials s, t such
that fs+ gt = h if and only if h is divisible by gcd(f, g).
Two corollaries follow. First, take h = 1; then suitable s, t
exist if and only if f and g share no factors. Second, take
h = Xc; then suitable c ∈ N, s, t exist if and only if powers
of X are the only common factors of f, g.
Keyed hashing. The coefficient hash Hc(α ∈ F,x ∈ Fn)
for key α and data x is defined as

∑n
i=1 α

ixi. The root hash
hash Hr(α,x) is defined as

∏n
i=1(α−xi). Hc is a universal

hash function for vector inputs. That is, for all x ̸= y, if α is
sampled uniformly and independently, then the probability
of a collision is at most n/|F|. Meanwhile, Hr is a universal
hash function for inputs as multisets. That is, if x and y
differ as multisets then the probability of a collision is at
most n/|F|. Note that the collision resistence of these keyed
hash functions requires keys sampled independently of the
data.
Proofs. First, we introduce interactive proofs from the com-
plexity perspective. An interactive proof (IP) [49, 50] is
a protocol between a prover P and a PPT (probabilistic,
polytime) verifier V , by which P convinces V that an
instance x is in a language L. Two properties must hold:
• completeness: if x ∈ L, then V accepts with overwhelm-

ing probability.
• soundness: if x /∈ L, then V accepts with negligible

probability.
Cryptographic Proofs. Now, we introduce additional cryp-
tographic properties for proofs of witness relations.

Let P and V be as before, and let R(x,w) be a witness
relation with public instance x (initially known to both

P and V) and private witness w (initially known to only
P). Define the instance language for R: Lx,R = {x :
∃w,R(x,w) = 1}, and regard (P,V) and an IP for Lx,R.
We say the IP is complete (resp. sound) for R if it is
complete (resp. sound) for Lx,R.

If soundness holds only against PPT P , then the IP
is called an argument rather than a proof. One can also
require knowledge soundness [51], which informally means
that whenever V accepts, P must “know” a witness w
(slightly more formally, there exists a PPT extractor which
can compute a valid w through interaction with P). One can
also require zero-knowledge [49], which informally means
than the protocol conveys no information about w beyond its
validity (slightly more formally, there exists a PPT simulator
which can generate protocol transcripts—without using w—
that are indistinguishable from real transcripts). A proof
system is public-coin (also known as Merlin-Arthur [52])
if V’s messages are uniformly random. A proof system is
non-interactive if there is just one message (from P to V);
in this case, that message is called the proof.

Syntactically, a non-interactive proof system for relation
class R (with pre-processing) is three PPT algorithms:
• Setup(R ∈ R)→ (pk, vk): sample proving and verifying

keys
• Prove(pk, x, w)→ π: create a proof that R(x,w) holds
• Verify(vk, x, π)→ {0, 1}: check a proof
It is succinct if the time and memory costs of Verify are at
most poly(log(|R|) + |x|), where |x| is the size of x and
|R| is the time needed to check R directly. A SNARK [25]
is a succinct, non-interactive argument that is knowledge
sound. A zkSNARK is additionally zero-knowledge. There
are many zkSNARK constructions, we will build on a con-
struction of Groth [3] that was extend by Kosba et al. [48].

2.1. Related work

Memory checking has a long history [53], and there is
much prior work on SNARKs with volatile [32, 34, 43–
45, 54] and persistent [6, 42, 55] RAM. These constructions
use tools such as Merkle trees, routing networks [56], lookup
proofs [34], and RSA accumulators [57, 58]. We describe
this prior work—and compare it to our constructions—in
Sections 4.5 and 5.3. A number of RAM-related works
consider goals orthogonal to ours. For instance, vRAM
focus on RAM with computation-independent Setup, and
other works [32, 44, 45, 59] and projects [60–62] build on
SNARKs for RAM to prove executions of RAM programs.

Further afield, others have studied RAM checking for
interactive, non-succinct zero-knowledge proofs [63–67].

There is also significant work on SNARKs that access
other data structures. A long line of work [32], with sev-
eral recent additions [33–41], develops “lookup” proofs for
SNARKs. These are essentially read-only memories. Others
consider sets [68], multisets [31], maps [69], concurrent
maps [29, 70], and relations [71].

Protostar [72] builds a folding scheme for special-sound
protocols; this is closely related to our CP-zkSNARK for

P(. . .) V(A,B,C ∈ Fn×m;x ∈ Fℓx)

wi ∈ Fℓwi

ri ∈ Fℓri

z ← (x, r1, . . . , rµ, w1, . . . , wµ)

Az ◦Bz ?= Cz

µ rounds

Figure 1: Our AIP arithmetization: I-R1CS. The parties ex-
changes field vectors in µ rounds, V’s messages are random,
and V’s final test is a rank-1 constraint system (A,B,C).

AIPs. We build on Mirage (a zkSNARK for MA[1] [48])
and on commit-and-prove SNARKs [47, 73, 74].

3. AIPs and zkSNARKs

Our memory proofs will be algebraic interactive proofs
(AIPs). In this section we define what an AIP is, and
specify an AIP arithmetization (§3.1). Then, we state the
key properties of our construction, called Mirage+, that is
used to convert an AIP into a zkSNARK (§3.2). We present
the Mirage+ construction in Section 7.

Algebraic Interactive Proofs. An AIP is a public-coin in-
teractive proof in which all messages are vectors of elements
from some field F, and V’s final test is a arithmetic circuit
over F. We will be interested in AIPs which (as IPs) are
complete, sound, and knowledge-sound. We will not require
our AIPs to be succinct or zero-knowledge.

3.1. I-R1CS

Our AIP arithmetization is called I-R1CS (interactive
rank-1 constraint system). I-R1CS generalizes R1CS (a
common arithmetization for NP [4, 19, 22]) to AIPs. In I-
R1CS, V’s final test is a rank-1 system. We illustrate I-R1CS
in Figure 1 and define it here:

Definition 1 (I-R1CS). An I-R1CS is a tuple ϕ = (F;µ,
n,m, ℓx, ℓr1 , . . . , ℓrµ , ℓw1 , . . . , ℓwµ ∈ N;A,B,C ∈ Fn×m).
It defines a µ-round AIP over F, where in round i ∈ [µ], P
sends a message wi ∈ Fℓwi and receives a uniformly random
response ri ∈ Fℓri . The last response must be empty: ℓrµ =
0. V’s test is defined by three matrices A,B,C ∈ Fn×m

where n is the number of constraints and m = ℓx+
∑

i(ℓwi
+

ℓri) is the number of variables. V accepts if Az ◦Bz = Cz
where z = (x, r1, . . . , rµ, w1, . . . , wµ).

Any AIP can be expressed as I-R1CS by having P send
the results of all intermediate multiplications in V’s circuit.
In the resulting I-R1CS, n depends linearly on the number
of non-linear multiplications in V’s circuit. We call these
multiplications constraints, since that is what they become
in the final I-R1CS. In future sections of this paper, our goal
is to reduce the number of constraints.

3.2. A zkSNARK for I-R1CS

In Section 7, we construct Mirage+: a zkSNARK for
I-R1CS. We also prove its security. Here, we summarise
the key security and efficiency properties of our construc-
tion. The first is that Mirage+ transforms a complete and
knowledge-sound AIP ϕ into a zkSNARK. We denote the
application of Mirage+ to ϕ as Mirage+ϕ.

Theorem 1. Let I-R1CS ϕ be complete and knowledge-
sound for witness relation R. Then in the generic group
model (GGM), Mirage+ϕ is a zkSNARK for R.

Since the AIP need not be succinct or zero-knowledge,
it’s easy to transform a sound AIP into a knowledge-sound
AIP. Thus, Mirage+ can also transform a complete and
sound AIP into a zkSNARK. So, it suffices to construct
AIPs that are complete and sound.

Corollary 1. Let R be a witness relation and let I-R1CS
ϕ be complete and sound for language LR = {(x,w) :
R(x,w) = 1}. Then there is a zkSNARK for R in the GGM.

Proof. Note that in LR, (x,w) is the instance. Let ϕ′ be
ϕ, with w moved from the instance to the first message.
Then, ϕ′ is complete and knowledge-sound for R. Applying
Mirage+ to ϕ′ gives a zkSNARK for R.

Efficiency. Mirage+ is very efficient. Verification uses
O(ℓx + µ) time and memory; concretely, just a few mil-
liseconds (Sec. 9). Proofs are µ + 2 elements of G1 and 1
element of G2; concretely, just a few hundred bytes (Sec. 9).
Generally, proving costs are dominated by O(n log n) F
operations for Fourier transforms and O(nλ/(log n)) G1

operations for multi-scalar multiplications.
Shrinking Mirage+’s P cost generally requires shrinking

n: the number of I-R1CS constraints. Interestingly, n is a
measure of the verifier cost of the AIP that encoded by the I-
R1CS. Thus, for the rest of this paper, our primary objective
is to construct AIPs with small V complexity.
Commit and prove. We also construct CP-Mirage+: an
efficient zkSNARK for witness relations where parts of
the witness are committed. It uses the commit-and-prove
technique |citeCCS:CamFioQue19 to avoid encoding the
commitment scheme as I-R1CS constraints, which would be
very expensive. The following theorem states the properties
of CP-Mirage+; the full construction and interface are in
Appendix B.

Theorem 2. Let I-R1CS ϕ be complete and knowledge-
sound for witness relation R(x, (w1, . . . , wk, w)). Let Com
be a Pedersen commitment scheme in G1. Then in the GGM,
CP-Mirage+ is a zkSNARK for witness relation

Rcom = {((x, c1, . . . , ck), ((w1, o1), . . . , (wk, ok), w)) :
k∧

i=1

ci = Com(xi, oi) ∧R(x, (w1, . . . , wk, w))}

Mirage+ and CP-Mirage+ can transform AIPs into zk-
SNARKs (with optionally committed witnesses). Thus, as

we will see, we can build SNARKs for RAM consistency by
building AIPs and then applying either Mirage+ (for volatile
RAM) or CP-Mirage+ (for persistent RAM).

4. Volatile memory

In this section, we develop an improved AIP for volatile
memory checking in a zkSNARK. First we define what an
AIP for volatile memory is. Then, we explain our solution.

4.1. Problem and overview

An access acc is a tuple (a, v, w) with address a ∈ F,
value v ∈ F, and write bit w ∈ {0, 1} ⊂ F. A transcript
tr is an access sequence acc1, . . . , accA. A memory state
(of size N ≤ |F|) is a function M : [N] → F, where
M(a) is the value at address a ∈ [N]. (We will consider
different representations of M , including as a vector in FN .)
A transcript is valid with respect to initial state M0 and final
state MA if:

valid(tr,M0,MA) ≜ ∃M1, . . . ,MA−1,∀i ∈ [A],∀a ∈ [N],

(Mi−1(a) = Mi(a)) ∨ (wi = 1 ∧ a = ai ∧Mi(a) = vi)

This condition is called read-over-write (RoW), because it
requires the values of future reads to agree with past writes.

Volatile memory captures the case where the initial state
is zeroed and the final state is unspecified. (It is easy to
generalize to various other structured initial states.) If 0
denotes the memory state that is zero everywhere, then the
language of valid volatile transcripts is the set:

LVmem = {tr : ∃MA, valid(tr,0,MA)}

Now we explain our new AIP for LVmem, which is built
on a conditional uniqueness proof. First, we explain the role
of ordering proofs in volatile memory, and how to build
a sufficient ordering proof from a conditional uniqueness
proof (§4.2). Second, we design novel AIPs for uniqueness
(§4.3) and conditional uniqueness (§4.4). Third, we compare
the overall asymptotic cost of our volatile memory proof
with those from prior work (§4.5).

4.2. Reducing to conditional uniqueness

Figure 2 illustrates the architecture of prior volatile
memory proofs. The parties start with a t-order transcript
tr. The high-level idea is to sort the transcript by address,
and then check the address-order transcript (which is easier).
First, P and V augment each access acci in the original
transcript tr with a new “time” field ti = i, for i ∈ [A].
Notice that tr is t-ordered. Then, P sends a new transcript tr′
that should be lexicographically ordered by (a, t). Finally, P
proves that tr′ (1) is a permutation of tr, (2) is (a, t)-ordered
and (3) respects RoW [43].

Prior work gives good permutation and RoW proofs for
tr′ [32, 43, 54]. In Appendix C, we present the state-of-
the-art techniques for each of these, expressed as AIPs for
suitable languages. Ultimately, the AIPs for both problems

a1 a2 aA

v1 v2 vA

w1 w2 wA

t1 = 1 t2 = 2 tA = A

· · ·
t-

or
de

r
tr

a1 a2 aA

v1 v2 vA

w1 w2 wA

t1 t2 tA

· · ·

(a
,t
)-

or
de

r
tr

′

(1) permutation proof

(2) ordering proof & (3) local RoW proof

Figure 2: Prior work reduces a volatile memory proof to a
(1) permutation proof, (2) ordering proof, and (3) read-over-
write (RoW) proof for a transcript in (a, t)-order.

have perfect completeness, soundness error O(A/|F|), V
complexity O(A), and P complexity Õ(A+N).

However, prior (a, t)-ordering proofs have some draw-
backs. In particular, no prior (a, t)-ordering proof has V
complexity O(A)—all have some dependence on N .

Our first insight is that (a, t)-ordering is not necessary
for soundness (though it is sufficient). A sufficient and
necessary condition is that tr′ be a-grouped and t-ordered
within those groups. That is, define gi (“group start”) to be
1 if (i = 1∨ai−1 ̸= ai) or 0 otherwise. Then, it suffices for
adjacent accesses to satisfy gi = 1 ∨ ti > ti−1 and for the
sequence (ai : i ∈ [A], gi = 1) to contain unique elements.
Intuitively, this suffices because the address are independent
of one another—so their order is irrelevant. We prove this
sufficiency in Appendix C.1, by constructing and proving
the soundness of ΠVmem: an AIP for LVmem which follows
Figure 2 but only uses a-grouping.

So, it remains to build a conditional ordering and con-
ditional uniqueness proof. The former is easy with existing
tools (see App. C.1), but uniqueness requires new ideas.

4.3. Uniqueness proof

First, we consider the case when all gi = 1: i.e., a proof
that a sequence a = (a1, . . . , aA) ∈ FA contains unique
elements. That is, we give an AIP for Luniq:

Luniq = {a : ∀i ̸= j, ai ̸= aj}

Naively enforcing pairwise disequalities has V complexity
Θ(A2). Our AIP will have V complexity 4A+O(1).

At a high-level, our AIP applies Bézout’s identity to a
polynomial encoding of a. Define the polynomial z(X) ∈
F[X] by

∏
i(X−ai) and let z′(X) be its formal derivative.

If a ∈ Luniq, then z’s roots have multiplicity one. Thus, z

Πuniq(a1, . . . , aA)

P(· · ·) V(· · ·)
z(X) ≜

∏
i(X − ai)

z′(X) ≜
d

dX
z(X)

s, t← UniqBez(a)
s ∈ F≤A−2[X]

t ∈ F≤A−1[X]

sample α ∈ F

z(α)s(α) + z′(α)t(α) ?= 1

Protocol 1: Our uniqueness proof for the ai. V’s final test
is implementable with 4A+O(1) constraints.

and z′ must be co-prime, and there exist Bézout polynomials
s and t with degrees less than A − 1 and A respectively,
such that z(X)s(X) + z′(X)t(X) = 1 (Sec. 2).

Protocol 1 is our AIP. In it, P computes the Bézout
polynomials s ∈ F<A−1[X] and t ∈ F<A[X] such that zs+
z′t = 1 using UniqBez and sends them to V as coefficients.
Then, V samples α ∈ F and tests z(α)s(α)+z′(α)t(α) = 1.
V obtains s(α) and t(α) through Horner evaluation. For
z(α) and z′(α) it uses the following recursion. For j ∈ [A],
define zj(X) =

∏
i≤j(X − ai). Then, z1(α) = (α − a1),

z′1(α) = 1, and for j > 1, we have:

zj(α) = zj−1(α)× (α− aj)

z′j(α) = zj−1(α) + z′j−1(α)× (α− aj)

Thus, z(α) = zA(α) and z′(α) = z′A(α) are computable
with 2A+O(1) constraints. So, V’s circuit has 4A+O(1)
constraints in total.

Theorem 3. The AIP Πuniq for language Luniq has perfect
completeness, soundness error (2A − 2)/|F|, and V com-
plexity 4A+O(1).

Proof. Completeness follows immediately from Bézout’s
identity, and the V complexity has been analyzed above.

For soundness, consider the probability that V accepts
if a contains duplicates. In this case, z contains at least one
root with multiplicity at least two. Therefore, z and z′ share
this root. Therefore, zs + z′t cannot equal 1 (Sec. 2), so
zs+z′t−1 is a non-zero polynomial (of degree ≤ 2A−2).
Then, the V accepts (i.e., z(α)s(α) + z′(α)t(α) = 1) only
when α is a root of said polynomial. The probability of
this is at most (2A−2)/|F|, by the fundamental theorem of
algebra.

Optimizing the prover. The prover requires coefficients
for s and t. The natural way to get these is to compute
coefficients for: z (using a product tree), then z′, and then
s and t (using the fast extended Euclidean algorithm—
the FEEA) [75]. Computing each of z and s, t takes time

SimpleUniqBez(a1, . . . , aL)→ (s, t)

z(X)← ProductTree(X − a1, . . . , X − aL)

b← Evaluate(z′(X),a)

t(X)← Interpolate((b−1
1 , . . . , b−1

L),a)

return s← (1− z′t)/z and t

Algorithm 1: A simple algorithm, SimpleUniqBez, for com-
puting Bézout polynomials s, t for z(X) =

∏L
i=1(X −

ai) and its derivative. ProductTree(p1, . . . , pL) com-
putes

∏
i pi, Evaluate(p,a) computes p(a1), . . . , p(aL), and

Interpolate(y,x) computes f ∈ F<L[X] such that f(xi) =
yi. The optimized UniqBez is in Appendix D.

O(A log2 A),2 but the FEEA is the concrete bottleneck,
for two reasons. First, the FEEA’s constants are large [75,
Chapter 9]. Second, the FEEA is not divide-and-conquer, so
parallelizing it is tricky and has higher overhead.

Instead, we give a simple, specialized, divide-and-
conquer algorithm for computing the coefficients of s and
t from a. SimpleUniqBez (Alg. 1) is simplification of our
algorithm. First, it computes z using a product tree. Second,
it evaluates z′ at each ai. Third, it interpolates t as the poly-
nomial whose evaluation at each ai is (z′(ai))

−1. Fourth, it
computes s as (1− z′t)/z

To see that SimpleUniqBez is correct, consider t(ai). Per
Bézout’s identity, we have z(ai)s(ai)+z′(ai)t(ai) = 1. But,
z(ai) is 0, so t(ai) is just the inverse of z′(ai). Thus, t can be
interpolated from the (z′(ai))

−1. Then, per Bézout’s identity
again, we have that z divides 1−z′t without remainder, and
that the quotient is s.

SimpleUniqBez is efficient. The last step (computing s)
takes only O(A logA) time. The first three steps are the
bottleneck, and all take O(A log2 A) time. Also, they are
all divide-and-conquer algorithms that are easy to paral-
lelize [75].

We present the full UniqBez algorithm in Appendix D.
It optimizes SimpleUniqBez by exploiting connections be-
tween the uses of ProductTree, Evaluate, and Interpolate.
Specifically, in evaluating the third, one incidentally eval-
uates the first two. The use of ProductTree in Interpolate
is unsurprising. However, the special role that evaluations
of z′ play in Interpolate is quite fortuitous. We prove the
following theorem about UniqBez:

Theorem 4. Given a1, . . . , aA ∈ F, UniqBez outputs s, t ∈
F[X] satisfying sz + tz′ = 1 (where z =

∏
i(X − ai)) in

time at most 4.5M(A) logA+O(A logA).2

Whereas, the FEEA requires time 22M(A) logA +
O(A logA) in the worst case [75, Theorem 11.7].

2Throughout, we assume that Mp(A) (abbreviated M(A))—the num-
ber of Fp operations needed to multiply polynomials in F<A

p [X]—is
O(A logA). In our fields of interest—which are smooth—the FFT gives
this. In other fields, understanding Mp(A) is an old (but still active)
problem [76–78].

Reference (a, t)-property Overall V complexity

TinyRam [44] (a, t)-order Θ(A(logA+ logN))

Arya [32] (a, t)-order ΘA

(
logN

log logN

)
, ΘN (A)

Haböck [34] (a, t)-order ΘA

(
logN

log logN

)
, ΘN (A)

This work a-group, t-order Θ(A)

Table 1: The V complexity of checking A accesses to a
volatile RAM of size N . Prior works order accesses by
address a using various techniques. Our approach groups
accesses by a using a uniqueness proof.

4.4. Conditional uniqueness

One can generalize Protocol 1 to be a conditional
uniqueness proof. That is, a proof for the language:

Lc-uniq = {(a ∈ FA,g ∈ {0, 1}A) :
∀i ̸= j, gi = 0 ∨ gj = 0 ∨ ai ̸= aj}

P simply omits ai with gi = 0 from the computation of
z, z′, s, t. Also, V’s circuit uses a conditional recurrence:

zj(α) = zj−1(α)× (gj × [α− aj − 1] + 1)

z′j(α) = gj × [zj−1(α) + z′j−1(α)× (α− aj − 1)] + z′j−1(α)

Thus, z, z′ are evaluable with a size 4A+O(1) circuit. The
result is an AIP for Lc-uniq with the same characteristics as
Protocol 1, save that V’s circuit now has size 6A+O(1).

4.5. Comparison to prior work

We have presented a novel AIP for conditional unique-
ness with V-cost Θ(A). As discussed, this gives an AIP
for LVmem. Now, we compare our memory proof against
prior works. As we will see, ours is the first which has cost
independent of N : the address space size. Table 1 shows
the comparison. The approaches differ in (a) whether they
group or order the addresses a and (b) how they do that.

TinyRAM [44] orders values through bit-splitting. Infor-
mally, ai ≥ ai−1 reduces to ai−ai−1 being “small,”—fitting
in ⌈logN⌉ bits. Ordering times requires O(logA) more bits,
so each access requires O(logA+ logN) constraints.

To avoid this log overhead, Arya [32] range-checks
though lookup proofs. Essentially, it argues that ai−ai−1 is
in the set {0, . . . , N}. Each lookup uses O(1) constraints,
but there is an O(N) one-time overhead for the set, which
is untenable for large N . One can defray this cost by
combining lookups with bit-splitting [33, 35, 39, 41]. One
splits the differences into medium-size “digits” that are
each shown to be in a set {0, . . . , k − 1}. The net cost is
O(k+A logk(N)) When k is set optimally, the asymptotics
of this approach become non-trivial. We analyze them in
Appendix C, finding that the overhead now depends quasi-
logarithmically on N (Table 1).3 Recently, Haböck improved
the concrete multiplicative costs of this approach [34].

3Recall that OA(f(N)) allows the big-O constant to depend on A.

m1

...

mN

m′
1

...

m′
N

v1· · ·vA v′1· · ·v′Aa1· · ·aA

acc1 · · · accA

Extract active cells

ai distinct i /∈ a =⇒ mi = m′
i

vi = mai
∧ v′i = m′

ai

Transcript consistency

for sequence: (a1, v1), . . . (aA, vA),
acc1, . . . , accA, (a1, v

′
1), . . . (aA, v

′
A)

Figure 3: An overview of our persistent memory proof.
m,m′ are the initial and final memory states. a includes
all addresses accessed by acc1, . . . , accA. For all i ∈ [A],
vi, v

′
i are the initial and final values at ai.

Our AIP is the first with cost independent of N . In
Section 9, we do a concrete comparison, finding that our
approach reduces final proving time by a much as 32.9%,
for 60-bit addresses.

5. Persistent memory

Now we turn to persistent memory. Here, the problem
is to show that a transcript tr is consistent with specified
initial and final memory states. Thus, to build an AIP for:

LPmem = {(tr,M0,MA) : valid(tr,M0,MA)}

Through CP-Mirage+ (with commitment scheme Com),
we can transform an AIP for LPmem into a zkSNARK for
a witness relation in which M0 and MA are committed as
c, c′ with commitment randomness o, o′:

RPmem = {((tr, c, c′), (M0,MA, o, o
′)) :

c = Com(M0, o) ∧ c′ = Com(MA, o
′)

∧ valid(tr,M0,MA)}

In our AIP for LPmem, the initial and final memory states
are represented as vectors m,m′ ∈ FN . That is, address
i ∈ [N] has initial value mi and final value m′

i.
Figure 3 illustrates our high-level approach.4 First, P

sends a vector of “active” addresses a—those that are
touched by tr. They also send the initial and final values
at those addresses v,v′ ∈ FA. Then, P and V run two sub-
protocols, which we explain in the rest of this section. First,
to show that (v,v′,a) represent the active cells of m and
m′ (§5.1). Second, to show that (v,v′,a) is consistent with
the transcript tr (§5.2). We conclude with a comparison to
prior work (§5.3).

4Assume that A ≤ N ; lifting this requirement is straightforward.

Hc

Hc

Hc

Hc

Hc

Hc

Hc

Hc

a1

v1 v′1

aA

vA v′A

h1...
hN−A

m1

1

mN

N

m′
1

1

m′
N

N

...
...

...
...

...
...

...

pe
rm

ut
at

io
n

pr
oo

f
w

ith
H

r

pe
rm

ut
at

io
n

pr
oo

f
w

ith
H

r

Figure 4: A visualization of Πactive (Protocol 2).

Πactive(m,m′ ∈ FN ;v,v′,a ∈ FA) for Lactive

P(· · ·) V(· · ·)

β sample β ∈ F

h← (mi + iβ)i∈[N],i/∈a
h ∈ FN−A

sample α ∈ F

c←
∏N−A

i=1 (α+ hi)∏N
i=1(α+mi + iβ) ?= c×

∏A
i=1(α+ vi + aiβ)∏N

i=1(α+m′
i + iβ) ?= c×

∏A
i=1(α+ v′i + aiβ)

Protocol 2: Extracting the active cells of a memory.

5.1. Selecting active cells

Our first sub-protocol proves the connection between
v,v′,a,m, and m′. Each (ai, vi) pair should match some
unique (i,mi), and likewise for the ai, v′i, and m′

i. Further,
every unmatched mi should equal m′

i. More precisely:

Lactive = {(m,m′ ∈ FN ;v,v′,a ∈ FA) :∧A
i=1(vi = mai ∧ v′i = m′

ai
) ∧∧N

i=1(i /∈ a =⇒ mi = m′
i) ∧∧A

i=1

∧i−1
j=1 ai ̸= aj}

Figure 4 illustrates our protocol Πactive for this language.
The idea is to sample a key β and represent every value-
address pair (v, a) by its hash Hc(β, (v, a)) = v + βa
(represented by the boxes with Hc). P sends the hashes
h = (h1, . . . , hN−A) for inactive memory cells (top-center).
Then, it suffices to show that (h, v1 + βa1, . . . , vA + βaA)
is a permutation of the initial memory state and (h, v′1 +
βa1, . . . , v

′
A + βaA) is a permutation of the final memory

state. For this, we use the Hr hash to test multiset equality
(the two vertical rectangles). Protocol 2 defines Πactive in
full. We prove the following in Appendix A:

Theorem 5. If A ≤ N , the protocol Πactive (for language
Lactive) has perfect completeness, soundness error ≤ (N2+
2N +A)/|F|, and V complexity 3N + 2A+O(1).

Why send h?. In Πactive, P sends the hashes hi of inactive
memory cells rather than their address-value pairs. In an
alternative protocol for Lactive, Π′

active, P sends these pairs,

and V computes the hi. This change increases V complexity
by N − A, which is why we use Πactive instead of Π′

active.
But, Π′

active has two advantages that might matter in other
contexts. First, it has one fewer round, since the keys α
and β can now be sampled simultaneously. Second, the
soundness error of Π′

active is N/|F|, which is better than
our O(N2/|F|) bound for Πactive. These advantages are not
meaningful for us: CP-Mirage+ makes extra rounds very
cheap, and its soundness error far exceeds that of Πactive.

5.2. Transcript validity

It remains to be shown that the transcript

(a1, v1), . . . , (aA, vA), acc1, . . . , accA, (a1, v
′
1), . . . , (aA, v

′
A)

is consistent. We give our full proof for this, ΠPmem, in
Appendix C.3. Here, we sketch our approach by describing
how it differs from our volatile memory proof. First, we
ensure that the initialization accesses (ai, vi) come first,
and the finalization accesses (ai, v

′
i) come last. Second, we

eliminate the uniqueness argument from the last section.
Initialization and finalization. To ensure that each ai has
initial value vi and final value v′i, it suffices to ensure
that each address is initially written to by access (ai, vi)
and finally read from access (ai, v

′
i). We ensure this by

setting the time t associated with each access appropriately.
As before, for i ∈ [A], standard access acci is assigned
time ti = i. However, each initialization access (ai, vi)
is assigned time ti = 0 and finalization access (ai, v

′
i) is

assigned time ti = A+1. These times are respectively before
and after all standard accesses.
Omitting uniqueness. Further, since the (ai, vi) must be
the first accesses to each address, we set their “group start”
(Sec. 4.2) g to be 1 and we set g = 0 for every other access.
Now, the addresses with g = 1 are unique by construction.
Thus, we can omit the last section’s conditional uniqueness
argument. Note that with this change, we set the gi in the
t-order transcript, and they are included in the permutation
proof. Whereas, for volatile memory we computed the g’s
based on the a’s in the (a, t)-order transcript.

5.3. Comparison to prior work

Prior persistent memory proofs for zkSNARKs use
Merkle trees or RSA accumulators [30]. Table 2 summarizes
the costs of these approaches and of ours.

In the Merkle approach, V checks one collision-resistant
(CR) hash per read and per level of a (logN)-depth tree.
For a write, this is two hashes. Keyless hash functions are
highly non-linear, so even multiplication-optimized hashes
(e.g., Poseidon [80]), require ≈300 multiplications.

RSA accumulators give a very different persistent mem-
ory proof [30]. The V cost is independent of N , but their
are three downsides. First, there is a large constant over-
head (about 10M multiplications [30]) for verifying two
Wesolowski proofs [79]. Second, each access requires many
multiplications (about 2k [30]), to compute and accumulate

Approach Constraints Other bottlenecks

Merkle 600 ·A logN
Linear scan 3 ·N ·A
RSA [30] 10M + 4k ·A 2048N -bit RSA exp.
This work 3 ·N + 41 ·A 2× MSMG1 (N)

Table 2: Constraint counts for prior persistent memory ap-
proaches and ours. Merkle and RSA estimates are based
on Ozdemir et al. [30], who require: ≈5M constraints for
a Wesolowski [79] verifier, ≈2k constraints per RSA ac-
cumulator insert/delete, and ≈300 constraints per CR hash
(Poseidon [80]). We compute the N -dependence of our ap-
proach directly, and the A-dependence through a regression
on the results of Section 9.2.

a division-intractable hash [58]. Third, while the V com-
plexity is independent of N , proving cost is not. P must
additionally evaluate a 2048N -bit exponentiation modulo
the RSA modulus (which is concretely expensive) in order
to compute its witness.

Our approach has V complexity 3N + 41A. The N
constant comes directly from Πactive and we measure the A
constant in our experiments (Sec 9.2). Our experiments also
see that this gives a significant concrete improvement for
many N and A. It reduces constraint counts by up to 98.2×
and overall proving times by up to 51.3×. Intuitively, the
improvement is because both RSA and Merkle encode ex-
pensive cryptographic operations (e.g., Wesolowski’s proof
or CR hashing) in constraints, while we do not.

6. Sparse persistent memory

Now, we turn to our final problem: sparse persistent
memory. The previous section considered a dense memory:
each address i ∈ [N] had its value explicitly represented by
mi in the memory state m. Now, the address space will be
nearly all of F, but we will assume that at most C cells are
non-zero. Thus, C is the capacity for a sparse memory.

The initial state is represented by m,a ∈ FC . Each non-
zero ai indicates that address ai has value mi. Thus, 0 ∈ F
is the only invalid address, and when ai = 0, we require that
mi = 0. Further, the non-zero ai must be unique. The final
state is represented by m′,a′ ∈ FC with the same meaning.

First (§6.1), we summarize our approach and explain
how constructing a sparse persistent memory proof reduces
to proving the uniqueness of valid addresses. Second (§6.2),
we explain how to prove the uniqueness of valid addresses.
Third (§6.3), we compare against alternatives.

6.1. Overview

Our high-level protocol for sparse persistent memory is
similar to the one for dense persistent memory. In the first
round, P sends encodings of the initial and final states of
active cells: those whose values might change. That is, P
sends b,v,b′,v′ ∈ FA. The pair (bi, vi) represents a cell at
address bi with value vi, before the accesses acci. The pair

Hc

Hc

Hc

Hc

Hc

Hc

Hc

Hc

b1 b′1

v1 v′1

bA b′A

vA v′A

h1...
hC−A

m1

a1

mC

aC

m′
1

a′1

m′
C

a′C

...
...

...
...

...
...

...

pe
rm

ut
at

io
n

pr
oo

f
w

ith
H

r

pe
rm

ut
at

io
n

pr
oo

f
w

ith
H

r

Figure 5: A visualization of our active-cell selection proof
for sparse persistent memories. Two tests are not shown.
First, for all i ∈ [A], bi must be zero, or bi = b′i; this is
enforced as: (bi − b′i)bi = 0. Second, the non-zero a′i must
be unique; we discuss how to ensure this in Section 6.2.

(b′i, v
′
i) represents a cell at address b′i with value v′i, after

the accesses. We call a cell valid if its address is non-zero.
P must show a number of facts about the active cells.

Figure 5 illustrates its proof, at a high-level. This proof
follows Πactive very closely, so we will only discuss the
differences. First, in Πactive value mi lived at address i; now,
it lives at address ai (and likewise for m′

i, a
′
i). This creates

the main challenge of this section—proving the uniqueness
of the valid a′i—which we will address in Section 6.2.

Second, in Πactive the initial address bi and final address
b′i of an active cell were always the same. Now, b′i need only
equal bi if bi is valid. If bi is invalid, then b′i can be valid:
this corresponds to creating a new cell in the memory that
is potentially non-zero. V enforces the conditional equality
of bi and b′i with the equation (b′i − bi)bi = 0.

Beyond active-cell selection, P must show that the active
cells are consistent with the transcript. This amounts to prov-
ing the consistency of the following transcript: (b′1, v1), . . . ,
(b′A, vA), acc1, . . . , accA, (b

′
1, v

′
1), . . . , (b

′
A, v

′
A). Note that

the initialization accesses have addresses b′, not b. This is
because b′ contains both the pre-existing and newly created
valid addresses, while b contains only the pre-existing ones.
This consistency proof is done exactly as in Section 5.2.

6.2. Valid address uniqueness

How can P show the uniqueness of the (final) valid
addresses? Naively, P could apply the proof Πuniq (Sec. 4.3)
to the a′i. However, this approach is incorrect (incomplete)
because it does not permit repetitions of the dummy ad-
dress 0. Instead, P could provide an indicator sequence
c ∈ {0, 1}C ⊂ FC , where each ci = toF(a

′
i ̸= 0). P would

show that the ci satisfy their definition, and then apply a
conditional uniqueness argument to a′ and c (Sec. 4.4). This
approach is complete and sound. However, it’s V complexity
is 8C + O(1) (this is because the conditional uniqueness
argument has cost ≈ 6C + O(1) and proving that the ci
satisfy their definition has cost 2C [81]).

ΠPuncUniq(a1, . . . , aC) for LPuncUniq

P(· · ·) V(· · ·)

S ← {ai}Ci=1 z(X) ≜
∏

i(X − ai)

c← C − |S| z′(X) ≜
d

dx
z(X)

s, t← UniqBez(S) c, s, t

sample α ∈ F

z(α)s(α) + z′(α)t(α) ?= αc

Protocol 3: Our punctured uniqueness proof for the ai. P’s
messages are c ≤ C, s ∈ F≤C−2[X], t ∈ F≤C−1[X]. V’s
test is as a size 4C +O(logC) circuit; see the text.

In the sections below we give two other approaches
that improve V complexity. First (§6.2.1), we give a pro-
tocol based on punctured uniqueness, with V complex-
ity 4C + O(logC). Second (§6.2.2), we give a proto-
col based on punctured disjointness, with V complexity
2C +O(A+ logC).

6.2.1. Punctured uniqueness. To inspire our punctured
uniqueness proof, consider what goes wrong if we apply our
(non-conditional) uniqueness proof (Sec. 4.3) to the ai. Fist,
P defines z(X) =

∏
i(X−ai) and computes the derivative

z′. Now, P must show that gcd(z, z′) = 1 by providing s, t
such that zs+z′t = 1. But, if a contains d ≥ 2 instances of
0, then Xd−1 is a common factor of z and z′. So, P cannot
complete the protocol.

Our idea is simple: have P show that gcd(z, z′) has form
Xc. This shows that 0 is the only common root of z and
z′, and is thus is the only duplicate root of z. Our proof is
for the language LPuncUniq, defined as follows:

LPuncUniq = {a : ∀i ̸= j, ai ̸= aj ∨ 0 = ai = aj}

Protocol 3 shows ΠPuncUniq. First, P sends c: the number
of extra 0s. P also sends Bézout coefficients s, t for the de-
duplicated list. V tests zs+ z′t = Xc at a random α, eval-
uating z(α), s(α), z′(α), t(α) as in Πuniq (using 4C +O(1)
multiplications) and αc using O(logC) multiplications.

Theorem 6. The protocol ΠPuncUniq (for language
LPuncUniq) has perfect completeness, soundness error ≤
(C+A−1)/|F|, and V complexity 4C+O(logC). (proved
in Appendix A)

This is already better than a conditional uniqueness
proof. But, we can do even better by proving the uniqueness
of the valid a′i assuming the uniqueness of the valid ai.

6.2.2. Punctured disjointness. Our first insight is that in-
dividual memory proofs do not need to prove valid address
uniqueness from scratch. A persistent memory proof is used
to allow a chain of zkSNARKs π1, . . . , πP to be provably
consistent with a single RAM that is represented between
proofs by a commitment. Thus, in each proof, the initial
ai come from a previous proof. So, if each proof assumes

ΠPuncDisj(a1, . . . , aC , d1, . . . , dA) for LPuncDisj

P(· · ·) V(· · ·)

c←
∣∣∣{{ai}}Ci=1 ∩ {{di}}

A
i=1

∣∣∣ f(X) ≜
∏C

i=1(X − ai)

s, t← DisjBez(a,d) c, s, t g(X) ≜
∏A

i=1(X − di)

sample α ∈ F

f(α)s(α) + g(α)t(α) ?= αc

Protocol 4: Our punctured disjointness proof for the ai and
di. P’s messages are c ≤ C, s ∈ F≤A−1[X], t ∈ F≤N−1[X].
V’s test is a size 2C + 2A+O(logC) circuit; see the text.

Approach Constraints Other bottlenecks

Merkle 150k ·A
Linear scan 3 · C ·A
RSA [30] 30M + 8k ·A 2048C-bit RSA exps.
This work 7 · C + 51 ·A 2× MSMG1 (2C)

Table 3: Constraint counts for prior persistent memory ap-
proaches and ours, under the same assumptions as Table 2.
We explain our estimates for Merkle and RSA in the text.

the uniqueness of the valid ai and proves the uniqueness of
the valid a′i, induction shows that every proof produces a
sequence a′i whose valid addresses are unique.

Our second insight is that under these assumptions,
uniqueness reduces to disjointness. First, define differences
di = b′i − bi. Now, observe that the non-zero di are exactly
the valid a′i that are not in a. So, to prove that the valid a′i
are unique, it suffices to assume the uniqueness of the valid
ai and show that they are disjoint with the non-zero di. That
is, it suffices for (a,d) to be in the following language:

LPuncDisj = {(a ∈ FC ,d ∈ FA) : {ai}Ci=1 ∩ {di}
A
i=1 ⊆ {0}}

Our third insight is that Bézout’s identity gives a proof
for LPuncDisj. ΠPuncDisj (Protocol 4) is that proof. In it, V
defines f(X) to have roots a and g(X) to have roots d.
Then, P provides c ≤ C, s ∈ F<A[X], t ∈ F<C [X] such
that fs + gt = Xc. This polynomial equality can only
hold if {ai} ∩ {di} ⊆ {0}. V tests it at a random α. P
could compute s, t using the FEEA; but there is a natural
adaptation of SimpleUniqBez, that we call DisjBez, that does
the same thing using divide-and-conquer subroutines.

Theorem 7. The protocol ΠPuncDisj (for LPuncDisj) has per-
fect completeness, soundness error ≤ (C +A− 1)/|F|, and
V complexity 2C + 2A+O(logC). (proof in App. A)

6.3. Comparison to alternatives

Now, we explain alternatives to our approach and present
cost models for all options. Table 3 shows the cost models.
We summarise our conclusions here, and explain the alter-
native approaches and cost models below.

For moderate C, our approach is better than one based
on RSA or Merkle. The reason is just as in Section 5.3: we

avoid collision-resistant hashing, division-intractable hash-
ing, Wesolowski proofs, and multi-precision arithmetic.
However, for very large C (say C > 225), Merkle seems
best, because only its costs are C-independent.

Our approach. We can determine the C-dependence of our
V complexity precisely. We start from the 3C cost of Πactive.
Then, the Hc evaluations in Figure 5 add one multiplication
each, and the ΠPuncDisj adds another 2C. Thus, our final V
complexity is 7C + O(logC + A). The A-dependence is
very similar to a dense RAM; we conservatively estimate it
increases by 10. Finally, to handle address commitment, the
extra MSMs of CP-Mirage+ grow slightly,

Merkle. Sparse merkle trees give a natural (but expensive)
construction of sparse persistent RAM: a Merkle tree with
N = |F|−1 leaves. Here, the logN factor of Table 2 is now
≈256, so V complexity is approximately 150k per access.

RSA. One could also build a sparse persistent RAM from
RSA accumulators, by combining RSA-based RAM with
batched RSA non-membership proofs [30, 58]. The ap-
proach would use two RSA accumulators: one for (mi, ai)
pairs and the other for just the addresses ai. RSA’s constant
overhead increases by 10M relative to Table 2 just to update
the new address accumulator (two more Wesolowski proofs).
Further, addresses are proved unique with batched non-
membership proofs, which add another 10M constraints (this
is 4 256-bit exponentiations, at ≈2.5M constraints each).

The additional (batched) accumulator operations also
increase per-access costs. These costs should approximately
double because their bottleneck (a multi-precision modular
product of division intractable hashes) is done twice: one
for (mi, ai) pairs and once for the ai on their own.

7. Mirage+: A zkSNARK for AIPs

Now, we present Mirage+: our zkSNARK for AIPs
expressed as I-R1CS. We first give I-Mirage+: a zkSARK
(zero-knowledge succinct interactive argument of knowl-
edge) for I-R1CS. It comprises a non-interactive Setup and
two interactive algorithms P and V (Protocol 5).5

I-Mirage+ generalizes Mirage [48] and Groth16 [3]. We
highlight the differences between I-Mirage+ and Groth16 in
blue. We first replace Groth’s PC (which encodes the full
witness) with PC,1, . . . , PC,µ (which respectively encode
messages w1, . . . , wµ). Second, for zero-knowledge, each
PC,i must include a fresh blind κi, for i < µ. Third, for
completeness, we tweak PC,µ (adding −

∑µ−1
i=1 κiδiG1) to

cancels these blinds in the verification equation. If µ is 1
or 2, then I-Mirage+ is equivalent to Groth’s construction
or Mirage, respectively. Theorem 8 states the security of
I-Mirage+; the proof is in Appendix A.4.

5P and V evaluate expressions of form gGj (where Gj is a group
generator and g is a polynomial in variables α, β, . . .) as multi-scalar
multiplications. That is, they find ci ∈ F such that g =

∑
i cimi

(for monomials mi in α, β, . . .) and evaluate
∑

i ci(miGj), where each
miGj is in pk or vk.

Setup(ϕ)→ (pk, vk) :
sample α, β, γ, δ1, . . . , δµ, τ ∈ F \ {0}
for M ∈ {A,B,C}, i ∈ [m]:

fM,i(X)← Interp(ω, (Mj,i)
n
j=1)

for i ∈ [m]: fi(X)← βfA,i(X) + αfB,i(X) + fC,i(X)
Y ← [ℓx +

∑µ
i=1 ℓri]

z(X)←
∏n

i=1(X − ωi)
for i ∈ [µ]: Wi ← {k + |X|+

∑
j<i ℓwj

}k∈[ℓwi
]

pk contains:(
α, β, δ1, . . . , δµ, (τ

i)n−1
i=0 , (δ

−1
µ τ iz(τ))n−2

i=0

)
·G1

(δ−1
j fi(τ))j∈[µ],i∈Wj

·G1; (β, δµ, (τ
i)n−1

i=0) ·G2

vk contains:
(α, (γ−1fi(τ))i∈X) ·G1; (β, γ, δ1, . . . , δµ) ·G2

P(pk, x, w):
compute fi, fM,i, z as in Setup.
for any I ⊆ [m], define f ′

I(X) ≜
∑

i∈I zifi(X)
sample ρ, σ, κ1, . . . , κµ−1 ∈ F
for round i in [µ− 1]:

compute wi from (x,w, r1, . . . , ri−1)
send to V: PC,i ← (δµκi + δ−1

i f ′
Wi

(τ))G1

receive ri
compute wµ and z ← (x, r1, . . . , rµ−1, w1, . . . , wµ)
for M ∈ {A,B,C}: f ′′

M (X)←
∑

i zifM,i(X)
h(X)← (f ′′

A · f ′′
B − f ′′

C)/z
define β′ ≜ β + σδµ + f ′′

B(τ)
send to V:

PA ← (α+ ρδµ + f ′′
A(τ))G1

PB ← β′G2

PC,µ ← (δ−1
µ (hz + f ′

Wµ
)(τ) + ρβ′ − ρσδ)G1

−(
∑µ−1

i=1 κiδi)G1 + σPA

V(vk, x):
for round i in [µ− 1]:

receive from P: PC,i; sample and send to P: ri ∈ F
receive from P: PA, PB , PC,µ

define f ′
I (for I ⊆ [m]) as in P

assert: e(PA, PB) = e(αG1, βG2)
+ e(γ−1f ′

Y (τ)G1, γG2)+
∑µ

i=1 e(PC,i, δiG2)

Protocol 5: I-Mirage+: our zkSARK for I-R1CS. It is a slight
generalization of Mirage, itself a generalization of Groth16.
Differences from Groth16 are in blue. Let ω have order n
and define Interp(ω,v ∈ Fn) as the unique f ∈ F<n[X]
satisfying f(ωi) = vi.

Theorem 8. Let I-R1CS ϕ be complete and knowledge-
sound for witness relation R. Then in the generic group
model (GGM), I-Mirage+ is a zkSARK for R.

Non-interactivity. For constant µ, I-Mirage+ is a constant-
round public-coin interactive argument. Thus, the Fiat-
Shamir transform [82] (replacing V’s messages with a hash
of their view) gives a zkSNARK in the random oracle
model [83]. Since a random oracle can be simulated in the
GGM, this proves Theorem 1, from Section 3.2. We call the
result of this transform Mirage+.

1 def main(committed field[8096] mem,
2 private field idx) -> bool:
3 field v = mem[idx]
4 for field i in 0..10 do
5 v = v * v
6 endfor
7 mem[idx] = v
8 return true

Figure 6: A program that uses persistent memory. The mem-
ory is a field array declared with the committed keyword.
This program reads an element, squares it 10 times, and
writes it back. We give a more meaningful example in
Section 9.4.

8. Implementation

Cryptosystem. We implement CP-Mirage+, starting from
the bellman [84] Rust implementation of Groth’s zk-
SNARK [3]. Our patch (2.4k LOC and 1.3k LOC for tests)
includes the linear subspace proof of Kiltz and Wee [85],
the commitment linking proof of Campanelli, Fiore, and
Querol [47], a generalization of bellman’s R1CS interface
to I-R1CS, and CP-Mirage+ itself.
Compilation and RAM proofs. We implement our volatile
and persistent RAM proofs as extensions to the CirC com-
piler infrastructure [86]. This is a non-trivial extension. First,
we generalize CirC’s Intermediate Representation (IR), to
represent not just circuits (NP verifiers), but also public-coin
IPs. Second, we adapt CirC’s R1CS backend, to compile
these IPs to I-R1CS. These changes are about 4k LOC, Rust.

CirC’s Intermediate Representation (IR) can already ex-
press programs that manipulate memory. We implement a
compiler pass that replaces IR memory operations with uses
of our RAM proofs. This compiler pass essentially generates
CirC IR that encodes our proofs. We also implement the
proofs from TinyRAM [45] and Arya [32], for comparison.
In sum, these changes are about 2k LOC.
Programming Interface. Implementing our proofs within
CirC allows us to make their benefits very accessible to
programmers. We do this my modifying one of CirC’s input
languages and one of its compiler driver binaries.

First, we add new keywords to CirC’s Z# input language
that trigger our new compiler pass. Figure 6 shows an ex-
ample program that uses persistent memory via this syntax.
The memory is the field array mem, which is an input to
the program and is annotated as committed. Standard
array access syntax is used for both reads and writes. The
compiled CP-zkSNARK will include commitments to the
initial and final states of this array. Memory accesses must
be in-bounds, or the proof will fail. Volatile memory is
available via a similar syntax, but volatile memories must
have local scope and are annotated with transcript.

Second, we extend the CirC executable for compiling
and using Z# programs. It already had subcommands for
compiling a Z# instance to (I-)R1CS, as well as zkSNARK
setup, proving, and verifying. We add subcommands for the
new CP-zkSNARK operations (commitment setup, creation,

Size (N) = 220 Size (N) = 240 Size (N) = 260

26 28 210 26 28 210 26 28 210

0

10k

20k

30k

40k

Accesses (A)

C
on

st
ra

in
ts

Approach Uniq Arya Haböck TinyRAM

Figure 7: Constraint counts for volatile memory proofs.

Size (N) = 240 Size (N) = 260

26 28 210 26 28 210
2−5
2−4
2−3
2−2
2−1

Accesses (A)

P
ro

ve
 T

im
e

(s
) Approach

Uniq

Arya

Haböck

TinyRAM

Figure 8: Proving times for volatile memory proofs.

and opening) and extend the existing subcommands to work
for a CP-zkSNARK. In some, our modifications to Z# and
CirC’s compiler driver are about 1k LOC.

9. Evaluation

We evaluate our zkSNARKs for RAM against prior
work. Our metrics are proving time and the number of rank-
1 constraints in the I-R1CS, which is platform-independent
and correlated with proving time (Sec. 7). In a few ex-
periments, we also measure Setup time (expensive but run
only once per application), V time (concretely small for all
systems we benchmark) and proof size (also small).

9.1. Volatile memory

We compare our volatile memory proof, (§4; “Uniq”),
against three baselines: TinyRAM [45], Arya [32], and
Haböck [87] (Table 1). All proofs are about A accesses to
a memory of size N , with no further computation.

Figure 7 shows constraint counts for N ∈ {220, 240, 260}
and A ∈ {25, . . . , 210}. Uniq reduces constraints (relative to
the best baseline) by up to 20%, at A = 25 and N = 260.
This is the expected location for the optimum (large N ,
small A), since Arya and Haböck have worse N -scaling
(Sec. 4.5). Uniq’s concrete advantage is modest because the
N -dependence of the baselines is modest, and because Uniq
only optimizes one part (ordering) of the overall RAM proof.

98x

Size (N) = 210 Size (N) = 215 Size (N) = 220

26 28 210 212 26 28 210 212 26 28 210 212

215

219

223

Accesses (A)

C
on

st
ra

in
ts

Approach C&P RSA Merkle Scan

Figure 9: Constraint counts for persistent memory proofs.
51x

Size (N) = 215 Size (N) = 220

0 1k 2k 3k 0 1k 2k 3k
0

50

100

150

200

Accesses (A)

P
ro

ve
 T

im
e

(s
)

Approach

C&P

RSA

Merkle

Figure 10: Proving times for persistent memory proofs.

Figure 8 compares proving times. Proving times increase
less smoothly than constraint counts because they depend on
Fourier domain sizes [4] and noise. Uniq reduces proving
time by up to 32.9%. Importantly, for both proving time and
constraint count, Haböck is sometimes better than Uniq, so
the best choice for an application depends on N and A.

9.2. Persistent memory

We compare our persistent memory proof (“C&P”;
§5) against Merkle trees [88] (“Merkle”), RSA accumula-
tors [30] (“RSA”), and a naive linear scan (“Scan”). For
“Merkle” and “RSA” we use the implementation of Ozdemir
et al. [30].

Figure 9 shows constraint counts for N ∈ {210, 215, 220}
and A ∈ {25, . . . , 212}. At N = 215, C&P reduces con-
straints by up to a factor of 98.2×, (at A = 211). For smaller
A or larger N , C&P’s advantage shrinks relative to Merkle.
For very small N , C&P’s advantage shrinks relative to a
naive linear scan. For large A, the RSA approach large con-
stant overhead (Sec. 4.5) begins to amortize away, shrinking
C&P’s relative advantage. Of course, since C&P’s per-A
cost is lower than RSA’s (the latter includes a division-
intractable hash), C&P will be still be better for any A.

We also measure P time, V time, Setup time, and proof
size. Figure 10 shows P time for N ∈ {215, 220} and

Approach logN A Setup (s) P (s) |π| (B) V (s) Extra (s)

C&P 15 3000 28 2 500 0.009 2
C&P 20 3000 598 43 500 0.009 43
RSA 15 3000 1214 99 308 0.009 142
RSA 20 3000 1216 140 308 0.006 146
Merkle 15 3000 2087 208 308 0.007 693
Merkle 20 3000 2914 328 308 0.010 912

Table 4: Costs for a persistent memory of size N = 220.

140x

Capacity (C) = 210 Capacity (C) = 215 Capacity (C) = 220

26 28 210 212 26 28 210 212 26 28 210 212

218

222

226

Accesses (A)

C
on

st
ra

in
ts

Approach C&P RSA Merkle Scan

Figure 11: Modelled constraint counts for sparse persistent
memory proofs.

A ∈ {1, 500, 1000, . . . , 3000}.6 We omit Scan, which is
unreasonably expensive. For a memory of size 215, C&P
reduces P time by 51.3×, (at A = 211). This is slightly
less than the constraint reduction, but still very significant.
We think that the improvement in proving time is slightly
degraded for two reasons. First is the extra commitment
linking protocol used by CP-Mirage+ (Sec. 2). Second is
the increased bit size of prover witness in C&P relative
to RSA. In RSA, many witnesses are bits or other small
values, but in C&P many witnesses depend on ≈255-bit
(uniformly random) V challenges. This slows down the
bellman library’s MSMs and—by extension—proving.

Table 4 shows all metrics for this experiment. Setup and
P time are both highly correlated with constraint counts. A
C&P proof is slightly larger than Merkle or RSA, but is still
only 500 bytes. V time is small for all systems.

9.3. Sparse persistent memory

We compare the estimated costs of our sparse persistent
memory proof (“C&P”; §5) against the cost of alternate
approached based on Merkle trees [88] (“Merkle”), RSA
accumulators [30] (“RSA”), and a naive linear scan (“Scan”).
In all cases, we compute the number of constraints based
on our cost model in Table 3.

Figure 11 shows constraints for C ∈ {210, 215, 220} and
A ∈ {25, . . . , 212}. C&P reduces constraints by up to a
factor of 143×, at C = 215 and A = 212.

6We omit non-cryptographic work in computing the AIP transcript
(“Extra” in Table 4) from this plot for two reasons. First, this work is
straightforward but tedious to optimize. Second, the baseline implemen-
tations do this more slowly than ours (Table 4), so including it would
arguably be unfair.

1 def main(committed field[N * 3] accounts,
2 private Tx[A] txs) -> bool:
3 for field i in 0..A do
4 field fromIdx = txs[i].fromIdx
5 field toIdx = txs[i].toIdx
6 Account from_ = read_account(accounts[3*

fromIdx], accounts[3*fromIdx+1], accounts
[3*fromIdx+2])

7 Account to = read_account(accounts[3*toIdx],
accounts[3*toIdx+1], accounts[3*toIdx+2])

8 assert(from_.key == txs[i].from_)
9 assert(to.key == txs[i].to)

10 assert(verifyTxSig(txs[i]))
11 assert(from_.amount >= txs[i].amount)
12 assert(to.amount + txs[i].amount <=

MAX_BALANCE)
13 accounts[3*fromIdx + 2] = from_.amount - txs[i

].amount
14 accounts[3*toIdx + 2] = to.amount + txs[i].

amount
15 endfor
16 return true // only assertions matter

Figure 12: Our rollup’s entry function. Each account is
stored as three F elements: two for the public key, and one
for the account balance. We check the signature and transfer.

9.4. Application: Rollup

We implement a simple zk-Rollup [89] (a zkSNARK
about A transactions in a payment system) using our per-
sistent RAM. We use CirC’s Z# input language. Figure 12
shows the Z# entry function for our rollup. There are two
arguments. The first is a committed array of accounts.
Each account is three scalars: the owner’s public key (two
field elements) and a balance (one field element) between
0 and MAX_BALANCE. The second is a (hidden) list of
transactions. Each transfers some amount of money from
one public key to another. It includes a signature and the
indices of the relevant public keys in the array. The function
main asserts the validity of all transactions and updates the
account balances.

Figure 13 shows the constraint counts for the rollup as a
function of A (the number of accesses) and N (the number
of accounts). We benchmark the three persistent RAMs from
the prior subsection. C&P’s improvement is greatest when
the number of accesses is high and the RAM size is high, but
not too high. C&P’s relative advantage here is less than in
Figure 9 because the cost of signature verification (identical
in all systems) is large. Despite that, C&P reduces constraint
count (relative to prior state of the art) by up to 2.55×.

10. Conclusion

We have presented new AIPs for the consistency of
accesses to volatile, persistent, and sparse persistent mem-
ories. Our AIPs are based on proofs for different kinds of
uniqueness and disjointness that rely on Bézout’s identity
for univariate polynomials. Our AIPs can be compiled into
zkSNARKs using CP-Mirage+. We expect that proofs of
uniqueness and disjointness, as well as our approach of

Accounts (N) = 210 Accounts (N) = 215 Accounts (N) = 220

26 28 210 26 28 210 26 28 210

220

222

224

Transactions (A)

C
on

st
ra

in
ts

Approach C&P RSA Merkle

Figure 13: Constraint counts for different rollups.

compiling AIPs into zkSNARKs will have utility beyond
memory-checking.

References
[1] M. Walfish and A. J. Blumberg, “Verifying computations

without reexecuting them: from theoretical possibility to near
practicality,” CACM, 2015.

[2] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating
computation: interactive proofs for muggles,” ACM STOC,
2008.

[3] J. Groth, “On the size of pairing-based non-interactive argu-
ments,” EUROCRYPT, 2016.

[4] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio:
Nearly practical verifiable computation,” IEEE S&P, 2013.

[5] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and
M. Walfish, “Resolving the conflict between generality and
plausibility in verified computation,” EuroSys, 2013.

[6] R. S. Wahby, S. T. V. Setty, Z. Ren, A. J. Blumberg, and
M. Walfish, “Efficient RAM and control flow in verifiable
outsourced computation,” NDSS, 2015.

[7] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Sto-
ica, “DIZK: A distributed zero knowledge proof system,”
USENIX Security, 2018.

[8] A. Chiesa, E. Tromer, and M. Virza, “Cluster computing in
zero knowledge,” EUROCRYPT, 2015.

[9] S. T. V. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg,
and M. Walfish, “Taking proof-based verified computation a
few steps closer to practicality,” USENIX Security, 2012.

[10] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister,
“Verifiable computation with massively parallel interactive
proofs,” HotCloud, 2012.

[11] W. Ma, Q. Xiong, X. Shi, X. Ma, H. Jin, H. Kuang, M. Gao,
Y. Zhang, H. Shen, and W. Hu, “Gzkp: A gpu accelerated
zero-knowledge proof system,” ASPLOS, 2023.

[12] W. Nguyen, T. Datta, B. Chen, N. Tyagi, and D. Boneh,
“Mangrove: A scalable framework for folding-based snarks,”
2024. https://ia.cr/2024/416.

[13] J. Thaler, “Time-optimal interactive proofs for circuit evalu-
ation,” CRYPTO, 2013.

[14] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam,
“Ligero: Lightweight sublinear arguments without a trusted
setup,” ACM CCS, 2017.

[15] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scal-
able zero knowledge with no trusted setup,” CRYPTO, 2019.

[16] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song,
“Libra: Succinct zero-knowledge proofs with optimal prover
computation,” CRYPTO, 2019.

[17] A. Chiesa, D. Ojha, and N. Spooner, “Fractal: Post-quantum
and transparent recursive proofs from holography,” EURO-
CRYPT, 2020.

[18] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “PLONK:
Permutations over lagrange-bases for oecumenical noninter-
active arguments of knowledge.” 2019. https://eprint.iacr.org/
2019/953.

[19] S. Setty, “Spartan: Efficient and general-purpose zkSNARKs
without trusted setup,” CRYPTO, 2020.

[20] B. Bünz, B. Fisch, and A. Szepieniec, “Transparent SNARKs
from DARK compilers,” EUROCRYPT, 2020.

[21] J. Lee, “Dory: Efficient, transparent arguments for generalised
inner products and polynomial commitments,” TCC, 2021.

[22] A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. P.
Ward, “Marlin: Preprocessing zkSNARKs with universal and
updatable SRS,” EUROCRYPT, 2020.

[23] B. Chen, B. Bünz, D. Boneh, and Z. Zhang, “HyperPlonk:
Plonk with linear-time prover and high-degree custom gates,”
EUROCRYPT, 2023.

[24] A. Golovnev, J. Lee, S. T. V. Setty, J. Thaler, and R. S.
Wahby, “Brakedown: Linear-time and field-agnostic SNARKs
for R1CS,” CRYPTO, 2023.

[25] N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin,
A. Rubinstein, and E. Tromer, “The hunting of the SNARK,”
Journal of Cryptology, vol. 30, pp. 989–1066, 2017.

[26] M. Backes, M. Barbosa, D. Fiore, and R. M. Reischuk,
“ADSNARK: Nearly practical and privacy-preserving proofs
on authenticated data,” IEEE S&P, 2015.

[27] C. Costello, C. Fournet, J. Howell, M. Kohlweiss, B. Kreuter,
M. Naehrig, B. Parno, and S. Zahur, “Geppetto: Versatile
verifiable computation,” IEEE S&P, 2015.

[28] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko,
and B. Parno, “Hash first, argue later: Adaptive verifiable
computations on outsourced data,” ACM CCS, 2016.

[29] S. Setty, S. Angel, T. Gupta, and J. Lee, “Proving the correct
execution of concurrent services in zero-knowledge,” OSDI,
2018.

[30] A. Ozdemir, R. S. Wahby, B. Whitehat, and D. Boneh, “Scal-
ing verifiable computation using efficient set accumulators,”
USENIX Security, 2020.

[31] M. Campanelli, D. Fiore, S. Han, J. Kim, D. Kolonelos,
and H. Oh, “Succinct zero-knowledge batch proofs for set
accumulators,” ACM CCS, 2022.

[32] J. Bootle, A. Cerulli, J. Groth, S. K. Jakobsen, and M. Maller,
“Arya: Nearly linear-time zero-knowledge proofs for correct
program execution,” ASIACRYPT, 2018.

[33] A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Ni-
tulescu, and M. Simkin, “Caulk: Lookup arguments in sub-
linear time,” ACM CCS, 2022.

[34] U. Haböck, “Multivariate lookups based on logarithmic
derivatives.” 2022. https://eprint.iacr.org/2022/1530.

[35] L. Eagen, D. Fiore, and A. Gabizon, “cq: Cached quotients
for fast lookups.” 2022. https://eprint.iacr.org/2022/1763.

[36] A. Gabizon and D. Khovratovich, “flookup: Fractional
decomposition-based lookups in quasi-linear time indepen-
dent of table size.” 2022. https://eprint.iacr.org/2022/1447.

[37] H. M. Ardevol, J. B. Melé, D. Lubarov, and J. L. Muñoz-
Tapia, “RapidUp: Multi-domain permutation protocol for
lookup tables.” 2022. https://eprint.iacr.org/2022/1050.

[38] A. Gabizon and Z. J. Williamson, “plookup: A simplified
polynomial protocol for lookup tables.” 2020. https://eprint.
iacr.org/2020/315.

[39] J. Posen and A. A. Kattis, “Caulk+: Table-independent lookup
arguments.” 2022. https://eprint.iacr.org/2022/957.

https://ia.cr/2024/416
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2022/1050
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2022/957

[40] A. Zapico, A. Gabizon, D. Khovratovich, M. Maller, and
C. Ràfols, “Baloo: Nearly optimal lookup arguments.” 2022.
https://eprint.iacr.org/2022/1565.

[41] S. Setty, J. Thaler, and R. Wahby, “Unlocking the lookup
singularity with lasso,” 2024.

[42] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg,
and M. Walfish, “Verifying computations with state,” SOSP,
2013. Extended version: http://eprint.iacr.org/2013/356.

[43] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer, “Fast
reductions from RAMs to delegatable succinct constraint
satisfaction problems: extended abstract,” ITCS, 2013.

[44] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and
M. Virza, “SNARKs for C: Verifying program executions
succinctly and in zero knowledge,” CRYPTO, 2013.

[45] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct
non-interactive zero knowledge for a von neumann architec-
ture,” USENIX Security, 2014.

[46] A. E. Kosba, C. Papamanthou, and E. Shi, “xJsnark: A
framework for efficient verifiable computation,” IEEE S&P,
2018.

[47] M. Campanelli, D. Fiore, and A. Querol, “LegoSNARK:
Modular design and composition of succinct zero-knowledge
proofs,” ACM CCS, 2019.

[48] A. E. Kosba, D. Papadopoulos, C. Papamanthou, and
D. Song, “MIRAGE: Succinct arguments for randomized
algorithms with applications to universal zk-SNARKs,”
USENIX Security, 2020.

[49] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge
complexity of interactive proof-systems (extended abstract),”
ACM STOC, 1985.

[50] S. Arora and B. Barak, Computational complexity: a modern
approach. Cambridge University Press, 2009.

[51] M. Bellare and O. Goldreich, “On defining proofs of knowl-
edge,” CRYPTO, 1993.

[52] L. Babai, “Trading group theory for randomness,” ACM
STOC, 1985.

[53] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor,
“Checking the correctness of memories,” FOCS, 1991.

[54] C. A. Neff, “A verifiable secret shuffle and its application to
e-voting,” ACM CCS, 2001.

[55] A. Ozdemir, R. S. Wahby, B. Whitehat, and D. Boneh, “Scal-
ing verifiable computation using efficient set accumulators.”
2019. https://eprint.iacr.org/2019/1494.

[56] A. Waksman, “A permutation network,” J. ACM, vol. 15,
no. 1, 1968.

[57] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators
and application to efficient revocation of anonymous creden-
tials,” CRYPTO, 2002.

[58] D. Boneh, B. Bünz, and B. Fisch, “Batching techniques
for accumulators with applications to IOPs and stateless
blockchains,” CRYPTO, 2019.

[59] L. Goldberg, S. Papini, and M. Riabzev, “Cairo – a Turing-
complete STARK-friendly CPU architecture.” 2021. https:
//eprint.iacr.org/2021/1063.

[60] “SP1 project.” https://github.com/succinctlabs/sp1.
[61] “RISC ZERO project.” https://www.risczero.com/.
[62] D. Marin, M. Abdalla, P. Govereau, J. Groth,

S. Judson, K. Sosnin, G. V. Policharla, and
Y. Zhang, “Nexus 1.0: Enabling verifiable compu-
tation,” 2024. https://framerusercontent.com/assets/
crHiRUJmrEGoUKkIwQmB6m04zEo.pdf.

[63] D. Heath and V. Kolesnikov, “A 2.1 KHz zero-knowledge
processor with BubbleRAM,” ACM CCS, 2020.

[64] D. Heath, Y. Yang, D. Devecsery, and V. Kolesnikov, “Zero

knowledge for everything and everyone: Fast ZK processor
with cached ORAM for ANSI C programs,” 2021 IEEE S&P,
2021.

[65] D. Heath and V. Kolesnikov, “PrORAM - fast P (logn)
authenticated shares ZK ORAM,” 2021.

[66] N. Franzese, J. Katz, S. Lu, R. Ostrovsky, X. Wang, and
C. Weng, “Constant-overhead zero-knowledge for RAM pro-
grams,” ACM CCS, 2021.

[67] A. Goel, M. Hall-Andersen, and G. Kaptchuk, “Dora: Pro-
cessor expressiveness is (nearly) free in zero-knowledge for
ram programs,” 2023.

[68] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed,
E. Shi, and N. Triandopoulos, “TRUESET: Faster verifiable
set computations,” USENIX Security, 2014.

[69] I. Tzialla, A. Kothapalli, B. Parno, and S. T. V. Setty,
“Transparency dictionaries with succinct proofs of correct
operation,” NDSS, 2022.

[70] J. Lee, K. Nikitin, and S. T. V. Setty, “Replicated state
machines without replicated execution,” IEEE S&P, 2020.

[71] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Pa-
pamanthou, “vSQL: Verifying arbitrary SQL queries over
dynamic outsourced databases,” IEEE S&P, 2017.

[72] B. Bünz and B. Chen, “Protostar: Generic efficient accumula-
tion/folding for special-sound protocols,” ASIACRYPT, 2023.

[73] Y. Sang, N. Luo, S. Judson, B. Chaimberg, T. Antonopoulos,
X. Wang, R. Piskac, and Z. Shao, “Ou: Automating the par-
allelization of zero-knowledge protocols,” ACM CCS, 2023.

[74] M. Campanelli, A. Faonio, D. Fiore, A. Querol, and H. Ro-
dríguez, “Lunar: A toolbox for more efficient universal and
updatable zkSNARKs and commit-and-prove extensions,”
ASIACRYPT, 2021.

[75] J. Von Zur Gathen and J. Gerhard, Modern computer algebra.
Cambridge university press, 3 ed., 2013.

[76] D. Harvey and J. Van Der Hoeven, “Integer multiplication
in time o(nlog\,n),” Annals of Mathematics, vol. 193, no. 2,
2021.

[77] D. Harvey and J. Van Der Hoeven, “Polynomial multiplica-
tion over finite fields in time n log n,” JACM, 2022.

[78] E. Ben-Sasson, D. Carmon, S. Kopparty, and D. Levit, “El-
liptic curve fast fourier transform (ECFFT) Part I,” SODA,
2023.

[79] B. Wesolowski, “Efficient verifiable delay functions,” Journal
of Cryptology, vol. 33, pp. 2113–2147, 2020.

[80] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and
M. Schofnegger, “Poseidon: A new hash function for zero-
knowledge proof systems,” USENIX Security, 2021.

[81] B. Braun, “Compiling computations to constraints for verified
computation,” UT Austin Honors Thesis HR-12-10, 2012.

[82] A. Fiat and A. Shamir, “How to prove yourself: Practical
solutions to identification and signature problems,” CRYPTO,
1987.

[83] T. Attema, R. Cramer, and L. Kohl, “A compressed Σ-
protocol theory for lattices,” CRYPTO 2021, Part II, 2021.

[84] Z. developers, “Bellman circuit library and zksnark.” https:
//github.com/zkcrypto/bellman.

[85] E. Kiltz and H. Wee, “Quasi-adaptive NIZK for linear sub-
spaces revisited,” EUROCRYPT, 2015.

[86] A. Ozdemir, F. Brown, and R. S. Wahby, “CirC: Compiler
infrastructure for proof systems, software verification, and
more,” IEEE S&P, 2022.

[87] U. Haböck, “A summary on the FRI low degree test.” 2022.
https://eprint.iacr.org/2022/1216.

[88] R. C. Merkle, “A digital signature based on a conventional
encryption function,” CRYPTO, 1988.

https://eprint.iacr.org/2022/1565
http://eprint.iacr.org/2013/356
https://eprint.iacr.org/2019/1494
https://eprint.iacr.org/2021/1063
https://eprint.iacr.org/2021/1063
https://github.com/succinctlabs/sp1
https://www.risczero.com/
https://framerusercontent.com/assets/crHiRUJmrEGoUKkIwQmB6m04zEo.pdf
https://framerusercontent.com/assets/crHiRUJmrEGoUKkIwQmB6m04zEo.pdf
https://github.com/zkcrypto/bellman
https://github.com/zkcrypto/bellman
https://eprint.iacr.org/2022/1216

[89] B. Whitehat, “roll_up: Scale ethereum with SNARKs.” https:
//github.com/barryWhiteHat/roll_up.

[90] V. Shoup, “Lower bounds for discrete logarithms and related
problems,” EUROCRYPT, 1997.

[91] B. Braun, “Compiling computations to constraints for verified
computation,” 2012. UT Austin Honors Thesis HR-12-10.

[92] S. Bayer and J. Groth, “Efficient zero-knowledge argument
for correctness of a shuffle,” EUROCRYPT, 2012.

[93] R. A. DeMillo and R. J. Lipton, “A probabilistic remark on
algebraic program testing,” Inf. Process. Lett., vol. 7, no. 4,
1978.

[94] J. T. Schwartz, “Fast probabilistic algorithms for verification
of polynomial identities,” J. ACM, vol. 27, no. 4, 1980.

[95] R. Zippel, “Probabilistic algorithms for sparse polynomials,”
International symposium on symbolic and algebraic manip-
ulation, 1979.

[96] V. E. Beneš, Mathematical theory of connecting networks and
telephone traffic. Academic press, 1965.

[97] A. Arun, S. Setty, and J. Thaler, “Jolt: Snarks for virtual
machines via lookups,” 2024.

[98] A. Hoorfar and M. Hassani, “Inequalities on the Lambert
W function and hyperpower function,” J. Inequal. Pure and
Appl. Math, vol. 9, no. 2, pp. 5–9, 2008.

Appendix A.
Deferred proofs

A.1. Theorem 5: Πactive

We restate and prove Theorem 5:

Theorem. If A ≤ N , the protocol Πactive (for language
Lactive) has perfect completeness, soundness error ≤ (N2+
2N +A)/|F|, and V complexity 3N + 2A+O(1).

Proof. We prove completeness, then soundness, and then
compute V complexity.
Completeness. Define I = {i ∈ [N] : i ∈ a} and define
J = [N] \ I . Since the ai are distinct, |I| = A and |J | =
N − A, so h has length N − A as required. Now, we will
show that V’s first test passes. First, disjointness of I and
J gives:∏
i∈I∪J

(α+mi + iβ) =
∏
i∈J

(α+mi + iβ)×
∏
i∈I

(α+mi + iβ)

Then, re-indexing the products gives:

N∏
i=1

(α+mi + iβ) =
∏

i∈[N],i/∈a

(α+mi + iβ)×
A∏
i=1

(α+ vi + aiβ)

Which, using the definition of h, gives:

N∏
i=1

(α+mi + iβ) =

N−A∏
i=1

(α+ hi)×
A∏
i=1

(α+ vi + aiβ)

which is V’s first test. Applying this argument with m′ and
v′ instead of m and v shows that V’s other test succeeds
too.

Soundness. Suppose that the instance is not in the language,
and that V accepts. We will show that this is unlikely.

First, consider V’s tests as equalities between polyno-
mials in α. Per the fundamental theorem of algebra, these
equalities hold except with probability ≤ 2N/|F|. So the
factorizations must be equal; that is, these multisets must
be equal:

{{mi + iβ}}Ni=1 = {{hi}}N−A
i=1 ⊎ {{vi + aiβ}}Ai=1

{{m′
i + iβ}}Ni=1 = {{hi}}N−A

i=1 ⊎ {{v
′
i + aiβ}}

A
i=1

Now, consider the left multisets. The (mi, i) are all distinct,
so the mi + iβ must all be distinct as well, except with
probability

(
N
2

)
/|F|. Similarly for the (m′

i, i), except with
probability

(
N
2

)
/|F|. Thus our multiset equalities are set

equalities and the unions are disjoint.

{mi + iβ}Ni=1 = {hi}N−A
i=1 ⊎ {vi + aiβ}Ai=1

{m′
i + iβ}Ni=1 = {hi}N−A

i=1 ⊎ {v
′
i + aiβ}

A
i=1

That implies the existence of injection π : [A] → [N] such
that for all i, mπ(i) + π(i)β = vi + aiβ. And similarly, the
existence of injection π′ : [A]→ [N]. Now, we have that for
all i, (mπ(i), π(i)) = (vi, ai) and similarly for the primed
terms, except with probability 2A/|F|.

Since π is an injection, this implies that the ai are all
distinct. Further, this implies that for all i, vi = mai and
v′i = m′

ai
.

Next, from (3) and the definition of π, we have the
existence of a bijection ρ from [N] \ Im(π) to [N − A]
such that mi + iβ = hρ(i). And similarly, we have a
ρ′. Let τ = ρ′−1 ◦ ρ. Then we have that for all i ∈
Dom(ρ), mi+ iβ = m′

τ(i)+ τ(i)β. Except with probability
(N − A)/|F|, this implies that (mi, i) = (m′

τ(i), τ(i)).
That, in turn, implies that mi = m′

i. On the other hand,
if i /∈ Dom(π), then it is in the image of π, so i ∈ a. Either
way, we have that mi = m′

i ∨ i ∈ a.
Thus, we’ve shown that if V’s tests succeed, then the

instance is in the language, except with probability

≤ 2N

|F|
+

2

|F|

(
N

2

)
+

2A

|F|
+

N −A

|F|
=

N2 + 2N +A

|F|
V Complexity. Computing c requires N − A + O(1) non-
linear multiplications. Then, the first test requires N+2A+
O(1). However, the second test requires only N+A+O(1)
new non-linear multiplications because all the aiβ products
were already computed for the first test. Thus, V complexity
is 3N + 2A+O(1).

A.2. Theorem 6: ΠPuncUniq

We restate and prove Theorem 6:

Theorem. The protocol ΠPuncUniq (for language LPuncUniq)
has perfect completeness, soundness error ≤ (C + A −
1)/|F|, and V complexity 4C +O(logC).

Proof. We prove completeness, then soundness, then V
complexity.

https://github.com/barryWhiteHat/roll_up
https://github.com/barryWhiteHat/roll_up

Completeness. Suppose a ∈ LPuncUniq. Let d be the number
of occurrences of 0 in a. Then, c = max(0, d − 1). Let
v(X) =

∏
s∈S(X − s). Then, gcd(v, v′) = 1, and UniqBez

returns s, t such that vs + v′t = 1 (per the correctness of
UniqBez; Theorem 4). Further, since z(X) = Xcv(X), we
can show that z′(X) = Xcv′(X). (Note that, since v may
contain a factor X , showing this requires a little case-work.)
Then, we have zs+ z′t = Xc. Then, V’s test succeeds with
probability 1.
Soundness. Suppose a /∈ LPuncUniq. Then some y ̸= 0
occurs in a at least twice. Then, X − y divides gcd(z, z′).
So, there are no s, t such that zs+z′t is indivisible by X−y,
and in particular zs + z′t cannot equal Xc. Now, consider
the degree of the polynomial equation. The polynomials f, g
have degrees C and A respectively. The polynomials s, t
have degrees at most A− 1 and C− 1 respectively. Further,
c can be at most C. Thus, the equation’s degree is at most
C +A− 1.
V complexity. Per the analysis of Πuniq, z, z′, s, t can be
evaluated with 4C + O(1) multiplications. Then, repeated
squaring can evaluate αc in O(logC) multiplications.

A.3. Theorem 7: ΠPuncDisj

We restate and prove Theorem 7:

Theorem. The protocol ΠPuncDisj (for language LPuncDisj)
has perfect completeness, soundness error ≤ (C + A −
1)/|F|, and V complexity 2C + 2A+O(logC).

Proof. We prove completeness, then soundness, then V
complexity.
Completeness. Suppose (a,b) ∈ LPuncDisj. Then, I con-
tains only 0s, and S′ and T ′ are disjoint. Define f̃(X) =∏

s∈S′(X−s) and g̃(X) =
∏

t∈T ′(X−t). Then, s, t satisfy
sf̃ + tg̃ = 1 (per the correctness of DisjBez). Define c as in
the protocol. Then, f = f̃Xc and g = g̃Xc. sf + tg = Xc.
Then, V’s test succeeds with probability 1.
Soundness. Suppose (a,b) /∈ LPuncUniq. Then some y ̸= 0
occurs in a and b. Then, X−y divides gcd(z, z′). So, there
are no s, t such that zs + z′t is indivisible by X − y, and
in particular zs + z′t cannot equal Xc. Now, consider the
degree of the polynomial equation. The polynomials f, g
have degrees C and A respectively. The polynomials s, t
have degrees at most A− 1 and C− 1 respectively. Further,
c can be at most C. Thus, the equation’s degree is at most
C+A−1. So, the soundness error is at most (C+A−1)/|F|.
V complexity. Per their degrees, f, g, s, t can be evaluated
in 2C + 2A − 2 multiplications, and αc requires O(logC)
multiplications to compute.

A.4. Theorem 8: I-Mirage+

We restate and prove Theorem 8:

Theorem. Let I-R1CS ϕ be complete and knowledge-sound
for witness relation R. Then in the generic group model,
I-Mirage+ is a zkSARK for R.

Proof. We prove completeness, zero-knowledge, and
knowledge-soundness separately.
Completeness. We will show that verification succeeds with
overwhelming probability when P follows the protocol. The
completeness of ϕ as an AIP implies that (with overwhelm-
ing probability), P constructs z satisfying Az ◦ Bz = Cz.
Now, it suffices to show that verification equation for I-
Mirage+ holds. Consider that equation:

e(PA, PB) = e(αG1, βG2)

+ e(γ−1f ′
X(τ)G1, γG2)

+
∑r

i=1 e(PC,i, δiG2)

Taking the logarithm of both sides with respect to the
generator e(G1, G2) gives:

(α+ ρδµ + fA(τ))(β + σδµ + fB(τ))

= αβ + (γ−1f ′
X(τ))γ +

∑µ−1
i=1 (δµκi + δ−1

i f ′
Wi

(τ))δi

+ (σα′ + ρβ′ − ρσδµ + δ−1
µ (hz + f ′

Wµ
)(τ)−

∑µ−1
i=1 κiδi)δµ

where α′ = α + ρδµ + fA(τ). Expanding the products and
the definitions of f ′

Wi
, f ′

X gives:

fA(τ)fB(τ) = fC(τ) + h(τ)z(τ)

This follows if the following polynomial equality holds

fA(X)fB(X) = fC(X) + h(X)z(X)

This holds if

z(X) | (fA(X)fB(X)− fC(X))

This holds if the right is zero at all zeros of z; i.e.,

∀i ∈ [n], fA(ω
i)fB(ω

i) = fC(ω
i)

∀i ∈ [n],
(∑m

j=1 zjAj,i

)(∑m
j=1 zjBj,i

)
=
(∑m

j=1 zjCj,i

)
This follows from Az ◦Bz = Cz.
Zero-Knowledge. We construct a simulator S that, given
x, outputs π (a V view for I-Mirage+), pk, and vk. First, S
runs Setup, and saves the scalars α, β, γ, δ1, . . . , δr, τ . Sec-
ond, S samples r1, . . . , rµ−1 uniformly. Third, S samples
the group elements PA, PB , PC,1, · · · , PC,µ−1 by sampling
their exponents a, b, c1, . . . , cµ−1. Fourth, S sets

PC,µ ← δ−1
µ

(
ab− αβ − f ′

X(τ)−
µ−1∑
i=1

ciδi

)
G1

(where f ′
X is defined as in Verify). Finally, S outputs

(r1, . . . , rµ, PA, PB , PC,1, . . . , PC,µ), pk, vk.
Now, we show that the output of S is distributed identi-

cally as in I-Mirage+. First, pk, vk, and the ri are constructed
identically in both. Second, all group elements but PC,µ

are uniform and independent in both. Finally, in both, PC,µ

is the unique solution to the verification equation. So I-
Mirage+ has perfect zero-knowledge.

Knowledge Soundness. First, we sketch the proof. Our
analysis is similar to Groth’s—without intermediate notions
like split NILPs [3]. We also use the GGM to extract “wit-
nesses” from P’s group elements. In Groth, these witnesses
are the solution to an R1CS. For us, they are AIP transcripts,
that (via the AIP extractor) give an actual witness for R.
Groth used the equivalence of Laurent polynomials to argue
R1CS satisfaction; we will use it to argue AIP transcript
validity. Just as in Groth, this equivalence requires Setup to
hide the scalars that it samples. Our analysis is in the bilinear
version of Shoup’s GGM [90], with |S|/|G| = Ω(2λ), where
S is the encoding space.

Let V be the verifier for an AIP that is knowledge-sound
for R(x,w). Thus, there is an extractor E that computes
w from x and oracle access to a convincing prover P .
We define an extractor E ′ that, given x and oracle access
to a I-Mirage+ prover P ′, computes w. Let V ′ be the
verifier for I-Mirage+. E ′ interacts with P ′ and with E
(to which it imitates P). First, E ′ receives PC,1 from P ′.
Since P ′ is an adversary in the GGM, with an encoding
space that is exponentially larger than the group, P ′ can
only obtain valid group elements by interacting with the
group oracle (except with negligible probability).7 Thus, by
observing the oracle queries of P ′, E ′ can compute scalar
explanations of PC,1 [3]. That is, it can compute scalars
C1,α, C1,β , (C1,δi)i∈[r], (C1,i)

N−1
i=0 , and scalar polynomials

A(τ) ∈ F<N [τ], Az(τ) ∈ F<N−1[τ] such that

logG1
(PC,1) = lc(C1,∗)

= C1,αα+ C1,ββ +
∑r

i=1 C1,δiδi

+ C(τ) + Cz(τ)z(τ)δ
−1
µ

+
∑
i∈X

C1,iγ
−1(βfA,i(τ) + αfB,i(τ) + fC,i(τ))

+

µ∑
j=1

∑
i∈Wj

C1,iδ
−1
j (βfA,i(τ) + αfB,i(τ) + fC,i(τ))

In the future, we will refer to the collection of scalars and
polynomials that represent group element Px in terms of
pk, vk, as Px,∗, and use the function lc(Px,∗) to refer to
the linear combination of exponents in the SRS according
to such a collection. One proof component, PB is a G2

element, so its explanation has form:

logG2
(PB) = lc(B∗) = Bββ +Bγγ +

r∑
i=1

Bδiδi +B(τ)

Now, E ′ sends w1 ← (C1,i)i∈W1
as the first message

to E . When E replies with r1, E ′ forwards it to P ′. E ′
handles future PC,i, and ri in the same way. (During this
process, it gets explanations C2,∗, . . . , Cr,∗ too. It also gets
explanations A∗ and B∗ for PA and PB . At the end, E ′
outputs the same w as E .

7I-Mirage+ is also secure when the encoding space has the same size
as the groups, but the proof is a bit more involved. One also has to argue
that if P ′ uses any sampled group elements in producing its outputs, then
the verification equation will fail.

Now, by the knowledge soundness of V , we have that

Pr[w valid] ≥ Pr[E ′ convinces V]− negl

We must show that

Pr[w valid] ≥ Pr[P ′ convinces V ′]− negl

Thus, it suffices to show that in the case that P ′ convinces
V ′, E ′ convinces V , except with negligible probability. In
this case, the verification equation for I-Mirage+ holds, so
we have equality of exponents:

lc(A∗)lc(B∗) = αβ + f ′
X(τ) +

∑r
i=1 δilc(Ci,∗) (1)

If this is true, then with the ri and wi that E ′ com-
putes, we will show that Az ◦ Bz = Cz holds, where
z = (x, r1, . . . , rµ−1, w1, . . . , wµ). First, we observe that
(except with negligible probability), Equation 1 must hold
as a Laurent polynomial equation in over variables sampled
during Setup. The reason for this is exactly the reason given
in Groth’s analysis [3, Lemma 1]: because pk and vk leak
no information about Setup’s scalars (except with negligible
probability). We omit this reasoning here, since it essentially
the same as that given by Groth, with Groth’s δ replaced by
the δi. So, we have that Equation 1 holds as a polynomial
identity; it holds coefficient-by-coefficient.

By the equality of αβ coefficients, we have AαBβ = 1.
Then, we can multiply the A∗ by Bβ/Aα and divide the B∗
by the same value to preserve Equation (1) and ensure that:

Aα = 1 ∧Bβ = 1 (2)

By the equality of αγ coefficients, (and Eq. 2) we have

AαBγ = 0 =⇒ Bγ = 0 (3)

By the equality of β2 coefficients, (and Eq. 2) we have

AβBβ = 0 =⇒ Aβ = 0 (4)

By the equality of coefficients of monomials involving
β2δ−1

j , for all j ∈ [r], we have

Bβ

∑
i∈Wj

AifA,i(τ) = 0

Similarly, by the equality of monomials with β2γ−1, we
have

Bβ

∑
i∈X AifA,i(τ) = 0

Putting these two together, we have

A1 = 0 ∧ · · · ∧Am = 0

From the coefficients of βδ−1
µ , as polynomials in τ , we have

BβAz(τ)z(τ) = 0 =⇒ Az(τ) = 0

So, we have:

lc(A∗) = α+
∑r

i=1 Aδiδi +A(τ)

lc(B∗) = β +
∑r

i=1 Bδiδi +B(τ)

We now consider the equality of terms involving δjγ
−1τ i,

for j ∈ [r]; their coefficients must be equal:

0 = δj
∑

i∈X Cj,ifC,i(τ)

=⇒ ∀j ∈ [r],∀i ∈ X,Cj,i = 0

Now, the remaining ατ i terms give:

B(τ) =
∑

i∈X xifB,i(τ) +
∑µ

j=1

∑
i∈Wj

C1,ifB,i(τ)

which, with our definition of wj and z is just:

B(τ) =
∑m

i=1 zifB,i(τ)

Similarly, the βτ i terms give an expression for A(τ):

A(τ) =
∑m

i=1 zifA,i(τ)

And, (mod z(τ)) the τ i terms give:(
m∑
i=1

zifA,i(τ)

)(
m∑
i=1

zifB,i(τ)

)
≡

(
m∑
i=1

zifC,i(τ)

)
Which holds at ωj (a root of z) for all j ∈ [n]:(

m∑
i=1

zifA,i(ω
j)

)(
m∑
i=1

zifB,i(ω
j)

)
=

(
m∑
i=1

zifC,i(ω
j)

)
(

m∑
i=1

ziAj,i

)(
m∑
i=1

ziBj,i

)
=

(
m∑
i=1

ziCj,i

)
Az ◦Bz = Cz

This concludes our GGM proof.

Appendix B.
CP-Mirage+ construction

Let the relation Rlink be

Rlink = {((ci, c′i)ki=1; (wi, oi, o
′
i)

k
i=1) :

k∧
i=1

ci = Com(gens, wi, oi) ∧ c′i = Com(gensi, wi, o
′
i)}

CPlink is a zkSNARK for Rlink with the following inter-
face

• Setup(gens, (gens)ki=1) → (pklink, vklink): generate
proving and verifying keys

• Prove(pklink, (wi, oi, o
′
i)

k
i=1) → πlink: for ci =

Com(gens, wi, oi) and c′i = Com(gensi, wi, o
′
i), gener-

ate a proof that Rlink((ci, c
′
i)

k
i=1; (wi, oi, o

′
i)

k
i=1) holds

• Verify(vklink, (ci, c
′
i)

k
i=1, πlink) → {0, 1}: check the

proof
We present the full construction of CP-Mirage+ in Pro-

tocol 6. The main idea is to use CPlink to prove that each
prover message PC,i is a commitment to the same witness
as each ci provided in the instance. The generators used by
CPlink are those used for the external commitments, and the
implicit generators used to generate each PC,i. The security
of the scheme is straight-forward given the security of I-
Mirage+ and CPlink.

Setup(ϕ, gens)→ (pk, vk) :

(pk′, vk′)← I-Mirage+.Setup(ϕ)
for i ∈ [k]: gensi ← (G1, (δ

−1
i fj(τ))j∈Wi

·G1)j∈Wi

(pklink, vklink)← CPlink.Setup(gens, (gensi)
k
i=1)

pk contains: (pk′, pklink)
vk contains: (vk′, vklink)

P(pk, x, hint):
(pk′, pklink) = pk
(x′, c1, . . . , ck) = x
Run I-Mirage+.P(pk′, x, hint)
Let PC,i, δ, and κi be from the I-Mirage+.P
πlink ← CPlink.Prove(pklink, (wi, oi, δκi)

k
i=1)

send to V: πlink

V(vk, x):
(vk′, vklink) = vk
(x′, c1, . . . , ck) = x
Run I-Mirage+.V(vk′, x)
receive from P:πlink

assert: CPlink.Verify(vklink, (ci, PC,i)
k
i=1, πlink) = 1

Protocol 6: CP-Mirage+: our efficient zkSARK for I-R1CS
with an externally committed witness.

ΠVmem(tr)

P(· · ·) V(· · ·)
include ti ← i in tr include ti ← i in tr

tr′ ← sort(a,t)(tr)

g′ ← (toF(i = 1 ∨ a′
i−1 ̸= a′

i))
A
i=1

tr′,g′

(a′, t′,w′,v′)← tr′ (a′, t′,w′,v′)← tr′

g′1
?= 1

. Π̸=0((g
′
2, . . . , g

′
A), (a

′
2 − a′

1, . . . , a
′
A − a′

A−1))
. Πperm(tr, tr

′) .
. .Πc-ord(t

′,1− g′, 1, A) .
. .Πc-uniq(a

′,g′) .
. ΠordRoW(g′,v′,w′) .

Protocol 7: Our volatile memory proof.

Appendix C.
AIPs for memory

In this appendix, we describe our memory proofs in full,
as AIPs. We do not give explicit I-R1CS instances for them.
When compiled to I-R1CS, most of our proofs acquire one
additional round (Sec. 7).

C.1. Volatile memory

Protocol 7 (ΠVmem) is our volatile memory proof. It uses
sub-proofs for non-zero testing, permutations, conditional
ordering, conditional uniqueness, and an ordered read-over-
write (RoW) property. Our contribution is the use of a
conditional uniqueness proof and the construction of such
a proof. We give the language for conditional uniqueness
and our construction in Section 4.4. The other sub-proofs

Π ̸=0(g,d ∈ Fn)

P(· · ·) V(· · ·)

r← (ite(di = 0, 0, d−1
i))ni=1

r

∀i ∈ [n] : ridi
?= gi

∀i ∈ [n] : (1− gi)ri
?= 0

Protocol 8: Proof that shows g ∈ {0, 1}n and that each gi
is 1 iff di is nonzero.

Πperm(A,B ∈ Fn×k)

P(· · ·) V(· · ·)
sample α, β ∈ F

Hr(α, (Hc(β,Ai,·))
n
i=1)

?= Hr(α, (Hc(β,Bi,·))
n
i=1)

Protocol 9: A proof that A’s rows are a permutation of B’s,
using universal hashing. Ai denotes the ith row of A.

and their languages are adaptations from prior work. The
languages are:

L̸=0 = {(g,d ∈ Fn) :
n∧

i=1

gi ∈ {0, 1} ∧ (gi = 1 =⇒ di ̸= 0)}

Lperm = {(A,B ∈ Fn×k) : {Ai}ni=1 = {Bi}ni=1}

Lc-ord = {(d ∈ Fn,g ∈ {0, 1}n) :
n∧

i=2

(gi = 1 =⇒ di > di−1)}

LordRoW = {(g,v,w) : ∀i ∈ [A],

(wi = 0) =⇒ (vi = ite(gi = 0, vi−1, 0))

v0 = 0}

Note that Ai denotes row i from matrix A.
The proofs themselves are Π ̸=0 (Protocol 8), Πperm (Pro-

tocol 9), Πc-ord (Protocol 10), and ΠordRoW (Protocol 11).
Π ̸=0 is due to Braun [91]. The Πperm proof is a combination
of universal hashing for sequences (Hc) and for multisets
(Hr). Hr (also known as a “polynomial fingerprint”) was
first applied to cryptography by Neff [54], to cryptographic
proof systems by Bayer and Groth [92], and to memory
proofs by Bootle et al. [32]. The Πc-ord, ΠordRoW, and Πrange

(used by Πc-ord) are due to Ben-Sasson et al. [45]. However,
while they instantiated Πrange with the bit-based Πrange,bit,
we instantiate it with Πrange,log [34]. We discuss both options
in Appendix C.2.2.

Now, we state and prove the correctness of ΠVmem.

Theorem 9. The protocol ΠVmem (for language LVmem)
has perfect completeness and soundness error ≤ 3n/|F| +
n/(|F| − n).

Proof. We assume the following lemmas about protocols
from prior work:

• Π ̸=0 has perfect completeness and soundness.

Πc-ord(x ∈ [l, u]n,g ∈ {0, 1}n, l, u)
P(· · ·) V(· · ·)

Πrange((g2(x2 − x1 − 1), . . . , gn(xn − xn−1 − 1)), u− l − 2)

Protocol 10: Proof that gi = 1 implies xi > xi−1. Assumes
that all xi are in a range [l, u], with (u− l − 1)n less than
F’s characteristic.

ΠordRoW(g ∈ {0, 1}A,v ∈ FA,w ∈ {0, 1}A)
P(· · ·) V(· · ·)

v0 ← 0

∀i ∈ [A] : (1− wi)(vi − (1− gi)vi−1)
?= 0

Protocol 11: Proof of read-over-write (RoW) semantics for
an in-order memory transcript.

• Πperm has perfect completeness and soundness error
≤ (k − 1)n/|F|. (This follows from Schwartz-Zippel
lemma [93–95].)

• Πc-ord has perfect completeness and soundness error
≤ n/(|F| − n)

• ΠordRoW has perfect completeness and soundness.

Completeness. First, observe that the definition of g′ im-
plies that g1 = 1, so V’s first test passes. Now, it suffices
to show that all sub-proofs have arguments that are in
their respective languages. Per the definition of g′, Π ̸=0’s
argument is in L̸=0. Per the construction of tr′ as a sort of
tr, it is a permutation of tr. Per the construction of tr′ as an
(a, t)-sort of tr and per the uniqueness of the t values, if for
some i, ai = ai−1, then ti > ti−1. Thus,(a′,g′) ∈ Lc-ord.
Finally, since tr respects read-over-write (i.e., tr ∈ LVmem),
its (a, t)-ordering tr′, together with g′, is in LordRoW.

Soundness. Suppose that tr does not respect read-over-
write. Then, there exist i < j such that (a) ai = aj , (b)
wj = 0, (c) vi ̸= vj , and (d) there is no intermediate k
between i and j such that ak = ai. Now, if tr′ is not a
permutation of tr′, then Πperm fails except with probability
3n/|F| (note: we instantiate Πperm with k = 4). Assume
it is a permutation. Now, if Πc-uniq and Πc-ord do not fail,
then tr′ is a-grouped and within groups strictly t-ordered,
except with probability ≤ n/(|F| − n). Assume they are.
Then, since there is no intermediate k, acci and accj are
adjacent in tr′, say the former is at index i′. Then we have
a′i′ = a′i′+1, so g′i′+1 = 0 (or Π ̸=0 would fail). Also we
have w′

i′+1 = 0. And finally, we have v′i′ = v′i′+1. These
three facts imply that ΠordRoW fails.

All of this was except with probability

≤ 3n

|F|
+

n

|F| − n

so that is the soundness error of ΠVmem.

C.2. Prior volatile memory proofs

We now summarize how prior AIPs for memory can be
created by replacing different sub-proofs in our protocols
with alternatives. First, we discuss alternative permutation
proofs. Then, we discuss alternative range proofs, which are
used to show the ordering of tr′.

C.2.1. Permutation. TinyRAM [45] gives a different
volatile memory proof, in part by using a different permu-
tation proof that does not require V randomness. It is based
on a routing network [96]. In it, the rows of A and B are
connected by a network of crossbar switches which can be
programmed to implement any permutation. P sends the
switch settings. Then, V checks the permutation. TinyRAM
specifically uses the Waksman network [56], which has size
Θk(n log n), engendering V cost Θ(kn log n).

C.2.2. Ordering and ranges. We show that the permuted
transcript tr′ is grouped by a (and then ordered by t). Prior
works show that it is ordered by (a, t). To show the micro-
scale ordering by t, it suffices to use Πc-ord (just as we do).
To show the macro-scale ordering by a, prior works show
that the a sequence is monotonic. That is, that a1, . . . , aA ∈
[N] is in the language:

Lmon = {a : ∀i ∈ [A− 1], ai+1 ≥ ai}

Since all the ai are known to be in range [N], and since
N < char(F), this reduces to arguing that the differences
di = ai+1 − ai ∈ {0, . . . , N} ⊂ F. That is, to give range
proof:

Lrange = {(d ∈ FA, N) : ∀i ∈ [A], 0 ≤ di ≤ N}

Alternatively, one can give a range proof for the in-
terval 0 ≤ di < n, where n is any integer satisfying
Nn < char(F) and k > n. By setting n to be the next power
of two, Ben-Sasson et al. give a range-proof Πrange,bit that
uses bit-splitting and has V complexity Θ(A logN) [45].
This is the approached used in TinyRAM.

Another line of works give range proofs based on lookup
tables. Bootle et al. give a range-proof Πrange,arya that imple-
ments a lookup table using a permutation proof> The total
V cost is 3(N +A) +O(1) [32]. This is the approach used
in Arya. This approach is great if N is small, but if N ≫ A
(e.g., as when emulating a machine with a 64-bit address
space) then it is abysmal.

Haböck gives a proof Πrange,log that improve the con-
stants of Πrange,arya (in I-R1CS) to N + A+O(1) [34], by
using logarithmic derivatives. This is the approached used in
the “Haböck” volatile memory proof that we benchmark. It
is also the approached used in our implementation of Πc-ord.

To mitigate the large-N costs, one can hybridize lookup-
tables and bit-decomposition. In this approach, P shows
that di can be represented as logk(N) digits in the range
{0, . . . , k − 1}, and range-checks the digits using lookups
The cost is Θ(k + A logk N) (from here on, we ignore
rounding). As we will see, by setting k appropriately, one
can get good asymptotic performance, even for large N . Our

experiments (Section 9.1) confirm that concrete performance
is also good. In the rest of this paper, we assume use the
names Πrange,arya and Πrange,log to refer to the hybridized
versions of the protocols, with k set optimally.

As applied to tables of consecutive integers, this hy-
bridization approach has been explored by recent works [33,
35, 36, 39], and generalized to tables with “Spark-only
structure” [41] by Setty et al. There are applications to
optimized zkSNARKs of virtual machine execution [97].

Theorem 10. With k set optimally, Πrange,arya and Πrange,log

have V complexity that is both ΘA(logN/(log logN)) and
ΘN (A).

Proof. First, we characterize the optimal k. Then, we com-
pute the V complexity. We will reach a point where it is
difficult to proceed with a simultaneous analysis in large N
or large A, so we will settle for two different asymptotic
bounds.

To find the optimal k, we annihilate the derivative:

0 = 1−A(lnN)(ln k)−2k−1

k ln2 k = A lnN

k = e2W0((1/2)
√
A lnN)

where W0(x) is the principal branch of the Lambert W
function. So, our cost is:

e2W0((1/2)
√
A lnN) +

A(lnN)

2W0

(
(1/2)

√
A lnN

)
This is a somewhat challenging expression to analyze
asymptotically in two variables, as W0’s argument depends
on both. And, while we have fairly simple asymptotic
bounds on W0 [98], its precise behavior is more complex.
So, we settle for asymptotic bounds that depend on N or A
but not both.

We begin with the fixed A case. The argument x to
W0(x) is large, so we can apply a result of Hoorfar and Has-
sani: that W0(x) = lnx− ln lnx+Θ((ln lnx)/(lnx)) [98].
Since k is set optimally, it suffices to analyze either sum-
mand in the cost expression. We choose the second, and
substitute the asymptotics for W0:

ΘA

(
lnN

2 ln(
√
lnN) + o(ln(

√
lnN))

)
= ΘA

(
lnN

ln lnN

)
Now, we consider the other case: when N is fixed. It’s

easy to see that cost is ΘN (A) in this case.

C.3. Persistent memory

Protocol 12 is our persistent memory proof. It is very
similar to our volatile memory proof, so we only explain
the differences. First, both parties initially associate each
access in tr with a time ti ← i and a flag gi ← 0. Second,
P produces a vector a of distinct addresses that include all
those touched by tr, as well as the initial and final values
at those addresses v and v′. Third, both parties augment
the transcript with initialization entries (vi, ai, gi = 1, wi =

ΠPmem(m,m′ ∈ FN ; tr)

P(· · ·) V(· · ·)
. include ti ← i, gi ← 0 in tr
a← A addrs covering tr

v← (mai)
A
i=1

v′ ← (m′
ai
)Ai=1

v,v′,a

. t̃r← tr ∥ (v,a,g = 1,w = 1, t = 0) ∥ (v′,a,g = 0,w =
0, t = A+ 1) .

tr′ ← sort(a,t)(t̃r) tr′

. (v′,a′,g′,w′, t′)← tr′
. Πactive(m,m′,v,v′,a)
. Πperm(t̃r, tr

′) .
.Πc-ord(t

′,1− g′, 0, A+ 1)
. .Πc-uniq(a

′,g′) .
. ΠordRoW(g′,v′,w′) .

Protocol 12: Our persistent memory proof.

1, ti = 0) and with finalization entries (v′i, ai, gi = 0, wi =
0, ti = A + 1). Fourth, P sends the sorted transcript tr′

to V . Then, the parties engage in sub-protocol Πactive, to
show that the active memory cells that are represented by
(v,v′,a) are consistent with (m,m′). Finally, the parties
use the same sub-protocols as in ΠVmem to show that tr′

(and by extension tr) respect read-over-write.

Theorem 11. The protocol ΠPmem (for language LPmem)
has perfect completeness and soundness error N2+6N+A

|F| +
N

|F|−N

Proof. We address completeness and then soundness.
Completeness. First, we argue that Πactive succeeds. Per the
construction of v and v′, for all i ∈ [A], vai

= mi and v′ai
=

m′
i. Further, since all i /∈ a do not appear in tr, mi = m′

i.
Finally, the elements of a are unique by construction. Thus,
(m,m′,v,v′,a) ∈ Lactive, so Πactive (which is perfectly
complete) succeeds.

Now, it suffices to show that t̃r ∈ LVmem (excluding the
g flags), and that tr′ in ΠPmem has g flags that have the same
values as those in ΠVmem. If these conditions are met, then
the completeness of ΠVmem implies that of ΠPmem. First,
observe that after sorting by (a, t), the first access to each
address has form (vi, bi, g = 1, w = 1, t = 0) in t̃r, since
these addresses have minimal t among all the addresses in t̃r.
Second, observe that every other access in tr′ is a standard
address or a finalization address, so it has g = 0. Thus our
second condition is met. The first condition follows from
the fact that valid(m,m′, tr) holds.
Soundness. Suppose that valid(m,m′, tr) does not hold.
Then, for some address a ∈ [N], one of the following must
hold:

1) The first access to a in tr is a read whose value
disagrees with m. There are two sub-cases:

a) a is equal to some ai ∈ a with vi = mai
, or

b) not.
2) There are accesses to a indexed by i < j with no

intermediate access to a such that wj = 0 and vi ̸= vj .
3) the last access to a in tr has a value that disagrees with

m′. There are two sub-cases:
a) a is equal to some ai ∈ a with v′i = m′

ai
, or

b) not.
If any of cases 1a, 2, or 3a hold, then the soundness of
ΠVmem implies that V rejects except with probability

≤ 4N

|F|
+

N

|F| −N

This bound is slightly looser than Theorem 9 because Πperm

is applied to 5-tuples here, instead of to 4-tuples as in
ΠVmem.

In case 1b or 3b, we have that (m,m′,v,v′,a) is not in
Lactive. Thus, Theorem 5 implies that V rejects except with
probability ≤ (N2 + 2N +A)/|F|.

Thus, V rejects except with probability at most

N2 + 6N +A

|F|
+

N

|F| −N

C.4. Sparse persistent memory

Protocol 13 is our sparse persistent memory proof, build-
ing on Protocol 14 for extracting the active cells from the
memory. It is very similar to Protocol 12, so we explain only
the differences. First, the vectors a,a′ now denote part of the
persistent storage, while b′ denotes the “active” addresses.
Second, the active addresses b′ are computed slightly differ-
ently: b′ must now contain elements that are a sub(multi)set
of those in a′, including all the addresses that appear in tr.
Protocol 13 continues by building an augmented transcript t̃r
that contains initialization and finalization entries for each
address, as in ΠPmem. It then runs the same collection of
sub-protocols that ΠPmem uses, save that it runs Πs-active in
place of Πactive.

Checking the consistency of the (m,m′,a,a′,v,v′,b′)
tuple is deferred to the sub-protocol Πs-active which was
explained at a high level in Section 6. It is detailed as
Protocol 14. At a high level, it shows that (a) each (b′i, v

′
i)

is equal to some (a′i,m
′
i), (b) each (b′i, vi) is equal to some

(ai,mi) or ai is a dummy, and (c) the a′i are all unique or
dummies, assuming that the ai are. More precisely, it proves
membership in the following language:

Ls-active = {(m,m′,a,a′ ∈ FN ;v,v′,b′ ∈ FA) :

∃ I ⊆ [C], |I| = C −A,∃b ∈ FA,∧A
i=1(bi = 0 ∨ bi = b′i) ∧
{{(ai,mi)}}Ci=1 = {{(ai,mi)}}i∈I ⊎ {{(bi, vi)}}

A
i=1 ∧

{{(a′i,m′
i)}}

C
i=1 = {{(a′i,m′

i)}}i∈I ⊎ {{(b
′
i, v

′
i)}}

A
i=1 ∧

{ai}Ci=1 ∩ {b′i − bi}Ai=1 ⊆ {0} }

ΠSPmem(m,m′,a,a′ ∈ FC ; tr)

P(· · ·) V(· · ·)
. include ti ← i in tr .
b′ ← A addr.s covering tr

v← (mb′i
)Ai=1

v′ ← (m′
b′i
)Ai=1

v,v′,b′

. t̃r← tr ∥ (v,b′,g = 1,w = 1, t = 0) ∥ (v′,b′,g = 0,w =
0, t = A+ 1) .

tr′ ← sort(a,t)(t̃r) tr′

. (v′,b′,g′,w′, t′)← tr′ .
. Πs-active(m,m′,a,a′,v,v′,b′)
. .Πperm(t̃r, tr

′) .
. Πc-ord(t

′,1− g′, 0, A+ 1)
. Πc-uniq(b

′,g′) .
. ΠordRoW(g′,v′,w′) .

Protocol 13: Our sparse persistent memory proof.

Πs-active(m,m′,a,a′ ∈ FC ;v,v′,b′ ∈ FA)

P(· · ·) V(· · ·)

find suitable j ∈ [C]A

b← (aji : i ∈ [A]) b

β sample β ∈ F

h← (mi + aiβ)i∈[C],i/∈b′ h ∈ FC−A
sample α ∈ F

. ΠPuncDisj(a,b
′ − b) .

∀i ∈ [A] : (b′i − bi)bi
?= 0

c←
∏C−A

i=1 (α+ hi)∏C
i=1(α+mi + aiβ)

?= c×
∏A

i=1(α+ vi + biβ)∏C
i=1(α+m′

i + aiβ)
?= c×

∏A
i=1(α+ v′i + b′iβ)

Protocol 14: Extracting the active cells of a sparse memory.

In this protocol, P starts by computing a persistent cell index
ji for each active cell i. j must contain distinct elements, for
each i ∈ [A], a′ji = a′ji , and j should be lexicographically
minimal subject to these conditions. P can compute such
a j quickly by setting each ji to the small elements of [C]
satisfying b′i = a′ji that is not in j already. Then,

Theorem 12. The protocol Πs-active (for language
Ls-active) has perfect completeness and soundness error
(C2 + 3C + 2A− 1)/|F|

Proof. We address completeness and then soundness.
Completeness. Define I to be [C] with the items of j re-
moved. Per membership in Ls-active, I and b exist. Moreover,
one can show that b in this proof is equal to b in the
protocol. The last condition of membership immediately
implies that ΠPuncDisj succeeds. Also, the first condition of

membership (bi = 0 ∨ b′i = bi for all i ∈ [A]) implies that
V’s first test succeeds. Let J be the set of j’s contents, and
I = [C] \ J .

Consider the multisets

{{mi + aiβ}}i∈[C] = {{mi + aiβ}}i∈I ⊎ {{mi + aiβ}}i∈J

So, we have∏
i∈[C]

(α+mi + aiβ) =
∏
i∈I

(α+mi + aiβ)×
∏
i∈J

(α+mi + aiβ)

. The factors in the second product are exactly the α + hi,
as computed by P , so we have∏

i∈[C]

(α+mi + aiβ) = c×
∏
i∈J

(α+mi + aiβ)

Then, by the definition of the b and b, we have∏
i∈[C]

(α+mi + aiβ) = c×
∏
i∈J

(α+ vi + biβ)

and V’s second test succeeds. And, a similar argument shows
that V’s third test succeeds.
Soundness. Suppose the V accepts. We will argue that
the instance is in the language. Because of V’s last tree
tests, β is independent of m,m′,a,a′,v,v′,b,b′, and α is
independent of all those and h too, we have two multiset
equations:

{{(ai,mi)}}i∈[C] = {{(ai,mi)}}i∈I ⊎ {{(bi, vi)}}i∈[A]

{{(a′i,m′
i)}}i∈[C] = {{(ai,mi)}}i∈I ⊎ {{(b

′
i, v

′
i)}}i∈[A]

for some I ⊆ [C], except with probability (C2+2C+A)/|F|
by the same argument as in the proof of Theorem 5, with
C in place of N . This satisfies the middle two conditions
of Ls-active. The first condition is ensured by V’s first test,
and the last condition is ensured by ΠPuncDisj, except with
probability (Thm. 7): (C + A − 1)/|F| Thus, the overall
soundness error is

C2 + 3C + 2A− 1

|F|

Theorem 13. The protocol ΠPmem (for language LPmem)
has perfect completeness and soundness error O((C2 +
A)/|F|)

Proof. The proof of this theorem is similar to the proof of
Theorem 11.

Appendix D.
Computing Bézout polynomials

Figure 2 gives our algorithm UniqBez. Like
SimpleUniqBez, its runtime is O(M(L) logL) and its
is easy to parallelize. In addition, we implement one
optimization not shown. In the first two loops, we

UniqBez(x1, . . . , x2ℓ)

for i ∈ [2ℓ] :

pℓ,i ← X − xi

for j ∈ {ℓ, . . . , 1}, i ∈ [2j−1] :

pj−1,i ← pj,2i · pj,2i+1

q0,0 ← p′0,0

for j ∈ [ℓ], i ∈ [2j−1] :

qj,2i ← qj−1,i mod pj,2i

qj,2i+1 ← qj−1,i mod pj,2i+1

for i ∈ [2ℓ] : tℓ,i ← (qℓ,i)
−2

for j ∈ {ℓ, . . . , 1}, i ∈ [2j−1] :

pj−1,i ← tj,2i · pj,2i+1 + tj,2i+1 · pj,2i
return s← (1− p′0,0 · t0,0)/p0,0, t← t0,0

Algorithm 2: Our algorithm for computing Bézout polyno-
mials s, t for z(X) =

∏2ℓ

i=1(X − xi) and its derivative.

precompute all rev(pj,i) mod X2ℓ−j+1

[75, Ex. 10.9],
where rev reverses the coefficients of a polynomial. These
values can be used to accelerate the modular reductions in
the third loop.

Now, we restate and prove Theorem 4.

Theorem. Given a1, . . . , aA ∈ F, UniqBez outputs s, t ∈
F[X] satisfying sz + tz′ = 1 (where z =

∏
i(X − ai)) in

time at most 4.5M(A) logA+O(A logA).2

Proof. Let z(X) =
∏

i(X − xi). First, we prove UniqBez
returns s, t satisfying zs+z′t = 1. First, observe that p0,0 =
z. Next, observe that qℓ,i is a scalar and is z′(xi). Next,
observe that for each xi, 1 = z(xi)s(xi) + z′(xi)t(xi) =
z′(xi)t(xi). Thus, t(xi) = (z′(xi))

−1.
Now, observe that t(X) =

∑L
i=1(t(xi))

2
∏

j ̸=i(X−xi).
This is because t(xi)

∏
j ̸=i(X − xi) is the l

Now, we analyze the runtime of UniqBez. As is the
convention in computer algebra, we quantify runtime as
the number of scalar operations, and we use the function
M(L) to denote the (asymptotic) cost of multiplying two
polynomials of degree < L; this is L logL. We will see
that UniqBez has runtime 4.5M(L) logL+O(L logL). To
see this, observe that UniqBez is very similar to the fast
interpolation algorithm given by Gathen and Gerhard [75,
Alg. 10.11]. The only difference is that UniqBez uses the
(qℓ,i)

−1 as both the Lagrange coefficients and the target
evaluations, instead of having a separate list v ∈ FL of
target evaluations. Thus, the runtime of UniqBez is the
same as the runtime of interpolation.8 And that runtime is
4.5M(L) logL+O(L logL) [75, Ex. 10.9].

8UniqBez is very slightly faster, because it replaces O(n) multiplica-
tions between Lagrange coefficients and the vi with O(n) squarings—but
this is a low-order difference.

	1 Introduction
	2 Background and related work
	2.1 Related work

	3 AIPs and zkSNARKs
	3.1 I-R1CS
	3.2 A zkSNARK for I-R1CS

	4 Volatile memory
	4.1 Problem and overview
	4.2 Reducing to conditional uniqueness
	4.3 Uniqueness proof
	4.4 Conditional uniqueness
	4.5 Comparison to prior work

	5 Persistent memory
	5.1 Selecting active cells
	5.2 Transcript validity
	5.3 Comparison to prior work

	6 Sparse persistent memory
	6.1 Overview
	6.2 Valid address uniqueness
	6.2.1 Punctured uniqueness
	6.2.2 Punctured disjointness

	6.3 Comparison to alternatives

	7 Mirage+: A zkSNARK for AIPs
	8 Implementation
	9 Evaluation
	9.1 Volatile memory
	9.2 Persistent memory
	9.3 Sparse persistent memory
	9.4 Application: Rollup

	10 Conclusion
	Appendix A: Deferred proofs
	A.1 Theorem 5: active
	A.2 Theorem 6: PuncUniq
	A.3 Theorem 7: PuncDisj
	A.4 Theorem 8: I-Mirage+

	Appendix B: CP-Mirage+ construction
	Appendix C: AIPs for memory
	C.1 Volatile memory
	C.2 Prior volatile memory proofs
	C.2.1 Permutation
	C.2.2 Ordering and ranges

	C.3 Persistent memory
	C.4 Sparse persistent memory

	Appendix D: Computing Bézout polynomials

