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Abstract
This paper presents a new architecture formetadata-privatemessaging

that counters scalability challenges by offloadingmost computations

to the clients. At the core of our design is a distributed private

information retrieval (PIR) protocol, where the responder delegates

its work to alleviate PIR’s computational bottleneck and catches

misbehaving delegates by efficiently verifying their results. We

introduce DPIR, a messaging system that uses distributed PIR to

let a server storing messages delegate the work to the system’s

clients, such that each client contributes proportional processing

to the number of messages it reads. The server removes clients

returning invalid results, which DPIR leverages to integrate an

incentive mechanism for honest client behavior by conditioning

messaging through DPIR on correctly processing PIR requests from

other users. The result is a metadata-private messaging system

that asymptotically improves scalability over prior work with the

same threat model. We show through experiments on a prototype

implementation that DPIR concretely improves performance by

3.25× and 4.31× over prior work [1, 4] and that the performance

gap grows with the user base size.

1 Introduction
Many messaging services like Whatsapp, Telegram, and Signal

use end-to-end encryption to safeguard message content from

eavesdroppers and corrupt servers. However, these services often

lack metadata protection. The service provider (or eavesdropper)

sees details like which users communicate and the timing of their

communication and learns much about the conversation itself.

Communication metadata helps messaging service providers build

extensive profiles about their users and their conversations [24,

25, 37]. Moreover, former intelligence agency directors have

famously stated that monitoring the communication’s metadata

obviates the need to read its content [22, 40, §7]. The research

community has invested efforts in designing systems for metadata-

private communication. A crucial challenge in all such designs is

scalability since supporting a larger user base allows hiding a user’s

communication in a larger crowd and enables better privacy for all

users [16, 20].

Recently, metadata-private messaging systems based on Private

Information Retrieval (PIR) [8] were proposed [1, 5]. These designs

provide the strongest privacy guarantee we could hope to achieve:

they allow a recipient to read messages from a server without

revealing any information about which messages they read. They

trust the server only for service availability, i.e., storing messages

and responding to requests. However, even if the attacker controls

the system’s server and all other clients they cannot breach users’
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privacy, i.e., they cannot learn any information about which users

exchange messages. This guarantee comes with a major scalability

challenge: the server must process all messages in its database for

every recipient. Moreover, with a growing user base, the number of

users sending messages also grows, which increases the database

size a server needs to process per recipient. The compounding of

linearwork (in the database size) per recipient, and linear increase in

the database size per sender leads to quadratic computational cost in
the number of users. Current designs for PIR-based communication

systems thus suggest using a cluster of powerful servers that process

the users’ messages [1]. However, since the number of servers,

for maintaining any level of performance, rapidly grows with

more users, scaling deployments of these designs is problematic in

practice. (E.g., would an organization be willing/able to deploy 6 000

– 8 000 processing cores for serving 32k users as the evaluation in [1]

uses? would their administrator be willing to deploy servers with

24𝑘 – 32𝑘 cores if the user base doubled to 64𝑘 users?)

This paper addresses the scalability challenge by introducing

DPIR, a communication architecture based on PIR that takes a new

approach for scalability: rather than deploying many more servers,

it distributes the servers’ work to the clients with a novel distributed

PIR protocol. Intuitively, since PIR ensures privacy against a rogue

server, then having the server distribute its work does not create

a privacy risk (we formally prove this intuition). Thus, the more

clients there are, the more processors DPIR has for handling its

growing workload. We build DPIR and compare it against the state-

of-the-art systems.

The key challenge in designing DPIR was ensuring availability,
i.e., delivering correct responses, even when the server outsources

work to misbehaving clients. Since the server outsources work to

all users in the system, it must efficiently ensure that honest users

can read messages even when the clients processing their requests

return bogus answers for their share of the computation (or do not

return any response). As the number of clients grows, the potential

for such clients increases as well, therefore, solving this challenge

is crucial when considering DPIR’s scalability goal.

At first glance, detecting misbehaving clients seems easy to

solve. Two friends exchanging messages could use end-to-end

authentication for their messages so that the recipient could detect

and complain to the server when she receives an invalid message.

However, sending such a complaint is detrimental to DPIR’s privacy

goal: a rogue server can change one message in its database and

then see which recipient complains. The server then learns that the

complaining user was interested in reading that message. Thus, to

avoid this crucial problem, verification of the clients’ work must be

done without feedback from the recipient.

In DPIR, we found an efficient way to perform such verification.

We leverage the fact that PIR processing is an instance of
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matrix multiplication and outsource this computation to the

clients. DPIR’s server assembles the product matrix from the

clients’ responses and efficiently validates them using Freivalds’

probabilistic algorithm [19]. Applying Freivalds’ algorithm in the

context of PIR’s matrix multiplication is non-trivial since one

matrix of the product’s matrices holds the recipients’ ciphertext

queries, encrypted with a homomorphic encryption scheme, and

each recipient uses a different key to encrypt their query. Thus,

homomorphic operations involving two queries are ill-defined.

This presents a challenge since Freivalds’ algorithm involves a

computation on all queries. Our insight for handling this challenge

is that all ciphertexts are elements of the same algebraic ring,

irrespective of which key the recipient has used. We show that

it is sufficient to have the underlying ring operations satisfy

an associativity property to perform the validation (rather than

requiring that homomorphic evaluation on the ciphertexts results in

coherent decryption). To the best of our knowledge, this is the first

time that ciphertexts encrypted using different keys are evaluated

together to generate a coherent result.

DPIR distributes the matrix multiplication work across clients

and uses a server to validate their results. Moreover, it distributes

the work such that, if validation fails, the output of the verification

procedure pinpoints the offending client as soon as it responds.

DPIR further leverages this ability to detect misbehaving clients

to integrate a natural incentive mechanism for participating in

PIR computations: a client must help others read messages to

communicate through DPIR. This ensures that the number of

processors at DPIR’s disposal grows with the users’ load.

DPIR’s approach of offloading the server’s computations to

clients results in scaling asymptotically better than the state-of-the-

art metadata-private messaging systems with the same privacy goal

and threat model, Pung and Addra [1, 5]. Specifically, messaging

latency scales with 𝑂 (𝑛1.5), rather than 𝑂 (𝑛2) in [1, 5], where 𝑛 is

the number of clients reading and writing messages. Concretely,

with about 250 weak clients (dedicating a single processing core)

to outsource its work, DPIR provides 4.31× and 3.25× better

throughput and latency compared to Pung and Addra (respectively),

and our experiments also demonstrate that the relative performance

gap grows with clients.

In sum, this work makes the following contributions:

(1) A design of a distributed PIR protocol where the bottleneck

of the server computing plaintext-ciphertext matrix product is

alleviated by offloading work to the clients.

(2) Novel use of homomorphic encryption, where ciphertexts

encrypted under different keys are used together to perform the

matrix product verification from Freivalds’ algorithm.

(3) A scalable private messaging that ensures users’ privacy against

rogue servers, its prototype and evaluation [44].

2 Related work
Tor [17] is the most popular communication system for hiding

metadata, offering excellent scalability, but it does not provide

privacy against global adversaries monitoring the network, let alone

adversaries controlling all system servers [21, 27, 43]. Sasy and

Goldberg recently surveyed approaches for achieving metadata

private communication with stronger privacy guarantees [41]. As

they point out, onion routing and parallel mixnet designs typically

scale well and can handle a large user base [29–31, 45]. However,

these techniques require a large portion of honest servers (e.g., 70%

or 80%) to ensure privacy, and thus deal with a weaker adversary

model than DPIR. Furthermore, the most performant mixnet-based

systems [30, 31, 45] allow bounded statistical leakage of information

about the communication’s metadata. As a result, those designs

force users to make a difficult choice about how much privacy they

are willing to risk and forces them to stop communication when

their “privacy budget” depletes.

Most related to DPIR are systems where the servers are trusted

only for availability (facilitating communication) but untrusted
for privacy. We focus the discussion on PIR-based designs (like

DPIR). Other designs are based on DC-nets [12, 14, 39, 47] but are

vulnerable to client-side faults, induce very high communication

overhead, or require trusting a server for privacy; we elaborate on

these designs in Appendix A.

PIR-based designs. In these designs, a rogue server can only

prevent communication (e.g., by dropping messages) but learns

nothing about which message a user retrieves. The price for this

strong privacy guarantee in existing designs comes in the form of

scalability (see §1). As a result, in today’s designs, supporting a large

user base with PIR leads to very high latency. For example, Pung’s

latency grows quadratically with its user base. With 50 servers,

Pung requires 1 minute of computation to deliver 131k messages [5,

Figure 7]. Addra has the same asymptotic complexity as Pung but

optimizes for small message databases. It uses fewer heavyweight

cryptographic operations (compared to Pung) to implement PIR

but its query size grows linearly with the size of the database.

This makes Addra suitable for a user base of less than 64k [1,

bottom of §1]. Moreover, Addra users connect with one another

every 5 minutes through Alpenhorn [32], which leaks bounded

statistical information, and reduces the security of the overall

system, although it uses PIR.

A recent approach for scaling PIR protocols uses database

preprocessing, assuming a static database, and amortizes

computational costs over many queries [13, 23]. Unfortunately, this

approach involves a costly database preprocessing computation,

every time the server’s database changes. This makes the amortized-

cost approach unsuitable for communication systems since updates

happen frequently, whenever a user sends a message. In parallel

work to DPIR, VeriSimplePIR, which uses an offline-online PIR

architecture, introduces a verifiability guarantee ensuring that

query answers are consistent with the database [15]. However, its

verification mechanism is unsuitable for our use-case since it relies

on a costly offline communication phase. A recent theory paper

focuses on PIR with dynamic database updates. It achieves sublinear

query time by relying on superlinear preprocessing of the database.

However, as the authors note in that paper, this construction isn’t

yet practical [33, §1.5].

Reverse PIR. Riposte [11], Express [18] and Sabre [46] propose

reverse-PIR, where clients write messages anonymously instead

of reading them anonymously to achieve metadata-private

communications. Riposte and Express are hindered by their writer-

auditing protocols, which have high costs. Sabre cleverly manages
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to reduce auditing costs and, as a result, outperforms Riposte

and Express. Unfortunately, Riposte, Express and Sabre require

at least one honest server to maintain user privacy, which is

incompatible with DPIR’s attacker model, which does not assume

an honest server for achieving privacy. Furthermore, Like DPIR,

Pung and Addra, all three reverse-PIR systems require the servers

to perform linear work in the database size, which burdens the

scaling capabilities of these systems.

3 Overview
DPIR allows pairs of users to exchange short messages (e.g.,

256B-long to support text messaging) while hiding that they

communicate. Users write messages to a server and read messages

their friends wrote from that server using PIR. Their clients also

serve as workers helping the server process PIR queries. This allows

DPIR to scale since the number of workers grows with the user

base.

3.1 Communication outline
DPIR requires communicating users to have a shared secret. They

use this secret to “dial” each other to coordinate communication

(below), and encrypt and authenticate end-to-end the content of

messages that they exchange. Establishing this secret between two

users happens once and is outside DPIR’s scope. Prior work requires

a shared secret as well [1, 5, 6, 28–31, 45], and suggests establishing

such shared secrets when meeting in person (e.g., by scanning

QR codes) or through another metadata-private protocol, such as

Alpenhorn’s “add friend” [32].

To eliminate leakage of information about the time a

(human) user sends or receives messages, DPIR takes the same

communication round-based approach as much of the prior work

in [1, 5, 6, 11, 12, 18, 28–31, 45, 47]. It divides time into epochs,

where users dial one another and then exchangemessageswith their

friends over multiple communication rounds. The server assigns

users a dead drop, which is a virtual address to deposit messages

they write. Clients then write to their dead drop (overriding the

latest message they stored on the server) and use PIR to read a

message at every round.

Scaling message exchange in DPIR. In every communication

round the clients deposit messages to their dead drops and the

server distributes a small portion of these messages to each client.

Each client then processes a portion of the PIR queries against

the portion of the messages. The clients’ processing boils down to

matrix multiplication (as we recap in §4). Computing the matrix

product is the most computationally intensive part of the PIR

protocol: it requires processing all messages for each query, and

involves costly homomorphic operations on the ciphertexts that

comprise PIR queries. By outsourcing this expensive part to the

clients, DPIR alleviates the server-side computational bottleneck

from prior work [1, 5].

Instead of computing the PIR responses itself, DPIR’s server

efficiently validates the clients’ outputs and then assembles them

into the responses. The validation procedure also pinpoints clients

that returned invalid outputs, which the server then boots from the

system.

3.2 Goals and threat model
DPIR doesn’t require a user to trust the server or other users’ clients

for privacy. Like other PIR-based communication designs, the server

is only trusted for service availability but clients are not (despite

offloading the heavyweight processing work to the clients). Next,

we formulate our goals.

Privacy. DPIR removes linkability between clients chatting. This

includes who communicates with whom, the time they exchange

messages and message size. It considers a strong network attacker

model that can tap on the communication lines or drop messages.

It further assumes that the attacker may control its servers and

clients. Attacker-controlled machines can deviate from the protocol

to try to learn about the users’ communication metadata.

Formally, DPIR provides relationship unobservability (UO),
defined by Pfitzmann and Hansen [38]. That is, it is computationally

undetectable whether anything is sent out of a set of could-be

senders to a set of could-be recipients.

Availability. DPIR allows users to exchange messages as long

its server follows the protocol, and despite misbehaving clients

from other users. This is crucial since clients are many, and the

administrator deploying the system’s server may have little control

over them. DPIR does not aim to provide availability against a

dishonest server, that server could always drop all messages in

its database and break connectivity (as in prior work based on

PIR-based).

Scalability. In prior PIR-based communication designs, the

server performs𝑂 (𝑛2) computations to support 𝑛 users reading and

writing messages. DPIR reduces server-side overhead to 𝑂 (𝑛1.5)
by offloading work to clients; the overall work across the entire

system, the server and clients, remains 𝑂 (𝑛2) but is sharded and

performed in parallel across all system participants. We show

through experiments (§9) that latency is reduced by 76% – 81%

compared to prior work [1, 5] and that the load on each client is

reasonable, on the order of a few seconds per communication round

even when the client uses just one commodity CPU core.

4 Background
We now give the background on the cryptographic and algorithmic

building blocks used in DPIR.

Homomorphic Encryption with BGV. DPIR uses BGV [9], an

IND-CPA secure (leveled) fully homomorphic encryption scheme.

In BGV, plaintexts are polynomials over the quotient ring 𝑅𝑡 =

Z𝑡 [𝑥]/(𝑥𝑁 + 1). These are polynomials of degree no greater than

𝑁 with integer coefficients modulo 𝑡 . A BGV ciphertext comprises

a sequence of polynomials. Each ciphertext polynomial is of degree

no greater than 𝑁 with integer coefficients mod 𝑞, and it belongs to

the quotient ring 𝑅𝑞 = Z𝑞 [𝑥]/(𝑥𝑁 +1). The parameters 𝑁,𝑞 set the

level of security for the encryption scheme, and the ratio between

𝑞 and the parameter 𝑡 < 𝑞 trades storing more data in a ciphertext

for supporting fewer homomorphic operations on that ciphertext.

PIR as an instance of matrix multiplication. Most PIR

protocols can be viewed as an instance of matrix-vector
multiplication. We describe the classical protocol [26], which we

use in DPIR, in matrix multiplication terms following Algorithm 1.



Elkana Tovey, Jonathan Weiss, and Yossi Gilad

Algorithm 1 PIR allows reading a message from matrixM. The

client runs Query to compute query vector
#»𝑞 and keeps the

secret sk to decrypt the response. The server runs Respond which

computes the matrix-query product, returning the 𝑘 th column of

M in ciphertexts. Evaluating this product requires a homomorphic

cryptosystem.

1: functionQuery(𝑘, num_cols)
2: sk, pk← KeyGen()
3: for 𝑖 ← 1 to num_cols do
4: 𝑏 ← 0 if 𝑖 = 𝑘 else 1

5: 𝑞𝑖 ← Enc(pk, 𝑏)
6: end for
7: return sk, #»𝑞 ← ⟨𝑞1, . . . , 𝑞num_cols⟩
8: end function
9:

10: function Respond(M, #»𝑞 )

11: returnM · #»𝑞 𝑇

12: end function

Consider a server with 𝑛 messages. The server arranges them in

a

√
𝑛 ×
√
𝑛 matrix, denoted by M. In PIR, the client’s query is

an encryption of a one-hot encoding of the column index ofM
where the recipient’s message is stored. More formally, the client’s

PIR query,
#»𝑞 is a

√
𝑛-long vector of ciphertexts of 0’s except for

one index, where there is an encryption of 1. Each element in the

query vector is encrypted using a semantically secure homomorphic

cryptosystem (e.g., BGV). This allows the server to respond with
the product

#»𝑟 =M × #»𝑞 𝑇 . Since the query vector contains just a

single encrypted 1, say at index 𝑘 , the response #»𝑟 is a vector where

𝑟𝑖 =
∑

𝑗M𝑖, 𝑗 · 𝑞 𝑗 = M𝑖,𝑘 ; i.e.,
#»𝑟 is the 𝑘’s column vector ofM,

which contains the recipient’s message.

Since responding to a single PIR query can be seen as a matrix-

vector product (M × #»𝑞 ), then responding to multiple queries is

computing the product of two matrices: The server can arrange

the query vectors from clients as column vectors in a

√
𝑛 × #clients

matrix Q. Column 𝑖 in the matrix product R = M × Q is the

response for the client that sent the query at column 𝑖 in matrix Q.
Efficient matrix-product verification. Freivalds’

algorithm [19], illustrated in Algorithm 2, receives three

input matrices and an integer 𝑑 , which is the bit length of random

numbers the algorithm can generate. In our context, the matrices

given are as follows:M, the matrix holding the messages (treated

as BGV plaintexts); Q, the matrix whose columns are PIR query

vectors; and the claimed matrix product, R. The algorithm performs

a randomized check for the matrix product, where the verifier

chooses uniformly at random a challenge column vector
#»𝑐 and

tests thatM × (Q × #»𝑐 ) − R × #»𝑐 =
#»
0 . This check is much more

efficient than directly computingM × Q and comparing it against

R (since computing three matrix-vector products is less costly

than multiplying the two matrices). However, it introduces a 2
−𝑑

chance of failure where the verifier might not detect inequality.

Compressed queries and recursive PIR. DPIR leverages a

compression optimization for sending PIR queries encrypted

through BGV from prior work [4]. With standard BGV parameters

and less than 2
12 × 212 elements inM, this optimization exploits

Algorithm 2 Verifying thatM ·Q = R for matricesM,Q,R (with

failure probability of 2
−𝑑

). Evaluating the equation in line 4 requires

three matrix-vector multiplications. This is more efficient than re-

computing the matrix-matrix productM × Q directly.

1: function Freivalds(M,Q,R, 𝑑)
2: ℓ ←M .𝑅𝑜𝑤𝑆𝑖𝑧𝑒 ()
3:

#»𝑐
R← {0, 2𝑑 − 1}ℓ

4: returnM × (Q × #»𝑐 ) − R × #»𝑐 ==
#»
0

5: end function

#messages 1
st
PIR query 2

nd
PIR query verification

67k 127.21 33.02 4.12

262k 497.79 66.06 7.99

1M 1993.31 132.13 17.14

2M 3990.26 186.92 23.57

Table 1: Single core CPU processing time (in milliseconds) to
perform recursive PIR and the amortized cost of verifying a
1
st-step PIR response using Freivalds’ algorithm.

the sparsity of the client’s query vector (all but one element are

encryptions of 0), enabling a client to send just one ciphertext

hiding the index of the non-zero encryption and have the server

use BGV’s homomorphic operations to expand that ciphertext to

the full query vector.

Recursive queries. Another well-known optimization is using

a second PIR query vector to retrieve just one element from the

PIR result vector rather than an entire column. Each client’s PIR

query comprises two compressed vectors, the first is a one-hot

encoding of the column of the element it wishes to read in ciphertext

form (as described above) and the second encodes the row of that

element. The server multiplies the client’s second query vector by

the vector that resulted from multiplying the matrix by the first

vector (described above). The output of this multiplication is one

ciphertext that contains the element that interests the recipient.

4.1 Identifying the bottleneck
Processing the first PIR step involves computing a matrix-

vector product, which induces more polynomial multiplications

(representing BGV ciphertexts or plaintexts) than processing the

recursive second step, which involves computing the dot product of

two ciphertext vectors (×𝑂 (
√
𝑛)more). In Table 1we benchmark the

performance of both PIR protocol steps and Freivalds’ verification

protocol. We see the scalability challenge, for example, when the

number of messages grows from 67k to 2M, the dominating cost

of processing the first PIR query grows by 31× (proportionally). In

contrast, the costs of the second PIR query and product verification

are much lower and increase by 5.5×.
The major performance gap between processing the first and

second PIR steps is because multiplying the message matrix

by the query vector (first PIR step) induces more polynomial

multiplications than multiplying the second PIR query with the

result of the first recursive PIR (second PIR step). This efficiency

holds even when dealing with a relatively small message matrix

of size (e.g., |𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 | = 2
16
) and even though the second PIR
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step requires ciphertext-ciphertext multiplication, which is more

CPU-intensive than plaintext-ciphertext multiplication. Thus, by

offloading the processing of just the first PIR query, DPIR removes

the bottleneck computation from the server. Furthermore, the

average cost of verifying a query is much smaller than processing

the PIR queries, motivating DPIR’s approach of outsourcing the

bottleneck computation to clients and verifying their results.

5 Design
In DPIR, users exchange short messages through a server. The

communication between the users’ clients and the server is over

TLS, to ensure that a network attacker cannot spoof or modify

messages between them without detection. We next describe how

users communicate through DPIR.

5.1 Epoch setup
In this phase, illustrated in Figure 1, clients connect to the server and

register to help in the PIR protocol for the coming epoch. The server

assigns registered clients that have “worked” through the previous

epoch sequential dead drop addresses. Thus, users must contribute

to handling the system’s workload in order to communicate through

it. The server then arranges the dead drops in a square “message

matrix,” M by their address. DPIR uses the BGV homomorphic

encryption scheme (see §4). With standard security parameters, a

BGV plaintext stores about 10KB of data; so, since users’ messages

are short texts, the server encodes messages for multiple dead

drops into one cell matrix (a BGV plaintext). Given 𝑛 users that

read/write 256Bmessages (as in prior work [1, 5]), each cell can pack

⌊10𝐾𝐵/256⌋ = 39 messages. Thus, for 𝑛 clients sending/receiving

messages in the epoch (𝑛),M’s dimensions are ⌈
√︁
𝑛/39⌉ × ⌈

√︁
𝑛/39⌉.

We refer to the matrix dimensions as𝑚×𝑚 to simplify the notation

(𝑚 = ⌈
√︁
𝑛/39⌉).

After clients have dead drops, they dial one another to set up

communicating through DPIR in the coming epoch. The (metadata-

private) dialing protocol lets two users that share a secret exchange

their dead drop addresses. DPIR leverages a known mechanism for

dialing. It uses it as a black box, and we defer discussing it to §6 to

focus on the mechanisms novel to DPIR’s design.

Given the matrix dimensions and a dead drop address (𝛼), the

recipient can calculate the cell in the matrix M that stores the

messages from that dead drop (dead drop 𝑑 maps the cell in row

⌊𝛼/𝑚⌋, column 𝛼 mod𝑚).

5.1.1 Submitting PIR queries Once dialing completes, each client

submits a PIR query to the server (Figure 1a) which will be used

for reading messages during the epoch. (Even if a client did not

dial a friend, they still send a dummy PIR query to hide they’re not

exchanging messages.) Although queries stay fixed for the entire

epoch, senders and recipients remain unlinkable: The sender always

writes to the same dead drop, which looks the same regardless of

the recipient, and the PIR query completely hides which of the dead

drops the recipient reads. For each epoch, the client generates a

private/public BGV key pair and uses the public key to generate a

PIR query in compressed form, which targets retrieving from the

friend’s dead drop in the server’s message matrix. DPIR uses the

recursive PIR optimization so the query comprises two ciphertexts,

(a) At the beginning of the
epoch, the server arranges the
dead drop addresses in a square
matrix. Clients receive a dead
drop and upload their PIR
queries to the server.

(b) The server distributes
compressed PIR queries to
clients, which they expand into
𝑚-long column vectors that
they keep for the entire epoch.
Clients process these queries
through the epoch.

Figure 1: Epoch setup

one for the column and the other for the row ofM (as described

in §4).

Query distribution. The server splits the clients into disjoint

groups of 𝑚 clients. The assignment of clients to groups is

randomized to avoid correlated assignment of faulty clients to the

same group (this makes recovering availability more efficient when

clients fail, §5.2.1). The server distributes a different subset of𝑚

compressed PIR queries to each group (Figure 1b), so all clients in

the group handle the same queries, and DPIR covers all queries

across all groups (since there are 𝑛/𝑚 groups and 𝑛 queries total). In

addition to the queries, each client receives matching key-switching

keys to expand the queries correctly. These keys are public and are

not changing. Thus, they can be stored long on the client’s disk.

Every client expands each compressed query vector to a column

vector of𝑚 ciphertexts (where only one ciphertext is an encryption

of 1, and the rest are encryptions of 0, see §4). The client keeps those
expanded query vectors for the rest of the epoch since users fetch

messages from the same dead drop. Thus, the relatively expensive

query-expansion computation (see [4]) is amortized over the length

of the epoch. The result is that, after the expansion, each client has

an𝑚 ×𝑚 matrix that covers𝑚 PIR query vectors (in its columns).

We refer to this matrix as the client group’s query matrix (all clients

in the same group help process the same set of queries).

5.2 Communication round
Figure 2 illustrates how clients exchange messages in DPIR.

Every round, clients send the server a fixed-size message to

store in their dead drop. When users have nothing to send,

their clients automatically send a dummy message to hide they

don’t communicate. Messages are end-to-end encrypted and

authenticated using the secret that the sender and recipient share.

In every round, the server distributes to each client a row from

its message matrix (M), i.e.,𝑚 BGV plaintexts per client (Figure 2a).

It gives a different row ofM to each client in every group, such

that all ofM’s rows are distributed across the𝑚 clients in each

group, as shown in Figure 3. Each client then executes its share
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(a) On every communication
round, clients write to their
dead drops; they then receive a
row ofM, which they multiply
by the expanded queries from
the setup phase. They send the
product to the server.

(b) The server verifies the
clients’ results. It does it
efficiently using Freivalds’
algorithm and without needing
the secret query decryption
keys. Lastly, the server
responds to the recipient.

Figure 2: Communication round

of the PIR protocol: it multiplies its row ofM by its query matrix,

resulting in a row vector with𝑚 ciphertexts which it returns to the

server.

Since clients in DPIR are untrusted for availability (§3.2), DPIR

must deal with clients returning incorrect results. Its server

efficiently catches such clients, as illustrated in Figure 2b, by

adapting the randomized check from Freivalds’ algorithm (§4).

Crucially, Freivalds’ algorithm verifies complete matrix products,

but each of DPIR’s clients only responds with just one row vector

(the product of its message matrix row and the PIR queries it

handles). The server couldwait for an entire clients’ group, assemble

their results vectors as the rows of a response matrix and then run

Freivalds’ algorithm to check the entire response matrix is correct.

However, waiting for an entire group each time before validating

a single client induces latency. Instead, we exploit that in DPIR’s

job distribution across clients, each client affects a different cell in

the result vector of Freivalds’ randomized check. Thus, it can be

verified independently of other clients as soon as a client responds,

as we detail next.

On-the-fly verification with Freivalds’ algorithm. To

understand how DPIR’s server verifies the response of an individual

client, shown in Algorithm 3, let us observe more closely how the

server would verify a batch of responses from an entire client group

using Freivalds’ algorithm. The server gathers the matrices M
(storing the current round’s messages), Q (the PIR queries handled

by a clients group in the current epoch), and the result matrix R
(that holds the claimed productM × Q) where the response from
each client in the group is a row. Then, the server chooses an𝑚-long

challenge column vector
#»𝑐 of scalars uniformly at random.

If any of the clients in the group has returned an invalid response,

then the server finds thatM × (Q × #»𝑐 ) − R × #»𝑐 = #»𝑟 ≠
#»
0 . So,

#»𝑟

has at least one index, call it 𝑖 , where #»𝑟 [𝑖] ≠ 0. Crucially, the only

client in the group that contributed to
#»𝑟 [𝑖] was the one handling

the 𝑖th row ofM. The server, therefore, learns that this client is

faulty. Moreover, computing 𝑟𝑖 only depends onM,Q, #»𝑐 and client

𝑖’s individual response (the 𝑖th row of R), see line 7 in Algorithm 3.

Figure 3: Client-side work. Each client holds a row of the
message matrixM such that the orange and green groups
have all the rows across all their clients. Each client also
receives their group’s queries (in compressed form). In each
communication round, it multiplies the message matrix row
it receives by the expanded queries.

Algorithm 3 Verification of a single client’s computation. The

server caches the computation of vector
#»𝑞𝑐 for the entire

epoch (marked in blue) and computes the scalar mqc in every

communication round without waiting for the client’s response

(marked in violet). When the server reads the response, it multiplies

it by the challenge vector
#»𝑐 and compares against the precomputed

mqc (in black).

1: function Verify_Client(M, Q, client)
⊲ Compute

#»𝑞𝑐 once and cache for the entire epoch.

2:
#»𝑐 ← random scalar challenge vector of length𝑚

3:
#»𝑞𝑐 ← 𝑄 × #»𝑐

⊲ Don’t wait for client’s response to compute mqc.
4:

#»𝑚 ← the row of client.id from matrixM
5: mqc← #»𝑚 · #»𝑞𝑐𝑇

⊲ Compute the right side when the client responds.

6:
#»r ← client.read_response()

7: return mqc = #»𝑟 · #»𝑐

8: end function

Therefore, the server can validate 𝑖’s response right after receiving

it, without waiting for responses from other clients.

Cached verification step. DPIR’s server verifies responses from

many clients in the same group, this allows caching part of the

computation in the verification process. Specifically, the server

chooses the challenge vector once per epoch and then computes

for each group of clients handling the same𝑚 ×𝑚 query matrix

Q, the matrix-challenge product vector
#»qc← Q × #»𝑐 . Queries are

fixed for the entire epoch, so the server can reuse this computation.

Furthermore, the server need not wait for client 𝑖’s response to

compute the left side of the equation in line 7 of Algorithm 3. Since

the message matrix,M, is known at the beginning of the round,

the server can compute the product of row 𝑖 inM and the vector

#»𝑞𝑐 immediately after distributing client 𝑖’s job.
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5.2.1 Faulty clients & incentivizing correct work The server removes

clients that returned invalid responses for the rest of the epoch. It

also notifies the clients handling PIR queries from faulty clients to

discard them, so they save processing time in future communication

rounds. By disconnecting faulty clients and blocking them until the

end of the following epoch, DPIR creates an incentive for correct
work: to communicate through DPIR, clients must continuously

provide correct outputs. Deployments of DPIR may include

additional penalties such as withholding subscription fees.

DPIR still needs to process the faulty clients’ jobs. If the

number of faults is small the server processes their jobs. Through

benchmarks, we find that processing up to 75𝑚 of faulty clients’ jobs

gives comparable overhead to running the verification algorithm

plus the second PIR-query processing that the server already does

(see §4.1). Setting 75𝑚 as a maximal threshold for a server-based

recovery, therefore, would not dominate the server’s processing

time. Otherwise, if there are many faulty clients (e.g., > 75𝑚),

the server redistributes their work across other clients. It does so

efficiently as follows: DPIR takes advantage of clients that have the

same message matrix row as the faulty client (there is one such

client in every group). The server distributes the PIR queries (in

compressed form) that the faulty client was supposed to handle

evenly across those clients, to share its job’s load across many

clients. DPIR’s hybrid between server/clients-based recovery avoids

frequent redistribution in case a few clients fail each time.

Cache update. One detail about work redistribution is that the

cached vector
#»qc that the server keeps must be updated for the

clients that receive new work: for each new PIR query a client

receives, the server chooses a random scalar that extends the

challenge vector. It multiplies the 𝑖th element in the new query

vector by that scalar and adds to the 𝑖th element in the vector
#»qc

for that client.

5.2.2 Responding to users When the server has all-correct results

for the clients’ jobs, it can respond to the PIR queries. The response

to a particular client, say the client sending the 𝑖th PIR query,

comprises the 𝑖th ciphertext from each client in the group handling

that query. The server assembles the response vector and then

applies the recursive PIR optimization (see §4) to obtain a single

ciphertext containing the recipient’s message. As explained in the

background, this step requires only light computation relative to

the rest of the PIR protocol, so the server does it directly and returns

the resulting ciphertext to the recipient’s client.

The client decrypts this response using the secret BGV key it

chose for the query and extracts the message from the plaintext

polynomial. It uses the shared secret with the sender to check the

authentication code (so that a rogue server cannot provide invalid

messages) and decrypts the message’s end-to-end encryption to

display its text to the recipient.

5.3 Stragglers
Some of the clients can be slow to compute, have poor connectivity,

or experience temporal load or bad network conditions. All these

scenarios may cause those clients to respond slower than others.

Since the server knows the workload assigned to each client (the

message matrix size and the number of PIR queries the client should

process), it can set a deadline that it expects the clients to meet.

DPIR handles clients exceeding their deadline as clients

returning invalid responses (above). The server removes them and

redistributes their jobs. This way, stragglers do not stall following

communication rounds. They can rejoin in the following epochs

to continue communicating over DPIR (e.g., after upgrading their

hardware or connectivity to avoid being classified as stragglers

again).

5.3.1 Client proxies Users may want to run clients on mobile

devices, with unreliable network connections or limited batteries,

that cannot handle DPIR’s continuous work demands. Such users

can designate a proxy to perform the computational work on the

client’s behalf. This delegation of tasks can be assigned to a desktop

computer.

To support delegation, the client receives from the server a

random access token at the beginning of the epoch (§5.1). This token

allows the server to link the client to the work its proxy performs.

The client gives the token to the proxy, which then connects and

uses this token to request work instead of the client. In this setup,

the user trusts its proxy; if her proxy turns out to be malicious, the

server will block her messages (§5.2.1). Work delegation, however,

does not impact DPIR’s privacy or availability guarantees to other

users. Intuitively, this is because the proxy views the same data as

the client, which is already untrusted for privacy/availability. Our

analysis in §7 captures this intuition.

5.4 Multi-server deployments
Since the server-side computations for each client group are

independent, DPIR naturally benefits from multiple servers. In

such a deployment, all servers hold a copy of the message matrix

(synced every communication round across the servers, similar to

previous systems that relied on compute cluster [1, 5]). Each server

then handles a small portion of the PIR queries using a portion of

the clients.

We show through evaluation that by outsourcing the bulk of

work to clients, DPIR allows each server to support more clients

compared to prior work (§9), which translates to a system that is

more feasible to deploy in practice.

6 Dialing mechanism
DPIR, like many metadata-private communication systems

(including the PIR-based designs, Pung and Addra), relies on

an orthogonal dialing mechanism to coordinate communication

between users. More precisely, when a server starts an epoch,

it assigns each user a dead drop and arranges these dead drops

into a matrix. Users chatting with each other need to learn each

other’s dead drop locations in the server’s matrix. DPIR leverages

keyword PIR to perform this coordination [10]. The keyword PIR-

based dialing isn’t new (see [5] for example). It matches DPIR’s

assumptions about the adversary and its privacy goal. However,

it introduces a performance overhead, which we discuss here and

evaluate in §9. We next overview the dialing technique.

The dialing protocol has two steps, “request” and “accept.” At

the beginning of an epoch, each user requests to connect with one

other user. Alice requests to connect with Bob using a secret they
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share, 𝑠𝑘 . To do this, Alice derives an epoch-specific identifier 𝑖𝑑 =

𝑃𝑅𝐹𝑠𝑘 (Alice → Bob, “𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ′′, epoch#) and sends it to the server.

If Alice does not request to connect with anyone, she just sends

a random identifier (to hide this fact from the server). The server

creates a binary search tree, where keys are the pseudorandom

request identifiers users send, and the values are their dead drop

locations.

Bob also derives this identifier using 𝑠𝑘 , which Alice would use

to connect with him. He then uses PIR to check whether Alice

requested to connect with him as follows (following the keyword

PIR protocol from [10]). He does this with binary search by treating

the nodes in each layer of the server’s binary search tree as an array,

and issues a PIR query that retrieves the next node he checks in the

search. If that node is keyed by an identifier larger than 𝑖𝑑 then in

the PIR query for the following layer he retrieves the left child and

otherwise the right child. The process continues until the last layer,

and Bob learns that Alice requested to connect with him if there

is a node keyed by 𝑖𝑑 . At this point, Bob knows Alice’s dead drop

location and can read from it in DPIR’s communication rounds.

DPIR processes the PIR requests using distributed PIR. The server

outsources PIR query processing to the clients and validates their

outputs (as in §5); here the database consists of the nodes in each

layer of the tree rather thanmessages users exchange. The keyword-

PIR-based mechanism for a dialing request (above), requires log(𝑛)
queries, but each query only requires processing a subset of the

database (the nodes in the corresponding layer of the tree). The

overall cost is identical to that of processing a regular PIR query

(i.e., linear in the size of the database). Bob can run this procedure

for a fixed number of friends. We envision users running this test

for, say, 10 – 20 friends an epoch, which is as costly as 10 – 20

communication rounds. The span of an epoch amortizes the cost of

dialing over multiple communication rounds.

In the second step of dialing, Bob accepts one friend’s request,

e.g., Alice, by deriving the following identifier and sending it to

the server, 𝑖𝑑 = 𝑃𝑅𝐹𝑠𝑘 (Bob → Alice, “𝑎𝑐𝑐𝑒𝑝𝑡 ′′, epoch#). This step
works the same way as the previous one: the server creates a binary

search tree mapping the identifiers it receives to the sender’s dead

drop location. Alice knows to look for Bob’s identifier since she

requested to connect with him, so this step invokes the keyword-PIR

protocol only once (cf. to the first step). If she finds this identifier,

then she knows that Bob accepted her request to connect and learns

his dead drop’s location in the message matrix. They can both read

from each other’s dead drops during the epoch.

6.1 Alternative dialing mechanisms
There are alternative proposals for metadata-private coordination

between users interested in communicating. Current proposals for

dialing include broadcast communication between clients (where

clients announce dialing requests, encrypted with the public key

of their intended partner), private signaling [36], Alpenhorn [32]

and fuzzy message detection [7]. These solutions have drawbacks,

either in performance or trust assumptions. Fortunately, since DPIR

utilizes the dialing mechanism as a black box, it would enjoy any

future improvements to metadata-private dialing protocols. This

is an active research area with promising directions. For example,

the recent work on oblivious message detection [34] proposes a

protocol where users query an untrusted server storing encrypted

dialing requests; however, deploying this protocol may still not

be practical. (It relies on homomorphically re-encrypting every

user query for each dialing request the server stores, which is an

expensive procedure, that has to be repeated many times.)

7 Analysis
We show that DPIR meets its privacy, availability, and scalability

goals from §3.2.

7.1 Privacy
In DPIR, clients submit fixed-size messages at every round to hide

the communication’s size and time. Its server distributes the work in

the PIR protocol to hide which message each user reads. Intuitively,

since DPIR’s server is the one distributing the workload to the

clients, the attacker’s “view” about an honest client’s query is

limited to that of a rogue server’s view (the network message

transcript, corrupt parties’ memory snapshots, etc.). This implies

that DPIR hides which users communicate since PIR leaves the

server oblivious to what the honest client queries.

Formally, DPIR achieves Pfitzmann and Hansen’s relationship

unobservability property [38]. To prove it, we define an

indistinguishability game and use a simulation-based proof to show

that security holds. The simulation captures all information that an

attacker may view or corrupt from controlling servers and clients,

such as which user writes where, work delegation to clients, and

verification of correct work. The following theorem formalizes

DPIR’s privacy guarantee, due to space limitations we defer the full

formal proof to Appendix B.

Theorem 1. DPIR provides relationship unobservability. Given

a security parameter 𝜆, for any PPT adversary 𝐴 there exists a

negligible function 𝜖 such that𝐴 cannot distinguishwith probability

≥ 1

2
+ 𝜖 (𝜆) between two scenarios 𝜎1 and 𝜎2, where each scenario

describes which pairs of users communicate through DPIR.

Proof. Given in Appendix B. □

7.2 Availability
DPIR should respond correctly to queries when its server (or

servers, §5.4) is honest, even if clients (or their proxies) are corrupt.

There are two ways a misbehaving client can attack availability: (1)

it could avoid returning any response to the server (or respond late

to delay communication); (2) it may return an invalid response. To

solve the former option, the server imposes a deadline for clients to

complete their jobs (§5.3). We thus focus the analysis on the latter

option; we show that the server detects clients returning wrong

results and, therefore, retrofits availability by computing their work

itself or redistributing it across the remaining clients (§5.2.1).]

7.2.1 Detecting invalid client response The server verifies any result

that the client returns using the randomized check from Freivalds’

algorithm. The chance of error depends on the probability that

this check does not catch a cheating client, which diminishes

exponentially with the bit-length of the scalars in the challenge

vector
#»𝑐 , see analysis in [19] (we set this parameter to ensure very

low chance of error, in §8).
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Typically, Freivalds’ algorithm verifies the product of plaintext

matrices. However, realizing this algorithm in DPIR’s setting

involves verifying the product of a plaintext matrix (M) and the

PIR-query matrix (Q in Algorithm 3), which holds BGV ciphertexts

encrypted under different public keys (from different clients). And,

although the server does not hold the clients’ decryption keys, it

needs to detect whether the equalityM×(Q× #»𝑐 )−R× #»𝑐 =
#»
0 holds

for the results from the clients (R) and a random challenge vector

#»𝑐 (see §4). This equation holds if and only if the × operations are

associative. The following theorem shows that × associates when

multiplying matrices of BGV ciphertexts and plaintexts.

Theorem 2. Let𝑀 be a matrix consisting of BGV plaintexts, 𝑄 be

a matrix consisting of BGV ciphertexts (encrypted under different

keys), and
#»𝑐 be a random vector of 𝑑-bit integers. Then (𝑀 ×

𝑄) × #»𝑐 = 𝑀 × (𝑄 × #»𝑐 ). For a ciphertext matrix, 𝑅 ≠ 𝑀 × 𝑄 ,
𝑅 × #»𝑐 ≠ 𝑀 × (𝑄 × #»𝑐 ) with probability ≥ 1 − 2−𝑑 .

Proof. We start by observing that to compute all matrix-matrix

or matrix-vector products in Freivalds’ algorithm’s test above, there

are only two types of BGV arithmetic operations involved: adding

two ciphertexts and multiplying a plaintext with a ciphertext.

Let us take a closer look at how these operations are defined

for BGV, given in Listing 1. In BGV, a ciphertext is a tuple of

polynomials in the quotient ring 𝑅𝑞 , and a plaintext is a polynomial

in 𝑅𝑡 ⊂ 𝑅𝑞 . The evaluation of Freivalds’ randomized check treats

plaintext polynomials as members of 𝑅𝑞 for polynomial addition

and multiplication. Therefore, it is sufficient to show that both

these operations are associative to conclude that the computation

on matrices and vectors is associative.

1 def BGV_Ciphertext_Add(ctx1 , ctx2):

2 result1 = ctx1 [0] + ctx2 [0] # poly add in 𝑅𝑞
3 result2 = ctx1 [1] + ctx2 [1]

4 return BGVCiphertext ([result1 , result2 ])

5

6 def BGV_Plaintext_Mult(ptx , ctx):

7 result1 = ptx × ctx[0] # poly mult in 𝑅𝑞
8 result2 = ptx × ctx[1]

9 return BGVCiphertext ([result1 , result2 ])

10

Listing 1:
Pseudocode for BGV plaintext-ciphertext multiplication and
ciphertext-ciphertext addition with a degree one ciphertext
(the type of ciphertexts DPIR’s clients compute on, which
comprises a tuple of two polynomials in 𝑅𝑞).

We observe that each of the two operations results in a ciphertext

comprising two polynomials, and that computing one polynomial

is independent of computing the other. Thus, the randomized

check can be viewed as two independent calculations of Freivalds’

algorithm on matrices in 𝑅𝑞 : one where instead of each ciphertext

matrix (𝑅,𝑄) we compute on matrices 𝑅0, 𝑄0 that contain only the

first polynomial in each ciphertext’s tuple, and the second where

we compute the test using matrices 𝑅1, 𝑄1 which contain only the

second element in each ciphertext tuple.

Furthermore, the operations on individual polynomials in 𝑅𝑞
(lines 2,3,7,8 in Listing 1) are associative (a property of quotient

rings). Thus, Freivalds’ algorithm can run independently to check

whether 𝑀 × 𝑄0 = 𝑅0 and 𝑀 × 𝑄1 = 𝑅1. If 𝑀 × 𝑄 = 𝑅 then both

equalities hold. Otherwise, then either𝑀 ×𝑄0 ≠ 𝑅0 or𝑀 ×𝑄1 ≠ 𝑅1

and Freivalds’ test catches that with probability ≥ 1 − 2−𝑑 . □

7.2.2 Reusing the challenge vector DPIR reuses the challenge vector

in the rounds comprising an epoch to reduce calculations. Reusing

the challenge vector slightly reduces the chance of identifying

a rogue client that responds incorrectly. The following theorem

analyzes this degradation, showing that DPIR guarantees the

availability promise albeit requires slightly larger space for its

challenge vector than if the vector was fresh each time (i.e.,

requiring a higher parameter 𝑑).

Theorem 3. In respect to 2, let there be

√
𝑛 disjoint groups of

clients and let each such group reuse the same challenge vector 𝑣𝑣𝑐

consisting of𝑑-bit uniformly random integers. Then, the probability

of the adversary corrupting a query and not being caught is upper-

bounded by
𝑛

2
𝑑−
√
𝑛
.

Proof. We prove this theorem by inspecting what information

the adversary gains while interacting with the server’s verification

protocol §5.2. We begin by inspecting the interaction between a

server and a single group of clients 𝐺 of size

√
𝑛. 𝐺 is designated

for work 𝑤 = {M,Q}, whereM is the message matrix, and Q =

{ #»𝑞0,
#»𝑞1, . . . ,

#    »𝑞 |𝐺 | } is a set of queries that the group handles, such

that the size Q matches the number of rows inM.

The server generates a random vector
#»𝑐 ∈𝑅 [0, 2𝑑 − 1]

√
𝑛
. Then

it distributes the work𝑤 across the clients in 𝐺 , and expects each

client 𝑐𝑖 ∈ 𝐺 to send a response
#»𝑟𝑖 = M[𝑖] · Q. The server then

validates that
#»𝑟𝑖 · #»𝑐 =M[𝑖] · (Q · #»𝑐 ). If the equality check does

not pass, the server considers 𝑐𝑖 corrupt and removes it from𝐺 (i.e.,

𝐺 = 𝐺/𝑐𝑖 ). The server continues to engage with 𝐺 as long as it is

not empty (§5.2).

Now that we have established the interactions between the server

and the group, let us discuss what information the adversary can

gain in every round by sending corrupted responses.

If the adversary does not corrupt anything and behaves according

to the protocol, the check always passes (regardless of the value

of
#»𝑐 ). Thus, the adversary can learn nothing about the challenge

vector
#»𝑐 and its entries. Hence, we assume the adversary corrupts at

least one response, say
#»𝑟0 is the first response the attacker corrupts.

If the client corrupts a single entry in
#»𝑟0 [𝑘], it observes whether

its client was removed from 𝐺 and learn some information about

#»𝑐 , namely, what number is not occupying
#»𝑐 [𝑘] (i.e., in #»𝑟𝑖 · #»𝑐 =

M[𝑖] · (Q · #»𝑐 ). Each entry of
#»𝑐 is affected by a single entry in

#»𝑟𝑖 ),

therefore, by corrupting more than a single entry in 𝑟0, say ℓ entries,

the adversary learns that at least one of (2𝑑 )ℓ possible options is
incorrect but not which one; hence this strategy is inferior (from

the attacker’s perspective) to corrupting just one entry in
#»𝑟0 .

We thus analyze the probability that an adversary, which uses

its clients to return responses with one invalid entry, can avoid

detection with at least one of the clients in the group (at most√
𝑛). Considering we have discussed how the adversary gains

information during the duration of an epoch, using atmost |𝐺 | =
√
𝑛

clients, we can formulate its probability of being able to return one

corrupt response without detection as

∑√𝑛
𝑖=0

1

2
𝑑−𝑖 ≤

√
𝑛

2
𝑑−
√
𝑛
.

Since the server allocates each group an independent challenge

vector, we can use the union bound to upper-bound the chance
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one of the attacker’s clients remains undetected after returning

an invalid response across all

√
𝑛 client groups,

√
𝑛 ×

√
𝑛

2
𝑑−
√
𝑛

=

𝑛

2
𝑑−
√
𝑛
. □

7.3 Scalability
We analyze the asymptotic computation and network cost for the

server and 𝑛 clients. We assume that in a steady state, all clients

send and receive messages and provide correct responses to their

jobs (since rogue clients get booted as soon as they cheat, §7.2).

Theorem 4. Given 𝑛 clients reading and writing messages,

the computation cost is 𝑂 (𝑛
√
𝑛) for DPIR’s server and 𝑂 (𝑛)

for the client per epoch setup and communication round. The

communication cost is 𝑂 (𝑛
√
𝑛) for the server and 𝑂 (

√
𝑛) for the

client per epoch setup and communication round.

Proof. We review the steps in DPIR’s operation to evaluate its

asymptotic computation and communication costs on the server

and client.

Server computation. At epoch setup (§5.1), the server expands

the PIR queries that it receives from each client into 𝑂 (
√
𝑛)-

long ciphertext vectors. There are 𝑛 clients and the cost of every

expansion is linear in the length of the expanded vector (see [4]).

Thus, the cost of expansion is 𝑂 (𝑛
√
𝑛) per epoch.

In every communication round (§5.2), the server receives from

each client an 𝑂 (
√
𝑛)-long result vector and checks its work

using Algorithm 3. The cost of validation is linear in the number of

elements in the result, i.e., 𝑂 (
√
𝑛) per client and 𝑂 (𝑛

√
𝑛) overall.

In the last step before returning the result to the recipient (§5.2.2),

the server multiplies the client’s second query vector by the𝑂 (
√
𝑛)-

long result vector from processing the first PIR query. This takes

𝑂 (
√
𝑛) BGV operations per client, and 𝑂 (𝑛

√
𝑛) across all clients.

Thus, the total computation cost for the server is 𝑂 (𝑛
√
𝑛).

Client computation. Each client receives 𝑂 (
√
𝑛) compressed

queries per epoch (§5.1). It expands every query into 𝑂 (
√
𝑛)-long

vectors, so the total work at the beginning of each epoch is 𝑂 (𝑛)
per client.

On every communication round, the client multiplies its row

of the message matrix by the 𝑂 (
√
𝑛) query vectors it has (also

described in §5.2). The row and each query vector’s size is 𝑂 (
√
𝑛),

so multiplying one pair of vectors costs 𝑂 (
√
𝑛) and the total cost

for the client is 𝑂 (𝑛) per round.
Server and client communication costs. The server sends each

client 𝑂 (
√
𝑛) compressed queries at the start of each epoch (§5.1).

So the total cost across 𝑛 clients is 𝑂 (𝑛
√
𝑛).

The server also sends each client a row of the message matrix on

each round (§5.2), which is of size𝑂 (
√
𝑛). It receives back an𝑂 (

√
𝑛)

vector, the product of multiplying the client’s row vector by each of

the expanded query vectors. In total, the server sends and receives

𝑂 (𝑛
√
𝑛) communication per round across all 𝑛 clients. Each client

uses 𝑂 (
√
𝑛) communication. □

8 Implementation
We implemented DPIR in 3 445 lines of C++ code, on top of a state-

of-the-art PIR query compression and expansion algorithm from

SealPIR [4]. We have made our prototype publicly available [44].

Our implementation uses the BGV implementation fromMicrosoft’s

SEAL library [42], and we elaborate on how we use SEAL in

Appendix C.

8.1 System parameters
Epoch length. The epoch length in DPIR represents a trade-

off: it amortizes the cost of query expansion (§5.1.1) over multiple

communication rounds, at the expense of allowing users to switch

the friend they communicate with only on the epoch boundary. To

determine a good epoch length, we compare the epoch’s setup time

against the communication round time. Our experiments (§9) show

that an epoch length of a few minutes (e.g., 5 minutes) would dwarf

the epoch’s setup time relative to the time spent in communication

rounds. We believe it provides a good trade-off point that balances

performance with usability.

BGV parameters. We use the default 128-bit security parameters

for BGV with polynomial degree 𝑁 = 2
12

from the SEAL library. In

this setting, DPIR uses a 109-bit ciphertext coefficient modulus 𝑞

and a 20-bit plaintext coefficient modulus 𝑡 [pp. 26][3]. Further

parameter optimization can trade support for larger message

matrices (which induce more homomorphic operations) for lower

communication and computation costs. The parameters we chose

work for matrices of up to 33M messages, allowing support for a

large user base.

Challenge vector. Freivalds’ algorithm identifies an incorrect

matrix product with a probability ≥ 1 − 2
−𝑑

, where 𝑑 is the bit-

length of each element in its challenge vector (see Algorithm 3). In

DPIR, where we reuse the same challenge vector throughout an

epoch, the probability for corruption to occur is higher (see §7.2). To

ensure our availability goals, we implemented a scalar-ciphertext

multiplication method that supports 60-bit scalars relying on

SEAL’s internal methods, since SEAL doesn’t provide this specific

method. This allowed our verification to use challenge vectors

comprised of 𝑑 = 60-bit integer elements.

When the server runs Freivalds’ verification (Algorithm 3),

which multiplies ciphertexts by the challenge vector’s scalars,

calculations are performed between polynomials in a quotient

ring 𝑅𝑞 = Z𝑞 [𝑥]/(𝑥𝑁 + 1) and scalars from 𝑍𝑞 (see §4). Thus,

with 2
20

clients, and 60-bit entries in the challenge vector, DPIR

guarantees its availability goal with 1 − 9.09
10

12
probability per epoch

(see Theorem 3).

Message size. We target supporting text messaging with DPIR.

Thus, we set the size of messages users exchange to 256B in

our implementation (comparable to SMS message size). With

the cryptographic parameters above, each BGV plaintext in the

message matrix can pack about 10KB of data, i.e., 39 user messages

(see discussion in §5.1.1). E.g., to support clients exchanging 2
18

messages each round, the server will hold a matrix of 82 × 82 BGV
plaintexts.

9 Evaluation
We evaluate DPIR using our prototype implementation, deployed on

15 nodes on our university’s compute cloud, with AMD EPYC 7662

2.00GHz CPUs. Testing DPIR with several servers and a large client
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Figure 4: Epoch setup time as a function of the number of
clients that DPIR’s server handles.

base requires more machines than our university cloud has. Thus,

to evaluate how DPIR would perform in large deployments, we

evaluate a scenario in which each server holds the entire message

matrix but handles a subset of the clients and their associated PIR

queries. This form of evaluation represents a DPIR deployment well

because the system is highly parallelizable: each server can hold a

copy of the message matrix and independently serve a disjoint set

of querying clients (see §5.4).

Our evaluation setup consists of one server machine and up to

504 clients spread across 14 machines. We use SLURM to allocate

resources to the server and client processes: we deploy the server

on a 12-core node with 128GB of RAM. We assume clients operate

on less powerful machines, so we allocate 1 core per client and 8GB

of RAM. Nodes are connected via 100Gpbs Ethernet, and we use

Linux’s tc command to control the nodes’ bandwidth in several

experiments. Each data point in the graphs below is the average of

5 iterations, we use error bars to show the standard deviation.

Our evaluation quantitatively answers the following:

(1) What is the epoch setup time, and how does it scale with the

number of clients?

(2) How does communication latency scale with the number of

clients and client-side network limitations, and how does it

compare with prior work?

(3) What is the effect of a larger message matrix and user base

growth on performance?

(4) How do client faults impact performance?

(5) What are the memory and bandwidth costs from the server and

the clients?

In the experiments below we encode the challenge vector’s

scalars as BGV plaintexts. This encoding method is less efficient

than our current implementation (§8). Specifically, the plaintext

encodes 20-bit integers and gives similar performance to using

SEAL’s scalars directly which DPIR’s implementation currently

uses. In both cases, multiplying an integer by a ciphertext takes

about 0.04ms on average (the new approach is 7% faster), but the

current encoding further diminishes Freivalds’ verification failure

rate (since it uses 60-bit integers in its challenge vector). Therefore,

we expect DPIR to slightly outperform the measurements below.

9.1 Epoch setup time
Figure 4 illustrates the latency of DPIR’s epoch setup time (§5.1) as a

function of the number of clients it handles. This graph excludes the

time for dialing between users, which we next evaluate separately.

Figure 5: Dialing latency using DPIR’s keyword PIR-based
mechanism (§6).

The reason for this distinction is that DPIR uses an orthogonal

dialing mechanism as a black box, and this component may be

easily replaced (see discussion in §3).

The main cost of the setup time stems from expanding the

clients’ PIR queries: the server and clients expand the queries they

receive to column vectors that match the row length of the message

matrix (the more messages there are, the more expensive expansion

becomes).

Dialing. Figure 5 details the latency induced by DPIR’s keyword

PIR-based dialing mechanism (§6). We measure the latency as

a function of the whole user base (x-axis) and the number of

clients our server serves. We assume that each client checks

for connection from one other client, if clients probe for more

connections then the dialing time increases proportionally. We

observe that performance is inversely proportional to the number

of clients each server handles, which illustrates that the dialing

phase is highly parallelizable.

Setup time amortization. The cost of epoch setup amortizes

across all communication rounds in the epoch. We envision DPIR’s

epochs lasting minutes’ worth of communication rounds (say, 10

minutes), to dominate its setup time. DPIR may pipeline setup for

the next epoch and run it while the current epoch is still running

(allowing the users from two epochs ago to participate in the current

epoch, rather than the previous one which hasn’t ended).

9.2 Communication latency
Figure 6 measures the average time it takes DPIR to complete a

communication round. Each subfigure fixes the number of messages

in the system. The cost of processing each PIR query increases

with the number of messages so we expect DPIR to increasingly

outperform non-distributed PIR-based systems as it grows. We test

DPIR with 2
16

– 2
20

messages to measure how communication

round latency (the y-axis) scales with the number of messages

users exchange in that round. On the x-axis, we vary the server’s

workload: the more clients a server handles, the fewer servers

the system needs to support the user base and the more tangible

its deployment becomes. We compare with alternative state-of-

the-art designs, Pung [4] and Addra [1]. Pung and Addra use

SealPIR and FastPIR respectively, which run computations only

on the server. They are built using Microsoft’s SEAL library for

native BGV implementation as DPIR, and we deploy them using

the same BGV parameters (§8.1). This gives an apples-to-apples

comparison since our evaluation assumes an already existing
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(a) 216 messages (b) 218 messages (c) 220 messages

Figure 6: Communication round latency in each system for different numbers of messages. Increasing the number of messages
translates to larger anonymity sets and heavier workloads.

database of messages and since the PIR engine is the core of those

systems, representing the primary CPU and bandwidth consumer.

Our measurements omit the cost of clients sending PIR queries and

receiving the response, which is small for DPIR; Pung has the same

cost for sending/receiving queries/responses, but it is much more

expensive in Addra (see below). The comparison with Pung is also

a comparison against a centralized baseline since the Pung server

performs all the PIR computations that the DPIR server outsources.

In all designs, the communication latency grows linearly with

the number of clients a server handles. However, comparing the

latency across the three subfigures shows that DPIR scales much

better with the number of messages in the system, allowing for

a larger user base and anonymity sets. This is due to the DPIR’s

scalability improvement: the PIR cost increases for all systems with

the number of messages, but it increases slower for DPIR since it

utilizes clients to alleviate the bottleneck at the server.

Asymptotic latency improvement, in practice. To further

illustrate the asymptotic scalability improvement over prior work,

Figure 7 compares the communication round latency while varying

the number of messages on the server. In this experiment, we grow

the number of clients a server handles proportionally to the number

of messages (the x-axis). This captures a real-world deployment

where, when the server handles more clients submitting PIR queries

(more recipients), it also handles a larger message matrix (since

more clients are sending messages too). We observe that as the

client load increases, the ratio between the other systems’ latencies

and DPIR’s latency grows: from 1.81× and 1.24× (for Pung and

Addra, respectively) with 2
19

messages to 4.31× and 3.25× with 2
21

messages. This increase captures DPIR’s asymptotic improvement.

Furthermore, we monitored the clients’ computation time to

check whether the client-side overhead was practical. The dashed

line at the bottom of Figure 7 shows the slight increase in work

that each client performs with DPIR’s message volume, illustrating

that clients would perform a few seconds’ worth of computation

on a single core per round even when the system handles many

messages. That is, trading a few seconds of client computation for

reducing tens, or even hundreds, of seconds in communication

latency (compared with [1, 5]) is a good trade-off.

Clients with limited bandwidth. We next test how client-side

network bandwidth constraints impact DPIR’s performance. Using

Linux’s tc command, we limit the bandwidth for the clients and

Figure 7: Latency increases with the number of messages in
the system and proportional growth in the number of clients.

Figure 8: Bandwidth-limited clients

measure the impact on the communication round’s latency in

Figure 8 (we impose the same limit for upload and download). In

this experiment, we set the number of messages in DPIR to 2
16

or 2
20

and have its server handle 164 clients so we can compare

the results with data-points from Figure 6a and Figure 6c (given

the number of messages, the client’s communication costs are

the same even if each server handles more clients). We observe

that with a 10mbps limit, the communication round latency is

higher than the latency we observed in Figure 6 without the

bandwidth constraint. Notably, this latency is still better than Pung

and comparable to Addra unconstrained; see Figure 6c. DPIR’s

communication latency decreases as we raise this limit and at about

40mbps, it converges to what we saw earlier, with unconstrained

clients in Figure 6, suggesting that at this point network costs no

longer significantly impact performance. In many countries, e.g.,

in the US, the average home internet connection speed satisfies a

10 - 40mbps requirement [35].
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Figure 9: Relative and absolute additional work per client
given a client fault rate. Simulation with 1M clients.

9.3 Client faults
When a client returns an incorrect result or becomes unresponsive,

DPIR removes that client and its query, reducing both the workforce

and the workload (§5.2.1). These opposing effects keep the average
workload of processing PIR queries constant for the remaining

clients. However, DPIR’s PIR processing will be bottlenecked by

the busiest client. Figure 9 uses a simulation to plot the maximal

relative and absolute overhead work (extra PIR queries to handle

after discarding queries from faulty clients) that a healthy client

needs to perform, as a function of the client fault rate. We observe

that even under a high fault rate, the maximal overhead remains

under 25%. Thus, after redistributing the faulty clients’ work, DPIR’s

communication rounds should not incur substantial additional

latency.

Work redistribution costs. Redistributing a faulty client’s work

involves a one-time cost when a client fails. This procedure includes

the server updating the cached validation step for the clients that

handle new queries, transmitting these queries in compressed form

to those clients, and having them expand those queries (§5.1).

The dominating cost is query expansion, which takes 28.28ms –

122.18ms per query when DPIR has 2
16

– 2
20

messages. With a

10% fault rate, the busiest client receives about 20 additional PIR

queries. The overhead is small since the work of the faulty 10% is

divided across the remaining 90%, leading to a latency of 600ms –

2.5s before the busiest client starts processing the new workload

(for 2
16

– 2
20

messages). This cost increases to about 100 queries

and 2.8s – 12.2s when 50% of clients fail. Beyond the 50% fault rate,

we find that performing epoch setup again and distributing queries

from scratch is cheaper (see Figure 4).

9.4 Communication and memory costs
To evaluate the cost of operating DPIR, we inspected the client and

server’s bandwidth cost and peak memory usage while running

the experiments above. As mentioned in §3, the client may use/pay

a proxy to perform its part in processing DPIR’s PIR queries (to

simplify support for relatively weak devices such as mobiles). The

system supports such delegation and it does not break DPIR’s

guarantees (our analysis in §7 captures this scenario).

Communication. In our experiments, each client sends to the

server 2MB (for 2
16
messages in the system) – 8MB (for 2

20
messages

in the system). The client also receives 420KB – 1640KB (for the

same 2
16

– 2
20

messages in the system). The server-side costs are

symmetric and aggregate across the clients the server handles (the

server sends/receives this data). Though the network costs per client

are high relative to the size of messages they exchange, they are

on par with recent PIR-based communication systems like Pung’s

original XPIR engine [5].

Memory. We also monitored the client and server’s memory

usage through an epoch. While running the experiment from

Figure 6 we polled Linux’s top command every 500ms. With 2
16

messages in the system, we find that the peak client memory usage

is 540MB and that the server uses about 35MB of memory per

client. With 2
20

messages, the peak client memory usage grows to

3.6GB, and the server uses 58MB per client. The dominating factor

in memory usage, both for the clients and the server, is keeping

PIR queries in decompressed form during the epoch.

10 Limitations
DPIR illustrates an advancement in reducing communication-round

latency, but it is essential to outline the expenses for its clients.

As the user base grows (and the anonymity pool increases with

it), so do the clients’ bandwidth, CPU, and memory requirements.

In the following paragraphs, we expand on each resource to

thoroughly discuss the costs associated with our system and

propose mitigations to alleviate these requirements.

Bandwidth. DPIR requires more bandwidth than SealPIR (and

less than Addra, for a sufficiently large user base) since clients need

to receive their workloads and return a response to the server. In

absolute terms, for a user base of 1M exchanging 256B messages,

DPIR’s client bandwidth usage is about 8MB per round. However,

this allows DPIR to considerably reduce the server’s computational

costs.

We argue that this trade-off between server communication and

computation addresses the performance bottleneck in many PIR

systems. This bottleneck is demonstrated by prior work SealPIR

and Addra, which use considerably less bandwidth than XPIR yet

their communication round latency remains relatively close to it

(see [4, Figure 10], [1, Figure 6]).

CPU. In DPIR, clients participate in processing queries every

round. In addition, once every epoch, all clients have to expand

the compressed queries they receive from the server. Although

these computational tasks are generally brief compared to the

communication-round time (see Figure 7), they represent additional

client-side costs over prior work.

Memory. Clients are required to store numerous expanded

queries during an epoch. These queries have a large footprint, for

instance, with 1M clients in the system, each client stores around

3.8GB of expanded queries.

10.1 Mitigation
Devices that cannot spare the extra compute cycles or may

occasionally disconnect from the network, such as mobile devices,

might need additional mitigations to participate as clients in a DPIR

deployment. We expand on possible strategies in this subsection.

Work delegation Users may delegate their clients’ work to other

machines, e.g., a desktop computer or a service provider that would

process their work for a fee. The delegate would perform the
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client’s work and return its result to the server. Entrusting the

work to someone else minimizes the client’s resource usage (i.e.,

similar to systems like Addra and Pung). Such delegation does not

impact DPIR’s privacy guarantee (the analysis in §7.1 captures this

scenario).

Heterogeneous clients An alternative for supporting weak

clients without work delegation is to adapt DPIR to assign work

proportionally to a client’s capabilities. DPIR could further adapt its

incentive mechanism to allow clients to send and receive messages

at a rate proportional to their contribution.

Making heterogeneous work assignments can be done by

splitting each row of the server’s message matrix into even chunks,

and assigning fewer chunks to weaker clients. The server can then

treat each column of chunks as a small matrix and perform our

verification protocol on these chunks instead of on the entire matrix.

Assigning work in this fashion ensures the server can still catch

malicious clients on the fly (Algorithm 3) using Freivalds’ algorithm.

For example, if the server assigns some client just the first

half of a row of its message matrix, the client can expand the

queries assigned to it to columns as in DPIR’s original design but

discard their bottom half (reducing RAM usage, too). The client

then multiplies half of the message matrix row assigned to it in

every round by the truncated query columns and returns the result

to the server. The total work of verification stays the same, but the

server now has to sum the results of the clients to extract a single

entry per row.

This technique adjusts the work for each client to its capabilities

at the cost of additional bandwidth cost for the server at epoch

setup, since it has to send the compressed queries to more clients.

This also increases the average client cost since more clients have

to expand the same queries.

RAM optimization While storing expanded queries can be

demanding, we notice that clients only need to keep a few of these

queries simultaneously in RAM. Most of the expanded queries are

either waiting to be used in computing the client’s (message-)vector

and (query-)matrix product or have been used already, and are

thus not needed in RAM. A memory-optimized implementation of

DPIR would create a processing pipeline where queries that are not

currently needed are stored on the disk. That is, the client would

hold a buffer of queries in RAM and gradually swap processed

queries to disk while loading the next queries to be processed to its

buffer.

11 Conclusion
DPIR uses a new distributed PIR approach to conceptually

depart from recent proposals for metadata-private communication

systems by having its servers outsource the bulk of cryptographic

computations to the clients. Distributed PIR keeps the clients

oblivious about which users exchange messages. It efficiently

handles the challenge of ensuring availability despite misbehaving

clients by treating PIR as an instance of matrix multiplication and

using the insight that it is much faster to verify than to compute.

We prove DPIR’s privacy and availability properties and analyze

its asymptotic scalability. We use a prototype implementation to

demonstrate its performance and compare scalability against prior

work.
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A Comparison with DC-net based designs
Dissent [12], Dicemix [39], OrgAn [14], are based on DC-nets, a

protocol for broadcasting anonymous messages without trusted

servers (rather than point-to-point communication as in DPIR’s

context). However, DC-nets require all-to-all communication across

the clients and thus scale poorly with the number of users. A

follow-up design [47] addresses the communication overhead but

weakens the attacker model by assuming an honest server in the

system. Furthermore, DC-nets are vulnerable to disruptions by

rogue clients and require complex recovery protocols, typically

requiring all clients to interact through broadcast messages which

creates another challenge to scalability. DPIR handles rogue clients

efficiently using Freivalds’ matrix product validation: the server

checks each client’s output without requiring further interactions

between the server and client or across clients.

B Full security proof
We now discuss the relationship unobservability property (UO) [38]

and then show that this property holds for DPIR’s protocol (Our

proof closely follows the proof technique from Pung[5, Appendix

C]).

UO defines that for any given set of could-be senders 𝑆 and set

of could-be receivers 𝑅, an efficient adversary should not be able to

detect anything sent from set 𝑆 to set 𝑅. To show that DPIR provides

this property, we define a security game that captures this concept.

Intuitively, the security game is defined between a challenger C
and an adversary 𝐴, where the 𝐴 is allowed to define two scenarios

𝜎0, 𝜎1 and present them to C. These scenarios essentially describe

two different worlds, where clients from 𝑆 send messages to clients

in 𝑅. During the game, C chooses one of the scenarios given to it via

a coin flip and simulates the run of the protocol using the chosen

scenario (i.e., to define what messages clients send and what queries

they create). Once the simulation is over, 𝐴 should output which

scenario it believes C used to simulate the run of the protocol. If 𝐴

guesses correctly, it wins. Proving that it can detect the messages

being sent between the two sets 𝑆 and 𝑅.

B.1 Security game for UO
The game consists of a protocol with three phases, setup, simulation,
and guess, played by a challenger C and an adversary 𝐴. We denote

the game as follows

G𝑏
𝐴,𝜋,𝑘,𝑛

(1𝜆) = 𝑏′

where 𝐴 is the adversary, 𝜋 is an abstract protocol that models

communications through and to a messaging service. The protocol

𝜋 adheres to the API that our simulation expects. In the security

game, 𝑘 is the number of communication rounds 𝜋 runs, 𝑛

represents the number of clients registered to the service. 𝜆 is the

security parameter. 𝑏 is the bit representing the coin toss of the

challenger, i.e., which scenario it chooses. The adversary wins this

indistinguishability game if it outputs 𝑏′ = 𝑏.
We next delve into the definition of the setup, simulation and

guess phases, and define the protocol 𝜋 . Using these definitions, we

will move to the proof itself.

B.1.1 Setup phase 𝐴 specifies a set of clients who had initialized

their dead drops but have not initialized any secret yet, and

two scenarios 𝜎0, 𝜎1 of communicating pairs of honest clients

belonging to the set clients. Each scenario exports two methods

which the challenger calls: 𝑐𝑙𝑖𝑒𝑛𝑡 𝑗 ← 𝜎𝑏 [𝑐𝑙𝑖𝑒𝑛𝑡𝑖 ] .𝑔𝑒𝑡𝐹𝑟𝑖𝑒𝑛𝑑 ()
to fetch 𝑐𝑙𝑖𝑒𝑛𝑡 𝑗 the friend client object of 𝑐𝑙𝑖𝑒𝑛𝑡𝑖 , and 𝑚 ←
𝜎𝑏 [𝑐𝑙𝑖𝑒𝑛𝑡𝑖 ] .𝑔𝑒𝑡𝑀𝑒𝑠𝑠𝑎𝑔𝑒 (·) to collect the message for the specified

round (which is ⊥ when the client has nothing to send). The

two scenarios the adversary chooses must adhere to three main

restrictions:

First, both scenarios must be of the same size (i.e., message size

must be the same and the number of clients in these scenarios must

be the same). Otherwise, the adversary can guess 𝑏′ according to
the length of the scenarios, or the length of encryptions.

Second, we assume the adversary’s scenarios describe honest

clients only. The challenger cannot simulate malicious clients

because their behavior is unspecified (In the simulation phase, we

will describe how the adversary can integrate and generate outputs

for malicious clients). Nevertheless, honest clients can still send or

read messages from corrupted clients.

Third, If scenario 𝜎𝑏 details that some honest 𝑐𝑙𝑖𝑒𝑛𝑡𝑖 sends

messages to a compromised 𝑐𝑙𝑖𝑒𝑛𝑡 𝑗 , then 𝜎
1−𝑏

must have the same

transcript for 𝑐𝑙𝑖𝑒𝑛𝑡𝑖 (we don’t enforce such restrictions when both

clients are honest). That is, 𝑐𝑙𝑖𝑒𝑛𝑡𝑖 must send the same messages to

𝑐𝑙𝑖𝑒𝑛𝑡 𝑗 throughout scenario 𝜎
1−𝑏

. This restriction is fair since our

goal of relationship unobservability provides meaningful privacy

only if both the sender and recipient are honest 3.2. Otherwise, the

adversary can always distinguish between the two scenarios, by

decrypting the specific messages 𝑐𝑙𝑖𝑒𝑛𝑡𝑖 sends to 𝑐𝑙𝑖𝑒𝑛𝑡 𝑗 in scenario

𝜎0 which differs from 𝜎1.

Abstract Protocol interface. The abstract protocol 𝜋 contains two

sub-models, server and client, which together have six functions

overall:

(1) init(client): will securely set each client with its secrets. Each

pair of clients receives a shared symmetric secret key and

separately gets a BGV private key of their own.

(2) client.retrieve(client𝑖 , client𝑗 ): outputs a query 𝑞 using

client𝑖 ’s private BGV key and client𝑗 ’s deaddrop index. The

query is generated by

𝑞 = (client𝑖 .𝑖𝑑, 𝑣) = QUERY(client𝑖 .BGVkey, client𝑗 .deaddrop)

, a function defined by a secure PIR scheme.

(3) client.send(client𝑖 ,𝑚): outputs an encrypted message, which

client 𝑖 wishes to write to its deaddrop.

(4) server.distribute_work(clients,queries): receives a set of

queries, 𝑞, generated by client.retrieve from different

clients and deterministically splits them to partitions

{𝑤𝑖 = (client𝑖 .index,messages, 𝑞) |𝑞 ⊆ queries, client𝑖 ∈ clients}

where 𝑐𝑙𝑖𝑒𝑛𝑡𝑖 will receive𝑤𝑖 .

(5) client.respond_to_work(client𝑖 ,wrk): receives 𝑤𝑖 as

described above (which can be untrusted), and treats messages
as a matrix of plaintexts, and the queries as a matrix of column

vectors comprised from ciphertexts, multiply them and output

the result.
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(6) server.trim_queries(processed_wrk, queries):
receives processed_wrk the untrusted output of

client.respond_to_work(client𝑖 ,𝑤𝑖 ), applies Freivalds’

algorithm on it, and in case it is invalid, will update queries by
removing the query of client𝑖 , 𝑞𝑖 from the list.

B.1.2 Simulation phase The challenger C performs a simulation

of running a protocol 𝜋 according to a chosen scenario. It generates

a view for the adversary to observe by following the pseudocode

in Listing 2.

The simulation starts by C choosing the scenario bit𝑏 by flipping

a fair coin. During the simulation, C feeds the scenario’s data to 𝜋 ’s

methods and facilitates the interaction between 𝜋 and the adversary

by moving data between them. That is, during the simulation, C
shows𝐴 the inputs and outputs it provides or receives from 𝜋 . This

ensures the adversary sees anything sent between the clients and

the server.

Because C cannot simulate the adversary𝐴 and any client/server

under its control, it uses the adversary as an oracle. Allowing 𝐴

to insert responses for any malicious client/server. Furthermore,

this allows the adversary to overwrite, drop, or shuffle the

order of honest clients’ messages. C can call on 𝐴 using the

following functions: 𝐴.getQueries(), which states what queries

the adversary chooses that C will see during the current simulation

from any of the clients (including honest ones). 𝐴.𝑔𝑒𝑡𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (·)
define what response C receives from clients’ send requests, if any.

𝐴.getWorkForClient(·) states what work a client may receive.

𝐴.getProcessedWorkFromClient() outputs what response the

simulation is allowed to receive from any client.

At the end of the simulation, the adversary reflects upon what it

viewed. 𝐴 now decides whether it wants to advance to the guess
phase and output its answer to conclude the game, or ask to go

back to the setup phase (i.e., provide two scenarios and let the

simulation run again). 𝐴 is allowed a polynomial (in 𝜆) number of

attempts. Afterward, a default value of 𝑏′ = 0 is assigned to the

game’s output.

1 def simulation(𝜋 , A, 𝜎0,𝜎1, clients , rounds):

2 𝜎𝑏 = choose_using_fair_coin(𝜎0, 𝜎1)

3 requests = {}

4 responses = {}

5

6 for client_i in clients:

7 𝜋 .init(client_i)

8 req = 𝜋 .client.retrieve(

9 client_i ,

10 𝜎𝑏 [𝑐𝑙𝑖𝑒𝑛𝑡𝑖 ] .𝑔𝑒𝑡𝐹𝑟𝑖𝑒𝑛𝑑 ( )
11 )

12 requests.append(req)

13 queries = A.getQueries(requests)

14 responses.append(queries)

15

16

17 for rnd in rounds:

18 msgs = []

19 for client_i in clients:

20 sreq = 𝜋 .client.send(

21 client_i ,

22 𝜎𝑏 [client_i ]. getMessage(rnd)

23 )

24 requests.append(sreq)

25 resp = A.getResponse(sreq)

26 responses.append(resp)

27 msgs.append(resp)

28

29 req = 𝜋 .server.distribute_work(

30 clients ,

31 queries ,

32 msgs

33 )

34 requests.append(req)

35

36 for client_i in clients:

37 wrk = A.getWorkForClient(

38 client_i.index

39 )

40 responses.append(wrk)

41

42 req = 𝜋 .client.respond_to_work(

43 client_i ,

44 wrk

45 )

46 requests.append(req)

47

48 resp = A.getProcessedWorkFromClient(

49 client_i.index

50 )

51 responses.append(resp)

52

53 req = 𝜋 .server.trim_queries(

54 client_i ,

55 resp ,

56 queries

57 )

58 requests.append(req)

59 resp = A.getResponseForClient(client_i.index)

60 responses.append(resp)

61 return (requests , responses)

Listing 2: Pseudocode of the simulation performed by the
challenger C

B.1.3 Guess phase Once the simulation is done, 𝐴 must output

𝑏′ ∈ {0, 1}. 𝐴 wins if the 𝑏 = 𝑏′, that is, 𝐴 guessed correctly the

scenario that the challenger chose.

B.2 Security proof
We define unobservability using the security game from §B.1 and

then prove that DPIR satisfies this definition.

Definition 1. Protocol 𝜋 provides unobservability if given a
security parameter 𝜆, for all PPT algorithm 𝐴, for any polynomial
number of rounds 𝑘 and correct users 𝑛, there exists a negligible
function 𝑛𝑒𝑔𝑙 such that:

| Pr[G0
𝐴,𝜋,𝑘,𝑛

(1𝜆) = 1] − Pr[G1
𝐴,𝜋,𝑘,𝑛

(1𝜆) = 1] | ≤ 𝑛𝑒𝑔𝑙 (1𝜆)

Where the probability is defined over the random coins tosses of
the challenger C.

Theorem 5. DPIR provides unobservability.

Proof. We prove the theorem through a series of hybrid games.

I.e., we define three different abstract protocols 0, 1, 2 that differ

slightly from each other and show that the adversary gains only

negligence advantage to win the game by switching from game 𝑖

to game 𝑖 − 1. Finally, if the adversary’s best strategy for winning
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game 3 is to flip a coin, then protocol 0 does not give the adversary

more than a negligible advantage to win the game.

GAME 0 is the original game G0
𝐴,𝜋,𝑘,𝑛

(1𝜆), where 𝜋 =DPIR. In

this game, 𝜋.𝑖𝑛𝑖𝑡 (𝑐𝑙𝑖𝑒𝑛𝑡𝑖 ) does the bootstrap and sets the

client with a shared secret key with the friend the client

chats with (described in the scenario), and a FHE secret key

to generate queries.

𝜋.𝑐𝑙𝑖𝑒𝑛𝑡 .𝑠𝑒𝑛𝑑 (𝑐𝑙𝑖𝑒𝑛𝑡𝑖 ,𝑚) outputs (𝑝𝑜𝑠, 𝑐) where pos is the
cell that the client writes to, and the ciphertext 𝑐 is

computed as 𝐴𝐸𝑆𝑠𝑠𝑘 (𝑚), where 𝑠𝑠𝑘 is the shared secret

between 𝑐𝑙𝑖𝑒𝑛𝑡𝑖 and its friend 𝑐𝑙𝑖𝑒𝑛𝑡 𝑗 .

𝜋.𝑐𝑙𝑖𝑒𝑛𝑡 .𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 (𝑐𝑙𝑖𝑒𝑛𝑡𝑖 , 𝑐𝑙𝑖𝑒𝑛𝑡 𝑗 ) uses 𝑐𝑙𝑖𝑒𝑛𝑡𝑖 ’s secret key
to generate a retrieval query from client_j cell, similar to 1;

The output of 𝑞 = (𝑐𝑙𝑖𝑒𝑛𝑡𝑖 .𝑖𝑑, 𝑣) = 𝑄𝑢𝑒𝑟𝑦 (𝑐𝑙𝑖𝑒𝑛𝑡𝑖 .𝑠𝑘, 𝑝𝑜𝑠)
is a query made out of a vector of BGV ciphertexts, as

described in 5, and the unique ID of the client that created

this query.

𝜋.𝑠𝑒𝑟𝑣𝑒𝑟 .𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒_𝑤𝑜𝑟𝑘 (𝑐𝑙𝑖𝑒𝑛𝑡𝑠, 𝑞𝑢𝑒𝑟𝑖𝑒𝑠,𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠)
distributes queries by shuffling them first and then

distributing the work evenly across the clients. clients

whose query 𝑞 is not part of 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 does not receive any

work. Furthermore, the method distributes𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 as a

matrix of plaintexts clients write. For the simplicity of the

proof, each client receives the full matrix.

𝜋.𝑐𝑙𝑖𝑒𝑛𝑡 .𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑤𝑜𝑟𝑘 () is straightforward, given a

matrix, and queries, perform matrix multiplication as

described in 5, in case it cannot perform it (i.e., due to

bad 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒_𝑤𝑜𝑟𝑘 call), outputs ⊥ to indicate an error.

Finally, 𝜋.𝑠𝑒𝑟𝑣𝑒𝑟 .𝑡𝑟𝑖𝑚_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 (𝑟𝑒𝑠𝑝, 𝑐𝑙𝑖𝑒𝑛𝑡𝑖 , 𝑞𝑢𝑒𝑟𝑖𝑒𝑠) uses
Freivalds’ algorithm to validate whether the client

processed the work correctly. If it had not, or 𝑟𝑒𝑠𝑝 = ⊥,
it will remove the client’s query 𝑞 from 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 .

GAME 1 is the same as GAME 0, but 𝜋.𝑐𝑙𝑖𝑒𝑛𝑡 .𝑠𝑒𝑛𝑑 (𝑐𝑙𝑖𝑒𝑛𝑡,𝑚)
generates a new random message𝑚′ of the same size of the

given𝑚, and encrypts it using a newly randomly chosen

secret key 𝑠𝑘 using 𝐴𝐸𝑆𝑠𝑘 (𝑚).
GAME 2 is the same game as GAME 1, but 𝜋.𝑐𝑙𝑖𝑒𝑛𝑡 .𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒

ignores the input and generates a CPIR query for a random

deaddrop cell.

Now that we have defined the 𝜋 protocols for the hybrid games,

we want to show that there are methods in the simulation phase

that do not provide any new information to the adversary during

the simulation phase and can be simulated by the adversary.

Lemma 6. The methods 𝜋.𝑐𝑙𝑖𝑒𝑛𝑡 .𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑤𝑜𝑟𝑘 (·),
𝜋.𝑠𝑒𝑟𝑣𝑒𝑟 .𝑡𝑟𝑖𝑚_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 (·) and 𝜋.𝑠𝑒𝑟𝑣𝑒𝑟 .𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒_𝑤𝑜𝑟𝑘 (·) can be
simulated entirely by the adversary.

Proof. Themethod𝜋.𝑐𝑙𝑖𝑒𝑛𝑡 .𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑤𝑜𝑟𝑘 (𝑐𝑙𝑖𝑒𝑛𝑡𝑖 , 𝑞𝑢𝑒𝑟𝑖𝑒𝑠,𝑚𝑠𝑔𝑠)
takes messages 𝑚𝑠𝑔𝑠 and treats it as a matrix of

plaintexts, and responds with matrix 𝑉 , where 𝑉 [𝑖, 𝑗] =∑𝑚𝑠𝑔𝑠.𝑐𝑜𝑙𝑠

𝑘
𝑚[𝑖, 𝑘] · 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 [ 𝑗] .𝑣2 [𝑘]. This operation is related to

the given queries and messages. This information is public and is

provided to the adversary by the simulation. The adversary can

apply the same deterministic calculations by itself, even without

calling to 𝜋.𝑐𝑙𝑖𝑒𝑛𝑡 .𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑤𝑜𝑟𝑘 , as this method does not rely

on information hidden from the adversary like the client’s secret

key. Therefore, the adversary can simulate this function entirely

on its own.

Similar to the method above, both

𝜋.𝑠𝑒𝑟𝑣𝑒𝑟 .𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒_𝑤𝑜𝑟𝑘 (𝑐𝑙𝑖𝑒𝑛𝑡𝑠, 𝑞𝑢𝑒𝑟𝑖𝑒𝑠) and

𝜋.𝑠𝑒𝑟𝑣𝑒𝑟 .𝑡𝑟𝑖𝑚_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 (𝑐𝑙𝑖𝑒𝑛𝑡𝑖 , 𝑟𝑒𝑠𝑝, 𝑞𝑢𝑒𝑟𝑖𝑒𝑠), can be simulated

by the adversary because they operate deterministicly over

information exposed completely to the adversary’s view. As a

result, these functions, too, can be simulated by the adversary. □

Because the adversary can simulate all three methods, we

change the simulation method described in 2 so there are no

calls to 𝜋.𝑐𝑙𝑖𝑒𝑛𝑡 .𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑤𝑜𝑟𝑘 (·), 𝜋.𝑠𝑒𝑟𝑣𝑒𝑟 .𝑡𝑟𝑖𝑚_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 (·)
and 𝜋.𝑠𝑒𝑟𝑣𝑒𝑟 .𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒_𝑤𝑜𝑟𝑘 (·). Instead, the simulation

will use the adversary as an oracle with the following

methods: 𝐴.𝑟𝑒𝑠𝑝𝑜𝑛𝑑_𝑡𝑜_𝑤𝑜𝑟𝑘 (·), 𝐴.𝑡𝑟𝑖𝑚_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 (·) and

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒_𝑤𝑜𝑟𝑘 (·).
Now that we have reduced the amount of methods 𝜋 uses in the

simulation phase, and instead give the adversary the responsibility

to simulate them fully, we can focus on the hybrid games and the

methods that remain suspected of giving the adversary hints that

help it guess 𝑏′ correctly with more than a negligible advantage.

hybrid proof. Let 𝐻0 be the event that 𝑏 = 𝑏′ in GAME 0 where
𝜎𝑏 is the scenario chosen by the challenger and 𝑏′ be the guess
made by 𝐴 the adversary. Similarly, let 𝐻1 be the same even but for

GAME 1, and 𝐻2 for GAME 2.

Lemma 7. Pr[𝐻2] = 1

2
.

Proof. In GAME 2, the outputs of 𝜋 are unrelated to the chosen

scenario. 𝜋.𝑐𝑙𝑖𝑒𝑛𝑡 .𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 requests are not related to any scenario-

defined client deaddrop. Furthermore, the messages are encryptions

of uniformly random messages instead of the message provided

by 𝜎𝑏 [·] .𝑔𝑒𝑡𝑀𝑒𝑠𝑠𝑎𝑔𝑒 (𝑟𝑛𝑑). As a result, the requests the adversary
observes have no relation to the scenarios at all. 𝐴’s best action to

win is to choose 𝑏 like the challenger, with a coin flip. □

Lemma 8. | Pr[𝐻2] − Pr[𝐻1] | ≤ 𝜖𝐶𝑃𝐼𝑅 .

Proof. The difference between 𝐻1 and 𝐻2 is the method

𝜋.𝑐𝑙𝑖𝑒𝑛𝑡𝑜𝑢𝑡𝑝𝑢𝑡 .𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒 (𝑐𝑙𝑖𝑒𝑛𝑡𝑖 , 𝑐𝑙𝑖𝑒𝑛𝑡 𝑗 ). In 𝐻2 the deaddrop index

is random, and in 𝐻1 it is provided by the scenario (i.e., 𝑐𝑙𝑖𝑒𝑛𝑡 𝑗 ’s

deaddrop is used to generate the query). However, given the

assumption that the CPIR scheme is secure, the advantage of an

efficient adversary to distinguish which deaddrop index is requested

is 𝜖𝐶𝑃𝐼𝑅 , which is negligible. □

Lemma 9. | Pr[𝐻1] − Pr[𝐻0] | ≤ 𝜖𝐴𝐸𝑆𝐸𝑁𝐶
.

Proof. In 𝐻1, the method 𝜋.𝑐𝑙𝑖𝑒𝑛𝑡 .𝑠𝑒𝑛𝑑 (·) encrypts randomly

generated message𝑚′ using AES and the shared secret key 𝑠𝑠𝑘𝑖, 𝑗
of 𝑐𝑙𝑖𝑒𝑛𝑡𝑖 and client 𝑐𝑙𝑖𝑒𝑛𝑡 𝑗 generated in the setup. While in 𝐻0,

it encrypts the message 𝑚 specified in scenario 𝜎𝑏 . Because 𝜎𝑏

describes only honest clients, we need to inspect two cases: 𝑐𝑙𝑖𝑒𝑛𝑡 𝑗 ,

the recipient is honest, and another case where it is compromised.

Assuming the recipient is honest, the adversary doesn’t have access

to the shared secret key used to encrypt the message and cannot

decrypt the messages. Furthermore, 𝐴 cannot distinguish between

ciphertexts of the two scenarios (i.e., AES is semantically secure).
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plaintext-ciphertext multiplication Compute time (ms)

vanilla [42] (not associative) 0.060546

naive solution (via ctxt-ctxt mult.) 0.783706

DPIR’s modification 0.142784

Table 2: Cost of BGV plaintext-ciphertext multiplication in
the SEAL library [42] and DPIR’s modified implementation.

Thus an efficient adversary gains 𝜖𝐴𝐸𝑆𝐸𝑁𝐶
advantage at most, which

is negligible.

Now let us observe the second case, where the recipient 𝑐𝑙𝑖𝑒𝑛𝑡 𝑗
is corrupted by the adversary 𝐴. Because 𝑐𝑙𝑖𝑒𝑛𝑡 𝑗 is compromised,

the adversary 𝐴 has access to the shared secret of 𝑐𝑙𝑖𝑒𝑛𝑡𝑖 and

𝑐𝑙𝑖𝑒𝑛𝑡 𝑗 . This means that 𝐴 can decrypt the message, and attempt

to distinguish between the scenarios based on the difference

between the messages. We remind the reader, at this time, about

the restrictions of the adversary, particularly that 𝐴 is restricted

to provide both scenarios with the same message at the respective

round and the same friend when the recipient is malicious §B.1.1.

That is, exposing the message exchanged between the honest and

malicious client does not help the adversary distinguish between

the scenarios. thus it does not give the adversary any advantage. □

Combining the lemmas, it holds that

| Pr[𝐻0] −
1

2

| ≤ 𝜖𝐶𝑃𝐼𝑅 + 𝜖𝐴𝐸𝑆𝐸𝑁𝐶

As wanted.

□

C Using the SEAL cryptography library in DPIR

To use SEAL [42] in DPIR we modified its ciphertext-plaintext

multiplication procedure, as SEAL’s native implementation of

BGV does not ensure associativity of multiplication within the

ciphertext space when multiplying ciphertexts with plaintexts with

coefficients greater than 𝑡/2 (where 𝑡 is the plaintext modulus,

see §4), thus it is incompatible with Freivalds’ algorithm (see §7.2).

Our change does not have any implications on security since the

multiplication algorithm does not deal with any secrets (such as

private keys).

The issue is not inherent to the BGV encryption scheme, rather

it stems from the way SEAL handles the disparity in the size of the

plaintext modulus (𝑡 ) and the coefficient modulus (𝑞). Specifically,

SEAL re-maps the plaintext polynomial coefficients using the

residue number system (RNS) to support faster multiplication.

Under this mapping, plaintext coefficients ≤ 𝑡/2 stay the same

in 𝑍𝑞 , but coefficients > 𝑡/2 map to a different number in 𝑍𝑞 .

One potential solution is adding the plaintext 𝑝 to a “ciphertext”

comprising zero polynomials, this “automatically” maps the

plaintext to the ciphertext space (homomorphic plaintext-ciphertext

addition results in a ciphertext), and then multiplying the resulting

ciphertext encoding of 𝑝 by the other ciphertext. This technique

circumvents the plaintext-ciphertext multiplication issue, but it has

a high cost since it relies on ciphertext-ciphertext multiplication

which is about 12× slower than vanilla plaintext-ciphertext.

A more efficient solution, which we implemented, is modifying

SEAL’s plaintext-ciphertext multiplication procedure to split the

plaintext 𝑝 into two plaintexts 𝑝′, 𝑝′′ such that 𝑝 = 𝑝′ + 𝑝′′, and
each of their coefficients is less than 𝑡/2. Our modified SEAL

implementation replaces all plaintext-ciphertext multiplications

𝑝 · 𝑐 in the original algorithm with (𝑝′ · 𝑐) + (𝑝′′ · 𝑐). This solution
is only 2× more costly than SEAL’s native implementation (c.f.,

to 12× with the alternative solution). It is correct due to the

polynomial ring distributivity property, and it is safe since it does

not involve any secret keys. We benchmarked the performance of

our implementation and compare it against the naive solution and

SEAL’s vanilla implementation in Table 2.

Mitigating memory contention. Many implementations of

homomorphic encryption schemes, including SEAL’s BGV, suffer

frommemory contention (e.g., as noted by Badawi et al. [2]). In most

homomorphic encryption schemes, the ciphertexts are large (50KB

with our standard BGV parameter choice, see below), so reading

and writing them from/to RAM creates contention and fitting many

of them in the cache memory is challenging. We confirmed this

issue while testing our code. DPIR naturally mitigates this problem

since it also leverages the independent memory resources across all

its clients when outsourcing PIR computations.
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