
Improved Boomerang Attacks on 6-Round AES

Augustin Bariant1,2, Orr Dunkelman3, Nathan Keller4, Gaëtan Leurent2, and
Victor Mollimard3

1 ANSSI, Paris, France
augustin.bariant@ssi.gouv.fr

2 Inria, Paris, France
gaetan.leurent@inria.fr

3 Computer Science Department, University of Haifa, Haifa, Israel
orrd@cs.haifa.ac.il, victor.mollimard@gmail.com

4 Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
Nathan.Keller@biu.ac.il

Abstract. The boomerang attack is a cryptanalytic technique which
allows combining two short high-probability differentials into a distin-
guisher for a large number of rounds. Since its introduction by Wagner
in 1999, it has been applied to many ciphers. One of the best-studied
targets is a 6-round variant of AES, on which the boomerang attack is
outperformed only by the dedicated Square attack. Recently, two new
variants of the boomerang attack were presented: retracing boomerang
(Eurocrypt’20) and truncated boomerang (Eurocrypt’23). These variants
seem incompatible: the former achieves lower memory complexity by
throwing away most of the data in order to force dependencies, while the
latter achieves lower time complexity by using large structures, which
inevitably leads to a large memory complexity.
In this paper we show that elements of the two techniques can be combined
to get ‘the best of the two worlds’ – the practical memory complexity
of the retracing attack and the lower time complexity of the truncated
attack. We obtain an attack with data complexity of 257 (compared to
259 and 255 of truncated and retracing boomerang, respectively), memory
complexity of 233 (compared to 259 and 231), and time complexity of 261

(compared to 261 and 280). This is the second-best attack on 6-round
AES, after the Square attack.

Keywords: AES · Boomerang attack

1 Introduction

Differential attacks, introduced by Biham and Shamir [5] in 1990, use the evolution
of differences through the encryption process to attack block ciphers and other
cryptographic primitives. In order to make ciphers immune to differential attacks,
various design strategies were developed, which allow proving that any ‘long’
differential (i.e. differential which covers many rounds of the cipher) has a very
low probability. One of these strategies is the ‘wide trail strategy’ [10] deployed in



the AES [27] – the most widely used cipher today. This strategy allows proving
that any differential which covers 4 of the 10 rounds of AES has probability of
less than 2−113 [21], making it very unlikely that a differential attack will be a
threat for the security of the full (10-round) AES.

In 1999, Wagner [28] developed the boomerang technique which allows by-
passing this barrier, as it enables combining two ‘short’ differentials which cover
r1 and r2 rounds of the cipher into a ‘long’ property of r1 + r2 rounds. Assume
that the differential of the first r1 rounds of the cipher is of the form α → β (i.e.
difference α goes to difference β) with probability p, and that the differential for
the subsequent r2 rounds is of the form γ → δ with probability q. The boomerang
attack on r1 + r2 rounds considers a pair of plaintexts with difference α, looks
at the corresponding ciphertext pair, XORes δ to the two ciphertexts, decrypts
the new ciphertexts and checks whether the resulting plaintexts have a difference
α. An easy analysis shows that under standard independence assumptions, the
resulting difference is equal to α with probability p2q2. This allows attacking
ciphers which have no high-probability ‘long’ differentials, provided that they
have high-probability short differentials.

In the 25 years since its introduction, the boomerang technique has been used
to attack numerous ciphers. One of its major successes was attacking variants of
the AES – the best known attacks on the full AES in the related-key model [7,11],
as well as the best known attacks on 5-round AES in the standard (single-key)
model [14] are boomerang attacks. A specific variant of AES which has been
especially well-studied is 6-round AES. Four different types of boomerang attacks
were applied to it in the last 20 years – by Biryukov [6], Dunkelman et al. [14],
Rahman et al. [25], and Bariant and Leurent [3]. This variant is especially
important as it is the largest variant on which practical-complexity attacks are
known, and also as it is used as a component in several other cryptosystems –
e.g., TNT-AES [1], AES-PRF-192 [23], and WEM [8]. It should be mentioned
that on 6-round AES, the boomerang technique does not provide the best known
attack, as it is outperformed by the dedicated Square attack [12,16].

Over the years, many variants and enhancements of the boomerang technique
were proposed. Let us focus on two recently proposed variants.

At Eurocrypt 2020, Dunkelman et al. [14] presented the retracing boomerang –
a variant of the boomerang technique in which before XORing δ to the ciphertexts,
the adversary discards most of the ciphertext pairs, leaving only pairs which
satisfy a certain condition. The condition ensures that the second differential
holds for sure in the backward direction, thus increasing the overall probability
of the boomerang to p2q. On the other hand, the extra condition disallows using
structures in the attack, which eventually leads to a larger time complexity.
Dunkelman et al. applied their technique to 6-round AES, on which the best
previous boomerang attack, by Biryukov [6], had data and time complexity of
271. Dunkelman et al. managed to reduce the data complexity to 255 adaptively
chosen plaintexts and ciphertexts (ACPC), at the expense of increasing the time
complexity to 280 encryptions. The retracing boomerang attack was used also

2



to attack other variants of AES, including 5-round AES and AES with a secret
S-box.

At Eurocrypt 2023, Bariant and Leurent [3] presented the truncated boomerang
attack – a variant of the boomerang technique in which a truncated differential
is used instead of a ‘standard’ one. The main feature of the technique is the
extensive use of structures, both on the plaintext side and on the ciphertext side
where an entire structure of ciphertexts is XORed with many possible values.
Another central feature is embedding the key recovery parts into the boomerang
distinguisher. Bariant and Leurent applied their technique to 6-round AES and
managed to reduce the time complexity of the attack to 261 encryptions, while
keeping the data complexity not so high, at 259 ACPC. On the other hand, due
to the use of large structures, the memory complexity of the attack of [3] was
much higher than the memory complexity of the previous attacks – 259 128-bit
blocks instead of 233 in [6] and 231 in [14]. The truncated boomerang attack was
used also to attack other variants of AES, as well as other AES-based ciphers
including Kiasu-BC [19], Deoxys-BC [20], and TNT-AES [1].

The retracing boomerang attack and the truncated boomerang attack seem
inherently incompatible – while the former cannot use structures due to the
extra condition on the ciphertexts, the main gain of the latter stems from using
large ciphertext structures. Nevertheless, we show that elements of the two
attacks can be combined to get ‘the best of the two worlds’ – the practical
memory complexity of the retracing boomerang attack along with the lower
time complexity of the truncated boomerang attack, while keeping the data
complexity roughly unchanged. We present two main attacks. The first has a low
data complexity of 251 ACPC (compared to 259 in [3] and 255 in [14]), a memory
complexity of 232 128-bit blocks (compared to 259 in [3] and 231 in [14]), and a
time complexity of 268 (compared to 261 in [3] and 280 in [14]). We also propose
a time/memory trade-off for this attack. The second attack has a lower time
complexity, of around 261 encryptions, competing with the truncated boomerang
attack. However, compared to the first attack, its data complexity is increased to
257 ACPC, and its memory complexity to 233. This is nevertheless the second-best
attack on 6-round AES, after the Square attack, in terms of overall complexity.
We hope that like the retracing boomerang attack and the truncated boomerang
attack, the new combination will lead to improved attacks on other variants of
AES and on other cryptosystems that use reduced-round AES as a component.
A comparison of our results with previous attacks on 6-round AES is presented
in Table 1.

This paper is organized as follows. In Section 2 we describe the structure of
the AES. In Section 3 we present background on the boomerang attack and its
variants. In Section 4 we present our new attacks on 6-round AES. In Section 5 we
present a ‘distinguisher’ of 6-round AES which seems better than all previously
known distinguishers on this variant, but which actually fails due to a subtle
incompatibility issue. We conclude the paper in Section 6.

3



Rounds Type Data Time Mem Ref
6 Imp. Diff. 276 2104 245 [30]
6 Prob. Mixture Diff. 273 2105 233 [17]
6 Mixture diff. 231 273 231 [2]
6 Mixture diff. 244 263 244 [29]
6 Square 235 245 232 [16]
6 Square 233 240 232 [12]
6 Boomeyong 280 278 228 [25]
6 Boomerang 271 271 233 [6]
6 Retracing Boomerang 255 280 231 [14]
6 Truncated Boomerang 259 261 259 [3]
6 Boomerang 251 268 232 subsection 4.1
6 Boomerang 251 266 242 subsection 4.1
6 Boomerang 257 261 233 subsection 4.2

Table 1. Comparison of our attacks with selected previous key-recovery attacks on
6-round AES.

2 AES

AES [10] (originally named Rijndael) is a 128-bit block cipher developed by
Daemen and Rijmen in 1997. In 2001, the US National Institute of Science
and Technology decided to standardize it under the name Advanced Encryption
Standard (AES) and from then, it became one of the most used block ciphers
worldwide, if not the most used one.

AES is a classical Substitution-Permutation Network transforming a 128-bit
state organized as a 4× 4 array of 8-bit words. The encryption process repeats
10, 12 or 14 times (respectively for key of 128-bit, 192-bit and 256-bit) a round
function composed itself by four sub-functions as illustrated in Figure 1:

SubBytes. Apply a known 8-bit S-box independently to the bytes of the state;
ShiftRows. Shift each row of the state to the left by the position of the row;
MixColumns. Multiply each column by the same known invertible 4-by-4
matrix over the finite field GF (28);
AddRoundKey. Add a 128-bit round key computed from the secret key to
the state, using a bitwise XOR operation.

An additional AddRoundKey operation is performed before the first round
and the last MixColumns operation is omitted. As properties of the key schedule
are not used in this paper, we refer readers to [27] for its description. In this
paper we consider a reduced version with 6 rounds, and we assume that the last
MixColumns operation is omitted for simplicity.

Notation r is the number of rounds and the rounds are numbered from 0 to
r − 1. At round ℓ, xℓ, yℓ, zℓ and wℓ denote the states before respectively the
SubBytes, ShiftRows, MixColumns and AddRoundKey operations. The
initial subkey is denoted k0 and the subkey added during the AddRoundKey

4



00

01

02

03

04

05

06

07

08

09

0a

0b

0c

0d

0e

0f

00

05

0a

0f

04

09

0e

03

08

0d

02

07

0c

01

06

0b

52

09

6a

d5

30

36

a5

38

bf

40

a3

9e

81

f3

d7

fb

0a

1b

00

11

1e

07

14

0d

02

13

08

19

16

0f

1c

05

SB SR MC ARK

x` y` z` w`

⊕

k`+1

Fig. 1. A round of AES.

operation of round ℓ is denoted kℓ+1. Given a 16-byte state (or subkey) X,
X[4j + i] denotes the byte in column j and row i of X, as shown on Figure 2. A
set of bytes X[i], X[j], X[l] is denoted X[i, j, l]. In the rest of the paper, the XOR
between state values is represented with the addition (+). To indicate byte (resp.
column/diagonal/anti-diagonal) indexes in some states of the trail, we use letters
a ∈ {0, . . . 15} and ℓ,m ∈ {0, 1, 2, 3}. Bytes are indexed with the conventional
order presented in Figure 2. Diagonals and anti-diagonals are indexed with the
index of their active column in the first row. We denote ã = −a mod 4, ℓ̃ = −ℓ
mod 4, m̃ = −m mod 4.

03

02

01

00

07

06

05

04

11

10

09

08

15

14

13

12

Fig. 2. Byte numbering of a 16-byte AES state or subkey.

3 Background on the boomerang attack

3.1 Differentials

When considering a binary function E : Fn
2 → Fn

2 , a differential is a pair of input,
output differences (∆in, ∆out) ∈ {0, 1}2n. A differential is said to exist if there
exists a message m such that E(m) + E(m + ∆in) = ∆out. It is said to have
probability p = P [E(m) + E(m+∆in) = ∆out] defined over a random plaintext
m. As common in the literature we assume that the probability itself does not
depend on the key (but rather which pairs satisfy the differential). If the key
impacts the probability too much, one may obtain weak-key classes.

3.2 The basic boomerang attack

In 1999, Wagner [28] proposed to split the encryption function E into two halves
E = E1 ◦ E0 for each of which a high probability differential exists denoted

5



respectively ∆in
p−→ ∆out of probability p for E0 and ∇in

q−→ ∇out of probability q
for E1. Wagner proposed to use these two differentials by constructing a quartet
(P, P ′, P̄ , P̄ ′) of the following form:

(
P, P +∆in, E−1[E(P ) +∇out], E−1[E(P +∆in) +∇out]

)
(1)

To simplify the explanation and corresponding to Figure 3, we write C = E(P ),
and E0(P ) = I = E−1

1 (C) and extend the notation to P ′, P̄ , P̄ ′ to C ′, C̄, C̄ ′ and
I ′, Ī, Ī ′. In the case of the AES, we also extend the internal state notations xℓ,
x′
ℓ, x̄ℓ, x̄′

ℓ (and similarly for y, z, and w).

P P ′

E0 E0

E1 E1

C C′

P̄ P̄ ′

E0 E0

E1 E1

C̄ C̄′

I
I ′

Ī
Ī ′

∆in

∆in

∇out ∇out

∆out

∆out

∇in ∇in

E0

E

E0

E1

Fig. 3. Illustration of the basic boomerang quartet adapted from [18].

Wagner remarked that the probability pb that a quartet (P, P ′, P̄ , P̄ ′) verifies
P̄ + P̄ ′ = ∆in was greater for E than for a random function when p2q2 was
significantly greater than 2−n (and assuming that E0 and E1 could be considered

6



independent). Indeed, we can write:

pb = P
[
P̄ + P̄ ′ = ∆in

]
(2)

≥ P
[
E−1

0 (Ī) + E−1
0 (Ī ′) = ∆in|Ī + Ī ′ = ∆out

]
· P

[
Ī + Ī ′ = ∆out

]

≥ p · P
[
Ī + Ī ′ = ∆out|I + I ′ = ∆out

]
· P [I + I ′ = ∆out]

≥ p · P
[
Ī + Ī ′ = I + I ′

]
· P [E0(P ) + E0(P

′) = ∆out]

≥ p2 · P
[
I + Ī = ∇in

]
· P

[
I ′ + Ī ′ = ∇in

]

≥ p2 · P
[
E−1

1 (C) + E−1
1 (C̄) = ∇in

]
· P

[
E−1

1 (C ′) + E−1
1 (C̄ ′) = ∇in

]

≥ p2q2

which can be used as a distinguisher when p2q2 is significantly greater than 2−n,
the expected probability of the constructed quartet (P, P ′, P̄ , P̄ ′) to verify the
boomerang property for a random function. Generally, this distinguisher can be
extended in a key-recovery attack by leveraging its key dependencies.

The analysis of the boomerang attack has seen multiple improvements.
Boomerangs with multiple differentials were analysed by Wagner [28] in his
original paper. Plaintext-only variants, the amplified boomerang [22] and the
rectangle [4] attacks, were presented shortly after. Multiple works were then
dedicated to the analysis of the boomerang switch, i.e. the middle rounds of the
boomerang attack [15,24,9]. Among those, Murphy showed in 2011 that some
boomerang characteristics were in fact impossible [24]. However, we will not
dive into the analysis of the boomerang switch, since our attacks exploit a ‘free‘
boomerang switch, as highlighted by the retracing boomerang attack [14], which
we examine in the next section.

3.3 Retracing boomerang on AES

The retracing boomerang attack is a framework presented by Dunkelman et al. at
Eurocrypt 2020 [14]. To this day, the framework is the fastest key-recovery attack
against 5-round AES, with or without secret S-boxes, and produces interesting
attacks on 6-round AES as well. Our attacks compare to their key-recovery attack
on 6-round AES, presented in [13, Appendix C.3].

Core idea. The retracing boomerang makes use of correlated values in the
ciphertext side such that the independence assumption between the equations
of Equation 2 does not hold. Instead, the lower differential ∇out → ∇in through
E−1

1 happens with probability q for both (C, C̄) and (C ′, C̄ ′) at the same time.
The events are therefore correlated positively and this increases the boomerang
probability to pb = p2q.

The main idea of the retracing boomerang on AES is to define ∇out active on a
single anti-diagonal, such that the returning pairs (C,C+∇out) and (C ′, C ′+∇out)
have the same pair of values on the active anti-diagonal: i.e. either C = C ′ or
C = C ′ +∇out on the active anti-diagonal.

7



Dunkelman et al. propose two types of retracing boomerangs in their frame-
work, as highlighted by Figure 4:

– The mixing retracing boomerang: chose ∇out active on an anti-diagonal,
such that ∇out = C + C ′ on the active anti-diagonal. The mixing retracing
boomerang is very close to the yoyo attack of [26]. In that case, C = C̄ ′ and
C ′ = C̄ on the anti-diagonal.

– The shifting retracing boomerang: only keep pairs (C,C ′) such that C = C ′

on an anti-diagonal, and take any ∇out active only on the corresponding
state word. In that case, C = C ′ and C̄ = C̄ ′ on the anti-diagonal.

Mixing boomerang:

C C′ C̄ C̄’

Shifting boomerang:

C C′ C̄ C̄’

Fig. 4. Mixing and shifting for retracing boomerangs.

Key-recovery attack on 6-round AES. A key-recovery attack on 6-round
AES is presented in the full version of the Retracing Boomerang framework [13,
Appendix C.3], and is a shifting retracing boomerang attack. Since our results
are heavily inspired by this attack, we explain this attack in details, using the
characteristics from Figure 5. Algorithm 1 describes the attack.

Characteristics analysis. Starting from a pair (P, P ′) with an active diagonal, we
consider that it is a right forward pair if it follows the forward characteristic of
Figure 5. We require that one byte of the first column (in position ℓ) is inactive
at the end of the first round (probability 2−6), and that the main diagonal is
inactive at the end of the third round (probability 2−32). Therefore a forward
pair (P, P ′) is right with probability 2−38.

In the backward direction, C̄ and C̄ ′ are obtained by shifting C and C ′ with
a difference in the main antidiagonal. We assume that the difference collapses to
only the first byte of the state after one round (state z4), and that the difference
is the same for the pairs (C, C̄) and (C ′, C̄ ′). This happens with probability
2−2×24−8 = 2−56 with random ciphertexts, but the attacker will guess the value
of key bytes k6[0, 7, 10, 13] in order to directly construct values C̄ and C̄ ′ with
this property.

8



Starting from z4, we have a shifting retracing boomerang: C and C ′ have the
same value on the main antidiagonal, and C̄ and C̄ ′ differ from C and C ′ by
the same difference in a single byte, included in the main antidiagonal. Thefore
the active S-box transition from z4 to x4 is the same for the pairs (C, C̄) and
(C ′, C̄ ′): x4 + x̄4 = x′

4 + x̄′
4.

The transitions from z3 to x3 are also the same for both pairs because of the
S-box switch: every active S-box j in the backward characteristics (z3[j]+ z̄3[j] =
z′3[j]+ z̄′3[j] ̸= 0) is inactive in the forward characteristic (z3[j] = z′3[j]). Therefore,
we have z̄3[j] = z̄′3[j], and S−1(z3[j]) + S−1(z̄3[j]) = S−1(z′3[j]) + S−1(z̄′3[j]).
Therefore, we obtain x3 + x̄3 = x′

3 + x̄′
3 and z2 + z̄2 = z′2 + z̄′2 with probability

one.
When considering the pair (C̄, C̄ ′), we deduce that the difference in z2 is the

same as in the forward pair: z̄2 + z̄′2 = z2 + z′2. In particular, antidiagonal ℓ̃ is
inactive in z2; this implies that diagonal ℓ̃ of w0 is inactive.

To summarize: assuming that (P, P ′) is a right forward pair, and that C̄, C̄ ′

are constructed such that z4 + z̄4 = z′4 + z̄′4 with this difference only active in
byte 0, then with probability 1 a diagonal of w0 is inactive for the pair C̄, C̄ ′

(the same diagonal that is inactive for (P, P ′)).

Attack description. The attack proceeds as follows, with 8 fixed values δ0, . . . δ7
active only on byte 0:

1. Ask for the encryption of a structure of 220 plaintexts with different values
on the main diagonal.

2. For each candidate K for k6[0, 7, 10, 13], partially decrypt the ciphertexts to
compute Y = MC−1(x5), define new ciphertexts C̄i such that Ȳi = Y + δi
and query and store their corresponding plaintexts P̄i.

3. For each candidate K for k6[0, 7, 10, 13], filter all pairs (P, P ′) such that
Y [0] = Y ′[0].
For each such pair, consider the 8 quartets (Y, Y ′, Ȳi, Ȳ

′
i ) with Ȳi = Y + δi

and Ȳ ′
i = Y ′ + δi, whose corresponding plaintexts P̄i, P̄

′
i were queried during

step 2.
For each ℓ ∈ {0, 1, 2, 3}, assume that the ℓ̃-th diagonal of w0 is inactive
for all quartets simultaneously and deduce the key k0. If a candidate k0 is
compatible with all quartets, return it as the correct key.

Complexity. With 220 plaintexts, the expected number of right forward pairs
is 220 · 219 · 2−38 = 2. If there is a right forward pair (P, P ′), then it satisfies
Y [0] = Y ′[0]. At step 3, with the correct key guess, all the quartets (Y, Y ′, Ȳi, Ȳ

′
i )

follow the boomerang, hence w0 has an inactive diagonal with probability 1.
Therefore the correct key candidate will be recovered and the attack succeeds
with high probability.

Reciprocally, a wrong guess of k0[0, 5, 10, 15]||k6[0, 7, 10, 13] and ℓ passes the
test with probability 2−8×8; we expect on average 239−8+32+32+2−64 = 233 false
positives. False positives are detected and discarded by recovering key candidates
for another diagonal of k0.

9



Algorithm 1 Retracing boomerang attack on 6-round AES.
Query the encryption of 220 plaintexts with different values on the main diagonal
for all k6[0, 7, 10, 13] do

for all ciphertext C do
Partially decrypt C to obtain Y [0, 1, 2, 3]
for 0 ≤ i < 8 do

Define Ȳi = Y + δi, Ȳ
′
i = Y ′ + δi, compute corresponding C̄i, C̄

′
i

Query P̄i = E−1(C̄i), P̄
′
i = E−1(C̄′

i)

for all pairs (C,C′) with Y [0] = Y ′[0] do
for 0 ≤ ℓ < 4 do

Assume w0[ℓ] is inactive for all quartets (Y, Y ′, Ȳi, Ȳ
′
i )

Deduce key candidates for k0

Step 3 iterates over 232 keys, 239 ·2−8 = 231 pairs for each key, and 4 values of
ℓ. The complexity to recover the key candidates is estimated as equivalent to 215

encryptions in [13].5 Therefore the total time complexity is 232+31+2+15 = 280.
The data complexity is 232 ·220 ·8 = 255 at step 2, and the memory complexity

is 220 · 8 to store the P̄i and P̄ ′
i (step 2), resulting in:

(D,T,M) = (255, 280, 223)

We observe that the 255 decryption queries actually correspond to only
220 · 232 = 252 distinct ciphertexts. Therefore we can reduce the data complexity
by storing all the queries:

(D,T,M) = (252, 280, 252)

3.4 Truncated boomerang attack on AES

The truncated boomerang framework was presented in EUROCRYPT 2023 by
Bariant et al. [3] to attack 6-round AES and other AES-based ciphers. The idea
of the framework is to only consider truncated differential characteristics, for the
upper and the lower parts of the cipher. This attack brings two main novelties.
First, this allows to build big structures on the plaintext and the ciphertext sides,
increasing the number of quartets for a given number of oracle queries. Second,
instead of first fixing a distinguisher and adding key-recovery rounds before and
after it, the truncated boomerang considers a boomerang trail on the full cipher,
and recovers key candidates from each quartet, from the hypothesis that the
quartet passes the boomerang trail (similarly to the 3R attacks defined on DES
in [5]). Namely, each quartet is analyzed and suggests key material according

5 The key-recovery procedure follows a Meet-in-The-Middle approach similar to our
paper, but is slightly more conservative; We instead compute a complexity of 213.7

encryptions, detailed in Section 4.1.

10



P

AK0

x0

SB

SR

z0

4·2−8

MC

byte ℓ inactive

w0

AK1

x1

SB

SR

z1

MC

w1

AK2

x2

SB

SR

z2

2−32

MC

w2

AK3

x3

SB

SR

z3

MC

w3

AK4

x4

SB

SR

z4

MC

w4

AK5

x5

SB

SR

z5

AK6

C

P ̸=P ′
P=P ′

Forward characteristic (P, P ′) Backward characteristic (P̄ , P̄ ′)

Backward characteristic (P, P̄ ), (P ′, P̄ ′)

P

AK0

x0

SB

SR

z0

MC

diag. ℓ̃ inactive

w0

AK1

x1

SB

SR

z1

MC

w1

AK2

x2

SB

SR

z2

r=1

MC

P̄ ̸=P̄ ′
P̄=P̄ ′

w2

MC

AK3

x3

SB

SR

z3

MC

w3

AK4

x4

SB

SR

z4

MC

w4

AK5

x5

SB

SR

z5

AK6

C

P ̸=P̄ ,P ′ ̸=P̄ ′
P=P̄ , P ′=P̄ ′

Fig. 5. Retracing boomerang key-recovery attack on 6-round AES.

11



to the differential transitions in the first and last rounds. The key suggested
the most frequently is expected to be the correct one. This strategy saves on
guessing parts of the last subkey, but rather allows to deduce it from quartets.
The drawback of this attack is the high memory complexity needed to store
quartet structures. This approach leads to a 6-round key-recovery attack with
complexity:

(D,T,M) = (259, 269, 259)

4 New attacks

The idea of our new attacks is to improve the retracing boomerang attack with
different boomerang characteristics and new key-recovery strategies, following
insights from the truncated boomerang attack.

These attacks are inspired by an observation regarding the 6-round retracing
boomerang attack : the attack requires much more decryption queries (255) than
encryption queries (220). This implies that we may discard some ciphertext pairs
(C,C ′) at the cost of additional encryptions without increasing the overall time
or data complexity. With that idea in mind, we filter ciphertext pairs and only
consider pairs (C,C ′) which collide on two anti-diagonals of ciphertext, rather
than a single byte at the end of the fifth round. For each ciphertext collision, we
can then build a structure of 232 shifted ciphertexts C +∇i (∇i takes all possible
values in one of the inactive anti-diagonals), following the shifting retracing
boomerang framework. Note that unlike in the truncated boomerang attack, we
do not build a structure for each ciphertext, but only for ciphertexts colliding on
two inactive anti-diagonals. The plaintext structures and ciphertext structures,
each of size 232, are such that asking a collision on 64 bits of ciphertext does not
bring any significant complexity overhead. Indeed, with 232 plaintext queries, we
expect roughly 1 pair colliding on 64 bits, leading to 232 decryption queries, and
232 potential quartets. On the other hand, given a collision on two anti-diagonals
of ciphertext, the pair (P, P ′) is more likely to be a right forward pair.

Compared to the retracing boomerang attack, we additionally use truncated
trails in the backward trail of (C, C̄) and (C ′, C̄ ′) without fixing the value of δi,
which improves the probability of the boomerang characteristic. It can be seen as
a shifting retracing boomerang on 6 rounds, rather than on 5 rounds as in [13].

In the following attacks, the time complexity bottleneck comes from the key-
recovery step. We therefore present slightly different boomerang characteristics
and key-recovery strategies, leading to different trade-offs between time, data
and memory complexities. Our results are summarized in Table 1.

4.1 A Key-Recovery Attack Optimized for Data Complexity

The first key-recovery attack that we propose is based on the boomerang depicted
in Figure 6, and described in Algorithm 2.

12



P

AK0

x0

SB

SR

z0

4·2−8

MC

byte ℓ inactive

w0

AK1

x1

SB

SR

z1

MC

w1

AK2

x2

SB

SR

z2

4·2−32

MC

diagonal m
inactive

w2

AK3

x3

SB

SR

z3

MC

6·2−48

w3

AK4

x4

SB

SR

z4

MC

w4

AK5

x5

SB

SR

z5

AK6

C

P ̸=P ′
P=P ′

Forward characteristic (P, P ′) Backward characteristic (P̄ , P̄ ′)

Backward characteristic (P, P̄ ), (P ′, P̄ ′)

P

AK0

x0

SB

SR

z0

MC

diag. ℓ̃ inactive

w0

AK1

x1

SB

SR

z1

MC

w1

AK2

x2

SB

SR

z2

r=1

MC

P̄ ̸=P̄ ′
P̄=P̄ ′

w2

MC

AK3

x3

SB

SR

z3

MC

w3

AK4

x4

SB

SR

z4

MC

2−24
byte m̃ active

w4

AK5

x5

SB

SR

z5

AK6

C

P ̸=P̄ ,P ′ ̸=P̄ ′
P=P̄ , P ′=P̄ ′

Fig. 6. Boomerang characteristic on 6-round AES with low data complexity.

13



Boomerang analysis. Starting from a pair (P, P ′) with an active diagonal, we
consider that it is a right forward pair if one byte in position ℓ ∈ {0, 1, 2, 3} is
inactive at the end of the first round (probability 4 ·2−8), one diagonal in position
m ∈ {0, 1, 2, 3} is inactive at the end of the third round (probability 4 ·2−32), and
two diagonals are inactive at the end of the fourth round (probability 6 · 2−48).
Therefore a forward pair (P, P ′) is right with probability 2−81.4. This implies
a collision in two anti-diagonals of ciphertext. The probability that a random
ciphertext pair collides on two anti-diagonals is 6 · 2−64 = 2−61.4.

In the backward direction, C̄ and C̄ ′ are obtained by shifting C and C ′ with
a difference in one of the inactive anti-diagonals. This corresponds to a shifting
retracing boomerang with a single active Super-box. Therefore, the active S-box
transitions from z5 to x5 and from z4 to x4 are the same for the pairs (C, C̄) and
(C ′, C̄ ′). We assume that the difference collapses to a single byte in position m̃
of the state z4 (after one round), corresponding to the inactive diagonal m in
w2 + w′

2; this happens with probability 2−24. In practice, the attacker will guess
the value of key bytes k6[0, 7, 10, 13] in order to directly construct values C̄ and
C̄ ′ with this property.

As in the retracing boomerang attack, we have (z3 + z′3)[0, 1, 2, 3] = 0 and
(z̄3 + z̄3

′)[0, 1, 2, 3] = 0, which in turn implies (x3 + x′
3)[0, 5, 10, 15] = 0 and

(x̄3 + x̄′
3)[0, 5, 10, 15] = 0. Therefore, we obtain x3 + x̄3 = x′

3 + x̄′
3 and z2 + z̄2 =

z′2 + z̄′2 with probability one. When considering the pair (C̄, C̄ ′), we deduce that
the difference in z2 is the same as in the forward pair: z̄2 + z̄′2 = z2 + z′2. In
particular, anti-diagonal ℓ̃ is inactive in z2; this implies that diagonal ℓ̃ of w0 is
inactive.

We then proceed as in the retracing boomerang attack. We obtain many
quartets following the characteristic simultaneously: assuming that (P, P ′) is a
right forward pair, and that the pairs (C̄, C̄ ′) are constructed such that z4 + z̄4
is active only in byte m̃, then with probability 1, diagonal ℓ̃ of w0 is inactive for
each pair (C̄, C̄ ′).

Comparison with the retracing boomerang attack. In total, the probability that a
pair (P, P ′) is a right pair, and that a shifted pair (C̄, C̄ ′) follows the returning
trail is 2−81.4−24 = 2−105.4. This is much lower than the 6-round AES retracing
boomerang attack, that has a boomerang probability of 2−38 × 2−24 = 2−62, if
we intepret the lower characteristic as a truncated trail instead of a key guess.
However, the probability for a wrong forward pair to have the right ciphertext
difference is 2−61.4 (compared to 2−8 for the retracing boomerang, corresponding
to the event z4[0] + z̄4[0] = 0). In order to collect a single right quartet, there are
262−8 = 254 wrong quartets in the retracing boomerang, but only 2105.4−61.4 = 244

wrong quartets remain in our attack. This gain in signal-to-noise ratio allows to
significantly reduce the time complexity of the key-recovery, since the key-recovery
procedure needs to be applied to fewer quartets.

Attack description. The base of the attack consists of the following steps:

1. Ask for the encryption of structures of 232 plaintexts with different values on
the main diagonal.

14



2. Among each structure, look for pairs of ciphertexts (C,C ′) colliding on any
two anti-diagonals (for simplicity, we consider them as the first two). Let
us denote C̄i = C + ∇i and C̄ ′

i = C ′ + ∇i for 1 ≤ i ≤ 232, where ∇i

takes the value i on the first anti-diagonal and the value 0 on other anti-
diagonals. Ask for the decryptions P̄i = E−1(C̄i) and P̄ ′

i = E−1(C̄ ′
i) for all

1 ≤ i ≤ 16× 224 = 228.
3. For each candidate K for k6[0, 7, 10, 13], and each m̃ ∈ {0, 1, 2, 3}, fetch 8

pairs (P, P̄i) (already queried) such that under the key K, the first column
of z4 of (P, P̄i) is active only in position m̃, and consider the 8 corresponding
quartets (P, P ′, P̄i, P̄

′
i ).

For each ℓ̃ ∈ {0, 1, 2, 3}, assume that diagonal ℓ̃ of w0 is inactive for all
quartets simultaneously and deduce key k0. If a candidate k0 is compatible
with all quartets, return it as the correct key.

Algorithm 2 Low data complexity boomerang attack on 6-round AES.
loop ▷ The expected number of iterations is 218.4

Query the encryption of a structure of 232 plaintexts
for all pairs (C,C′) colliding on two anti-diagonals do

for 0 ≤ i < 228 do
Define C̄i = C +∇i, C̄′

i = C′ +∇i,
Query P̄i = E−1(C̄i), P̄

′
i = E−1(C̄′

i)

for all k6[0, 7, 10, 13] do
for 0 ≤ m̃ < 4 do

Gather 8 quartets (P, P ′, P̄i, P̄
′
i ) s.t. z4+ z̄4 is active only on position m̃

for 0 ≤ ℓ̃ < 4 do
Assume diagonal ℓ̃ of w0 is inactive for (P, P ′) and all (P̄i, P̄

′
i )

Deduce key candidates for k0

Complexity. The attack queries new structures of plaintexts until a structure
includes a right forward pair. Since the probability of the forward characteristic
is 2−81.4, we expect 232+31−81.4 = 2−18.4 right pairs per structure, and we expect
to iterate over 218.4 structures on average before finding a right pair. This
corresponds to 218.4+32+31−61.4 = 220 candidates (C,C ′) at step 2. When a right
pair is present, it passes the filtering of step 2, and the attack succeeds for the
correct guess of k6[0, 7, 10, 13], ℓ̃ and m̃.

We now give an analysis of Step 3. We first show that we can fetch the pairs
(P, P̄i) efficiently. Then, we explain in details the most technical part: the recovery
of k0 candidates from friend quartets, which we slightly improve compared to
the meet-in-the-middle technique from [14].

Fetching the quartets. In Step 3, given a candidate K for k6[0, 7, 10, 13] and a
position m̃ ∈ {0, 1, 2, 3}, we need to fetch 8 pairs (P̄i, P̄

′
i ) (leading to 8 quartets

(P, P ′, P̄i, P̄
′
i )) such that the state z4 of pair (P, P̄i) is active only in position m̃

15



of the active column under the key K. This can be done efficiently: start from
C = E(P ), compute the first column of z4 from the anti-diagonal of C, add the
256 possible byte values at position m̃ of the first column of z4, and compute
the corresponding values in the ciphertext side. This gives 256 different values
for the first anti-diagonal in the ciphertexts. On average, this corresponds to
256× 228

232 = 16 ciphertexts C̄i of which the decryption was queried during Step 2.
The probability that at least 8 such ciphertexts were queried during Step 2 can
be approximated by Pr(Poisson(16) ≥ 8) ≥ 0.99. The ciphertext C̄ ′

i is defined as
C̄ ′

i = C+C ′+ C̄i. With 256×4×2 = 211 S-box calls, we fetch the 8 pairs; This is
negligible compared to the complexity of getting the candidates for k0[0, 5, 10, 15]
as explained below.

Meet-In-The-Middle procedure to recover key candidates. We start by examining
two candidate quartets, and extracting on average 28 candidates k0[0, 5, 10, 15]
for each ℓ̃. Indeed, given two quartets (P, P ′, P̄i, P̄

′
i ) and (P, P ′, P̄j , P̄

′
j), we have

three pairs to use for filtering key candidates (P, P ′), (P̄i, P̄
′
i ), (P̄j , P̄

′
j), and each

pair provides an 8-bit filtering.
Following [14], we use a meet-in-the-middle procedure, considering indepen-

dently 216 values of k0[0, 5] and 216 values of k0[10, 15].

1. Create 8 tables T0, T1, T2, T3, T
′
0, T

′
1, T

′
2, T

′
3.

2. For all 216 values of k0[0, 5], compute state z0[0, 1] of P +P ′ (denoted a[0, 1]),
P̄i + P̄ ′

i (denoted b[0, 1]), and P̄j + P̄ ′
j (denoted c[0, 1]). For each ℓ, store the

24-bit value

MC(a[0], a[1], 0, 0)[ℓ] ∥MC(b[0], b[1], 0, 0)[ℓ] ∥MC(c[0], c[1], 0, 0)[ℓ]

in table Tℓ.
3. For all 216 values of k0[10, 15], compute state z0[2, 3] of P + P ′ (denoted

a[2, 3]), P̄i + P̄ ′
i (denoted b[2, 3]), and P̄j + P̄ ′

j (denoted c[2, 3]). For each ℓ,
store the 24-bit value

MC(0, 0, a[2], a[3])[ℓ] ∥MC(0, 0, b[2], b[3])[ℓ] ∥MC(0, 0, c[2], c[3])[ℓ]

in table T ′
ℓ .

4. Look for collisions between Tℓ and T ′
ℓ , for ℓ ∈ {0, 1, 2, 3} (or equivalently for

ℓ̃ ∈ {0, 1, 2, 3}).

Steps 2 and 3 each require roughly the computation of 3×4×216 AES S-boxes.
However, since the same pair (P, P ′) is used for multiple quartets (with different
key guesses for k6), we can precompute the values MC(a[0], a[1], 0, 0) for all keys
k0[0, 5], and MC(0, 0, a[2], a[3]) for all keys k0[10, 15], reducing the complexity
to 2 × 4 × 216 = 219 AES S-boxes. Step 4. requires 218 sequential lookups to
match the lists, equivalent to 218 AES S-boxes. In total we obtain a complexity
equivalent to 220 + 218 = 220.3 AES S-boxes, or equivalently 213.7 6-round AES
encryptions, to recover 210 candidates for k0[0, 5, 10, 15] and ℓ̃.

16



Then, we can further filter the candidates using the remaining quartets.
Indeed, each quartet provides an 8-bit filtering, and testing a key candidate
requires only the evaluation of 2 AES columns (this adds negligible terms to the
complexity). Given a wrong candidate pair (C,C ′), the probability that there
exists a choice of m̃, ℓ̃, k6[0, 7, 10, 13], k0[0, 5, 10, 15] compatible with 8 quartets
is 22+2+32+32−9×8 = 2−4. For the remaining candidates we apply the same
procedure, to recover the other diagonals of k0; this eliminates wrong candidates,
and returns the full key k0 for the right forward pair.

Finally, we obtain an attack with time complexity equivalent to 220 × 232 ×
4× 220.3 = 274.3 AES S-boxes, or 267.7 6-round AES encryptions.

The attack requires on average 232+18.4 = 250.4 encryptions and 2× 220+28 =
249 decryptions, for a total of 250.9 queries.

The memory complexity is bounded by the storage of each structure, i.e. 232
128-bit states. Therefore we obtain:

(D,T,M) = (250.9, 267.7, 232)

A time-memory trade-off. The time complexity of this attack can be slightly
decreased by remarking that in the attack, we apply the MiTM procedure multiple
times to each quartet (P, P ′, P̄i, P̄

′
i ). Indeed, given a pair (P, P ′) with two colliding

anti-diagonals in output, we perform 4× 232 MiTM procedures on 228 existing
quartets (for each activity position m in z4, and each candidate for k6[0, 7, 10, 13]).
Instead, it is possible to precompute 218 candidates for k0[0, 5, 10, 15] induced by
each quartet with one MiTM procedure (with a variant using a single quartet)
for each the 228 quartets.

Step 3 is performed by recovering the list of 218 candidates for k0[0, 5, 10, 15]
corresponding to two different quartets, and intersecting them. Therefore the
time complexity becomes 2 table lookups recovering 218 candidates each, and a
matching step. It is hard to compare the cost of memory accesses to AES rounds,
but since we make a large number of sequential accesses, we approximate it as
equivalent to an S-box computation, resulting in a complexity of 2× 220+2+32+18

S-box evaluations, or 266.4 AES evaluations.
The memory complexity is however increased. Naively, we store 228 sets of

218 candidates, but it is possible to instead store only the sets of candidates for
226 quartets: on average, 4 quartets among the 226 chosen quartets correspond
to each candidate k6[0, 7, 10, 13] and activity position m̃ in z4, and the MiTM
procedure only needs to be applied to 2 of them (the 6 other quartets are used
afterwards to filter the remaining candidates). Given k6[0, 7, 10, 13] and m̃, the
probability that at least 2 corresponding quartets are in the set of chosen quartets
can be approximated to Pr(Poisson(4) ≥ 2) = 0.91; if this is not the case, with
probability 0.09, we discard the candidate (k6[0, 7, 10, 13], m̃). This increases the
expected number of plaintext structures to consider by a factor 1/0.91, but does
not affect the time complexity because we do not process candidates with fewer
than 2 precomputed quartets. This gives a memory complexity of 226+18 = 244

32-bit states, equivalent to 242 128-bit states. In total, this gives:

17



(D,T,M) = (251, 266.4, 242)

4.2 A Key-Recovery Attack Optimized for Time Complexity

This attack reuses the boomerang of subsection 4.1 with a slight change: the
input pair (P, P ′) and returning pair (P̄ , P̄ ′) are required to be inactive in a byte,
in position a ∈ {0, 5, 10, 15}, i.e. in the main diagonal. This reduces the size of
plaintext structures compared to the previous attack, but makes the key-recovery
procedure more time-efficient. Indeed, for pairs following this characteristic, the
first-round transitions depend on three key bytes (k0[5, 10, 15] if a = 0) rather
than four. The attack is depicted in Figure 7 and described in Algorithm 3..

Boomerang analysis. Similarly to the previous attack, the probability that a
pair is a right forward pair is 2−81.4, while the random probability that two
ciphertexts collide in two anti-diagonals is 2−61.4.

In the backward direction, we assume that the difference collapses to a single
byte in anti-diagonal m̃ after one round (state z4); this happens with probability
2−24. This implies that diagonal ℓ̃ of w0 is inactive for the pair (C̄, C̄ ′), with
the same analysis as in the previous attacks. Moreover, we require P̄ + P̄ ′ to be
inactive in byte a; this happens with probability 2−8.

As in the previous attacks, we consider multiple quartets, but the additional
quartets are not required to collide in byte a of P̄ + P̄ ′. Therefore, we use the
same property as previously: assuming that (P, P ′) is a right forward pair, and
that (C̄, C̄ ′) are constructed such that z4 + z̄4 is active only in anti-diagonal m,
then with probability 1, diagonal ℓ̃ of w0 is inactive for the pair (C̄, C̄ ′).

Comparison with the first attack. The boomerang probability is 2−81.4−24−8 =
2−113.4 compared to 2−105.4 in the first attack, and the probability that a wrong
quartet is considered decreases by a factor 28 (corresponding to the condition
P̄ [0] = P̄ ′[0]). Therefore, this increases the data complexity but not the key-
recovery time complexity, since the signal-to-noise ratio, corresponding to the
number of quartets on which the key-recovery is performed, is unchanged. Ad-
ditionally, the structure size is reduced by the same factor 28 ; more plaintext
pairs are needed to find a right forward pair. This also increases the data com-
plexity, but not the key-recovery time complexity, since this does not affect the
signal-to-noise ratio. On the other hand, the key-recovery time complexity for a
single quartet is decreased, because fewer candidates for bytes of k0 need to be
looped upon.

Attack description.

1. Ask for the encryption of structures of 232 plaintexts with different values on
the main diagonal.

18



2. Among each structure, consider pairs (P, P ′) with an inactive byte in the
main diagonal of input; denote the inactive byte position as a. Look for
corresponding pairs of ciphertexts (C,C ′) colliding on two anti-diagonals (for
simplicity we consider them as the first two). Let us denote C̄i = C +∇i

and C̄ ′
i = C ′ +∇i for 1 ≤ i ≤ 232, where ∇i takes the value i on the first

anti-diagonal and the value 0 on other anti-diagonals. Query and store the
decryptions P̄i = E−1(C̄i) and P̄ ′

i = E−1(C̄ ′
i) for all 1 ≤ i ≤ 232.

For each ℓ ∈ {0, 1, 2, 3}, assume that byte ℓ of w0 is inactive for the pair
(P, P ′). Compute the set Sℓ of 216 candidates for k0[5, 10, 15] suggested by
(P, P ′) under this assumption.

3. Consider plaintext pairs (P̄i, P̄
′
i ) that collide on byte a (we consider a = 0 in

the rest of our analysis).
For each ℓ ∈ {0, 1, 2, 3}, consider the 216 candidates for k0[5, 10, 15] in Sℓ,
and verify whether byte ℓ of w0 is inactive for the pair (P̄i, P̄

′
i ). On average,

28 candidates should remain for each ℓ.
Assume that state z4 of (P, P̄i) is active on byte m̃ ∈ {0, 1, 2, 3} of the
first column and deduce 210 candidates for k6[0, 7, 10, 13] ∥ m̃. In total, a
quartet suggests 210 candidates for k0[5, 10, 15] ∥ ℓ and 210 candidates for
k6[0, 7, 10, 13] ∥ m̃ (220 candidates in total).

4. For each quartet and each of its 210 candidates for k6[0, 7, 10, 13]∥m̃, consider
7 other pairs (C̄j , C̄

′
j) such that the first column of z4 of (C, C̄j) is active only

in position m; fetch their corresponding plaintexts (P̄j , P̄
′
j) (stored during

Step 2.).
For each of the 210 candidates k0[5, 10, 15] ∥ ℓ, there is on average a single
value for k0[0] that is compatible with the first pair (P̄j , P̄

′
j). Finally, verify

the 210 candidates k0[0, 5, 10, 15] ∥ ℓ with the remaining pairs (P̄j , P̄
′
j). If a

candidate k0 is compatible with all the quartets, return it as the correct key.

Complexity. The attack queries new strucures of plaintext until a structure
includes a right forward pair, and at least one quartet follows the backward char-
acteristic. Each forward pair defines 232 quartets, and the backward probability
is 2−32, therefore a right forward pair is detected with probability 1− 1/e ≈ 0.63.
When a right forward pair passes this condition, the attack succeeds for the
correct guess of ℓ and m.

A structure of 232 plaintexts contains 232+31−6 = 257 pairs with one colliding
byte in the main diagonal of input. Therefore, we expect 257−81.4 = 2−24.4 right
pairs per structure, and we expect to iterate over 224.4/0.63 ≈ 225 structures on
average before finding a right quartet. This corresponds to 225+57−61.4 = 220.6

candidates (P, P ′) at Step 2. and 220.6+32−8 = 244.6 candidates (P̄i, P̄
′
i ) at Step

3.
In Step 3, we consider on average 220.6 pairs (P, P ′), and each of the 224

pairs (P̄i, P̄
′
i ) colliding in input byte a. First, we iterate over 210 candidates

k0[5, 10, 15], and verify that byte ℓ is inactive in w0 for (P̄i, P̄
′
i ). This requires

6 S-box evaluations for each candidate. Then, we consider 210 state differences
in z4 of (P, P̄i) and deduce 210 corresponding candidates for k6[0, 7, 10, 13]. This

19



Algorithm 3 Low time complexity boomerang attack on 6-round AES.
loop ▷ The expected number of iteration is 225

Query the encryption of a strucuture of 232 plaintexts
for all pairs (P, P ′) colliding on one input byte, and two output anti-diagonals

do
Denote the inactive byte position of P + P ′ as a
for 0 ≤ ℓ < 4 do

Assume w0[ℓ] is inactive for pairs (P, P ′)
Deduce a set Sℓ of 216 candidates for k0[5, 10, 15]

for 0 ≤ i < 232 do
Define C̄i = C +∇i, C̄′

i = C′ +∇i,
Query P̄i = E−1(C̄i), P̄

′
i = E−1(C̄′

i)

for all pairs (P̄i, P̄
′
i ) colliding on input byte a do

for 0 ≤ ℓ < 4 do
Assume w0[ℓ] is inactive for pairs (P, P ′) and (P̄i, P̄

′
i )

Filter the set Sℓ to keep 28 candidates for k0[5, 10, 15]

for 0 ≤ m̃ < 4 do
Assume z4 of pair (P, P̄i) is active only on position m̃
Deduce 28 key candidates for k6[0, 7, 10, 13]

for all candidates for m̃ ∥ k6[0, 7, 10, 13] do
Gather 7 extra quartets s.t. z4 of pair (P, P̄i) is active only on position m
for all candidates for ℓ ∥ k0[5, 10, 15] do

Recover one candidate for k0[0] using one extra quartet
Use remaining quartets to verify k0[0, 5, 10, 15]

20



requires 4 table lookups in the DDT for each candidate. In total, Step 3. requires
on average 220.6+24 × (6× 210 + 4× 210) = 257.9 lookups.

In Step 4, fetching another pair (P̄j , P̄
′
j) compatible with the characteristic

requires 4 AES S-box calls and 1 lookup in the plaintext/ciphertext table of
Step 2: compute the first column in z4 of C from the first anti-diagonal of the
ciphertext C (only once, this cost is amortized), shift by any value on byte of
position m̃, and compute back the corresponding ciphertext C̄j . Since all 232
ciphertexts C̄i were queried during the decryption phase, C̄j belongs to the table
of queried ciphertexts. In total, this costs 220.6+24 × 4 × 210 = 256.6 calls and
220.6+24+10 = 254.6 lookups in the plaintext/ciphertext table, for each of the 8
additional ciphertexts, i.e. 259.6 S-box calls, and 220.6+24+10+3 = 257.6 lookups in
the plaintext/ciphertext table.

The most costly part of the attack is the recovery of 1 average value of
k0[0] from another pair (P̄j , P̄

′
j), given k0[5, 10, 15] ∥ ℓ. To do so, we compute the

difference in y0[5, 10, 15] for the pair (P̄j , P̄
′
j) with 6 S-box evaluations, recover

the only difference y0[0] yielding the correct difference pattern in w0, and fetch
the 1 average value k0[0] satisfying the transition P̄j [0] + P̄ ′

j [0] → y0[0]. In total,
this requires 7 lookups per pair. Then, given another pair (P̄j , P̄

′
j), we verify that

the difference in byte ℓ of w0 is inactive with 8 S-box lookups for each of the 210

candidates k0[0, 5, 10, 15] ∥ ℓ. We expect on average 22 remaining candidates for
k0[0, 5, 10, 15] ∥ ℓ, and the rest of the filtering is of negligible complexity. In total,
this requires (7 + 8)× 220.6+24+10+10 = 268.5 lookups, which corresponds to 261.9

encryptions.

Further optimization. We observe that we process several pairs corresponding to
the same candidate (P, P ′) and the same guess of m̃ ∥ k6[0, 7, 10, 13]. Indeed, for
each (P, P ′), we consider 224 pairs (P̄i, P̄

′
i ), and 210 values of m̃ ∥ k6[0, 7, 10, 13]

for each. On average, there is one pair (P̄i, P̄
′
i ) for each guess of m̃∥k6[0, 7, 10, 13],

but we expect only 0.63× 234 distinct values. Pairs corresponding to repeated
values of m̃ ∥ k6[0, 7, 10, 13] are not necessary: assuming that (P, P ′) is a right
forward pair, we only need one pair (P̄i, P̄

′
i ) corresponding to the correct guess of

m̃ ∥ k6[0, 7, 10, 13] for the attack to succeed. Therefore, we reduce the complexity
by creating a table of size 234 at the beginning of Step 3, and marking candidates
m̃ ∥ k6[0, 7, 10, 13] at the beginning of Step 4 to avoid processing the same guess
twice. This reduces the complexity by a factor 0.63, leading to a total complexity
of 0.63 × 261.9 = 261.2. The storage of the table of 234 bits corresponds to 230

128-bit states (if each bit is stored on one byte); it is not the memory bottleneck.
The complexity can potentially be further reduced by requiring the first

two pairs (P̄j , P̄
′
j) to be inactive on one byte of the main diagonal of P̄j + P̄ ′

j .
This increases the cost of locating the pairs by a factor 26, resulting in 263.6

DDT lookups, and 261.6 plaintext/ciphertext lookups in total to gather the first
two pairs. If this is a negligible in comparison with the rest of attack6, this
6 This assumption actually depends on the architecture on which the attack is imple-

mented: if the time required for a lookup in a table of size 232 is large, this technique
does not result in a better attack.

21



reduces the number of lookups required to test a key candidate from 7 + 8
to 5 + 6 because one S-box is inactive. This reduces the total complexity to
(5 + 6) × 220.6+24+10+10 × 0.63 = 267.5 lookups, which corresponds to 260.9

encryptions.

Total complexity. The data complexity corresponds to 257 encryptions and 2×
220.6+32 = 253.6 decryptions, for a total of 257.1 queries. The memory complexity
is bounded by the storage of the 2× 232 plaintexts P̄i, P̄

′
i , for 0 ≤ i < 232 from a

forward pair (P, P ′).
This gives:

(D,T,M) = (257.1, 260.9, 233)

Experimental verification. We implemented a simplified variant of the attack
against a reduced AES with 4-bit S-boxes, and the experimental results match
the theoretical analysis. The code is available on GitHub7.

5 Incompatibility in a 6-Round Distinguisher

Several previous works presented structural distinguishers on 6-round AES with
complexities between 284 and 297 (see [3] and the references therein). At first
glance, it seems that the boomerang characteristics presented in the previous
sections can easily be modified to obtain a distinguishing attack with a significantly
lower complexity of about 276. ‘All one has to do’ is to modify the forward
characteristic such that after the first round the difference is active only in a
single byte, in order to improve the filtering in the backward direction. The
resulting characteristic is presented in Figure 8.

However, a closer inspection shows that this ‘distinguisher’ is in fact flawed.
The reason is that the characteristic is actually impossible due to an internal
inconsistency in the forward trail between z2 and w2, as is shown in the figure.

We note that the same flaw appears in the shifting retracing boomerang attack
on 5-round AES presented in [13, App. C3]. In that attack, one considers pairs of
plaintexts for 5-round AES with non-zero difference only in bytes 0,5,10,15, and
filters out all pairs except for those whose output difference in bytes 0,7,10,13
is equal to 0 or δL (for some fixed δL). Then, the remaining pairs are further
analyzed, and it is claimed that the proportion of analyzed pairs is 2−31 of the
number of initial pairs. However, in fact there is no point in analyzing pairs
with zero ciphertext difference in bytes 0,7,10,13 since such pairs cannot have
non-zero difference in a single byte after the first round (due to the same internal
inconsistency as the one shown in Figure 8), and so they cannot be part of right
boomerang quartets. As a result, the number of right quartets is reduced by a
factor of 2, and to compensate for this, the data, time and memory complexities
of the attack should be increased by a factor of 20.5.

In order to help avoiding this failure in the future, we include this unsuccessful
attempt here.
7 https://github.com/Cryptosaurus/improved_boomerang

22

https://github.com/Cryptosaurus/improved_boomerang


P

AK0

x0

SB

SR

byte a inactive

z0

4·2−8

MC

byte ℓ inactive

w0

AK1

x1

SB

SR

z1

MC

w1

AK2

x2

SB

SR

z2

4·2−32

MC

diagonal m
inactive

w2

AK3

x3

SB

SR

z3

MC

6·2−48

w3

AK4

x4

SB

SR

z4

MC

w4

AK5

x5

SB

SR

z5

AK6

C

P ̸=P ′
P=P ′

Forward characteristic (P, P ′) Backward characteristic (P̄ , P̄ ′)

Backward characteristic (P, P̄ ), (P ′, P̄ ′)

P

AK0

x0

SB

SR

byte a inactive

z0

2−8

MC

diag. ℓ̃ inactive

w0

AK1

x1

SB

SR

z1

MC

w1

AK2

x2

SB

SR

z2

r=1

MC

P̄ ̸=P̄ ′
P̄=P̄ ′

w2

MC

AK3

x3

SB

SR

z3

MC

w3

AK4

x4

SB

SR

z4

MC

2−24
byte m̃ active

w4

AK5

x5

SB

SR

z5

AK6

C

P ̸=P̄ ,P ′ ̸=P̄ ′
P=P̄ , P ′=P̄ ′

Fig. 7. Boomerang characteristic on 6-round AES with low time complexity.

23



P

AK0

x0

SB

SR

z0

4·2−24

MC

w0

AK1

x1

SB

SR

z1

MC

w1

AK2

x2

SB

SR

z2

IMPOSSIBLE

MC

w2

AK3

x3

SB

SR

z3

MC

6·2−48

w3

AK4

x4

SB

SR

z4

MC

w4

AK5

x5

SB

SR

z5

AK6

C

P ̸=P ′
P=P ′

Forward characteristic (P, P ′) Backward characteristic (P̄ , P̄ ′)

Backward characteristic (P, P̄ ), (P ′, P̄ ′)

P

AK0

x0

SB

SR

z0

MC

w0

AK1

x1

SB

SR

z1

4·2−24

MC

w1

AK2

x2

SB

SR

z2

r=1

MC

P̄ ̸=P̄ ′
P̄=P̄ ′

w2

MC

AK3

x3

SB

SR

z3

MC

w3

AK4

x4

SB

SR

z4

MC

2−24

w4

AK5

x5

SB

SR

z5

AK6

C

P ̸=P̄ ,P ′ ̸=P̄ ′
P=P̄ , P ′=P̄ ′

Fig. 8. An impossible forward pattern for a distinguishing attack.

24



6 Conclusions

In this paper we showed that elements of the retracing boomerang [14] and the
truncated boomerang [3] techniques can be combined, to obtain the lower time
complexity of the truncated boomerang attack along with the lower memory
complexity of the retracing boomerang attack. The resulting attack we obtained
is arguably the best boomerang attack on 6-round AES, and is the second best
attack on 6-round AES after the Square attack. We hope that the new combined
technique will be useful in boomerang attacks on other ciphers, and in particular,
on ciphers which use 6-round AES as a component.

We conclude with a comment on relation to previous work. As was described
in Section 3, the retracing boomerang framework of [14] contains two types of
attacks: shifting retracing boomerang, in which most of the ciphertext pairs are
discarded and the remaining pairs are used to generate new ciphertexts by a
shifting process, and mixing retracing boomerang, in which all ciphertext pairs
are used and the new ciphertexts are obtained by a mixing process (see Figure 4).
In [14], all competitive attacks used the mixing retracing technique, while the
shifting retracing technique had only ‘proof-of-concept’ examples. Our attacks
here use the shifting retracing technique, and thus, provide the first competitive
application of this technique. If we used the mixing retracing approach instead,
our attack would become very similar to the boomeyong attack of Rahman et
al. [25] on 6-round AES, whose complexity is about 279. In this case, the ‘shifting
retracing’ approach yields significantly better results.

Acknowledgements

Part of the research was conducted in the framework of the workshop ‘New
directions in the cryptanalysis of AES’, supported by the European Research
Council under the ERC starting grant agreement n. 757731 (LightCrypt). The
authors thank all the participants of the workshop for valuable discussions and
suggestions. The first author is supported by the DGA. The second and fifth
authors were supported in part by the Center for Cyber, Law, and Policy in
conjunction with the Israel National Cyber Directorate in the Prime Minister’s
Office and by the Israeli Science Foundation through grants No. 880/18 and
3380/19. The third author was supported by the European Research Council
under the ERC starting grant agreement n. 757731 (LightCrypt) and by the BIU
Center for Research in Applied Cryptography and Cyber Security in conjunction
with the Israel National Cyber Bureau in the Prime Minister’s Office. The
fourth author is partially supported by ANR grants ANR-20-CE48-001 and
ANR-22-PECY-0010.

References

1. Bao, Z., Guo, C., Guo, J., Song, L.: TNT: How to tweak a block cipher. In: Advances
in Cryptology - EUROCRYPT 2020. Lecture Notes in Computer Science, vol. 12106,
pp. 641–673. Springer (2020)

25



2. Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key recov-
ery attacks on reduced-round AES with practical data and memory complexities.
In: Advances in Cryptology - CRYPTO 2018. Lecture Notes in Computer Science,
vol. 10992, pp. 185–212. Springer (2018)

3. Bariant, A., Leurent, G.: Truncated boomerang attacks and application to AES-
based ciphers. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 3–35. Springer (2023)

4. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack—rectangling the serpent.
In: Advances in Cryptology—EUROCRYPT 2001: International Conference on
the Theory and Application of Cryptographic Techniques Innsbruck, Austria, May
6–10, 2001 Proceedings 20. pp. 340–357. Springer (2001)

5. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563, https:
//doi.org/10.1007/BF00630563

6. Biryukov, A.: The boomerang attack on 5 and 6-round reduced AES. In: Dob-
bertin, H., Rijmen, V., Sowa, A. (eds.) Advanced Encryption Standard - AES,
4th International Conference, AES 2004, Bonn, Germany, May 10-12, 2004, Re-
vised Selected and Invited Papers. Lecture Notes in Computer Science, vol. 3373,
pp. 11–15. Springer (2004). https://doi.org/10.1007/11506447_2, https:
//doi.org/10.1007/11506447_2

7. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Advances in Cryptology - ASIACRYPT 2009. Lecture Notes in
Computer Science, vol. 5912, pp. 1–18. Springer (2009)

8. Cho, J., Choi, K.Y., Dinur, I., Dunkelman, O., Keller, N., Moon, D., Veidberg,
A.: WEM: A new family of white-box block ciphers based on the Even-Mansour
construction. In: Topics in Cryptology - CT-RSA 2017. Lecture Notes in Computer
Science, vol. 10159, pp. 293–308. Springer (2017)

9. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table:
a new cryptanalysis tool. In: Advances in Cryptology–EUROCRYPT 2018: 37th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29-May 3, 2018 Proceedings, Part II 37. pp.
683–714. Springer (2018)

10. Daemen, J., Rijmen, V.: The design of Rijndael, vol. 2. Springer (2002)
11. Derbez, P., Euler, M., Fouque, P.A., Nguyen, P.H.: Revisiting related-key boomerang

attacks on aes using computer-aided tool. In: International Conference on the Theory
and Application of Cryptology and Information Security. pp. 68–88. Springer (2022)

12. Dunkelman, O., Ghosh, S., Keller, N., Leurent, G., Marmor, A., Mollimard, V.:
Partial sums meet FFT: improved attack on 6-round AES. Eurocrypt 2024, to
appear (2024)

13. Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: The retracing boomerang attack.
Journal of Cryptology, to appear. Available at Cryptology ePrint Archive (2019)

14. Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: The retracing boomerang
attack. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 280–309. Springer (2020)

15. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the
kasumi cryptosystem used in gsm and 3g telephony. In: Advances in Cryptology–
CRYPTO 2010: 30th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 15-19, 2010. Proceedings 30. pp. 393–410. Springer (2010)

16. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D.A., Whiting,
D.: Improved cryptanalysis of Rijndael. In: Fast Software Encryption, FSE 2000.
Lecture Notes in Computer Science, vol. 1978, pp. 213–230. Springer (2000)

26

https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/11506447\_2
https://doi.org/10.1007/11506447_2
https://doi.org/10.1007/11506447_2
https://doi.org/10.1007/11506447_2


17. Grassi, L.: Probabilistic mixture differential cryptanalysis on round-reduced AES.
In: Selected Areas in Cryptography - SAC 2019. Lecture Notes in Computer Science,
vol. 11959, pp. 53–84. Springer (2019)

18. Jean, J.: TikZ for Cryptographers. https://www.iacr.org/authors/tikz/
(2016)

19. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY
framework. In: Advances in Cryptology - ASIACRYPT 2014. Lecture Notes in
Computer Science, vol. 8874, pp. 274–288. Springer (2014)

20. Jean, J., Nikolic, I., Peyrin, T., Seurin, Y.: The deoxys AEAD family. J. Cryptol.
34(3), 31 (2021)

21. Keliher, L., Sui, J.: Exact maximum expected differential and linear probability for
two-round Advanced Encryption Standard. IET Inf. Secur. 1(2), 53–57 (2007)

22. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round mars and serpent. In: International Workshop on Fast Software Encryption.
pp. 75–93. Springer (2000)

23. Mennink, B., Neves, S.: Optimal PRFs from blockcipher designs. IACR Trans.
Symmetric Cryptol. 2017(3), 228–252 (2017)

24. Murphy, S.: The return of the cryptographic boomerang. IEEE Transactions on
Information Theory 57(4), 2517–2521 (2011)

25. Rahman, M., Saha, D., Paul, G.: Boomeyong: Embedding yoyo within boomerang
and its applications to key recovery attacks on AES and Pholkos. IACR Trans.
Symmetric Cryptol. 2021(3), 137–169 (2021)

26. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: ASIACRYPT
2017, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10624, pp.
217–243. Springer (2017)

27. of Standards, U.N.I., Technology: Advanced Encryption Standard. Federal Informa-
tion Processing Standards publication no. 197 (2001)

28. Wagner, D.: The boomerang attack. In: International Workshop on Fast Software
Encryption. pp. 156–170. Springer (1999)

29. Yan, X., Tan, L., Xu, H., Qi, W.: Improved mixture differential attacks on 6-
round AES-like ciphers towards time and data complexities. Journal of Information
Security and Applications 80, 103661 (2024)

30. Zhang, W., Wu, W., Feng, D.: New results on impossible differential cryptanalysis
of reduced AES. In: Information Security and Cryptology - ICISC 2007. Lecture
Notes in Computer Science, vol. 4817, pp. 239–250. Springer (2007)

27

https://www.iacr.org/authors/tikz/

	Improved Boomerang Attacks on 6-Round AES

