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Abstract
Online authenticated encryption has been considered of practical relevance in light-weight
environments due to low latency and constant memory usage. In this paper, we propose a
new tweakable block cipher-based online authenticated encryption scheme, dubbed ZLR, and
its domain separation variant, dubbed DS-ZLR. ZLR and DS-ZLR follow the Encrypt-Mix-
Encrypt paradigm. However, in contrast to existing schemes using the same paradigm such
as ELmE and CoLM, ZLR and DS-ZLR enjoy n-bit security by using larger internal states
with an efficient ZHash-like hashing algorithm. In this way, 2n-bit blocks are processed
with only a single primitive call for hashing and two primitive calls for encryption and
decryption, when they are based on an n-bit tweakable block cipher using n-bit (resp. 2n-bit)
tweaks for ZLR (resp. DS-ZLR). Furthermore, they support pipelined computation as well
as online nonce-misuse resistance. To the best of our knowledge, ZLR and DS-ZLR are the
first pipelineable tweakable block cipher-based online authenticated encryption schemes of
rate-2/3 that provide n-bit security with online nonce-misuse resistance.
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1 Introduction

1.1 Authenticated encryption

An authenticated encryption (AE) scheme is a symmetric encryption scheme that achieves
both confidentiality and authenticity of data. Recent AE schemes accept associated data (AD)
that should be authenticated but not encrypted, sometimes calledAEADschemes.Throughout
a significant amount of research and standardization process (e.g., the CAESAR competition
and NIST’s lightweight cryptography competition), AE schemes have evolved in manyways.
Although conventional AE standards (e.g., GCM [24] and CCM [29]) are built on top of block
ciphers, recent AE schemes are based on not only a conventional block cipher but also various
cryptographic primitives such as public permutations [1, 7, 11], tweakable block ciphers [5,
14, 19, 20, 23, 27], and fork ciphers [3, 4]. In addition, many analyses are being made on
security requirements for special environments such as resource-constrained and quantum
computing environments. We now have various AE security notions including nonce-misuse
security, released unverified plaintext (RUP) security, and so on.

1.2 NAE, MRAE, and OAE

A nonce is an arbitrary value that should never be reused during cryptographic communica-
tion. Using a nonce in AE is a typical way of providing variability to the ciphertext and an
AE scheme using nonces is called a nonce-based AE (NAE). On the other hand, only a single
nonce repetition might completely break the security of NAE schemes. For example, GCM
leaks its hash key as soon as a single nonce is used twice. Therefore, it is crucial to guarantee
the uniqueness of nonces in NAE schemes. In order to avoid nonce repetition, NAE schemes
either maintain an internal state to change the nonce for every encryption or choose a nonce
as a random value using a sufficiently large amount of entropy. However, it is hard to find and
reject all faulty implementations of NAE schemes. It might be challenging to maintain the
uniqueness of nonces in a certain environment, for example, a stateless device where good
quality randomness is not available.

To address this problem, Rogaway and Shrimpton [28] formalized the notion of misuse-
resistant AE (MRAE). An MRAE scheme provides a reasonable level of security even if
nonces are repeated. Later, the notion of nonce misuse resistance is refined by viewing the
adversarial distinguishing advantage as a function of themaximumnumber ofmulti-collisions
in nonce values or the number of queries with repeated nonces (amongst all encryption
queries). There has been a considerable amount of research on the design of MRAE schemes
including SIV [28], AEZ [17], and GCM-SIV [15]. However, using MRAE in practice has a
fundamental problem in efficiency that such schemes can never be online; in order to achieve
MRAE security, each bit of the ciphertext should be affected by every input bit, so one can
start encryption only after accepting all the input blocks. The online property and the MRAE
security are both highly desirable in resource-constrained environments, where it seems hard
to achieve both of them at the same time.

As a compromise between security and efficiency, Fleischmann et al. [13] proposed a
security notion that slots between NAE and MRAE, namely, online AE (OAE) security. In
an OAE scheme, the i-th ciphertext block depends only on a key and the first i blocks of the
plaintext. Then, if we use a nonce as the first input block, OAE security is exactly the same
as NAE security in the nonce-respecting scenario. In the case where nonces are repeated, an
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OAE scheme loses its privacy only up to the longest common prefix. On the other hand, OAE
security guarantees data integrity even in the nonce-misuse setting.

Later, Hoang et al. [18] proposed an alternative security notion for online authenticated
encryption, dubbed OAE2. They argued that the existing OAE security does not capture
resistance to common-prefix-secret-suffix (CPSS) attacks, while OAE2 security guarantees
better security by extending the unit of computation from blocks to segments. However,
we believe that OAE2 security is not yet a perfect replacement for OAE since the proposed
OAE2-secure constructions require large ciphertext expansions or achieve limited onlineness
without providing full security against CPSS attacks. Therefore, in this paper, we focus on
OAE-secure constructions.

1.3 Pipelineablility

Suppose that a message block x ∈ X and a counter i ∈ I is processed by an algorithm
f : X×I → Y , where f is decomposed into f1 : X×I → Z and f2 : Z×I → Y such that
f (x, i) = f2( f1(x, i), i). If f1(x ′, i+1) can be computedwithout knowing f (x, i), then f is
calledpipelineable. Pipelineability is regarded as advantageous for hardware implementation.
Most authenticated encryption schemes based on the Encrypt-Mix-Encrypt paradigm, such
as ELmE [12] and CoLM [22], are pipelinable.

1.4 Tweakable block cipher based AE

Tweakable block ciphers (TBCs) are useful for constructing encryption modes since their
additional input space gives variety to every encryption. SCT [27], �CB [21], Deoxys-I/II
[20], LOTUS/LOCUS-AEAD [9] and LightOCB [10] are AE schemes using TBCs as their
building primitives. All these schemes provide n-bit security for the block length n whereas
most of (conventional) block cipher-basedAE schemes provide only n/2-bit security, namely,
the birthday bound security (with respect to the block size). TBC is also advantageous as
a primitive for hashing modes because it allows for the use of both the tweak space and
the message space as the input space, resulting in a reduced number of primitive calls per
message block. As authenticated encryption can be considered a combination of encryption
and hashing (for authentication), using tweakable block ciphers is one of the promising ways
of building an authenticated encryption scheme that achieves both better efficiency and higher
security at the same time. ZAE [19], DoveSIV [14], ZOCB and ZOTR [5] are examples of such
TBC-based AEs.

1.5 Our contribution

The focus of this paper is put on the construction of tweakable block cipher-based online
AE schemes with full n-bit OAE security and reasonable efficiency; we propose a new
tweakable block cipher-based online authenticated encryption scheme, dubbed ZLR (ZHash–
Luby–Rackoff) and its domain separation variant, dubbed DS-ZLR. ZLR follows the Encrypt-
Mix-Encrypt paradigm with a novel mixing function that allows online computation. This
approach has been already used in previous constructions such as ELmE and CoLM, but all
of those are block cipher-based, birthday bound secure, and of rate 1/2, where the rate is
defined by the number of input blocks processed per primitive call. ZLR is a tweakable block
cipher-based AE scheme that adopts the structure of ZMAC to reduce primitive calls and
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Table 1 Comparison of ZLR and DS-ZLR with existing AE modes. n denotes the block size and t denote the
tweak size

AEAD Primitive # bits per call Security Type Pipelineability Ref.

AD Msg

GCM BC n n/2 n/2 NAE ✓ [24]

OCB3 BC n n n/2 NAE ✓ [21]

mGCM BC n n/2 n NAE ✓ [8]

GCM-SIV BC n n/2 n/2 MRAE ✓ [15]

COPA BC n n/2 n/2 OAE ✗ [2]

CoLM BC n n/2 n/2 OAE ✓ [22]

ELmE BC n n/2 n/2 OAE ✓ [12]

LOCUS-AEAD TBC† n n/2 n NAE ✓ [9]

LOTUS-AEAD TBC† n n/2 n NAE ✓ [9]

Light-OCB TBC† n n n NAE ✓ [10]

�CB TBC n n n NAE ✓ [21]

SCT TBC n n n ∼ n/2‡ MRAE ✓ [27]

DoveSIV TBC n + t n(n + t)/(2n + t) n ∼ n/2‡ MRAE ✗ [14]

ZAE TBC n + t n(n + t)/(2n + t) n MRAE ✓ [19]

ZLR TBC 2n 2n/3 n OAE ✓ This work

DS-ZLR TBC 2n 2n/3 n OAE ✓ This work

†Ideal tweakable block ciphers with small tweaks
‡The security of SCT and DoveSIV degrades from n-bit to n/2-bit depending on how much nonce is misused

uses a Luby–Rackoff-like structure to encrypt internal states into the ciphertext blocks. More
precisely, for an associated data A and amessageM ,ZLR computes its tag T = ZMAC′(A, M)

where ZMAC′ is a variant of ZMACwith similar structure.While computing T , ZLRmaintains
the internal state S, and encrypts T and S by a 2n-bit pseudo-random permutation which is
instantiated with two TBC calls in a Luby–Rackoff-like structure. In this way, ZLR processes
2n-bit blocks with only a single TBC call for hashing and two TBC calls for encryption and
decryption, achieving rate 2/3, when it is based on an n-bit tweakable block cipher using
n-bit tweaks. Furthermore, it supports pipelined computation as well as online nonce-misuse
resistance.

We also propose a domain-separated variant of ZLR, dubbedDS-ZLR. The design principle
of DS-ZLR is similar to ZLR, while the underlying tweakable block cipher uses a larger tweak
space thanZLR, which allows an efficient initialization phase.We believe thatZLR andDS-ZLR
will be useful in protocols where high security and efficiency are required simultaneously,
especially in protocols where latency is critical and online properties are required (e.g.,
network protocols).

Table 1 compares ZLR and DS-ZLR to well-known AE schemes based on (tweakable)
block ciphers. For simplicity of comparison, we assume that all the underlying tweakable
block ciphers use tweaks larger than blocks (i.e., t ≥ n), except DS-ZLR using 2n-bit tweaks.
Compared to block cipher based AE schemes with online security such as COPA, CoLM and
ELmE, ZLR enjoys stronger security and higher rate, while it might suffer from performance
loss by using TBCs and require larger memory for masks and internal states. There are a
bunch of TBC based AE schemes that achieve full n-bit security and some of them also
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achieve higher rate by utilizing tweak spaces of TBCs, but still, none of them provide OAE
security.

To the best of our knowledge, ZLR and DS-ZLR are the first pipelineable tweakable block
cipher-based OAE schemes of rate 2/3 that provide n-bit security.

2 Preliminaries

2.1 Notation

Throughout this paper,we fix a positive integer n such that n ≥ 3.Wewrite 0 to denote 0n (i.e.,
n-bit string of all zeros). Let �n� is the largest integerm such thatm ≤ n. Letwn = n−2� n

2 �,
which is 0 if n is even and 1 otherwise. The set {0, 1}n is sometimes regarded as a set of
integers {0, 1, . . . , 2n − 1} by converting an n-bit string an−1 · · · a1a0 ∈ {0, 1}n to an integer
an−12n−1+· · ·+a12+a0.We also identify {0, 1}n with a finite fieldGF(2n)with 2n elements,
assuming that 2 cyclically generates all the nonzero elements ofGF(2n). We write {0, 1}∗ to
denote the set of all binary strings including the empty string. For A, B ∈ {0, 1}∗, |A| denotes
the length of A, and A ‖ B denotes the concatenation of A and B. For a string A ∈ {0, 1}∗,
(A[1], A[2], . . . , A[m]) n←− A denotes that A is partitioned into strings A[1], . . . , A[m],
where |A[1]| = · · · = |A[m − 1]| = n and |A[m]| ≤ n. For i = 1, . . . ,m, let

A[: i] = A[1] ‖ . . . ‖ A[i].
For positive integers p and q such that p ≤ q , we write [q] = {1, . . . , q} and [p, q] =

{p, p + 1, . . . , q}. For a non-empty set X , X ←$ X denotes that X is drawn uniformly at
random from X . The set of all sequences that consist of b pairwise distinct elements of X is
denoted X ∗b. For a > b, let (a)b = a(a − 1) . . . (a − b + 1), and (a)0 = 1 by convention.
If |X | = a, then (a)b becomes the size of |X |∗b

2.2 Security notions

2.2.1 TPRPs

A tweakable permutation with tweak space W and message space X is a mapping P̃ :
W × M → M such that, for any tweak W ∈ W , x → P̃(t, x) is a permutation of
X . Throughout this paper, we will fix X = {0, 1}n , and write TP(W, n) to mean the set
of all tweakable permutations with tweak space W and message space {0, 1}n . Let Ẽ :
K × W × {0, 1}n → {0, 1}n be a keyed tweakable permutation with key space K, where
Ẽ(K ,W , ·) is a permutation for each K ∈ K and W ∈ W . We will denote ẼK (W , X) for
E(K ,W , X). A (q, t)-distinguisher against Ẽ is an algorithm D with oracle access to an
n-bit tweakable permutation and its inverse, making at most q oracle queries, running in time
at most t , and outputting a single bit. The advantage of D in breaking the TPRP-security of
Ẽ , i.e., in distinguishing Ẽ from a uniform random tweakable permutation π̃ ←$ TP(W, n),
is defined as

Advtprp
Ẽ

(D) =
∣
∣
∣Pr

[

K ←$ K : D ẼK ,Ẽ−1
K = 1

]

− Pr
[

π̃ ←$ TP(W, n) : Dπ̃ ,π̃−1 = 1
]∣
∣
∣ .

We define Advtprp
Ẽ

(q, t) as the maximum of Advtprp
Ẽ

(D) over all (q, t)-distinguishers

against Ẽ , and when considering information theoretic security, we drop t .
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2.2.2 OAEs

Given key space K, associate data (AD) spaceA, message spaceM, ciphertext space C, and
tag space T , a online authenticated encryption (OAE) scheme is defined by a tuple

� = (K,A,M, C, Enc,Dec),

where Enc and Dec denote encryption and decryption schemes, respectively. More precisely,

Enc : K × A × M −→ C × T ,

Dec : K × A × C × T −→ M ∪ {⊥} ,

where for Enc(K , A, M) = (C, T ), we require |C | = |M | and

Dec(K , A,C, T ′) =
{

M if T = T ′,
⊥ otherwise.

We will write EncK (A, M) to denote Enc(K , A, M) and DecK (A,C) to denote
Dec(K , A,C). Throughout this paper, we will fix A = M = C = {0, 1}∗ and T = {0, 1}n .

The goal of an adversary D against the OAE security of � is to distinguish the real world
(EncK ,DecK ) (using a random key K , unknown to D) and the ideal world. We assume that
D does not make a redundant query, including a decryption query that reuses any previous
encryption query. Given an associated data A ∈ A and a message M ∈ M, let $ be a random
function that outputs

$2n(A, M[1]) ‖ $2n(A, M[: 2]) ‖ . . . ‖ $2n(A, M) ‖ $n(A, M),

where (M[1], . . . , M[m]) 2n←− M , and $d denotes a random function fromA×M to {0, 1}d .
Then, the ideal world oracles are ($, Rej), where Rej always returns ⊥ for every decryption
query.1 The advantage of D breaking the OAE-security of � is defined as

Advoae� (D) =
∣
∣
∣Pr

[

K ←$ K : DEncK ,DecK = 1
]

− Pr
[

D$,Rej = 1
]∣
∣
∣ .

A (qe, qd , σ, l, t)-adversary against the OAE security of � is an algorithm that makes at
most qe encryption queries to its first oracle and at most qd decryption queries to its second
oracle, and running in time at most t , where the length of each encryption/decryption query
is at most l blocks of 2n bits, and the total length of the encryption/decryption queries is at
most σ blocks of 2n bits. We define Advoae� (qe, qd , σ, l, t) as the maximum of Advoae� (D)

over all (qe, qd , σ, l, t)-adversaries D against �. When we consider information theoretic
security, we will drop the parameter t .

2.3 Coefficient-H technique

Wewill usePatarin’s coefficient-H technique [26]. Thegoal of this technique is to upper bound
the adversarial distinguishing advantage between a real construction and its ideal counterpart.
In the real and the ideal worlds, an information-theoretic adversary D is allowed to make
queries to certain oracles (with the same oracle interfaces), denotedOreal andOideal, respec-
tively. The interaction between the adversary D and the oracle determines a “transcript”;
it contains all the information obtained by D during the interaction. We call a transcript τ

1 The ideal encryption oracle $ does not accept decryption queries, while this definition is enough to prove
security against adversaries without making redundant queries.
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attainable if the probability of obtaining τ in the ideal world is non-zero. We also denote
Tid (resp. Tre) the probability distribution of the transcript τ induced by the ideal world
(resp. the real world). By extension, we use the same notation to denote a random variable
distributed according to each distribution.

We partition the set of attainable transcripts � into a set of “good” transcripts �good
such that the probabilities to obtain some transcript τ ∈ �good are close in the real world
and the ideal world, and a set �bad of “bad” transcripts such that the probability to obtain
any τ ∈ �bad is small in the ideal world. With this partition, the coefficient-H technique is
summarized by the following lemma.

Lemma 1 Let � = �good � �bad be a partition of the set of attainable transcripts, where
there exists a non-negative real number ε1 such that for any τ ∈ �good,

Pr [Tre = τ ]

Pr [Tid = τ ]
≥ 1 − ε1,

and there exists ε2 such that Pr[Tid ∈ �bad] ≤ ε2. Then for any distinguisher D, one has
∣
∣Pr

[

DOreal = 1
] − Pr

[

DOideal = 1
]∣
∣ ≤ ε1 + ε2.

We refer to [16] for the proof of Lemma 1.

3 New authenticated encryptionmodes

In this section, we propose new online deterministic authenticated encryption modes, dubbed
ZLR and DS-ZLR. Both ZLR and DS-ZLR are built on top of a tweakable block cipher

Ẽ : K × W × N → N ,

and a linear function

ρ : S × N × N → S × N × N ,

where S = {0, 1}2n is a internal state space, W = {0, 1}t and N = {0, 1}n are the tweak
and message space for a given Ẽ , respectively. We also call ρ as a state update function.
Additionally, for given ρ(S, R, X) = (S′, Y , Z), we assume that there is a special inversion
function ρ̂−1 such that

ρ̂−1(S, Y , Z) = (S′, R, X).

For given Ẽ and ρ, we denote the mode as

ZLR[Ẽ, ρ] = (K,A,M, ZLR.Enc, ZLR.Dec),

and

DS-ZLR[Ẽ, ρ] = (K,A,M,DS-ZLR.Enc,DS-ZLR.Dec),

where a key space K, arbitrary associated data space and message space A = M = {0, 1}∗,
encryption algorithm ZLR.Enc (and DS-ZLR.Enc), and decryption algorithm ZLR.Dec (and
DS-ZLR.Dec), which are deterministic.

Given a key K ∈ K, we assume that a length of a message M ∈ M is divided by 2n, and
so does for an associated data A ∈ A. For the general case, it is sufficient to use one-to-one
padding algorithms; for example,

ozp(X) = X ‖ 1 ‖ 02n−1+(|X | mod 2n).
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By using ozp (or any other proper padding algorithm), one can make lengths of M and A
multiples of 2n.

Now, let A = A[1] ‖ A[2] ‖ . . . ‖ A[a] and M = M[1] ‖ M[2] ‖ . . . ‖ M[m] where
|A[α]| = |B[β]| = 2n for α ∈ [a] and β ∈ [b]. We denote A[α] = AL [α] ‖ AR[α] and
M[β] = ML [β] ‖ MR[β] where AL [α], AR[α], ML [β], MR[β] ∈ {0, 1}n . Figures1, 2 and
3 show graphical representations and pseudocodes of ZLR.Enc and DS-ZLR.Enc. While ZLR
needs additionalmasking computation compared toDS-ZLR,DS-ZLR needs the primitive with
larger tweak space. Therefore, ZLR and DS-ZLR have trade-off in the computational cost and
the primitive constraints.

3.1 ZLR

ZLR maintains and updates a 2n-bit state S by proceeding each associated data block or
message block in the order.We also denote the i-th state as S[i]with the initial state S[0] = 0.
For given tweakable block cipher Ẽ with a secret key K ∈ K and tweak spaceW = {0, 1}n ,
at first, ZLR pre-calculates masking values �i for i = 1, . . . , 6 that will be utilized for both
encryption and decryption. To achieve the claimed security, at least two random variables are
required for each system of equations in the collision. At the same time, we want to reduce
the number of primitive calls needed to produce the maskings. Considering all of the above,
ZLR generates masking values in the following way:

�1 = ẼK (0, 0), �3 = ẼK (0, 2), �5 = �1 ⊕ �3,

�2 = ẼK (0, 1), �4 = ẼK (0, 3), �6 = �2 ⊕ �4.

For given associated date A = A[1] ‖ A[2] ‖ . . . ‖ A[a], message M = M[1] ‖ M[2] ‖
. . . ‖ M[m] and i ∈ [a +m], we define i-th state S[i] and intermediate values X [i], Y [i] and
Z [i] as follows:
1. for an associated data block with given α ∈ [a],

X [α] = ẼK (AR[α] ⊕ 2α−1�2, AL [α] ⊕ 2α−1�1),

(S[α], Y ′[α], Z ′[α]) = ρ(S[α − 1], X [α], AR[α] ⊕ 2α−1�2);
2. for a message block with given β ∈ [m],

X [β + a] = ẼK (MR[β] ⊕ 2β−1�4, ML [β] ⊕ 2β−1�3),

(S[β + a], Y [β], Z [β]) = ρ(S[β + a − 1], X [β + a], MR[β] ⊕ 2β−1�4).

Note that Y ′[α] and Z ′[α] have no usage and the construction uses S[α] only. Hence
one may gain slightly better efficiency by implementing the encryption algorithm to calcu-
late S[α] only for the case of associated data blocks. Using the above intermediate values,
encryption/decryption process can be described as follows:

1. In the encryption algorithm of ZLR, let (A, M) be a queried data of ZLR.Enc. For β ∈ [m],
the β-th ciphertext block C[β] = CL [β] ‖ CR[β] is obtained by following calculations:

CR[β] = ẼK (Y [β], Z [β]) ⊕ 2β−1�6,

CL [β] = ẼK (ẼK (Y [β], Z [β]), Y [β]) ⊕ 2β−1�5.

After the encryption phase, S[a + m] is the final internal state and denote S[a + m] =
U ‖ V for U , V ∈ {0, 1}n . Using S[a + m], an n-bit authentication tag T is derived by
T = ẼK (V ,U ).
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Fig. 1 Algorithm ZLR.Enc (left) and DS-ZLR.Enc (right) based on Ẽ with a key K

123



W. Choi et al.

Fig. 2 ZLR algorithm

2. In the decryption algorithm of ZLR, the order of blocks to process ZLR.Dec is same to
ZLR.Enc, however, the calculations for each block are processing in the reverse order. Let
(A,C, T ) be a queried data of ZLR.Dec. At first, obtain the a-th internal state S[a] by
processing associated data blocks by the same way as ZLR.Enc. For β ∈ [m], obtain the
intermediate valuesY [β] and Z [β]byusingβ-th ciphertext blockC[β] = CL [β]‖CR[β]:

Y [β] = Ẽ−1
K (CR[β] ⊕ 2β−1�6,CL [β] ⊕ 2β−1�5),

Z [β] = Ẽ−1
K (Y [β],CR[β] ⊕ 2β−1�6).

Note that the (β + a − 1)-th internal state S[β + a − 1] is calculated at the point that
(β+a−1)-th ciphertext block has been decrypted. The other intermediate value X [β+a]
and the partial message block MR[β] are derived by using Y [β], Z [β], and S[β + a− 1]
with the inversion function ρ̂−1:

(X [β + a], MR[β]) = ρ̂−1(S[β + a − 1], Y [β], Z [β]).
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Fig. 3 DS-ZLRAlgorithm.We denote Ẽ t1
K (t2,m) = ẼK (Padt (t1‖t2),m) and Ẽ−1,t1

K (t2, c) = Ẽ−1
K (Padt (t1‖

t2), c)

Remark that, by the definition,

X [β + a] = ẼK (MR[β] ⊕ 2β−1�4, ML [β] ⊕ 2β−1�3),

and therefore,

ML [β] = Ẽ−1
K (MR[β] ⊕ 2β−1�4, X [β + a]) ⊕ 2β−1�3.

After all ciphertext blocks are decrypted, the final internal state S[a + b] = U ‖ V is
given and the algorithm checks whether T = ẼK (V ,U ) or not. If T �= ẼK (V ,U ),
the algorithm only returns ⊥, and otherwise, it returns the decrypted message M =
M[1] ‖ . . . ‖ M[m].

3.2 DS-ZLR

DS-ZLR, similarly to ZLR, maintains and updates a 2n-bit state S, by denoting the i-th state
as S[i] with the initial state S[0] = 0. We also define Padt is a padding algorithm to make a
t-bit string. It can be anything but for simplicity, we define Padt as for X ∈ {0, 1}t−d with
0 ≤ d < t , Padt (X) returns X ‖0d .Wewrite A as an element inZ or in {0, 1}d for an arbitrary
d interchangeably, so that A ‖ B with A ∈ Z makes sense with an appropriate conversion
into binary numbers. For given tweakable block cipher Ẽ with a secret key K ∈ K and large
enough tweak space W = {0, 1}t , (i − 1)-th internal state S[i − 1], and i-th message (or
associated data) block M[i] (A[i]), respectively, we define i-th state S[i], i-th intermediate
values X [i], Y [i] and Z [i] as follows:
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1. For an associated data block with given α ∈ [a],
X [α] = ẼK (Padt (0 ‖ α ‖ AR[α]), AL [α]),

(S[α], Y ′[α], Z ′[α]) = ρ(S[α − 1], X [α], AR[α]),
2. For a message block with given β ∈ [m],

X [β + a] = ẼK (Padt (1 ‖ β ‖ MR[β]), ML [β]),
(S[β + a], Y [β], Z [β]) = ρ(S[β + a − 1], X [β + a], MR[β]).

Similarly to ZLR, encryption/decryption process can be described as follows:

1. In the encryption algorithm of DS-ZLR, let (A, M) be a queried data of DS-ZLR.Enc. For
β ∈ [m], the β-th ciphertext block C[β] = CL [β] ‖ CR[β] is obtained by following
calculations:

CR[β] = ẼK (Padt (2 ‖ β ‖ Y [β]), Z [β]),
CL [β] = ẼK (Padt (3 ‖ β ‖ CR[β]), Y [β]).

After the encryption phase, S[a+m] is the final internal state and denote S[a+m] = U‖V
forU , V ∈ {0, 1}n . Using S[a+m], an n-bit authentication tag T is derived by a following
calculation:

T = ẼK (Padt (4 ‖ 0l ‖ V ),U ),

where l implies a length of a + m in binary manner.
2. In the decryption algorithm of DS-ZLR, let (A,C, T ) be a queried data of ZLR.Dec. At

first, obtain the a-th internal state S[a] by processing associated data blocks by the same
way as ZLR.Enc. For β ∈ [m], obtain the intermediate values Y [β] and Z [β] by using
β-th ciphertext block C[β] = CL [β] ‖ CR[β]:

Y [β] = Ẽ−1
K (Padt (3 ‖ β ‖ CR[β]),CL [β]),

Z [β] = Ẽ−1
K (Padt (2 ‖ β ‖ Y [β]),CR[β]).

We also assume to know the (β +a−1)-th internal state S[β +a−1]when (β +a−1)-
th ciphertext block has been decrypted. The other intermediate value X [β + a] and the
partial message block MR[β] are derived by using Y [β], Z [β], and S[β + a − 1] with
the inversion function ρ̂−1:

(X [β + a], MR[β]) = ρ̂−1(S[β + a − 1], Y [β], Z [β]).
Remark that, by the definition,

X [β + a] = ẼK (Padt (1 ‖ β ‖ MR[β]), ML [β]),
and therefore,

ML [β] = Ẽ−1
K (Padt (1 ‖ β ‖ MR[β]), X [β + a]).

After all ciphertext blocks are decrypted, the final internal state S[a + b] = U ‖ V
is given and the algorithm checks whether T = ẼK (Padt (4 ‖ 0l ‖ V ),U ) or not. If
T �= ẼK (Padt (4 ‖ 0l ‖ V ),U ), the algorithm only returns ⊥, and otherwise, it returns
the decrypted message M = M[1] ‖ . . . ‖ M[m].
Note that to cover tweak inputs, we should have t ≥ n + �log2(max(a,m))� + 3.
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Fig. 4 Algorithm ZLR.Enc based on Ẽ with a key K

3.3 State update function

Remark that the state update function ρ : S×N ×N → S×N ×N should be pairedwith the
inversion function ρ̂−1 : S×N ×N → N ×N such that, for given ρ(S, X , R) = (S′, Y , Z),
it always satisfies that ρ̂−1(S, Y , Z) = (S′, X , R). Also remark that S = {0, 1}2n and
N = {0, 1}n . For the efficiency of the algorithm, it is desirable that ρ is as simple as possible.
On theother hand, ifρ is too simple that it cannot guarantee the security, the entire construction
may be vulnerable to distinguishing attacks. In summary, the state update function should
satisfy the following properties.

1. It must be invertible.
2. Every input bit must affect the next state, Y value and Z value.
3. Every output bit must affect the previous state, X value and R value (in inverse).

We need to define ρ (and ρ̂−1) to make a probability of bad events small enough and at
the same time, we want ρ to be as simple as possible.

In this paper, we define ρ as follows: for SL , SR, X , R ∈ {0, 1}n ,
ρ(SL ‖ SR, X , R) = (S′

L ‖ S′
R, SR ⊕ X ⊕ R, SL ,⊕X), (1)

where S′
L = 2·(SL⊕X⊕R) and S′

R = SR⊕X . For a suchρ and given SL , SR, Y , Z ∈ {0, 1}n ,
it is easy to see that

ρ̂−1(SL ‖ SR, Y , Z) = (S′
L ‖ S′

R, X , R),

where X = SL ⊕ Z , R = SL ⊕ SR ⊕ Y ⊕ Z , S′
L = 2 · (SL ⊕ X ⊕ R) and S′

R = SR ⊕ X .
With this construction, we can compute the internal variables in ZLR; for α ∈ [m], Y [α] and
Z [α] can be formulated by following equations,

Y [α] = MR[α] ⊕ 2α−1�4 ⊕
a+α
⊕

β=1

X [β], (2)

Z [α] = X [a + α] ⊕
a

⊕

β=1

2a+α−β
(

X [β] ⊕ AR[β] ⊕ 2β−1�2
)
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⊕
α−1
⊕

β=1

2α−β
(

X [a + β] ⊕ MR[β] ⊕ 2β−1�4
)

. (3)

Also, the final state S = U ‖ V can be formulated by following equations,

U =
a

⊕

β=1

2a+m+1−β
(

X [β] ⊕ AR[β] ⊕ 2β−1�2
)

⊕
m

⊕

β=1

2m+1−β
(

X [a + β] ⊕ MR[β] ⊕ 2β−1�4
)

, (4)

V =
a+m
⊕

β=1

X [β]. (5)

4 Security of DS-ZLR

We claim OAE-security bound for DS-ZLR by the following theorems.

Theorem 1 Let l, w are non-negative integers such that w ≥ n + �log2(l)� + 3, let Ẽ :
K×{0, 1}w ×{0, 1}n → {0, 1}n be a tweakable block cipher and ρ be a state update function
given in Sect.3.3. Then for nonnegative integers qe, qd , σ , and t such that qe, σ < 2n−1, we
have

Advoae
DS-ZLR[Ẽ,ρ](qe, qd , σ, l, t) ≤ 2qd

2n
+ 6q2 + 8σ 2 + σ l

22n
+ Advtprp

Ẽ
(3σ + q, t + t ′),

where q = qe + qd and t ′ is the time complexity necessary to compute Ẽ for 3σ + q queries.

For a better understanding, we give a brief overview of the proof in this section. Since
proving the security bound of DS-ZLR is easier, we will provide our proof of Theorem 1
first. The core idea of our proof is simple; we use the standard coefficient-H technique. We
define bad events, namely bad1 and bad2, to avoid any collision between two primitives.
Additional information on the internal states will be freely given to an adversary at the end
of the distinguishing game, but before deciding the final output. The probability of the bad
events, which handle the collisions, can be computed using these internal states. In particular,
upper bounding the probability of bad2 needs some tedious computation, while all we need
to do is simply dividing all possible cases and bounding each case. We obtain Theorem 1
from (10), Lemmas 2 and 3.

4.1 Proof setup

Fix a (qe, qd , σ, l, t)-adversary A against DS-ZLR[Ẽ, ρ]. Up to the TPRP security of Ẽ , Ẽ
can be replaced by random tweakable permutation π̃ . Precisely, the cost of this replacement
is upper bounded by

Advtprp
Ẽ

(3σ + q, t + t ′),

where t ′ is the time complexity necessary to compute Ẽ for 3σ + q queries.
Let $ denote the online random function defined as in Sect. 2.2. A has to distinguish

(ZLR.Enc, ZLR.Dec) and ($, Rej) using qe encryption queries and qd decryption queries. In
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the real world, the adversary A interacts with DS-ZLR = (ZLR.Enc, ZLR.Dec). In the ideal
world, A interacts with ($, Rej).

In the i-th encryption query, A queries with the associated data Ai and the message Mi ,
and get the ciphertext Ci and the tag Ti . In the j-th decryption query, A queries with the
associated data A′

j , the ciphertext C
′
j , and the tag T ′

j and get b′
j = M ′

j or ⊥. Then let

τe = (Ai , Mi ,Ci , Ti )i∈[qe],
τd = (A′

j ,C
′
j , T

′
j , b

′
j ) j∈[qd ],

denote the list of the encryption queries and the decryption queries, respectively. We can
assume that the adversary queries all the decryption queries after all the encryption queries
are done because of the following reason.

• AdversaryA′ assume that all the decryption queries would return⊥, and queries encryp-
tion queries with this assumption.

• If one of the decryption queries actually return M ′
j for some j ∈ [qd ], thenA andA′ has

the same distinguishing advantage 1.
• If all the decryption queries return⊥, thenA andA′ has the samedistinguishing advantage

since there is no change of the information.

Therefore, let q = qe + qd and we can rearrange the queries and their answers as
{

(Ai , Mi ,Ci , Ti )i∈[qe], (A j ,C j , Tj , b j ) j∈[qe+1,q]
}

.

Recall that |Ai | mod 2n = |Mi | mod 2n = |Ci | mod 2n = 0 for all i ∈ [q]. Now for
i ∈ [q], set:

(Ai [1], . . . , Ai [ai ]) 2n←− Ai ;
(Ci [1], . . . ,Ci [mi ]) 2n←− Ci .

Similarly, for i ∈ [qe], set:
(Mi [1], . . . , Mi [mi ]) 2n←− Mi .

Let li = ai + mi for i ∈ [q], then σ = ∑

i∈[q] li and l = max {li : i ∈ [q]}.
We define some useful index set that

PA = {(i, α) : i ∈ [q], α ∈ [ai ]} ;
PM = {(i, α) : i ∈ [qe], α ∈ [mi ]} ;
PC = {(i, α) : i ∈ [q], α ∈ [mi ]} ,

which denote the set of the indices of the associated data, the message, and the ciphertext,
respectively. Now we reveal the actual internal states Xi [α], Yi [α], and Zi [α] variables in
the real world. We set for the encryption queries:

• for (i, α) ∈ PA, Xi [α] = π̃(Padt (0 ‖ α ‖ Ai,R[α]), Ai,L [α]);
• for (i, α) ∈ PM , Xi [ai + α] = π̃(Padt (1 ‖ α ‖ Mi,R[α]), Mi,L [α]);
• for (i, α) ∈ PC , Yi [α] = π̃−1(Padt (3 ‖ α ‖ Ci,R[α]),Ci,L [α]);
• for (i, α) ∈ PC , Zi [α] = π̃−1(Padt (2 ‖ α ‖ Yi [α]),Ci,R[α]).
On the other hand, in the ideal world, for i ∈ [qe] and α ∈ [li ], Xi [α] is chosen satisfying

following rules. For i ∈ [qe],
• if α ∈ [ai ] and there exists j < i such that Ai [α] = A j [α], set Xi [α] = X j [α];
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• ifα ∈ [mi ] and there exists j < i such thatMi [α] = Mj [α], set Xi [ai+α] = X j [a j+α];
• if α ∈ [ai ], sample Xi [α] ←$ {0, 1}n different from X j [α] for all j ∈ [qe] satisfying

a j ≥ α, Ai [α] �= A j [α], and Ai,R[α] = A j,R[α];
• if α ∈ [mi ], sample Xi [ai + α] ←$ {0, 1}n different from X j [a j + α] for all j ∈ [qe]

satisfying a j < α, Mi [α] �= Mj [α], and Mi,R[α] = Mj,R[α];
• otherwise, sample Xi [α] ←$ {0, 1}n uniformly at random.

Now Yi [α] and Zi [α] for i ∈ [qe] and α ∈ [mi ] can be given by (2) and (3), and those
would be revealed. For i ∈ [qe + 1, q] and α ∈ [mi ], Yi [α] and Zi [α] are chosen satisfying
following rules:

• if there exists j < i such that Ci [α] = C j [α], set Yi [α] = Y j [α] and set Zi [α] = Z j [α];
• if there exists j < i such that Ci [α] �= C j [α] and Ci,R[α] = C j,R[α], sample Y j [α] ←$

{0, 1}n different from Yk[α];
• otherwise, sample Yi [α] ←$ {0, 1}n and Zi [α] ←$ {0, 1}n uniformly at random.

Finally, A attains the following transcript:

τ = {

(Ai , Mi , Xi , Yi , Zi ,Ci , Ti )i∈[qe], (Ai , Xi , Yi , Zi ,Ci , Ti , bi )i∈[qe+1,q]
}

.

4.2 Defining bad events

In this section, we define bad events. For i ∈ [q], letUi and Vi be the final state Si [li ], which
is defined in (4) and (5). To describe the bad cases, we will define some functions which take
the indices as input. Let

• I1 = {

(i, α) ∈ PA : ∀ j < i, Ai [α] �= A j [α]};
• I2 = {

(i, α) ∈ PM : ∀ j < i, Mi [α] �= Mj [α]};
• I3 = I4 = {

(i, α) ∈ PC : ∀ j < i,Ci [α] �= C j [α]}.
For r ∈ [4], let fr , gr : Ir →({0, 1}n)2 be functions where

f1(i, α) = (Ai,R[α], Ai,L [α]), g1(i, α) = (Ai,R[α], Xi [α]),
f2(i, α) = (Mi,R[α], Mi,L [α]), g2(i, α) = (Mi,R[α], Xi [ai + α]),
f3(i, α) = (Yi [α], Zi [α]), g3(i, α) = (Yi [α],Ci,R[α]),
f4(i, α) = (Ci,R[α], Yi [α]), g4(i, α) = (Ci,R[α],Ci,L [α]).

Note that fr gives the pair of the tweak and the input of each tweakable block cipher call,
and gr gives the pair of the tweak and the output of each tweakable block cipher call. For
r ∈ [4], we define the following events.

• ICr ⇔ there exists ((i, α), ( j, α)) ∈ I∗2
r such that i �= j and fr (i, α) = fr ( j, α);

• OCr ⇔ there exists ((i, α), ( j, α)) ∈ I∗2
r such that i �= j and gr (i, α) = gr ( j, α),

and let

• IC5 ⇔ there exists distinct i, j ∈ [q] such that (Vi ,Ui ) = (Vj ,Uj );
• OC5 ⇔ there exists distinct i, j ∈ [qe] such that (Vi , Ti ) = (Vj , Tj ).

A transcript τ is defined as bad if one of the following events occurs:

1. bad1 ⇔ there exists i, j ∈ [qe] and α ∈ [min
{

mi ,m j
}] such that (Ai , Mi [: α]) �=

(A j , Mj [: α]) and Ci [α] = C j [α];
2. bad2 ⇔ ∨

1≤r≤5(ICr ∨ OCr ).

We denote �bad as a set of all bad transcripts.
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4.3 Analyzing good transcripts

In this section, we will prove the following lemma.

Lemma 2 For any τ /∈ �bad,

Pr [Tre = τ ]

Pr [Tid = τ ]
≥ 1 − 2qd

2n
.

Proof Fix τ /∈ �bad. For the proof, we define following sets,

• I ′
3 = {

(i, α) : i ∈ [qe + qd ], α ∈ [mi ],∀ j < i, (Ai ,Ci [: α]) �= (A j ,C j [: α])}.
• W1[α, v] = {

(i, α) ∈ I1 : Ai,R[α] = v
}

;
• W2[α, v] = {

(i, α) ∈ I2 : Mi,R[α] = v
}

;
• W3[α, v] = {

(i, α) ∈ I ′
3 : Ci,R[α] = v

}

;
• W4[α, v] = {

(i, α) ∈ I ′
3 : Yi [α] = v

}

,

and following notations,

• u j [α, v] = ∣
∣Wj [α, v]∣∣ for j ∈ [4];

• u5[α] = ∣
∣
{

(i, α) ∈ I ′
3 : ∀ j < i,Ci [α] �= C j [α]}∣∣;

• ue6[v] = |{i ∈ [qe] : Vi = v}|;
• ud6 [v] = |{i ∈ [qe + 1, qe + qd ] : Vi = v}|.
For j ∈ [4], let

We
j [α, v] = {

(i, α) ∈ Wj [α, v] : i ∈ [qe]
}

,

and

Wd
j [α, v] = Wj [α, v] \ We

j [α, v].

We also denote uej [α, v] =
∣
∣
∣We

j [α, v]
∣
∣
∣ and udj [α, v] =

∣
∣
∣Wd

j [α, v]
∣
∣
∣, so we have u j [α, v] =

uej [α, v] + udj [α, v].
First, we consider the ideal world. The probability that ciphertext C1, . . . ,Cqe is given is
1

22n|B| where B = {(Ai , Mi [: α]) : 1 ≤ i ≤ qe, α ∈ [mi ]}, and one that tags T1, . . . , Tqe are

given is 1
2nqe . Let X,Y,Z be the distribution of (X1, . . . , Xqe+qd ), (Yqe+1, . . . , Yqe+qd ), and

(Zqe+1, . . . , Zqe+qd ), respectively. First, Xi [α] and X j [α] are given differently if Ai,R[α] =
A j,R[α] orMi,R[α] = Mj,R[α]. Therefore, for each v ∈ {0, 1}n and α ∈ [ai ], the probability
that Xi [α]’s for Ai,R[α] = v are given according to associated data is 1

(2n)u1[α,v] . Similarly,

for each v ∈ {0, 1}n and α ∈ [mi ], one that corresponding Xi [α]’s for Mi,R[α] = v are given
according to message is 1

(2n)u2[α,v] . Hence,

Pr
[

X = (X1, . . . , Xqe+qd )
] =

∏

v∈{0,1}n
1≤α≤l

1

(2n)u1[α,v]
×

∏

v∈{0,1}n
1≤α≤l

1

(2n)u2[α,v]
.

Also, Yi [α] and Y j [α] are given differently if Ci,R[α] = C j,R[α], while {Yi }1≤i≤qe is
determined from (X1, . . . , Xqe+qd ). Therefore, for each v ∈ {0, 1}n and α ∈ [l], the proba-
bility that corresponding Yi [α]’s are given is 1

(2n−ue3[α,v])
ud3 [α,v]

. Hence similarly from the case

above,
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Pr
[

Y = (Yqe+1, . . . , Yqe+qd )|X
] =

∏

v∈{0,1}n
1≤α≤l

1

(2n − ue3[α, v])ud3 [α,v]
.

Now, since Zi [α]’s are given uniformly at random in decryption queries,

Pr
[

Z = (Zqe+1, . . . , Zqe+qd )
] =

∏

1≤α≤l

1

(2n)u5[α] .

Hence, we can conclude the following probability.

Pr [Tid = τ ] = 1

22n|B| × 1

2nqe
×

∏

v∈{0,1}n
1≤α≤l

1

(2n)u1[α,v]
×

∏

v∈{0,1}n
1≤α≤l

1

(2n)u2[α,v]

×
∏

v∈{0,1}n
1≤α≤l

1

(2n − ue3[α, v])ud3 [α,v]

×
⎛

⎝
∏

1≤α≤l

1

(2n)u5[α]

⎞

⎠ . (6)

Now, we consider the real world. First, in decryption queries, the probability attaining ⊥
for every answer is bounded below by

∏

v∈{0,1}n

(

1 − 1

2n − ue6[v]
)ud6 [v]

≥
(

1 − 1

2n − qe

)qd
≥ 1 − qd

2n − qe
.

Since the case bad2 does not exist in any good transcript, the number of tweakable block
ciphers in all queries that has

1. (0 ‖ α) ‖ v as tweak is u1[α, v];
2. (1 ‖ α) ‖ v as tweak is u2[α, v];
3. (2 ‖ α) ‖ v as tweak is u3[α, v];
4. (3 ‖ α) ‖ v as tweak is u4[α, v];
5. (4 ‖ 0) ‖ v as tweak is ue6[v],
for fixed v ∈ {0, 1}n . Therefore,

Pr [Tre = τ ] ≥
∏

1≤α≤l
v∈{0,1}n

1

(2n)u1[α,v](2n)u2[α,v](2n)u3[α,v](2n)u4[α,v]

×
∏

v∈{0,1}n
1

(2n)ue6[v]
. (7)

For simplicity, we use the following formula.

∏

v∈{0,1}n
1

(2n)ue6[v]
≥

∏

v∈{0,1}n
1

(2n)u
e
6[v] = 1

(2n)qe
. (8)

Also,
∏

1≤α≤l

(2n)u5[α] ≥
∏

1≤α≤l

(2n)u5[α] ≥
∏

1≤α≤l

(2n)ud4 [α]. (9)
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Therefore by (6), (7), (8) and (9),

Pr [Tre = τ ]

Pr [Tid = τ ]
≥ 22n|B|

∏

v∈{0,1}n
1≤α≤l

(2n)ue3[α,v]
∏

v∈{0,1}n
1≤α≤l

(2n)ue4[α,v]
×

(

1 − qd
2n − qe

)

≥ 1 − qd
2n − qe

≥ 1 − 2qd
2n

.

The last inequality follows that

|B| ≥
∑

v∈{0,1}n
1≤α≤l

ue3[α, v],

so

2n|B| ≥
∏

v∈{0,1}n
1≤α≤l

(2n)u
e
3[α,v] ≥

∏

v∈{0,1}n
1≤α≤l

(2n)ue3[α,v],

and similarly,

2n|B| ≥
∏

v∈{0,1}n
1≤α≤l

(2n)ue4[α,v].

It completes the proof. ��

4.4 Bounding the probability of bad events

In this section, we will now find the upper bound on the probability that each bad event will
occur in the ideal world. Fix i, j ∈ [qe] and α ∈ [min

{

mi ,m j
}] such that (Ai , Mi [: α]) �=

(A j , Mj [: α]). Then, since Ci [α] and C j [α] are chosen uniformly at random, one has

Pr
[

bad1
] ≤ σ l

22n
. (10)

We now claim the following lemma.

Lemma 3

Pr
[

bad2 ∧ ¬bad1
] ≤ 8σ 2 + 6q2

22n
.

Let

IC =
∨

1≤i≤5

ICi , OC =
∨

1≤i≤5

OCi .

Note that bad2 = IC∨OC. We can upper bound the probability of each collision event as
follows.

Lemma 4

Pr [IC] ≤ 4q2 + 6σ 2

22n
.
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Lemma 5

Pr [OC] ≤ 2q2e + 2σ 2

22n
.

Then, Lemma 3 follows from Lemmas 4 and 5. Finally, by Lemmas 3, 2, and (10), we can
conclude that Theorem 1 holds.

Before we start, we will use the following lemma through the whole proof.

Lemma 6 Fix (i, α) ∈ I1. Then

Pr [Xi [α] = Q] ≤ 2

2n
,

for any Q ∈ {0, 1}n. Similarly, fix (i, α) ∈ I2. Then

Pr [Xi [ai + α] = Q] ≤ 2

2n
,

for any Q ∈ {0, 1}n.
Proof Let J be the set of j ∈ [q] such that If Ai,R[α] = A j,R[α] but Ai,L [α] �= A j,L [α],
then Xi [α] is sampled uniformly at random from {0, 1}n\ {

X j [α] : j ∈ J
}

. In this case,

Pr [Xi [α] = Q] ≤ 1

2n − |J | ≤ 2

2n
.

We can apply the similar argument when Mi [α] �= Mj [α] for some α. ��
Proof of Lemma 4 We calculate each probability of ICi for 1 ≤ i ≤ 5.

1. Fix ((i, α), ( j, α)) ∈ (I1)∗2. Then one should have Ai [α] �= A j [α] and f1(i, α) �=
f1( j, α). Therefore, we get

Pr [IC1] = 0.

2. Fix ((i, α), ( j, α)) ∈ I∗2
2 . Then Mi [α] �= Mj [α] so f2(i, α) �= f2( j, α). Therefore, we

get

Pr [IC2] = 0.

3. Fix ((i, α), ( j, α)) ∈ (I3)∗2 where i ≤ j . First, assume that j ∈ [qe + 1, qe + qd ]. Then
f3(i, α) = f3( j, α) if and only if

(

1 0
0 1

) (

Y j [α]
Z j [α]

)

=
(

Yi [α]
Zi [α]

)

.

By the sampling process of Y and Z variables in the ideal world,

Pr
[

Yi [α] = Y j [α] ∧ Zi [α] = Z j [α]] ≤ 1

(2n − σ)2
≤ 4

22n
.

Therefore, we have

Pr [ f3(i, α) = f3( j, α)] ≤ 4

22n
,

when j ∈ [qe + 1, qe + qd ]. Suppose j ∈ [qe]. Then, by (2) and (3), f3(i, α) = f3( j, α)

if and only if
{⊕ai+α

γ=1 Xi [γ ] ⊕ ⊕a j+α

γ=1 X j [γ ] = P;
⊕ai+α

γ=1 2ai+α−γ Xi [γ ] ⊕ ⊕a j+α

γ=1 2a j+α−γ X j [γ ] = Q,
(11)
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where

P = Mi,R[α] ⊕ Mj,R[α],

Q =
ai⊕

γ=1

2ai+α−γ Ai,R[γ ] ⊕
α−1
⊕

γ=1

2α−γ Mi,R[γ ]

⊕
a j

⊕

γ=1

2a j+α−γ A j,R[γ ] ⊕
α−1
⊕

γ=1

2α−γ Mj,R[γ ].

Let us take a look at each of the subcase below.

(a) If ai < a j , (11) can be rewritten as
{

X j [ai ] ⊕ X j [a j ] = P ′;
2a j−ai X j [ai ] ⊕ X j [a j ] = Q′,

(

1 0
0 1

) (

Y j [α]
Z j [α]

)

=
(

P ′
Q′

)

,

for some P ′ and Q′ which are independent of X j [ai ] and X j [a j ]. Then, when j ∈
[qe],

Pr [ f3(i, α) = f3( j, α)] = 1

22n
,

by the sampling process of X j [ai ] and X j [a j ]. Therefore, we have

Pr [ f3(i, α) = f3( j, α)] ≤ 4

22n
.

(b) If there exists two different γ1, γ2 ≤ α such that Ai [γ1] �= A j [γ1] and Ai [γ2] �=
A j [γ2], (11) can be rewritten as

{

X j [γ1] ⊕ X j [γ2] = P ′;
2a j+α−γ1X j [γ1] ⊕ 2a j+α−γ2 X j [γ2] = Q′,

for some P ′ and Q′ which are independent of X j [γ1] and X j [γ2]. Therefore, we get

Pr [ f3(i, α) = f3( j, α)] ≤ 1

22n
,

by the sampling process of X j [γ1] and X j [γ2]. We can apply the similar argument
if (Ai , Mi [: α]) and (A j , Mj [: α]) are differ in two or more blocks.

(c) Let ai = a j and Mi [α] �= Mj [α] while (Ai , Mi [α − 1]) = (A j , Mj [α − 1]), Then,
(11) can be rewritten as

{

Xi [ai + α] ⊕ X j [ai + α] = Mi,R[α] ⊕ Mj,R[α];
Xi [ai + α] ⊕ X j [ai + α] = 0,

so one should have Xi [ai + α] = X j [ai + α] and Mi,R[α] = Mj,R[α] which
contradicts the rules for choosing X variables. Therefore,

Pr [ f3(i, α) = f3( j, α)] = 0,

andone can apply the similar argument if there exists only one different block between
(Ai , Mi [: α]) and (A j , Mj [: α]).
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All in all, we get

Pr [IC3] ≤ 4|I3|2
22n

.

4. Fix ((i, α), ( j, α)) ∈ I∗2
4 . Without loss of generality, let i ≤ j . We distinguish some

sub-cases as below.

(a) Let i, j ∈ [qe]. Note that Ci [α] �= C j [α] and Mi [: α] �= Mj [: α] since
((i, α), ( j, α)) ∈ I∗2

4 . Let h ∈ [α] the index such that Mi [h] �= Mj [h]. Then
f4(i, α) = f4( j, α) if and only if

{

Ci,R[α] = C j,R[α];
Xi [h] = Mi,R[α] ⊕ Mj,R[α] ⊕ ⊕

γ �=ai+h Xi [γ ] ⊕ ⊕a j+α

γ=1 X j [γ ].
Since Ci,R[α] is chosen uniformly at random from {0, 1}n and Xi [h] is chosen uni-
formly at random from the set of size at least 2n − σ , one has

Pr [ f4(i, α) = f4( j, α)] ≤ 1

2n(2n − σ)
≤ 2

22n
.

(b) Let i ∈ [qe], j ∈ [qe + 1, q]. If Ci,R[α] = C j,R[α], then Yi [α] �= Y j [α] by the
sampling process. In this case, Pr [ f4(i, α) = f4( j, α)] = 0. If Ci,R[α] �= C j,R[α],
then similarly Pr [ f4(i, α) = f4( j, α)] = 0. Therefore,

Pr [ f4(i, α) = f4( j, α)] = 0.

(c) Let i, j ∈ [qe + 1, q]. If Ci,R[α] = C j,R[α], then Yi [α] �= Y j [α] by the sampling
process, so the probability is zero. If Ci,R[α] �= C j,R[α], then the probability is
obviously zero.

To sum up, we have

Pr [IC4] ≤ 2 |I4|2
22n

.

5. Fix i, j ∈ [q]∗2. Without loss of generality, let i ≤ j . We restore X values and R values
by the ρ̂−1. Then since there is no redundant query, Ai �= A j or Mi �= Mj . Let Ai �= A j .
We can apply the similar argument whenMi �= Mj . We can consider the following cases.

(a) If ai > a j + 1, then (Vi ,Ui ) = (Vj ,Uj ) if and only if

(

2ai+mi−a j 2ai+mi−a j−1

1 1

) (

Xi [a j + 1]
Xi [a j + 2]

)

=
(

P ′
Q′

)

,

for some P ′ and Q′ which are independent of Xi [a j + 1] and Xi [a j + 2]. By the
samplingprocess of Xi [a j+1] and Xi [a j+2], in this casePr [(Vi ,Ui ) = (Vj ,Uj )

] ≤
4
22n

. We can apply the similar argument when a j > ai + 1 and get the same result.
(b) Assume that ai = a j + 1 and Ai [β] �= A j [β] for some β ∈ [a j ]. Then (Vi ,Ui ) =

(Vj ,Uj ) if and only if

(

2mi+ai−β+1 2mi+1

1 1

) (

Xi [β]
Xi [ai ]

)

=
(

P ′
Q′

)

,
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for some P ′ and Q′ which are independent of Xi [β] and Xi [ai ]. By Lemma 6, we
can conclude

Pr
[

(Vi ,Ui ) = (Vj ,Uj )
] ≤ 4

22n
.

(c) Assume that ai = a j + 1 and Ai [: a j ] = A j . If Mi [β] �= Mj [β] or there exists
β ∈ [mi ], we can use the randomness of Xi [ai + β] and Xi [ai ]. More precisely,
(Vi ,Ui ) = (Vj ,Uj ) if and only if

(

2mi−β+1 2mi+1

1 1

)(

Xi [ai + β]
Xi [ai ]

)

=
(

P ′
Q′

)

,

for some P ′ and Q′ which are independent of Xi [ai + β] and Xi [ai ]. If Mi = Mj ,
we have two cases, Xi [ai ] = 0 or Xi [ai ] �= 0. Xi [ai ] �= 0 implies Vi �= Vj (see (5).).
Also, if Xi [ai ] = 0, then Ui = Uj if and only if

mi⊕

β=1

2m+1−β(Xi [ai + β] ⊕ Mi,R[β]) ⊕ 2m+1Ai,R[ai ] = 0.

Therefore, (Vi ,Ui ) = (Vj ,Uj ) if and only if
(

1 0
0 1

)(

Xi [ai ]
Xi [ai + mi ]

)

=
(

0
Q′

)

,

where

Q′ =
mi−1
⊕

β=1

2m+1−β(Xi [ai + β] ⊕ Mi,R[β]) ⊕ Mi,R[mi ] ⊕ 2m+1Ai,R[ai ],

(see (4)) Therefore, by the sampling process of Xi [ai ] and Lemma 6,

Pr
[

(Vi ,Ui ) = (Vj ,Uj )
] ≤ 4

22n
.

We can apply the similar argument when a j = ai + 1 and A j [: ai ] = Ai .
(d) Assume that ai = a j . If there exist α, β ∈ [ai ] such that Ai [α] �= A j [α] and

Ai [β] �= A j [β], (Vi ,Ui ) = (Vj ,Uj ) if and only if
(

2ai+mi−α+1 2ai+mi−β+1

1 1

) (

Xi [α]
Xi [β]

)

=
(

P ′
Q′

)

,

for some P ′ and Q′ which are independent of Xi [α] and Xi [β]. Then by Lemma 6,
Pr

[

(Vi ,Ui ) = (Vj ,Uj )
] ≤ 4

22n
. If there exists only one α ∈ [ai ] such that Ai [α] �=

A j [α], then (Vi ,Ui ) = (Vj ,Uj ) if and only if
(

2ai+mi−α+1 2a j+m j−α+1

1 1

) (

Xi [α]
X j [α]

)

=
(

P ′
Q′

)

,

for some P ′ and Q′ which are independent of Xi [α] and X j [α]. Therefore,

Pr
[

(Vi ,Ui ) = (Vj ,Uj )
] ≤ 1

2n(2n − 1)
≤ 4

22n
.
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By the above analysis, we have

Pr [IC5] ≤ 4q2

22n
.

All in all, we have

Pr [IC] ≤ 4q2 + 6σ 2

22n
.

��
Proof of Lemma 5 We calculate each probability of OCi for 1 ≤ i ≤ 5.

1. Let ((i, α), ( j, α)) ∈ I∗2
1 . Then one should have Ai [α] �= A j [α] and g1(i, α) �= g2(α).

Therefore, we have

Pr [OC1] = 0.

2. Let ((i, α), ( j, α)) ∈ I∗2
2 . Then Mi [α] �= Mj [α] so g2(i, α) �= g2( j, α). Therefore, we

have

Pr [OC2] = 0.

3. Since IC4 = OC3,

Pr [OC3] ≤ 2 |I4|2
22n

.

4. Let ((i, α), ( j, α)) ∈ I∗2
4 . Then Ci [α] �= C j [α] so g4(i, α) �= g4( j, α). Therefore, we

have

Pr [OC4] = 0.

5. Let (i, j) ∈ [qe]∗2. We distinguish two sub-cases.

(a) First, assume mi �= m j . Without loss of generality, we can assume that mi < m j . In
this case, (Vi , Ti ) = (Vj , Tj ) if and only if

{

X j [a j + m j ] = Vi ⊕ ⊕a j+m j−1
α=1 X j [α];

Tj = Ti .

Since X j [a j +m j ] is chosen uniformly at random from the set of size at least 2n −qe
and Tj is chosen uniformly at random from {0, 1}n , one has

Pr
[

(Vi , Ti ) = (Vj , Tj )
] ≤ 1

2n(2n − qe)
≤ 2

22n
.

(b) Now assume that mi = m j . Since there is no redundant query, there exists at least
one index h such that Mi [h] �= Mj [h]. In this case, (Vi , Ti ) = (Vj , Tj ) if and only
if

{

X j [a j + h] = Vi ⊕ ⊕

α �=a j+h X j [α];
Tj = Ti .

Since X j [a j + h] is chosen uniformly at random from the set of size at least 2n − qe
and Tj is chosen uniformly at random from {0, 1}n , one has

Pr
[

(Vi , Ti ) = (Vj , Tj )
] ≤ 1

2n(2n − qe)
≤ 2

22n
.
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To sum up, we have

Pr [OC5] ≤
∑

(i, j)∈[qe]∗2

2

22n
≤ 2q2e

22n
.

Now using |I1| + |I2| ≤ σ , |I1| + |I3| ≤ σ , and |Ii | ≤ σ for 1 ≤ i ≤ 4, we conclude
the lemma. ��

5 Security of ZLR

Theorem 2 Let Ẽ : K × {0, 1}n × {0, 1}n → {0, 1}n be a tweakable block cipher and ρ be
a state update function given in Sect.3.3. Then for nonnegative integers qe, qd , σ , l, and t
such that qe, σ < 2n−1, we have

Advoae
ZLR[Ẽ,ρ](qe, qd , σ, l, t) ≤ 6σ + 2q + 2qd

2n
+ σ l + 48σ 2 + 18qσ + 6q2

22n

+ Advtprp
Ẽ

(3σ + q, t + t ′),

where q = qe + qd and t ′ is the time complexity necessary to compute Ẽ for 3σ + q queries.

5.1 Proof setup

The proof of Theorem 2 is similar to the proof of DS-ZLR mode. Fix a (qe, qd , σ, l, t)-
adversaryA against ZLR[Ẽ, ρ]. Up to the TPRP security of Ẽ , Ẽ can be replaced by random
tweakable permutation π̃ with the cost of

Advtprp
Ẽ

(3σ + q, t + t ′),

where t ′ is the time complexity necessary to compute Ẽ for 3σ + q queries.
Let $ denote the online random function defined as in Sect. 2.2. A has to distinguish

(ZLR.Enc, ZLR.Dec) and ($, Rej) using qe encryption queries and qd decryption queries. In
the real world, A interacts with ZLR = (ZLR.Enc, ZLR.Dec). In the ideal world, A interacts
with ($, Rej).

In the i-th encryption query, A queries with the associated data Ai and the message Mi ,
and get the ciphertext Ci and the tag Ti . In the j-th decryption query, A queries with the
associated data A′

j , the ciphertext C
′
j , and the tag T ′

j and get b′
j = M ′

j or ⊥. Then let

τe = (Ai , Mi ,Ci , Ti )i∈[qe]
τd = (A′

j ,C
′
j , T

′
j , b

′
j ) j∈[qd ],

denote the list of the encryption queries and the decryption queries, respectively. Let q =
qe + qd and we can rearrange the queries and their answers as

{

(Ai , Mi ,Ci , Ti )i∈[qe], (A j ,C j , Tj , b j ) j∈[qe+1,q]
}

.

Now for i ∈ [q], set:
(Ai [1], . . . , Ai [ai ]) 2n←− Ai ;
(Ci [1], . . . ,Ci [mi ]) 2n←− Ci .
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Similarly, for i ∈ [qe], set:
(Mi [1], . . . , Mi [mi ]) 2n←− Mi .

Let li = ai + mi for i ∈ [q], then σ = ∑

i∈[q] li and l = max {li : i ∈ [q]}.
To make the proof simple, we reveal the actual tuple of the masks (�i )i∈[4] toA at the end

of the interaction in the realworld, or dummy tuple ofmasks (�i )i∈[4] that is chosen randomly
from ({0, 1}n)∗4 in the ideal world. With this information, A can compute �5 = �1 ⊕ �3

and �6 = �2 ⊕ �4. We define some useful index sets that

PA = {(i, α) : i ∈ [q], α ∈ [ai ]} ;
PM = {(i, α) : i ∈ [qe], α ∈ [mi ]} ;
PC = {(i, α) : i ∈ [q], α ∈ [mi ]} ,

which denote the set of the indices of the associated data, the message, and the ciphertext,
respectively. For each (i, α) ∈ PA, set

(Ai,L [α], Ai,R[α]) n←− Ai [α].
For each (i, α) ∈ PM , set

(Mi,L [α], Mi,R[α]) n←− Mi [α].
Also, for each (i, α) ∈ PC , set

(Ci,L [α],Ci,R[α]) n←− Ci [α].
For each (i, α) ∈ PA, let

Âi,L [α] = Ai,L [α] ⊕ 2α−1�1, Âi,R[α] = Ai,R[α] ⊕ 2α−1�2.

For each (i, α) ∈ PM , let

M̂i,L [α] = Mi,L [α] ⊕ 2α−1�3, M̂i,R[α] = Mi,R[α] ⊕ 2α−1�4.

Also, for each (i, α) ∈ PC , let

Ĉi,L [α] = Ci,L [α] ⊕ 2α−1�5, Ĉi,R[α] = Ci,R[α] ⊕ 2α−1�6.

With these values, we reveal the actual internal states Xi [α], Yi [α], and Zi [α] variables
in the real world. We set for the encryption queries:

• for (i, α) ∈ PA, Xi [α] = π̃(Padt (0 ‖ α ‖ Âi,R[α]), Âi,L [α]);
• for (i, α) ∈ PM , Xi [ai + α] = π̃(Padt (1 ‖ α ‖ M̂i,R[α]), M̂i,L [α]);
• for (i, α) ∈ PC , Yi [α] = π̃−1(Padt (3 ‖ α ‖ Ĉi,R[α]), Ĉi,L [α]);
• for (i, α) ∈ PC , Zi [α] = π̃−1(Padt (2 ‖ α ‖ Ŷi [α]), Ĉi,R[α]).
On the other hand, in the ideal world, for i ∈ [qe] and α ∈ [li ], Xi [α] is chosen to satisfy

following rules. For i ∈ [qe],
• if α ∈ [ai ] and there exists j < i such that Ai [α] = A j [α], set Xi [α] = X j [α];
• ifα ∈ [mi ] and there exists j < i such thatMi [α] = Mj [α], set Xi [ai+α] = X j [a j+α];
• if α ∈ [ai ], sample Xi [α] ←$ {0, 1}n different from X j [α] for all j ∈ [qe] satisfying

a j ≥ α, Ai [α] �= A j [α], and Ai,R[α] = A j,R[α];
• if α ∈ [mi ], sample Xi [ai + α] ←$ {0, 1}n different from X j [a j + α] for all j ∈ [qe]

satisfying a j < α, Mi [α] �= Mj [α], and Mi,R[α] = Mj,R[α];
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• otherwise, sample Xi [α] ←$ {0, 1}n uniformly at random.

Now Yi [α] and Zi [α] for i ∈ [qe] and α ∈ [mi ] can be given by (2) and (3), and those
would be revealed. For i ∈ [qe + 1, q] and α ∈ [mi ], Yi [α] and Zi [α] are chosen satisfying
following rules:

• if there exists j < i such that Ci [α] = C j [α], set Yi [α] = Y j [α] and set Zi [α] = Z j [α];
• if there exists j < i such that Ci [α] �= C j [α] and Ci,R[α] = C j,R[α], sample Y j [α] ←$

{0, 1}n different from Yk[α];
• otherwise, sample Yi [α] ←$ {0, 1}n and Zi [α] ←$ {0, 1}n uniformly at random.

Finally, A attains the following transcript:

τ = {

(Ai , Mi , Xi , Yi , Zi ,Ci , Ti )i∈[qe], (Ai , Xi , Yi , Zi ,Ci , Ti , bi )i∈[qe+1,q]
}

∪ {

(�i, j )i∈[q], j∈[4]
}

.

5.2 Defining bad events

In this section, we define bad events. For i ∈ [q], letUi and Vi be the final state Si [li ], which
is defined in (4) and (5). To describe the bad cases, we will define some functions which take
the indices as input. Let

• I1 = {

(i, α) ∈ PA : ∀ j < i, Ai [α] �= A j [α]};
• I2 = {

(i, α) ∈ PM : ∀ j < i, Mi [α] �= Mj [α]};
• I3 = I4 = {

(i, α) ∈ PC : ∀ j < i,Ci [α] �= C j [α]},
and for r ∈ [4], let fr , gr : Ir →({0, 1}n)2 be functions where

f1(i, α) = ( Âi,R[α], Âi,L [α]), g1(i, α) = ( Âi,R[α], Xi [α]),
f2(i, α) = (M̂i,R[α], M̂i,L [α]), g2(i, α) = (M̂i,R[α], Xi [ai + α]),
f3(i, α) = (Yi [α], Zi [α]), g3(i, α) = (Yi [α], Ĉi,R[α]),
f4(i, α) = (Ĉi,R[α], Yi [α]), g4(i, α) = (Ĉi,R[α], Ĉi,L [α]).

Note that fr gives the pair of the tweak and the input of each tweakable block cipher call,
and gr gives the pair of the tweak and the output of each tweakable block cipher call. For
1 ≤ r ≤ s ≤ 4 we define the following events.

• TwCollr ⇔ there exists (i, α) ∈ Ir and v ∈ {0, 1}n such that fr (i, α) = (0, v);
• ICr ,s ⇔ there exists (i, α) ∈ Ir and ( j, β) ∈ Is such that (r , i, α) �= (s, j, β) and

fr (i, α) = fs( j, β);
• OCr ,s ⇔ there exists (i, α) ∈ Ir and ( j, β) ∈ Is such that (r , i, α) �= (s, j, β) and

gr (i, α) = gs( j, β).

Also, For r ∈ [4], let
• ICr ,5 ⇔ there exists i ∈ [q] and ( j, β) ∈ Ir such that (Vi ,Ui ) = fr ( j, β);
• OCr ,5 ⇔ there exists i ∈ [qe] and ( j, β) ∈ Ir such that (Vi , Ti ) = gr ( j, β),

and let

• TwColl5 ⇔ there exists i ∈ [q] such that Vi = 0;
• IC5,5 ⇔ there exists different i, j ∈ [q] such that (Vi ,Ui ) = (Vj ,Uj );
• OC5,5 ⇔ there exists different i, j ∈ [qe] such that (Vi , Ti ) = (Vj , Tj ).
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A transcript τ is defined as bad if one of the following events occurs:

1. bad1 ⇔ there exists i, j ∈ [qe] and α ∈ [min
{

mi ,m j
}] such that (Ai , Mi [: α]) �=

(A j , Mj [: α]) and Ci [α] = C j [α];
2. bad2 ⇔ ∨

1≤r≤s≤5(ICr ,s ∨ OCr ,s ∨ TwCollr ).

We denote �bad as a set of all bad transcripts. We will now find the upper bound on
the probability that each bad event will occur in the ideal world. Fix i, j ∈ [qe] and α ∈
[min

{

mi ,m j
}] such that (Ai , Mi [: α]) �= (A j , Mj [: α]). Then, since Ci [α] and C j [α] are

chosen uniformly at random, one has

Pr
[

bad1
] ≤ σ l

22n
. (12)

The conditional probability of bad2 given that bad1 has not happened is upper bounded
as follows.

Lemma 7

Pr
[

bad2 ∧ ¬bad1
] ≤ 48σ 2 + 18qσ + 6q2

22n
+ 6σ + 2q

2n
.

The proof of this lemma is deferred to Sect. 5.4. We now consider good transcripts.

Lemma 8 For any τ /∈ �bad,

Pr [Tre = τ ]

Pr [Tid = τ ]
≥ 1 − 2qd

2n
.

The proof of this lemma is deferred to Sect. 5.3.
Finally, by Lemmas 7 and 8 and (12), we can conclude that Theorem 2 holds.

5.3 Analyzing good transcripts

Fix τ /∈ �bad. For the proof, we define the following sets.

• I ′
3 = {

(i, α) : i ∈ [qe + qd ], α ∈ [mi ],∀ j < i, (Ai ,Ci [: α]) �= (A j ,C j [: α])};
• W1[α, v] = {

(i, α) ∈ I1 : Ai,R[α] = v ⊕ 2α−1�2
}

;
• W2[α, v] = {

(i, α) ∈ I2 : Mi,R[α] = v ⊕ 2α−1�4
}

;
• W3[α, v] = {

(i, α) ∈ I ′
3 : Ci,R[α] = v ⊕ 2α−1�6

}

;
• W4[α, v] = {

(i, α) ∈ I ′
3 : Yi [α] = v

}

,

and following notations,

• u j [α, v] = ∣
∣Wj [α, v]∣∣ for j ∈ [4];

• u5[α] = ∣
∣
{

(i, α) ∈ I ′
3 : ∀ j < i,Ci [α] �= C j [α]}∣∣;

• ue6[v] = |{i ∈ [qe] : Vi = v}|;
• ud6 [v] = |{i ∈ [qe + 1, qe + qd ] : Vi = v}|.
For j ∈ [4], let

We
j [α, v] = {

(i, α) ∈ Wj [α, v] : i ∈ [qe]
}

,

and

Wd
j [α, v] = Wj [α, v] \ We

j [α, v].
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We also denote uej [α, v] =
∣
∣
∣We

j [α, v]
∣
∣
∣ and udj [α, v] =

∣
∣
∣Wd

j [α, v]
∣
∣
∣, so we have u j [α, v] =

uej [α, v] + udj [α, v].
First, we consider the ideal world. The probability that ciphertext C1, . . . ,Cqe is given is
1

22n|B| where B = {(Ai , Mi [: α]) : 1 ≤ i ≤ qe, α ∈ [mi ]}, and one that tags T1, . . . , Tqe are

given is 1
2nqe . Let X,Y,Z be the distribution of (X1, . . . , Xqe+qd ), (Yqe+1, . . . , Yqe+qd ), and

(Zqe+1, . . . , Zqe+qd ), respectively. First, Xi [α] and X j [α] are given differently if Ai,R[α] =
A j,R[α] orMi,R[α] = Mj,R[α]. Therefore, for each v ∈ {0, 1}n and α ∈ [ai ], the probability
that Xi [α]’s for Ai,R[α] = v are given according to associated data is 1

(2n)u1[α,v1] , where v1 =
v ⊕ 2α−1�2. Similarly, for each v ∈ {0, 1}n and α ∈ [mi ], one that corresponding Xi [α]’s
for Mi,R[α] = v are given according to message is 1

(2n)u2[α,v2] , where v2 = v ⊕ 2α−1�4.

Hence,

Pr
[

X = (X1, . . . , Xqe+qd )
] =

∏

v∈{0,1}n
1≤α≤l

1

(2n)u1[α,v1]
×

∏

v∈{0,1}n
1≤α≤l

1

(2n)u2[α,v2]

=
∏

v∈{0,1}n
1≤α≤l

1

(2n)u1[α,v]
×

∏

v∈{0,1}n
1≤α≤l

1

(2n)u2[α,v]
.

Also, Yi [α] and Y j [α] are given differently if Ci,R[α] = C j,R[α], while {Yi }1≤i≤qe is
determined from (X1, . . . , Xqe+qd ). Therefore, for each v ∈ {0, 1}n and α ∈ [l], the proba-
bility that corresponding Yi [α]’s are given is 1

(2n−ue3[α,v3])ud3 [α,v3]
, where v3 = v ⊕ 2α−1�6.

Hence similarly from the case above,

Pr
[

Y = (Yqe+1, . . . , Yqe+qd )|X
] =

∏

v∈{0,1}n
1≤α≤l

1

(2n − ue3[α, v])ud3 [α,v]
.

Now, since Zi [α]’s are given uniformly at random in decryption queries,

Pr
[

Z = (Zqe+1, . . . , Zqe+qd )
] =

∏

1≤α≤l

1

(2n)u5[α] .

Hence, we can conclude the following probability.

Pr [Tid = τ ] = 1

22n|B| × 1

2nqe
×

∏

v∈{0,1}n
1≤α≤l

1

(2n)u1[α,v]
×

∏

v∈{0,1}n
1≤α≤l

1

(2n)u2[α,v]

×
∏

v∈{0,1}n
1≤α≤l

1

(2n − ue3[α, v])ud3 [α,v]

×
⎛

⎝
∏

1≤α≤l

1

(2n)u5[α]

⎞

⎠ × 1

(2n)4
. (13)

Note that 1
(2n)4

is the probability that �1,�2,�3 and �4 are given.
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Now, we consider the real world. First, in decryption queries, the probability of attaining
⊥ for every answer is bounded below by

∏

v∈{0,1}n

(

1 − 1

2n − ue6[v]
)ud6 [v]

≥
(

1 − 1

2n − qe

)qd
≥ 1 − qd

2n − qe
.

If we fix v ∈ {0, 1}n , π̃ takes v as a tweak if and only if one of the following conditions
holds.

1. Ai,R[α] ⊕ 2α−1�2 = v;
2. Mi,R[α] ⊕ 2α−1�4 = v;
3. Yi [α] = v;
4. Ci,R[α] ⊕ 2α−1�6 = v;
5. Vi = v.

Since the case bad2 does not exist in any good transcript, the number of tweakable block
ciphers in all queries that has v as tweak is

∑

1≤α≤l

(u1[α, v] + u2[α, v] + u3[α, v] + u4[α, v]) + ue6[v].

Since 1
(2n)a+b

≥ 1
(2n)a(2n)b

for a, b ≥ 0, we have

Pr [Tre = τ ] ≥
∏

1≤α≤l
v∈{0,1}n

1

(2n)u1[α,v](2n)u2[α,v](2n)u3[α,v](2n)u4[α,v]

×
∏

v∈{0,1}n
1

(2n)ue6[v]
× 1

(2n)4
. (14)

Note that 1
(2n)4

is the probability that�1,�2,�3 and�4 are given. Since
∑

v∈{0,1}n ue6[v] =
qe, we have

∏

v∈{0,1}n
1

(2n)ue6[v]
≥

∏

v∈{0,1}n
1

(2n)u
e
6[v] = 1

(2n)qe
. (15)

Also,
∏

1≤α≤l

(2n)u5[α] ≥
∏

1≤α≤l

(2n)u5[α] ≥
∏

1≤α≤l

(2n)ud4 [α]. (16)

Therefore by (13), (14), (15) and (16),

Pr [Tre = τ ]

Pr [Tid = τ ]
≥ 22n|B|

∏

v∈{0,1}n
1≤α≤l

(2n)ue3[α,v]
∏

v∈{0,1}n
1≤α≤l

(2n)ue4[α,v]
×

(

1 − qd
2n − qe

)

≥ 1 − qd
2n − qe

≥ 1 − 2qd
2n

.

The last inequality follows since

|B| ≥
∑

v∈{0,1}n
1≤α≤l

ue3[α, v],
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and hence,

2n|B| ≥
∏

v∈{0,1}n
1≤α≤l

(2n)u
e
3[α,v] ≥

∏

v∈{0,1}n
1≤α≤l

(2n)ue3[α,v],

and similarly,

2n|B| ≥
∏

v∈{0,1}n
1≤α≤l

(2n)ue4[α,v],

which completes the proof.

5.4 Bounding the probability of bad events

Let

TwColl =
5

∨

i=1

TwColli ,

IC =
∨

1≤i≤ j≤5

ICi, j ,

OC =
∨

1≤i≤ j≤5

OCi, j .

Note that bad2 = TwColl ∨ IC ∨ OC. We calculate the probability of the each collision
event in the following lemmas. The result of main theorem is derived directly.

Lemma 9

Pr
[

TwColl
] ≤ 6σ + 2q

2n
.

Proof We calculate each probability of TwColli for i = 1 to 5.

1. Fix (i, α) ∈ I1 and v ∈ {0, 1}n . Then f1(i, α) = (0, v) if and only if
{

2α−1�1 = Ai,L [α];
2α−1�2 = Ai,R[α] ⊕ v,

and since (�1,�2) is chosen uniformly at random from ({0, 1}n)∗2, one has

Pr [ f1(i, α) = (0, v)] ≤ 1

2n(2n − 1)
≤ 2

22n
.

Therefore, we get

Pr
[

TwColl1
] ≤

∑

v∈{0,1}n
2|I1|
22n

≤ 2|I1|
2n

.

2. Fix (i, α) ∈ I2 and v ∈ {0, 1}n . Then f2(i, α) = (0, v) if and only if
{

2α−1�3 = Mi,L [α];
2α−1�4 = Mi,R[α] ⊕ v,
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and since (�3,�4) is chosen uniformly at random from ({0, 1}n)∗2, one has

Pr [ f2(i, α) = (0, v)] ≤ 1

2n(2n − 1)
≤ 2

22n
.

Therefore, we get

Pr
[

TwColl2
] ≤

∑

v∈{0,1}n
2|I2|
22n

≤ 2|I2|
2n

.

3. Fix (i, α) ∈ I3 and v ∈ {0, 1}n . If i ∈ [qe], then f3(i, α) = (0, v) if and only if
{

2α−1�4 = Mi,R[α] ⊕ ⊕ai+α
β=1 Xi [β],

Xi [α + ai ] ⊕ ⊕α−1
β=1 2

α−1�4 = Q ⊕ v,

where

Q =
ai⊕

β=1

2ai+α−β
(

X [β] ⊕ Ai,R[β] ⊕ 2β−1�2
)

⊕
α−1
⊕

β=1

2α−β
(

X [ai + β] ⊕ Mi,R[β]) .

Since�4 is chosen uniformly at random from {0, 1}n and Xi [α+ai ] is chosen uniformly
at random from the set of size at least 2n − σ , one has

Pr [ f3(i, α) = (0, v)] ≤ 1

2n(2n − σ)
≤ 2

22n
.

Now assume that i /∈ [qe]. Then f3(i, α) = (0, v) if and only if
{

Yi [α] = 0;
Zi [α] = v,

and since Zi [α] is chosen uniformly at random from {0, 1}n andYi [α] is chosen uniformly
at random from the set of size at least 2n − σ , one has

Pr [ f3(i, α) = (0, v)] ≤ 1

2n(2n − σ)
≤ 2

22n
.

By the above reasoning, we have

Pr
[

TwColl3
] ≤

∑

v∈{0,1}n
2|I3|
22n

≤ 2|I3|
2n

.

4. Fix (i, α) ∈ I4 and v ∈ {0, 1}n . If i ∈ [qe], then f4(i, α) = (0, v) if and only if
{

2α−1�2 ⊕ 2α−1�4 = Ci,R[α];
2α−1�4 = Mi,R[α] ⊕ v ⊕ ⊕ai+α

β=1 Xi [β],
and since (�2,�4) is chosen uniformly at random from ({0, 1}n)∗2, one has

Pr [ f4(i, α) = (0, v)] ≤ 1

2n(2n − 1)
≤ 2

22n
.
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If i /∈ [qe], then f4(i, α) = (0, v) if and only if
{

2α−1�2 = Ci,R[α] ⊕ 2α−1�4;
Yi [α] = v.

Since �2 is chosen uniformly at random from {0, 1}n and Yi [α] is chosen uniformly at
random from the set of size at least 2n − σ , one has

Pr [ f4(i, α) = (0, v)] ≤ 1

2n(2n − σ)
≤ 2

22n
.

Therefore, we get

Pr
[

TwColl4
] ≤

∑

v∈{0,1}n
2|I4|
22n

≤ 2|I4|
2n

.

5. Fix i ∈ [q]. We distinguish two subcases.

(a) Assume that i ∈ [qe]. Then Vi = 0 if and only if

Xi [1] =
ai+mi∑

α=2

Xi [α].

Since Xi [1] is sampled from the set of size at least 2n − qe, one has

Pr [Vi = 0] ≤ 1

2n − qe
≤ 2

2n
.

(b) Assume that i /∈ [qe]. Then the equation Vi = 0 is equivalent to the system of
equations

Yi [1] =
ai⊕

α=1

Xi [α] ⊕
mi⊕

α=2

(Yi [α] ⊕ Zi [α]) ⊕ Zi [1].

Since Yi [1] is sampled from the set of size at least 2n − q , one has

Pr [Vi = 0] ≤ 1

2n − q
≤ 2

2n
.

By the above reasoning,

Pr
[

TwColl5
] ≤

∑

i∈[q]

2

2n
≤ 2q

2n
.

Now using |I1| + |I2| ≤ σ , |I1| + |I3| ≤ σ , and |Ii | ≤ σ for 1 ≤ i ≤ 4, we conclude
the lemma. ��

Lemma 10

Pr [IC] ≤ 4q2 + 12qσ + 20σ 2

22n
.

Proof We calculate each probability of ICi, j for 1 ≤ i ≤ j ≤ 5.
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1. Fix ((i, α), ( j, β)) ∈ (I1)∗2. If α = β, one should have Ai [α] �= A j [β] and f1(i, α) �=
f1( j, β). Suppose α �= β. Then, f1(i, α) = f1( j, β) if and only if

{

(2α−1 ⊕ 2β−1)�1 = Ai,L [α] ⊕ A j,L [β];
(2α−1 ⊕ 2β−1)�2 = Ai,R[α] ⊕ A j,R[β],

and since (�1,�2) is chosen uniformly at random from ({0, 1}n)∗2, one has

Pr [ f1(i, α) = f1( j, β)] ≤ 1

2n(2n − 1)
≤ 2

22n
.

Therefore, we get

Pr
[

IC1,1
] ≤ 2|I1|2

22n
.

2. Fix (i, α) ∈ I1 and ( j, β) ∈ I2. Then the equation f1(i, α) = f2( j, β) is equivalent to
the system of equations

{

2α−1�1 = Ai,L [α] ⊕ Mj,L [β] ⊕ 2β−1�3;
2α−1�2 = Ai,R[α] ⊕ Mj,R[β] ⊕ 2β−1�4.

Since (�1,�2) is chosen uniformly at random from ({0, 1}n)∗2, one has

Pr [ f1(i, α) = f2( j, β)] ≤ 1

2n(2n − 1)
≤ 2

22n
.

Therefore,

Pr
[

IC1,2
] ≤

∑

(i,α)∈I1

∑

( j,β)∈I2

2

22n
≤ 2 |I1| |I2|

22n
.

3. Fix (i, α) ∈ I1 and ( j, β) ∈ I3. We distinguish two subcases.

(a) If j ∈ [qe], then the equation f1(i, α) = f3( j, β) is equivalent to the system of
equations

{

2α−1�1 ⊕ ⊕β−1
γ=1 2

β−1�4 = Ai,L [α] ⊕ Q;
2β−1�4 = 2α−1�2 ⊕ Ai,R[α] ⊕ Mj,R[β] ⊕ ⊕a j+β

γ=1 X j [γ ],
where

Q =X [a j + β] ⊕
a j

⊕

γ=1

2a j+β−γ
(

X j [γ ] ⊕ A j,R[γ ] ⊕ 2γ−1�2
)

⊕
β−1
⊕

γ=1

2β−γ
(

X j [a j + γ ] ⊕ Mj,R[γ ]) .

Since (�1,�4) is chosen uniformly at random from ({0, 1}n)∗2, one has

Pr [ f1(i, α) = f3( j, β)] ≤ 1

2n(2n − 1)
≤ 2

22n
.
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(b) Assume j /∈ [qe]. If C j [β] = C j ′ [β] for j ′ ∈ [qe], this case is same as the case that
j ∈ [qe]. Otherwise, the equation f1(i, α) = f3( j, β) is equivalent to the system of
equations

{

2α−1�1 = Ai,L [α] ⊕ Z j [β];
2α−1�2 = Ai,R[α] ⊕ Y j [β].

Since (�1,�2) is chosen uniformly at random from ({0, 1}n)∗2, one has

Pr [ f1(i, α) = f3( j, β)] ≤ 1

2n(2n − 1)
≤ 2

22n
.

By the above reasoning,

Pr
[

IC1,3
] ≤

∑

(i,α)∈I1

∑

( j,β)∈I3

2

22n
≤ 2 |I1| |I3|

22n
.

4. Fix (i, α) ∈ I1 and ( j, β) ∈ I4. We distinguish two subcases.

(a) Assume that j ∈ [qe]. Then the equation f1(i, α) = f4( j, β) is equivalent to the
system of equations

{

2α−1�1 ⊕ 2β−1�4 = Ai,L [α] ⊕ Mj,R[β] ⊕ ⊕a j+β

γ=1 X j [γ ];
2β−1�4 = Ai,R[α] ⊕ C j,R[β] ⊕ 2α−1�2 ⊕ 2β−1�2.

Since (�1,�4) is chosen uniformly at random from ({0, 1}n)∗2, one has

Pr [ f1(i, α) = f4( j, β)] ≤ 1

2n(2n − 1)
≤ 2

22n
.

(b) Assume that j /∈ [qe]. Then the equation f1(i, α) = f4( j, β) is equivalent to the
system of equations

{

2α−1�1 = Ai,L [α] ⊕ Y j [β];
2β−1�4 = Ai,R[α] ⊕ C j,R[β] ⊕ 2α−1�2 ⊕ 2β−1�2.

Since (�1,�4) is chosen uniformly at random from ({0, 1}n)∗2, one has

Pr [ f1(i, α) = f4( j, β)] ≤ 1

2n(2n − 1)
≤ 2

22n
.

By the above reasoning,

Pr
[

IC1,4
] ≤

∑

(i,α)∈I1

∑

( j,β)∈I4

2

22n
≤ 2 |I1| |I4|

22n
.

5. Fix (i, α) ∈ I1 and j ∈ [q]. We distinguish two subcases.

(a) Assume that j ∈ [qe]. Then the equation f1(i, α) = (Vj ,Uj ) is equivalent to the
system of equations

{

2α−1�1 ⊕
(
⊕a j

β=1 2
a j+m j+1−β

)

�2 = Q ⊕ Ai,L [α];
2α−1�2 = Ai,R[α] ⊕ ⊕a j+m j

β=1 X j [β],
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where

Q =
a j

⊕

β=1

2a j+m j+1−β
(

X j [β] ⊕ A j,R[β])

⊕
m j
⊕

β=1

2m j+1−β
(

X j [a j + β] ⊕ Mj,R[β] ⊕ 2β−1�4
)

.

Since (�1,�2) is chosen uniformly at random from ({0, 1}n)∗2, one has

Pr
[

f1(i, α) = (Vj ,Uj )
] ≤ 1

2n(2n − 1)
≤ 2

22n
.

(b) Assume that j /∈ [qe]. Then the equation f1(i, α) = (Vj ,Uj ) is equivalent to the
system of equations

{

2α−1�1 = Ai,L [α] ⊕Uj ;
2α−1�2 = Ai,R[α] ⊕ Vj .

Note that Uj and Vj are independent of �1 and �2. Since (�1,�2) is chosen
uniformly at random from ({0, 1}n)∗2, one has

Pr
[

f1(i, α) = (Vj ,Uj )
] ≤ 1

2n(2n − 1)
≤ 2

22n
.

By the above reasoning, we have

Pr
[

IC1,5
] ≤

∑

(i,α)∈I1

∑

j∈[q]

2

22n
≤ 2q |I1|

22n
.

6. Fix (i, α) ∈ I2 and ( j, β) ∈ I2, where (i, α) �= ( j, β). If α = β, then Mi [α] �= Mj [β]
so f2(i, α) �= f2( j, β). Suppose α �= β. Then, f2(i, α) = f2( j, β) if and only if

{

(2α−1 ⊕ 2β−1)�3 = Mi,L [α] ⊕ Mj,L [β];
(2α−1 ⊕ 2β−1)�4 = Mi,R[α] ⊕ Mj,R[β],

where 2α−1⊕2β−1 �= 0. Since (�3,�4) is chosen uniformly at random from ({0, 1}n)∗2,
one has

Pr [ f2(i, α) = f2( j, β)] ≤ 1

2n(2n − 1)
≤ 2

22n
.

Therefore, we get

Pr
[

IC2,2
] ≤

∑

(i,α)∈I2

∑

( j,β)∈I2

2

22n
≤ 2 |I2|2

22n
.

7. Fix (i, α) ∈ I2 and ( j, β) ∈ I3. We distinguish two subcases.

(a) Assume that j ∈ [qe]. Then the equation f2(i, α) = f3( j, β) is equivalent to the
system of the equations
{

2α−1�3 ⊕ X j [a j + β] = Mi,L [α] ⊕ Q;
X j [a j + β] = (2α−1 ⊕ 2β−1)�4 ⊕ Mi,R[α] ⊕ Mj,R[β] ⊕ ⊕a j+β−1

γ=1 X j [γ ],
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where

Q =
a j

⊕

γ=1

2a j+β−γ
(

X j [γ ] ⊕ A j,R[γ ] ⊕ 2γ−1�2
)

⊕
β−1
⊕

γ=1

2β−γ
(

X j [a j + γ ] ⊕ Mj,R[γ ] ⊕ 2γ−1�4
)

.

Since �3 is chosen uniformly at random from {0, 1}n and X j [a j + β] is chosen
uniformly at random from the set of size at least 2n − σ , one has

Pr [ f2(i, α) = f3( j, β)] ≤ 1

2n(2n − σ)
≤ 2

22n
.

(b) Assume that j /∈ [qe]. Then the equation f2(i, α) = f3( j, β) is equivalent to the
system of the equations

{

2α−1�3 = Mi,L [α] ⊕ Z j [β];
2α−1�4 = Mi,R[α] ⊕ Y j [β].

Since (�3,�4) is chosen uniformly at random from ({0, 1}n)∗2, one has

Pr [ f2(i, α) = f3( j, β)] ≤ 1

2n(2n − 1)
≤ 2

22n
.

By the above reasoning, we have

Pr
[

IC2,3
] ≤

∑

(i,α)∈I2

∑

( j,β)∈I3

2

22n
≤ 2 |I2| |I3|

22n
.

8. Fix (i, α) ∈ I2 and ( j, β) ∈ I4. Then the equation f2(i, α) = f4( j, β) is equivalent to
the system of the equations

{

2α−1�3 = Mi,L [α] ⊕ Y j [β];
2β−1�2 = (2α−1 ⊕ 2β−1)�4 ⊕ Mi,R[α] ⊕ C j,R[β].

Note that Y j [β] is independent of �2 and �3. Since (�2,�3) is chosen uniformly at
random from ({0, 1}n)∗2, one has

Pr [ f2(i, α) = f4( j, β)] ≤ 1

2n(2n − 1)
≤ 2

22n
.

Therefore, we have

Pr
[

IC2,4
] ≤

∑

(i,α)∈I2

∑

( j,β)∈I4

2

22n
≤ 2 |I2| |I4|

22n
.

9. Fix (i, α) ∈ I2 and j ∈ [q]. If j ∈ [qe], then f2(i, α) = (Vj ,Uj ) if and only if

{

2α−1�3 ⊕
(
⊕m j

β=1 2
m j

)

�4 = Mi,L [α] ⊕ P;
2α−1�4 = Mi,R[α] ⊕ ⊕a j+m j

β=1 X j [β],
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where

P =
a

⊕

β=1

2a+m+1−β
(

X [β] ⊕ AR[β] ⊕ 2β−1�2
)

⊕
m

⊕

β=1

2m+1−β (X [a + β] ⊕ MR[β]) .

Since (�3,�4) is chosen uniformly at random from ({0, 1}n)∗2, one has

Pr
[

f2(i, α) = (Vj ,Uj )
] ≤ 1

2n(2n − 1)
≤ 2

22n
.

If j /∈ [qe], then f2(i, α) = (Vj ,Uj ) if and only if
{

2α−1�3 = Mi,L [α] ⊕Uj ;
2α−1�4 = Mi,R[α] ⊕ Vj .

Note thatUj and Vj are independent of �3 and �4. Since (�3,�4) is chosen uniformly
at random from ({0, 1}n)∗2, one has

Pr
[

f2(i, α) = (Vj ,Uj )
] ≤ 1

2n(2n − 1)
≤ 2

22n
.

Therefore, we have

Pr
[

IC2,5
] ≤

∑

j∈[q]

∑

(i,α)∈I2

2

22n
≤ 2q |I2|

22n
.

10. Fix ((i, α), ( j, β)) ∈ (I3)∗2 where i ≤ j . If j ∈ [qe + 1, qe + qd ], we have
Pr [ f3(i, α) = f3( j, β)] ≤ 1

22n
,

by the random choice of Y and Z variables in the ideal world. Suppose j ∈ [qe]. Then,
by the equations of Y -variables and Z -variables, f3(i, α) = f3( j, β) if and only if

{⊕ai+α
γ=1 Xi [γ ] ⊕ ⊕a j+β

γ=1 X j [γ ] = P;
⊕ai+α

γ=1 2ai+α−γ Xi [γ ] ⊕ ⊕a j+β

γ=1 2a j+β−γ X j [γ ] = Q,
(17)

where

P = Mi,R[α] ⊕ Mj,R[β] ⊕ (2α−1 ⊕ 2β−1)�2,

Q =
ai⊕

γ=1

2ai+α−γ (Ai,R[γ ] ⊕ 2γ−1�2) ⊕
α−1
⊕

γ=1

2α−γ (Mi,R[γ ] ⊕ 2γ−1�4)

⊕
a j

⊕

γ=1

2a j+β−γ (A j,R[γ ] ⊕ 2γ−1�2) ⊕
β−1
⊕

γ=1

2β−γ (Mj,R[γ ] ⊕ 2γ−1�4).

Let us take a look at each of the subcase below.

(a) If α < β, (17) can be rewritten as
{

Xi [ai + α] ⊕ X j [a j + α] ⊕ X j [a j + β] = P ′;
Xi [ai + α] ⊕ 2β−αX j [a j + α] ⊕ X j [a j + β] = Q′,

(18)
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for some P ′ and Q′. Assume that Xi [ai + α] = X j [a j + α]. Then (18) can be
rewritten as

{

X j [a j + β] = P ′;
(2β−α + 1)X j [a j + α] ⊕ X j [a j + β] = Q′.

In this case, by the sampling process of Xi [ai + α] and X j [a j + β],

Pr [ f3(i, α) = f3( j, β)] ≤ 1

(2n − σ)2
≤ 4

22n
.

If Xi [ai + α] = X j [a j + α], (18) can be rewritten as
{

Xi [ai + α] ⊕ X j [a j + α] = P ′ ⊕ X j [a j + β];
Xi [ai + α] ⊕ 2β−αX j [a j + α] = Q′ ⊕ X j [a j + β].

In this case, by the sampling process of Xi [ai + α] and X j [a j + α],

Pr [ f3(i, α) = f3( j, β)] ≤ 1

(2n − σ)2
≤ 4

22n
.

Therefore, no matter Mi [α] = Mj [α] or not,

Pr [ f3(i, α) = f3( j, β)] ≤ 4

22n
.

(b) If ai < a j and α = β, (17) can be rewritten as
{

Xi [ai ] ⊕ X j [ai ] ⊕ X j [a j ] = P ′;
Xi [ai ] ⊕ 2a j−ai X j [ai ] ⊕ X j [a j ] = Q′,

(19)

for some P ′ and Q′. Assume that Xi [ai ] = X j [ai ]. Then (19) can be rewritten as
{

X j [a j ] = P ′;
(2a j−ai + 1)X j [ai ] ⊕ X j [a j ] = Q′.

In this case, by the sampling process of X j [ai ] and X j [a j ], we have

Pr [ f3(i, α) = f3( j, β)] ≤ 1

(2n − σ)2
≤ 4

22n
.

If Xi [ai ] �= X j [ai ], then (19) can be rewritten as
{

Xi [ai ] ⊕ X j [ai ] = P ′ ⊕ X j [a j ];
Xi [ai ] ⊕ 2a j−ai X j [ai ] = Q′ ⊕ X j [a j ].

In this case, by the sampling process of Xi [ai ] and X j [ai ], we have

Pr [ f3(i, α) = f3( j, β)] ≤ 1

(2n − σ)2
≤ 4

22n
.

Therefore, no matter Ai [ai ] = A j [ai ] or not,

Pr [ f3(i, α) = f3( j, β)] ≤ 4

22n
.
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(c) If there exists two different γ1, γ2 ≤ α such that Ai [γ1] �= A j [γ1] and Ai [γ2] �=
A j [γ2], (17) can be rewritten as

{

Xi [γ1] ⊕ X j [γ2] = P ′;
2ai⊕α−γ1 Xi [γ1] ⊕ 2ai⊕α−γ2 Xi [γ2] = Q′,

for some P ′ and Q′. Therefore, by the sampling process of Xi [γ1] and X j [γ2], we
get

Pr [ f3(i, α) = f3( j, β)] ≤ 1

(2n − σ)2
≤ 4

22n
.

We can apply the similar argument if (Ai , Mi [: α]) and (A j , Mj [: α]) are differ in
two or more blocks.

(d) Let ai = a j , α = β, and Mi [α] �= Mj [α]while (Ai , Mi [α−1]) = (A j , Mj [α−1]),
Then, (17) can be rewritten as

{

Xi [ai + α] ⊕ X j [ai + α] = Mi,R[α] ⊕ Mj,R[α];
Xi [ai + α] ⊕ X j [ai + α] = 0,

so one should have Xi [ai + α] = X j [ai + α] and Mi,R[α] = Mj,R[α] which
contradicts the rules for choosing X variables. Therefore,

Pr [ f3(i, α) = f3( j, β)] = 0,

andone can apply the similar argument if there exists only one different block between
(Ai , Mi [: α]) and (A j , Mj [: α]).

All in all, we get

Pr
[

IC3,3
] ≤ 4|I3|2

22n
.

11. Fix (i, α) ∈ I3 and ( j, β) ∈ I4. Let us take a look at each of sub-case below.

(a) Let i, j ∈ [qe]. Assume that Mi [: α] and Mj [: β] are different in two or more blocks.
We fix such distinct γ1, γ2. If β ≤ α, then f3(i, α) = f4( j, β) if and only if

{

2ai⊕α−γ1Xi [ai + γ1] ⊕ 2ai⊕α−γ2 Xi [ai + γ2] = P ′;
Xi [ai + γ1] ⊕ Xi [ai + γ2] = Q′,

for some P ′ and Q′ which are independent of Xi [ai + γ1] and Xi [ai + γ2] By the
sampling process of Xi [ai + γ1] and Xi [ai + γ2], we have

Pr [ f3(i, α) = f4( j, β)] ≤ 1

(2n − σ)2
≤ 4

22n
.

If β > α, then f3(i, α) = f4( j, β) if and only if
{

X j [a j + γ1] ⊕ ⊕ai
δ=1 2

δ−1�2 = P ′;
2β−1�2 = Yi ⊕ 2β−1�4 ⊕ C j,R[β],

for some P ′ which is independent of X j [a j + γ1] and �2. By the sampling process
of X j [a j + γ1] and the randomness of �2, we have

Pr [ f3(i, α) = f4( j, β)] ≤ 1

(2n − σ)(2n − 1)
≤ 4

22n
.
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Therefore,

Pr [ f3(i, α) = f4( j, β)] ≤ 4

22n
.

(b) Let i, j ∈ [qe]. Assume that Mi [: α] and Mj [: β] are different in just a single block
with index h. Then f3(i, α) = f4( j, β) if and only if

{

Xi [ai + h] = P ′;
2α−h Xi [ai + h] ⊕ X j [a j + h] = Q′,

for some P ′ and Q′. Therefore, by the sampling process of Xi [ai +h] and X j [a j +h],
we have

Pr [ f3(i, α) = f4( j, β)] ≤ 1

(2n − σ)2
≤ 4

22n
.

(c) Let i, j ∈ [qe] and Mi [: α] = Mj [: β]. Note that Xi [ai + h] = X j [a j + h] for all
h ∈ [α]. If α = β > 2, then f3(i, α) = f4( j, β) if and only if

{

Xi [ai + 1] ⊕ Xi [ai + 2] = P ′

(2α−1 ⊕ 1)Xi [ai + 1] ⊕ (2α−2 ⊕ 1)Xi [ai + 2] = Q′.

If α = β = 2, then f3(i, α) = f4( j, β) if and only if
{

Xi [ai + 1] ⊕ Xi [ai + 2] = P ′;
(2α−1 ⊕ 1)Xi [ai + 1] = Q′.

For both case, one has

Pr [ f3(i, α) = f4( j, β)] ≤ 4

22n
.

Now assume α = β = 1. Then f3(i, α) = f4( j, β) if and only if
{

�2 = P ′;
⊕a j

γ=1 2
a j+1−γ �2 ⊕ �4 = Q′.

Since (�2,�4) is chosen uniformly at random from {0, 1}∗2, one has

Pr [ f3(i, α) = f4( j, β)] ≤ 2

22n
.

(d) Let i ∈ [qe + 1, q] and j ∈ [qe]. Then f3(i, α) = f4( j, β) if and only if
{

2β−1�2 ⊕ 2β−1�4 = Yi [α] ⊕ C j,R;
2β−1�4 = Zi [α] ⊕ Mj,R[α] ⊕ ⊕a j+β

γ=1 X j [γ ].
Since (�2,�4) is chosen uniformly at random from {0, 1}∗2, one has

Pr [ f3(i, α) = f4( j, β)] ≤ 2

22n
.

(e) Let i ∈ [qe] and j ∈ [qe + 1, q]. If α ≥ 2, then f3(i, α) = f4( j, β) if and only if
{

Xi [ai + 1] ⊕ Xi [ai + 2] = P ′;
Xi [ai + 1] ⊕ 2Xi [ai + 2] = Q′,
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where P ′ and Q′ are independent of Xi [ai + 1] and Xi [ai + 2]. In this case, by the
sampling process of Xi [ai + 1] and Xi [ai + 2], we have

Pr [ f3(i, α) = f4( j, β)] ≤ 1

(2n − σ)2
≤ 4

22n
.

If α = 1, then f3(i, α) = f4( j, β) if and only if
{

Xi [ai + 1] ⊕ �4 = P ′;
Xi [ai + 1] = Q′,

where P ′ and Q′ are independent of Xi [ai +1] and�4. In this case, since Xi [ai +1]
is chosen uniformly at random from the set of size at least 2n − σ and �4 is chosen
uniformly at random from {0, 1}n \ {�2}, we have

Pr [ f3(i, α) = f4( j, β)] ≤ 1

(2n − 1)(2n − σ)
≤ 4

22n
.

(f) Let i, j ∈ [qe + 1, q]. Then f3(i, α) = f4( j, β) if and only if
{

2β−1�2 = Yi [α] ⊕ C j,R[β] ⊕ 2β−1�4;
Zi [α] = Y j [β].

Since �2 is chosen uniformly at random from {0, 1}n\ {�2} and Zi [α] are chosen
uniformly at random from {0, 1}n , respectively, we have

Pr [ f3(i, α) = f4( j, β)] ≤ 1

2n(2n − 1)
≤ 2

22n
.

To sum up, we have

Pr
[

IC3,4
] ≤

∑

( j,β)∈I4

∑

(i,α)∈I3

4

22n
≤ 4 |I3| |I4|

22n
.

12. Fix (i, α) ∈ I3 and j ∈ [qe + qd ]. Let us take a look at each of sub-case below.

(a) Assume that i, j ∈ [qe], and Mi [: α] and Mj are different in two or more blocks.
Fix such distinct γ1, γ2. If α ≥ m j , then f3(i, α) = (Vj ,Uj ) if and only if

{

Xi [ai + γ1] ⊕ Xi [ai + γ2] = P ′;
2ai+α−γ1 Xi [ai + γ1] ⊕ 2ai+α−γ2 Xi [ai + γ2] = Q′,

for some P ′ and Q′ which are independent of Xi [ai + γ1] and Xi [ai + γ2]. In this
case, by the sampling process of Xi [ai + γ1] and Xi [ai + γ2],

Pr
[

f3(i, α) = (Vj ,Uj )
] ≤ 1

(2n − σ)2
≤ 4

22n
.

If α < m j , then f3(i, α) = (Vj ,Uj ) if and only if
{

X j [a j + γ1] ⊕ X j [a j + γ2] = P ′;
2a j+m j+1−γ1X j [a j + γ1] ⊕ 2a j+m j+1−γ2 X j [a j + γ2] = Q′,

for some P ′ and Q′ which are independent of X j [a j + γ1] and X j [a j + γ2]. In this
case, by the sampling process of X j [a j + γ1] and X j [a j + γ2],

Pr
[

f3(i, α) = (Vj ,Uj )
] ≤ 1

(2n − σ)2
≤ 4

22n
.
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Therefore, we have

Pr
[

f3(i, α) = (Vj ,Uj )
] ≤ 2

22n
.

(b) Suppose i, j ∈ [qe], andMi andMj are differ in a single blockwith index γ . Then, by
the equations ofU -variables andV -variables specified in Sect. 3, f3(i, α) = (Vj ,Uj )

can be rewritten as
{

Xi [ai + γ ] ⊕ X j [a j + γ ] = P ′;
Xi [ai + γ ] ⊕ 2m j+1−γ X j [a j + γ ] = Q′,

for some P ′ and Q′ which are independent of Xi [ai + γ ] and X j [a j + γ ]. By the
sampling process of Xi [ai + γ ] and X j [a j + γ ], we have

Pr
[

f3(i, α) = (Vj ,Uj )
] ≤ 1

(2n − σ)
≤ 4

22n
.

(c) Suppose i = j ∈ [qe]. If α < mi , then f3(i, α) = (Vi ,Ui ) if and only if
{

Xi [ai + mi ] = Mi,R[α] ⊕ 2α−1�4 ⊕ ⊕ai+mi
β=ai+α+1 Xi [β];

2Xi [ai + mi ] ⊕ (2mi+1−α + 1)Xi [ai + α] = Q′,

for some Q′ which is independent of Xi [ai + α] and Xi [ai +mi ]. Note that α < mi

so mi − α + 1 > 0. Therefore, in this case, we have

Pr [ f3(i, α) = (Vi ,Ui )] ≤ 1

(2n − σ)
≤ 4

22n
.

Now assume that α = mi . Then f3(i,mi ) = (Vi ,Ui ) can be rewritten as
{

2mi−1�4 = P ′;
3Xi [mi ] ⊕

(

2mi ⊕ ⊕mi−1
β=1 (2mi−1 ⊕ 2mi )

)

�4 = Q′.

Xi [mi ] is chosen uniformly at random from the set of size at least 2n − σ and �4 is
chosen uniformly at random from {0, 1}n \ {�2}, we get

Pr [ f3(i, α) = (Vi ,Ui )] ≤ 1

(2n − 1)(2n − σ)
≤ 4

22n
.

(d) Let i ∈ [qe + 1, q] and Ci [α] �= C j [α]. Then f3(i, α) = (Vj ,Uj ) if and only if
{

Yi [α] = Vj ;
Zi [α] = Uj .

Since Yi [α] is chosen uniformly at random from the set of size at least 2n − σ and
Zi [α] are chosen uniformly at random from {0, 1}n , we have

Pr
[

f3(i, α) = (Vj ,Uj )
] ≤ 1

2n(2n − σ)
≤ 2

22n
.

(e) Let j ∈ [qe + 1, q] and there exists γ such that ( j, γ ) ∈ I3. Then, if we fix all X , Y ,
and Z variables consisting (Vj ,Uj ) except Y j [γ ] and Z j [γ ], there exists a 1-1 cor-
respondence map f : {0, 1}2n −→ {0, 1}2n between (Y j [γ ], Z j [γ ]) and (Vj ,Uj ).
Then Pr

[

f3(i, α) = (Vj ,Uj )
] = Pr

[

f3(i, α) = f ((Y j [γ ], Z j [γ ]))]. Since Y j [γ ]
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is chosen uniformly at random from the set of size at least 2n − σ and Z j [γ ] are
chosen uniformly at random from {0, 1}n , we get

Pr
[

f3(i, α) = (Vj ,Uj )
] ≤ 1

2n(2n − σ)
≤ 2

22n
.

(f) Let i ∈ [qe + 1, q], Ci [α] = C j [α], Since (i, α) ∈ I3, one should have j ∈
[qe + 1, qe + qd ] and Ci [γ ] �= C j [γ ] for some γ . Suppose that ( j, γ ) /∈ I3. If there
exists some j ′ ∈ [qe+1, qe+qd ] such that ( j ′, γ ) ∈ I3 andC j [γ ] = C j ′ [γ ], we can
easily apply the same argument as (e). If there exists j ′ ∈ [qe] such that ( j ′, γ ) ∈ I3
and C j ′ [γ ] = C j [γ ], there exists a 1-1 correspondence map between (X j ′ [γ ],�4)

and (Vj ,Uj ). Since Y j [γ ] is chosen uniformly at random from the set of size at least
2n − σ and Z j [γ ] are chosen uniformly at random from {0, 1}n , we get

Pr
[

f3(i, α) = (Vj ,Uj )
] ≤ 1

2n(2n − 1)
≤ 2

22n
.

Moreover, we can apply same method for all remaining cases together with the
condition ¬bad1.

To sum up, we have

Pr
[

f3(i, α) = (Vj ,Uj )
] ≤ 4

22n
.

Therefore, we have

Pr
[

IC3,5
] ≤ 4|I3|q

22n
.

(13) Fix ((i, α), ( j, β)) ∈ I∗2
4 . Without loss of generality, let i ≤ j . We distinguish some

sub-cases as below.

(a) Let i, j ∈ [qe] and α �= β. Then f4(i, α) = f4( j, β) if and only if
{

(2α−1 ⊕ 2β−1)�2 ⊕ (2α−1 ⊕ 2β−1)�4 = Ci,R[α] ⊕ C j,R[β];
(2α−1 ⊕ 2β−1)�4 = Mi,R[α] ⊕ Mj,R[β] ⊕ ⊕ai+α

γ=1 Xi [γ ] ⊕ ⊕a j+β

γ=1 X j [γ ].
Since (�2,�4) is chosen uniformly at random from {0, 1}∗2, one has

Pr [ f4(i, α) = f4( j, β)] ≤ 2

22n
.

(b) Let i, j ∈ [qe] and α = β. (Now we use α instead of β.) Note that Ci [α] �= C j [α]
and Mi [: α] �= Mj [: α] since ((i, α), ( j, α)) ∈ I∗2

4 . Let h ∈ [α] the index such that
Mi [h] �= Mj [h] Then f4(i, α) = f4( j, α) if and only if

{

Ci,R[α] = C j,R[α];
Xi [h] = Mi,R[α] ⊕ Mj,R[α] ⊕ ⊕

γ �=ai+h Xi [γ ] ⊕ ⊕a j+α

γ=1 X j [γ ].
Since Ci,R[α] is chosen uniformly at random from {0, 1}n and Xi [h] is chosen uni-
formly at random from the set of size at least 2n − σ , one has

Pr [ f4(i, α) = f4( j, α)] ≤ 1

2n(2n − σ)
≤ 2

22n
.
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(c) Let i ∈ [qe], j ∈ [qe + 1, q], and α �= β. Then f4(i, α) = f4( j, β) if and only if
{

(2α−1 ⊕ 2β−1)�2 ⊕ (2α−1 ⊕ 2β−1)�4 = Ci,R[α] ⊕ C j,R[β];
2α−1�4 = Y j [β] ⊕ Mi,R[α] ⊕ ⊕ai+α

γ=1 Xi [γ ].
Since (�2,�4) is chosen uniformly at random from {0, 1}∗2, one has

Pr [ f4(i, α) = f4( j, β)] ≤ 2

22n
.

(d) Let i ∈ [qe], j ∈ [qe + 1, q], and α = β. If Ci,R[α] = C j,R[α], then Yi [α] �= Y j [α]
by the sampling process. In this case, Pr [ f4(i, α) = f4( j, α)] = 0. If Ci,R[α] �=
C j,R[α], then similarly Pr [ f4(i, α) = f4( j, α)] = 0. Therefore,

Pr [ f4(i, α) = f4( j, α)] = 0.

(e) Let i, j ∈ [qe + 1, q]. If α �= β, then f4(i, α) = f4( j, β) if and only if
{

(2α−1 ⊕ 2β−1)�2 = (2α−1 ⊕ 2β−1)�4 ⊕ Ci,R[α] ⊕ C j,R[β];
Yi [α] = Y j [β].

Since �2 is chosen uniformly at random from {0, 1}n\ {�4} and Yi [α] is chosen
uniformly at random from the set of size at least 2n − q , we have

Pr [ f4(i, α) = f4( j, β)] ≤ 4

22n
.

Let α = β. If Ci,R[α] = C j,R[α], then Yi [α] �= Y j [β] by the sampling process, so
the probability is zero. If Ci,R[α] = C j,R[α], then Ci,R[α] ⊕ 2α−1�2 ⊕ 2α−1�4 �=
C j,R[α] ⊕ 2α−1�2 ⊕ 2α−1�4 so the probability is zero.

To sum up, we have

Pr
[

IC4,4
] ≤ 4 |I4|2

22n
.

14. Fix (i, α) ∈ I4 and j ∈ [q]. We distinguish some sub-cases as below.

(a) Let i, j ∈ [qe] and α �= m j . If α > m j , then f4(i, α) = (Vj ,Uj ) if and only if
{

Xi [ai + α] = Mi,R[α] ⊕ 2α−1�4 ⊕ ⊕ai+α−1
β=1 Xi [β] ⊕Uj ;

Ci,R[α] = 2α−1�2 ⊕ 2α−1�4 ⊕ Vj .

Therefore, by the randomness of Ci,R[α] and Xi [ai + α], one has

Pr
[

f4(i, α) = (Vj ,Uj )
] ≤ 1

(2n − σ)2
≤ 4

22n
.

If α < m j , then f4(i, α) = (Vj ,Uj ) if and only if
{

2X j [a j + m j ] = Yi [α] ⊕ P;
X j [a j + m j ] ⊕ Ci,R[α] = 2α−1�2 ⊕ 2α−1�4 ⊕ ⊕a j+m j−1

β=1 X j [β],
for some constant P ∈ {0, 1}n , which is independent of X j [a j + m j ] and Ci,R[α].
Therefore, by the sampling process of Ci,R[α] and X j [a j + m j ], one has

Pr
[

f4(i, α) = (Vj ,Uj )
] ≤ 1

(2n − σ)2
≤ 4

22n
.
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(b) Let i, j ∈ [qe] and α = m j . Assume that Ai �= A j and ai ≥ a j . (We can apply the
similar argument when ai < a j .) Then there exists γ ∈ [ai ] such that γ > a j or
Ai [γ ] �= A j [γ ]. In this case, f4(i, α) = (Vj ,Uj ) if and only if

{

Ci,R[α] ⊕ Xi [γ ] = P ′;
Xi [γ ] = Q′,

for some P ′ and Q′ which are independent of Ci,R[α] and Xi [γ ]. Since Ci,R[α] is
chosen uniformly at random from {0, 1}n and Xi [γ ] is chosen uniformly at random
from the set of size at least 2n − σ , we get

Pr
[

f4(i, α) = (Vj ,Uj )
] ≤ 1

2n(2n − σ)
≤ 2

22n
.

(c) Let i, j ∈ [qe], Ai = A j and α = m j . Then Mi �= Mj since there is no redundant
query. Let h be the index such that Mi [h] �= Mj [h]. Then f4(i, α) = (Vj ,Uj ) if and
only if

⎧

⎨

⎩

Xi [ai + h] ⊕ 2m j+1−h X j [a j + h] = P;
X j [a j + h] = 2α−1�2 ⊕ 2α−1�4 ⊕ Ci,R[α] ⊕ ⊕

β∈[m j ]
β �=a j+h

X j [β],

for some P which is independent of Xi [ai + h] and X j [a j + h]. Since Xi [ai + h]
and X j [a j + h] are chosen randomly from the set of size at least 2n − σ , one has

Pr
[

f4(i, α) = (Vj ,Uj )
] ≤ 1

(2n − σ)2
≤ 4

22n
.

(d) Let i, j ∈ [qe], Ai = A j and Mi [: α] = Mj . Then f4(i, α) = (Vj ,Uj ) if and only
if

{

2α−1�4 = Mi [α];
2α−wα�4 ⊕ 3Xi [ai + α] = P,

for some constant P . Since �4 is chosen uniformly at random from {0, 1}n and
Xi [ai + α] is chosen uniformly at random from the set of size at least 2n − σ , we
have

Pr
[

f4(i, α) = (Vj ,Uj )
] ≤ 1

2n(2n − σ)
≤ 2

22n
.

(e) Let i ∈ [qe + 1, q] and j ∈ [qe]. If Ci [α] = Ci ′ [α] for some i ′ ∈ [qe], it is one of
the above cases. Otherwise, f4(i, α) = (Vj ,Uj ) if and only if

{

Yi [α] ⊕ 2a j+m j X j [1] = P ′;
X j [1] = 2α−1�2 ⊕ 2α−1�4 ⊕ C j,R[α] ⊕ ⊕a j+m j

β=2 X j [β],
for some constant P ′ which is independent of Yi [α] and X j [1]. Yi [α] is sampled
from the set of size at least 2n − σ and X j [1] is sampled uniformly at random from
the set of size at least 2n − σ . Therefore, we have

Pr
[

f4(i, α) = (Vj ,Uj )
] ≤ 1

(2n − σ)2
≤ 4

22n
.
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(f) Let i ∈ [qe] and j ∈ [qe + 1, q]. There is no redundant query, Ai �= A j or Ci �= C j .
Assume that Ai �= A j and ai ≥ a j . (We can apply similar argument when ai < a j

or Ci �= C j .) Then there exists γ ∈ [ai ] such that γ > a j or Ai [γ ] �= A j [γ ]. Then
f4(i, α) = (Vj ,Uj ) if and only if

{

2α−1�2 = 2α−1�4 ⊕ C j,R[α] ⊕ Vj ;
⊕a j

β=1 2
β−1�2 ⊕ Xi [γ ] = Q′,

for some Q′ which is independent of �2 and Xi [γ ]. In this case, Xi [γ ] is chosen
uniformly at random from the set of size at least 2n−σ . Also,�2 is chosen uniformly
at random from {0, 1}n . Therefore, we have

Pr
[

f4(i, α) = (Vj ,Uj )
] ≤ 1

2n(2n − σ)
≤ 2

22n
.

(g) Let i, j ∈ [qe + 1, q]. If Ci [α] = Ci ′ [α] for some i ′ ∈ [qe], it is one of the above
cases. Otherwise, f4(i, α) = (Vj ,Uj ) if and only if

{

Ci,R[α] = Vj ⊕ 2α−1�i,2 ⊕ 2α−1�i,4;
Yi [α] = Uj .

By the sampling process of Ci,R[α] and Yi [α], we have

Pr
[

f4(i, α) = (Vj ,Uj )
] ≤ 1

(2n − σ)2
≤ 4

22n
.

By the above analysis, we have

Pr
[

IC4,5
] ≤ 4q |I4|

22n
.

15. Fix i, j ∈ [q]∗2. Without loss of generality, let i ≤ j . We restore X values and R values
using ρ̂−1. Then, since there is no redundant query, Ai �= A j or Mi �= Mj . We consider
the following cases.

(a) If ai > a j + 1, then (Vi ,Ui ) = (Vj ,Uj ) if and only if
(

2ai+mi−a j 2ai+mi−a j−1

1 1

) (

Xi [a j + 1]
Xi [a j + 2]

)

=
(

P ′
Q′

)

,

for some P ′ and Q′ which are independent of Xi [a j + 1] and Xi [a j + 2]. By the
samplingprocess of Xi [a j+1] and Xi [a j+2], in this casePr [(Vi ,Ui ) = (Vj ,Uj )

] ≤
4
22n

. We can apply the similar argument when a j > ai + 1 and get the same result.
(b) Assume that ai = a j + 1 and Ai [β] �= A j [β] for some β ∈ [a j ]. Then (Vi ,Ui ) =

(Vj ,Uj ) if and only if
(

2mi+ai−β+1 2mi+1

1 1

) (

Xi [β]
Xi [ai ]

)

=
(

P ′
Q′

)

,

for some P ′ and Q′ which are independent of Xi [β] and Xi [ai ]. By Lemma 6, we
can conclude

Pr
[

(Vi ,Ui ) = (Vj ,Uj )
] ≤ 4

22n
.
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(c) Assume that ai = a j + 1 and Ai [: a j ] = A j . If Mi [β] �= Mj [β] or there exists
β ∈ [mi ], we can use the randomness of Xi [ai + β] and Xi [ai ]. More precisely,
(Vi ,Ui ) = (Vj ,Uj ) if and only if

(

2mi−β+1 2mi+1

1 1

)(

Xi [ai + β]
Xi [ai ]

)

=
(

P ′
Q′

)

,

for some P ′ and Q′ which are independent of Xi [ai + β] and Xi [ai ]. If Mi = Mj ,
we have two cases, Xi [ai ] = 0 or Xi [ai ] �= 0. Xi [ai ] �= 0 implies Vi �= Vj (see (5)).
Also, if Xi [ai ] = 0, then Ui = Uj if and only if

mi⊕

β=1

2m+1−β(Xi [ai + β] ⊕ Mi,R[β]) ⊕ 2m+1Ai,R[ai ] = 0.

Therefore, (Vi ,Ui ) = (Vj ,Uj ) if and only if
(

1 0
0 1

)(

Xi [ai ]
Xi [ai + mi ]

)

=
(

0
Q′

)

,

where

Q′ =
mi−1
⊕

β=1

2m+1−β(Xi [ai + β] ⊕ Mi,R[β]) ⊕ Mi,R[mi ] ⊕ 2m+1Ai,R[ai ].

(see (4)). Therefore, by the sampling process of Xi [ai ] and Lemma 6,

Pr
[

(Vi ,Ui ) = (Vj ,Uj )
] ≤ 4

22n
.

We can apply the similar argument when a j = ai + 1 and A j [: ai ] = Ai .
(d) Assume that ai = a j . If there exist α, β ∈ [ai ] such that Ai [α] �= A j [α] and

Ai [β] �= A j [β], (Vi ,Ui ) = (Vj ,Uj ) if and only if

(

2ai+mi−α+1 2ai+mi−β+1

1 1

) (

Xi [α]
Xi [β]

)

=
(

P ′
Q′

)

,

for some P ′ and Q′ which are independent of Xi [α] and Xi [β]. Then by Lemma 6,
Pr

[

(Vi ,Ui ) = (Vj ,Uj )
] ≤ 4

22n
. If there exists only one α ∈ [ai ] such that Ai [α] �=

A j [α], then (Vi ,Ui ) = (Vj ,Uj ) if and only if

(

2ai+mi−α+1 2a j+m j−α+1

1 1

) (

Xi [α]
X j [α]

)

=
(

P ′
Q′

)

,

for some P ′ and Q′ which are independent of Xi [α] and X j [α]. Therefore,

Pr
[

(Vi ,Ui ) = (Vj ,Uj )
] ≤ 1

2n(2n − 1)
≤ 4

22n
.

Therefore, we have

Pr
[

IC5,5
] ≤ 4q2

22n
.
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All in all, we have

Pr [IC] ≤ 4q2 + 12qσ + 20σ 2

22n
.

��
Lemma 11

Pr [OC] ≤ 2q2e + 6qeσ + 28σ 2

22n
.

Proof We calculate each probability of OCi, j for 1 ≤ i ≤ j ≤ 5.

1. Let ((i, α), ( j, β)) ∈ I∗2
1 . If α = β, then one should have Ai [α] �= A j [β] and g1(i, α) �=

g2(β). Suppose α �= β. Then g1(i, α) = g1( j, β) if and only if
{

(2α−1 ⊕ 2β−1)�2 = Ai,R[α] ⊕ A j,R[β];
Xi [α] = X j [β],

and since �2 is chosen uniformly at random from {0, 1}n and Xi [α] is chosen uniformly
at random from the set of size at least 2n − σ , one has

Pr [g1(i, α) = g1( j, β)] ≤ 1

2n(2n − σ)
≤ 2

22n
.

Therefore, we have

Pr
[

OC1,1
] ≤

∑

((i,α),( j,β))∈I∗2
1

2

22n
≤ 2 |I1|2

22n
.

2. Let (i, α) ∈ I1 and ( j, β) ∈ I2. Then g1(i, α) = g2( j, β) if and only if
{

2α−1�2 = 2β−1�4 ⊕ Ai,R[α] ⊕ Mi,R[β];
Xi [α] = X j [a j + β].

Since �2 is chosen uniformly at random from {0, 1}n\ {�4} and Xi [α] is chosen uni-
formly at random from the set of size at least 2n − σ , one has

Pr [g1(i, α) = g2( j, β)] ≤ 1

(2n − 1)(2n − σ)
≤ 4

22n
.

Therefore, we have

Pr
[

OC1,2
] ≤

∑

( j,β)∈I2

∑

(i,α)∈I1

4

22n
≤ 4 |I1| |I2|

22n
.

3. Let (i, α) ∈ I1 and ( j, β) ∈ I3. We distinguish two sub-cases.

(a) Assume j ∈ [qe]. Then g1(i, α) = g3( j, β) if and only if
{

2β−1�4 ⊕ C j [β] = 2β−1�2 ⊕ Xi [α];
2β−1�4 = 2α−1�2 ⊕ Ai,R[α] ⊕ Mj,R[β] ⊕ ⊕a j+β

γ=1 X jγ.

Since �4 is chosen uniformly at random from {0, 1}n\ {�2} and C j [β] is chosen
uniformly at random from {0, 1}n , respectively, one has

Pr [g1(i, α) = g3( j, β)] ≤ 1

2n(2n − 1)
≤ 2

22n
.
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(b) Assume j /∈ [qe]. If C j [β] = C j ′ [β] for j ′ ∈ [qe], this case is same as the case that
j ∈ [qe]. Otherwise, g1(i, α) = g3( j, β) if and only if

{

2α−1�2 = Ai,R[α] ⊕ Y j [β];
2β−1�2 ⊕ 2β−1�4 = Ci,R[β] ⊕ Xi [α].

Since (�2,�4) is chosen uniformly at random from ({0, 1}n)∗2, one has

Pr [g1(i, α) = g3( j, β)] ≤ 1

2n(2n − 1)
≤ 2

22n
.

To sum up, we have

Pr
[

OC1,3
] ≤

∑

( j,β)∈I3

∑

(i,α)∈I1

2

22n
≤ 2 |I1| |I3|

22n
.

4. Let (i, α) ∈ I1 and ( j, β) ∈ I4. Then g1(i, α) = g3( j, β) if and only if
{

2β−1�1 = Xi [α] ⊕ Ci,L [β] ⊕ 2β−1�3;
2β−1�4 = Ai,R[α] ⊕ (2α−1 ⊕ 2β−1)�2.

Since (�1,�4) is chosen uniformly at random from ({0, 1}n \ {�2,�3})∗2, one has

Pr [g1(i, α) = g4( j, β)] ≤ 1

(2n − 2)(2n − 3)
≤ 4

22n
.

Therefore, we have

Pr
[

OC1,4
] ≤

∑

( j,β)∈I4

∑

(i,α)∈I1

4

22n
≤ 4 |I1| |I4|

22n
.

5. Let (i, α) ∈ I1 and j ∈ [qe]. Then g1(i, α) = (Vj , Tj ) if and only if
{

2α−1�2 = Ai,R[α] ⊕ ⊕a j+m j
β=1 X j [β];

Tj = Xi [α].
Since �2 and Tj are chosen uniformly at random from {0, 1}n , respectively, one has

Pr
[

g1(i, α) = (Vj , Tj )
] ≤ 1

22n
.

Therefore, we have

Pr
[

OC1,5
] ≤

∑

j∈[qe]

∑

(i,α)∈I1

1

22n
≤ qe |I1|

22n
.

6. Let ((i, α), ( j, β)) ∈ I∗2
2 . If α = β, then Mi [α] �= Mj [β] so g2(i, α) �= g2( j, β).

Otherwise, g2(i, α) = g2( j, β) if and only if
{

(2α−1 ⊕ 2β−1)�4 = Mi,R[α] ⊕ Mj,R[β];
Xi [ai + α] = X j [a j + β].

Since�4 is chosen uniformly at random from {0, 1}n and Xi [ai +α] is chosen uniformly
at random from the set of size at least 2n − qe, we have

Pr [g2(i, α) = g2( j, β)] ≤ 1

2n(2n − qe)
≤ 2

22n
.
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Therefore, we have

Pr
[

OC2,2
] ≤

∑

((i,α),( j,β))∈I∗2
2

2

22n
≤ 2 |I2|2

22n
.

7. Let (i, α) ∈ I2 and ( j, β) ∈ I3. We distinguish three sub-cases.

(a) Assume that j ∈ [qe] and α �= β. Then g2(i, α) = g3( j, β) if and only if
{

2β−1�2 ⊕ 2β−1�4 = Xi [ai + α] ⊕ C j,R[β];
(2α−1 ⊕ 2β−1)�4 = Mi,R[α] ⊕ Mj,R[β] ⊕ ⊕a j+β

γ=1 X j [γ ].
Since (�2,�4) is chosen uniformly at random from ({0, 1}n)∗2, one has

Pr [g2(i, α) = g3( j, β)] ≤ 1

2n(2n − 1)
≤ 2

22n
.

(b) Now assume that j ∈ [qe] and α = β. If Mi [α] = Mj [β], then Xi [ai + α] =
X j [a j + β] therefore g2(i, α) = g3( j, β) if and only if

{

X j [a j + β] ⊕ 2β−1�2 = C j,R[β] ⊕ 2β−1�4;
X j [a j + β] = Mi,R[α] ⊕ Mj,R[β] ⊕ ⊕a j+β−1

γ=1 X j [γ ].
Otherwise, g2(i, α) = g3( j, β) if and only if

{

2β−1�2 = C j,R[β] ⊕ Xi [ai + α] ⊕ 2β−1�4;
X j [a j + β] = Mi,R[α] ⊕ Mj,R[β] ⊕ ⊕a j+β−1

γ=1 X j [γ ].
For both cases, since�2 is chosen uniformly at random from {0, 1}n\�4 and X j [a j +
β] is chosen uniformly at random from the set of size at least 2n − qe, one has

Pr [g2(i, α) = g3( j, β)] ≤ 1

(2n − 1)(2n − qe)
≤ 4

22n
.

(c) Assume that j /∈ [qe]. Since ( j, β) ∈ I3, Y j [β] is chosen uniformly at random from
the set of size at least 2n − q . Now, g2(i, α) = g3( j, β) if and only if

{

2β−1�2 = C j,R[β] ⊕ Xi [ai + α] ⊕ 2β−1�4;
Y j [β] = Mi,R[α] ⊕ Mj,R[β] ⊕ (2α−1 ⊕ 2β−1)�4.

Since �2 is chosen uniformly at random from {0, 1}n\ {�4} and Y j [β] is chosen
uniformly at random from the set of size at least 2n − q , one has

Pr [g2(i, α) = g3( j, β)] ≤ 1

(2n − 1)(2n − q)
≤ 4

22n
.

To sum up, we have

Pr
[

OC2,3
] ≤

∑

( j,β)∈I3

∑

(i,α)∈I2

4

22n
≤ 4 |I2| |I3|

22n
.

8. Let (i, α) ∈ I2 and ( j, β) ∈ I4. Then g2(i, α) = g4( j, β) if and only if
{

2β−1�1 = Xi [ai + α] ⊕ C j,L [β] ⊕ 2β−1�3;
2β−1�2 = Mi,R[α] ⊕ C j,R[β] ⊕ (2α−1 ⊕ 2β−1)�4.
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Since (�1,�2) is chosen uniformly at random from ({0, 1}n \ {�3,�4})∗2, one has

Pr [g2(i, α) = g4( j, β)] ≤ 1

(2n − 2)(2n − 3)
≤ 4

22n
.

Therefore, we have

Pr
[

OC2,4
] ≤

∑

( j,β)∈I4

∑

(i,α)∈I2

4

22n
≤ 4 |I2| |I4|

22n
.

9. Let (i, α) ∈ I2 and j ∈ [qe]. Then g2(i, α) = (Vj , Tj ) if and only if
{

2α−1�4 = Mi,R[α] ⊕ ⊕a j+m j
β=1 X j [β];

Tj = Xi [ai + α].
Since �4 and Tj are chosen uniformly at random from {0, 1}n , respectively, one has

Pr
[

g2(i, α) = (Vj , Tj )
] ≤ 1

22n
.

Therefore, we have

Pr
[

OC2,5
] ≤

∑

j∈qe

∑

(i,α)∈I2

1

22n
≤ qe |I2|

22n
.

10. Since IC4,4 = OC3,3,

Pr
[

OC3,3
] ≤ 4 |I4|2

22n
.

11. Let (i, α) ∈ I3 and ( j, β) ∈ I4. Then g3(i, α) = g4( j, β) if and only if
{

2β−1�2 = C j,R[β] ⊕ 2β−1�4 ⊕ Yi [α];
2α−1�2 ⊕ 2β−1�1 = Ci,R[α] ⊕ C j,L [β] ⊕ 2β−1�3 ⊕ 2α−1�4.

Note that Yi [α] is independent of �1 and �2 whether i ∈ [qe] or not. Since (�1,�2) is
chosen uniformly at random from ({0, 1}n\ {�3,�4})∗2, one has

Pr [g3(i, α) = g4( j, β)] ≤ 1

(2n − 2)(2n − 3)
≤ 4

22n
.

Therefore, we have

Pr
[

OC3,4
] ≤

∑

( j,β)∈I4

∑

(i,α)∈I3

4

22n
≤ 4 |I3| |I4|

22n
.

12. Let (i, α) ∈ I3 and j ∈ [qe]. We distinguish two sub-cases.

(a) Let i ∈ [qe]. Then g3(i, α) = (Vj , Tj ) if and only if
{

2α−1�4 = Mi,R[α] ⊕ ⊕ai+α
β=1 Xi [α] ⊕ ⊕a j+m j

β=1 X j [β];
Tj ⊕ 2α−1�4 = Ci,R[α] ⊕ 2α−1�2.

Since �4 is chosen uniformly at random from {0, 1}n\ {�2} and Tj is chosen uni-
formly at random from {0, 1}n , respectively, one has

Pr
[

g3(i, α) = (Vj , Tj )
] ≤ 1

2n(2n − 1)
≤ 2

22n
.
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(b) Let i /∈ [qe]. If there exists i ′ ∈ [qe] such that Ci [α] = Ci ′ [α], this case is same as
the case that i ∈ [qe]. Otherwise, g3(i, α) = (Vj , Tj ) if and only if

{

Yi [α] = ⊕a j+m j
β=1 X j [β];

Tj = Ci,R[α] ⊕ 2α−1�2 ⊕ 2α−1�4.

Since Tj is chosen uniformly at random from {0, 1}n and Yi [α] is chosen uniformly
at random from the set of size at least 2n − q , one has

Pr
[

g3(i, α) = (Vj , Tj )
] ≤ 1

2n(2n − q)
≤ 2

22n
.

To sum up, we have

Pr
[

OC3,5
] ≤

∑

j∈[qe]

∑

(i,α)∈I3

2

22n
≤ 2qe |I3|

22n
.

13. Let ((i, α), ( j, β)) ∈ I∗2
4 . If α = β, then Ci [α] �= C j [β] so g4(i, α) �= g4( j, β). Now

assume α �= β. Then g4(i, α) = g4( j, β) if and only if
{

(2α−1 ⊕ 2β−1)�1 = Ci,L [α] ⊕ C j,L [β] ⊕ (2α−1 ⊕ 2β−1)�3;
(2α−1 ⊕ 2β−1)�2 = Ci,R[α] ⊕ C j,R[β] ⊕ (2α−1 ⊕ 2β−1)�4.

Since (�1,�2) is chosen uniformly at random from ({0, 1}n \ {�3,�4})∗2, one has

Pr [g4(i, α) = g4( j, β)] ≤ 1

(2n − 2)(2n − 3)
≤ 4

22n
.

Therefore, we have

Pr
[

OC4,4
] ≤ 4 |I4|2

22n
.

14. Let (i, α) ∈ I4 and j ∈ [qe]. Then g4(i, α) = (Vj , Tj ) if and only if
{

2α−1�2 = Ci,R[α] ⊕ 2α−1�4 ⊕ Vj ;
Tj = Ci,L [α] ⊕ 2α−1�1 ⊕ 2α−1�3.

Note that Vj is independent of �2. Since �2 is chosen uniformly at random from
{0, 1}n\ {�1,�3,�4} and Tj is chosen uniformly at random from {0, 1}n , respectively,
one has

Pr
[

g4(i, α) = (Vj , Tj )
] ≤ 2

22n
.

Therefore, we have

Pr
[

OC4,5
] ≤

∑

j∈[qe]

∑

(i,α)∈I4

2

22n
≤ 2qeI4

22n
.

15. Let (i, j) ∈ [qe]∗2. We distinguish two sub-cases.

(a) First, assume mi �= m j . Without loss of generality, we can assume that mi < m j . In
this case, (Vi , Ti ) = (Vj , Tj ) if and only if

{

X j [a j + m j ] = Vi ⊕ ⊕a j+m j−1
α=1 X j [α];

Tj = Ti .
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Since X j [a j +m j ] is chosen uniformly at random from the set of size at least 2n −qe
and Tj is chosen uniformly at random from {0, 1}n , one has

Pr
[

(Vi , Ti ) = (Vj , Tj )
] ≤ 1

2n(2n − qe)
≤ 2

22n
.

(b) Now assume that mi = m j . Since there is no redundant query, there exists at least
one index h such that Mi [h] �= Mj [h]. In this case, (Vi , Ti ) = (Vj , Tj ) if and only
if

{

X j [a j + h] = Vi ⊕ ⊕

α �=a j+h X j [α];
Tj = Ti .

Since X j [a j + h] is chosen uniformly at random from the set of size at least 2n − qe
and Tj is chosen uniformly at random from {0, 1}n , one has

Pr
[

(Vi , Ti ) = (Vj , Tj )
] ≤ 1

2n(2n − qe)
≤ 2

22n
.

To sum up, we have

Pr
[

OC5,5
] ≤

∑

(i, j)∈[qe]∗2

2

22n
≤ 2q2e

22n
.

Now using |I1| + |I2| ≤ σ , |I1| + |I3| ≤ σ , and |Ii | ≤ σ for 1 ≤ i ≤ 4, we conclude
the lemma. ��

We distinguish 35 cases, which is denoted by TwColl, IC, or OC.
All in all, since |Ir | ≤ σ for r ∈ [4], one get

Pr
[

bad2 ∧ ¬bad1
] ≤ 48σ 2 + 18qσ + 6q2

22n
+ 6σ + 2q

2n
.

6 Conclusion

In this paper, we proposed two tweakable block cipher-based online authenticated encryp-
tion schemes ZLR and DS-ZLR, following the Encrypt-Mix-Encrypt paradigm. Our schemes
turn out to provide n-bit OAE security, supporting pipelined computation as well as online
nonce-misuse resistance. We believe that our AE schemes will be useful in protocols where
high security and efficiency are required at the same time, in particular, when latency is
critical and online properties are required, for example, for VoIP, teleconference and Car2X
communications. It is open if the provable security of ZLR and DS-ZLR are tight, and if they
also provide more advanced security notions such as Release of Unverified Plaintext (RUP)
security. We leave them as interesting topics for further research.
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