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Abstract. In this paper, we revisit the algorithm for computing chains
of (2, 2)-isogenies between products of elliptic curves via theta coordi-
nates proposed by Dartois et al. For each fundamental block of this
algorithm, we provide a explicit inversion-free version. Besides, we ex-
ploit a novel technique of x-only ladder to speed up the computation of
gluing isogeny. Finally, we present a mixed optimal strategy, which com-
bines the inversion-elimination tool with the original methods together
to execute a chain of (2, 2)-isogenies.
We make a cost analysis and present a concrete comparison between
ours and the previously known methods for inversion elimination. Fur-
thermore, we implement the mixed optimal strategy for benchmark. The
results show that when computing (2, 2)-isogeny chains with lengths of
126, 208 and 632, compared to Dartois, Maino, Pope and Robert’s orig-
inal implementation, utilizing our techniques can reduce 30.8%, 20.3%
and 9.9% multiplications over the base field Fp, respectively. Even for the
updated version which employs their inversion-free methods, our tech-
niques still possess a slight advantage.

1 Introduction

Isogeny-based cryptography is a candidate of post-quantum cryptography. Com-
pared to other post-quantum schemes, isogeny-based cryptosystems benefit from
their short key sizes. Nevertheless, the executions of the isogeny-based protocols
are inefficient since the isogeny computations are extremely expensive.

The key exchange protocol SIDH [15] was regarded as an efficient isogeny-
based scheme. In 2017, the key escapsulation based on SIDH which is called
SIKE was submitted to the NIST post-quantum cryptography standardization.
However, SIDH was broken in polynomial time [7,16,26]. The aforementioned
attacks on SIDH are revelant for researching on the higher dimension abelian
varieties. Furthermore, many cryptographers utilize these attacks as powerful
tools to design new cryptographic schemes.

Basso et al. use the SIDH-attack as a trapdoor, and propose the first public
key encryption (PKE) scheme named FESTA using Kani’s [2] theorem. Based
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on FESTA, an optimization using quaternion algebra called QFESTA [20], a
key encapsulation scheme IS-CUBE [17] and a variant combined with LIT-
diagram named LIT-SiGamal [18] are constructed. On the signature side, a
high-dimension version of SQIsign [10], called SQIsignHD [8], which uses isoge-
nies of dimensions 4 or 8 was proposed in 2023. More recently, it was improved
by exploiting new techniques to make the protocol itself work with isogenies
of dimensions 2 or 4. The corresponding variants of SQIsign, SQIsign2D-West
[1], SQIsign2D-East [21] and SQIPrime [11] have been successively proposed. To
sum up, the computation for chains of (2, 2)-isogenies between products of ellip-
tic curves is the core of the protocols mentioned above. Consequently, enhancing
the performance of computing (2, 2)-isogenies is a crucial part for the develop of
the high-dimension isogeny-based protocols.

The isogeny computations between elliptic curves have been extensively in-
vestigated, such as [12,13,14,3]. As for the case of genus 2, the explicit methods
and formulas for the computation of (2, 2)-isogenies between the Jacobians of
hyperelliptic curves were first given by Richelot [23], and were further improved
by Bost [4] and Cassels [6]. In a period of time, using Richelot isogenies was con-
sidered a satisfactory method to compute (2, 2)-isogenies. Nevertheless, Dartois,
Maino, Pope and Robert revisited the techniques in [24,25] and proposed a new
algorithm to compute (2, 2)-isogenies between dimension-2 abelian varieties in
the theta models [9]. Compared to the Richelot correspondance, utilizing theta
coordinates is much more efficient, which is the state-of-the-art for computing
(2, 2)-isogenies between products of elliptic curves.

Notation Let M, S and I denote the cost of multiplication, squaring and
inversion of an element over the base field Fp throughout the paper, respectively.

1.1 Contributions

In this paper, we propose several methods to optimize the (2, 2)-isogeny com-
putation. In the phase of precomputation and codomain recovery, the original
algorithms in [9] require inversions over a finite field at each step of a (2, 2)-
isogeny chain. We present some novel techniques to avoid all the inversions in
the computation of (2, 2)-isogenies, including gluing and generic isogenies. Be-
sides, we make a concrete cost analysis, and present the comparison (See Tables
1 and 2) for each building block in the isogeny computation between our meth-
ods, the approaches in [18] and the original/latest algorithms of [9] in terms of
multiplications over the base field Fp. The results show that our approach out-
performs the methods in [9,18] when executing codomain recoveries and image
point evaluations in the gluing isogeny computation. As for the generic isogeny,
applying our techniques requires less multiplications to perform than utilizing
the inversion-free methods in the latest verison of [9] and [18] in the phase of
precomputations and codomain recoveries.
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Table 1. Cost comparison of different methods in gluing isogeny.

Ours [9, both original and latest] [18]

Doubling 8S+ 12M+ 2Ca 12S+ 10M+ 2C 8S+ 12M+ 2Ca

Codomain 8S+ 4Mb 8S+ 13M+ 1Ib 8S+ 6Mb

Evaluation 18S+ 81Mc 18S+ 82M+ 1Ic 18S+ 78M+ 1Ic

a An additional cost 6S + 22M is required to recover the y-coordinates by using our
method. While in [18], it needs to execute two square-roots.

b 1M, 8M, 3M are included to compute the inversed dual theta-null points, respectively.
c 10S+ 72M is included to calculate the point additions and basis transformation.

Table 2. Cost comparison of different methods in generic isogeny.

Ours [9, latest] [9, original] [18]

Precomputation 4S+ 12M 6S+ 16M 4S+ 21M+ 1I 4S+ 15M+ 1I
Doubling 8S+ 8M 8S+ 8M 8S+ 6M 8S+ 7M

Codomain 8S+ 9Ma 8S+ 11Ma,b 8S+ 13M+ 1Ia,c 9S+ 16Ma

Evaluation 4S+ 4M 4S+ 4M 4S+ 3M 4S+ 4M

a 3M, 3M, 4M, 6M are included to calculate the inversed dual theta-null points, re-
spectively.

b 8S+ 13M is required if the precomputation is not performed.
c 8S+ 23M+ 1I is required if the precomputation is not performed.

For the point doublings in the gluing isogeny step, we first employ the x-only
ladder algorithm to obtain the x-coordinates of the target points, and recover
the corresponding y-coordinates by Okeya-Skurai formula [22] at last. This ad-
justment can reduce the computational cost for the gluing isogeny compared to
the previously known implementation [9,18].

According to Table 2, if we eliminate these inversions by using the projec-
tive space, it will bring several extra multiplications while executing a doubling
or image evaluation. If the length of the chain of (2, 2)-isogenies is short, it is
preferred to utilize the technique of inversion elimination, the same goes for
the opposite. Thus we provide a mixed optimal strategy which combines our
techniques of inversion elimination with the original methods in [9] that re-
quire performing inverisons to make a trade-off. While in the updated version of
[9], Dartois, Maino, Pope and Robert work with inversion-free projective points
along the whole chain for simplicity. Moreover, based on the Rust code in [9], we
implement the mixed optimal strategy in this paper. The experimental results
(See Tables 3 and 4 for detail) illustrate that in terms of multiplications over a
finite field Fp, when computing (2, 2)-isogeny chains with lengths of 126, 208 and
632, utilizing our techniques obtain savings of 30.8% (resp. 4.0%), 20.3% (resp.
2.6%) and 9.9% (resp. 1.9%) compared to the original (resp. the latest) version of
implementation of [9], respectively. As for the running time, the improvements
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become 28.0%, 21.2% and 10.4%, respectively. Besides, even compared to the
latest implementation, our approaches have a slight advantage.

2 Mathematical preliminaries

In this section, we introduce the corresponding mathematical preliminaries of
the (2, 2)-isogeny computations, including theta coordinates, Hadamard trans-
formation and duplication formula.

2.1 Theta coordinates

In this subsection, we introduce theta coordinates and their properties. See [9]
for more details.

Let k be a field with characteristic different from 2 and let A be a abelian
variety defined over k of dimension g. We assume that L is a symmetric line
bundle on A and let TP be the translation-by-P map over A. Defined by K(L)
the set of points such that the pullback of L under TP is isomorphic to L:

K(L) = {P ∈ A | T ∗
PL ∼= L}.

Then the set G(L) defined as:

G(L) = {(x, ϕx) | x ∈ K(L), ϕx : L → T ∗
xL}

has a group structure, we call it Mumford theta group . There is an exact se-
quence:

0 → k̄∗ → G(L) → K(L) → 0.

Besides, there exist two maximal isotropic groups such that K(L) = K(L)1 ⊕
K(L)2. Let a sequence δ = (d1, · · · , gg) such that:

K(δ) =

g⊕
i=1

Z/diZ, H(δ) = K(δ)⊕ Hom(K(δ), k̄∗).

A theta structure of type δ is an isomorphism ΘL : G(δ) → G(L). And the space
V (δ) = Hom(K(δ), k̄) is a unique irreducible representation of G(δ). Moreover,
the space of the global section Γ (A,L) is also a unique irreducible representation
of G(L). Consequently, there is an isomorphism between Γ (A,L) and V (δ). A
basis (θi)i∈K(L)1 derived from a canonical basis (δi)i∈K(δ) of V (δ) via the iso-
morphism is called theta coordinates. If d1 = · · · = dg = n, these coordinates are
called theta coordinates of level n.

For application purposes, we only consider theta coordinates of level 2 and
assume that A is a product of elliptic curves (g = 2) in the rest of this paper.
Such coordinates over A have the form of

(θAi )i∈Z2×Z2=K(2,2).
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We call the projective point (θAi (0))i∈K(2,2) theta-null point. Let S1, S2 ∈ A[2]
be points derived from the canonical basis of K(2, 2). Define T1, T2 ∈ A[2] to
be those from Hom(K(2, 2), k̄∗). Then the theta structure ΘA is induced by a
symplectic 4-torsion basis S′

1, S
′
2, T

′
1, T

′
2 ∈ A[4], where S′

i and T ′
i lay above Si

and Ti, respectively [9]. Given points P ∈ A and T ∈ K(L), we can represent
P + T in theta coordinates as

(θAi (P + T ))i = (χ(i)θAi+s(P ))i

if T corresponds to (s, χ) ∈ H(2, 2).

2.2 Hadamard transform and duplication formula

In this subsection we introduce the definition of Hadamard transform, and then
present the duplication formula, which is the core of (2, 2)-isogeny computation.

Denote by H the action of the Hadamard transform on a theta coordinate
(θi)i. The image coordinates after this transform are called dual theta coordi-
nates. We denote such coordinates by (θ̃i)i. A point P in theta coordinates is
represented by P = (θ00 : θ10 : θ01 : θ11)

3 = (x : y : z : t) in dimension 2. Then
we have: 

θ̃00(P )

θ̃10(P )

θ̃01(P )

θ̃11(P )

 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



θ00(P )
θ10(P )
θ01(P )
θ11(P )


.

It is clear that H(H((θi(P ))i)) = (θi(P ))i for any P .
Recall from Section 2.1, A is a product of two elliptic curves endowed with a

type-(2, 2) theta structure induced by symplectic 4-torsion basis ⟨S′
1, S

′
2, T

′
1, T

′
2⟩.

Consider the isogeny f : A → B with ker(f) = K(L)2 = ⟨T1, T2⟩ . Define ⋆ to
be an operator such that (xi)i ⋆ (yi)i = (xiyi)i. Then, the duplication formula
[19,24] shows that:(

θAi (P +Q)
)
i
⋆
(
θAi (P −Q)

)
i
= H

((
θ̃Bi (f(P )))i ⋆ ((θ̃

B
i (f(Q))

)
i

)
, (1)

H
((

θAi (f̃(R)))i ⋆ ((θ
A
i (f̃(S))

)
i

)
= (θ̃Bi (R+ S))i ⋆ (θ̃

B
i (R− S))i, (2)

where f̃ is the dual isogeny of f . One can execute the point doubling or isogeny
computation by using the duplication formula repeatly. See [9] for more detail.

3 Main Results

In this section, we present novel methods to optimize the implementation of
(2n, 2n)-isogeny computation. For the point doubling and image point computa-
tion, we remove the inversions in the precomputation process before computing
3 The subscript order follows the order in [9].
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an isogeny chain by working on projective space, with some additional multipli-
cations instead. The inversions in the phase of isogeny codomain computation
are also eliminated. Besides, we use the technique of x-only ladder on Mont-
gomery curves to speed up the scalar multiplication in gluing isogeny computa-
tion. Finally, we propose a mixed optimal strategy, which combines the previous
method [9] and our new inversion-free techniques in the whole isogeny chain
computation.

We first introduce some notations. Assume that we compute a (2n, 2n)-
isogeny f : E1 × E2 → E′

1 × E′
2 with ker(f) =

〈
T̃1, T̃2

〉
, where Ei, E

′
i (i = 1, 2)

are Montgomery curves. Then the isogeny f can be splitted into n 2-isogenies:

E1 × E2
f1−→ A1

f2−→ · · · fn−1−−−→ An−1
fn−→ E′

1 × E′
2, (3)

where f1, fn and other fi are called gluing isogeny, splitting isogeny and generic
isogeny, respectively. Therefore, before performing each 2-isogeny, we need to
execute several point doublings.

Denote by (a : b : c : d) and (α : β : γ : δ) the theta and dual theta coordinates
on a product of elliptic curves, respectively. We also define the operators S, I and
C(a:b:c:d) to be a square, an inversion and a scaling map, respectively. We assume
that the abelian variety E1 × E2 has already endowed with a compatible theta
structure of type-(2, 2), and omit the computational process of the transform
between Montgomery coordinates and theta coordinates. See [9,27] for more
details.

3.1 Inversion elimination

In this subsection, we state how to perform point doublings and isogeny compu-
tations without executing inversions.

According to the original algorithms in [9], for each generic isogeny in the
isogeny chain, one can precompute six field elements a/b, a/c, a/d, α2/β2, α2/γ2,
α2/δ2 at a cost of 4S + 21M + 1I. Utilizing the duplication formula, the point
doubling can be done as:

(θAi ([2]P ))i = C(1: ab : ac : ad ) ◦ H ◦ C
(1:α

2

β2 :α
2

γ2 :α
2

δ2
)
◦ S ◦ H ◦ S((θAi (P ))i).

Hence it requires 8S+ 6M to execute a point doubling.
The isogeny computation includes the codomain and image point recoveries.

Let f be a 2-isogeny from A to B with ker(f) = ⟨T1, T2⟩. Assume that the theta
structure of A is induced by ⟨S1, S2, T1, T2⟩ ⊂ A[4]. We set S1 = (b : a : d :
c), S2 = (c : d : a : b), T1 = (a : −b : c : −d) and T2 = (a : b : −c : −d). From
the duplication formula, we have:

H ◦ S((θAi (P ))i) = (θ̃Bi (f(P )))i ⋆ (θ̃
B
i (0))i. (4)

Using the precomputed results α2/β2, α2/γ2, α2/δ2 and two 8-torsion points
T ′′
i (i = 1, 2) above Ti, it takes 8S+13M+1I to recover the dual theta-null point
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and its inverse on the codomain curve B. If no precomputation is performed, the
cost would increase to 8S+23M+1I. But whatever the case, it takes 4S+3M
to obtain the coordinates of the image point.

Note that the original methods in [9] require two field inversions in each
generic step of isogeny chain. If the length of chain is short, the implementation
would become costly. Therefore, we aim to present the inversion-free algorithms
for the doubling, codomain recovery and image evaluation.

Doubling For the point doubling in generic step, the coordinates (1 : a
b : a

c : a
d )

and (1 : α2

β2 : α2

γ2 : α2

δ2 ) can be represented as

(1 :
a

b
:
a

c
:
a

d
) = (bcd : acd : abd : abc), (5)

(1 :
α2

β2
:
α2

γ2
:
α2

δ2
) = (β2γ2δ2 : α2γ2δ2 : α2β2δ2 : α2β2γ2), (6)

since we work on projective space. The doubling process is as follows:

(θAi ([2]P ))i = C(bcd:acd:abd:abc)◦H◦C(β2γ2δ2:α2γ2δ2:α2β2δ2:α2β2γ2)◦S◦H◦S((θAi (P ))i).

Algorithm 1 illustrates the computational details of point doubling.

Algorithm 1 Doubling
Input: The theta coordinates of P , the precomputed results (λ1, λ2, λ3, λ4) =

(bcd, acd, abd, abc) and (λ′
1, λ

′
2, λ

′
3, λ

′
4) = (β2γ2δ2, α2γ2δ2, α2β2δ2, α2β2γ2).

Output: The theta coordinates of [2]P .
1: XP , YP , ZP , TP ← H ◦ S(xP , yP , zP , tP )
2: X2

f(P ) ← λ′
1 ·XP ·XP

3: Y 2
f(P ) ← λ′

2 · YP · YP

4: Z2
f(P ) ← λ′

3 · ZP · ZP

5: T 2
f(P ) ← λ′

4 · TP · TP

6: X ′
P , Y

′
P , Z

′
P , T

′
P ← H(X2

f(P ), Y
2
f(P ), Z

2
f(P ), T

2
f(P ))

7: X[2]P , Y[2]P , Z[2]P , T[2]P ← λ1 ·X ′
P , λ2 · Y ′

P , λ3 · Z′
P , λ4 · T ′

P

8: return X[2]P , Y[2]P , Z[2]P , T[2]P ▷ Total cost: 8S+ 8M

Codomain recovery and image evaluation According to [9] we know that
the theta-null point of the codomain can be determined by two 8-torsion points
T ′′
1 , T

′′
2 above T1, T2. By the properties of 2-torsion points and since we are on

Kummer surface, the form of the dual theta coordinates of f(T ′′
1 ) and f(T ′′

2 ) can
be determined as:

(θ̃Bi (f(T ′′
1 )))i = (x : x : y : y),

(θ̃Bi (f(T ′′
2 )))i = (z : t : z : t).
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Therefore, employing duplication formula we have:

H ◦ S((θAi (T ′′
1 ))i) = (xα : xβ : yγ : yδ) = (r1 : r2 : r3 : r4), (7)

H ◦ S((θAi (T ′′
2 ))i) = (zα : tβ : zγ : tδ) = (s1 : s2 : s3 : s4). (8)

Similarly, the coordinates (1 : α
β : α

γ : α
δ ) can be represented as (βγδ : αγδ :

αβδ : αβγ) since we are on the projective space. We can compute it through
Equations (7) and (8):

(
1

α
:
1

β
:
1

γ
:
1

δ
) = xzt · (βγδ : αγδ : αβδ : αβγ)

= (r2s3s4 : r1s3s4 : r2s1s4 : r1s2s3). (9)

As the squared dual theta-null point on B has been obtained after computing
β2γ2δ2, α2γ2δ2, α2β2δ2, α2β2γ2, one can compute the dual theta-null point
(α : β : γ : δ) on B through ( 1

α : 1
β : 1

γ : 1
δ ) ⋆ (α

2 : β2 : γ2 : δ2). However, we can
use the following equation to compute (α : β : γ : δ):

(α : β : γ : δ) = xztαβ · (α : β : γ : δ)

= (r1s1s2 : r2s1s2 : r1s2s3 : r2s1s4), (10)

which can further save one multiplication4. We describe it in Algorithm 2 using
the batch multiplication.

Algorithm 2 Codomain
Input: The theta coordinates (xT ′′

1
: yT ′′

1
: zT ′′

1
: tT ′′

1
) and (xT ′′

2
: yT ′′

2
: zT ′′

2
: tT ′′

2
) of

8-torsion points T ′′
1 and T ′′

2 , respectively.
Output: The dual theta-null point (α : β : γ : δ), the inverse of dual theta-null point

(α−1 : β−1 : γ−1 : δ−1) and the theta null-point (a′ : b′ : c′ : d′) on codomain B.
1: (r1, r2, r3, r4)← H ◦ S(xT ′′

1
, yT ′′

1
, zT ′′

1
, tT ′′

1
)

2: (s1, s2, s3, s4)← H ◦ S(xT ′′
2
, yT ′′

2
, zT ′′

2
, tT ′′

2
)

3: t1 ← r1 · s2
4: t2 ← s1 · r2
5: t3 ← s3 · s4
6: (α, β, γ, δ)← (t1 · s1, t2 · s2, t1 · s3, t2 · s4)
7: (α−1, β−1, γ−1, δ−1)← (r2 · t3, r1 · t3, δ, γ)
8: (a′, b′, c′, d′)← H(α, β, γ, δ)
9: return (α, β, γ, δ), (α−1, β−1, γ−1, δ−1) and (a′, b′, c′, d′) ▷ Total cost: 8S+ 9M

After obtaining the inverse of the dual theta-null point on B, we can compute
the image point f(P ) using Equation (4). The corresponding process is described
in Algorithm 3.
4 Notice that the last two components of Equations (9) and (10) interchange with each

other.
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Algorithm 3 Evaluation (Image point)
Input: The theta coordinates (xP : yP : zP : tP ) of P and the inverse of dual theta-null

point (α−1 : β−1 : γ−1 : δ−1) on B.
Output: The theta coordinates (xf(P ) : yf(P ) : zf(P ) : tf(P )) of the image point f(P ).

1: (XP , YP , ZP , TP )← H ◦ S(xP , yP , zP , tP )
2: (x′

f(P ), y
′
f(P ), z

′
f(P ), t

′
f(P ))← (XP · α−1, YP · β−1, ZP · γ−1, TP · δ−1)

3: (xf(P ), yf(P ), zf(P ), tf(P ))← H(x′
f(P ), y

′
f(P ), z

′
f(P ), t

′
f(P ))

4: return (xf(P ), yf(P ), zf(P ), tf(P )) ▷ Total cost: 4S+ 4M

Gluing isogeny In this subsection, we consider the gluing isogeny f : E1 ×
E2 → A. According to [9], one of the coordinates of the dual theta-null point
(α : β : γ : δ) may be zero since we change the symplectic basis to make the
abelian variety be compatible with an expected theta structure.

Assume that α = 0. In this case, (0 : β : γ : δ) and (0 : 1
β : 1

γ : 1
δ ) can

be represented as (0 : β
δ : γ

δ : 1) and (0 : δ
β : δ

γ : 1), respectively. Similar to
the generic step in the previous implementation [9], one can compute them by
Equations (7) and (8).

We note that the dual theta-null point and its inverse can also be represented
in the following form:

(0 :
1

β
:
1

γ
:
1

δ
) = yt · (0 : γδ : βδ : βγ)

= (0 : yγtδ : tβyδ : tβyγ)

= (0 : r3s4 : r4s2 : r3s2), (11)
(0 : β : γ : δ) = ytδ · (0 : β : γ : δ)

= (0 : tβyδ : yγtδ : tδyδ)

= (0 : r4s2 : r3s4 : r4s4). (12)

Computing the coordinates in Equations (11) and (12) reduces the cost to 8S+
4M. The implementation details are stated in Algorithm 4.

To recover the coordinates of the image point (θ̃Ai (f(P )))i, we need the fol-
lowing two equations:

H ◦ S((θE1×E2
i (P ))i) = (0 : βθ̃A10(f(P )) : γθ̃A01(f(P )) : δθ̃A11(f(P ))), (13)

H ◦ S((θE1×E2
i (P + T ′

1))i) = (0 : βθ̃A00(f(P )) : γθ̃A11(f(P )) : δθ̃A01(f(P ))). (14)

Multiplying Equation (13) by (0 : β−1 : γ−1 : δ−1), we obtain all coordinates
except θ̃A00(f(P )). Actually, multiplying the second component of Equation (14)
by β−1, we obtain λθ̃A00(f(P )) for some factor λ since we are working with
projective coordinates. If θ̃A01(f(P )) ̸= 0, we can determine λ−1 by utilizing the
last component of Equation (14), δ−1 and θ̃A01(f(P )). The implementation details
are given in Algorithm 5.
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Algorithm 4 Special Codomain, α = 0

Input: The theta coordinates (xT ′′
1

: yT ′′
1

: zT ′′
1

: tT ′′
1
) and (xT ′′

2
: yT ′′

2
: zT ′′

2
: tT ′′

2
) of

8-torsion points T ′′
1 and T ′′

2 , respectively.
Output: The dual theta-null point (0 : β : γ : δ), the "inverse" of dual theta-null

point (0 : β−1 : γ−1 : δ−1) and the theta null-point (a′ : b′ : c′ : d′) on codomain
A.

1: (0, r2, r3, r4)← H ◦ S(xT ′′
1
, yT ′′

1
, zT ′′

1
, tT ′′

1
)

2: (0, s2, s3, s4)← H ◦ S(xT ′′
2
, yT ′′

2
, zT ′′

2
, tT ′′

2
)

3: (t1, t2, t3, t4)← (r4 · s2, r3 · s4, r4 · s4, r3 · s2)
4: (β, γ, δ)← (t1, t2, t3)
5: (β−1, γ−1, δ−1)← (t2, t1, t4)
6: (a′, b′, c′, d′)← H(0, β, γ, δ)
7: return (0, β, γ, δ), (0, β−1, γ−1, δ−1) and (a′, b′, c′, d′) ▷ Total cost: 8S+ 4M

Algorithm 5 Special Evaluation (Image point), α = 0

Input: The theta coordinates (xP : yP : zP : tP ) and (xP+T ′
1
: yP+T ′

1
: zP+T ′

1
: tP+T ′

1
)

of P and P +T ′
1 respectively and the inverse of the dual theta-null point (0 : β−1 :

γ−1 : δ−1) on A.
Output: The theta coordinates (xf(P ) : yf(P ) : zf(P ) : tf(P )) of f(P )
1: (0, YP , ZP , TP )← H ◦ S(xP , yP , zP , tP )
2: (0, YP+T ′

1
, ZP+T ′

1
, TP+T ′

1
)← H ◦ S(xP+T ′

1
, yP+T ′

1
, zP+T ′

1
, tP+T ′

1
)

3: (Yf(P ), Zf(P ), Tf(P ))← (β−1 · YP , γ
−1 · ZP , δ

−1 · TP )
4: if Zf(P ) ̸= 0 then
5: (r, s)← (Zf(P ), δ

−1 · TP+T ′
1
)

6: else
7: (r, s)← (Tf(P ), γ

−1 · ZP+T ′
1
)

8: end if
9: (Xf(P ), Yf(P ), Zf(P ), Tf(P ))← (r · β−1 · YP+T ′

1
, s · Yf(P ), s · Zf(P ), s · Tf(P ))

10: (xf(P ), yf(P ), zf(P ), tf(P ))← H(Xf(P ), Yf(P ), Zf(P ), Tf(P ))
11: return (xf(P ), yf(P ), zf(P ), tf(P )) ▷ Total cost: 8S+ 9M

3.2 x-only ladder in gluing isogeny

For the gluing isogeny, doubling is done on the elliptic curves via Montgomery
coordinates, not on the Kummer surface via theta coordinates.

In the original implementation of [9], the y-coordinates of P = (P1, P2) ∈
E1 ×E2 are also be recovered while computing [2•]P to get the 8-torsion point.
It requires 6S + 5M + 1C to compute a double of a point, where C represents
multiplying by a constant. Thus it takes 12S+10M+2C to obtain ([2]P1, [2]P2).
Let s = 2•. Since we are on the Montgomery curve, we can use x-only double and
add algorithm (Algorithm 6) combined with Montgomery ladder [5] to obtain
couples of points ([s]P1, [s]P2) and ([s−1]P1, [s−1]P2), which is the same as the
implementation of [18]. In each step of Montgomery ladder, the cost becomes
8S+ 12M+ 2C.
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Algorithm 6 The double and add algorithm
Input: The x-coordinates (projective coordinate) of P, Q, Q−P and (a : 1) = (A+2 :

4) where (A : 1) is the Montgomery coefficient
Output: (X[2]P : Z[2]P ) and (XP+Q : ZP+Q)

1: t0 ← XP + ZP

2: t1 ← XP − ZP

3: X[2]P ← t20
4: t2 ← XQ − ZQ

5: XP+Q ← XQ + ZQ

6: t0 ← t0 · t2
7: Z[2]P ← t21
8: t1 ← t1 ·XP+Q

9: t2 ← X[2]P − Z[2]P

10: X[2]P ← X[2]P · Z[2]P

11: XP+Q ← a · t2
12: ZP+Q ← t0 − t1

13: Z[2]P ← XP+Q + Z[2]P

14: XP+Q ← t0 + t1
15: Z[2]P ← Z[2]P · t2
16: ZP+Q ← Z2

P+Q

17: XP+Q ← X2
P+Q

18: ZP+Q ← XQ−P · ZP+Q

19: XP+Q ← ZQ−P ·XP+Q

20: return (X[2]P : Z[2]P ), (XP+Q : ZP+Q)

▷ Total cost: 4S+ 6M+ 1C

With the help of the x-coordinates of [s]Pi and [s + 1]Pi, one can recover
y[s]Pi

by Okeya-Skurai formula [22]:

y[s]Pi
=

(x[s]Pi
xPi

+ 1) · (x[s]Pi
+ xPi

+ 2A)− 2A− (x[s]Pi
− xPi

)2 · x[s+1]Pi

2yPi

.

In a similar manner, we can recover y[s]Pi
through x[s]Pi

and x[s−1]Pi
:

y[s]Pi
=

(x[s]Pi
xPi

+ 1) · (x[s]Pi
+ xPi

+ 2A)− 2A− (x[s]Pi
− xPi

)2 · x[s−1]Pi

−2yPi

,

Since we work on the projective coordinates, it takes an additional cost 3S+11M
to recover [s]Pi = (X[s]Pi

: Y[s]Pi
: Z[s]Pi

). While in [18], Moriya et al. perform
square-roots to recover the y-coordinates of [s]Pi. Consequently, utilizing our
techniques is more efficient than the using the tools in [9,18] for doublings in the
gluing isogeny step. We omit the detail of cost calculation for simplicity.

3.3 Mixed optimal strategy

Based on the above analysis, we need to compute eight field elements in the
phase of precomputation at a cost of 4S+12M. Consequently, compared to the
original implementation [9], in each generic step of the isogeny chain we can
save 13M + 2I in precomputation and codomain recovery, with a trade-off of
one and two more multiplications in each image computation and doubling step,
respectively (See Table 2 for detail). This adjustment allows us to make use of
a mixed optimal strategy to determine which method to use when executing
doubling and image evaluation.
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Consider dividing the remaining cost into the following four parts:

PREcost, DBLcost, EVALcost and CODOMAINcost

which correspond to the cost of precomputation, doubling, image point compu-
tation and codomain computation, respectively. The calculation of the minimum
cost can be written as the following iterative formula:

COST(n) =



PREcost+ min
1⩽i<n

{
DBLcost(i) + COST(n− i)

+ EVALcost(n− i) + COST(i)
} n > 1,

CODOMAINcost n = 1.

We also present Figure 1 for illustration.
Fig. 1. Cost of a strategy tree with height n

To construct our mixed optimal strategy, we need a more concrete analysis
for the above formula. As shown in Figure 1, the strategy tree is splitted into
four parts: doubling, evaluation and two sub optimal strategies. Each step in
the isogeny chain should be determined whether or not to use the inversion-free
method. Consequently, the costs of going left and right should not be calcu-
lated independently of each other. Specifically, the choice for the computation
of EVALcost(n-i) depends on how those codomains are computed at the leaf
nodes of the left subtree. As a result, not only do we compute the minimum cost,
but we also need to keep track of the method used at each step. To accomplish
this, we introduce a new parameter flag to denote the method (inversion or
inversion-free) used at each step. If the inversion-free method is employed, we
set flag to be True.

Furthermore, it would be seen that for some cases the precomputation is
unnecessary in Section 4. Hence, we introduce another new parameter precomp
to indicate whether the PREcost has been computed, where the computation
of PREcost needs to be taken into account when precomp is False. Finally, we
utilize the leftmost parameter to indicate whether it is a gluing isogeny, which
allows the cost of gluing step to be taken into account.
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Ultimately, with the above analysis, our cost function can be written as
COST(n, flag, leftmost, precomp), which returns two variables mincost and
minflag. The former is the minimum cost, and the latter is the method used
in each isogeny step to get the minimum cost. Note that the sub-cost functions
PREcost, DBLcost, EVALcost and CODOMAINcost require the specific parameters
related to their respective calculations. Among them, it is important to point
out that EVALcost can only be executed after the strategy of the left subtree is
finished, because it depends on the return value minflag for calculation.

Compare the following two costs

COST(n, False, True, True) and COST(n, True, True, True),

we can obtain the minimum cost for the whole strategy. To get the optimal strat-
egy corresponding to the minimum cost, we add a global variable checkpoint
just like the previous implementation in [9]. More details for the implementation
of our mixed optimal strategy are described in Procedure 7.

Procedure 7 COST(n, flag, leftmost, precomp)

Input: n, flag, leftmost, precomp
Output: mincost, minflag
1: if n ⩽ 1 then
2: return CODOMAINcost(flag, leftmost, precomp), flag
3: end if
4: mincost←∞
5: for i = 1 to n− 1 do
6: thiscost← 0

7: if precomp is False then
8: thiscost← PREcost(flag)
9: end if

10: thiscost← thiscost+ 2 ∗ DBLcost(i, flag, leftmost)
11: Lcost, Lflag← COST(n− i, flag, leftmost, True)
12: thiscost← thiscost+ Lcost+ 2 ∗ EVALcost(n− i, Lflag, leftmost)
13: RcostOLD, RflagOLD← COST(i, False, False, False)
14: RcostNEW, RflagNEW← COST(i, True, False, False)
15: if RcostOLD < RcostNEW then
16: Rcost, Rflag← RcostOLD, RflagOLD
17: else
18: Rcost, Rflag← RcostNEW, RflagNEW
19: end if
20: thiscost← thiscost+ Rcost

21: thisflag← (Lflag, Rflag)
22: if thiscost < mincost then
23: mincost← thiscost

24: minflag← thisflag

25: end if
26: end for
27: return mincost, minflag
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4 Cost analysis and implementation results

In this section, we make a concrete computational cost comparison for each
block of the isogeny computation (gluing isogeny and generic isogeny) between
using our techniques and the previous methods [9,18]. Besides, we implement
the mixed strategy obtained by using Procedure 7, and compare the efficiency
with the previous strategy in [9].

We first provide a cost comparison for the different methods in the gluing
isogeny step, including our inversion-free method, the original and latest meth-
ods in [9] and the technique used in LIT-SiGamal [18, Appendix A.4]. To obtain
the inverse of dual theta-null coordinates (0 : 1

β : 1
γ : 1

δ ), the original/latest
implementations of [9] utilizes the batch inversion, while the method in [18, Ap-
pendix A.4, Algorithm 2] makes use of the projective inversion instead and we
exploit our inversion-free method described in Section 3. In terms of computa-
tional cost, the batch inversion in [9] requires 6M + 1I, while the approach in
[18, Algorithm 2] requires 5M (3M in their implementation) and we only need
3M. Moreover, for implementation we can reduce the cost to 1M, as shown in
Algorithm 4. In the phase of computing the image point, the implementation in
[9] requires 8S+ 10M+ 1I, while in our implementation the corresponding cost
is only 8S+9M. The details of the above comparison are illustrated in Table 1.

For the generic isogeny computation, in the latest version of [9], Dartois et
al. apply an inversion-free method which is different from ours. In the precom-
putation phase, they multiply (1 : a

b : a
c : a

d ) (resp. (1 : α2

β2 : α2

γ2 : α2

δ2 )) by abcd

(resp. α2β2γ2δ2), where the factor a (resp. α2) is unsecessary according to our
Equations (5) and (6). This results their cost being 6S+16M, compare to which
we only need 4S + 12M. To compute the dual theta-null point, they apply the
same equation as Equation (10) but without reusing the intermediate results. As
for the inversed dual theta-dull point, they multiply (θ̃Bi (0))i by the inverse of
(θ̃Bi (0))2i if the precomputation has been finished, otherwise they directly com-
pute (βγδ : αγδ : αβδ : αβγ) through (θ̃Bi (0))i = (α : β : γ : δ) by batch
multiplication. In this way, it requires 4M or 6M to obtain the inversion of the
dual theta-dull point by employing their techniques, depending on whether the
precomputation is performed. In contrast, we observe that there are duplicates
in Equations (9) and (10), which makes the computation for the inversed dual
theta-null point be executed at a cost of only 3M. Table 2 presents the cost
comparison in generic isogeny step.

In the implementation of strategy in [9], the cost of precomputation and
codomain computation are both ignored. There is no impact if the aforemen-
tioned costs remain the same in each isogeny step, but we point out that this
assumption does not always hold. At the rightmost leaf node of each subtree,
the precomputation need not to be performed. Therefore, the cost of precompu-
tation will reduced to zero, and the cost of codomain computation will increase
to 8S+ 23M+ 1I or 8S+ 13M in [9], as written in the footnote in Table 2. We
take both the cost of precomputation and codomain computation into account
to get a strategy, which avoids the redundant precomputations in some cases.
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This is one of the reasons why our new strategy algorithm is more accurate and
considerable.

At the same time, we also combine the previous method with our inversion-
free method, which has been explained in Section 3.3. The comparison is shown
in Table 3. For chains with lengths of 126, 308, 632, we obtain 30.8% (resp. 4.0%),
20.3% (resp. 2.6%), 9.9% (resp. 1.9%) savings of multiplications over the base
field Fp compared to the original (resp. the latest) implementation of [9].

Table 3. Total cost comparison, measured by numbers of M

log p n Ours [9, latest] [9, original]

254 126 24224 25235 35025
381 208 45158 46356 56678
1293 632 157747 160744 175031

Furthermore, we implement our mixed optimal strategy based on the Rust
code in [9] for benchmark. Table 4 presents the comparison of running times
between our mixed method and both the original and the latest version of [9].
For the Rust implementation, the compiler version is 1.80.0-nightly and the
flag is the same as [9], which is -C target-cpu=native. In terms of the running
time, our method is 28.0%, 21.2%, 10.4% faster than the original implementation
of [9], and have a slight advantage over the latest implementation.

Table 4. Comparison of running times for computing the codomain with different
methods in Rust implementation. Times were recorded on a Intel Core i7-10510U CPU
with a base clock speed of 1.8 GHz with turbo boost disabled.

log p n Ours [9, latest] [9, original]

254 126 2.555 ms 2.568 ms 3.551 ms
381 208 10.038 ms 10.299 ms 12.737 ms
1293 632 534.82 ms 540.52 ms 597.20 ms

5 Conclusion

In this paper, we introduced the algorithms that remove the inversions in the
phases of the precomputations and the codomain computations at each step of a
(2, 2)-isogeny chain between product of elliptic curves. Especially for the gluing
isogeny, we employed the technique of x-only ladder to enhance the performance.
Combined with the original methods, we provided a mixed optimal strategy and
tested it on the code in [9]. The cost analysis illustrated that our techniques
outperformed the previous methods [9,18], which will benefit the high-dimension
isogeny-based protocols.
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