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Abstract. Masking is a widely adopted countermeasure against side-channel analysis
(SCA) that protects cryptographic implementations from information leakage. How-
ever, current masking schemes often incur significant overhead in terms of electronic
cost. RAMBAM, a recently proposed masking technique that fits elegantly with the
AES algorithm, offers ultra-low latency/area by utilizing redundant representations of
finite field elements. This paper presents a comprehensive generalization of RAMBAM
and various other masking schemes within a unified framework and a mathemati-
cal representation known as Consolidated Linear Masking (CLM), where masking
schemes are formalized by their encoding. We establish a theoretical foundation for
CLM linking randomized isomorphic (code) representations and the entropy provided
by the redundancy to a revised notion of masking order. Our analysis reveals that
RAMBAM is a specific instance of CLM as well as other masking constructions,
thus paving the way for significant enhancements. For example, a 1st-order secure
design can be achieved almost without increasing the size of the representation of the
variables. This property scales up to any order and is versatile. We demonstrate how
CLM enables: (1) randomized selection of the isomorphic field for improved security;
(2) flexible choice of the randomization polynomial; (3) embedded mask-refreshing
via the randomized isomorphic representation that reduces randomness requirements
significantly as well as improves performance; (4) a wider range of isomorphic random-
ized mappings that significantly increases the available randomization space compared
to RAMBAM; (5) considerable improvement in securing fault-injection attacks and
inherent security against probing adversaries, i.e., more required probes. In addition,
our framework addresses ways to improve the brute-force parameter choices in the
original RAMBAM. By offering a unifying theoretical perspective for masking and
practical enhancements, this work advances the design of efficient and secure masking
countermeasures against SCA threats.
Keywords: Algebraic representation · Consolidated Linear Masking · CLM ·
Isomorphic Fields · Side Channel Analysis · SCA · Masking · Masking Order ·
RAMBAM · Randomization · Redundancy Entropy · Rings

1 Introduction
Masking is a widely acknowledged countermeasure against side-channel analysis (SCA)

attacks that exploit physical information leakage such as power consumption or timing to
extract secrets. It provides robust protection for various cryptographic algorithms such as
the Advanced Encryption Standard (AES) from such hardware deficits. However, masking
techniques often introduce substantial implementation overhead, including increased area,
latency, or both, and the need for quite large fresh randomness. Among others, most
notably for hardware designs, concrete steps are needed to mitigate physical vulnerabilities
such as glitches, memory transitions and compositional issues.
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2 Randomizing with Redundancy and Masking over Rings

Several masking schemes have been proposed to protect against side-channel attacks,
each of which has distinct characteristics. The masking literature is vast, and includes
several watershed constructions.The Ishai-Sahai-Wagner (ISW) masking scheme [ISW03],
a foundational approach, provides provable security against a limited number of probes
but often incurs significant overhead due to its reliance on expensive gadgets for non-linear
operations, and encapsulates a formulation-oriented software implementation. Generic Low-
Latency Masking (GLM) [GIB18] aims to reduce this overhead by minimizing the number of
non-linear operations, albeit by sacrificing some provable security guarantees (which indeed
result in attacks and sensitivities, e.g., [DCEM18, MMSS19]). The Consolidated Masking
Scheme (CMS) [RBN+15] focuses on optimizing randomness in masking to reduce the
amount of fresh randomness required (and later attacks and improvements [SM21, DCEM18,
MMSS19]). In turn, Domain-Oriented Masking (DOM) [GMK18] tailors masking to specific
algebraic structures and the splitting of shared interactions with randomness and refreshing,
thus offering efficiency gains for certain algorithms (with some fixed vulnerabilities in
some scenarios and compositions and more advanced variants [MMSS19]). More recently,
Hardware Private Circuits (HPC) [CGLS20] were put forward, which provide a hardware-
based solution by transforming the circuit into a provably secure form in the hardware
scenario which is composable and glitch- resistant. Along with these advances, several
polynomial masking variants, including higher-order masking of field representations
and inner-product masking have generalized the concept of masking to higher-degree
polynomials. These provide stronger security against higher-order attacks but at the cost
of increased complexity and overhead [BFG+17]. Each of these schemes thus presents
a unique trade-off between security under different adversarial scenarios for different
hardware or software contexts, performance needs, and implementation complexity. The
choice of masking scheme hence depends on the specific requirements of the application,
the target platform, and the desired level of security assurance. Implementation efficiency
is also cardinal and generally require high expertise in both hardware [CGLS20, GMK18]
and software [SL23].

Of the various masking schemes that aim to trade off security and electronic cost factors
and overheads, RAMBAM, which was presented in 2022 at CHES [BBA+22], is in a league
of its own in terms of its ultra-low latency design. RAMBAM, specifically tailored for
AES, leverages redundant representations of finite field elements to resist both passive
(observing side-channel information without affecting the device) and active (intentionally
manipulating the device’s operation to induce side-channel leakage) physical attacks.

In this paper, we first delve deeper into RAMBAM’s underpinnings. We then present a
comprehensive generalization showing that RAMBAM is one instance of a consolidated form
for which we provide a mathematical formulation and analysis. Our theoretical investigation
reveals that the general framework, denoted Consolidated Linear Masking (CLM), is
ultra-intuitive and links randomized representation entropy to the revised associated
masking-order. This masking framework encompasses various linear transformations and
randomization techniques. The RAMBAM approach involves transforming elements to an
isomorphic field, randomizing them, and mapping them back to the original field.

Our analysis demonstrates that this isomorphic mapping can be viewed as a form of
CLM, thus enabling us to generalize and enhance RAMBAM’s technique. This generaliza-
tion opens up opportunities for: (1) Randomizing the choice of the isomorphic field for
added security. (2) Flexible selection of a randomization polynomial Q, subject to specific
requirements. (3) Implementing embedded mask refreshing with each atomic operation,
potentially reducing the need for dedicated refresh cycles. (4) Expanding the range of
possible mappings beyond RAMBAM’s fixed set, by increasing the randomness offered by
the masking and reducing the cost and amount of randomness from the protocol. We also
address some of the potential weaknesses arising from the brute-force choices of parameters
in the original RAMBAM proposal.
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This work provides a theoretical foundation for CLM by associating it with our
consolidated notion of masking and masking-order. In so doing, we show that RAMBAM
is one (rather weak) offspring of CLM, which should help contribute to the development
of more secure and efficient masking techniques against SCA threats. Note that in this
short note, we only consider SCA and leave fault-injection (and Statistical Ineffective Fault
Attacks, SIFA) for future investigation. However, we generalize and list the properties
provided by the CLM scheme against fault-injection (FI). Crucially, we highlight why
CLM is far more secure against a probing-adversary than conventional masking schemes.

Paper organization. The paper starts with a short background reiterating the basic
definitions in [BBA+22].Then, in Section 3 we provide the formal definitions of the
notations used in this paper and the basic formulations for representing masking in a
general coding-sense form that links the (generalized) notion of masking order and entropy
(Sub-section 3.2), including developing isomorphic representations, the code generator
matrix and how to compute it in the masked domain efficiently in Sub-sections 3.3, 3.4,
and 3.5, respectively. For completeness we then elaborate on how to transform to and
from the mask domain in Sub-section 3.6. Finally, in Sub-section 3.7 we elaborate on FI
and probing strength. In Section 4 we provide simulation and modeling results supporting
various aspects of the construction, including validation of dth order leakage with the
CML multiplier and fixing the multiplier proposed by [BBA+22], thus illustrating the
weaknesses in previous constructions and the significant added (security) value of CLM.

2 Brief Background
In [BBA+22] the authors presented RAMBAM, an isomorphic representation of vari-

ables which in addition enables additional randomized redundancy in the representation of
the variables. The AES algorithm was adapted to fit the proposed representation. Their
main idea was choose two good (in terms of information leakage) irreducible polynomials:
P (x) of degree m and Q(x) of degree d′. Since the original AES polynomial, P0(x) may not
be the optimal polynomial in terms of information leakage, the SBOX’s input, v(x), which
is an element of the original finite field defined by P0(x) is first mapped to the element y(x)
in the isomorphic finite field defined by P (x) Then y(x) is masked by randomly mapping
it to an element u(x) in the polynomial ring R2[x]/P (x)Q(x) where the SBOX function is
calculated. That is,

u(x) = y(x) + r(x)P (x), deg(u(x)) < m + d′. (1)

The SBOX’s output is mapped back to the finite field F2[x]/P (x) by applying modulo
P (x) and then is brought back to the original field. Since P and Q are carefully selected,
the randomization is reflected in the choice of r(x). Based on experimental results, the
authors recommended using P (x) = x8 + x6 + x5 + x3 + 1 which turned out to be better
than the original AES polynomial P0(X) = x8 + x4 + x3 + x + 1.

In this paper we show that Eq.1 is only one case (and equivalent) to what we dub
consolidated linear masking (CLM), and hence can also benefit from:

1. Formulating a consolidated notion of linear masking, which subsumes classical linear
masking schemes. RAMBAM is only one instance of this class. We also provide a
security order notion that corresponds in some cases to the classical masking security
order, along with its relationship to the entropy.

2. Choosing the isomorphic field at random that is kept constant throughout the
encryption cycle. In contrast to [BBA+22], we define the isomorphism using all
the roots of the irreducible polynomials of degree m. Thus we have m times more
randomness. This significantly increases the potential randomization of previous
constructions.
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4 Randomizing with Redundancy and Masking over Rings

3. Showing that choosing a polynomial Q at random is possible and that it provides
inherent embedded mask-refresh for any atomic operation using a random Q1.

3 Consolidated linear masking
3.1 Notations

Denote Fk
2 a vector space of dimension k over F2 = GF (2). An element v =

(v0, v1, . . . , vm−1) ∈ Fk
2 can be referred to as the coefficient vector of a binary poly-

nomial v(x) =
∑k−1

i=0 vix
i of degree less than k. We call the bijective mapping between a

vector space and a group of polynomials of the same cardinality the natural mapping.
In this paper we use three algebraic structures:

• F2m denotes a finite field over F2 defined by an irreducible polynomial π(x) of degree
m. That is, F2m ≜ F2[x]/π(x). An element in F2m can also be represented as a
linear combination of m linearly independent elements in the field. For example, let
α ∈ F2m be a root of π(x), then v =

∑m−1
i=0 viα

i. There are many sets of m linearly
independent elements in F2m that form a basis. We call the set of the first m powers
of α the natural basis.

• R2n denotes a polynomial ring over F2 where multiplication is defined modulo a
polynomial h(x) of degree n. That is, R2n ≜ R2[x]/h(x).

• G2ℓ denotes a group of binary polynomials of degree less than ℓ over F2.

When it is clear from the context which irreducible polynomial defines the algebric structure,
we use simpler notation (e.g., F2m), otherwise it is written out explicitly (e.g. F2[x]/π(x)).
In addition, when it is clear from the context, we do not explicitly state whether a variable
is a vector of length m, n or ℓ or an element in F2m ,R2n or G2ℓ , respectively.

Let n ≥ m. A surjective function f from the polynomial ring R2n to the polynomial
ring (or field) R̂2m induces a bijection defined on a quotient of its domain. Specifically, the
elements of R2n are divided into 2m equivalence classes under f . That is, two elements are
in the same equivalence class, u1 ∼ u2, if f(u1) = f(u2). The function f sends an element
u ∈ R2n to its equivalence class [u] and then bijects it to v ∈ R̂2m .

A ring homomorphism is a structure-preserving mapping function f between two rings.
It preserves the unit elements as well as addition and multiplication. If π2(x) that defines
R̂2m is a factor of π1(x) that defines R2n then we have a ring homomorphism between the
two rings where: v(x) = f(u(x)) = u(x) mod π2(x). Any two finite fields of the same
order are isomorphic, i.e., the homomorphism is bijective.

3.2 General notions of masking and the masking order
Conceptually, masking deals with a redundant representation of an m-bit information

vector v ∈ Fm
2 at the SBOX’s input as an n-bit tuple u. Thus, it involves partitioning

a vector space Fn
2 into 2m equivalence classes. In linear masking, the elements in each

equivalence class form a coset that contains 2n−m elements. Each information vector
corresponds to a polynomial v(x) ∈ F2m which is also a member of a different coset of R2n .
The key idea in masking is to represent v by one of the vectors (polynomials) picked at
random from the corresponding coset of R2n . Formally,

u = v · (L, 0) + r · (Gl, Gm) = (v, r)
(

L 0
Gl Gm

)
= (v, r)M (2)

1in previous constructions Q was chosen by brute-force and was deterministic for each instance; here
we relax this limitation
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where r ∈ Fn−m
2 is a random vector, Gl ∈ F(n−m)×m

2 , Gm ∈ F(n−m)×(n−m)
2 and L ∈ Fm×m

2 .
Matrix L must be non singular (otherwise the information v cannot be recovered from u),
and matrix G = (Gl, Gm) is a full row rank matrix.

Let H = (I, H2) be the matrix of row rank m for which HGT = 0. The information v
is recovered from a given tuple u by calculating

v = u ·HT L−1. (3)

The order of the masking, denoted by d, is the ratio of the number of random bits to
the [number of?] information bits.

Definition 1 (Order of linear masking). Denote by H(v) the entropy of a random variable
v and by H(u|v) the conditional entropy of a random variable u given v, then

d = H(u|v)
H(v) = H(r|v) +H(vL|v)

H(v) . (4)

Remark 1. If the non-singular matrix L is fixed, then H(vL|v) = 0.
Remark 2. In [BBA+22], L is fixed and n = m + d′, thus RAMBAM provides masking of
order d = 1 + d′/m.
Remark 3. In linear masking, L = I, G = (B|I) and n = (d+1)m. Therefore, H(u|v) = dm
and hence Def. 1 matches the conventional definition of d’th order masking. That is, u is
considered a tuple that consists of d + 1 shares.
Remark 4. For simplicity (ease of implementation and comparatively low performance
overhead) in Section 3.1 we define the algebraic structures over F2. Namely, we deal with
Boolean masking. However, the masking described in Eq. 2 may be performed (with proper
adjustments) over any Fq for which q = 2s and s|m or m|s. Note that masking techniques
with higher algebraic complexity, i.e., defined over Fq, provide more security than Boolean
masking at the cost of higher overhead; for example, the software implementation of
the inner product masking in [BFG15] was found to be four times slower than Boolean
masking.
Remark 5. When considering conventional masking, it is convenient to treat v, r and the
matrix B as structures over F2m :

û = (v̂, r̂)
(

l̂ 01×d

B̂d×1 Id×d

)
. (5)

Here, we used the superscript ‘hat’ to emphasize the fact that the elements are from F2m

and not binary vectors in Fm
2 . In what follows, when it is clear from the context we omit

the hat. In general, the multiplication of a variable v by a constant l ∈ F2m is equivalent
(under natural one-to-one mapping) to the multiplication of the corresponding binary
vector in Fm

2 by the binary Lm×m matrix that represents that constant. Therefore, Eq.
2 and Eq. 5 are equivalent. In this work, we prefer the binary representation because it
provides more latitude.This is because we can use various L’s, but more importantly, n
does not have to be a multiple of m. Consequently, d can be a fraction (and even less than
1) and we work over (relatively small) polynomial rings rather than over fields.

It follows from Eq. 4 that drawing a matrix L at random increases the order of the
masking scheme. Here, we are interested in isomorphic rings (see rationale below). Thus,
we consider a subset L of matrices that function as isomorphisms between two finite fields
of the same order. These matrices change the basis vector in a way that preserves the unit
elements (0, 1 ∈ F2m). Thus, this choice of L slightly reduces the entropy of vL given v.
That is,

d = H(r) +H(vL|v)
H(v) = (n−m) + (2m−1 − 1)/2m−1H(L)

m
.
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By applying the Gauss formula, the number of monic irreducible binary polynomials of
degree m is given by

1
m

∑
a|m

µ(m/a)2a

where a runs over the set of all positive divisors of m including 1 and m. and µ(r) is the
Moebius function. That is, µ(1) = 1 and µ(r) = 1 (or −1) when the number of distinct
prime factors of r is even (or odd), otherwise, it equals zero. Thus,

H(L) = log2

∑
a|m

µ(m/a)2a

 < m.

For example, for m = 8 we have

H(L) = log2(µ(8/1)21 + µ(8/2)22 + µ(8/4)24 + µ(8/8)28)
= log2(0 · 21 + 0 · 22 − 1 · 24 + 1 · 28) = log2(240)
= 7.9069 (6)

and
d = n

8 − 0.0194.

That is, (an almost) 1st-order security can be achieved with no added bits (n−m = 0)
in the representation of the variables. This is illustrated in Subsection 4.3. Clearly
choosing/computing once at random L (and L−1) may be far cheaper than increasing
register/variable sizes for the entire algorithm, and reflects a property which may be
desirable.

3.3 The need for isomorphism - restrictions on the L matrix
An SBOX output is usually calculated over the finite field F2[x]/P0(x) where P0 is

the AES polynomial. In masking-based implementations, the computation is performed
in a ring R2n . The result is only projected back to the original field at the end of the
encryption (decryption). Thus, it is essential to have ring homomorphism between R2n

and F2m . This implies that:

1. L should exhibit isomorphism between the original field F2[x]/P0(x) and another
field F2[x]/P (x) of the same cardinality, and

2. There should be homomorphism between R2[x]/h(x) and F2[x]/P (x). In other words,
P (x) must divide h(x).

Specifically, let P0(x) and P (x) be two irreducible polynomials of degree m. Let
α and β ∈ F2[x]/P0 be roots of P0(x) and P (x) respectively; P0(α) = P (β) = 0 and
βj =

∑m−1
i=0 aj,iα

i. Then, the isomorphism is defined by the matrix L:
β0

β1

β2

...
βm−1

 =


1 0 · · · 0

a1,0 a1,1 · · · a1,m−1
a2,0 a2,1 · · · a2,m−1

...
... · · ·

...
am−1,0 am−1,1 · · · am−1,m−1


︸ ︷︷ ︸

L−1


α0

α1

α2

...
αm−1

 (7)

That is, an element v ∈ F2[x]/P0(x) is mapped to vL ∈ F2[x]/P (x).
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For m = 8, there are 30 irreducible polynomials of degree 8. Two polynomials have
roots of order 17, four have roots of order 51, eight of order 85, and 16 polynomials are
primitive (i.e., their roots are of order 255). In other words, |L| = 240 and each L ∈ L
defines an isomorphic mapping between the original finite field defined by P0(X) to a finite
field of order 256. One of the main added values is that as compared to [BBA+22], we
define the isomorphism using all the roots of the irreducible polynomials of degree m, so
that we have m times more randomness.

It is worth noting that isomorphism inherently weakens security. As we show in Sub-
section 4.2, the t-test fails (i.e., it indicates that there is an information leakage) when
n = m and the input to the SBOX is 0m or (0m−11), where here as stands for a vector of
a’s of length s.

3.4 The structure of the G matrix
From a coding theory point of view, a polynomial P (x) of degree m can serve as a

generator polynomial of a (shortened) cyclic code C of length n and dimension n−m. If n
is a factor of 2m − 1 the code is cyclic; otherwise, it is a shortened cyclic code.

The encoder of a cyclic code maps an (n−m)-bit information word, r ∈ Fm
2 , into an n

bit codeword in C ⊂ Fn
2 . There are several types of encoders:

• A convolution encoder performs a convolution between the coefficients of r(x) and
P (x), that is c(x) = r(x)P (x). Equivalently, c = rG where the generator matrix G
is of the form

G(n−m)×n =


p0 p1 p2 . . . pm

p0 p1 . . . pm−1 pm

. . . . . . . . . . . .

︸ ︷︷ ︸
(m + 1)

p0 . . . . . . . . . pm


(8)

• A systematic encoder maps the information word r(x) to a codeword c(x) = xmr(x)−
(xmr(x) mod P (x)). In matrix notation, c = rGsys where the generator matrix of
the systematic code is

Gsys
(n−m)×n = (B(n−m)×m|I(n−m)×(n−m))

and the rows of B are the m-bit binary representation of the polynomials −xm+i

mod P (x) for i = 0, 1, . . . , n−m− 1. That is,

Bk×m =


−xm mod P (x)
−xm+1 mod P (x)
−xm+2 mod P (x)

...
−xm+k−1 mod P (x)

 . (9)

• A matrix G whose rows are n −m linearly-independent codewords of C picked at
random.

The code C ∈ R2n consists of 2n−r binary vectors (codewords). Consequently, u ∈ R2n

from Eq. 2 represents a word in a coset of C (as does the polynomial u(x) in Eq. 1).
Therefore, a check matrix of the code C should be used to recover r and hence v from u
(refer to Eq. 2 and 3). One of check matrices is H = (Im×m|BT

(n−m)×m).
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Example 1. Let m = 4, n = 7 and P0(x) = x4 + x + 1, P (x) = x4 + x3 + 1. Denote by α
a root of P0. The four roots of P in F2[x]/P0(x) and the corresponding isomorphisms are:

β1 = α7 = α3 + α + 1 = (1101) → L−1
1 =


1 0 0 0
1 1 0 1
1 0 0 1
0 0 1 1

 , L1 =


1 0 0 0
0 1 1 0
1 0 1 1
1 0 1 0



β2 = α11 = α3 + α2 + α = (0111) → L−1
2 =


1 0 0 0
0 1 1 1
1 1 0 1
0 0 0 1

 , L2 =


1 0 0 0
1 0 1 1
1 1 1 0
0 0 0 1



β3 = α13 = α3 + α2 + 1 = (1011) → L−1
3 =


1 0 0 0
1 0 1 1
0 1 1 1
0 1 0 1

 , L3 =


1 0 0 0
1 1 1 1
0 0 0 1
1 1 1 1



β4 = α14 = α3 + 1 = (1001) → L−1
4 =


1 0 0 0
1 0 0 1
1 0 1 1
1 1 1 1

 , L4 =


1 0 0 0
0 0 1 1
0 1 1 0
1 1 0 0


The generator and the check matrices for the code C generated by P (x) are

Gs
(n−m)×n = (B|I) =

 1 0 0 1
1 1 0 1 I
1 1 1 1

 , Hm×n = (I|BT ).

Note that there are three irreducible primitive polynomials of degree 4. Thus, the order of
our masking scheme is dCLM = ((7− 4) + 7/8 · log2(3 · 4))/4 = 1.5342 which is larger than
the order of the corresponding conventional first order masking (d = 1, m = 4, n = 8) with
two shares per bit.

3.5 Elementary calculations in the mask domain R2n

In general, the SBOX operation is defined over F2m . That is, its output is calculated
by applying elementary addition and multiplication operations between elements, say v1
and v2 in the field F2m . However, in masking-based implementation, each elementary
calculation in F2m is replaced by a sequence of new elementary calculations operating on
the n-bit vectors u1 and u2 (or, as in the conventional case, on the (d + 1) shares). To
minimize possible information leakage via side channels, after every atomic operation in
Rn

2 (equivalently, in R2n), the n-bit vector is replaced by another element in its equivalence
class.

To obtain ring homomorphism, the procedure is to set h(x) = P (x)Q(x) (deg(h(x)) = n)
and perform the computation over R2[x]/h(x).

The choice of Q (and hence h(x)) does not affect the result of the ADD(u1, u2) operation
since it involves addition of a polynomial of degree < n.

Similarly, the choice of Q does not affect the result of the MUL(u1, u2) operation
because a mask refresh is performed after each operation. Formally, multiplication of
two polynomials of degree less than n results in a polynomial of degree less than 2n− 1.
Denote by C and Ĉ (shortened) cyclic codes of lengths n and 2n− 1 generated by P (x),
respectively. The group G22n−1 can then be partitioned into 2m cosets of the code Ĉ. The
n-bit codewords of C can be referred to as polynomials in R2[x]/h(x). As such, they are
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contained in the (shortened) cyclic code Ĉ. Consequently, the (2n− 1) bit vectors v1L and
u1 are in the same coset of Ĉ, and so is v2L and u2.

Therefore, the multiplication of u1(x) and u2(x) results in a polynomial w(x) whose
corresponding vector in G2n−1

2 is in the same coset as the vector associated with the product
v1L(x) · v2L(x) ∈ F2[x]/P (x). Since w(x) may be of degree greater than n− 1, it needs
to be replaced by one of the members in its coset of the proper degree. Formally, define
u1(x)u2(x) = w(x) = (w0, w1, . . . , wn−1, wn, . . . w2n−2). Then, if Q(x) is fixed, a mask
refresh is required, as described in multiplication and modular reductions algorithms 3
and 42. Otherwise, the security is compromised, as illustrated in Sub-section 4.1. That is,
w(x) is replaced by u3(x) as follows:

u3(x) =(i) w(x) mod h(x) + r(x)P (x)
= w(x)− a(x)Q(x)P (x) + r(x)P (x)

=(ii) w(x)− b(x)P (x), (10)

where r(x)P (x) represents a refresh within the modulo h(x) computation (i), and b(x) =
a(x)Q(x) + r(x) is a random polynomial (ii). Since Q(x) is a polynomial of degree n−m
and r is a vector of length n −m, a random Q(x) and a random r(x) share the same
amount of randomness. In other words, one can use a random polynomial Q of degree
n − m and a fixed r(x), say r(x) = 0. This in turn obviates the need for mask
refresh. The polynomial h(x) = Q(x)P (X) becomes random and w(x) is replaced by
u3(x) = w(x) mod h(x).

When Q(x) = xn−m +
∑n−m−1

i=0 qix
i is picked at random, u3(x) ∈ R2[x]/h(x) is

obtained from w(x) by subtracting a random codeword ĉ(x) = b(x)P (x) that must have a
specific form in order to nullify the first n− 1 most significant bits of w (Fig. 1). In other
words, ĉ must be a codeword of the form

ĉ = (∗, ∗, · · · ∗, wn, . . . w2n−2).

There are 2n−m codewords of this form in Ĉ. The choice of Q determines the exact
codeword. Thus, a systematic encoding of the (2n− 1−m)-bit information word

z = (q0, q1, . . . qn−1−m︸ ︷︷ ︸
n−m bits

, wn, . . . w2n−2︸ ︷︷ ︸
n−1 bits

),

eliminates the need to compute the h from the random Q and then calculate w(x)
mod h(x). Instead, we pick a random codeword of the desired form. In matrix notation
this is equivalent to

u3 = (w0, w1, . . . , wn−1) + z ·A (11)

where A consists of the first left-hand n columns of the generator matrix Gs
(2n−m−1)×(2n−1)

of Ĉ. That is,

Gs
(2n−m−1)×(2n−1) =

(
A(2n−m−1)×n

0(n−m)×(n−1)
I(n−1)×(n−1)

)
=

(
B(2n−m−1)×m

I(n−m)×(n−m) 0(n−m)×(n−1)
0(n−1)×(n−m) I(n−1)×(n−1)

)
(12)

From an implementation cost perspective, the formulation of the possibility to randomize
Q (and its equivalence) as illustrated in Eq. 10, is highly advantageous: instead of computing
an (expensive) modular reduction that requires mask-refresh at every step3 one can simply

2we elaborate on this point and give examples in the simulation section below
3as discussed in Appendix A
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Figure 1: The structure of w(x)ĉ(x) and the resulting u3(x)

plug the randomness (i.e., the random coefficients of q(x)) into the variable z (as formulated
in Eq. 11).

The following example illustrates the MUL and ADD operations over R2[x]/h(x):

Example 2. Let m = 4, n = 7 and P0(x) = x4 + x + 1, P (x) = x4 + x3 + 1. Let
v1 = α5 = (0110) and v2 = α11 = (0111) ∈ F2[x]/P0(x), then (direct computation):

v3 = v1 · v2 = α = (0100).

In the mask domain, the MUL operation works as follows: Let L = L1 from Ex. 1. Let
r1 = (001), r2 = (101) and q = (110). Then, from Eq. 2 we have, u = (v, r)M where

M =
(

L4×4 04×3
B3×4 I3×3

)
=



1 0 0 0
0 1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
1 1 0 1 I
1 1 1 1


, A =



B3×4 I3×3
1 1 1 0
0 1 1 1
1 0 1 0 0
0 1 0 1
1 0 1 1
1 1 0 0


This implies that,

u1 = (v1, r1) ·M = (0010 001) = x2 + x6

u2 = (v2, r2) ·M = (0001 101) = x3 + x4 + x6

w = u1 · u2 = (0000 011 011101)
z = (110 011101)

u3 = (0000 011) + z ·A = (0000101) = x4 + x6

(13)

Consequently,
v3 = u3 ·HT · L−1 = (0110)L−1 = (0100)

as expected from the direct computation in F2[x]/P0(x).

3.6 The affine transformation in the mask domain
Denote by AF(v) = vT + t the original affine transformation of the m-bit binary vector

v. Here, v, t ∈ Fm
2 , and T is a binary m×m matrix over F2. An affine transformation of the

(m+d)-bit binary vector u ∈ R2n in the mask domain, AR(u) = uW +w where u, w ∈ Fm+d
2
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and W is a binary (m + d) × (m + d) matrix over F2 that preserves homomorphism is
defined as follows:

Let G and H be the systematic generator and check matrices of dimension n−m and
m of a shortened cyclic code C of length n defined by the generator polynomial P (x),
respectively. That is,

G =
(

B I
)

,

H =
(

I BT
)

,

M =
(

L 0
B I

)
,

and u = (v, r)M and v = uHT L−1. Consider a transformation matrix W of the form

W =
(

W1,1 0
W2,1 W2,2

)
.

We require that,

vT + t = (uW + w)HT L−1

= (v, r)MWHT L−1 + wHT L−1

= (v, r)
(

LW1,1
BW1,1 + W2,1 + W2,2B

)
L−1 + wHT L−1

Equivalently, w should be a member of the coset whose syndrome is s = wH = tL.
W1,1 = L−1TL and the matrices W2,1 and W2,2 should satisfy

BW1,1 + W2,1 + W2,2B = 0.

3.7 Other security metrics
The effectiveness of masking against a probing attack or a fault injection is evaluated

by the following security orders [BCC+14, KP20] :

• Bit-level security order db against a probing attack on single or/and several bits
that can be probed simultaneously. In general, the security order of a masking
scheme is defined as the largest number db above which it is possible to exploit secret
information from the protected implementation, e.g., by probing wires or register-
stored values of the protected circuit. In Boolean masking, db = d⊥

C − 1 where d⊥
C

is the minimum distance of C⊥ (the dual code of C). In other words, it equals the
maximal number of independent columns in G.
For example, the bit-level security order in Ex. 1 is db = 1. Namely, two probes
located, for example, on u2 and u6 can reveal information on the third bit of vL
regardless of how r(x) has been encoded.
In fact, n−m probes placed on the n−m most significant bits of u are sufficient to
recover the exact codeword that masks the m bits of vL. However, the randomness
in the selection of L ensures that this does not lead to a significant security breach.

• Bit-level error detection order df against random (benign) and malicious fault
injections. df is the maximal number of bit flips that can always be detected by
every codeword in C. In this paper, we refer to the polynomial P (x) as a generator
polynomial of a (shortened) cyclic code C of length n and dimension n−m. Moreover,
if n is less or equal to the order of the roots of P (x) the code is of distance 3 and
hence df = 2, otherwise, it is of distance 2 and df = 1.

https://orcid.org/0000-0002-5591-5799
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• The arbitrary-error detection rate, da, is the probability that the worst injected error
pattern will pass unnoticed. The value of da indicates how robust the code is against
a sophisticated attacker that can apply any number of bit-lips it chooses. Since this
paper deals with linear masking, there are error patterns that can never be detected.
That is, da = 1.

4 Simulations
In this section we provide several simulation-based examples to (1) improve the pseudo-

algorithm provided in the multiplication (MULT) and the modular reduction (MOD)
proposed in [BBA+22] and the need for atomic-operations refresh, (2) illustrate the threats
encapsulated in the brute-force parameter selection or in so-called non-significant leakage
as discussed in [BBA+22]. Finally, (3) we illustrate the strengths embedded within CLM.

4.1 Leakage from Modular Multiplication in the masked domain
We simulated leakage traces with a Hamming weight (HW) leakage model and additive

normal Gaussian noise with a zero mean and standard deviation matching a SNR of
10−1. We started by simulating a multiplication with a specific (fixed) P and the chosen
Q polynomials, as was devised in [BBA+22]. Algorithms 1, 2 detail the multiplication.
Here we used m = 8 and d = n−m = 8. We further utilized a generator matrix of the
systematic code, i.e.,

Gsys
(n−m)×n = (B(n−m)×m|I(n−m)×(n−m))

and implemented a single (16-bit) multiplier in software. That is, for purposes of illustration
and simplicity’s sake no algorithmic noise was incorporated in this simulation. In each
and every step in the sequence of the computation (see algorithms) we took the computed
internal value and added an independent and additive noise to produce a pseudo leakage
trace.

For the TVLA experiment, we asserted random multiplications, i.e., the multiplier
and multiplicand were quarried with v1 ← $; v2 ← $, and fixed-value multiplications,

Figure 2: Original Multiplier: Fixed vs. random t-test based TVLA of the first two
statistical orders over a (masked) leaky MULT calculation
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Figure 3: Leakage free Multiplier: fixed vs. random t-test based TVLA of the first two
statistical orders over a (masked) MULT calculation

i.e., the multiplier and multiplicand were quarried with v1 ← V alv1 ; v2 ← V alv2 , for 105

measurements (computations), which was enough for the given low SNR value. The random
and fixed quarries were randomly interleaved (mixed). This process of implementing a
fixed versus a random TVLA t-test was repeated 10 times (for demonstration), i.e., with 10
different, randomly selected fixed values (V alv1 , V alv2). Note that $ represents a uniform
at random draw.

The software implementation of these algorithms when utilizing the Shift-and-Add
paradigm as it appears in the original [BBA+22] is somewhat problematic. The two
places where we found leaks in the algorithms are marked in red: (1) the lack of refresh
between all atomic operations that turned out to be crucial for minimizing the leakage in
Subsection 3.5 and (2) timing side-channels caused by the lack of an else condition (non-
constant time implementation). In Fig. 2 we illustrate the mean (µ, dashed blue curve)
and the standard deviation (σ, light blue halo around the mean) of the max t-test values
plotted against the number of traces in the simulation. Without faults there should be
no leakage above the test threshold, which was falsified as indicated in the 1st statistical
moment as d=1.

These issues must be handled before evaluating the consolidated linear masking scheme.
The naive corrections are listed in Algorithms 3 and 4, and highlighted in green . We
implemented a constant time code and refresh in each loop iteration. As illustrated in
Fig. 3 the mean (µ) and standard deviation (σ) of the max t-test values did not leak in
the 1st-order statistics, as expected. From this point on, we conducted all the simulations
with these two algorithms.

4.2 Sensitivity to heuristic based selection of (P, L, Q)-tuples
In general, for a given (m, n) pair [BBA+22] provides (P, L, Q)-tuples. That is, RAM-

BAM associates with each irreducible polynomial P (x) of degree m = 8 an L matrix and
(heuristically chosen) Q(x) polynomial of degree n −m. In this section we discuss the
implications of working with pre-determined (P, L, Q)-tuples.

We simulated leakage traces with a Hamming weight (HW) leakage model and additive
normal Gaussian noise with zero mean and a standard deviation matching a SNR of 10−1,

https://orcid.org/0000-0002-5591-5799
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Figure 4: Fixed vs. random t-test based TVLA of the first two statistical orders, with
chosen fixed plaintext of 0, 1 and HW=m/2, in an n −m = 0 reduced-CLM instances
which does not fully utilize the entire randomization space provided by isomorphism and
L randomization (such as [BBA+22]), illustrating possible information leakage.

of some internal value (after mapping). After the simulation we computed a fixed versus
random TVLA t-test showing:

Figure 5: 10 Fixed vs. random t-test based TVLA of the first two statistical orders, with
random fixed plaintext for all n −m = [0 : 8] cases with a fixed L, i.e., RAMBAM or
highly reduced-CLM instance.
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(1) in the case of n=m (no redundancy) we found failures, i.e., indications that there
were information leakages. For purposes of illustration, the fixed input to the fixed SBOX
input was set to 0 (which would manifest the leakiest scenario) given the reduced entropy
due to the zero associated isomorphic-mapping, i.e., such plaintexts are known to leak
equally to a non-protected scenario, or a fixed plaintext of 1 as shown in Fig. 4 by a blue
curve, slightly improving entropy, or with a plaintext of a HW of n/2 (or m/2 in this case).
The black curves for both the first and second order t-tests were associated with the fixed
0: solid black is a no- randomization simulation and dashed black represents a simulation
with |L| = 10 different L matrices (i.e., a reduced version of CLM), and the dense dashed
black curve represents a simulation with |L| = 30 (i.e., also a reduced version of CLM).
The set of blue curves is identical (solid, dashed and dense dashed) but evaluated with
a fixed vector of the value 1. Clearly, all the reduced versions including RAMBAM are
bound to leak significantly in this reduced-entropy scenario, not only n=m and there is no
randomization, but we did not exhaust the full power of the entropy from randomization
over L possible representations as proposed by CLM (i.e., here |L|<240).

(2) In this same scenario of n=m (no redundancy) we next show that with HW of
four (green curves on Fig. 4), the solid curve does not leak in the first order as expected
since the randomized set mean is the same. However, because of the reduced entropy due
to L, some bias appears (dashed and dense-dashed green curves). This illustrates issues
that are more apparent with RAMBAM fixed tuples. Clearly if CLM utilizes the entire
entropy provided by isomorphic L these cases can be avoided, i.e., an almost first order
SCA security d =2 can be achieved without randomness in the representation of variables,
with (almost) no leakage in the first statistical moment4.

(3) Next, we simulated a scenario with n−m = [0 : 8] (denoting the range between
0 and 8) and no isomorphic L randomization (i.e., RAMBAM). Fig. 5 shows the mean
(µ) TVLA curve and its variance (σ) over 10 TVLA tests, where in a departure from

4This property is provided as an example below in Fig. 7

Figure 6: 10 Fixed vs. random t-test based TVLA of the first two statistical orders, with
random fixed plaintext for all n−m = [0 : 8] cases with slight isomorphic L randomization
(reduced-CLM instance), with 8 possible roots.

https://orcid.org/0000-0002-5591-5799
https://orcid.org/0000-0002-3101-9551


16 Randomizing with Redundancy and Masking over Rings

Figure 7: 10 Fixed vs. random t-test based TVLA of the first two statistical orders, with
random fixed plaintext for all n−m = [0 : 8] cases with no isomorphic L randomization
full-entropy CLM instance, with 8 · 30 possible roots.

the previous two scenarios, the fixed plaintext was chosen at random: {black, green, red,
blue} curves represent n−m={1, 2, 4, 8}, respectively. Clearly the highlighted variance
regions (halo) show that information does not only leak in the extreme scenarios of the
tailored-fixed values above. The figure also shows that as n−m = [0 : 8] increases, along
with the expected security increase, there are lower mean (µ) curves and at the same time
smaller variances (σ). Note this latter point is merely an artifact due to the small support
set of 10 TVLA experiments.

4.3 Enhancing performance by releasing the reins on (P, L, Q)-tuples
In this section we demonstrate the strength of the CLM scheme that make it possible

to release the reins on (P, L, Q)-tuples and hence increase the masking order.
We simulated a scenario with n−m = [0 : 8] and random L. Fig. 6 depicts the TVLA

results where |L| = ∀. Specifically, P (X) was fixed and the isomorphism was defined by
picking one of its eight roots at random. The figure shows the mean (µ) curve and its
variance (σ) over 10 TVLA tests, with random fixed plaintext. {black, green, red, blue}
curves represent n−m={1, 2, 4, 8}, respectively. The figure also depicts the same trend
where when n−m = [0 : 8] increases, as expected, security increases, and there are lower
mean (µ) curves. However, note the significant reduction in information leakage as a result
of this randomization.

For illustration we extended this experiment.In Fig. 7 the representation was randomized
with all 8 · 30-roots associated with cosets (i.e., 240 isomorphic Ls and associated P s).
The figure again shows the mean (µ) curve and its variance (σ) over 10 TVLA tests, with
random fixed plaintext. Evidently the trends repeat with the increase in n−m = [0 : 8] .
However, even before n−m=8 information is hard to distinguish (as is apparent in both
the mean and variance of the curves) in the first statistical moment of the leakage. This
is clearly due to the entropy provided by the maximum randomization of isomorphic Ls
as compared to standard masking with conventional security-order d=0 in this case. This
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security level can only be achieved with (conventional) masking, with say n = 16, m = 8.

5 Conclusions
Current masking schemes often incur significant overhead.This paper presented a

comprehensive generalization of various masking schemes and described an elegant mathe-
matical representation for masking dubbed Consolidated Linear Masking (CLM), where
masking schemes are formalized by their encoding. Within this unified framework, we
established a theoretical foundation linking randomized isomorphic (code) representations
and entropy provided by the redundancy of the representation, which supports a revised
notion of the masking order. The proposed scheme and formalization thus paves the way for
significant enhancements. Specifically, we showed that it is possible to fully randomize the
(P, L, Q)-tuples which define the implementation, thus considerably increasing the entropy
provided by the scheme. For example, a 1st-order secure design can be (almost) achieved
without increasing the size of the variable representation, or an almost 3rd-order secure
design only needs to double the representation size. We provided formalizations showing
that CLM enables randomized isomorphic field selection for improved security, a flexible
choice of the randomization polynomial, and highly efficient embedded mask-refreshing via
the randomized isomorphic representation. This latter property significantly reduces the
randomness requirements and saves abundant modular reductions within the scheme, while
providing much improved performance. Finally, we also showed that the wider range of
isomorphic randomized mappings depicted here (by m) significantly increases the available
randomization.
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A Software Multiplication and Modular reduction
In these algorithm listing we show the software algorithms listed in [BBA+22] construc-

tions, where the multiplication and modulus algorithms are generally well known based on
Shift-and-Add paradigm, and were adapted to RAMBAM (Algorithms 1 and 2).

We denote within the multiplication and modular reduction algorithms stages where
they have some conceptual weaknesses appearing in red color in the algorithm. Either
owing to a lack of refresh (as discussed above, as needed between all atomic operations
- Subsection 3.5) or timing side-channels owing to trivial lack of else conditions (non
constant time implementation). We correct these leakage sources in order to evaluate CLM
properties with leakage-free multiplication, as listed in Algorithms 3 and 4. Note that [·]
represent a modular reduction (following a refresh), and rand ← $ represent a random
drawing to any (random) register or variable. Note, that changes appear in green color
text.
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Algorithm 1 Multiplication
Function MulZ,d(ain, bin):

Input : ain, bin – two (8 + d)-bit values, each one representing a byte
Output : cout – a (8 + d)-bit value representing ain · bin mod P
cout ← 0
deg ← bin
for i← 0 to 7 + d do

if ((ain ≫ i)&1) = 1 then
cout ← cout + deg ⇝ ⇝ ; // Here values from ain, bin recombine

end
⇝ ⇝ ; // No ‘else’ - trivial leakage
deg ← ModularShiftLeftZ,d(deg)

end
return cout

Algorithm 2 ModularShiftLeft
Function ModularShiftLeftZ,d(xin):

Input : xin – a (8 + d)-bit value
Output : xout – a (8 + d)-bit value
xout ← xin ≪ 1
if ((xout ≫ (8 + d))&1) = 1 then

xout ← xout + Z ⇝ ⇝ ; // Here bits from xin may recombine
end
⇝ ⇝ ; // No ‘else’ - trivial leakage
return xout

Corrected pseudo-algo. Note that this software implementation is clearly much
more expensive than what CLM proposes. With CLM and full- randomization over Q all
internal refreshed (and modulus operations) can be spared, as discussed in sub-section 3.5.

Algorithm 3 Modified Multiplication
Function MulZ,d(ain,bin):

Input : a_in, b_in – two (8 + d)-bit values, each one representing a byte
Output : c_out – a (8 + d)-bit value representing ain · bin mod P
cout ← 0 deg ← bin
for i← 0 to 7 + d do

if ((ain ≫ i)&1) = 1 then
cout ← [cout+r · P ]+deg

end
else

**rand← $ ; // Here rand may represent any random register
end
deg ← ModularShiftLeftZ,d(deg)

end
return cout

** - Otherwise trivial timing attack (time dependent latency).
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Algorithm 4 Modifified ModularShiftLeft
Function ModularShiftLeftZ,d(xin):

Input : xin – a (8 + d)-bit value
Output : xout – a (8 + d)-bit value
xout ← xin ≪ 1
if ((xout ≫ (8 + d))&1) = 1 then

xout ← [xout+r · P ]+Z
end
else

**rand← $
end
return xout


