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Abstract

Private Information Retrieval (PIR) enables a client to retrieve a database element from a semi-honest
server while hiding the element being queried from the server. Maliciously-secure PIR (mPIR) [Colombo
et al., USENIX ’23] strengthens the guarantees of plain (i.e., semi-honest) PIR by ensuring that even a
misbehaving server (a) cannot compromise client privacy via selective-failure attacks, and (b) must answer
every query consistently (i.e., with respect to the same database). These additional security properties are
crucial for many real-world applications.

In this work we present a generic compiler that transforms any PIR scheme into an mPIR scheme in a
black-box manner, minimal overhead, and without requiring additional cryptographic assumptions. Since
mPIR trivially implies PIR, our compiler establishes the equivalence of mPIR and PIR. By instantiating our
compiler with existing PIR schemes, we immediately obtain mPIR schemes with O(N ϵ) communication
cost. In fact, by applying our compiler to a recent doubly-efficient PIR [Lin et al., STOC ’23], we are able
to construct a doubly-efficient mPIR scheme that requires only polylog(N) communication and server
and client computation. In comparison, all prior work incur a Ω(

√
N) cost in these metrics.

Our compiler makes use of a smooth locally-decodable codes (LDCs) that have a robust decoding
procedure. We term these codes “subcode”-LDCs, because they are LDCs where the query responses are
from an error-correcting code. This property is shared by Reed-Muller codes (whose query responses are
Reed-Solomon codewords) and more generally lifted codes.

Applying our compiler requires us to consider decoding in the face of non-signaling adversaries, for
reasons analogous to the need for non-signaling PCPs in the succinct-argument literature. We show how
to construct such decoders for Reed–Muller codes, and more generally for smooth locally-decodable codes
that have a robust decoding procedure.
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1 Introduction

Private information retrieval (PIR) is a cryptographic primitive that allows a client to retrieve a record from a
database without revealing to the database server(s) which record was retrieved. Since the seminal works
of [CGKS98; KO97], there has been tremendous progress in new constructions [CCKM00; GPS04; GR05;
DG15; LMW23; HHGMV23], applications [MOTBG11; Rya14; KC21; HDCZ23] and several deployments
[blyss; spiral].

While almost all work on PIR schemes has focused on the setting of semi-honest servers, the question
of how to handle malicious servers was noticed even in the earliest works on PIR. Indeed, Kushilevitz and
Ostrovsky [KO97] observed already in their seminal work that a malicious server could learn whether a
client is querying for a specific record by returning a malformed response. The question of how to obtain
maliciously-secure PIR (mPIR) schemes has received renewed interest recently, with several works proposing
formal definitions and new constructions of mPIR [CNCWF23; WZLY23; DT24; CL24]. Below we briefly
describe the problems caused by malicious servers and survey existing work on mPIR.
Why malicious security? Unlike a semi-honest PIR server, a malicious server can return incorrect results to
a client, violating not only correctness guarantees, but importantly also privacy guarantees. Examples of such
violations include:

• Selective-failure attacks: Consider a malicious PIR server, A, who wishes to learn whether a client is
querying for the i-th record of a database db. To test this hypothesis, A executes the client’s query on
a corrupted database db′ whose i-th record has been replaced with garbage data. Even if the client can
somehow detect that the server’s response is malformed, its hands are tied: it cannot “complain” about
the corruption, as this would leak to A that it indeed queried for the i-th record. In general, if the client’s
future actions depend (in an observable manner) on the server’s response, then A can selectively corrupt
the database and learn information about the client’s query.

• Inconsistent views: Many applications of PIR require the ability for different clients to privately query. If
the server can return different results to different clients, then the clients’ views of the database can become
inconsistent, possibly violating the application’s security guarantees.

Recent work. As noted above, while the possibility of such attacks was observed early on [KO97], only
recently have formal definitions been proposed to model malicious server behavior [CNCWF23; DT24].
These definitions state that any “maliciously-secure PIR (mPIR)” protocol must satisfy not only the standard
correctness guarantee, but must also satisfy strong privacy and coherence guarantees. Constructions matching
these definitions have been proposed by [CNCWF23; DT24; WZLY23; CL24]. Informally, privacy captures
selective-failure attacks by requiring that the view of any efficient adversarial server must be efficiently
simulatable even when the adversary sees whether the client aborted, while coherence captures inconsistent
view attacks by requiring that all clients querying the same index receive the same response.1 Unfortunately, all
these constructions are ad-hoc: they apply construction-specific tweaks to particular PIR schemes to achieve
malicious security. Further, they achieve at best Ω(

√
n) communication, server and client computation, (and

‘digest’ size). This leaves open the following foundational question:

Is there a general transformation that constructs more efficient mPIR from PIR in a black-box manner?
1Achieving this notion in the single-server setting requires all clients to hold a (succinct) commitment to the database, and so

single-server mPIR protocols necessarily require a preprocessing phase [BIM04].

1



1.1 Our results

In this work, we answer the foregoing question by providing a generic transformation that compiles any PIR
scheme to an mPIR scheme (Theorem 1). We demonstrate the flexibility of our compiler by using it settle
several questions regarding the efficiency of, and assumptions required for mPIR. We detail our results below.
(1) A generic compiler from PIR to mPIR. To obtain our transformation, we carefully combine PIR
schemes with vector commitments and a special class of locally-testable and decodable codes, obtaining the
following theorem:

Theorem 1 (PIR⇒ mPIR). Consider the following ingredients:
– A suitable locally-decodable code (Definition 4.12) with codeword size n and query complexity q.
– A PIR scheme with communication complexity c(·).
– A vector commitment scheme with proof size p(·).
Then, there exists a maliciously-secure PIR (mPIR) scheme with the following efficiency properties on a
database of size O(n):
• communication cost is c(n) · p(n) · q(n);
• server computation is the time to respond to q (semi-honest) PIR queries on a database of size n; and
• client computation is the time to verify q opening proofs and decode the corresponding responses using the

LDC decoder.

We highlight two key challenges we encountered in proving the foregoing theorem.
• Privacy: One key technical challenge that arises when proving the foregoing theorem is in demonstrating

privacy. In more detail, in our construction, a client’s request for the i-th “logical” database record gets
mapped to multiple PIR queries that are correlated with i. Although the security of the semi-honest PIR
protocol hides the indices being queried, it does not prevent the adversary from potentially introducing
correlated error patterns. This problem has been noted when using PIR to construct succinct arguments
[DLNNR04; KRR14], where the issue was resolved by showing that the underlying argument system was
secure against non-signaling adversaries. We resolve this problem in a similar way, by carefully designing
the underlying protocol so that it remains secure against this type of attacker (see Section 5).

• Server efficiency: Notice that whenever q = ω(1) and the base PIR has Θ(k) online server computation
(which is the usual case), a straightforward use of PIR to answer each query separately leads to ω(k) server
computation. Instead, we show how to obtain the optimal server cost of O(k) by relying on a novel batching
technique that is compatible with our stringent privacy requirements. Surprisingly, naı̈vely applying batch
codes [IKOS04], the standard tool for batching PIR queries, is insecure in the malicious setting, and we
have to develop new batching techniques (see Section 6).

(2) Minimal assumptions for mPIR. Because single-server PIR schemes imply collision-resistant hashes
[IKO05], instantiating our compiler with a Merkle-tree-based vector commitment [Mer89] allows us to obtain
mPIR schemes that rely on the same assumptions as the underlying PIR. Because mPIR trivially implies PIR,
we obtain the following corollary:

Corollary 1. The existence of single-server PIR is equivalent to the existence of single-server mPIR.

(3) Doubly-efficient mPIR. Recently, [LMW23] proposed a “doubly-efficient” PIR scheme that achieves
polylog(n) communication and server computation. A natural question is whether their techniques can be
used to obtain doubly-efficient mPIR. We answer this question affirmatively by instantiating our compiler
with the Reed–Muller LDC of sub-constant rate and polylogarithmic locality and the doubly-efficient PIR of
[LMW23], obtaining the following corollary:
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Corollary 2 (doubly-efficient mPIR). There exists an mPIR scheme where the communication complexity,
client computation and server computation are polylog(n, λ).

We illustrate the efficiency of our constructions in Table 1, which shows that the latter require lower
communication and smaller digests than all prior work.

Scheme Communication Computation Digest Assumptions Methodology

[CNCWF23] (single server) O(N1/2) O(N) O(N1/2) LWE, DDH Ad-hoc
[WZLY23] (single server, amortized) O(N1/2) O(N1/2) O(N1/2) OWF Ad-hoc

[DT24] O(N1/2) O(N) O(N1/2) DDH Ad-hoc
[CL24] O(N1/2) O(N) O(N1/2) ROM & LWE Ad-hoc

Ours (Theorem 2) O(Nε) O(N) O(1) PIR Compiler
Ours + dePIR (Corollary A.1) O(polylog N) O(polylog N) O(1) RingLWE Compiler

Table 1: Comparison of mPIR constructions. Above N is the database size. All schemes incure a λ overhead in
all metrics; we omit this for brevity. In the “Ours (Theorem 2)” row, the figures are obtained by applying our
generic compiler to any PIR scheme with O(Nε) communication and O(N) computation.
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2 Technical overview

Our goal is generically transform any semi-honest PIR scheme to a maliciously-secure PIR (mPIR) while
incurring minimal overhead scheme and without introducing additional cryptographic assumptions. We begin
by reviewing (m)PIR.
Background: defining (m)PIR. A PIR protocol is a protocol between a client and a server consisting of the
following algorithms:
• Query takes as input a query index, i⋆, and outputs a query, query, to be sent to the server.
• Respond takes as input a query, query, executes it on the database, db, and outputs a response resp for the

client.
• Decode takes as input a response, respi⋆ , decodes it, and outputs the i⋆-th record dbi⋆ in db.

A PIR protocol satisfies correctness if for every database db and every query index i⋆, if Query is run
on i⋆, and Respond,Decode are run honestly then Decode outputs the correct value, dbi⋆ . A PIR protocol
satisfies privacy if for every database db and every query index i⋆, the query, queryi⋆ , leaks no information
about i⋆ to the server. (This is formalized via a standard simulation-based definition.)

An mPIR protocol is a PIR protocol where the server may deviate from the protocol. To obtain reasonable
security in the face of a malicious server, an mPIR protocol must satisfy two additional properties.

• Malicious privacy: a malicious server should not be able to use selective-failure attacks to learn information
about the client’s queries. For example, a malicious server should not be able to corrupt a portion of
the database and then use the client’s behavior post-response (e.g., whether it has aborted) to deduce
information about the queried location.

• Coherence: a malicious server cannot respond to two different queries for the i-th database location with
inconsistent values: either both responses should be the same value, or at least one response should lead to
rejection.

We provide a formal definition of these properties in Section 4.1.1, and now describe how to construct mPIR.
Starting point: mPIR from PIR + Merkle trees. We use as a starting point the following idea of Kushilevitz
and Ostrovsky [KO97] that augments a PIR scheme to provide improved integrity properties:
1. In a preprocessing phase, the server computes a Merkle tree over the database, db, and publishes the

resulting Merkle Root, cm.
2. To perform a query for the i⋆-th record, the client invokes the semi-honest PIR query algorithm as usual.
3. The server answers this query not with respect to db, but with respect to an augmented database

db′ := ((db1, π1), . . . , (dbn, πn)), where πi is the Merkle tree path for dbi.
4. The client decodes the response and verifies that the Merkle path is valid with respect to cm.
This compiler achieves various attractive properties: it is modular, efficient, does not require additional
assumptions,2 and makes black-box use of the underlying semi-honest PIR protocol. Unfortunately, while this
scheme does satisfy coherence, it does not achieve privacy in the face of selective-failure attacks: a malicious
server can execute the client’s query with respect to a corrupted database that is identical to db′ everywhere
except at the j⋆-th location; at the latter location, the server replaces the proof πj⋆ with ⊥. For most PIR
schemes, the client will abort if and only if j⋆ = i⋆, inducing a selective failure.3 Given this flaw, [KO97]
noted that this construction is secure against a covert adversary, but left it as an open question how construct a
PIR protocol secure against a malicious adversary.

2The existence of Collision-Resistant Hash Functions and hence Merkle Trees is implied by PIR [IKO05].
3We note that that Colombo et al. [CNCWF23] show that this approach can be made to work for a specific class of multi-server

PIR schemes; see Section 3 for a detailed discussion.
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2.1 Attempt 1: robustness from locally-decodable codes

The problem with the foregoing approach is that the server can introduce a few localized corruptions to the
database and trigger a selective failure attack. A natural idea to prevent such localized corruptions would
be to encode the database with an error-correcting code, as intuitively this would “spread” any local errors
across the entire codeword. Making this idea communication-efficient requires using a locally decodable
code (LDC).

Below we elaborate on this idea, focusing for simplicity of exposition on the Reed–Muller (RM)
locally-decodable code. (We note that our final construction works with any suitable locally-decodable codes)
Background: local decoding for Reed–Muller codes. For a finite field Fp, a number of variables m, and
a total degree d, a codeword in the Reed–Muller code is the list of evaluations over Fm

p of an m-variate
polynomial of total degree d. That is, for an

(
m+d
d

)
-symbol message y1, . . . , y(m+d

m ) ∈ Fp, the corresponding
Reed–Muller codeword is the list of evaluations of the m-variate, d-total degree, unique polynomial f
satisfying f(i) = yi for all i ∈ [

(
m+d
m

)
]. Reed–Muller codes enjoy several attractive properties, including

quasilinear time encoding [HS13] and efficient local decoding, which we describe next.
The standard local decoder for Reed–Muller works by exploiting the fact that the restriction of a

multivariate polynomial to a line is a univariate polynomial. In more detail, given access to a (possibly
corrupted) codeword f̃ , the client can decode the i⋆-th message symbol f(i⋆) by sampling a random line
ℓ(X) = mX + i⋆ that passes through i⋆, and querying for all evaluations of f̃(ℓ(X)). If f̃ is close
to a Reed–Muller codeword f , then with high probability the evaluations of f̃(ℓ(X)) will be close to a
Reed–Solomon codeword encoding f(i⋆), allowing us to recover f(i⋆) by invoking any standard (non-local)
decoder for Reed–Solomon codes.

We are now ready to describe our proposed fix to the Merkle-tree-based mPIR scheme.
Proposal: mPIR from Merkle trees + LDC. Offline, the server publishes a commitment cm to E, the
Reed–Muller encoding of the database, db. Online, to retrieve the i⋆-th record in db, the client samples a
random line ℓ that passes through i⋆ and performs semi-honest PIR queries to retrieve the codeword symbols
(i.e., evaluations) that lie on ℓ. The PIR server answers these queries with respect to E′, the augmented
analogue of E where the codeword symbols are accompanied by Merkle proofs. Upon receiving the responses,
the client invokes the Reed–Solomon decoder to reconstruct the i⋆-th record, treating every invalid Merkle
proof as an “erasure”. If the number of erasures on the line ℓ is less than p− d, then the local decoder will
succeed and the client will output the i⋆-th element of the database. Else, the client outputs ⊥.

It is straightforward to see that this scheme satisfies correctness and coherence (i.e., any non-⊥ output is
correct). Unfortunately, it does not satisfy privacy.

The problem is subtle: although for any fixed corruptions set of corrupted points C, the expected number
of corrupted responses received is when the client queries i⋆ is the same as when it queries j⋆, for carefully
chosen C, the variance can dramatically vary. In particular, consider an adversary which chooses a particular
point, j⋆, picks an ϵ-fraction of the lines which go through j⋆, and corrupts them entirely. Now, if i⋆ = j⋆,
then with probability ϵ, the decoder would choose one of the corrupted lines and output ⊥. On the other
hand, if ϵ < p−d

p it’s not too hard to show that the probability a line through i⋆ ̸= j⋆ has more than p− d
corruptions can be made much smaller (close to) 0.

More generally, the issue is that while Reed–Muller codes (and LDCs in general) guarantee that probability
of decoding success is high for all indices (assuming few corruptions), we require a stronger guarantee: the
probability of decoding success should be close for every pair of distinct indices. Indeed, such a guarantee
would ensure that no matter the corruption pattern, decoding for i⋆ would be as successful as decoding for j⋆,
and would hence allow us to establish privacy.
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A natural idea to obtain such a guarantee would be to try and increase the probability of decoding
success by repetition, i.e. making more queries, attempting to decode all of them, and outputting any valid
decoding result. Unfortunately, the number of repetitions required to drive the gap between decoding success
probabilities to negligible is large, leading to a significant overhead.

Instead, we take the opposite approach: instead of trying to overcome corruptions, we try to detect them
in a manner that is independent of the query index i⋆. We elaborate on this idea in the next section.

2.2 Attempt 2: detecting corruptions with test queries

To detect corruptions, we introduce “test queries” into our client’s decoding algorithm. Specifically, we
supplement the “decoding” set D ⊂ Fm

p (containing queries corresponding to l random lines through i⋆) with
a “test” set T ⊂ Fm

p consisting of O(λ) uniform and independently chosen test queries, where λ is a security
parameter. After sampling these sets, the client prepares a PIR query for every index i ∈ T ∪ D, shuffles
the queries randomly, and sends them to the server. Upon receiving responses, the client checks the Merkle
proofs of all the test queries, and outputs ⊥ if any of them are invalid, even if it could otherwise decode. If no
test queries are corrupted, the client decodes the lines as usual.

A reasonable approach to proving that the above approach achieves privacy would be as follows. First,
since the test set T is sampled independently of i⋆, the probability that the client finds a corrupted test query
is independent of i⋆. Thus, if the client finds a corrupted test query, it can safely abort without “leaking”
its query index, i⋆, to the adversarial server. Second, since T is of size O(λ), is sampled uniformly from
Fm
p , and is shuffled with the decoding queries, if the client receives no corrupted test queries, then most (i.e.

1− o(1)-fraction) of the adversary’s responses are uncorrupted. Thus, the client needs to only query a modest
number of lines to successfully decode with high probability.

The problem with the preceding argument is that it implicitly assumes that the privacy property of the
(semi-honest) PIR protocol ensures that the adversary’s corruption pattern is independent of the underlying
query indices. Unfortunately, the privacy of the underlying PIR protocol only gives us the weaker guarantee
that the adversary’s responses must follow a non-signaling distribution. This obstacle has been encountered in
the succinct argument literature [DLNNR04; KRR14] when attempting to use PIR to make multiple correlated
queries into a PCP.

To avoid this problem, we show how to modify this construction so that the “test” queries are information-
theoretically hidden.

2.3 Our construction

We now describe how to fix the foregoing issues and prove Theorem 1.
At a high level, our construction leverages smoothness of Reed–Muller codes to better hide the test queries

within the decoding queries. The resulting decoding algorithm, described below, is deceptively simple:
1. Sample the decoding set D by sampling O(λ) many independent lines through i⋆.
2. Sample the test set T by sampling a uniformly random point on each line sampled in Step 1.

We will now argue that this decoder achieves “query-independent” abort even against unrestricted (i.e.
not necessarily non-signaling) adversaries. By smoothness of Reed–Muller, and because a uniformly random
point on a uniformly random line through i⋆ is uniformly random in Fm

p , T is uniformly random and hence
independent of i⋆. This means that any corruption pattern that the adversary chooses will be detected with
all-but-negligible probability, and the client will abort without revealing i⋆.

We show how to expand this intuition into a formal proof in Section 5. Along the way, we generalize our
construction to work with a special class of LDCs that we call “subcode”-LDCs.
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Let us now analyze the efficiency of our construction. It is straightforward to see that communication
complexity and client computation complexity remain sublinear, since they incur an overhead of O(qLDC · λ),
where qLDC is the query complexity of the LDC. (When instantiated with the Reed–Muller code, qLDC ≈
O(N ϵ).) However, as noted in Section 1.1, a straightforward usage of PIR to independently retrieve each
query in T ∪ D results in server computation that scales as O(N · qLDC · λ). When instantiated with the
Reed–Muller code, qLDC ≈ O(N ϵ), and so the server’s incurs a superlinear cost of O(N1+ϵ). We show how
to reduce this cost to O(N) next in Section 2.3.1.

2.3.1 Shaving the query-complexity overhead with lossy batching

The standard approach for reducing the computational overhead of preforming a batch of q PIR queries is
batch codes [IKOS04]. Roughly speaking, a q-batch encoding of a database db = db1, . . . , dbn is a list of
buckets B1, . . . , Bm where each bucket Bi is a subset of {db1, . . . , dbn}, and each database element is stored
in several buckets.4 Given any subset of indices Q ⊂ [n] of size at most q, an efficient batch decoder can
recover dbQ by querying exactly one element per bucket. A PIR client can retrieve a batch of records dbQ
from a server holding a batch–encoded db by sending a single PIR query to each bucket as prescribed by the
batch decoding algorithm. If the encoding has constant rate (i.e.

∑
i∈[m]|Bi|= O(n)) then the batch of q

PIR queries is processed with only O(1) overhead. Indeed, even for q = O(nϵ), we know batch codes with
constant rate [IKOS04].

Unfortunately we cannot use batch codes as-is, because for a given index j ∈ Q, the bucket B from which
dbj should be retrieved can depend on all of Q. As we explain next, this dependency can be exploited by a
malicious server. Consider batch encoding the Reed–Muller encoding of the database, as would naturally be
done for our scheme. Let i, j, k ∈ Fm

p be entries noticeably more likely to be queried if i⋆ is the query index
(e.g. three points on a line through i⋆). With noticeable probability, i, j, k are stored in the same bucket B.
Since only one of them could be queried in B, we have that i is less likely to be queried in bucket B if i⋆ is the
query index then otherwise. Thus, an adversary corrupting i only in bucket B could get noticeable advantage
at guessing i⋆ by observing the discrepancy in i’s corruption probability. That is because even though our
scheme ensures the probability that i ∈ T does not depend on i⋆, the probability i ∈ T and queried in bucket
B does depend on i⋆.5

Fortunately we can circumvent this issue by leveraging a neat property of our setting: with high probability,
the Reed–Muller decoder will succeed even when a small constant fraction of queries are “dropped.” We
leverage this property by modifying our decoder as follows: given a query set Q← Dd(i

⋆) as input, for each
x ∈ Q, our batch code query algorithm picks a random i such that x ∈ Bi.6 If the algorithm has already
picked Bi for some previous x′, it will “drop” x (i.e. not query x at all). Else, it will query x at Bi. By setting
the parameters of the batch codes appropriately, we are able to gurentee that except from with negligable
probability, at most a small (constant) fraction of elements are dropped.

Correctness still holds because Reed–Muller decoding can handle a small constant fraction of drops by
treating them as erasures. Privacy holds because every x that isn’t dropped is queried at a bucket that is
chosen independently of Q. At a very high level, our analysis leverages this to show that even an adversary
that (partially) knew which elements were dropped couldn’t use this information to violate a client’s privacy.
We leave the full proofs and further discussion to Section 6.

4We note that in some batch codes, it is not the case that buckets are subsets of {db1, . . . , dbn}. However, all sufficiently efficient
batch codes known to us are vulnerable to the attack described below.

5Note we could query each bucket with an mPIR, but our computational complexity would not improve.
6A subtlety in the analysis requires that we first “try” to query elements of the test set T , then elements of D, but we omit this

detail here.
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2.3.2 From semi-malicious to malicious security

So far, we have considered the case where the commitment contains a valid codeword. However, in general an
adversarial server might publish an arbitrary string cm which has no relation to any codeword. To obtain
security in such a strongly adversarial setting, we rely on proximity tests (Definition 4.14). A proximity
test for a code C is a (randomized) local algorithm which queries an arbitrary string w at few locations and
determines with high probability whether w is close to some codeword in C. Thus, to certify that cm is a
commitment to a string w that is δ-close to a Reed–Muller codeword, the client makes queries to the server in
the clear according to an appropriate proximity tester. The client aborts (independently of i⋆) if the proximity
test rejects. Given that the proximity test accepted, the client can be sure that w is at most δ-far from C. For a
sufficiently small δ, the proofs previously outlined need only slight tweaks.

8



3 Related Work

The potential for selective failure attacks was observed in the first single-server PIR work [KO97], but the first
rigorous treatment of the problem was not given until [CNCWF23].
Multi-server setting. As discussed in Section 2, [CNCWF23] show how to compile any linear-reconstruction
k-server PIR scheme into a malicious secure PIR scheme, assuming vector commitments scheme and that at
least one server is honest. Following up, Wang et al. [WZLY23] adapt ideas from sublinear computation
multi-server PIRs [CK20; SACM21; KC21; LP23] to build multi-server PIR protocols with amortized O(

√
n)

server computation. Unfortunately, their construction offers rather weak security: a particular designated
server must be semi-honest or the scheme breaks.
Single-server setting. In order for a client to verify a PIR response, the client needs a commitment, cm,
to the “true” database. In the multi-server setting, each server can include this commitment in their PIR
response, and the client will check if all these commitments match.

In the single-server setting, things are a bit more complicated. In [CNCWF23], it is assumed the
commitment, cm, is produced by an honest “data-holder” and provided to the client before the PIR protocol
begins. In this “semi-malicious” setting, [CNCWF23] provide two novel single-server constructions from
LWE or DDH. At a high level, the schemes share a similar structure: offline, the honest data-holder publishes
a O(n)-sized (homomorphic) commitment cm to db ∈ {0, 1}n (it is crucial dbi is in a small subdomain).
Online, clients query the database by sending an O(n)-length additively homomorphic encryption of a 1-hot
vector, e. The server responds by taking the dot-product of e and db, and the client decrypt the response
using the commitment cm. It can then be shown that, if the server computes the inner-product of e with some
corrupted database db′ ̸= db, corruptions would propagate in a “random linear combination” fashion, leading
to the client decoding some v ̸∈ {0, 1} and aborting regardless of the query index. Through a “standard
square-root rebalancing trick” (i.e., execute

√
n-many PIR protocols on

√
n-sized databases on the same client

query), [CNCWF23] obtain a semi-malicious single-server PIR scheme with O(n) computation, O(
√
n)

communication.
In addition to their 2-server mPIR scheme, [WZLY23] give a semi-malicious single-server PIR protocol

with amortized O(
√
n) computation, by delegating the role of one of the servers to the client. Unfortunately,

in their scheme, the client must re-process the entire database (in a streaming fashion) every O(
√
n) queries.

[DT24] study the “fully-malicious” setting where cm may be adversarially generated (potentially
independently of db). Since in this setting it is impossible define the “true” databases, [DT24] relax security
to only require the server’s responses are consistent with some database. However, cm is still required to
ensure consistent views between clients. In addition to these definitions, [DT24] show that by supplementing
each query with λ “random” (rather than 1-hot) queries, the DDH-scheme of [CNCWF23] can be made
fully-malicious. Continuing in the fully malicious setting, [CL24] build upon the LWE-based scheme of
[CNCWF23], and show that (in the random oracle model) the server can provide an (extractable) proof that
cm is an well-formed commitment. They leverage this to achieve online throughput close to that of the
most practical semi-honest schemes [HHGMV23] (and much better than that of the LWE-based scheme of
[CNCWF23]).
Summary. To summarize, the asymptotic performance [CNCWF23; DT24; CL24]’s schemes seems to
be bound O(n) computation and Θ(

√
n) communication, commitment size, and client computation, by

the square-root rebalancing trick. All of the existing single-server schemes rely on concrete cryptographic
hardness assumptions (like LWE or DDH). This comparison is summarized in Table 1.
Terminology. [CNCWF23] use the term “authenticated PIR” to refer to the setting in which the server is
malicious and the data holder is honest. “fully-malicious authenticated PIR” was used by [DT24] to refer to
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the setting in which both the server and data holder are malicious. [CL24] use the term “verifiable PIR” to
refer to the malicious-commitment setting, while [WZLY23] use it to refer to the honest-commitment settings
and related works [ZWH21; BKP22] use it to give completely different guarantees (see Section 3.1)

Despite these names, there is no authentication happening in these protocols, whereas they are capturing
security in the presence of a malicious server, much the same as malicious security in a generic MPC protocol.
Thus, we propose to call the honest-commitment, malicious-PIR server setting “semi-maliciously secure
PIR” (shortened: smPIR) and the malicious-commitment, malicious-PIR server “maliciously-secure PIR”
(shortened: mPIR).7

3.1 Other related work

In this section we will present a summary and comparison to related works which do not operate in our
precise setting, but have some similarities with our work.
Related maliciousness compilers. Eriguchi et al. [EKN24] consider the setting where there is some client
holding an input, x, and a large number of servers holds a function f (from some restricted class which
includes the PIR function f(i) = dbi). The client wants to minimally interact with the servers to learn f(x)
while keeping x hidden from the servers. In this setting, they show generic compiler which increase the
number of servers or the number of rounds, and sometimes introduce computation assumptions to upgrade
protocols secure against semi-honest servers to malicious server. While this is interesting, we view their work
as mostly tangential to ours, as few servers is the setting of interest in PIR. Ben-David et al. [BKP22] define
(and construct) a notion of verifiable PIR where the server can prove to the client some limited yet expressive
range of database properties. Their construction depends on succinct batch arguments, which means that
it requires specific computational assumptions, and only achieves a poly(λ,N) server time. They can also
prove that the server executed the PIR honestly, and indeed this is the trivial way to construct PIR from mPIR.
Previous connections between PIR and LDCs. The connection between multi-server PIR and smooth LDC
runs deep: given a smooth LDC with query complexity q, one can easily construct a q-server PIR by having
the client request a different symbol from each server [Yek10, Lemma 7.2]. [CHR17] introduce another
connection between LDC and PIR when they tried to use Reed–Muller codes to build doubly-efficient PIR.
However, their construction is only heuristic and has since been shown insecure [BHMW21]. We introduce a
different connection between PIR and LDCs: we use LDCs to get single-server mPIR, rather than multi-server
PIR.
Tangentially related multiserver works. A variety of works attempt to construct multi-server “verifiable”
PIR schemes [ZS14; WZ18; Cao+23; KDKWZ23; KZ23], but do not consider selective failure attacks.
Despite this, some of their schemes have sufficiently many servers such that they can necessarily give
correctness. Zhao et al. [ZWH21] construct a single server “verifiable” PIR scheme, but their construction
does not seem to have clear definitions and security proofs.

7We note Angel et al. [ACLS18] used “mPIR” to describe their “multi-query PIR.” However, “batch PIR” [IKOS04] is the
standard name for this gadget.
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4 Preliminaries

Notation. Throughout this work we use λ to denote the security parameter. We use [n] to denote the set
{1, . . . , n}. For a vector, v = (v1, . . . , vn), we slightly abuse notation and let x ∈ v denote ∃i ∈ [n] such that
vi = x, let v ∪ {y} denote the new vector v′ = (v1, . . . , vn, y), and for a set/vector {s1, . . . , sk} = S ⊂ [n]
we let vS = (vs1 , . . . , vsk). For a random variable S over (a subset of) 2[n] we let vS denote sampling S ← S
then outputting vS For a vector x = (x1, . . . , xn) and a function f we define f(x) = (f(x1), . . . , f(xn)).
For two functions f, g, we denote by δ(f, g) the fraction of inputs on which f and g differ.

All adversaries considered in this paper will be non-uniform. When describing the client’s behavior, we
use the language “output ⊥” and “abort” synonymously.

4.1 Private information retrieval

A private information retrieval (PIR) scheme is a tuple of algorithms (Setup,Preprocess,Query,Respond,
Decode) with the following syntax:
• Setup: on input 1λ, Setup outputs public parameters pp = (cpp, spp) for the PIR server and client,

respectively.
• Preprocessing: on input public parameters pp, and a database db ∈ Σk, Preprocess outputs a public state
pst and a server state sst.8

• Client query: on input public parameters cpp, the public state pst, and a query index i⋆ ∈ [k], Query
outputs a message, query, that will be sent to the server and a private client state, cst.

• Server response: on input the server state sst and a client query query, Respond outputs a response resp.
• Client decoding: on input the client state cst and a server response resp, Decode outputs an answer
ans ∈ db.

We require a PIR scheme to satisfy the following properties:

• Correctness: For every database db ∈ Σk, and query index i⋆ ∈ [k], the following holds:

Pr

ans ̸= dbi⋆

∣∣∣∣∣∣∣∣∣∣∣

(cpp, spp)← Setup(1λ)
(pst, sst)← Preprocess(spp, db)

(query, cst)← Query(pst, cpp, i⋆)
resp← Respond(sst, query)

ans← Decode(cst, resp)

 = negl(λ) .

• Privacy: For every (efficient) adversarial server A = (A0,A1), large enough security parameter λ ∈ N,
database db ∈ Σk, and query location i⋆ ∈ [k], there exists an efficient simulator S such that the following
distributions are (computationally) indistinguishable:x

∣∣∣∣∣∣∣∣∣
(cpp, spp)← Setup(1λ)

(pst, sst)← A0(cpp, spp, db)

(query, cst)← Query(cpp, pst, i⋆)
x← A1(sst, query)

 and

x

∣∣∣∣∣∣∣∣∣
(cpp, spp)← S.Setup(1λ)

(pst, sst)← A0(cpp, spp, db)

(query, stS)← S.Query(cpp, pst)
x← A1(sst, query)


8We note not all PIR schemes exhibit preprocessing, but it has been shown preprocessing can reduce the overhead of PIR [BIM04].

Our scheme requires preprocessing.
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We refer to this variant as “plain” or “semi-honest” PIR.
Several variants of the previous definition have been studied in the literature. We recap some relevant ones
below.
Multi-server PIR. A natural extension would be to consider a setting with multiple servers of which only
some are corrupted. Formally, a (k, t)-PIR scheme is one with k servers S1, . . . , Sk, of which at most t are
corrupt [CGKS98]. Below we outline how to adapt the previous definition to this setting.

In the multi-server setting, Query is changed to output k queries (query1, . . . , queryk), one for each of
server, S1, . . . , Sk. The i-th server runs Respond on queryi and outputs a response respi. The client invokes
Decode on the responses (resp1, . . . , respk) and outputs an answer ans.

The privacy game is changed as follows. Let A ⊂ [k] be the set of corrupted servers such that |A|≤ t. In
both worlds, the client receives honest responses {Respond(queryh)}h∈[k]\A from the honest parties, and
adversarial responses {respa}a∈A ← A(queryA). Privacy is now required to hold for every possible subset
A.
Multi-query privacy. In our security proofs, we will rely on a notion of privacy that considers multiple
queries made via independent PIR instances. The standard definition of (semi-honest) privacy implies this
one via a standard hybrid argument.

Definition 4.1. A PIR scheme is said to achieve multi-query privacy if for every (efficient) adversarial server
A = (A0,A1), large enough security parameter λ ∈ N, every database db ∈ Σk, and all query vectors
q, q′ ∈ [k]q, the following distributions are (computationally) indistinguishable:

x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for each i ∈ [q],
(cppi, sppi)← Setup(1λ)

[(psti, ssti)]i∈[q] ← A0([sppi]i∈[q], db)

for each i ∈ [q],
(queryi, sti)← Query(cppi, psti, qi)

x← A1(sst, [queryi]
q
i=1)


and


x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

for each i ∈ [q],
(cppi, sppi)← Setup(1λ)

[(psti, ssti)]i∈[q] ← A0([sppi]i∈[q], db)

for each i ∈ [q],
(queryi, sti)← Query(cppi, psti, q

′
i)

x← A1(sst, [queryi]
q
i=1)


.

4.1.1 Maliciously-secure PIR

A maliciously-secure private information retrieval (mPIR) scheme is a PIR scheme that satisfies a stronger
notion of privacy and an additional coherence property. We formalize these notions below, highlighting any
difference from standard PIR properties in blue.

• Malicious Privacy: For every (efficient) adversarial server A = (A0,A1,A2), large enough security
parameter λ ∈ N, database db ∈ Σk, and query location i⋆ ∈ [k], there exists an efficient simulator S such
that the following distributions are (computationally) indistinguishable:

x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(cpp, spp)← Setup(1λ)
(pst, sst)← A0(cpp, spp, db)

(query, cst)← Query(cpp, pst, i⋆)
(resp, stA)← A1(sst, query)

ans← Decode(cst, resp)

x← A2(stA, ans
?
= ⊥)


and


x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(cpp, spp)← S.Setup(1λ)
(pst, sst)← A0(cpp, spp, db)

(query, stS)← S.Query(cpp, pst)
(resp, stA)← A1(sst, query)
ans← S.Decode(stS , resp)

x← A2(stA, ans
?
= ⊥)
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• Coherence: For every efficient adversarial server A = (A0,A1), and every query index i⋆ ∈ [k], the
following holds:

Pr


ans′ ̸∈ {ans,⊥}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(spp, cpp)← Setup(1λ)
(pst, sst)← A0(spp)

(query, cst)← Query(cpp, pst, i⋆)
(query′, cst′)← Query(cpp, pst, i⋆)

(resp, resp′)← A1(sst, query, query
′)

ans← Decode(cst, resp)
ans′ ← Decode(cst′, resp′)


= negl(λ)

In this work, we consider an alternate definition of coherence that is more convenient to work. Below we
state this equivalent definition.

Definition 4.2 (Alternate characterization of Coherence). For every efficient adversarial serverA = (A0,A1),
with all but negligible probability over honestly-generated public parameters (spp, cpp)← Setup(1λ), and
public and server states (pst, sst)← A0(spp), there exists a database db such that for every i⋆,

Pr

 ans ̸∈ {dbi⋆ ,⊥}

∣∣∣∣∣∣
(query, cst)← Query(cpp, pst, i⋆)

resp← A1(sst, query)
ans← Decode(cst, resp)

 = negl(λ)

Lemma 4.3. The alternate characterization of coherence (Definition 4.2) is equivalent to the notion of
coherence.

Proof of Lemma 4.3. Suppose there is an adversary A that can violate the coherence property. We define a
new adversary A′ = (A′

0,A′
1), for the security game in Definition 4.2, with A′

0 = A0.
Now, we run two instances of the security game in Definition 4.2, and define A′

1 as follows. In the first
step of the security game of Definition 4.2, since we are running two instances of the game, we obtain

(query, cst)← Query(cst, pst, i⋆)

(query′, cst)← Query(cst′, pst, i⋆)

Now, A′
1 passes these responses to A1 to obtain (resp, resp′) ← A1(sst, query, query

′). Then in the first
instance of the game, A′

1 responds with resp and in the second instance of the game A′
1 responds with resp′.

If we let

ans← Decode(cst, resp)

ans′ ← Decode(cst′, resp′)

By assumption on A, with non-negligible probability ans and ans′ are distinct, and not equal to ⊥. When this
happens A′

1 violates the security of Definition 4.2. Thus we have that Definition 4.2 implies coherence.
For the opposite direction, suppose there is an adversary A that can violate the security property in

Definition 4.2. We define an adversary, A′, for the coherence game as follows. We let A′
0 = A0. When A′

1

receives sst, query, query′ in the coherence game, A′
1 runs two copies of A1

resp← A1(sst, query)
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resp′ ← A1(sst, query
′)

then A′
1 returns resp, resp′. By assumption on A, with non-negligible probability ans and ans′ are distinct

(not both equal to dbi⋆), and not equal to ⊥. Thus we have that coherence implies Definition 4.2.

Remark 4.4 (semi-malicious PIR). The coherence requirement in malicious PIR is rather strong: it requires
coherence to hold even when the preprocessed public state pst was generated maliciously. Prior work
[CNCWF23; WZLY23] considered a notion called integrity that requires that pst is generated honestly
via the Preprocess algorithm. In this case, there is some true database, db, so we can require that dbi⋆ in
Definition 4.2 is from this true database. In this work, we focus on the stronger notion fully-malicious PIR,
which does not assume that pst is honestly generated. Thus Definition 4.2 does not dbi⋆ comes from the “true”
database, since a malicious adversary could produce pst that is not consistent with any underlying database.

Doubly-efficient mPIR. A doubly-efficient maliciously-secure PIR scheme [CHR17] is one wherePreprocess
runs in time O(k · polylog(k, λ)), Query,Respond, and Decode run in time O(polylog(k, λ)), and dig,
query, and resp are of size O(polylog(k, λ)), where k = |db|.

4.2 Vector commitments

A vector commitment scheme is a tuple of algorithms (Setup,Commit,Prove,Verify) with the following
syntax:
• Setup: on input 1λ, Setup outputs a committer key, ck, and a verifier key, vk.
• Commit: on input the committer key, ck, and a vector v ∈ Σn, Commit outputs a commitment, cm, and

decommitment material d.
• Prove: on input the committer key, ck, decommitment material, d, and an index to open, i⋆ ∈ [n], Prove

outputs an opening proof, π.
• Verify: on input the verifier key, vk, a commitment, cm, an index, i ∈ [n], claimed opening, vi, and opening

proof πi, Verify outputs a bit indicating whether the i-th element of the vector v committed in cm equals vi.
A vector commitment scheme satisfies the following properties:

• Correctness: For every vector v ∈ Σn and index i ∈ [n], the following holds:

Pr

 Verify(vk, cm, i, vi, πi) = 1

∣∣∣∣∣∣
(ck, vk)← Setup(1λ)

(cm, d)← Commit(ck, v)
πi ← Prove(ck, d, i)

 = 1− negl(λ) .

• Binding: For every efficient adversary A, the following holds:

Pr


Verify(vk, cm, i, vi, πi) = 1

∧
Verify(vk, cm, i, v′i, π

′
i) = 1

∧
vi ̸= v′i

∣∣∣∣∣∣∣∣∣∣
(ck, vk)← Setup(1λ)

(cm, i, vi, v
′
i, πi, π

′
i)← A(ck)

 = negl(λ) .

Theorem 4.5 (CRH from non-trivial computational PIR [IKO05]). Suppose there exists a (semi-honest)
single-server PIR protocol with query complexity q(n) and computational complexity c(n), Then there exists a
Collision-Resistant Hash function which takes n-bit strings to ω(λ · q(n))-bit digests, and requires ω(λ · c(n))
computation.
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Combining this with the Merkle Tree construction, we have

Theorem 4.6 (Merkle Trees [Mer89]). Assume the existence of a secure single-server PIR protocol, then
there exists a vector commitment scheme.

4.3 Algorithms with oracle access

Standard descriptions of local computation algorithms are often given in terms of algorithms which have query
access to an oracle. The local decoding problems we consider in this paper involve the decoder interacting
with a special kind of oracle that is allowed to respond with ⊥, effectively erasing the response to the query.
Below we specify this behavior formally.

Definition 4.7. A q-query oracle OF for a fixed F ∈ Σn is defined by a computationally non-signaling
strategy {Pq}q∈[n]q with range {̸⊥,⊥}, and operates as follows when given as input q = (q1, . . . , qq):
1. Sample b← Pq.
2. For each i ∈ [q], if bi = ⊥, set ri := ⊥; else set ri := Fqi .
3. Output r = (r1, . . . , rq).

We say that the oracle is honest, and denote it byHF , if the strategy used by the oracle never returns ⊥.
We assume that every algorithm AOF (x) interacting with an oracleOF can be split into two parts, a query

algorithm that takes as input x and outputs a query vector q and state stq, and a reconstruction algorithm that
takes as input stq and the oracle response OF (q) and outputs some result. The query complexity, q, of an
algorithm AOF (x) is the size of the query vector q.

4.4 Background on coding theory

Definition 4.8. An error-correcting code of length n over an alphabet Σ is a subset C ⊆ Σn. A code C is
said to be linear if Σ is a field F, and C is a linear subspace of Σn.

The rate of a code C is R = log|C|
n , and its relative distance is δ = (minc1 ̸=c2 ∆(c1, c2))/n. We denote the

encoding algorithm of a code C by E.
In our construction, we make use of locally-decodable codes (LDCs), which allow the decoder to recover

a single symbol of the message by reading only a small number of symbols from the (corrupted) codeword.

Definition 4.9. A code C ⊆ Σn is called a (q, δ, ϵ)-locally-decodable code if for all x ∈ Σk, all i⋆ ∈ [k],
and all Y ∈ Σn such that ∆(Y,E(x)) < δ, there exists an efficient decoder (Dq, Dd) such that

Pr

[
Dd(stq, q, r) ̸= xi⋆

∣∣∣∣∣ (stq, q)← Dq(i
⋆)

r := Yq

]
≤ ϵ .

The query complexity q is the size of the query vector q .

Definition 4.10 (Smooth LDC [KT00]). An LDC C is said to be c-smooth if for all i⋆ ∈ [k] and j ∈ [n],

Pr
[
j ∈ q

∣∣ q ← Dq(i
⋆)
]
≤ c

n
.

If the smoothness parameter c equals the query complexity q, we just say that the LDC is smooth.

Theorem 4.11 ([KT00, Theorem 1]). Every (q, δ, ϵ)-locally-decodable code is q/δ-smooth.
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Locally-decodable codes can successfully decode even if an adversary is allowed to corrupt a δ-fraction of
the underlying codeword. In our setting, we need a slightly stronger object, which guarantees correct decoding
even when an adversary can adaptively corrupt a δ-fraction of each response. This motivates Definition 4.12,
which allows the local decoding algorithm to tolerate adaptive corruptions. At a high level, a code C is a
subcode LDC if there exists another code Csub ∈ Σq such that the local reconstruction algorithm Dd for C is
simply the decoder for Csub. We formalize this notion next.
Definition 4.12 (subcode LDCs). Let C ⊆ Σn be a (q, δ, ϵ)-LDC with message length k. Then C is a
γ-subcode LDC if there exists a code Csub ⊆ Σq with minimum distance γ, such that for all i⋆ ∈ [n], for all
F ∈ C, if q ← Dq(i

⋆), then Fq ∈ Csub.
The canonical example of a subcode LDC is the Reed–Muller code: it is smooth, and the subcode is the

Reed–Solomon code. (Other examples include multiplicity codes [KSY14] and lifted codes [Guo16])
Definition 4.13. The Reed–Muller code RM[Fp, d,m] over a prime field Fp is the set of evaluations of
m-variate polynomials of total degree at most d over Fm

p :

RM[Fp, d,m] =
{
[f(x)]x∈Fm

p

∣∣∣ f ∈ F≤d
p [X1, . . . , Xm]

}
.

4.4.1 Proximity testing

Let O be an oracle representing a function from D → R. Then a proximity tester with respect to a certain
set of functions F is an algorithm that makes few queries to O and determines whether O is close to F .
Formally:
Definition 4.14. A (δ, ϵ)-proximity tester for a set of functionsF is a pair of algorithmsPT = (PT.Q,PT.D)
satisfying the following syntax and properties.
Syntax. The randomized query algorithm PT.Q samples a query set q ⊂ D such that |q|= t. Let O be the
oracle being tested, and O(q) the responses of O to the queries in q. The decision algorithm PT.D takes as
input the queries q and the oracle responses O(q), and then accepts or rejects.
• Completeness: if O ∈ F then

Pr
[
PT.D(q,O(q)) = 1

∣∣∣ q ← PT.Q(1λ)
]
= 1.

• Soundness: if O is at least δ-far from F , i.e., for all f ∈ F , O(x) ̸= f(x) for at least a δ-fraction of the
domain D, then

Pr
[
PT.D(q,O(q)) = 0

∣∣∣ q ← PT.Q(1λ)
]
> ϵ.

We say that the query complexity of PT is q(PT).
Theorem 4.15 (proximity test for RM codes [JPRZ09]). For some prime p let F be the set of polynomials of
total degree d from Fm

p to Fp (i.e. Reed–Muller codewords). Then, there exists a proximity tester PT for F
with query complexity

O

(
p

⌈
2 d+1
p−1

⌉)
.

It is straightforward to see that we can sequentially repeat the test above O(λ) times to obtain a tester that
rejects any O of distance greater than µ = Ω(1) with probability 1− negl(λ), for any µ > 0.
Corollary 4.16. For all δ = Ω(1) there exists (δ, negl(λ))-low-degree tester with query complexity

O

(
λ · p

⌈
2 d+1
p−1

⌉)
.
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5 Constructing mPIR from subcode LDCs

We now describe a methodology for compiling PIR to mPIR using LDCs.
Construction overview. At a high level, our compiler follows the outline described in Section 2, but replaces
the Reed–Muller code with an arbitrary “smooth subcode LDC” C (Definitions 4.10 and 4.12). We briefly
recall the outline here.

In a preprocessing phase, the server encodes the database with C and publishes a vector commitment to
the encoding. Then, in the online phase, given query index i⋆, the client first invokes a special “consistent”
local decoder for C (described below) to generate a query set, and makes a batch of parallel PIR queries for
each query in the set. In addition to the queries, the client checks that the server committed to a string close to
an LDC codeword by performing a proximity test. After receiving the server’s responses to these queries, the
client first checks if the proximity test accepts, and if it fails, the client aborts. If the proximity test accepts,
the client decodes the server’s responses according to the consistent decoding procedure.

We now expand on this outline by describing the transformation in detail in Fig. 1.
We devote the rest of this section to proving the following theorem.

Theorem 5.1. Given the following ingredients:
• Single-server PIR scheme PIR.
• Vector commitment VC.
• Smooth subcode LDC C ⊆ Σn with encoder E and query complexity q.
• Proximity test PT for C with distance δPT < min{dist(C),dist(Csub)}/3 and error negl(λ).
Then the construction in Fig. 1 is a maliciously-secure PIR (mPIR) scheme, with query complexity λ · q ·
c
(
k
R

)
+ pPT(n), where R is the rate of C, c(n) is the query complexity of the underlying (semi-honest) PIR

protocol, PIR, and pPT(n) is the communication complexity of the proximity test.

Remark 5.2 (Efficiency). The mPIR protocol guaranteed by Theorem 5.1 makes O(λ · q) semi-honest PIR
queries. Although this overhead is rather large, in the following section (Section 6) we will show how to
reduce this overhead with a novel “lossy” batching technique.

To prove Theorem 5.1 we must show that the mPIR scheme satisfies correctness, privacy, and coherence.
Because correctness follows in a straightforward manner from the correctness of the ingredients, we focus on
proving privacy (Lemma 5.3) and coherence (Lemma 5.5).

Lemma 5.3 (Privacy). The mPIR protocol outlined in Fig. 1 satisfies privacy.

Proof. To show this, we describe a simple simulator S.
The simulator simply chooses a random index i⋆S ∈ [k] and runs the honest protocol with respect to

this index i⋆S . So S.Setup = Setup, S.Query(cpp, pst) = Query(cpp, pst, i⋆S) and S.Decode(stS , resp) =
Decode(stS , resp).

We are now left to show that the distribution of responses created by interacting with this simulator is
computationally indistinguishable from the distribution of responses created by the adversary’s interaction
with the real protocol (for an unknown index i⋆). Note that (in the unlikely event) that the simulator’s guess
i⋆S = i⋆, the simulation would be perfect. So in effect, we will show that the simulation will be good even
when i⋆S ̸= i⋆.

First, consider a modified simulator, S ′, that maintains the same setup (S ′.Setup = S.Setup = Setup),
and query procedure (S ′.Query = S.Query) but changes the decoding procedure to ignore failures outside of
the λ test queries. More specifically, S ′.Decode will ignore failures in Step 4 of Dd, and only look at the λ
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• Let PIR be a single-server PIR scheme.
• Let VC be a vector commitment scheme.
• Let (D′

q, D
′
d) be the decoder for a smooth subcode LDC C ⊆ Σn with encoder E and query complexity q′.

• Let PT = (PT.Q,PT.D) be a proximity test for C with distance δPT < min{dist(C),dist(Csub)}/3 and error
negl(λ).

Below we construct a “consistent” decoder (Dq, Dd) for C with query complexity q := q′ · λ. Using this decoder,
we construct our mPIR protocol as follows.

• mPIR.Setup(1λ):
1. Compute vector commitment keys: (ck, vk)← VC.Setup(1λ).
2. For each i ∈ [q], compute PIR client and server public parameters: (cppi, sppi)← PIR.Setup(1λ)
3. Output mPIR client and server public parameters: cpp := (vk, [cppi]i∈[q]) and spp := (ck, [sppi]i∈[q]).

• mPIR.Preprocess(spp, db = (db1, . . . , dbk) ∈ Σk):
1. Parse spp = (ck, [sppi]i∈[q]).
2. Encode the database using C: E := E(db).
3. Compute commitment to E: (cm, d)← VC.Commit(spp, E).
4. For each i ∈ [n], compute opening proof for Ei: πi ← VC.Prove(spp, i, cm, d, Ei)
5. Construct E′ such that for each i ∈ [n], E′

i = Ei || πi

6. For each i ∈ [q], compute preprocessing material for PIR: (psti, ssti)← PIR.Preprocess(sppi, E
′).

7. Output pst = (cm, [psti]i∈[q]) and sst = (E′, [ssti]i∈[q]).

• mPIR.Query(cpp, pst, i⋆):
1. Parse cpp = (vk, [cppi]i∈[q]) and pst = (cm, [psti]i∈[q]).
2. Compute the consistent decoding query vector: (stq, q)← Dq(i

⋆). (see bottom of figure for definition.)
3. For each i ∈ [q], compute a PIR query for qi: (queryi, csti)← PIR.Query(cppi, psti, qi).
4. Invoke the proximity test to obtain proximity test query locations: h ⊂ [n]← PT.Query(1λ).
5. Output query := ([queryi]i∈[q] , h) and cst := (vk, cm, q, h, stq, [csti]i∈[q]).

• mPIR.Respond(sst, query):
1. Parse sst = (E′, [ssti]i∈[q]), and query = ([queryi]i∈[q] , h).
2. For each i ∈ [q], compute PIR response: respi ← PIR.Respond(ssti, queryi).
3. Output mPIR response resp := ([respi]i∈[q] , E

′
h).

• mPIR.Decode(cst, resp):
1. Parse cst = (vk, cm, q, h, stq, {cst,i}i∈[q]) and resp = ([respi]i∈[q] , E

′
h).

2. Check that proximity test responses are correct: for each i ∈ [|h|], VC.Verify(vk, cm, hi, vi, πi) = 1.
3. Check that the proximity test passes: PT.D(H, {vi}i∈H) = 1.
4. For each i ∈ [q]:

(a) Compute PIR response: (vi || πi)← PIR.Decode(csti, respi).
(b) If VC.Verify(vk, cm, qi, vi, πi) = 1, set ri := vi; else set ri := ⊥.

5. If any of the foregoing checks fail, output ⊥.
6. Output ans← Dd(stq, (r1, . . . , rq)). (see bottom of figure for definition.)

Query procedure Dq(i
⋆):

1. For each j ∈ [λ],
sample queries for C: (sj , stj)← D′

q(i
⋆).

2. Set query vector q := ∪j∈[λ]sj .
3. Output q and state stq := (st1, . . . , stλ).

Decoding procedure Dd(stq, z):
1. Parse stq = (st1, . . . , stλ) and z = (z1, . . . , zλ).
2. For each j ∈ [λ], sample a random tj ← zj .
3. If any tj = ⊥, output ⊥.
4. Else, output majorityj∈[λ](D

′
d(zj , stj)).

Figure 1: mPIR from a subcode LDC and black box PIR.
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responses corresponding to the queries tj (defined in Step 2 of Dd), and abort if any of these responses fail
their vector commitment proof. Note that S ′ will still abort as usual if any of the responses fail their proximity
test, but S ′ will not output ⊥ if the majority of D′

d fail (Step 4)
Now, we show that the distributions induced by S and S ′ are statistically indistinguishable.

Remark 5.4. The claim that S and S ′ produce statistically indistinguishable transcripts is an information
theoretic-claim that will rely on (1) The smoothness of the LDC, and (2) the subcode error-correction ability
of the LDC. This also resolves the issue of “non-signaling” adversaries that appears in [DLNNR04; KRR14].
We will show that even an adversary who gets to see all the queries in the clear cannot distinguish the
distributions induced by S and S ′, so this step of the proof does not rely on the privacy of the PIR protocol at
all. PIR privacy will show up in the next step (showing that the output of S ′ is indistinguishable from that of
a second simulator S ′′).

Note that distributions received by A0 and A1 are the same when interacting with S and S ′, so the
only difference is when A2 receives ans = ⊥. By the definition of S and S ′, if S ′.Decode outputs ⊥,
then S.Decode will output ⊥ as well. On the other hand, there are cases where S.Decode outputs ⊥, but
S ′.Decode does not, and so we must show that these happen with only negligible probability. To see this,
note that this will only occur when the majority of the λ LDC queries fail to decode. By assumption, the
code C is a γ-subcode LDC, so the adversary can only cause this type of decoding failure if it corrupts at
least γ · q of the responses for at least λ

2 of the LDC queries. So, suppose the adversary corrupts at least this
many responses. Since S ′ will sample one response uniformly at random to check, the probability that the
adversary can corrupt this many responses but S ′ does not abort, is at most

(1− γ)
λ
2 = negl(λ) (1)

Note that this even holds for an information-theoretic adversary, because the decoder’s “test” queries are not
even defined until after the adversary has made its corruptions. This shows that the distributions induced on
the adversary’s output x are statistically close when the adversary is interacting with S or S ′.

Next, we further modify the simulator into a new simulator S ′′ that maintains the same setup and
decoding procedures as S ′ (i.e., S ′′.Setup = S ′.Setup = S.Setup = Setup and S ′′.Decode = S ′.Decode),
but changes the query procedure as follows.
• S ′′ will generate λ queries for i⋆S using the subcode LDC decoder D′

q.
• For each LDC query set query′i, S ′′ will choose a random element ti ∈ query′i ⊂ [n]. LetDi := query′i\{ti}.
• S ′′ will generate PIR queries for each index {ti}λi=1.
• Instead of making PIR queries for the remaining locations in

⋃
iDi, S ′′ will make PIR queries for λ · (q−1)

random locations.
• S ′′ will define query′ to be the (shuffled) set of λ · q queries

Now, we need to show that the distribution of the adversary’s response is (computationally) indistinguishable
when interacting with S ′ or S ′′. To do this, we will rely on multi-query privacy (Definition 4.1) of the
underlying semi-honest PIR, as well as the fact that each PIR query is generated with respect to an independently
sampled setup.

Suppose the mPIR adversary’s response, x, is distinguishable when interacting with S ′ compared to S ′′.
Then we could ask the (semi-honest) multi-query PIR privacy challenger to provide λ · (q− 1) PIR queries
that are either from the distribution induced by S ′ (i.e., consistent with the query pattern of λ LDC queries) or
uniformly distributed within [n]. In the first case, the distribution will be consistent with S ′, and the second
case, the distribution will be consistent with S ′′. Now, we have to be careful here, because the adversary’s
response, x, depends not just on S ′′.Query, but also on S ′′.Decode, and if we obtain PIR queries from the
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multi-query PIR challenger, we can no longer decode the responses to those queries, which might change
the behavior of the decoder (and hence also the behavior of A2). This is not a problem, however, because
S ′′.Decode (which is the same as S ′.Decode) ignores the responses for all but the λ test queries, and so its
response will be the same whether or not it has the decoding keys for the remaining queries.

At this point, we have shown that the adversary’s output is (computationally) indistinguishable whether it
is interacting with S or S ′′. The final step here is to notice that since the LDC is smooth, when S ′′ chooses
exactly one “test” point from each query query′i, the collection of these test points is uniform, and independent
of the query index, i⋆S chosen by the simulator. So the distribution of the adversary’s output, when interacting
with S ′′, is the same no matter what i⋆S was chosen.

Finally, we observe that when the simulator’s guess is correct (i⋆S = i⋆), then the simulator perfectly
mimics the real execution of the protocol. Since have shown that the adversary’s output is (computationally)
independent of the simulator’s guess i⋆S , we conclude that the adversary’s output is computationally
indistinguishable from the from the output of the real execution of the protocol for every guess i⋆S .

Lemma 5.5 (Coherence). The mPIR protocol outlined in Fig. 1 satisfies coherence.

Proof. By Lemma 4.3, it is sufficient to prove that the protocol satisfies Definition 4.2.
Note that mPIR.Setup outputs the vector commitment keys (ck, vk)← VC.Setup(1λ). Since the vector

commitment (cm, d) ← VC.Commit(spp, E) is created during preprocessing, so cm is part of the public
state pst that is created by A0(spp) in Definition 4.2.

Intuitively, this commitment, cm, together with the proofs of proximity should bind the adversary to some
database db, and we show this formally below.

First, note that the coherence property does not impose any restrictions on when the mPIR decoder outputs
⊥, so it is sufficient to only consider the case when the mPIR decoder does not output ⊥. Thus, we can
consider the case when all the λ · q proximity tests pass.

This means that (with all-but-negligible probability), we may assume that the commitment cm in pst
commits to a vector F ∈ Σn that is at most δPT-far from C. Together with the binding property of the vector
commitment scheme, we may assume that (with all-but-negligible probability) every adversarial response that
is accepted by the decoder is consistent with this vector F .

Now, we can define db to be the unique message such that ∆(F,E(db)) < δPT. To prove coherence, we
will show that on query i⋆, if the mPIR decoder does not output ⊥, then (with all-but-negligible probability)
the mPIR decoder must output dbi⋆ .

By assumption δPT < dist(C), so if the adversary answered all queries with respect to F , the mPIR
decoder would recover dbi⋆ with probability at least (1 − ϵ) for each of the λ queries. A Chernoff bound
would then show that the probability that a majority of the λ queries decoded to dbi⋆ would be negligible in λ.
We have to be slightly more careful, however, since the adversary can also selectively erase any number of
responses—a power that is beyond a traditional LDC adversary.

So, we first derive a bound on the number of erasures the adversary can introduce before the decoder
outputs ⊥. Suppose the adversary modifies an η-fraction of the q responses for a given LDC query (i.e.,
makes modifications so that the decommitments fail). Then, since the decoder has chosen one uniformly
random “test” point, and will reject if this decommitment fails, the decoder will output ⊥ with probability at
least η.

So if the adversary corrupts an η-fraction of at least λ/10 of the λ LDC queries, the decoder will abort
with probability at least 1− (1− η)λ/10, which is negligibly close to 1. Thus we may assume that (if the
decoder doesn’t abort), then 9/10ths of the λ LDC queries have at most η · q corruptions (relative to F ). We
will call these “good” queries.
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Since F was committed to during pre-processing (when the adversary published cm as part of pst), and
since the LDC is assumed to be smooth, the chance that any given index queried by the decoder hits an index
i, where Fi ̸= E(db)i, is δPT (since dist(F,E(db)) < δPT).

Consider one of the “good” LDC queries (i.e., the collection of q responses), where the adversary
introduces at most η · q erasures. Then the total number of corruptions in this query (relative to the “true”
codeword E(db)) is η · q+X , where X is the number of points where Fi ̸= E(db)i hit by the LDC query.
Since the LDC is smooth, the probability that any corrupted point is hit is δPT, and these are negatively
dependent, so we can apply a Chernoff Bound [DP09, Theorem 4.3]. A basic Chernoff bound [DP09, Theorem
1.1] shows that

Pr [η · q+X > dist(Csub) · q] < e−2(dist(Csub)−η−δPT)
2·q (2)

So the probability that a given “good” query fails to decode dbi⋆ is given by Eq. (2). For concreteness, if we
choose η < dist(Csub)/3, then dist(Csub)− η − δPT > dist(Csub)/3 > 0, and the right-hand side of Eq. (2)
will go to zero exponentially quickly in q. By assumption q > λ, so the right-hand side of Eq. (2) will go to
zero exponentially quickly in λ.

The mPIR decoder will succeed when a majority of the λ queries decode dbi⋆ , since (with all-but-negligible
probability) at least 9/10 · λ of the LDC queries are “good,” the LDC decoder will only fail if 4/9 of the
“good” queries fail to decode (note 4/9 of the “good” queries plus 1/10 of the total queries is 1/2 of the total
queries). Applying another Chernoff bound, we have

Pr [ 4/9 of the “good” queries fail ] < Pr [Y > E[Y ] + t] < exp

(
− 2t2

9
10λ

)
(3)

In this case E[Y ] < e−2(dist(Csub)−η−δPT)
2·q · 9

10λ, so t =
(

4
10 − e−2(dist(Csub)−η−δPT)

2·q
)
· 9
10λ Thus

Pr [ 4/9 of the “good” queries fail ] < exp

(
−2
(

4

10
− e−2(dist(Csub)−η−δPT)

2·q
)2

· 9
10

λ

)
(4)

which is negligible in λ.

Remark 5.6 (Multi-server mPIR). For brevity, this section is written in the language of compiling a
single-server PIR scheme to a single-server mPIR. Our compiler also works to compile a multi-server PIR
to multi-server mPIR. In this case, we can remove the proximity test, and instead have each server execute
Preprocess with every query and send the resulting commitment cm. The client will abort if it receives
different commitments from the servers. Since at least one commitment is honest, this ensures that if the
client doesn’t abort, it is holding an honestly generated commitment.
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6 Boosting the mPIR with lossy batching

In the previous section, we constructed a PIR to mPIR compiler with Θ(q) server computation overhead, where
q is the query complexity of the “consistent” decoding procedure of Fig. 1. The most efficient instantiation of
this procedure has q = O(nϵ), and thus our compiler has O(nϵ) overhead, yielding an mPIR with superlinear
O(n1+ϵ) computation. In this section we show how to lower the computational cost to O(n) using a “lossy
batching” trick.

The key idea, similar to batch codes [IKOS04], is to distribute the database into m buckets, and then
replace q queries into the codeword of length n by m queries into these (small) buckets. The problem with
using batch codes directly, is that in our proof of security (Lemma 5.3), we crucially use the fact that the test
queries are distributed uniformly and independently of the query i⋆. With a batch code, the entire set of λ · q
queries are mapped to m buckets, and even if the λ test queries are distributed uniformly in [n] (independent
of the other indices being queried), in a batch code, the locations of the test queries in each bucket may
become dependent on the other indices being queried.

To overcome this, we outline a simple, “lossy” batching procedure that preserves the independence of the
test queries. We give our main construction in Figs. 2 and 3, and prove that it is an mPIR with the required
efficiency guarantees result in Theorem 2.

Theorem 2 (PIR⇒ mPIR). Given
– A smooth “subcode LDC” (see Definition 4.12) with rate R := k

n and query complexity q(k) and
(O(1),negl(λ)) proximity test with query complexity pPT(n).

– A PIR scheme with communication complexity c(n) and server computation s(n).
– A vector commitment scheme with size s(n) and proof size pVC(n).
Then, there exists a maliciously-secure PIR (mPIR) scheme with
• digest size is s(n) = s

(
k
R

)
;

• communication cost is c
(
k
R

)
· q(k) + pPT(n), i.e. the communication cost to respond to q(k) PIR queries

into a codeword of size k
R , with alphabet size |Σ|+pVC(n) (since each entry of size |Σ| is augmented with a

proof of size pVC(n).
• server preprocessing time is the sum of the times to encode the database, to commit to the resulting codeword

of size n, to produce proofs for each of the n elements of the codeword;
• server online computation is the time to respond to q(k) PIR queries on a database of size n;
• client online computation is the time to verify q(k) opening proofs and decode the response.

Instantiating the claim above, we have that

Corollary 6.1. Assuming there exists a PIR with O(nϵ) communication and O(n) computation, there exists
an mPIR with the same complexity.

The “PIR recursion” technique [KO97] provides a construction of (semi-honest) PIR from any additively
homomorphic encryption scheme. Applying Corollary 6.1 to one of these constructions, we obtain the
following result.

Corollary 6.2. There exists an O(nϵ) communication, O(n) computation mPIR from LWE and the Decisional
Composite Residuosity (DCR).

Construction overview. Our “batched” mPIR compiler is outlined in detail in Fig. 1 (with modifications
highlighted in blue). The batched mPIR compiler works as follows. In preprocessing, after computing the
encoded database E′ = E′

1, . . . , E
′
n, the server maps each codeword symbol to a (pseudo)random bucket as

22



We describe an improvement to the mPIR protocol of Fig. 1, lowering the server’s computational complexity by
O(q(C)). Changes are in blue.
• Let PIR be a single-server keyword PIR scheme.
• Let VC be a vector commitment scheme.
• Let (D′

q, D
′
d) be the decoder for a smooth subcode LDC C ⊆ Σn with encoder E and query complexity q.

• Let PT = (PT.Q,PT.D) be a proximity test for C with distance δPT < min{dist(C),dist(Csub)}/3 and error
negl(λ).

• Let {PRFs} be a pseudorandom function (mapping from [n] to [m]) family indexed by seed s ∈ {0, 1}λ.
This construction relies on the modified “consistent” decoder (Db

q, D
b
d) described in Fig. 3.

• mPIR.Setup(1λ):
1. Sample PRF seed s← PRF.Keygen(1λ)
2. Compute vector commitment keys: (ck, vk)← VC.Setup(1λ).
3. For each i ∈ [q], compute PIR client and server public parameters: (cppi, sppi)← PIR.Setup(1λ)
4. Output mPIR client and server public parameters: cpp := (vk, [cppi]i∈[m]) and spp := (ck, [sppi]i∈[m]).

• mPIR.Preprocess(spp, db = (db1, . . . , dbk) ∈ Σk):
1. Parse spp = (ck, [sppi]i∈[q]).
2. Encode the database using C: E := E(db).
3. Compute commitment to E: (cm, d)← VC.Commit(spp, E).
4. For each i ∈ [n], compute opening proof for Ei: πi ← VC.Prove(spp, i, cm, d, Ei)
5. Construct E′ such that for each i ∈ [n], E′

i = Ei || πi

6. For each j ∈ [m], construct the j-th bucket: Bj := {E′′
i | PRFs(i) = j}

7. For each j ∈ [m], compute preprocessing material for PIR on the j-th bucket: (pstj , sstj) ←
PIR.Preprocess(sppj , Bj).

8. Output pst = (cm, [psti]i∈[m]) and sst = (E′, [ssti]i∈[m]).

• mPIR.Query(cpp, pst, i⋆):
1. Parse cpp = (vk, [cppi]i∈[m]) and pst = (cm, [psti]i∈[m]).
2. Compute the consistent bucketed query vector: (stq, q)← Db

q(i
⋆) where q∈ [n]m. (see Fig. 3 for definition.)

3. For each i ∈ [m], compute a PIR query for qi: (queryi, csti)← PIR.Query(cppi, psti, qi).
4. Invoke the proximity test to obtain proximity test query locations: h ⊂ [n]← PT.Query(1λ).
5. Output query := ([queryi]i∈[m] , h) and cst := (vk, cm, q, h, stq, [csti]i∈[m]).

• mPIR.Respond(sst, query):
1. Parse sst = (E′, [ssti]i∈[m]), and query = ([queryi]i∈[m] , h).
2. For each i ∈ [m], compute PIR response: respi ← PIR.Respond(ssti, queryi). Note: ssti is an encoding of

bucket Bi, not the entire database.
3. Output mPIR response resp := ([respi]i∈[m] , E

′
h).

• mPIR.Decode(cst, resp):
1. Parse cst = (vk, cm, q, h, stq, {cst,i}i∈[q]) and resp = ([respi]i∈[q] , E

′
h).

2. Check that proximity test responses are correct: for each i ∈ [|h|], VC.Verify(vk, cm, hi, vi, πi) = 1.
3. Check that the proximity test passes: PT.D(H, {vi}i∈H) = 1.
4. For each i ∈ [m]:

(a) Compute PIR response: (vi || πi)← PIR.Decode(csti, respi).
(b) If VC.Verify(vk, cm, qi, vi, πi) = 1, set ri := vi; else set ri := ⊥.

5. If any of the foregoing checks fail, output ⊥.
6. Output ans← Db

d(stq, (r1, . . . , rm)).

Figure 2: An O(q) improvement to the computational complexity of the mPIR compiler from Fig. 1 using lossy
batching of the queries to the smooth subcode LDC.
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Query procedure Db
q(i

⋆):
1. For each j ∈ [λ], sample queries for C: (sj , stj)← D′

q(i
⋆).

2. For each j ∈ [λ], pick a test element: tj ← sj .
3. Set query vector q := ∪j∈[λ]sj .
4. Initialize an array, Bucket = (⊥)m.
5. For each j ∈ [λ], try to “placing” the test element into its bucket

at a random order: if BucketFs(tj) = ⊥, set BucketFs(tj) := tj .
6. Try bucketing each of the remaining elements, in a random order:

let π ← Sλ·q(D′
q)

. For i ∈ [λ · q(D′
q)], if BucketFs(qπi

) = ⊥,
set BucketFs(qπi

) := qπi
.

7. Output q and state
stq := ((st1, s1, t1) . . . , (stλ, sλ, tλ),Bucket)

Decoding procedure Db
d(stq, r

′):
1. Parse the state stq as

((st1, s1, t1) . . . , (stλ, sλ, tλ)),Bucket.
2. Initialize (zi)j = ⊥∗ for i ∈ [λ], j ∈

[q]. For ℓ ∈ [m], if (si)j
?
=Bucketℓ,

(zi)j := r′ℓ.
3. Concatenate z := z1, . . . zλ and output

Dd(stq, z) (where Dd is the decoding
procedure in Fig. 1, with t1, . . . , tλ
obtained from stq used as test queries).

Figure 3: Bucket algorithm for LDC consistent Query .

follows. Let F : [n]→ [m] be the PRF sampled in part of Setup. Then for all i ∈ [m], the server lets bucket
Bi :=

{
E′

j

∣∣∣ F (j) = i
}

. At this point, the buckets may be of different sizes, but
∑

i∈[m]|Bi|= n. The mPIR
server treats each bucket, Bi as a separate “database,” and executes PIR.Preprocess with respect to Bi as the
“database,” where PIR is a semi-honest keyword PIR.9

Given a query index i⋆, the client invokes a modified query algorithm Db
q(i

⋆) (described in Fig. 3) and
obtains a single query qi for each bucket i ∈ [m]. For all i ∈ [m], the client PIR queries the i-th bucket
with qi.The client decodes the server’s responses and passes it to (slightly) tweaked decoding algorithm Db

d,
outputting its output.
Proof overview. The key feature of our bucketing procedure is that the distribution of test points in buckets
is independent of the rest of the query points. We achieve this by placing the test points (randomly) into
buckets first, then placing the remaining elements (Fig. 3). This process ensures that the locations of the test
points are uniformly distributed in the buckets, and do not depend on the other query locations (Claim 6.6),
but it does introduce extra errors, when a later query is “dropped” because it has been assigned to a bucket that
already has a query assigned to it. In Lemma 6.4, we show that the batched scheme still satisfies correctness,
i.e., the number of queries dropped in this way does not prevent decoding (when the server is honest). Note
that this makes critical use of the subcode property of the LDC. A traditional LDC might fail if we dropped a
small number of responses from each query.

Once we can show that test points are uniformly distributed and independent of the query index, i⋆, the
privacy follows from an argument that is very similar to that of Lemma 5.3.
Efficiency. In the batched scheme, the encoded database (of lengthn) is redistributed tom, so

∑
i∈[m]|Bi|= n.

The mPIR protocol makes one (semi-honest, keyword) PIR query to each bucket. So, assuming the server
complexity of the underlying PIR scheme is (sub-)linear, computational complexity of executing a query in
the mPIR protocol will be (sub-)linear as well.

Lemma 6.3 (Errors induced by lossy bucketing). With all but negligible probability, no more than a
2·λ·q
m -fraction of any given LDC query is dropped by the bucketing procedure (Fig. 3).

9The need for keyword PIR is roughly a technicality: while the client can evaluate Fs to learn that the i-th database symbol is
stored in Bj , it does not know what is the “index” of i in Bj . To get around this problem, we use keyword PIR which allows the
client to query the bucket based on the original label, rather than the location in the bucket. Using keyword PIR instead of standard,
semi-honest PIR only introduces a small, constant overhead [PSY23].
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Proof. The probability that a given query index is dropped is bounded by λ·q
m , because at the time a given

query index is placed, no more than λ · q buckets could be occupied by other queries. Since q = ω(λ), a
basic Chernoff bound shows that with all but negligible probability no more than a 2·λ·q

m -fraction of any given
query will be corrupted. Taking a union bound over all λ queries, and all k possible indices, i⋆, we have that,
for all queries, no more than a 2·λ·q

m fraction of the query is lost due to the bucketing procedure.

Lemma 6.4. When m > 2·λ·q
γ , the mPIR protocol in Fig. 2 satisfies correctness.

Proof. To show that decoding succeeds, we have to show that (1) No test queries will be lost in the bucketing
procedure and (2) the number of decoding queries lost is small enough that the correct response can be
decoded.

Since the test queries are placed in buckets first (see Fig. 3), a test query will be lost only if two test
queries are mapped to the same bucket. Since there are λ test queries, and m buckets, by the birthday bound,
this probability will be negligible when m≫ λ2.

Lemma 6.3 shows that with all-but-negligible probability, all of the λ queries will have less than a
2·λ·q
m -fraction corruptions. Since (by assumption), the code, C, is a γ-subcode LDC, decoding will succeed

because γ > 2·λ·q
m .

Note that since q = ω(λ), the assumption that 2·λ·q
m < γ = O(1), ensures that m≫ λ2 (as required to

ensure that no test queries are dropped).

Lemma 6.5. The mPIR protocol in Fig. 2 satisfies privacy.

Proof. This proof follows exactly the same structure as the proof of Lemma 5.3. We construct a simulator, S
that chooses a random i⋆S ∈ [k], and runs the honest protocol (Fig. 2) with respect to this i⋆S . To show privacy,
we just need to show that the distribution produced by S is (computationally) independent of i⋆S , since the
simulator is perfect when i⋆S = i⋆. To do this, we consider the same two “hybrid” simulators S ′, which
ignores decoding failures and only outputs ⊥ when a test query or proximity test fails. Then, we consider S ′′
which modifies S ′ to replace all the non-test queries with queries to random indices.

To show that the output of S and S ′ are indistinguishable, we just need to show that the probability that
decoding fails when all test queries are uncorrupted is negligible. Now, Claim 6.6 shows that, as before,
the test queries are still information-theoretically hidden among the decoding queries, so an adversary who
corrupts a constant fraction, ϵ, of decoding queries will (with all but negligible probability) corrupt at least
one test query.

Now, Lemma 6.3 shows that (with all but negligible probability) the bucketing procedure introduces at
most 2·λ·q

m -fraction of corruptions into the decoding of any given query, so as long as γ > ϵ+ 2·λ·q
m , decoding

will succeed with all-but-negligible probability whenever the test queries pass. In other words, the probability
S outputs ⊥ but S ′ does not is negligible.

To show that the output of S ′ and S ′′ are indistinguishable, the argument follows exactly as in Lemma 5.3.
This follows from the multi-query privacy of the underlying keyword-PIR protocol.

Now, by the smoothness of the LDC, the test queries are independent of i⋆S , and all the rest of the queries
in S ′′ are independent of i⋆S , so the distribution induced by S ′′ is independent from i⋆S .

Claim 6.6. For each i ∈ [λ], denote by Ti ∈ [n]× [m] the random variable that is assigned a value the value
of (ti, xi) where xi is the bucket assigned to ti, or ⊥∗ if no such bucket has been assigned (Step 2 of Db

q)
Then Ti is independent of i⋆.
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Proof. We pick a random test point ti ← si for all i ∈ [λ]. Since the underlying LDC is smooth, the points
t1, . . . , tλ are uniformly random points in [n]. Then, we “bucket” the test points according to Fs (See Fig. 3).
This clearly does not make the distribution depend on i⋆. Note, however, that the {xi} are not independent
from each other (in fact, they are negatively dependent, since two test queries cannot occupy the same
bucket).

Lemma 6.7. The mPIR protocol in Fig. 2 satisfies coherence.

Proof. This follows in exactly the same way as in Lemma 5.5, except now there is an extra 2·λ·q
m -fraction of

each query that can fail due to failed placement in a bucket (Lemma 6.4), but this extra loss is easily absorbed
by the error-correction ability of the subcode LDC.
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A Doubly-efficient mPIR

We demonstrate the power of our compiler Theorem 2 by applying it to the doubly-efficient PIR (dePIR) of
[LMW23]. To instantiate our compiler, we must specify a vector commitment scheme and a smooth subcode
LDC. We use Merkle Trees as the vector commitments. For some constant c, the smooth subcode LDCs we
use are Reed–Muller codes with parameters:
• message size |db|= k,
• total degree (and thus query complexity) d = qLDC = O(logc(k)),
• m = O(log(k)/c log log(k)) variables,
• field size p = Θ(d),
These codes can be shown to have:
• block length O(k1+ϵ) (where ϵ depends on c)
• constant distance
• (µ,negl(λ)) proximity tests with polylog(λ, k) query complexity for all µ > 0 (Theorem 4.15)
• subcode structure
• perfect smoothness
• encoding algorithms running in time O(k1+ϵ) [HS13][Section 6.3].
As desired. As input to dePIR’s preprocessing, we now input an encoded database of length O(k1+ϵ)
with elements size polylog(λ, k). The complexity of executing dePIR on this slightly larger database is
asymptotically unchanged because O((n1+ϵ)1+ϵ′) = O(n1+ϵ′′) and polylog(k1+ϵ) = O(polylog(k)). Thus,
as a corollary of Theorem 2,10

Corollary A.1. Assuming the security of RingLWE ([LMW23, Section 2.2]) There exists a doubly-efficient
mPIR protocol.

10For this particular compilation, Theorem 5.1 would have sufficed because dePIR already had polylogarithmic server computation.

30


	Abstract
	Contents
	1 Introduction
	1.1 Our results

	2 Technical overview
	2.1 Attempt 1: robustness from locally-decodable codes
	2.2 Attempt 2: detecting corruptions with test queries
	2.3 Our construction

	3 Related Work
	3.1 Other related work

	4 Preliminaries
	4.1 Private information retrieval
	4.2 Vector commitments
	4.3 Algorithms with oracle access
	4.4 Background on coding theory

	5 Constructing mPIR from subcode LDCs
	6 Boosting the mPIR with lossy batching
	References
	A Doubly-efficient mPIR

