
Efficient Execution Auditing for Blockchains under Byzantine

Assumptions

Researchers: Jeff Burdges1, Alfonso Cevallos , Handan Kılınç Alper , Chen-Da
Liu-Zhang1, Fatemeh Shirazi1, Alistair Stewart1,

Implementors: Alex Gheorghe2, Rob Habermeier , Robert Klotzner2, Bastian Köcher2,
Andronik Ordian2, Maciej Kris Żyszkiewicz2, and Andrei Sandu2

1Web3 Foundation
2Parity Technologies

June 14, 2024

Abstract

Security of blockchain technologies primarily relies on decentralization making them resilient against
a subset of entities being taken down or corrupt. Blockchain scaling, crucial to decentralisation, has
been addressed by architectural changes: i.e., the load of the nodes is reduced by parallelisation, called
sharding or by taking computation load off the main blockchain via rollups. Both sharding and rollups
have limitations in terms of decentralization and security.

A crucial component in these architectures is a layer that allows to efficiently check the validity of
incoming blocks in the system. We provide the first formalization and analysis of ELVES, the auditing
layer that is currently deployed in the Polkadot and Kusama blockchains.

In this layer, “auditing committees” are formed independently for each block, and security relies on
the fact that it is prohibitively expensive in expectation for an adversary to make ELVES to accept a
block that is not valid. In addition, ELVES has the following characteristics: 1) Auditing committees
wind up orders of magnitude smaller than pre-assigned committees. In fact, the size of the committees
adapts automatically to network conditions but remains a low constant in expectation, in the order of tens
or low hundreds; 2) Although synchronous per se, ELVES tolerates instant adaptive crashes, mirroring
realistic network capabilities. Surprisingly, the committee-size analysis of our protocol is ’all but simple’
and involves a novel strengthening of Cantelli’s inequality, which may be of independent interest.

1 Introduction

Blockchains relieve us from having to trust single entities by offering decentralized solutions to agree on
valid blocks of data. Block auditing, ensuring that we agree on valid and available blocks, is often one of
the main bottlenecks. The naive approach for block auditing, where all blocks are acquired and executed by
every node, requires significant computation power. Similarly, bandwidth is limited and storage is expensive
on blockchains because all nodes bear these costs. The computational overhead constitutes a major bottle-
neck since it increases the machines’ computational requirement capabilities, limiting the number of eligible
participants, and therefore impacting decentralization and also the security and resilience of blockchains.

Our solution, ELVES: We propose an efficient block auditing layer ELVES1, that dramatically reduces
the required resources, and opportunity costs. At a very high level, ELVES operates in several phases (see
a precise description of its underlying assumptions and security guarantees in Section 1.1).

1ELVES stands for ”endorsing light validity evaluator system”.

1

In the first “backing” phase, some initial auditor(s) called “backers” receive the block, check the block,
and then sign a claim that the block is valid.

In the second “availability” phase, the backers distribute the block so that any auditor could check the
block if they so choose. We keep this distribution process bandwidth efficient by giving each auditor one
symbol from a Reed–Solomon encoding of the block. The validators agree that the block has been distributed
in a way that ensures that the block can be reconstructed under Byzantine assumptions.

In the third “approvals” phase, we randomly assign an initial set of auditors to check the validity of the
block, which then randomly grows whenever assigned auditors do not respond soon enough.

As a fourth phase, we finalize blocks only if and when the approvals phase concludes, including having
every absent auditor replaced by enough additional random auditors. If, however, any auditors claims the
block is invalid then all auditors check in a “disputes” phase, which resolves by a regular Byzantine vote.
If a block is found invalid, then we eject its backing auditors permanently (in a proof-of-stake protocol, the
stake backing these auditors should be confiscated e.g. with 100% slashing in Polkadot).

In the approvals phase, we choose these initial and growth parameters to balance costs, liveness, se-
curity/soundness, and network assumptions, so the existance of acceptable choices represents the primary
technical result of this paper. At a high level, we only need them large enough to make attacks prohibitively
expensive in expectation, thanks in large part to our ejection of bad auditors and delaying finality.

Existing architectures propose multiple approaches to solve the security/ performance trade-off [EGSVR16,
KJG+16, LNZ+16a], sharding being a promising approach. In sharding, the execution is parallelized by split-
ting the validators into subsets that check the validity of blocks of that shard. Intuitively, the benefit of shard-
ing is that the load to process each block is reduced, and the total throughput capacity of the system increases
proportionally with the number of validators. Typical sharding approaches [LNZ+16a, ZMR18, KKJG+18]
require a high number of validators per shard to preserve security, in the order of several hundreds or thou-
sands of validators, since they rely on concentration bounds to ensure that every shard contains an honest
majority with high probability. Our results show that our auditing layer improves upon current sharding
solutions in terms of the number of validators that check a block (which is denoted as the shard size in a
sharding architecture).

Another popular approach to tackle scalability are rollups that delegate the execution of blocks to outside
the set of validators. As such, the bulk of the computation and storage is off-chain. In optimistic rollups
(e.g. Arbitrum [KGC+18]), it is assumed that the off-chain blocks are valid and that there is a fraud-proving
scheme to detect cases where blocks are not computed correctly. Even though in principle “any party” can
attempt to check and detect invalid blocks, it is not clear how such schemes ensure provable security from a
formal standpoint, since it is not specified how to ensure that the blocks are in fact checked.

It is worth additionally noting that current solutions for optimistic rollups and sharding are not resilient
to adaptive crashes that may be deployed relatively fast and at large-scale: an adversary can simply perform
a distributed denial-of-service (DDoS) attack to crash many or all validators of a shard, and the system loses
liveness, or worse, safety. Our solution achieves safety and liveness under a fully adaptive adversary that
can instantaneously crash parties.

Finally, it is worth mentioning the approach of so-called zero-knowledge rollups, where a cryptographic
proof of validity for a batch of transactions is published towards the on-chain validators, who can verify
it. However, producing such proofs of validity is computationally expensive (i.e., 50000 times slower than
natively execution in current systems [Tha]) and this may lead to centralization of proving.

1.1 Our Contributions

We introduce ELVES, a novel provably-secure scaling auditing protocol that can be used to ensure the
availability and validity of blocks. Our ideas and analysis can be applied to improve the scalability of current
blockchain architectures (sharded or not sharded), and can also be applied to efficiently add a method to
audit blocks in the context of optimistic rollups, while guaranteeing security.

The ELVES protocol has been successfully used in production on the Kusama and Polkadot blockchain
networks since 2021, but no formal security proof of it has been provided so far.

2

The protocol achieves a minimal load per validator and is resilient against static Byzantine corruptions2

and fully adaptive crashes controlled by a rational adversary. More concretely, in our protocol parties put
down a collateral which can be slashed (i.e., lost) if misbehavior is detected, and the security of the protocol
relies on the fact that the adversary behaves rationally, according to strategies that maximize their expected
income.

Our design has security against a fraction of up to γ total corrupted parties, 0 ≤ γ < 1/3, under a
synchronous network,3 with access to a global state-machine replication (the primary chain). The protocol
selects parties to check the validity of a block in a randomized manner, and achieves the following features.

Resilience to Fully Adaptive Crashes. ELVES is the first block-auditing solution that is safe and live
under a fully adaptive adversary that can instantaneously crash parties. More concretely, ELVES ensures
that 1) no rational adversary that follows strategies leading to non-negative expected profit can make the
protocol accept invalid blocks and 2) if the initial auditing party receiving a valid block as input is honest,
then every validator agrees that the block is valid.

Note that previous approaches to validate a block based on sharding immediately lose safety or liveness,
since the adversary can simply adaptively crash all members of a shard and stall all the blocks that are
checked by that shard.

Concrete Committee Sizes. ELVES achieves an optimal throughput by imposing a minimal load per
party in the system. Given n parties and considering a period where the system processes a linear number
O(n) of blocks of length ℓ (which should correspond to a constant-time period of a few minutes), the average
communication complexity incurred per block is O(ℓ+n log(n)) plus the cost of broadcasting O(n) signatures
on the primary chain, and the bandwith (per-party communication) is a 1/n fraction of it. In order words,
the (amortized) communication is roughly asymptotically optimal.

Turning to concrete numbers, the incurred committee sizes are very small. Figure 1 shows an upper
bound on the expected committee size per block (when n blocks are processed), as a function of the selected
soundness failure probability ε and corruption bound γ. As we can see, our protocol achieves concretely
efficient committee sizes for all reasonable parameters. In particular, for ε = 2−60 and 33% of corruptions,
the expected committee size is at most 466, improving over prior approaches such as Gearbox [DMM+22],
which require a committee of around 1000.

Figure 1: Bound on expected committee size per block, sf , when n blocks are processed, as a function of the
failure probability ε, for three values of corruption bound γ.

When considering rational adversaries, we show that one can in fact settle for a non-negligible soundness
failure probability ε ≈ (20n)−1, making the expected committee size sf = O(log n); see Section 9. Fur-
thermore, the expected committee size not only depends on the fixed corruption bound γ assumed, but it

2Our protocol also works against mildly-adaptive Byzantine adversaries, that become corrupted after a sufficiently large
delay, as long as the time it takes to corrupt a party is longer than the time it takes a block to be validated.

3Even though our protocols are designed in the synchronous network model, they tolerate fully adaptive crashes and therefore
address some of the challenges that appear in partially synchronous or asynchronous networks.

3

automatically adapts to the current fractions α and β of static Byzantine corruptions and adaptive crash
corruptions, respectively, with α+β ≤ γ. This leads to an even smaller committee size in expectation under
typical network conditions, as shown in Figure 2. As an example, in an instance with n = 1000 parties, we
argue that ε = 20001−1 is secure enough, obtaining an expected committee size of at most 35 when there
are up to 5% corruptions of any type, up to 97 with a 1/3 fraction of static Byzantine corruptions, and up
to 129 with a 1/3 fraction of adaptive crash corruptions.

Figure 2: Bound on the expected committee size sf as function of current fractions α and β of static Byzantine
and adaptive crash corruptions respectively, when n blocks are processed, with γ = 1/3 and ε−1 = 20001.

In Section 9 we provide further discussion on Figures 1 and 2. Finally, we provide in our analysis a
strengthening of Cantelli’s inequality, which may be of independent interest; see Lemma 5.

2 Technical Overview

Model and Architecture. We consider a security model with n parties, where at any point in time a
party can be honest or corrupted. Corrupted parties are controlled by a central adversary, who can perform
two types of corruptions: up to an α fraction of active corruptions and also up to a β fraction of crash
corruptions. Actively corrupted parties are fully controlled by the adversary and chosen statically, at the
onset of the protocol. And crashed parties can be adaptively and instantaneously corrupted at any point in
time. Crashed parties cannot receive or send messages. We assume that α+ β ≤ γ, where γ < 1/3 is a fixed
corruption bound.

The parties have access to a complete network of point-to-point authenticated channels, a diffusion
network functionality to gossip messages, as well as a state machine replication system (the primary chain).
The goal is to provide an auditing layer that checks the validity of incoming blocks in an efficient manner.
Such a layer could then be employed on top of existing scaling solutions to support multiple independent
chains.

We assume that the input to the auditing layer contains information about the block to verify: a) a
header h, and b) a proof of validity π(h), containing enough information to allow to efficiently check the
validity of h.

The protocol then has a randomized procedure to select a subset of validators to check the validity of
the block. Such validators can be thought of as auditors that check the validity of an input block. Let us
first consider known approaches to audit blocks.

Strawman Approach. In the strawman approach, one simply randomly chooses a sufficiently large com-
mittee to check the block using, e.g., verifiable random functions (VRFs), so that with high probability the
committee contains a two-thirds fraction of honest parties. The committee then takes a two-thirds majority
decision on whether the block is valid. Unfortunately, this approach requires a substantially large committee
size, in the order of high hundreds to thousands, so that concentration bounds apply. In order to improve
the concrete efficiency, we will use the following two techniques.

4

Gradual Optimistic Paths. First, note that the strawman approach requires large sizes even when the
actual number of corruptions is very low. In fact, this is true even when all parties are honest.

A simple idea to get around this is to first choose optimistically a smaller committee to check the block,
where at least one honest party is elected with high probability. If there is no unanimous agreement, we
revert back to the strawman approach with a larger committee and a two-thirds majority vote. By doing so,
under optimistic conditions only the smaller committee is deployed. One can further develop this idea by
adding parties across several steps: rather than falling back to the strawman approach directly, one can add
parties gradually until the committee size reaches the strawman approach. In fact, such a multi-step idea has
been recently proposed in the Gearbox protocol [DMM+22], which follows the safety-liveness dichotomy by
guaranteeing safety in each step, but liveness only in sufficiently large committees, depending on the current
level of corruption, with the very last step ensuring liveness for a 1/3 fraction of corruptions.

Unfortunately this protocol does not achieve liveness under fully adaptive crashes. This is because the
adversary can trivially prevent a block from being checked by corrupting its elected committee in every step,
as the committees remain small in size relative to the adversary’s budget. To solve this, we first make the
simple observation that one can keep increasing the committee sizes beyond a constant bound, until the
adversary does not have enough budget to prevent liveness.

Even though the above approach with gradual optimistic paths is substantially better than the strawman
approach, the fact that the first committee is chosen so that it contains at least honest party with high
probability, still leads to committee size numbers that are substantial in practice. One would optimally
expect to be able to settle with even smaller numbers, at least in the optimistic case.

Rational Adversary and Slashing Collateral. Choosing even smaller committees poses an important
technical barrier, given that with a noticeable probability, the committee might entirely consist of actively
corrupted parties, and therefore the security for that block is compromised.

To solve this problem, we consider the setting where each party puts a certain amount of tokens as
collateral, and there is a rational adversary that follows strategies leading to higher income. The idea is
to have a designated party, called the backer, be in charge of checking and distributing the block before
the initial committee of checkers is revealed. This way, a corrupted backer runs the risk of getting caught
and losing its collateral in the event of distributing an invalid block, since the initial committee is likely to
contain an honest party. We then set a non-negligible soundness failure probability, and a collateral level,
such that if having an invalid block be approved by the protocol earns the adversary a quantity M (say, the
whole market capitalization of the tokens secured by the blockchain), its expected income is still negative.

This also means that, contrary to current protocols (e.g., in sharding) which elect fixed committees for
some interval of time, we have to resample fresh committees for each processed block, so that the backer is
committed to its decision before gaining any information on the composition of the corresponding initial
committee. Similarly, we require that two blocks processed around the same time are distributed by different
backers, each with its own collateral, so that the adversary gains no advantage from running multiple attacks
simultaneously. To solve this last issue, we propose to make all n parties be collateralized and take turns
acting as backers.

At a high level, our protocol consists of the following phases:

1. Availability Distribution: The backer distributes the initial block B towards all parties. More
precisely, the backer uses an erasure coding with a reconstruction threshold of a 1/3-fraction of the
parties, obtaining codewords s1, . . . , sn, and also encodes them into a Merkle tree, obtaining a proof πi

for each codeword si. Each pair (si, πi) is sent bilaterally to each party Pi, who then publishes a vote
stating whether the received pair was correct. This phase ends when a set S of 2/3 fraction of parties
publish their votes.

2. Committee Elections and Checks: After the block has been distributed, we use VRFs to elect an
initial auditing committee C0, to which each party is assigned independently with fixed probability, so
that the expected size of C0 is small, in the order of tens. Each party in C0 publishes a proof of their
assignment, receives in turn codewords from parties in S, reconstruct and audit block B, and publish
their outcome. There are three options at this point: 1) some party claims the block is invalid, 2) all

5

parties that announced their assignment claim the block is valid, or 3) there are some no-show parties
that announced their assignment but did not publish an outcome of their audit on time.

In the first case, the check escalates to all parties, a majority vote is performed on whether the block is
valid, and parties on the minority side are slashed, with the backer included on the side that supports
the block. In the second case, the block is accepted. In the third case, for each no-show party, a new
tranche (subset) of parties of constant expected size is elected and added to the auditing committee,
and rules 1 through 3 are applied again to the newly elected parties.

After the Availability Distribution, we know that among the parties that published votes, there is a
1/3-fraction of total parties that are honest. The codewords from honest parties completely determine a
unique block B′, with the guarantee that B′ = B if the backer is honest. For a block of length ℓ, the total
communication cost of this step is O(ℓ + n log(n)) bits of communication plus the cost of publishing O(n)
votes (each with size independent of the block length); and the bandwith (per-party communication) is a
1/n fraction of it. As an example, for n = 1000 parties and a 1/3 fraction of corruption, blocks of size 1 MB
and Merkle tree hash size of 256 bits, the bandwidth is expected to be around 3.32 KB.

Security is ensured against a rational adversary given that the committees are revealed after the backer
distributes the block. Moreover, every no-show is replaced by several other parties, and as mentioned, we
set the collateral and the probability that the block is accepted so that the expected adversarial income is
negative. Our analysis shows that the load per node remains constant in the number of blocks to process.
The total cost of the Committee Elections and Checks step, assuming that the final committee size is sf ,
corresponds to O(sf ·(ℓ+ log(n))) plus the publication of sf VRF election claims and votes of validity.

Trade-offs Between Committee and Tranche Sizes. The idea of replacing each no-show auditor by a
tranche of several new auditors is to protect the system against an adversary that has backed an invalid block,
and is crashing honest auditors as soon as they announce their assignments. In this case, we want to cause
a chain reaction that makes the committee grow quickly and extinguishes the adversary’s budget to crash
parties. Intuitively, for the same level of security, a larger tranche size alows for a smaller initial committee
size, because larger tranches make it less likely that this chain reaction dies out early on. Figure 3 shows a
tradeoff on concrete numbers for the expected initial committee size s0 compared to the expected tranche
size sδ per no-show, for an instance with a corruption bound of γ = 1/3 and a soundness failure probability
ε = 1/20001. However, we also need to ensure that the tranche size is small enough not to trigger frequent
chain reactions on valid blocks. We prove in Section 9 that the optimal value for the expected tranche size
sδ is between 2 and 2.5.

Figure 3: Expected initial committee size s0 as a function of the expected tranche size sδ per no-show, for
an instance where γ = 1/3 and ε−1 = 20001.

2.1 Related Work

The most related literature that focuses on techniques for choosing a small subsets of validators to check
the validity of blocks is the sharding literature. Many works have investigated sharding approaches in the

6

literature. We refer to [WSNH19] and [LWZ23] for extensive surveys on sharding protocols in the literature.
One of the first sharding protocols, Elastico, was proposed in [LNZ+16b], where the authors introduce

a synchronous protocol for a 1/4 fraction of static corruptions,4 that uses a Proof-of-Work approach to
elect the committees. However, the approach has a high failure probability when the committee size is
around 100 parties. The work [KKJG+18] introduced the OmniLedger protocol, which gives improved
security compared to Elastico for the same parameters, and considers mildly adaptive corruptions, which are
corruptions that only take place after a prescribed number of epochs. The protocol Rapidchain [ZMR18]
improved the corruption threshold, compared to the above protocols, to up to a 1/3 fraction of corruptions,
while maintaining efficiency. Monoxide[WW19] is an asynchronous proof-of-work protocol that uniformly
partitions the space of user addresses into shards (zones) according to the first fixed number of bits. Every
party is permanently assigned to a shard uniformly at random and invokes an independent consensus protocol.

A framework to formalize sharding protocols was introduced in [AKKW19], and where the mentioned
sharding protocols in the literature are analyzed. In particular, the work studies trade-offs between the
achievable efficiency of a sharding protocol, compared to the speed the adversary can corrupt the parties.

The protocol Gearbox [DMM+22] improved the shard sizes by leveraging the safety-liveness dichotomy. In
particular, the protocol starts choosing a smaller committee size that ensures safety (but possibly sacrificing
liveness), but increasingly chooses larger committees to achieve liveness as well. The protocol works under
the partially synchronous model and considers static corruptions. Our protocol ELVES takes this basic
idea a step further and differs in two aspects: 1) Gearbox does not achieve liveness against an adaptive
crash-adversary, since the adversary can simply crash all parties in a shard; this is fixed in a straightforward
way in our protocol by scaling the shard size possibly towards all parties, if not enough valid responses are
received; and 2) more importantly, our protocol achieves smaller committee sizes. In particular, for an error
of 2−60 and 1/3 fraction of corruptions, our committee size is around 400 and Gearbox requires 1000 parties.
Even more interestingly, our analysis shows that assuming a model where parties put down a collateral and
security against a rational adversary (see Section 8), it is enough to settle for larger errors, in the order of
1/20001, drastically reducing the committee sizes to the order of less than 150 (see Figure 2).

New sharding protocols [LLZW23, XZD+23] have recently appeared achieving further trade-offs between
security and efficiency. To the best of our knowledge, all the proposed sharding protocols lose their security
guarantees (safety or liveness) under fast DDoS attacks, i.e., when considering a fully adaptive adversary
that can instantaneously crash parties. We introduce the first protocol that is secure under such adversaries.
Moreover, our analysis shows that our protocol incurs very small committee sizes in the presence of a rational
adversary.

3 Preliminaries

We introduce preliminaries for the basic primitives used in our protocols.

Digital Signatures. A digital signature scheme consists of a tuple of three algorithms (KGen,Sign,Ver),
defined as follows:

1. KGen(κ) is the key generation algorithm that takes the security parameter and outputs the verifica-
tion/signing key pair (vk, sk).

2. Sign(sk,m) is a signing algorithm that takes as input a signing key and a message and outputs a
signature σ.

3. Ver(vk,m, σ) is a verification algorithm that takes as input the verification key, message and signature.
The algorithm outputs 1 if σ is a valid signature on m under the verification key vk, and outputs 0
otherwise.

4The protocol can handle up to 1/3 fraction of corruptions, with decreased performance.

7

We require unforgeability, which guarantees that a PPT adversary cannot forge a fresh signature on a
fresh message of its choice under a given verification key while having access to a signing oracle (that returns
a valid signatures on the queried messages).

Erasure Correcting Code Schemes. We make use of erasure-correcting code schemes that tolerate a
certain number of erasures.

Let n be the number of shares and t the number of erasures that can be tolerated. A (t, n) erasure-coding
code scheme (ECCS) consists of two algorithms:

1. Enc takes a message m and produces a sequence of shares s1, . . . , sn.

2. Dec takes a sequence of shares s′1, . . . , s
′
n such that for at least n− t of the shares s′i = si and for the

remaining shares s′i = ⊥, then the original message m is output.

We use standard Reed-Solomon codes [RS60] to instantiate a (t, n)-ECCS efficiently, where the size of
each share is O(ℓ

n−t), for a message of size ℓ bits.

4 Model

Our model consists of a set of parties P and a probabilistic polynomial time (PPT) adversary A. Each party
has the capability to communicate with one another, in accordance with a specified underlying network
assumption.

Adversarial Model. We consider a mixed adversary A that can perform two types of corruption.

• Active Corruption: A can actively corrupt up to a fraction α of parties in P. An actively called
party, called malicious party, behave arbitrarily as prescribed by A.

• Crash Corruption: A can crash up to a fraction β of parties in P. Crashed parties cannot send or
receive any further message from the time they were crashed. The adversary does not have access to
the internal state of crashed parties.

We consider that actively corrupted parties are chosen statically, i.e., the adversary chooses the parties
to actively corrupt at the start of the protocol. On the other hand, crash corruptions can be chosen fully
adaptively, i.e., the adversary can instantly choose to corrupt a party during the protocol execution.

4.1 Clocks and Network

Parties have access to synchronized clocks. In addition, parties have access to a complete network F∆
p2p

of point-to-point authenticated channels and a diffusion network functionality F∆
flood with known delay ∆.

In the complete network of point-to-point channel functionalities, the adversary chooses when a message is
delivered towards an honest recipient (within the prescribed delay). A crashed recipient is guaranteed to
receive the messages when the delay is reached and the recipient becomes honest.

The diffusion functionality achieves the following properties:

1. If any party P that is honest at time τ inputs a message m to F∆
flood, it gets delivered to all other

parties that are honest by time τ + ∆. Crashed parties at time τ + ∆ are guaranteed to receive the
message once they become honest.

2. If a party P is honest and receives a message m at time τ , then every other party that is honest at
time τ + ∆ receives the same message. Crashed parties at time τ + ∆ are guaranteed to receive the
message once they become honest.

8

4.2 State Machine Replication Resource

Parties have access to a resource F∆
smr (a.k.a., the primary chain). We model the resource as a state machine

replication system that allows each party Pi to input a message and also keeps track of an array of messages
smri = (smri[1], smri[2], . . .), one per index, that is output to party Pi, with the following security guarantees:

1. ∆-Liveness: If a message m is input by an honest party at time τ , then m appears in every array smri
that belongs to an honest party Pi by time τ +∆. Moreover, if a block m appears in an honest party
Pi’s array smri at time τ , then it also appears in every other honest party’s array by time τ +∆.

2. Safety: If an honest party outputs a message m in index i, then for all honest parties that have an
output m′ at index i, we have that m′ = m.

3. Completeness: Every honest party outputs a message in all indices.

5 Availability Scheme

The first part of our protocol consists of a party distributing the input message block via a so-called avail-
ability scheme, which allows a party to distribute a block among all parties and make it available. More
concretely, it has the guarantee that parties reach agreement on whether an initial message has been dis-
tributed, and if so, either the message can be consistenly reconstructed by any recipient R, or any recipient
agrees that the dealer was actively corrupted.5

Syntax. An availability scheme consists of a pair (Dist,Rec) of distributed protocols. In protocol Dist, a
designated party P , the dealer, holds an input message m to be distributed. At the end of the protocol,
all parties agree on whether the protocol was successful, and if so, each party Pi outputs an encoded data
piece (si, πi) and a proof of correctness. In protocol Rec, each party Pi publishes its pair (si, πi) towards the
recipient R, who applies a function to reconstruct the original message m.

Security Guarantees. We will require that the scheme satisfies the correctness and soundness properties
as defined below.

Definition 1. A secure availability scheme consists of a pair of distributed protocols (Dist,Rec), where a
designated dealer P holds an input m for the protocol Dist and every party agrees on whether Dist is successful,
and afterwards parties run protocol Rec(R) towards any designated recipient R who can receive an output
m′, with the following guarantees.

• Correctness: If the dealer is honest, protocol Dist is successful.

• Soundness: If protocol Dist is successful, then there is a unique value m′ such that either 1) in any
execution of protocol Rec(R), R outputs m′, or 2) in any execution of Rec(R), R outputs ⊥, indicating
that the dealer is corrupted. Moreover, if the dealer is honest, m′ = m.

5.1 Protocol Description

We describe a simple scheme, where parties have access to the functionalities F∆
smr and F∆

p2p, and also a plain
PKI infrastructure for digital signatures. For protocol Dist, the initial dealer P encodes the data m using
an (γn, n)-Reed-Solomon code, obtaining pieces (s1, . . . , sn), and encodes the pieces using a Merkle tree,
computing the path from each piece si to the root as the proof πi. Party P then sends to each party Pi the
pair (si, πi) and publishes the commitment com in F∆

smr.
Each party Pi, once they see com published in the SMR resource, waits ∆ time to receive the pair (si, πi).

If received, Pi checks that the proof is correct, and if so, publishes a signed vote message vi to F∆
smr indicating

that Pi received a correct data piece. After ∆ time, if (1 − γ)n signed votes appear in the SMR resource,
the protocol is considered successful.

5This is similar to weak secret sharing (see, e.g., [Rab94]), except that there is no privacy requirement.

9

Protocol Πt
Dist

A designated party P , the dealer, has an input m.

Encoding and Proofs

1: P computes a Reed-Solomon encoding of m with reconstruction threshold γn + 1, obtaining data pieces
(s1, . . . , sn). Furthermore, it also computes the path πi for each codeword si to the root com. P then sends
(si, πi) to party Pi using the network F∆

p2p and publishes com in F∆
smr.

Codeword Check and Availability Distribution

1: Each party Pi waits until com appears in F∆
smr. It then waits ∆ time to receive pair (si, πi). If received, Pi

checks that the proof is correct, and if so, publishes a signed vote message vi to F∆
smr.

2: After ∆ time, if (1− γ)n signed votes appear in F∆
smr, the protocol is considered successful.

For the protocol Rec towards a recipient R, each party Pi sends (sj , πj) to R. Upon receiving at least
γn+ 1 correct pieces from parties that output a vote on F∆

smr, recipient R interpolates the rest of the pieces
and checks if they are also consistent with the root. If so, it computes message m using Reed-Solomon
decoding. Otherwise, it outputs ⊥.

Protocol Πt
Rec

A designated party R, the recipient, wants to reconstruct an output after ΠDist was successful.

Reconstruction

1: Each party Pi sends (si, πi) to R.
2: Let S be the set of parties that output a signed vote in F∆

smr. Party R, upon receiving γn+ 1 pairs (si, πi)
from parties in S, that contain consistent paths from the codeword to the root, uses Lagrange interpolation
to reconstruct all codewords (s1, . . . , sn), and checks if this tuple is consistent with the root published in
F∆

smr. If so, R uses Reed-Solomon decoding and outputs the decoded message m′. Otherwise, it outputs ⊥.

Lemma 1. Protocol (Πt
Dist,Π

t
Rec) is a secure availability scheme in the presence of up to a total of γ < 1/3

fraction of corruptions that can be static active or adaptive crashes.

Proof. We first argue Correctness. If the dealer P is honest, then P computes a correct Reed-Solomon
encoding of m and the root appears in F∆

smr. Moreover, every honest party receives a valid pair (si, πi) after
time at most ∆ and publishes a signed vote in F∆

smr. Therefore, after ∆ time, at least (1− γ)n signed votes
appear and the ΠDist is considered successful.

We now argue Soundness: assume that ΠDist was successful. In this case, at least (1− γ)n signed votes
appear in F∆

smr, and therefore at least (1−2γ)n ≥ γn+1 votes come from honest parties. Let us denote these
honest parties by H. During the reconstruction phase ΠRec, each of these honest parties sends their correct
pairs (si, πi) to recipient R. These pairs {si}i∈H uniquely define a tuple (s′1, . . . , s

′
n) lying on a degree-γn

polynomial, which can be consistent with the root com or not.
In the positive case, note that any correct pair (sj , πj) received from Pj that is consistent with the root

com satisfies that sj = s′j , by the security of the Merkle tree. In this case, the recipient reconstructs a
message m′ by decoding the tuple (s′1, . . . , s

′
n) with Reed-Solomon Decoding.

In the negative case, by the security of the Merkle tree, there cannot be γn+1 pairs that, when interpolated
into a tuple (s′′1 , . . . , s

′′
n) lying on a degree-γn polynomial, are consistent with the root com. And in this case

R outputs ⊥ and the dealer was corrupted.

6 Approval Scheme

The second part of the protocol consists of checking whether a block that has been distributed correctly
is valid. Note that even though the availability scheme ensures that an honest proposer distributes a valid
block, it does not guarantee that the block distributed by a corrupted proposer is valid. The general idea of

10

the protocol is to choose an initial small subset of parties randomly (e.g., using VRFs) to reconstruct and
audit the block. If there are contradictory claims, or no-show auditors, more auditors are assigned to the
block.

Syntax. At a high level, the protocol starts after a successful execution of Dist. Therefore, each party Pi

receives a private input pair (si, πi), and all parties receive a public input Com, where all pairs and Com
satisfy a prescribed input predicate Q. In our specific example, Com is a Merkle root and πi is a valid proof
for each codeword si. At the end of the protocol, each party Pi outputs a bit 0 or 1, indicating whether the
distributed block is valid according to a validity predicate VerifyData.

Security Guarantees. We require that the approval scheme satisfies the following properties.

Definition 2. A secure approval scheme for input predicate Q and validity predicate VerifyData, where
each party Pi holds an input (si, πi) and a public input Com satisfying predicate Q, satisfies the following
guarantees.

• Completeness: Let m′ be the message defined by the reconstruction procedure Rec. If m′ is valid, i.e.,
VerifyData(m′) = 1, then every honest party outputs 1.

• ϵ-Soundness: Let m′ be the message defined by the reconstruction procedure Rec. If m′ is invalid, then
every honest party outputs 0 except with probability ε.

• Identification: If any honest party outputs 0, then every honest party has agreement on one party that
is actively corrupted.

6.1 Committee-Election Functionality

We describe the protocol in a hybrid world assuming an ideal functionality Fp
ce parameterized by a success

probability p. This can be realized in a standard way assuming a trusted PKI for a verifiable random function
(VRF) as setup. Fp

ce serves as a committee-election oracle functionality, and has the following interface:

1. Selection: For input x, when party Pi calls Fp
ce on input x for the first time, Fp

ce flips a fresh p-biased
bit and returns the result b ∈ {0, 1}, where (1 indicates success, 0 indicates failure). Calling Fp

ce again
in the future returns the same result b.

2. Query: any party Pi can call Fp
ce on an input x. If Pi has already called Fp

ce on input x and received
output b, then Fp

ce returns b; otherwise, it returns 0.

6.2 Protocol Description

Let γ, 0 ≤ γ < 1/3, be a bound on the total fraction of corrupted parties, counting both static active or
adaptive crash corruptions. Party Pi starts the protocol upon seeing for the first time that the r-th message
m has been successfully distributed, i.e., ΠDist was successful. This means that the corresponding Merkle
root value Com has sucessfully been published, (1−γ)n signed votes have appeared in F∆

smr, and every honest
party Pi holds a pair (si, πi) of codeword and proof for message m. Let us denote this time by τi.

The protocol elects subsets of parties to check whether the block can be reconstructed and is valid.
The subsets are elected in sequential epochs, called tranches, with the initial subset named tranche 0. The
protocol operates with the following parameters: s0, the expected size of the initial committee size (i.e., of
tranche 0), and sδ, the expected number of parties elected in each subsequent tranche.

Let p0 = s0
n and pδ = sδ

n . In the initial step, parties invoke Fp0
ce on input (r, 0) (denoting block number r,

tranche 0), and if Pi is elected to tranche 0, set electedir,0 = 1 and input (a signed claim of) it to F∆
flood. Let

us denote by Si
r,0 the set of parties that were thus elected by time τi + 2∆. Note that every party Pj sees

the r-th message is correctly distributed at time τj ≤ τi +∆ and starts tranche 0. Therefore, every honest
Pj ’s election result appears in every honest party’s view in F∆

flood by time τj +∆ ≤ τi + 2∆.

11

After that, for each party in Pj ∈ Si
r,0, party Pi starts the reconstruction procedure towards Pj for the

r-th distributed block. In particular, if Pj is honest, its election claim is included in set Si
r,0 for each honest

party Pj , and therefore Pj can correctly reconstruct the original message m.
Each Pj then checks that Verify(m) = 1, and that the codewords, proofs and Merkle root match, and

propagates the result, i.e., inputs a signed claim into F∆
flood. Party Pi waits for time ∆0 = 3∆. Let V i

r,0

denote the approval votes for the r-th block.
There are three options at this point. Each Pi does the following:

1. Some approval votes are negative. In this case, Pi initiates a so-called dispute phase, where all parties
check the block.

2. No approval votes are negative, but some of them are missing. Let Ni denote the number of parties that
were elected but did not vote (this is the size of the set Si

r,0 \ V i
r,0). In this case, party Pi participates

in the next Ni tranches, where for each tranche Pi repeats a new instance of the same procedure but
with a committee election functionality Fpδ

ce parameterized with probability pδ.

3. All parties elected so far have a unanimous positive approval vote. In this case, Pi outputs this answer.

Protocol ΠAppr(Pi)

Let p0 = s0 /n, pδ = sδ /n. The protocol operates in the hybrid model where parties have access to the
functionalities F∆

flood, F∆
p2p, Fp0

ce , Fpδ
ce and also a plain PKI infrastructure for digital signatures.

We describe the protocol from the point of view of party Pi.

Main Procedure

1: Start the protocol upon seeing block number r available at time τi. Initialize k = 0, p = p0, curi = −1,
totali = 0.

2: while true do
3: Query Fp

ce with inputs (r, j) for curi < j ≤ totali. If selected in any instance, announce this using

F∆
flood. Let S

i
r,k denote the elected parties by τi + 2∆+ 7k∆.

4: Send to each Pj ∈ Si
r,k the codeword-proof pair (si, πi) (from the availability phase) via F∆

p2p.
5: If elected, execute the RecCheck procedure. Let bi be the output, denoted as the approval vote. Input

the signed approval vote to F∆
flood.

6: Let V i
r,k denote the approval votes received by τi + 5∆+ 7k∆.

7: if there are negative approval votes then
8: Execute the Dispute Escalation Procedure and output the set that was obtained from this procedure

and terminate.

9: else if all parties in Si
r,k or (1− γ)n parties approved the block r then

10: Output 1 and terminate.
11: end if
12: Wait until τi+7(k+1)∆ time. Then, execute the following if no Dispute Escalation Procedure has been

triggered. Set curi = totali. Then, set totali = totali + |Si
r,k \ V i

r,k|, k = k + 1 and p = pδ.
13: end while

Dispute Escalation Procedure

1: All parties check the block: send to all parties the pair (si, πi). Upon reconstruction, check if
VerifyData(m) = 1 and output the set of parties that set their approval votes to the opposite bit.

RecCheck Procedure

1: Upon receiving at least γn + 1 valid pairs (si, πi) that match the corresponding Merkle root, reconstruct
the message m and output VerifyData(m).

Lemma 2. Let Q be the input predicate induced by a Merkle tree. That is, each party has a private input
(si, πi) corresponding to the leaf value and a Merkle tree proof with respect to a public input Com, the Merkle
root, which all parties receive as public input. Further let VerifyData denote a validity predicate. Then,

12

protocol ΠAppr is a secure approval scheme in the presence of up to a fraction γ < 1/3 of corruptions that
can be static active or adaptive crashes.

6.3 Security Analysis

In this section we prove Lemma 2, i.e., the security of the approval scheme when executed after protocol
Dist is successful.

6.3.1 Proof of Completeness

Let m′ be the message defined by the reconstruction procedure Rec, so that VerifyData(m′) = 1. Observe
that any negative approval votes come from corrupted parties. Moreover, any negative approval vote triggers
a dispute phase that leads to all parties checking block m, which ends up being accepted since there are at
least (1− γ)n > 2n/3 valid pairs that match the Merkle root and the reconstructed message is valid. Hence,
either all approval votes are positive at some point, or some votes are missing, in which case more parties
are added and eventually all parties check the block and output 1 as a result of the approval process.

6.3.2 Proof of Identification

Assume that an honest party outputs 0 as a result of the approval process. In this case, the block m′ that has
been initially distributed is invalid and therefore the initial dealer P is corrupted. Since a dispute escalation
procedure will be triggered, and every honest party will check the block and claim it is invalid, no honest
party will be on the minority side. But honest parties will agree that (at least) the dealer is on the minority
side.

6.3.3 Proof of Soundness

Assume that the the block that has been distributed is invalid. We want to bound by ε the probability
that it gets approved during the Approval Process, even if the adversary can adaptively and instantly crash
parties.

Given that there is an honest supermajority among parties, a triggered dispute will lead to all honest
parties checking the block and rejecting it. And any honest party who audits the block will trigger a dispute.
Hence, a necessary condition for the invalid block to be approved is that every honest auditor who declares its
assignment gets immediately crashed. However, each such auditor becomes a no-show and in turn activates
a new tranche, which is likely to make new honest auditors declare their assignment, and so on. Hence, the
adversary wins only its budget to crash corrupt is not extinguished by the time this chain reaction stops.

We model our protocol as if it could activate an indefinite number of tranches. In particular, we allow
for a party to potentially be assigned to several tranches for the same block, and similarly to be declared
a no-show multiple times, each activating a new tranche. Let T be the total number of tranches that get
activated in total for the block in question, not counting tranche 0, and notice that this random variable has
an unbounded range. The event that a validator gets assigned to an active tranche is independent across
all validators and tranches, so we can represent the validator-to-tranche assignments with a bipartite graph
with n validators on one side and T tranches on the other side, where each edge is a possible assignment
and corresponds to an independent Bernoulli trial with probability pδ = sδ /n. See Figure 4. We benefit the
adversary by assuming that it wins whenever the total number of assignments is finite, even if this number
is arbitrarily large.

Lemma 3. If s0 and sδ are respectively the expected sizes of an initial committee and of each further
tranche, and at most γn validators can be either actively corrupted or crash corrupted by the adversary, then

13

Figure 4: The validator-to-tranche assignment graph, when there are T tranches. We consider each possible
assignment as an independent Bernoulli trial with probability pδ = sδ /n.

the soundness failure probability is at most ε, provided that (1− γ) sδ > 1, and

s0 ≥F · ln(1/ε), where

F :=
sδ

ln

(
−(1−γ) sδ

W0[−(1−γ) sδ ·e−(1−γ) sδ]

) ,

and where W0 is the principal branch of the Lambert W function.

Proof. We assume pessimistically that if an auditor is corrupted in any way at assignment time, it will either
approve the block, or not even announce its assignment. Conversely, an auditor who is honest at assignment
time will make the announce and become crash corrupted immediately, thus becoming a no-show. Now,
the number of auditors in a tranche follows a binomial distribution Binom(n, sδ /n) (see Figure 4), which is
well approximated by a Poisson distribution Pois(sδ) when sδ is small relative to n. Similarly, if X is the
number of honest auditors in a tranche at assignment time, we can pessimistically model it as X ∼ Pois(λ),
for λ := (1− γ) · sδ, because the fraction of honest parties remains above (1− γ) throughout the attack.

According to our model, once started the chain reaction of no-shows and tranche activations can possibly
go on forever. Let q be the probability that this process eventually stops, when a single tranche is initially
activated. If this tranche contains X = i honest validators, this probability becomes qi, because we will have
i new no-shows, each activating a new tranche and thus starting a new independent sub-process. Hence,
probability q must observe

q = E[qX] = e−λ(1−q), (1)

where we applied the known formula for the probability generating function E[qX] of a Poisson variable X.
If x := −λe−λ, equation (1) is equivalent to

x = −λe−λ = −qλe−qλ,

which, if λ = (1− γ) sδ > 1, solves as −λ = W−1[x] and −qλ = W0[x], where W−1 and W0 are the two real
branches of the Lambert W function. Therefore,

q = −
W0

[
−λe−λ

]
λ

.

Finally, if Y is the number of honest auditors in tranche 0 at assignment time, we can also model this
random variable as following a Poisson distribution, namely Y ∼ Pois(τ) with τ := (1 − γ) · s0. If Y = i,
there are i initial no-shows, and the probability that the committee eventually stops growing is qi. Hence,

Pr[attack succeeds] ≤ Pr[committee eventually stops growing]

= E[qY] = e−τ(1−q)

= [e−λ(1−q)]τ/λ = qτ/λ = qs0/sT ,

14

where we applied equation (1). In order to bound the success probability by ε, it suffices to ensure that
qs0 / sδ ≤ ε. Solving for s0, we obtain that s0 ≥ sδ · ln(1/ε)/ ln(1/q) = F · ln(1/ε), as claimed.

In Figure 3 we plot the above bound on the initial expected committee size s0 as a function of the
expected tranche size sδ, for γ = 1/3 and ε = 20001−1. We see that we can afford to have a smaller initial
committee when tranches are bigger, which makes sense intuitively because in this case the chain reaction
is less likely to stop early on, hence the attack success probability decreases.

7 ELVES Protocol

In this section, we define the properties of the main protocol ELVES for ensuring the availability and validity
of input blocks. We categorize parties into two roles: the initial auditor, denoted as the “backer”, who obtains
the block as input (along with the proof of validity), and the “validators” who make the block available to
other parties and check their validity.

Syntax. A designated party, denoted as backer B, has an initial input m, and every party Pi outputs a
bit outi at the end of the protocol. Afterwards, parties can invoke any (or both) sub-protocol gadgets Πrec

for data recovery and Πid for cheating identification. Protocol Πrec, with recipient R, outputs a message m′

towards R, and Πid outputs an index k identifying a party.

Definition 3 (Availability and Validity). Let VerifyData be a deterministic predicate. An availability and
validity protocol ΠELVES is run by a backer B and validators {P1, P2, . . . , Pn}, where B has an initial input
m and each validator Pi outputs a bit outi ∈ {0, 1}, indicating whether the input is valid or not, according
to the predicate. The protocol has two sub-protocol gadgets Πrec for data recovery and Πid for cheating
identification, which can be executed after ΠELVES ends. A secure availability and validity protocol ΠELVES for
predicate VerifyData and sub-protocols Πrec and Πid has the following properties:

• Completeness: If B is honest and VerifyData(m) = 1, then every validator outputs outi = 1.

• Availability: We say that m is available towards an honest recipient party R if, after Πrec(R) is
executed, R outputs m. The Availability property guarantees that if any honest party Pi has an output,
then there exists a unique message m that is available towards any recipient R.

• ps-Soundness: With probability at most ps, an honest party Pi outputs outi = 1 and VerifyData(Πrec(R)) =
0 for some honest R.

• Identification: If any honest party Pi outputs outi = 0, then after ΠId is executed, all honest parties
output an index k such that Pk is actively corrupted.

• Accountable High Bandwidth: This property informally implies that either the per-party commu-
nication complexity is low or at least one actively corrupted party is identified. More concretely, given
O(n) parallel instances of ΠELVES with inputs of size ℓ bits, the communication complexity incurred per
instance by each validator is either O(ℓ

n + log(n)) bits plus publishing O(1) signatures on-chain or via
flooding, or after Πid is executed, all honest parties identify a party that is actively corrupted.

7.1 Protocol Description

The protocol makes use of the sub-protocols described in the prior sections, which are secure up to γ < n/3
corruptions that can be static active or adaptive crashes:

• a secure availability scheme (ΠDist,ΠRec), and

• a secure approval scheme ΠAppr with soundness ε.

15

The protocol is simple. The backer B with input m invokes ΠDist. Then, if ΠDist is successful, the
validators invoke ΠAppr and each party outputs outi as the output of ΠAppr. For the sub-protocol gadgets, we
define Πrec = ΠRec, and Πid is the protocol that outputs the backer’s index if the output of ΠELVES outputs
0, and otherwise outputs ⊥.

We now show that the simple protocol is a secure availability and validity protocol.

Theorem 1. Let (ΠDist,ΠRec) be a secure availability scheme, and ΠAppr be a secure approval scheme with
soundness ε. Then, protocol ΠELVES with sub-protocol gadgets Πrec and Πid is a secure availability and validity
protocol with parameter ps = ε.

7.2 Security Analysis

We now prove the security of the proposed protocol.

7.2.1 Proof of Completeness

Completeness follows by inspection. If the backer B is honest and the input m is valid, then correctness
of the availability scheme ensures that ΠDist is successful. Moreover, completeness of the approval scheme
ensures that all honest parties in ΠAppr output 1.

7.2.2 Proof of Availability

Assume that an honest party has an output. This means that the protocol ΠDist was successful. Then, by
the soundness property of the availability scheme, we have that there exists a unique message m′ such that
any recipient R that obtains the output from ΠRec outputs m′.

7.2.3 Proof of Soundness

Again, let us assume that the protocol ΠDist was successful in distributing a message m′. The probability
that an honest party outputs 1 when m′ is invalid is at most ε, due to soundness of the approval scheme.

7.2.4 Proof of Identification

If any honest party outputs outi = 0, the protocol outputs the index of the backer B, who is guaranteed to
be corrupted, due to completeness of the protocol and the fact that an honest backer does not distribute
invalid data.

7.2.5 Proof of Accountable High Bandwith

In this section we consider an adversary that attempts to maximize the communication complexity of the
protocol as valid blocks are processed by the approval pipeline. First, the adversary can trigger a dispute
by claiming that a valid block is invalid, but the protocol will identify the index of the corrupted party
who made the false claim. Next, the adversary can make a block’s committee grow beyond a constant size
by crash corrupting its auditors as they announce their assignments. However, we shall prove that, if we
consider a period of time in which b blocks are processed, and an adversary attempts to activate as many
tranches as possible on any of these blocks, then the expected average final committee size sf per block is
bounded by a constant, provided that b is large enough.

We say a validator is faulty if it may become a no-show, i.e., it may announce its assignment to a block
but not approve it within the given time window. Under optimistic conditions, we can expect a very low
rate of faulty validators (say, below 0.05), in particular because any validator that is merely unresponsive
would not announce their assignments and thus not become a no-show. However, this rate will increase in
case of an attack, where faulty validators may be either actively corrupted or crash corrupted. For the sake
of computing worst-case bounds on scalability, we assume in what follows that validators always announce
their assignments, but may be either honest or faulty.

16

Static adversary. We first consider the case where the adversary can only cause faulty validators statically,
i.e., an a-priori fixed set of αn validators is faulty throughout the attack.

Lemma 4. If sf is the expected final size of a committee with a static set of αn faulty validators, and
α · sδ < 1, then

sf ≤
s0

1− α · sδ
.

Proof. Let the random variable T be the total number of tranches activated, summed over all b processed
blocks, without counting any 0-th tranches. We consider again the model described in Section 6.3, with
the validator-to-tranche assignment graph in Figure 4, where every possible assignment of a validator to
one of the T tranches is an independent Bernoulli trial with probability pδ = sδ /n. Thus, if Xv is the
number of assignments of validator v to tranches (v’s degree in the graph), it follows a binomial distribution
Xv ∼ Binom(T, pδ).

Let µ be the expected number of assignments per validator. It can be subdivided as µ = µ0 + µδ, where
µ0 and µδ are respectively the expected number of assignments per validator to 0-th tranches, and to further
tranches, and where

µδ = E[Xv] =
sδ
n

· E[T].

Likewise, let the random variable Z be the total number of no-shows summed over all b blocks, which we
subdivide as Z = Z0 + Zδ, where Z0 and Zδ are respectively the number of no-shows in 0-th tranches and
in further tranches. Since one tranche is activated for each no-show:

E[Z] = E[T] =
n

sδ
· µδ. (2)

Furthermore, we have that E[Z0] ≤ αn · µ0, and

Zδ ≤
∑

v faulty

Xv, so E[Zδ] ≤ αn · µδ, (3)

where the two previous inequalities are tight in case every faulty validator becomes a no-show in every
assignment, and where we highlight that each Xv has the same expectation µδ whether v is honest or faulty.

By taking expectations on identity 0 = Z − Z0 − Zδ:

0 = E[Z]− E[Z0]− E[Zδ]

≥ n

sδ
µδ − αn · µ0 − αn · µδ,

which gives the inequalities

µδ

µ0
≤ 1

1
α·sδ − 1

and
µ

µ0
= 1 +

µδ

µ0
≤ 1

1− α · sδ
.

Notice that inequality α · sδ < 1 ensures that µ/µ0 remains bounded. Finally, we apply the trivial relation
sf / s0 = µ/µ0 to obtain the claim.

General case. We now consider a general attack, where a static set of αn validators is faulty, and an
additional βn validators can be made faulty adaptively, by crash corrupting them at any point.

Notice that in this case, if the adversary focuses its attack on a single block, it can make its committee
explode to a size linear in n. This is not however an issue for scalability, as every validator’s load increases
only by a small constant. The attack becomes problematic only if it is extended to several blocks, yet
we will show that the expected committee size, averaged over a sufficiently large number b of processed
blocks, remains bounded by a constant. Intuitively, the best adversarial strategy is to wait to gain partial
information about the number of assignments each validator receives, and then crash corrupt those with the
most assignments, in turn to cause the most no-shows. We will need the following result, whose proof is
delayed to Appendix B.

17

Lemma 5. Let X be a real-valued random variable with finite expectation and variance. For n and 0 < β ≤ 1
so that n and βn are positive integers, suppose we sample n independent values from X and keep the subset
of βn highest-valued samples, and let Yn,β be the average within this subset. Then,

E[Yn,β] ≤ E[X] +

√
1− β

β
Var[X].

We highlight that the result above is a strengthening of Cantelli’s inequality. Indeed, if one uses Cantelli’s
inequality to upper bound the (1−β)-quantile in the distribution of X, we obtain exactly the same expression
as the right-hand side above. But we prove that this expression actually bounds the expectation of the full
distribution truncated to the right of the (1− β)-quantile.

Lemma 6. Consider a scalability attack with αn static and βn adaptive faulty validators, for a period where
b blocks are processed. If (α+ β) sδ < 1, then

sf ≤
s0 +G+G1/2 [G+ 2(α+ β) sδ ·s0]1/2

1− (α+ β) sδ
, where

G :=
n

2b
· β(1− β) sδ

2

1− (α+ β) sδ
.

Proof. We follow the same analysis as in the proof of Lemma 4. As before, we define variables Z0 +Zδ = Z,
where Z0, Zδ and Z are respectively the number of no-shows in 0-th tranches, in further tranches, and
in total, summed over all b processed blocks. We still have identity (2) for E[Z], as well as inequality
E[Z0] ≤ (α + β)n · µ0, because there are at most (α + β)n faulty validators throughout the attack, and we
can make our protocol give all validators roughly the same number of assignments to 0-th tranches, namely
µ0, with virtually no variance.6

Also, we have Zδ ≤
∑

v faulty Xv, whereXv is the number of assignments of validator v to further tranches.
However, this time we cannot argue that Xv has the same expectation for honest and faulty validators, so
inequality (3) fails. Instead, we use Lemma 5 to bound E[Zδ], where Xv ∼ Binom(T, pδ) has expectation
E[T] · pδ = µδ and variance E[T] · pδ(1− pδ) < µδ:

E[Zδ] ≤ E

 ∑
v fixed faulty

Xv +
∑

v adaptive faulty

Xv


≤ αn · µδ + E

[
max

V ′⊂V : |V ′|≤βn

∑
v∈V ′

Xv

]

≤ αn · µδ + βn

(
µδ +

√
1− β

β
µδ

)
= (α+ β)n · µδ + n ·

√
β(1− β)µδ.

We take expectations on identity 0 = Z − Z0 − Zδ:

0 = E[Z]− E[Z0]− E[Zδ]

≥ n

sδ
µδ − (α+ β)n · µ0 − (α+ β)n · µδ − n ·

√
β(1− β)µδ

=
n

sδ

[
(1− (α+ β) sδ)µδ − (α+ β) sδ ·µ0 − sδ

√
β(1− β)µδ

]
=

n

sδ
[(1−A)µδ −A · µ0 −B

√
µ0 · µδ] ,

6Notice our analyses only require assignments to further tranches to be independent from one another.

18

where A := (α+ β) sδ < 1 and B :=
√
β(1− β)/µ0 · sδ. Reordering terms:

0 ≥ (1−A)2µ2
δ − [2A(1−A) +B2]µ0 · µδ +A2µ2

0, so

µδ

µ0
≤

2A(1−A) +B2 +
√

4A(1−A)B2 +B4

2(1−A)2
,

where we applied the quadratic formula. From identity sf /s0 = µ/µ0:

sf =

(
1 +

µδ

µ0

)
s0 ≤

2(1−A) +B2 +B
√
4A(1−A) +B2

2(1−A)2
· s0

=
s0 +G+G1/2[2A · s0 +G]1/2

1−A
,

where G := B2s0
2(1−A) . Finally, we can check that G indeed equals its definition in the statement via the

identity b · s0 = n · µ0, which is the expected number of assignments to the b 0-th tranches. This completes
the proof.

Notice the expected final committee size sf is bounded by a constant as long as G = O(1), which happens
if b = Ω(n). Having b = Θ(n) corresponds to a constant time period of a few minutes in a blockchain system
that processes Θ(n) blocks per minute. In the limit where G → 0 (because either b is large or β is small),
our bound is s0/[1− (α+ β) sδ], matching the bound in Lemma 4 for the static case.

8 Rational Model and Analysis

So far we have considered a polynomial-time adversary as described in Section 4, and where the soundness
security property only holds with a constant probability. In this section we show that one can argue about
the security of the presented protocols in a restricted rational model.

Accountable Protocols. For that, we first introduce the notion of accountable protocols which are protocols
that have sub-protocol gadgets where violating a certain security property allows the gadget to identify an
actively corrupted party.

Definition 4. Let Π be a distributed protocol among n parties where each party Pi has an input xi (xi = ⊥
if the party has no input), and at the end of the protocol each Pi outputs yi. Further let Q be a binary
predicate on the inputs and outputs of the protocol.

We say that Π is accountable with respect to predicate Q via sub-protocol gadget Π′, if after the execution
of the protocol Π, we have: if Q(x1, . . . , xn, y1, . . . , yn) = 0, then honest parties can jointly execute Π′, which
outputs an index k such that Pk is actively corrupted.

It is easy to see that the protocol ΠELVES introduced in Section 7 is an accountable protocol with respect
to the induced predicate from the soundness property, via the sub-protocol gadget Π′ = ΠId.

Rational Protocol. Consider a protocol Π that is accountable with respect to predicate Q via sub-protocol
gadget Π′. Further consider the case that Π satisfies Q with probability at least p.

We can argue about the security of such a protocol in a rational model where each party Pi puts down a
certain amount Ci = C of tokens as collateral, for some protocol parameter C, and the adversary is rational
and follows strategies leading to non-negative expected net profit.

We make three assumptions regarding the adversarial net profit in the model: First, if Π′ identifies a
corrupted party Pk, the adversary loses the collateral Ck. Second, we assume that M is an upper bound on
the profit that the adversary gains if Q(·) = 0. Finally, any adversary strategy that leads to Q(·) = 1, gives
the adversary a non-negative profit.

Consider the natural enhancement of the protocol ΠELVES as described above, where parties put down a
collateral and the identification of a corrupted party Pk leads to the adversary losing Ck. We then have the
following corollary of Theorem 1.

19

Corollary 1. Let 0 < ν < 1 be a constant such that C = ν ·M/n. Let ε be the soundness error parameter
of ΠELVES. Then, the protocol satisfies soundness with probability 1 in the rational model described above, if
we have that 1/ε > n/ν + 1.

Proof. The expected profit of an attack is at most

ε · C − (1− ε) · ν · C/n,

which is negative under the assumption on ε.

9 Committee Size Analysis

In this section we discuss our results on the expected final committee size sf , i.e., the expected average
number of parties that verify a block, accounting for both the initial committee and all activated tranches.
We also provide explanations for Figures 1 and 2.

The parameters needed to instantiate our main protocol are: 1) the soundness failure probability ε,
2) the bound γ on the total fraction of corrupted parties, 3) the expected initial committee size s0, and
4) the expected tranche size sδ. In what follows we propose how to fix the last two parameters as functions
of the first two. For starters, we fix s0 to its bound given in Lemma 3, i.e., s0 := F (γ, sδ) · ln(1/ε).

Our choice of the tranche size sδ is bounded by the constraints 1/(1−γ) < sδ < 1/γ, coming from Lemmas
3 and 6, respectively. For γ = 1/3, for instance, we obtain the bounds 1.5 < sδ < 3. Now, notice that the
bound on the expected final committee size sf given in Lemma 6 depends on the instantiation parameters γ,
ε and sδ, as well as on the current corruption fractions α and β, and the number b of blocks processed during
the period in consideration. In the particular case that α + β = γ and b → ∞ (corresponding to a worst-
case attack during a long period of time), we have that G = 0 and the bound simplifies to the expression
sf ≤ F (γ, sδ) · ln(1/ε)/(1 − γ · sδ). For simplicity, we suggest selecting the unique value of sδ = sδ(γ) that
minimizes this particular expression. Some of these values are given in Table 1.

γ sδ sf / ln(1/ε)
1/5 2.3105 2.2737
1/4 2.1972 4.4376
1/3 2.0794 9.7767

Table 1: Value of sδ that minimizes bound given in Lemma 6, and corresponding bound on sf / ln(1/ε), for
three values of γ, assuming that α+ β = γ and b → ∞.

Once s0 = s0(γ, ε) and sδ = sδ(γ) are so fixed, notice that the bound on sf given by Lemma 6, under
the constraints α + β ≤ γ and b = Ω(n), is worst when α = 0 and β = γ. We select these values plus the
canonical value of b = n to plot Figure 1.

Now, what value of ε is “secure enough” for a realistic implementation? Consider as an example a
blockchain network maintained by n ≤ 1000 nodes, securing tokens with a combined market capitalizationM .
We consider it realistic to require nodes to have a sum of collaterals of at least 5% of M ,7 i.e., each party puts
down a collateral Ci ≥ C := ν ·M/n with ν = 0.05. By Corollary 1, we have that 1/ε > 1000/0.05+1 = 20001
is secure enough. This justifies the instantiation values proposed in Figure 2, with γ = 1/3, sδ = 2.0794, and
b = n.

10 Conclusions

We have introduced ELVES, a provably-secure efficient gadget to check the validity of blocks. Our protocol
scales essentially optimally in terms of computation, communication and storage, and can be applied on top

7For example, as of January 2024, the sum of validators’ collaterals subject to being lost as punishment in case of misbehavior,
is more than 25% of all ETH in Ethereum, and more than 40% of all DOT in Polkadot.

20

of current practical blockchain systems. In contrast to all prior scaling solutions, our gadget tolerates instant
adaptive crashes, a desirable feature due to the fact that realistic distributed DDoS attacks can be deployed
relatively fast in practice. Moreover, compared to prior sharding approaches, our protocol allows to obtain
smaller committee sizes to check the blocks. This is in part due to the fact that we consider a model where
the adversary is rational. However, note that even without the rationality argument, our synchronous model
with instant crashes allows to still obtain better numbers. In particular, for the setting with 30% corruptions
(static active or adaptive crashes), our committees have size around 400 for an error of 2−60 (compared to
state of the art solutions like Gearbox [DMM+22] that require 1000 parties).

Our gadget can also be considered a contribution to the literature of rollups. On one hand, our protocol
provides 1) a formal way to select the validators to check the blocks without relying on additional optimistic
rollup assumptions, and 2) a way to balance the load equally among the system validators, improving the
main bottleneck of ZK-rollups, which require some nodes, the operators, to have higher hardware capabilities
to generate and process the proof systems.

21

References

[AKKW19] Georgia Avarikioti, Eleftherios Kokoris-Kogias, and Roger Wattenhofer. Divide and scale: For-
malization of distributed ledger sharding protocols. arXiv preprint arXiv:1910.10434, 2019.

[DMM+22] Bernardo David, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel Tschudi.
Gearbox: Optimal-size shard committees by leveraging the safety-liveness dichotomy. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
pages 683–696, 2022.

[EGSVR16] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. {Bitcoin-NG}: A
scalable blockchain protocol. In 13th USENIX symposium on networked systems design and
implementation (NSDI 16), pages 45–59, 2016.

[KGC+18] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Edward W. Felten.
Arbitrum: Scalable, private smart contracts. In 27th USENIX Security Symposium (USENIX
Security 18), pages 1353–1370, Baltimore, MD, August 2018. USENIX Association.

[KJG+16] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and
Bryan Ford. Enhancing bitcoin security and performance with strong consistency via collective
signing. In 25th usenix security symposium (usenix security 16), pages 279–296, 2016.

[KKJG+18] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and
Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE
symposium on security and privacy (SP), pages 583–598. IEEE, 2018.

[LLZW23] Mingzhe Li, You Lin, Jin Zhang, and Wei Wang. Cochain: High concurrency blockchain shard-
ing via consensus on consensus. In IEEE INFOCOM 2023-IEEE Conference on Computer
Communications, pages 1–10. IEEE, 2023.

[LNZ+16a] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek
Saxena. A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages 17–30, 2016.

[LNZ+16b] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek
Saxena. A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages 17–30, 2016.

[LWZ23] Yi Li, Jinsong Wang, and Hongwei Zhang. A survey of state-of-the-art sharding blockchains:
Models, components, and attack surfaces. Journal of Network and Computer Applications, page
103686, 2023.

[Rab94] Tal Rabin. Robust sharing of secrets when the dealer is honest or cheating. Journal of the ACM
(JACM), 41(6):1089–1109, 1994.

[RS60] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of the
society for industrial and applied mathematics, 8(2):300–304, 1960.

[Tha] Justin Thaler. A technical faq on lasso, jolt, and recent advancements in snark de-
sign. https://a16zcrypto.com/posts/article/a-technical-faq-on-lasso-jolt-and-

recent-advancements-in-snark-design.

[WSNH19] Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. Sok: Sharding on blockchain. In
Proceedings of the 1st ACM Conference on Advances in Financial Technologies, pages 41–61,
2019.

22

https://a16zcrypto.com/posts/article/a-technical-faq-on-lasso-jolt-and-recent-advancements-in-snark-design
https://a16zcrypto.com/posts/article/a-technical-faq-on-lasso-jolt-and-recent-advancements-in-snark-design

[WW19] Jiaping Wang and Hao Wang. Monoxide: Scale out blockchains with asynchronous consensus
zones. In 16th USENIX symposium on networked systems design and implementation (NSDI
19), pages 95–112, 2019.

[XZD+23] Yibin Xu, Jingyi Zheng, Boris Düdder, Tijs Slaats, and Yongluan Zhou. A two-layer blockchain
sharding protocol leveraging safety and liveness for enhanced performance. arXiv preprint
arXiv:2310.11373, 2023.

[ZMR18] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling blockchain via
full sharding. In Proceedings of the 2018 ACM SIGSAC conference on computer and communi-
cations security, pages 931–948, 2018.

23

A Sharding Analysis for Strawman and Optimistic Paths

In this section we compute estimates of required committee sizes for the strawman sharding approach, and
its variant with optimistic paths.

In the analysis we assume there are parameters α and β such that t = α + β < 1/3, and an adversary
A that controls a fraction α of parties statically, and can make an additional fraction β of parties crash
adaptively. In particular, at any instant there are at least (1− t)n parties who are both honest and online,
hence can announce their assignments to shards. We also assume that the number of parties is n ≤ 3000, and
that they get partitioned into T subsets, each serving one shard, with an average subset size of m = n/T .

Strawman Sharding Approach. We partition parties into T subsets, each of size m. Each subset serves
a shard, and we establish the validity of a block by taking the majority vote within its shard subset. Hence,
the protocol is safe as long as each subset has an honest majority.

Fix a shard S. We model the protocol as if S samples k parties from V one by one uniformly at random.
Let Xi be a variable with value 0 if the i-th party is honest, and 1 if adversarial, and let X̄ :=

∑
i Xi/k be

the mean value. Clearly, the expected value of X̄ is α, and we can apply Hoeffding’s inequality to establish
a bound on the probability that X̄ is greater than 1/2:

P [X̄ ≥ 1/2] ≤ e−2(1/2−α)2m.

We remark that this bound is usually applied to variables with binomial distributions, and that variable
X̄ rather follows a hypergeometric distribution because the sampling was performed without replacement ;
however, this bound is known to hold for both distributions.

An advantage of this protocol is that it does not need to churn parties across shards frequently, but it
should do it from time to time in response to changes in the global party set V . If we assume that the
protocol performs a new random assignment to shards once per day, and we want adversary A to have to
wait 1000 years in expectation until any of the T shards is compromised, then we need the above value to
be bounded by ε := (365 · 1000 · T)−1, i.e.

e−2(1/2−α)2m ≤ (365 · 1000 · n/m)−1,

where we used the fact that T = n/m. For n = 3000 and α = 1/3, we obtain that each shard should be of
size m ≥ 274.

Gradual Optimistic Paths. In this approach, each party gets assigned to one of the T shards uniformly
at random, and we consider this procedure to be safe if for any shard, there is at least one honest online
party assigned to it, except with probability at most ε for an error parameter ε.

Fix a shard S: each honest online party is assigned to S independently with probability 1/T . Hence, the
probability that none of the (1− α)n honest online parties gets assigned to S is(

1− 1

T

)(1−α)n

=

[(
1− 1

T

)T
](1−α) n

T

≤ e−(1−α) n
T = e−(1−α)m,

where we recall that m = n/T , and we notice that the inequality above becomes tight for large values of
T , which is the case in this approach. If we want this probability to be at most ε, we obtain the inequality
e−(1−α)m ≤ ε.

Now, what is an adequate error parameter ε? If we do not assume an adversarial cost per attack attempt,
we propose to consider the protocol as safe if it takes the adversary A over a thousand years in expectation
to succeed in an attack. In Polkadot there are 10 slots per minute, hence A has 10T opportunities to attack
per minute, each succeeding if the corresponding shard subset is fully adversarial. If the success probability
per attack is ε := (5.26 · 109 · T)−1, then a success will take a thousand years in expectation. We obtain

e−(1−α)m ≤ ε =
(
5.26 · 109 · n

m

)−1

or, m · e(1−α)m ≥ 5.26 · 109 · n.

If α = 1/3 and n = 3000, then m ≥ 41.

24

B Delayed proofs

Proof of Lemma 5. Let X1 and X2 be the unique random variables such that a) the probability distribution
of X is the mixture of the probability distributions of X1 and X2 with weights 1 − γ and γ respectively,
and b) every sample from X1 is smaller than or equal to every sample from X2. Hence, the ranges of X1

and X2 intersect in at most value, namely the (1 − γ)-quantile of X. Clearly, as n grows the empirical
distribution of the n sampled values converges to the distribution of X, and in turn the distribution of the
γn highest-valued samples converges to the distribution of X2. Hence, E[YN,γ] converges to E[X2].

In fact, we claim that E[Yn,γ] ≤ E[X2] for any n, i.e., this expectation is bounded by its limit. To see
this, consider running the experiment twice: given two sets of n values {xi}i∈[1,n] and {xi}i∈[n+1,2n] sampled
independently from X, if {xi}i∈I and {xi}i∈I′ are respectively their subsets of γn highest-valued samples,
we see that their union {xi}i∈I∪I′ is of size 2γn, but does not necessarily contain the 2γn highest-valued
samples within {xi}i∈[1,2n]. This proves that E[Yn,γ] ≤ E[Y2n,γ], and hence proves the claim.

Assuming without loss of generality that E[X] = 0, the statement follows from the previous claim and
the fact that E[X2] ≤

√
(1− γ)Var[X]/γ, which is our second claim that we prove next. To this end, we

express the expectation and variance of X in terms of those of its mixture components. We have

E[X] = E[(1− γ)X1 + γX2]

= (1− γ) E[X1] + γ E[X2] = 0, so

E[X1] = − γ

1− γ
E[X2]. (4)

Similarly, the formula for the variance gives

Var[X] = E[X2] = (1− γ) E[X2
1] + γ E[X2

2]

= (1− γ)(Var[X1] + E2[X1]) + γ(Var[X2] + E2[X2])

≥ (1− γ) E2[X1] + γ E2[X2]

= (1− γ) · γ2

(1− γ)2
E2[X2] + γ E2[X2]

=
γ

1− γ
E2[X2],

proving the second claim, and where the applied identity (4).

25

	Introduction
	Our Contributions

	Technical Overview
	Related Work

	Preliminaries
	Model
	Clocks and Network
	State Machine Replication Resource

	Availability Scheme
	Protocol Description

	Approval Scheme
	Committee-Election Functionality
	Protocol Description
	Security Analysis
	Proof of Completeness
	Proof of Identification
	Proof of Soundness

	ELVES Protocol
	Protocol Description
	Security Analysis
	Proof of Completeness
	Proof of Availability
	Proof of Soundness
	Proof of Identification
	Proof of Accountable High Bandwith

	Rational Model and Analysis
	Committee Size Analysis
	Conclusions
	Sharding Analysis for Strawman and Optimistic Paths
	Delayed proofs

