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Abstract

The Learning with Errors problem (LWE) and its variants are among the
most popular assumptions underlying lattice-based cryptography. The Learning
with Rounding problem (LWR) can be thought of as a deterministic variant of
LWE. While lattice-based cryptography is known to enable many advanced con-
structions, constructing Fully Homomorphic Encryption schemes based on LWR
remains an under-explored part of the literature. In this work, we present a thor-
ough study of Somewhat Homomorphic Encryption schemes based on Ring-LWR
that are the analogue of the Ring-LWE-based BFV scheme. Our main contribu-
tion is to present and analyse two new schemes, in the LPR and Regev paradigms.
The Regev-type scheme can be seen as a generalisation of the only prior work
in this direction (Costache-Smart, 2017). Both our schemes present several im-
provements compared to this prior work, and in particular we resolve the“tangled
modulus” issue in the Costache-Smart scheme that led to unmanageable noise
growth. Our schemes inherit the many benefits of being based on LWR, includ-
ing ease of implementation, avoiding the need for expensive Gaussian sampling,
improved resistance to side channels, suitability for hardware, and improved ci-
phertext size. Indeed, we give a detailed comparison showing that the LPR and
Regev-type schemes marginally outperform the BFV scheme in terms of cipher-
text size. Moreover, we show that both our schemes support RNS variants, which
would make their practical performance competitive with BFV.
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1 Introduction

Homomorphic Encryption.

Fully Homomorphic Encryption (FHE) [1] is an advanced cryptographic primitive
that supports computations on ciphertexts without revealing any information about
the underlying plaintexts. All known constructions of FHE are based on augmenting
a Somewhat Homomorphic Encryption (SHE) scheme, which supports computation
of circuits up to a certain depth, with bootstrapping, a process which refreshes ci-
phertexts so as to enable further computations. In applications where the circuit to
be homomorphically evaluated is known in advance, SHE can be sufficient and indeed
more efficient, as bootstrapping can be a very costly operation.

Homomorphic encryption schemes can be divided into four generations. The first
generation of schemes includes Gentry’s original scheme [1, 2]. The second generation
schemes includes the BFV and BGV schemes [3–6]. These schemes have been exten-
sively optimised [7–9] and are widely used and implemented [10–13], most often in the
SHE setting. These schemes tend to have a very slow bootstrapping operation, but
have very good Single Instruction Multiple Data (SIMD) properties. The third gener-
ation of FHE schemes began with the GSW scheme [14], and continued with the line
of work of [15, 16]. In contrast to the second generation schemes, these schemes sup-
port very fast bootstrapping, but have very low SIMD capabilities. Finally, the fourth
generation of schemes includes the approximate scheme CKKS [17]. These schemes
behave similarly to the second generation ones, with slow bootstrapping and very high
SIMD capabilities, but they are approximate.

Learning with Errors in FHE.

The Learning with Errors problem (LWE) [18], and its structured variants, such as
Ring-LWE [19, 20], are widely used hardness assumptions in lattice-based cryptogra-
phy [14, 21–23]. The most widely used homomorphic encryption schemes, including
those that are being considered for standardisation [10], all base their security on the
Ring Learning with Errors problem (Ring-LWE).

Learning with Rounding - an alternative to Learning with Errors.

The Learning with Rounding (LWR) problem was introduced by Banerjee et al. [24]
as a deterministic alternative to LWE and its variants. In this work, we focus on its
ring variant, Ring-LWR [24]. We provide an informal definition below.

The Decision Ring-LWR problem for q > p in the rings Rq = Zq[x]/(xn + 1) and
Rp = Zp[x]/(xn + 1), denoted Decision Ring-LWRn,q,p, asks to distinguish uniformly
random pairs of elements (a, b) ∈ Rq × Rp from pairs sampled from the distribution
that outputs (a, b = ba · seq,p) ∈ Rq × Rp where a ∈ Rq is uniformly random, s ∈ Rq
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is a secret polynomial, and the rounding operation is defined (coefficient-wise) as

bxeq,p :=
⌊
p
qx
⌉
.

The focus of this paper is to present new SHE schemes whose security is based
on the hardness of Ring-LWR. Our schemes can be seen as analogues of the second-
generation BFV scheme [6], and most optimisations that can be applied to BFV
naturally extend to our schemes.

Why Learning with Rounding?

A key benefit of exploring LWR-based FHE is the potential applicability to hardware
acceleration. Hardware acceleration has been an important recent direction towards
making FHE practical [25–30], as it can improve the performance of computationally
heavy operations such as bootstrapping [26, 29] and enable highly parallelised RNS
computations [27, 30]. We expect LWR-based FHE schemes to be amenable to hard-
ware acceleration, since they inherit many of the properties that have been shown to
be for public-key encryption and key encapsulation acceleration [31].

A further benefit is improved bandwidth in LWR-based schemes compared to their
LWE-based counterparts [32]. Bandwidth efficiency is critical in FHE applications such
as Private Information Retrieval [33] or Private Set Intersection [34], which typically
require the transmission of many ciphertexts to reduce computational cost.

More generally, LWR-based schemes can be preferred to their LWE-based ana-
logues for several other reasons. For example, using rounding avoids the need for
Gaussian noise sampling, which can be expensive [35], and vulnerable to side channel
attacks [36–43]. In addition, the rounding function is easy to implement: for example,
if q and p are both chosen as powers of 2, as in [44–46], then rounding corresponds to
simply dropping the least significant bits.

Several candidates in the NIST post-quantum standardisation process used LWR
for their underlying hardness assumption, including Lizard [45], Round 5 [44], as well
as the third-round finalist Saber [46]. While LWE enables many advanced construc-
tions, including for example attribute-based encryption [47], counterparts based on
LWR or its variants have not been as well explored. To the best of our knowledge, apart
from homomorphic encryption [35, 48, 49], only identity-based encryption [50, 51] has
been studied.

The open problem.

Costache and Smart gave the first proposal of an SHE construction based on an
LWR assumption [35]. As observed in [48, 49], the proposal suffers from the so-called
“tangled modulus” problem which leads to unmanageably large noise growth.

To describe the main issue with the construction, we note that the Costache-Smart
scheme is BFV-like and thus introduces the parameter ∆p :=

⌊
p
t

⌋
= p

t − εp, where
0 ≤ εp < 1, p is one of the ciphertext moduli, and t is the plaintext modulus. The
parameter ∆p is used in encryption to put the message in the high-order bits. Then,
ciphertexts of the Costache-Smart scheme are of the form:
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(ct0, ct1) =

(∑̀
k=1

rk · vk,∆p ·m+
∑̀
k=1

rk · wk

)
∈ Rq ×Rp,

where m ∈ Rt is a message, the rk’s are uniform random bits from {0, 1}, and the
public key is given by the ` pairs (vk, wk) ∈ Rq×Rp. The issue arises in homomorphic
multiplication, which is also analogous to BFV multiplication. Namely, when multiply-
ing two ciphertexts (ct0, ct1) and (ct′0, ct

′
1), we obtain an intermediate ciphertext of

the form (ct0ct
′
0, ct0ct

′
1 + ct′0ct1, ct1ct

′
1), scaled by an appropriate amount, which

is chosen in [35] to be 1/∆p.
In [35], it is not explicitly stated to which ring any component of the intermediate

ciphertext should correspond. Luo et al. [48] assert, for example, that the ct0ct
′
0

component should be interpreted modulo q. In this case, when calculating the noise
growth in multiplication, we would lift to R and manipulate an object of the form
ct0ct

′
0 +kq where k is a polynomial with integer coefficients. This leads to noise terms

including a factor of k. We cannot tightly bound k, and the worst-case bound is very
large. This leads Luo et al. [48] to conclude that presenting a homomorphic encryption
scheme from LWR assumptions that is analogous to BFV is not possible. In this work
we are able to present such a scheme, resolving the previously open problem.

Our contribution.

In this work, we present a thorough study of BFV-like SHE schemes based on Ring-
LWR. These can be seen as analogous of the second generation (R)LWE-based SHE
schemes. Our main contributions are:

• We introduce the first practical SHE schemes based on Ring-LWR: an LPR-type [19]
scheme and a Regev-type [18] scheme, that are comparable with BFV in terms of
parameters. Indeed, both our LPR-type and Regev-type schemes have ciphertexts of
the same form, and we show that the homomorphic operations and noise analyses are
entirely analogous to those in BFV. Additionally, we give a thorough theoretical and
concrete security analysis of both schemes, and a proof of concept implementation
of the LPR-type scheme.

• We resolve open problems from prior work [48], demonstrating the tractability of a
BFV-like HE scheme from LWR assumptions, and avoiding the “tangled modulus”
issue. [35]

• We show that ciphertext sizes (and thus bandwidth in applications) are improved by
either our LPR-type scheme, Regev-type scheme, or both (depending on the choice
of plaintext modulus), by providing a comparison between our schemes and the BFV
scheme in terms of ciphertext size (see Section 6). Both our schemes also inherit the
other benefits of using LWR, including amenability to hardware acceleration, and
avoiding the need for Gaussian sampling that is expensive and vulnerable to side
channel attacks.

• We demonstrate, perhaps surprisingly, that both of our schemes support RNS
variants, which would make their practical performance comparable with exist-
ing implementations of BFV. Using an RNS variant incurs one bit of additional
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noise compared to using the original schemes, exactly in analogue to the RNS-BFV
scheme given in [52].

1.1 Overview of technical contributions

1. The LPR-type scheme.

We make use of four moduli r > q > p > t, where t is the plaintext modulus. The
public key consists of one Ring-LWRn,r,q sample, (a, b) = (a, ba · ser,q) ∈ Rr ×Rq. To
encrypt a message m ∈ Rt, we encode it in the high order bits and add it to a rounded
randomised public key: ct = (ct0, ct1) = (ba · uer,q, bb · ueq,p + ∆p ·m) ∈ Rq × Rp,
where u ∈ R is a polynomial with coefficients from {−1, 0, 1}. To decrypt, one can
check that t

p (ct1 − p
q · s · ct0) = m + N + t ·G ∈ Q[X]/(Xn + 1), with G an integer

polynomial and ‖N‖ < 1/2 in infinity norm. To recover m ∈ Rt we round off the noise
N and interpret the result modulo t.

Suppose that we are multiplying (ct0, ct1) with (ct′0, ct
′
1). If we try to mimic

BFV ciphertext multiplication, we have to compute a “tensor product” of the form

(c2, c1, c0) = (ct0ct
′
0, ct0ct

′
1 + ct′0ct1, ct1ct

′
1),

and scale it appropriately. We want the above to satisfy the following equation

t

p

[(
p

q

)2

c2s
2 − p

q
c1s+ c0

]
= mmult +Nmult + tGmult ,

with a small noise polynomial Nmult with rational coefficients. In this context, because
ciphertexts components correspond to different moduli p, q it is not clear in which ring
we should compute (c2, c1, c0) to have a guaranteed small noise Nmult. To this end,
we introduce explicit moduli for the intermediate computation of (c2, c1, c0) and we
give a careful analysis of the noise. More concretely, we show that if the c2 component
is interpreted modulo q2/p, the c1 component is interpreted modulo q, and the c0
component is interpreted modulo p, then there is no uncontrollable noise growth in
multiplication. This approach thus addresses the “tangled modulus” [49] issue present
in [35].

Another technical issue when adapting from Ring-LWE to Ring-LWR arises in the
security proof. The IND-CPA security argument in the original LPR scheme [19] can
be made through a series of hybrid games. First, the public-key is indistinguishable
from uniformly random ring elements by the decision Ring-LWE assumption. Then,
assuming the public-key is uniform, ciphertexts are indistinguishable from random
ring elements, by again invoking the decisional Ring-LWE assumption. When trying
to apply the same strategy for proving the IND-CPA security for our Ring-LWR based
LPR-type scheme (Theorem 2), we can easily do the first transition. We can assume
that the public key (a, b) is uniformly random in Rr × Rq by the Ring-LWRn,r,q as-
sumption. To prove that ciphertexts are indistinguishable from random, in the second
part of the argument, it is sufficient to argue that (ba · uer,q, bb · ueq,p) is uniformly
random in the eyes of an adversary that knows the public key. Informally, we would
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like tuples (a, b, ba · uer,q, bb · ueq,p), where a← Rq, b← Rp and u is a uniform poly-
nomial with coefficients in {−1, 0, 1}, to be computationally indistinguishable from
the uniform distribution on Rr × Rq × Rq × Rp. This is what we call the 3-moduli
Ring-LWRn,r,q,p problem. In Theorem 1, we give a tight reduction from the Ring-
LWRn,r,q problem to the 3-moduli Ring-LWRn,r,q,p problem under the constraints
q|r and pr = q2. Hence we prove IND-CPA security for our scheme relying solely on
the decisional Ring-LWRn,r,q assumption. Considering that powers of two moduli are
preferred for rounding efficiently, these constraints for the security proof are not a
concern.

2. The Regev-type scheme.

This can be seen as a generalisation of the Costache-Smart proposal [35], where the
encryption randomness rk can be chosen from any finite set of polynomials X ⊆ R =
Z[x]/(xn + 1), with coefficients within some predetermined bound, not necessarily
restricted to X = {0, 1}. The scheme uses three moduli q > p > t, where again t is
the plaintext modulus. The public-key consists of ` pairs of Ring-LWRn,q,p samples
{(vk, wk = bvk ·seq,p)}`k=1, constructed under the same secret s. To encrypt a message
m ∈ Rt, we sample ` random ring elements rk ← X, encode the message in the
high order bits and compute: ct = (ct0, ct1), ct0 =

∑`
k=1 rk · vk ∈ Rq and ct1 =∑`

k=1 rk ·wk+∆p ·m ∈ Rp. Decryption is the same as in the LPR-type scheme above.
We provide an IND-CPA security proof that is based solely on the decisional Ring-

LWRn,q,p assumption for our Regev-type scheme (Corollary 2). We proceed as in any
Regev-type scheme: first, we replace the public-key pairs with ` uniformly random
elements from Rq ×Rp, by invoking the decisional Ring-LWRn,q,p assumption. Next,
we use a Leftover Hash Lemma (LHL) [53] argument to prove that the ciphertext is
uniformly random.

The reason that we use an enlarged randomness set X is that it allows us to apply
a variant of LHL for much smaller values of ` ≈ log(pq), (see Corollary 2) compared to
the case when X = {0, 1}, which requires ` ≈ n log(pq) (see Corollary 1). To this end
we develop a suitable LHL approach in Theorem 3. The improved bounds on ` are a
result of adapting [54, Lemma 4] to our two-ring setting and using [55, Corollary 1.2].
In particular, the enlarged set X allows us to have provable security based solely on
Ring-LWRn,q,p, for smaller values of `, which translates to smaller public key size.

For the Regev-type scheme, the proof of Theorem 4 involves the two-ring Decision
Knapsack Problem (2DKS) that we introduce in Definition 9. The 2DKS problem
is inspired by the single-ring knapsack problem considered in [54], and in fact we
can show these problems are equivalent (see Appendix E). In Theorem 3 we show
that 2DKS is statistically indistinguishable from uniform under certain parameter
constraints.

3. RNS variants of our schemes.

In practice, the most performant implementations of BFV use an RNS variant [52,
56, 57] that enables to avoid handling very large ciphertext polynomial coefficients
(of size hundreds of bits). In RNS-BFV, the ciphertext modulus q is chosen to be
a product of smaller coprime moduli q =

∏
i∈I qi, where each qi can for example
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be chosen to be word-size to enable more efficient operations. In our case, we have
two ciphertext moduli, and so we would accordingly wish to take q =

∏
i∈I qi and

p =
∏
j pj∈J for pairwise coprime qi and pj . Importantly, and perhaps surprisingly,

we show that it is not necessary for p and q themselves to be coprime. Indeed, we
present RNS variants for both our LPR-type and Regev-type scheme in parameter
settings that meet the requirements for our security proofs: namely, for p =

∏
j pj

for pairwise coprime pj , we can choose q = 13p, respectively q = 16p, for the Regev-
type scheme (c.f. Corollary 2), respectively the LPR-type scheme (c.f. Theorem 1. For
these parameters, we show that the techniques of [52] can either be directly applied,
or slightly modified, to achieve RNS variants of our schemes. Our RNS variants have
the same one bit of noise overhead compared to their non-RNS counterparts as the
RNS-BFV of [52] does compared to the original BFV scheme, and should achieve the
corresponding performance benefit.

4. Additional contributions.

In our schemes, we further improve upon [35] by adapting the scaling in decryption and
multiplication from 1/∆p to t/p. This removes unnecessary noise terms coming from
rounding errors and leads us to define an invariant noise for our schemes, analogous to
the definition proposed in [13, 58]. The invariant noise N for the ciphertext (ct0, ct1)
that encrypts the message m modulo t is the minimal polynomial such that

t

p

(
−p
q
ct0s+ ct1

)
= m+N + tG,

for some integer polynomial G. Using this definition of noise, we show that our noise
growth is completely analogous to the BFV formulas.

We not only look at provable security, but also consider the concrete security of
the underlying assumptions under the best known attacks. Thus we can either choose
parameters that instantiate the schemes in a provably secure parameter setting, or
we can choose parameters according to concrete cryptanalysis for better performance.
In particular, we consider 2DKS in a parameter range that is outside the constraints
required for statistical hardness. Our study of concrete security enables us to suggest
example parameter sets for our schemes that target 128-bit security.

As an additional contribution, we compare our schemes against the BFV scheme.
We have implemented our LPR-type scheme, but our implementation is only a proof-
of-concept, so we choose not to compare runtime performance. Instead, as in [58, 59],
we chose to compare the schemes by their ciphertext size. This is because a large
ciphertext size will incur the largest overhead, both in terms of memory and latency.
Our comparison follows the methodology in [58, 59]. We pick a circuit of ζ = 8
additions and L multiplications, and look at the smallest parameter set required for
each of the schemes to correctly evaluate this circuit for a given plaintext modulus.
We present our results for different choices of plaintext modulus t in Tables 6, 7, 8,
9, 10, 11, and 12. The results show that the LPR and Regev-type schemes marginally
outperform the BFV scheme in terms of ciphertext size.

We believe that the new problems 2DKS and 3-moduli Ring-LWR that we intro-
duce will be of independent interest. For example, our LPR-type scheme is reminiscent
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of recent LWR-based schemes, including Saber, and our techniques may be applicable
for these schemes. The original security proof of Saber [46, Theorem 3] relies on two
separate Module-LWR assumptions, which could perhaps be simplified to only one, via
a 3-moduli Module-LWR assumption (as for our Theorem 2). We briefly investigated
this for Saber, and found that our approach would either imply worse parameters
than Saber uses, or we would not be able to reduce the introduced 3-moduli assump-
tion into a standard LWR assumption (as for our Theorem 1), so we did not pursue
this further. Nevertheless, it would be interesting to investigate the applicability of
3-moduli LWR assumptions in other contexts.

1.2 Related work

Aside from the work of Costache and Smart [35], two other prior works [48, 49] have
proposed homomorphic encryption schemes based on LWR assumptions, neither of
which target similarity to BFV or BGV. An LWR-based scheme in the style of GSW
was given in [49]. In [48], Luo et al. proposed a Ring-LWR-based scheme, which is
based on Dual Regev encryption [60]. In Table 1 we present a comparison of our
schemes with the BFV scheme [6] and the LWWC scheme [48]. It can be seen that
ciphertexts in our scheme are slightly smaller than in BFV, while those in LWWC
are asymptotically much larger. The relinearization keys in our LPR-type scheme are
also smaller than in BFV and LWWC. Bootstrapping techniques for BGV/BFV have
been presented in [61–65]. We defer the exploration of bootstrapping of our schemes
to future work.

2 Preliminaries

2.1 Notation

For a finite set X, we write x← X to mean sampling x uniformly at random over X.
For a vector x ∈ Cn, its infinity norm ‖ · ‖ is defined as ‖x‖ = maxi |xi|.

2.2 Parameters

Our Ring-LWR-based schemes are parameterised by n, t, p, q, and (optionally) ω. The
dimension n is a chosen to be power of two. The dimension n, the plaintext modulus t
and the ciphertext moduli q > p parameterise the underlying plaintext and ciphertext
rings. The plaintext space is Rt = Zt[x]/(xn + 1). The ciphertext space is given by
Rq × Rp where Rq = Zq[x]/(xn + 1) and Rp = Zp[x]/(xn + 1). The schemes support
the variant of relinearization that decomposes a ciphertext component with respect
to a base ω.

We refer to our first scheme as LPR-type as it follows the public-key encryption
(PKE) scheme of [19]. The LPR-type scheme requires an additional modulus r > q
to define the public key. We refer to our second scheme as Regev-type as it follows
the PKE scheme of [18]. The public key in the Regev-type scheme is composed of `
encryptions of zero. The secret key in both schemes is typically taken to be small, e.g.
with uniform ternary coefficients. Encryption in the Regev-type scheme is done by
taking a random subset sum of the public key, where the randomness is chosen from
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a finite subset X ⊆ R = Z[x]/(xn + 1). For a positive integer B, we will be interested
in the set X = SB/2, where SB/2 := {−B/2, . . . , B/2} is the set of integer scalars
bounded by B/2; and the set X = PB/2, denoting the set of polynomials modulo
xn + 1 with integer coefficients bounded by B/2.

Both schemes are BFV-like [6] and the parameter ∆p :=
⌊
p
t

⌋
= p

t − εp, such that
0 ≤ εp < 1, is used in encryption to put the message in the high order bits. We define
the rounding operation that maps from Rq to Rp as bxeq,p := bpq · xe = p

qx+ ε where

the coefficients of ε ∈ R are in
(
− 1

2 ,
1
2

]
.

2.3 Problem definitions

The Learning with Errors (LWE) problem was introduced by Regev [18].
Definition 1 (LWE distribution). Let n and q be positive integers, χ be a proba-
bility distribution on Z, and s be a secret vector in Znq . The LWE distribution with
parameters n, q, χ (denoted by LWEn,χ,q) is the probability distribution on Znq × Zq
obtained by choosing a ∈ Znq uniformly at random, sampling e from χ and considering
it modulo q, and returning (a, b) = (a, 〈a, s〉+ e) ∈ Znq × Zq.
Definition 2 (LWE problem). Decision LWEn,χ,q is the problem of deciding whether
pairs (a, b) ∈ Znq ×Zq are sampled from the LWEn,χ,q distribution for a fixed s or the
uniform distribution on Znq ×Zq. Search LWEn,χ,q is the problem of recovering s from
samples (a, b) sampled from the LWEn,χ,q distribution.

The Learning with Rounding (LWR) problem was introduced by Banerjee et al. [24]
as a derandomised version of the LWE problem. Ring variants of these problems,
known as Ring-LWE [19, 20] and Ring-LWR [24], can also be defined. We give a
definition for Ring-LWR in the power-of-two cyclotomic setting.
Definition 3 (Ring-LWR distribution). Let n be a power of two and q ≥ p be integers.
For s ∈ Rq, define the Ring-LWR distribution with parameters n, q, p (denoted by
Ring-LWRn,q,p) as the distribution over Rq×Rp obtained by choosing a ∈ Rq uniformly
at random and returning (a, b = ba · seq,p).
Definition 4 (Ring-LWR problem). Decision Ring-LWRn,q,p is the problem of de-
ciding whether pairs (a, b) ∈ Rq × Rp are sampled according to the Ring-LWRn,q,p

distribution for a fixed s ∈ Rq or the uniform distribution on Rq × Rp. Search
Ring-LWRn,q,p is the problem of recovering s from samples (a, b) sampled from the
Ring-LWRn,q,p distribution.

2.4 Leftover Hash Lemma

We will use the Leftover Hash Lemma [53].
Definition 5 (Family of universal hash functions). A finite family H of functions
h : X → Y is universal if Prh←H[h(x1) = h(x2)] = 1

|Y | , for any x1 6= x2 ∈ X.

Lemma 1 (Leftover Hash Lemma [53, Lem 2.1]). Let X, Y denote finite sets.
Let H be a universal family of functions h : X → Y . Then for h ← H, x ← X, and

y ← Y , we have ∆
(

(h, h(x)), (h, y)
)
≤ 1

2

√
|Y |/|X|.
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2.5 Canonical embedding norm

Following previous works [8, 9, 58, 59, 66], we will present heuristic bounds for the noise
growth behaviour of our schemes with respect to the canonical embedding norm ‖·‖can

,
using the methodology of Iliashenko [66]. Throughout this work, for a polynomial
a ∈ R, the notation ‖a‖ refers to the infinity norm of (the coefficient vector of) a,
while ‖a‖can

refers to the canonical embedding norm. The canonical embedding norm
of an element a is defined to be the infinity norm of the canonical embedding1 σ(a)
of a, so ‖a‖can

= ‖σ(a)‖.
We will use the following properties of the canonical embedding norm. For any

polynomial a ∈ R we have ‖a‖ ≤ c2n ‖a‖can
, where c2n is a constant known as the ring

expansion factor [68]. We have c2n = 1 when the dimension n is a power of two [68].
In this case, it suffices for correctness to ensure that ‖v‖can

is less than the maximal
value of ‖v‖ such that decryption succeeds. For any polynomials a, b ∈ R we have
‖ab‖can ≤ ‖a‖can ‖b‖can

.
Let R = Z[x]/(xn + 1) and let ζ be a primitive 2nth root of unity (by definition

of the canonical embedding norm, it does not matter which one). Let a ∈ R be a
polynomial for which the variance of each coefficient is Va. Then, the variance of the
random variable a(ζ) is nVa [9, 59, 66]. We use the fact that erfc(6) ≈ 2−55 to obtain
the following bound ‖a‖can ≤ 6

√
n
√
Va.

We also use the following facts. Let Va and Vb be the variances of the coefficients
of two polynomials a ∈ R and b ∈ R chosen from zero-mean distributions, and let γ be
a constant. The variance of the coefficients of the polynomial a+ b is Va+b = Va + Vb.
The variance of the coefficients of the polynomial γa is Vγa = γ2Va for a fixed scalar
γ. In particular, Vεpm = ε2pVm. The variance of the coefficients of the polynomial ab
is Vab = nVaVb (see [66] for a proof), assuming that the polynomials a and b are
independent, and that their coefficients are independently distributed.

We also make use of the following facts. The coefficients of a polynomial f that

are distributed uniformly in {−k2 , . . . ,
k
2} have variance Vf ≈ k2

12 . The coefficients of
a polynomial ε that are distributed uniformly in (− 1

2 ,
1
2 ] have variance Vf = 1

12 . The
coefficients of a polynomial s that are drawn from the uniform distribution on the
ternary set {−1, 0, 1} have variance Vs = 2

3 .

3 An LPR-type SHE scheme based on Ring-LWR

We first define an LPR-type [19] SHE scheme based on Ring-LWR, as in the BFV
scheme itself [6]. The security proof of our scheme assumes the hardness of the Ring-
LWR problem, as well as the hardness of a variant of the Ring-LWR problem that we
call 3-moduli Ring-LWR. A 3-moduli Ring-LWR looks like two Ring-LWR samples
that share the same secret, but are computed in different rings that make use of three
different moduli. We show in Section 3.5 that the 3-moduli Ring-LWR problem is at
least as hard as the Ring-LWR problem.

In our presentation of the scheme, we omit levelled notation for clarity of expo-
sition. The scheme still permits a modulus switching operation for efficiency, but we
delay the presentation and analysis to Section D.

1For a definition of the canonical embedding and other algebraic background, see [67].
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Our LPR-type SHE scheme is similar to the LWR-based PKE schemes submitted
to the NIST post-quantum standardisation process (see e.g. [44–46]). The scheme is
parameterised by four moduli r > q > p > t, where r and q will be the moduli
in the public key Ring-LWR instance, p and q will be the ciphertext moduli, and t
will be the plaintext modulus. In particular, the plaintext space is Rt, where we take
the coefficient representatives as being in the set {− t

2 , . . . ,
t
2}. We recall the notation

bxeq,p :=
⌊
p
qx
⌉
, and note that we can rewrite this as bxeq,p = p

qx+ ε. In this section,

all equations are implicitly modulo the polynomial xn + 1.

3.1 Public-key encryption scheme

Key Generation.

The secret key sk := s ← Rr is chosen to be small, for example uniform ternary.
The public key pk := (pk0, pk1) ∈ Rr × Rq is a Ring-LWR sample formed as follows.
Sample a← Rr uniformly at random, and set (pk0, pk1) = (a, ba · ser,q).

Encryption.

For m ∈ Rt and pk = (pk0, pk1) ∈ Rr × Rq. Let ∆ := bpt c = p
t − εp where 0 ≤ ε < 1.

The ciphertext ct := (ct0, ct1) ∈ Rq × Rp is obtained as follows. Sample u ← Rr
from the secret distribution. Set ct0 = bpk0uer,q and ct1 = bpk1ueq,p + ∆m.

Decryption.

For ct = (ct0, ct1) ∈ Rq ×Rp and secret key s, output

m′ =

⌊
t

p

(
−p
q
ct0s+ ct1

)⌉
(mod t) .

3.2 Correctness

Consider the decryption of a fresh ciphertext:

m′ =

⌊
t

p

(
−p
q
ct0s+ ct1

)⌉
(mod t)

=

⌊
− t
q
sbpk0uer,q +

t

p
bpk1ueq,p +

t

p
∆m

⌉
(mod t)

=

⌊
− t
r

(pk0)us− t

q
ε0s+

t

q
(pk1)u+

t

p
ε1 +

t

p
∆m

⌉
(mod t)

=

⌊
− t
r
aus− t

q
ε0s+

t

q

(q
r
as+ ε

)
u+

t

p
ε1 +

t

p

(p
t
− εp

)
m

⌉
(mod t)

= m+

⌊
− t
q
ε0s+

t

q
εu+

t

p
ε1 −

t

p
εpm

⌉
(mod t) .

where ε0 and ε1 are the errors arising from the rounding. Thus decryption outputs
m′ = m (mod t) if b− t

q ε0s+ t
q εu+ t

pε1 −
t
pεpme = 0.
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Definition of noise.

The structure of decryption above motivates the definition of noise N in a ciphertext
ct = (ct0, ct1) as the polynomial of minimal infinity norm among all the polynomials
for which there exists an integer polynomial G such that

t

p

(
−p
q
· ct0 · s+ ct1

)
= m+N + tG .

For correctness, we always require ‖N‖ < 1/2. This definition is analogous to the
invariant noise definition for BFV as in [13, 58].

3.3 Homomorphic operations

Noise in a fresh ciphertext.

The argument of Section 3.2 shows that the noise Nfresh in a fresh ciphertext is given
by

Nfresh = − t
q
ε0s+

t

q
εu+

t

p
ε1 −

t

p
εpm.

In the noise expression, s and u are uniform with coefficients in {−1, 0, 1} and we model
ε, ε0, and ε1 with coefficients as uniform over (− 1

2 ,
1
2 ]. We also model the plaintext

m as having coefficients uniform over {− t
2 , . . . ,

t
2}. Let Vfresh denote the coefficient

variance of Nfresh. Using Section 2.5, we can bound ‖Nfresh‖can ≤ 6
√
nVfresh, so that

‖Nfresh‖can ≤ t ·

√
4n2

q2
+

3n

p2
·
(

1 + t2ε2p

)
.

Addition.

Let ct = (ct0, ct1) and ct′ = (ct′0, ct
′
1) be ciphertexts encrypting m and m′ with

noises N and N ′ respectively. Define the output of homomorphic addition as ctadd :=
(ct0,add, ct1,add) where ct0,add = ct0+ct′0 (mod q) and ct1,add = ct1+ct′1 (mod p).
Then ctadd encrypts m + m′ (mod t) with noise Nadd := N + N ′. To see this, we
note that for some integer polynomials A and B, and for the integer polynomial
C := B −As, we have

t

p

(
−p
q
ct0,adds+ ct1,add

)
=
t

p

(
−p
q
ct0s+ ct1

)
+
t

p

(
−p
q
ct′0s+ ct′1

)
+ tC

= m+m′ + (N +N ′) + t(G+G′ + C) .

Multiplication.

Let ct = (ct0, ct1) and ct′ = (ct′0, ct
′
1) be two ciphertexts which encrypt plaintexts

m and m′ with noise N and N ′ respectively. We define the output of the multiplication
of ct and ct′ as:

(c2, c1, c0) =

([⌊
t

p
ct0ct

′
0

⌉]
q2/p

,

[⌊
t

p
(ct0ct

′
1 + ct′0ct1)

⌉]
q

,

[⌊
t

p
ct1ct

′
1

⌉]
p

)
.

12



In this expression, we give an explicit modular reduction for each component ci. In
particular, this enables us to tightly bound the size of each component. While a
definition is possible without these explicit modular reductions, it may lead to larger
intermediate terms, which would lead to a larger evaluation key.

Abusing notation, we can treat this intermediate (c2, c1, c0) as a ciphertext that
encrypts mmult := m ·m′ (mod t). In particular, we can define a decryption operation
for (c2, c1, c0) as follows:

m̃ =

⌊
t

p

[(
p

q

)2

c2s
2 − p

q
c1s+ c0

]⌉
,

where s2 is the square of the secret key. We can hence define the noise Nmult in
(c2, c1, c0) as the polynomial of minimal infinity norm for which there exists some
integer polynomial Gmult such that,

t

p

[(
p

q

)2

c2s
2 − p

q
c1s+ c0

]
= mmult +Nmult + tGmult .

It can be seen from the form of the decryption expression that the specified moduli
for each of the components c2, c1, c0 is the natural choice, in the sense that if we
make the modular reduction explicit in each component when analysing the noise,
the arising terms will result as summands in the expression for Gmult and disappear
modulo t. In Section B we will show that

Nmult = NN ′ + (m′ + tG′)N + (m+ tG)N ′ +
tp

q2
ε2s

2 − t

q
ε1s+

t

p
ε0

and that this can be bounded as

‖Nmult‖can ≤ ‖N‖can · ‖N ′‖can
+ t ·

√
2n2 + 3n ·

(
‖N‖can

+ ‖N ′‖can)
+
tp

q2
· 4
√

3 · n3/2 + t ·

√
2n2

q2
+

3n

p2
.

Relinearization (decomposition).

The goal of relinearization is to turn a three-element intermediate (c2, c1, c0) encrypt-
ing a message m that is output from multiplication into a two-element ciphertext
ctrelin = (ct0,relin, ct1,relin) encrypting the same message. Let ω be a base, and write

c2 in base ω as c2 =
∑k

j=0 c
(j)
2 ·ωj , for some integer k and for some integer polynomi-

als c
(j)
2 with coefficients in {−ω2 , . . . ,

ω
2 }. Since c2 is taken modulo q2/p, we have that

k =
⌈
logω

q2

2p

⌉
. The evaluation key evk at level (q, p) is given by k+ 1 pairs (aj , bj) for

13



0 ≤ j ≤ k, where aj is chosen uniformly at random from Rq and bj ∈ Rp is given by

bj =
⌈
ajs
⌋
q,p

+

⌈
p2

q2
ωjs2

⌋
(mod p) .

We then define ctrelin = (ct0,relin, ct1,relin) as ct0,relin = c1 +
∑k

j=0 c
(j)
2 aj (mod q)

and ct1,relin = c0 +
∑k

j=0 c
(j)
2 bj (mod p).

Let relinearization be applied to an intermediate (c2, c1, c0) encrypting m with
noise N . Then we show in Section C that ctrelin encrypts m with noise Nrelin =

N + t
p

∑k
j=0 c

(j)
2 (ε1 + ε2); where ε1 and ε2 are rounding errors arising from the two

instances of rounding in the evaluation key. Moreover, the noise Nrelin can be bounded
as

‖Nrelin‖can ≤ ‖N‖can
+
t

p
· 6n

√
(k + 1) · 1

6
· ω

2

12
.

Modulus switching.

This technique is typically used in homomorphic encryption to optimise the execution
of homomorphic operations and to reduce parameter sizes [9]. In Section D we present
details on modulus switching for our scheme.

3.4 The 3-moduli Ring Learning with Rounding Problem

The security proof of the underlying PKE scheme of Section 3.1 relies on the hardness
of Ring-LWR. However, the proof invokes a second problem, that we call the 3-moduli
Ring-LWR problem. We define it in this section. A sample from the 3-moduli Ring-
LWR distribution looks similar to two Ring-LWR samples under the same small secret,
but computed in different rings that share a common modulus. Theorem 1 establishes
the hardness of 3-moduli Ring-LWR by giving an efficient reduction from Ring-LWR
when certain constraints on the moduli are satisfied.

Let p, q, r be integers such that p < q < r. Recall that Rp = Zp[x]/(xn + 1),
Rq = Zq[x]/(xn + 1) and Rr = Zr[x]/(xn + 1).
Definition 6 (3-moduli Ring-LWR distribution). The 3-moduli Ring Learning with
Rounding Problem distribution with parameters n, p, q, r (denoted by 3-moduli Ring-
LWRn,r,q,p) is the distribution over Rr × Rq × Rq × Rp which consists of samples
(a1, ba1 · ser,q, a2, ba2 · seq,p) where a1 is sampled uniformly from Rr, a2 is sampled
uniformly from Rq, and the secret s ∈ R has coefficients sampled uniformly from
[−γ, γ], for some γ < p.
Definition 7 (3-moduli Ring-LWR problem). The Decision 3-moduli Ring Learning
with Rounding Problem with parameters n, p, q, r (denoted by Decision 3-moduli Ring-
LWRn,r,p,q) is defined as follows: given a sample (a1, b1, a2, b2) from Rr ×Rq ×Rq ×
Rp, decide whether it comes from the 3-moduli Ring-LWRn,r,q,p distribution or it is
uniformly random in Rr ×Rq ×Rq ×Rp.

The proof of the hardness of 3-moduli Ring-LWR relies on the following lemma.

14



Lemma 2. Let α be positive integer. Then the map π : Rαq ×Rαp → Rq ×Rp given
by (x, y) 7→ (x mod q, y mod p) maps Ring-LWRn,αq,αp samples to Ring-LWRn,q,p

samples and the uniform distribution to the uniform distribution.

Proof. A proof is given in Section A.

Theorem 1. Let p, q, r be integers such that q|r and pr = q2. If there is an efficient
algorithm for the 3-moduli Ring-LWRn,r,q,p problem that distinguishes between the two
distributions with non-negligible probability ν, then there is an efficient solver for the
Ring-LWRn,r,q problem that distinguishes with the same probability ν.

Proof. It is enough to give an efficient transformation that takes two Ring-LWRn,r,q

samples (a1, b1, a2, b2) ∈ Rr ×Rq ×Rr ×Rq and outputs a 3-moduli Ring-LWRn,r,q,p

sample of the form (ā1, b̄1, ā2, b̄2) ∈ Rr × Rq × Rq × Rp. We must also ask that
this transformation maps the uniform distribution to the uniform distribution. The
transformation is given by the following map:

(ā1, b̄1, ā2, b̄2) := (a1, b1, a2 mod q, b2 mod p) ∈ Rr ×Rq ×Rq ×Rp

To finish the proof, we apply Lemma 2. We interpret r = q · rq and q = p · rq in the

transformation Rr × Rq → Rq × Rp given by (x, y) 7→ (x mod q, y mod p) that is
applied on the last two components of the two Ring-LWR samples.

3.5 Security proof

In this subsection, we prove in Theorem 2 the IND-CPA security of the PKE scheme
underlying our LPR-type scheme via a series of hybrids, assuming the hardness of
Decision Ring-LWR and using Theorem 1.
Theorem 2. If p, q, r are integers such that q|r and pr = q2, then the LPR-like Ring-
LWR based public key encryption scheme described in Section 3.1 is IND-CPA secure
assuming the hardness of Decision Ring-LWRn,r,q.

Proof. The proof is via the following series of hybrids:

• Hybrid 1: This is the real IND-CPA game where the ciphertext ct encrypting a
message m is the output of the encryption algorithm run on a public key that is
output from an honest execution of the key generation algorithm.

• Hybrid 2: This is the same as Hybrid 1, except that the public key pk is chosen
uniformly at random from the public key space Rr × Rq rather than as an honest
output of the key generation algorithm. The ciphertext ct is honestly generated by
encrypting m under this uniform public key.

• Hybrid 3: This is the same as Hybrid 2 except that the ciphertext ct is chosen
uniformly at random from the ciphertext space Rq × Rp rather than as an honest
output of the encryption algorithm.

We first observe that the advantage of the adversary A in Hybrid 3 is 0 since all
the information that the adversary has is uniformly random and independent of the
message m. We proceed by arguing that the distinguishing advantages of an adversary
between Hybrid 2 and Hybrid 1 and between Hybrid 3 and Hybrid 2 are negligible.
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We can then conclude that the adversary’s advantage in Hybrid 1, the real IND-CPA
game, is negligible.

We now show that the distinguishing advantage between Hybrid 2 and Hybrid 1
is negligible assuming that Decision Ring-LWRn,r,q is hard. Consider an algorithm
A that can distinguish between the two hybrids. We can transform the algorithm A
to an algorithm D that distinguishes Ring-LWRn,r,q samples from uniformly random
ones. The algorithm D forms a public key pk with its input and encrypts a message
m under this public key to obtain a ciphertext ct. The algorithm then invokes A
on (pk, ct). The algorithm D then forwards the output of A. If the input samples
are Ring-LWRn,r,q samples, then D perfectly simulates Hybrid 1. Similarly, if the
input samples are uniform, then D perfectly simulates Hybrid 2. The advantage of
the algorithm A is less than the advantage of the algorithm D. Hence, the advantage
of A is negligible assuming that Decision Ring-LWRn,r,q is hard.

It remains to show that the distinguishing advantage between Hybrid 3 and Hybrid
2 is negligible. Consider an algorithm A that can distinguish between the two hybrids.
We can transform the algorithm A to an algorithm D that distinguishes 3-moduli
Ring-LWRn,r,q,p samples from uniformly random samples in Rr ×Rq ×Rq ×Rp. The
algorithm D receives an input (a1, b1, a2, b2). It invokes A with pk = (a1, a2) and
ct = (b1, b2 + ∆m). The algorithm D then forwards the output of A. If the input
samples are 3-moduli Ring-LWRn,r,q,p samples, then D perfectly simulates Hybrid
2. Similarly, if the input samples are uniform, then D perfectly simulates Hybrid 3.
The advantage of the algorithm A is less than the advantage of the algorithm D.
Moreover, the advantage of D is negligible, by the choice of the moduli and assuming
that Decision Ring-LWRn,r,q is hard, by Theorem 1. Hence, the advantage of A is
negligible assuming that Decision Ring-LWRn,r,q is hard.

4 A Regev-type SHE scheme based on Ring-LWR

In this section, we introduce a Regev-type [18] SHE scheme whose security is based on
the hardness of the Ring-LWR problem. Our starting point is a proposal of Costache
and Smart [35]. We improve upon their construction in several important aspects.
Firstly, we make explicit the modular reduction in each ciphertext component, in-
cluding the output from homomorphic multiplication. Moreover, we alter the scaling
factor to t/p, rather than 1/∆p. Our choice of scaling makes for a cleaner handling of
the implicit modular reduction. These adaptations enable us to resolve the “tangled
modulus” problem of [35] to obtain a scheme that can be instantiated. In fact, we
show that the noise growth in multiplication in our scheme is completely analogous
to the noise growth in BFV multiplication.

4.1 Public-key encryption scheme

All equations written in this section are implicitly taken modulo the polynomial xn+1.
Let X be a finite subset of R = Z[x]/(xn + 1).
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Key Generation.

The secret key sk := s ∈ Rq is chosen to have small coefficients, for example uniform
ternary. The public key pk := {(v1, w1), . . . (v`, w`)} consists of ` encryptions of zero,
where each pair (vk, wk) is formed as follows: vk ← Rq and wk = bvk · seq,p. In
particular, this means that for any k ∈ {1, . . . , l}, wk = p

q · vk · s+ ek + pAk for some

integer polynomials Ak and some polynomials ek with coefficients in
(
− 1

2 ,
1
2

]
.

Encryption.

Let ∆p := bpt c = p
t − εp where 0 ≤ εp < 1. To encrypt a message m ∈ Rt, first choose

rk uniformly from the set X for any k ∈ {1, . . . , l}. Then output the ciphertext ct =

(ct0, ct1), where ct0 =
∑`

k=1 rkvk (mod q) and ct1 = ∆pm +
∑`

k=1 rkwk (mod p).

This means that we have ct0 =
∑`

k=1 rkvk + qB and ct1 = ∆pm+
∑`

k=1 rkwk + pC
for some integer polynomials B and C.

Decryption.

Decryption is the same as for the LPR-type scheme. Given a ciphertext ct =
(ct0, ct1), output

m′ =

⌈
t

p

(
−p
q
· ct0 · s+ ct1

)⌋
(mod t) .

4.2 Correctness

Given a ciphertext ct = (ct0, ct1) corresponding to a message m, in decryption we
compute

m′ =

⌈
t

p

(
−p
q
· ct0 · s+ ct1

)⌋
=

⌈
t

p

(
−p
q

(
s
∑̀
k=1

rkvk + qs ·B

)
+ ∆pm+ pC +

∑̀
k=1

rkwk

)⌋

=

⌈
t

p

(
∆pm+

∑̀
k=1

rkek

)
+ t

(
−s ·B + C +

∑̀
k=1

rkAk

)⌋

= m+

⌈
t

p

(
εpm+

∑̀
k=1

rkek

)⌋
+ t

(
−s ·B + C +

∑̀
k=1

rkAk

)
.

The output m′ = m (mod t) if and only if
⌈
t
p

(
−εpm+

∑`
k=1 rkek

)⌋
= 0.

Noise.

As the structure of decryption is the same as for the LPR-type scheme of Section 3,
we use the same definition of noise. That is, the noise N in a Regev-type ciphertext
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ct = (ct0, ct1) is defined as the polynomial of minimal infinity norm among all the
polynomials for which there exists an integer polynomial G such that

t

p

(
−p
q
· ct0 · s+ ct1

)
= m+N + tG .

4.3 Homomorphic operations

The scheme depends on the choice of a finite set X. We analyse the size of the noise
in a fresh ciphertext for the particular choices X = SB/2 and X = PB/2, as defined
in Section 2.2.

Noise in a fresh ciphertext for X = SB/2.

As shown above, the noise in a fresh ciphertext satisfies Nfresh =
t
p

(
−εpm+

∑`
k=1 rkek

)
, where the rk’s are uniform scalars in {−B/2, . . . , B/2}

and the coefficients of the ek’s are uniform in
(
− 1

2 ,
1
2

]
. With high probability, using

Section 2.5, we can write the bound ‖Nfresh‖can ≤ 6
√
nVfresh, where

Vfresh =
t2

p2

(
ε2pVm + `VrVek

)
=
t2

p2

(
ε2pt

2

12
+ ` · B

2

12
· 1

12

)
.

Hence we have the following bound on the noise in a fresh ciphertext

‖Nfresh‖can ≤ 6
t

p
·
√
ε2pt

2n

12
+
`nB2

144
=
t

p
·
√

3ε2pt
2n+

`nB2

4
.

Noise in a fresh ciphertext for X = PB/2.

As shown above, the noise in a fresh ciphertext satisfies Nfresh =
t
p

(
−εpm+

∑`
k=1 rkek

)
, where the rk’s are uniform polynomials with coefficients in

{−B/2, . . . , B/2} and the coefficients of the ek’s are uniform in
(
− 1

2 ,
1
2

]
. With high

probability, using Section 2.5, we can write the bound ‖Nfresh‖can ≤ 6
√
nVfresh, where

Vfresh =
t2

p2

(
ε2pVm + ` · n · VrVek

)
=
t2

p2

(
ε2pt

2

12
+ ` · n · B

2

12
· 1

12

)
.

Hence we have the following bound on the noise in a fresh ciphertext

‖Nfresh‖can ≤ 6
t

p
·
√
ε2pt

2n

12
+
`n2B2

144
=
t

p
·
√

3ε2pt
2n+

`n2B2

4
.

18



Other homomorphic operations.

Let ct = (ct0, ct1) and ct′ = (ct′0, ct
′
1) be input ciphertexts to homomorphic

operations. The outputs of homomorphic addition, homomorphic multiplication, re-
linearization, and modulus switching are defined and analysed in the same way as in
Section 3.3 for the LPR-type scheme.

4.4 The Decisional Knapsack problem

The security proof of the Regev-type scheme relies on the hardness of the Ring-LWR
problem. However, an intermediate problem is encountered in the proof, namely a two-
ring decisional knapsack problem that we define in this section. We will also show in
Theorem 3 that under well chosen parameters, this problem is statistically intractable.

The two-ring Decisional Knapsack problem.

Let p and q two integers and n a power of two. Let X be a finite subset of the ring
R = Z[x]/(xn + 1). Recall that Rp = Zp[x]/(xn + 1) and Rq = Zq[x]/(xn + 1).
Definition 8 (2DKS distribution). The two-ring Decisional Knapsack Problem
distribution with parameters n, p, q, `, X (denoted by the 2DKSn,p,q,`,X distri-
bution) is the distribution over R`p × R`q × Rp × Rq which consists of samples
(w1, . . . , w`, v1, . . . , v`, w, v) formed as follows. The v1, . . . , v` are independent and
uniformly random in Rq, the w1, . . . , w` are independent and uniformly random in

Rp, v =
∑`

k=1 rkvk and w =
∑`

k=1 rkwk, for some independently chosen, uniformly
random elements rk from X.
Definition 9 (2DKS problem). The two-ring Decisional Knapsack Problem with pa-
rameters n, p, q, `, X, denoted by 2DKSn,p,q,`,X , is defined as follows: given samples
(w1, . . . , w`, v1, . . . , v`, w, v), decide whether they are sampled from the 2DKSn,p,q,`,X
distribution or are uniformly random over R`p ×R`q ×Rp ×Rq.

In order for the security proof to hold, the set X from which the randomness is
sampled uniformly at random needs to have a special property.
Definition 10 (Exceptional set). Let p ≥ 2 and q ≥ 2 be two integers. We say that a
finite subset Ep,q of R = Z[x]/(xn + 1) is exceptional if, for any r 6= r′ in Ep,q, r− r′
is invertible both mod p and mod q.

We prove that our scheme is secure if the set X is exceptional, and look at the
particular examples X = SB/2 and PB/2, for a suitable choice of positive integer B.

Knapsack-type problems have been previously studied in the literature [54, 69, 70].
A knapsack problem in a single ring was considered by Baum et al. [54]. Our problem
slightly differs from those in prior works, as it is defined over two rings, and we allow
for the rk values to be polynomials. However, we show in Section E that 2DKS is
equivalent to the single-ring problem of [54, Def. 1]. Moreover, the latter problem can
be shown to be equivalent to LWE [70], and we discuss this further in Section F.

Hardness of the Decisional Knapsack Problem.

We now show that the 2DKS problem that we have introduced is indeed hard under
well chosen parameters for the case of exceptional sets Ep,q. In order to set the pa-
rameters for which this problem is indeed hard, we need to compute the statistical
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distance

∆((v1, . . . , v`, w1, . . . , w`, v, w), (v1, . . . , v`, w1, . . . , w`,
∑̀
k=1

rkvk,
∑̀
k=1

rkwk)),

where v1, . . . , v`, v ← Rq, w1, . . . , w`, w ← Rp, and r1, . . . , r` ← Ep,q.
Lemma 3. Let p and q be two integers and Ep,q be an exceptional set of R =
Z[x]/(xn + 1). Given ` pairs of polynomials (vk, wk) ∈ Rq × Rp, we define the
following map h(vk,wk)k : E`p,q → Rq × Rp as follows: h(vk,wk)k(r1, . . . , r`) =( ∑̀
k=1

rkvk,
∑̀
k=1

rkwk

)
. Then the family H of functions h(vk,wk)k is universal.

Proof. A proof is given in Section A.

The following result can be used to argue the hardness of the 2DKS problem. In
the case when Ep,q is a set of polynomials with bounded coefficients, this theorem
generalises the result from [54, Lemma 4] to the two-ring case.
Theorem 3. Let p, q and ` be positive integers, and let Ep,q be an exceptional set of
the ring R = Z[x]/(xn + 1). If ` satisfies the following inequality

` ≥ 1

log |Ep,q|
· (n log pq + 2λ− 2),

then for any elements vk, v ← Rq, wk, w ← Rp, and rk ← Ep,q for any k ∈ {1, . . . , `},
we have that

∆((v1, . . . , v`, w1, . . . , w`, v, w), (v1, . . . , v`, w1, . . . , w`,
∑̀
k=1

rkvk,
∑̀
k=1

rkwk)) ≤ 1

2λ
.

Proof. According to Lemma 3, the family of functions h(vk,wk)k : E`p,q → Rq ×Rp de-

fined as follows: h(vk,wk)k(r1, . . . , r`) = (
∑̀
k=1

rkvk,
∑̀
k=1

rkwk) is universal. By Lemma 1,

it follows that for h ← H (or equivalently, (vk, wk)k ← R`q × R`p), r1, . . . , r` ← Ep,q
and (v, w)← Rq ×Rp:

∆((h, h(r1, . . . , r`), (h, (v, w))) ≤ 1

2

√
|Rq ×Rp|
|Ep,q|`

=
1

2

√
(pq)n

|Ep,q|`
≤ 1

2λ
,

by the choice of `.

4.5 Security proof

In this section we prove that the public-key encryption scheme underlying our Regev-
type SHE scheme is IND-CPA secure assuming the hardness of the Decision Ring-LWR
Problem, under well chosen parameters.
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Theorem 4. Let p, q and ` be positive integers. If the set X from which the ran-
domness is sampled in the encryption process is an exceptional set Ep,q of the ring
R = Z[x]/(xn + 1) and ` is chosen such that

` ≥ 1

log |Ep,q|
· (n log pq + 2λ− 2),

then the public key encryption scheme underlying the Regev-type homomorphic en-
cryption scheme described in Section 4.1 is IND-CPA secure assuming the hardness
of Decision Ring-LWRn,q,p.

Proof. The proof works via the following series of hybrids:

• Hybrid 1: This is the real IND-CPA game, where the ciphertext ct encrypting
a message m is the output of the encryption algorithm run on a genuine public
key pk := {(v1, u1), . . . (v`, u`)} that is output from an honest execution of the key
generation algorithm.

• Hybrid 2: This is the same as Hybrid 1, except that the public key pk is chosen
uniformly at random from the public key space R`q ×R`p, rather than as an honest
output of the key generation algorithm. The ciphertext ct is honestly generated by
encrypting m under this uniform public key.

• Hybrid 3: This is the same as Hybrid 2 except that the ciphertext ct is chosen
uniformly at random from the ciphertext space Rq × Rp rather than as an honest
output of the encryption algorithm.

We first observe that the advantage of the adversary A in Hybrid 3 is 0 since all
the information that the adversary has is uniformly random and independent of the
message m. We proceed by arguing that the distinguishing advantages of an adversary
between Hybrid 2 and Hybrid 1 and between Hybrid 3 and Hybrid 2 are negligible.
We can then conclude that the adversary’s advantage in Hybrid 1, the real IND-CPA
game, is negligible.

We now show that the distinguishing advantage between Hybrid 2 and Hybrid
1 is negligible, assuming that the Decision Ring-LWR problem is hard. Consider an
algorithm A that can distinguish between these two hybrids. We can transform the
algorithm A to an algorithm D that distinguishes Ring-LWRn,q,p samples from uni-
formly random ones. The algorithm D collects ` input pairs and forms a public key,
encrypts a message m under the public key, and invokes A on (pk, ct). The algorithm
D then forwards the output of A. If the input samples are Ring-LWRn,q,p samples,
then D perfectly simulates Hybrid 1. Similarly, if the input samples are uniform, then
D perfectly simulates Hybrid 2. The advantage of the algorithm A is less than the
advantage of the algorithm D. Hence, the advantage of A is negligible assuming that
Decision Ring-LWRn,q,p is hard.

We now show that the distinguishing advantage between Hybrid 2 and Hybrid 3 is
negligible, assuming that the two-ring Decisional Knapsack Problem is hard. Consider
an algorithm A that can distinguish between the two hybrids. We can transform the
algorithm A to an algorithm D that solves 2DKS. Let (v1, . . . , v`, w1, . . . , w`, v, w) be
an input to D. The algorithm D invokes A for public key (v1, . . . , v`, w1, . . . , w`) and
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ciphertext (v, w+∆pm). The algorithm D then outputs the output of A. If the input of
D comes from the 2DKS distribution, then D perfectly simulates Hybrid 2. Similarly,
if the input comes from a uniform distribution, then D perfectly simulates Hybrid
3. The advantage of the algorithm A is less than the advantage of the algorithm D.
Moreover, the advantage of the algorithm D is negligible, by the choice of parameters
and by Theorem 3. Hence, the advantage of A is negligible.

Instantiating X with the sets SB/2 and PB/2, we get the following statements by
invoking Theorem 3, Theorem 4 and [55, Corollary 1.2]. Their proofs are given in
Section A.
Corollary 1. Let p = p1 · . . . ·ps and q = q1 · . . . · qt, for distinct primes p1, . . . , ps and
distinct primes q1, . . . , qt, and B a positive integer, B ≤ 1

2 min{pi, qj}1≤i≤s,1≤j≤t. Let
Ep,q be the subset SB/2 of integer scalars bounded by B/2 of the ring R, from which
the randomness in the encryption process is sampled. Then, Ep,q is exceptional and if
` is chosen as

` ≥ 1

log (B + 1)
· (n log (pq) + 2λ− 2),

then the public-key encryption scheme is IND-CPA secure, assuming the hardness of
the Decision Ring-LWRn,q,p problem.
Corollary 2. Let 1 < d1, . . . , ds, d

′
1, . . . , d

′
t ≤ n be powers of 2 and distinct prime

integers p1, . . . , ps and distinct prime integers q1, . . . , qt prime integers such that pi ≡
2di + 1 (mod 4di) and qj ≡ 2d′j + 1 (mod 4d′j), for any 1 ≤ i ≤ s and 1 ≤ j ≤ t.
Let p = p1 · . . . · ps, q = q1 · . . . · qt and B be a positive integer such that B + 1 ≤
min{ 1√

di
· p1/di
i , 1√

d′j
· q1/d′j
j }1≤i≤s,1≤j≤t. Let Ep,q be the set PB/2 of polynomials with

integer coefficients in {−B/2, . . . , B/2}, from which the randomness in the encryption
process is sampled. Then, Ep,q is exceptional and if ` is chosen as

` ≥ 1

log (B + 1)
·
(

log (pq) +
2λ− 2

n

)
,

the public-key encryption scheme is IND-CPA secure, assuming the hardness of the
Decision Ring-LWRn,q,p problem.

5 Concrete security against best known attacks

In this section we analyse the concrete security of the LPR-type scheme and of the
Regev-type scheme, by considering key recovery and plaintext attacks. We begin by
discussing the concrete security of their underlying hard problems, the Ring Learning
with Rounding (Ring-LWR) problem and the two-ring Decisional Knapsack problem
(2DKS).

5.1 Concrete security of Ring-LWR

The concrete security of a (Ring)-LWR instance can be estimated by interpreting it
as an LWE instance, since there are no known attacks exploiting the LWR (or ring)

22



structure. An LWR instance
(
a, b :=

⌈
p
q 〈a, s〉

⌋)
∈ Znq × Zp can be mapped to an

LWE instance
(
a, b′ := q

p · b
)

, where b′ = 〈a, s〉 + e and e is chosen from a uniform

distribution on the set {− q
2p + 1, . . . , q2p}. This enables us to use a tool such as the

Lattice Estimator [71] to estimate the concrete security of an LWR parameter set.
We model the implied LWE error distribution as a Gaussian with standard deviation
σ =

√
((q/p)2 − 1) /12, as done e.g. in [72].2

To check a parameter set meets a 128-bit security target, we verify that the
dual hybrid, primal usvp, and primal bdd algorithms are estimated to cost at least
2128 rop3. Note that these are expected to be the most performant algorithms for
FHE parameter sets [73]. Where n is small enough, we also verified the parameter sets
using the top level estimate() function.

5.2 Concrete security of the 2DKS problem

The security proof of our Regev-type scheme (Theorem 4) shows a regime for the pa-
rameter ` that assures the statistical intractability of the two-ring decisional knapsack
problem, 2DKSn,p,q,`,X (Definition 9). However, we can also consider the cryptanal-
ysis of this problem, which may enable us to choose a smaller parameter ` such that
algorithms for solving 2DKSn,p,q,`,X are expected to be computationally inefficient.
We focus on this point of view in this subsection.

By Theorem 5, the 2DKSn,p,q,`,X problem is equivalent to the decisional knapsack
problem in a single ring, DKSn,pq,`,X . We now summarise algorithms for solving this
decisional knapsack problem. This discussion will enable us to justify a concrete choice
for the parameter ` for the public key.

Brute force.

Clearly, if, for example, rk ∈ X = {0, 1} and ` is very small, a knapsack sample∑`
k=1 rkak = a mod pq, with ak uniform over Rpq, is easy to distinguish from a

uniform element a ← Rpq, since we can enumerate all choices for rk and hence all

possible elements of the form
∑`

k=1 rkvk. The choice of ` = 80 was proposed in [35]
to make such a brute force approach infeasible. We show in Remark 1 that this choice
of ` is vulnerable to a linear algebra attack.
Remark 1. The matrix form of the DKSn,pq,`,X problem in the case that X consists
of constant polynomials (e.g. X = {0, 1} or X = SB/2) implies that we must choose
` ≥ n to avoid a linear algebra attack. Indeed, given a sample of its distribution,∑`

k=1 rkak = a mod pq, for rk ∈ X, let A be the horizontal concatenation of vector of
coefficients of ak, and let a be the vector of coefficients of a. Let also r be the vector
of coefficients of rk, such that Ar = a mod pq, with A← Zn×`pq , r← X`, and a ∈ Znpq.
If, on the contrary, ` < n, we can consider the matrix A as a vertical concatenation
of two row blocks, A1 ∈ Z`×`pq and A2 ∈ Zn−`×`pq . We can also see the vector a as a

vertical concatenation of two vectors, a1 ∈ Z`pq and a2 ∈ Zn−`pq . As A is random, it
has full rank ` with high probability, and further, by a permutation of rows, we can

2That is, the standard deviation σ is set to be equal to the standard deviation of the uniform distribution
over {− q

2p + 1, . . . , q
2p}.

3We will make available our estimation scripts upon acceptance of the paper.
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assume, without loss of generality, that A1 satisfies this rank. Using this notation,
we derive two equations, namely A1r = a1 mod pq and A2r = a2 mod pq. As A1 is
invertible, we can easily recover r from the first equation and check if this satisfies the
second equation.

Combinatorial algorithms.

The best classical and quantum algorithms for the related problem of binary subset
sum (without modular reduction) that we are aware of were presented in [74]. The
idea is to generalise meet-in-the-middle approaches by constructing lists of representa-
tions which can be merged to form solutions. Meet-in-the-middle algorithms for LWE
with ternary secret using representation techniques were presented in [75], and more
generally for secrets chosen from a specified distribution over a small range [−η, η],
for a positive integer η ≤ 3 in [76]. Since the decisional knapsack problem can be re-
duced to LWE (as we will detail below), such algorithms may apply in our context.
However, the complexity of these approaches must be calculated as a numerical op-
timisation, and there is no theory that states when the complexity will converge to
the optimal value [77]. Moreover, the work [76] notes that their asymptotic running
times are slightly worse than lattice reduction. For this reason, we do not consider
combinatorial approaches further.

Reduction to Ring Inhomogeneous SIS.

The argument of Remark 1 shows how to express the knapsack problem as a problem
over vectors and matrices when X is a set of constant polynomials. We can also express
the knapsack problem as a problem over vectors and matrices when for a general subset
X ⊆ R as follows. Given a DKSn,pq,`,X sample

∑`
k=1 rkak = a mod pq, for rk ∈ X,

write each random polynomial rk as its vector of coefficients rk and stack these vectors
to make a vector r. Consider a as the vector of coefficients of the polynomial a. Write
the rotation matrix of multiplication by each ak as Rot(ak) ∈ Zn×npq . Then form A as

the horizontal concatenation of the Rot(ak) so that Ar = a, where A ← Zn×`npq ,a ∈
Znpq and r ∈ Z`npq .

In particular, if X = SB/2 or X = PB/2 then the resulting vector r has bounded
coefficients. This formulation of the problem then resembles a (Ring) Inhomogeneous
SIS instance [78, 79]. Algorithms for Inhomogeneous SIS may thus be applicable to the
decisional knapsack problem in this case. Such algorithms can be combinatorial [79]
or lattice based [78, 80]. A full analysis of algorithms for solving the knapsack problem
is beyond the scope of this work.

Reduction to LWE.

We will justify our choice of ` by viewing the DKS problem as LWE in Hermite Normal
Form (HNF). This was also done for a similar scheme in [80]. Moreover, as will we
show in Section 5.4, it leads to a choice ` = O(n) that is asymptotically optimal, when
comparing to the lower bound of ` ≥ n shown in Remark 1. Thus, we believe this
approach for justifying the choice of ` is reasonable.

We present this attack of [80] for solving the knapsack problem DKSn,pq,`,X for the
specific sets X that we will encounter in our Regev-type scheme. If X = PB/2 then,
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as shown above, we can express the DKS sample as Ar = a, where the matrix A can
be split as

(
A1 A2

)
, with A1 ∈ Zn×`n−npq and A2 ∈ Zn×npq . By ignoring the algebraic

structure, we can consider the matrix A as uniform over Zn×`npq , as the polynomials ai
are uniform over Rpq. Hence, with high probability, it has full rank equal to n. By an
eventual permutation of the rows, we can further assume A2 has full rank n, and so
it admits an inverse. We also split the vector r as r =

(
r1 r2

)
, with r1 ∈ Z`n−npq and

r2 ∈ Znpq. The equation now reads as: A1r1 + A2r2 = a mod pq. If we multiply it by

the inverse of A2, we get A−1
2 A1r1+r2 = A−1

2 a mod pq. We can see that this equation
resembles an LWE instance in HNF form, with modulus pq, secret dimension `n− n
and both secret and error following the uniform distribution over {−B/2, . . . , B/2}.
Remark 1 shows that a similar formulation can be given if X = SB/2, and the above
split of A is also possible, as we must choose ` ≥ n. In particular, we get a LWE
instance in HNF form, with modulus pq, secret dimension `− n and both secret and
error following the uniform distribution over {−B/2, . . . , B/2}.

For the sake of completeness, we note that we can also view the DKSn,pq,`,X prob-
lem as an equivalent LWE problem via the work of [70]. We present in Supplementary
Material Section F more details on this equivalence and the choices of ` that can be
justified via this equivalence. Whether using the approach of [80] or [70], we estimate
the security of a DKSn,pq,`,X instance seen as an LWE instance using the Lattice
Estimator.

5.3 Parameters for the LPR-type scheme

In this section, we present in Table 2 some concrete parameters for our LPR-type
scheme and justify their security. As the public key is of the form pk = (a, ba · ser,q),
we can see that a key recovery attack corresponds to solving the search Ring-LWR
instance given by ring dimension n, moduli r > q and a uniform ternary secret s. As
a ciphertext is of the form

ct = (bpk0uer,q,∆pm+ bpk1ueq,p) ∈ Rq ×Rp ,

we can also see (from the ct1 component) that a plaintext recovery attack corresponds
to solving a Ring-LWR instance parameterised by ring dimension n, moduli q > p and
a uniform ternary ephemeral secret u. From the security proof (Theorem 2), we can
see that the hardness of the scheme can be reduced to the hardness of Ring-LWRn,r,q

when q|r and pr = q2.
We illustrate some example parameter sets that target 128-bit security and that

satisfy these constraints on the moduli. We choose power-of-two p, q and r for per-
formance reasons. We then choose the ratios between the moduli to correspond to
a standard deviation as close as possible to σ = 3.2, since this is the choice for
the Gaussian error most widely used in Ring-LWE-based homomorphic encryption
schemes [10]. We choose to fix the ratios r/q = q/p = 16. For this choice of r, q, and
p our (Ring-)LWR instances can be modelled as LWE instances with standard devi-
ation σ ≈ 4.61, as described in Section 5.1. We note that this choice of the ratio of
moduli is similar to choices for LWR-based PKEs. For example, Round5 [44] suggests
q/p = 8 for parameter sets targetting 128-bit security.
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In line with the Homomorphic Encryption standard [10], we target 128-bit security
according to the Lattice Estimator, and we present parameters for ring dimensions
n with log n ∈ {10, . . . , 15} and uniform ternary secret distribution. We choose the
modulus r to be equivalent in bitsize to the modulus that would be chosen in [10] in the
Ring-LWE context, so that our parameters can be easily compared to Ring-LWE-based
schemes.

This discussion justifies the possible concrete parameter sets for our LPR-type
scheme presented in Table 2. The Lattice Estimator4 of [71] was used to verify that
the parameter sets in Table 2 are estimated to have 128-bit security. In particular,
Table 2 presents the maximal moduli r, q, and p that satisfy the security constraint
for fixed ratios r/q = q/p = 16 and fixed ring dimension n.

5.4 Parameters for the Regev-type schemes

In this section, we present in Tables 3 and 4 some concrete parameters for our Regev-
type scheme and justify their security. Recall that this scheme is parametrised by a
finite subset X of R = Z[x]/(xn+ 1), for sampling the randomness in encryption. The
discussion in this section will be split depending on the choice of X.

We first consider a key recovery attack. As the public key is of the form pk :=
{(v1, w1 = bv1 · seq,p), . . . (v`, w` = bv` · seq,p)}, with vi’s drawn from uniform dis-
tribution over Rq and s as a uniform ternary secret, we can see that a key recovery
attack corresponds to solving the search Ring-LWR instance given by ring dimension
n, moduli q > p, a uniform ternary secret s, and ` samples. As the hardness of LWE is
essentially independent of the number of samples [81], we can ignore the dependence
on `.

Depending on the choice of X, we need to consider further constraints on the
moduli p and q. For X = SB/2, Corollary 1 requires p and q to be products of distinct
primes. For X = PB/2, Corollary 2 considers p and q to be products of distinct primes
satisfying p ≡ 2d+1 (mod 4d) and q ≡ 2d′+1 (mod 4d′), for some powers of two d and
d′. This also suggests that setting d and d′ as small as possible allows a larger value of
B and hence, sampling random polynomials from a larger set. Therefore, for this X,
we set p and q as products of distinct primes congruent to 5 mod 8. In both cases, we
choose the modulus q to have identical bitsize as the modulus r chosen in Section 5.3.
In particular, in both cases we set q = 13p for prime p. This choice allows that the
ratio q/p implies a standard deviation close to σ = 3.2 when modelling this Ring-LWR
instance as a Ring-LWE instance, and satisfies the constraints on the form of q and p,
noting that 13 = 5 modulo 8. For readability, rather than presenting the explicit q and
p in the manuscript, we will make available code that generates the q and p we have
chosen that meet these constraints for ring dimensions n with log n ∈ {10, . . . , 15}.
Assuming a uniform ternary secret distribution, the LWE instance implied by a key
recovery attack with these parameters costs at least 2130 ring operations according to
the Lattice Estimator.

4https://bitbucket.org/malb/lwe-estimator, commit cf36315
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We next consider a plaintext recovery attack. Recall that a ciphertext is as follows:

ct = (ct0, ct1) =

(∑̀
k=1

rkvk,∆pm+
∑̀
k=1

rkwk

)
∈ Rq ×Rp,

where the random polynomials rk are either from X = SB/2 or from X = PB/2. Given
v1, . . . , v` in Rq as part of the public key, it suffices to recover the random rk’s, from
the first component of the ciphertext, ct0, i.e., to solve the knapsack problem implied
by the first ciphertext component.

Section 5.2 shows that the knapsack instance with X = SB/2 can be seen as an
LWE instance of modulus q, secret dimension `− n, number of samples n and secret
and error distributions as uniform distributions over {−B/2, . . . , B/2} and that the
knapsack instance with X = PB/2 can be seen as an LWE instance of modulus q,
secret dimension `n − n, number of samples n, and secret and error distributions as
uniform distributions over {−B/2, . . . , B/2}. In Tables 3 and 4 we present choices
for fixed B ∈ {2, 4, 6} of ` ≈ 2n for X = SB/2 and ` ∈ {2, 3} for X = PB/2; such
that the respective implied LWE instance is estimated to be 128-bit secure following
Section 5.1. These example choices of B ∈ {2, 4, 6} are motivated by similar choices
in other lattice-based schemes [82, 83], but we note that a suitable ` could be chosen
for any desired value of B.

6 Implementation and comparison with BFV

The goal of this section is to compare our LPR-type and Regev-type schemes with
the BFV scheme [6]. This comparison is relevant since we consider the Ring-LWR-
based LPR-type scheme (Section 3) to be a natural adaptation of the BFV scheme
to the setting where rounding is used instead of Gaussian sampling. Moreover, in all
the schemes from this work, the multiplication error grows similarly to the one of the
scale-invariant BFV scheme.

Implementation.

To verify the practicality of our schemes we developed a proof-of-concept implemen-
tation of our LPR-type scheme in Python.5 We present running time figures of our
implementation in Table 5. The most costly operations are relinearization key gener-
ation and relinearization, and they roughly have the same running time. This is due
to the increasing size of the relinearization key. The next most expensive operations
is Encrypt. The ratio between RelinKeyGen and Encrypt is approximately 30 for the
smallest parameter set, and approximately 257 for the largest parameter set.

Comparison of ciphertext sizes.

Since our implementation is only a proof-of-concept, comparing the running time with
state-of-art BFV implementations such as [13] is not relevant. Because of this, we
compare the performance of the schemes based on ciphertext size as in [58, 59]. This is

5We will publish the source code upon acceptance of the paper.

27



an important metric as the computational overhead when doing homomorphic evalua-
tions heavily depends on the size of the ciphertext. Ciphertexts in each of our schemes
and in the BFV scheme are comparable as in each case they consist of two ring ele-
ments. Moreover, homomorphic addition and multiplication in all the schemes follow
nearly identical operations on ring elements. Hence, a smaller ciphertext size means
smaller ring moduli and ring dimension, which translate into better performance.

Methodology.

We consider the same tree-shaped arithmetic circuit as in [59] and [58] that is
parametrised by ζ = 8 and depth L and takes input (2ζ)L fresh ciphertexts. Each gate
of this circuit performs ζ additions followed by one multiplication. For each scheme,
our goal is to find a parameter set that simultaneously minimises the ciphertext size, is
estimated to have at least 128 bits of security, and supports correct decryption of the
output ciphertext of the above circuit. We find such parameter sets for each scheme
for various choices of plaintext modulus t ∈ {3, 256, 257, 216, 216 + 1, 232, 232 + 1} and
circuits of depth L ∈ {2, 4, 6, . . . , 30}.

To find such parameter sets, we recursively compute a bound on the noise of
the output ciphertext of this circuit. This bound allows us to decide if this final
ciphertext correctly decrypts. More concretely, for each scheme, we start with the
noise bound of a fresh ciphertext N0, and then compute a recurrence of the form
Ni+1 = multiplicative_noise(additive_noise(Ni, ζ)) for i ∈ {0, . . . , L − 1}. The
functions used in the recurrence are explicitly computed by using the noise bounds on
fresh noise, addition, multiplication and relinearization presented in Section 3 for the
LPR-type scheme, in 4 for the Regev-type scheme, and in [66] for the BFV scheme.

For a fixed scheme and choice (t, L), we iterate n ∈ {211, 212, 213, 214, 215} and look
for the smallest bit size of ciphertext modulus for which the final ciphertext correctly
decrypts and that the underlying Ring-LWR or Ring-LWE assumption is estimated
to be at least 128-bit secure. In particular, the final ciphertext will decrypt correctly if
NL < 1/2. Once we find such a minimum modulus (r for BFV or q for our schemes),
we compute the ciphertext size as 2n log(r) for the BFV scheme or n(log q + log p)
for our schemes. We will publish the script that generates the results tables upon
acceptance of the paper.

We set the other parameters as follows. For BFV we set σ = 3.2 as the standard
deviation for the Gaussian error. For the LPR-type scheme we set p, q, r as powers of
two such that q/p = 16 and r/q = 16, according to Section 5.3. For the Regev-type
scheme, denoted in the results tables as Regev(` = 3), we sampled the randomness as
polynomials with coefficients from {−1, 0, 1} and set ` = 3, according to Section 5.4.
We also set the prime p = 1 mod t, which implies that εp = 1/t is as small as possible.
Moreover, we set the primes p and q such that q/p ≈ 11.13 according to Section 5.4.

We also considered a variant of the Regev-scheme, denoted in the results tables
as Regev (LHL). In this variant, we again sampled the randomness as polynomials
with coefficients in {−1, 0, 1} and set the primes p and q such that q/p ≈ 11.13. We
chose ` according to Corollary 2, which corresponds to a setting for which the security
proof holds. We set p = 5 mod t when t is a power of two, so we are consistent with
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the condition p = 5 mod 8, as also required for the security proof. This implies that
εp = 5/t ∈ [0, 1).

Results.

Our results are presented in Tables 6, 7, 8, 9, 10, 11, and 12. When the plaintext
modulus is either small, such t = o(

√
n), or when p mod t is small in relation to t6,

the results show that the LPR and Regev-type schemes are marginally better than
the BFV scheme in terms of ciphertext size for almost all circuit depths L. This is
illustrated in Figure 1 which plots the results of Table 6 for which t = 3. When the
plaintext modulus is large, the results show that in almost all cases, the LPR-type
scheme and the BFV scheme perform comparably, while the Regev scheme marginally
outperforms the two. This is illustrated in Figure 2 which plots the results of Table 12
for which t = 232 + 1.
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Figure 1 Minimal ciphertext size in kilobytes (kB) for which decryption is guaranteed to work for
the given multiplicative depth, when fixing plaintext modulus t = 3.

6This is equivalent to εp = O(1/t), where εp = (p mod t)/t ∈ [0, 1)
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Figure 2 Minimal ciphertext size in kilobytes (kB) for which decryption is guaranteed to work for
the given multiplicative depth, when fixing plaintext modulus t = 232 + 1.

Both Figure 1 and Figure 2 show a step-wise behaviour 7. This is expected: as the
depth L increases, it will become necessary to switch to progressively larger power-of-
two cyclotomic rings (i.e. larger n) in order to ensure that the ciphertext moduli are
both large enough for correctness and small enough for the underlying Ring-LWR or
Ring-LWE instance to be secure.

In the case of Figure 1, for all choices of depth L, all three schemes perform
comparably, in the sense that the same choice of ring dimension n can support the
computation for each of BFV, the LPR-type scheme, and the Regev-type scheme.
In this case, we have that the sizes of the ciphertext moduli for the Regev-type and
LPR-type scheme are slightly smaller than the ciphertext modulus for BFV, and so
the overall ciphertext sizes are marginally smaller. To better illustrate the differences,
we plot zoomed-in versions of Figure 1 on restricted ranges of multiplication depth in
Appendix G.

7Plots for the other results tables would be similar, and so are omitted.
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In the case of Figure 2, we see a couple of examples where the ‘jump’ to larger
dimension may occur at different depths. For example, for L = 3, it is necessary to
use a larger ring dimension for the LPR-type scheme than for BFV or the Regev-type
scheme. On the other hand, for L = 7, it is necessary to use a larger ring dimension
for the LPR-type scheme and BFV than for the Regev-type scheme. In other cases,
the same ring dimension will support the computation for all three schemes. Overall,
Figure 2 illustrates that for larger plaintext modulus t, the LPR-type scheme and
BFV perform comparably, while the Regev-type scheme offers the smallest ciphertext
size in each case.

The observation that the LPR and Regev-type schemes outperform the BFV
scheme when the plaintext modulus is small can be explained when considering the size
of the fresh noise of each scheme. For example, let us try to explain the difference in
ciphertext size for the BFV scheme and the LPR-type scheme. Ignoring smaller terms
in the noise recurrence, we notice that Ni+1 ≈ t

√
2n2 + 3n · (ζ ·Ni) (see Section 3 and

[66]). The final noise is then approximated by NL ≈ (tζ
√

2n2 + 3n)L−1 ·N0. Moreover,
the final noise scaled by q should be close to q/2 in both cases, or else we could have
chosen a smaller modulus. We can thus approximate (tζ

√
2n2 + 3n)L−1·NBFV

0 qBFV ≈
(tζ
√

2n2 + 3n)L−1 · NLPR
0 qLPR, since n, ζ, L, and t are fixed for both schemes.

This simplifies to qBFV /qLPR ≈ NLPR
0 /NBFV

0 . Using the fresh noise bounds of

Section 3 and [66], we can thus approximate qLPR/qBFV ≈
√

4n+3(q/p)2·(1+(tεp)2)
48σ2n+36σ2+3(tεq)2 .

When {εp, εq} ∈ O(1/t), or when t is small, and when n is fairly large this can be sim-
plified to qLPR/qBFV ≈ 1

2
√

3σ
≤ 1

16 . This is consistent with our observation that the

bitsizes of qBFV that we obtained were larger than those of qLPR by at most 4 bits.

Comparison of relinearization keys.

In addition to comparing the ciphertext sizes of our schemes with BFV, we can also
compare the relinearization key sizes. We do now, assuming that relinearization uses
a base-2 decomposition. Recall that in the BFV scheme [6], the relinearization key is
made of k+ 1 pairs from Rq ×Rq, where k = blog2(q)c. Therefore, the relinearization
key size is ≈ 2 · n · (log2(q) + 1) · log2(q). According to Section 3.3, in the LPR-type
scheme and in the Regev-type scheme, the relinearization key is made of k + 1 pairs

from Rq×Rp, where k = blog2( q
2

p )c. By the choice r/q = q/p = 16 made in Section 5.3,

we have k = blog2(r)c, and hence the relinearization key size in the LPR-type scheme
is ≈ 2 · n · (log2(r) + 1) · (log2(r) − 6). Given the fact that the BFV modulus q has
the same bit size as the LPR modulus r, it follows that the LPR relinearization key is
12n · (log2(r) + 1) bits less than the BFV relinearization key. By the choice q/p = 13
made in Section 5.4, we have k = blog2(13q)c, and hence the relinearization key size
in the Regev-type scheme is ≈ n · (log2(q) + log2(13) + 1) · (log2(q) + log2(p)). Given
the fact that the BFV modulus q has the same bit size as the Regev-type scheme
modulus q, it follows that the Regev relinearization key is (log (p)− 1) · n log(13) bits
longer than the BFV relinearization key.
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7 RNS variants of our schemes

When carrying out operations in our LWR-based schemes we are manipulating ele-
ments in large cyclotomic rings, using large moduli. Similarly to equivalent LWE-based
schemes, we can use the Residue Number System (RNS) to speed up calculations
with these large integers. In this section, we show how both of our schemes can be
adapted to support RNS variants, similarly to RNS variants of BFV [52, 56, 57]. In
order to use the RNS representation, we choose the moduli p and q to be products of
smaller numbers, q =

∏
i∈I qi and p =

∏
j pj∈J for pairwise coprime qi and pj . We can

then use the Chinese Remainder theorem to represent an integer x ∈ Zq as {xi = x
mod qi ∈ Zi}i. Operations on x ∈ Zq can be carried out via applying the same opera-
tion to the xi ∈ Zqi . Note that p and q themselves do not need to be coprime, and in
fact we will require that p|q2 in order to support multiplication. Indeed, a particular
permissible instance is q = 13p for p =

∏
j pj for pairwise coprime pj , which is a prov-

ably secure parameter setting for the Regev-type scheme (c.f. Corollary 2) or q = 16p
for the LPR-type scheme (c.f. Theorem 1, Section 5.3). A slight generalisation of this
setting is p = a and q = ak for coprime a and k, which are each a product of distinct
primes meeting the conditions of Corollary 2).

Many operations in the Regev-type and LPR-type schemes are the same (evalua-
tion key generation, decryption, addition, multiplication, relinearization, and modulus
switching). We focus on the details of the operations that are in common, and
which are of most relevance to performant RNS computations. We address key gen-
eration and encryption in Appendix I. Addition is straightforward to implement
RNS-component-wise so is omitted. In common with prior work on RNS-BFV [52, 56],
we do not address modulus switching.

RNS background.

Our approach relies heavily on that of [52]8, and particularly we use their basis ex-
tension and simple scaling techniques. Since we mainly use these results directly, we
defer the details of these techniques to Appendix H.

Decryption.

Decryption can be implemented with an adaptation of simple scaling [52, Section 2.3].
Suppose that the plaintext modulus t is a machine sized-integer (the approach can be
adapted componentwise modulo an RNS representation of t if it is larger). Assume
we have a ciphertext ct = (ct0, ct1) ∈ Rq × Rp, then decryption is equivalent to
computing:

m′ :=

⌊
t

p

(
−p
q

(ct0 · s) + ct1

)⌉
mod t

If the ciphertext is given in the RNS representation then we can compute ct0 · s
in the RNS representation corresponding to q. So, for decryption it is sufficient to
be able to compute the following. Given two ring elements x ∈ Rq and y ∈ Rp

8While later work on RNS-BFV e.g. [57] has been presented that further improves on [52], we are not
aiming to present fully optimised RNS variants in this work: our goal is rather to show that RNS variants
of our schemes are possible to achieve.
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(concretely, x := −ct0 · s mod q and y = ct1 mod p), with their corresponding RNS
representations x ≡ (xi)i∈I and y ≡ (yj)j∈J we want to efficiently compute:

m′ :=

⌊
t

q
· x+

t

p
· y
⌉

mod t

Recall that the elements x ∈ Rq and y ∈ Rp can be reconstructed from their RNS
components as x =

∑
i∈I xi · q?i · q̃i − vx · q and y =

∑
j∈J yj · p?j · p̃j − vy · p, for some

integers vx, vy ∈ Z (c.f. [52, Equation (3)]). Hence:

m′ =

∑
i∈I

xi ·
tq̃i
qi
− tvx +

∑
j∈J

yj ·
tp̃j
pj
− tvy

 mod t

which is equal to

m′ =

∑
i∈I

xi ·
tq̃i
qi

+
∑
j∈J

yj ·
tp̃j
pj

 mod t

We can precompute the values tq̃i
qi

= ωi,q + θi,q and
tp̃j
pj

= ωj,p + θj,p with ωi,q, ωj,p ∈
Z and θi,q, θj,p ∈ [−1/2, 1/2). The computational cost of this approach is |I| + |J |
machine-sized integer multiplications, |I| + |J | floating-point multiplications, and 2
floating-point roundings.

Noise.

The noise N in an RNS ciphertext, considered in its ‘recombined’ form (ct0, ct1), is
the polynomial of minimal infinity norm among all the polynomials for which there
exists an integer polynomial G such that

t

p

(
−p
q
· ct0 · s+ ct1

)
= m+N + tG .

That is, we define noise exactly the same as in the non-RNS case.

Correctness.

The correctness of decryption can be analysed using similar techniques as in [52].
In particular, we need to ensure the ciphertext noise is at most 1/4, so that our
RNS variants incur one bit of additional noise compared to our non-RNS schemes.
Full details are given in Appendix I. For other operations, we directly apply results
from [52] and so omit a detailed analysis.

Multiplication.

Multiplication is possible with an adaptation of the approach outlined in [52,
Section 4.1]. Given RNS representatives of ct and ct′ we want to compute an RNS
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representation of:

(c2, c1, c0) =

([⌊
t

p
ct0ct

′
0

⌉]
q2/p

,

[⌊
t

p
(ct0ct

′
1 + ct1ct

′
0)

⌉]
q

,

[⌊
t

p
ct1ct

′
1

⌉]
p

)
.

We can compute the CRT representatives of c0 =
[⌊

t
px0

⌉]
p

using the complex scal-

ing procedure of [52, Section 2.4] as follows. Let x0 := ct1ct
′
1. Let P =

∏
ι Pι be

coprime with p, q, Q = q2/p, and t be such that x0 ∈ Z ∩ [−pP/2t, pP/2t) ⊆ ZpP .
We take the inputs ct1 and ct′1 with respect to base p, then do a basis extension to
obtain the representatives [ct1]pP and [ct′1]pP . We then compute x0 componentwise
with respect to base pP . Then, the simple scaling procedure [52, Section 2.3] would be

applied sufficiently many times using q′ = pP and t′ = tP . This gives us
[⌊

tP
pP x0

⌉]
tP

which also gives us
[⌊

t
px0

⌉]
P

(when discarding the mod t components). Moreover,

by choosing P such that x0 ∈ Z ∩ [−pP/2t, pP/2t), we have
⌊
t
px0

⌉
∈ [−P/2, P/2), so

we have computed the representatives mod P of
⌊
t
px0

⌉
without modular reduction.

Hence, we can apply basis extension [52, Section 2.2] to recover the mod-pj represen-

tatives and thus obtain the representatives of
[⌊

t
px0

⌉]
p

as required. For example, the

choice P > nt q
2

p can be used for computing each of c2, c1 and c0, where this choice is

analogous to how P is chosen in [52].

Let x1 := ct0ct
′
1 + ct1ct

′
0. Let M = lcm(p, q). Let P > nt q

2

p be coprime with p,

q, Q = q2/p, and t such that x1 ∈ Z ∩ [−pP/2t, pP/2t) ⊆ ZpP ⊆ ZMP . We are going
to basis extend to mod MP . Given as input the RNS decompositions of [ct0]q, [ct1]p,
[ct′0]q, [ct′1]p we basis extend to obtain [ct0]MP , [ct1]MP , [ct′0]MP , [ct′1]MP . We can
then compute x1 RNS-componentwise with respect to base MP . Then, the simple
scaling procedure [52, Section 2.3] would be applied sufficiently many times using

q′ = MP and t′ = (M/p)tP . This gives us
[⌊

(M/p)tP
MP x1

⌉]
(M/p)tP

=
[⌊

t
px1

⌉]
(M/p)tP

which also gives us
[⌊

t
px1

⌉]
P

when discarding the mod t and mod (M/p) components.

Moreover, by the choice of P , we have
⌊
t
px1

⌉
∈ [−P/2, P/2), so we have computed the

representatives mod P of
⌊
t
px1

⌉
without modular reduction. Hence, we can apply basis

extension to recover the mod-qj representatives and thus obtain the representatives

of
[⌊

t
px1

⌉]
q

as required.

Let x2 := ct0ct
′
0. We can again take P > nt q

2

p coprime with p, q, Q = q2/p, and

t such that x2 ∈ Z ∩ [−pP/2t, pP/2t) ⊆ ZpP . We take the inputs ct0 and ct′0 with
respect to base q, then do a basis extension to obtain the representatives [ct′1]pP and
[ct′1]pP (by extending to MP for M = lcm(p, q) and ignoring the representatives that
are only factors of q). Then, the simple scaling procedure [52, Section 2.3] would be

applied sufficiently many times using q′ = pP and t′ = tP . This gives us
[⌊

tP
pP x2

⌉]
tP
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which also gives us
[⌊

t
px2

⌉]
P

(when discarding the mod t components). Moreover by

the choice of P this is actually the mod P representatives of
⌊
t
px2

⌉
without modular

reduction. We can then apply a basis extension to obtain the mod q2/p representatives

of
[⌊

t
px2

⌉]
q2/p

as required.

We can define the noise in (c2, c1, c0) exactly as for the non-RNS case, namely as
the polynomial of minimal infinity norm among all the polynomials for which there
exists an integer polynomial Gmult such that

t

p

[(
p

q

)2

c2s
2 − p

q
c1s+ c0

]
= mmult +Nmult + tGmult .

The noise analysis is then exactly the same as for the non-RNS case, as presented in
Appendix B.

Relinearisation.

Let us express the parameters as q =
∏
ι∈I qi, p =

∏
j∈J pj , and let Q =

∏
h∈H Qh

where we define Q := q2/p. Notice that J ⊆ I and J ⊆ H. Let Q∗h = Q/Qh ∈ Z and

Q̃h = [Q∗−1
h ]Qh

∈ ZQh
. The input we have is c2, with respect to its mod Q components

Qh, for h ∈ H, c1 with respect to its mod q components qi, for i ∈ I, and c0 with
respect to its mod p components pj , for j ∈ J . In particular we can write c2,h = [c2]Qh

and so on.
The relinearisation keys are given by (αh, βh) ∈ Rq × Rp where αh ← Rq is

chosen uniformly at random and βh =
⌈
αhs

⌋
q,p

+
⌈
p2

q2 Q̃hQ
∗
hs

2
⌋
. Using these keys,

we want to compute c̃t0 to be the RNS representations of
∑

h∈H βhc2,h (mod p) and

c̃t1 to be the RNS reps of
∑

h∈H αhc2,h (mod q). We would then output (ct0, ct1) =

(c̃t1 + c1, c̃t0 + c0) where these additions can be implemented RNS-component-wise,
mod q and mod p respectively. In Appendix I, we will show that if the ciphertext
input to relinearisation has noise N , then this output ciphertext has noise

Nrelin = N +
t

p

∑
h∈H

(ε1,h + ε2,h)c2,h ,

where ε1,h and ε2,h come from the two roundings in βh. This noise growth can be seen
to be completely analogous to the non-RNS case (c.f. Appendix C).

The remaining details are to show that we can express the relinearisation keys
with respect to suitable RNS representation, and use these together with a suitable
representation of c2 in order to compute c̃t0 and c̃t1 RNS-component-wise. Indeed,
we can compute c̃t0 RNS-component-wise mod p by computing c̃t0,j =

∑
h∈H [βh]pj ·

[c2,h]pj (mod pj), and we can compute c̃t1 RNS-component-wise mod q by computing

c̃t1,i =
∑

h∈H [αh]qi · [c2,h]qi (mod qi).
Firstly, let us consider the generation of each relinearisation key (αh, βh). We can

directly sample each αh in an RNS representation mod q, i.e. it gives us [αh]qi for all
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h. We can compute αh · s modulo q RNS-component-wise. We can then use simple

scaling [52, Section 2.3] to obtain
⌈
αhs

⌋
q,p

in an RNS representation mod p. The

object Q̃hQ
∗
hs

2 can be considered mod Q and so given an RNS representation of this

object mod Q, an RNS representation mod p of
⌈
p2

q2 Q̃hQ
∗
hs

2
⌋

can be obtained via

simple scaling with T = p and Q = q2/p. These terms can be added to give an RNS
representation of βh mod p, i.e. it gives us [βh]pj for all j. For each object c2,h = [c2]Qh

we need to obtain [c2,h]pj for all j and [c2,h]qi for all i in order to compute c̃t0,j and

c̃t1,i respectively.
To see how this can be done, let us specialise to the case where p = a and q = ak for

coprime a and k, each a product of distinct primes. In this case Q = ak2. Considering
an RNS basis for Q, the set L = J ∪ {0} and the representatives would be Q0 = k2

and Qj = pj , for each j ∈ J . Let us consider each component of c2 mod Q. For h ∈ H,
c2,h = c2 mod Qh = ph is in the range [−ph/2, ph/2) and so c2,h = [c2,h]ph . Since
pj 6= ph for j 6= h, we can basis extend [c2,h]ph by each pj for j 6= h to obtain the RNS
representation of [c2,j ] mod p. Similarly, since k is also coprime to each pj , we can basis
extend [c2,h]ph by each pj for j 6= h and by k to obtain the RNS representation of [c2,h]
mod q. For h = 0 we have c2,0 = c2 mod Q0 = k2 is in the range [−k2/2, k2/2) and
so c2,0 = [c2,0]k2 . Since k2 is coprime to each pι, we can basis extend [c2,0]k2 by each
pj for j ∈ J and then discard the k2 component to obtain the RNS representation of
c2,0 mod p. Moreover, since k < p, we have Q0 < q, so c2,0 is already reduced mod q.
This means we can take its representatives mod q directly, in particular, we can obtain
the mod p representatives as before and we can obtain the mod k representatives by
directly computing c2,0 mod k.
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n r q p
215 2856 2852 2848

214 2425 2421 2417

213 2211 2207 2203

212 2105 2101 297

211 252 248 244

210 226 222 218

Table 2 Possible parameter
sets n, r, q, p, for our
LPR-type scheme, assuming
a uniform ternary secret
distribution, and targeted at
128-bit security.

n
`

B = 2
`

B = 4
`

B = 6
215 65606 65541 65506
214 32838 32773 32738
213 16444 16379 16344
212 8252 8187 8152
211 4146 4081 4046
210 2103 2033 1998

Table 3 Possible parameter sets n, `, B,
for our Regev-type scheme with X = SB/2,
assuming a uniform ternary secret. The
moduli q and p are chosen as described in
the text of Section 5.4.

n
`

B = 2
`

B = 4
`

B = 6
215 3 2 2
214 3 3 2
213 3 2 2
212 3 2 2
211 3 2 2
210 3 2 2

Table 4 Possible parameter sets n, `, B,
for our Regev-type scheme with X = PB/2,
assuming a uniform ternary secret. The
moduli q and p are chosen as described in
the text of Section 5.4.

Algorithm
Parameters (logn, log q)

(11, 48) (12, 101) (13, 207) (14, 421)
KeyGen 0.04 0.09 0.21 0.72

RelinKeyGen 1.21 6.02 33.98 267.62
Encrypt 0.04 0.09 0.26 1.04
Decrypt 0.01 0.03 0.11 0.48

Add 0.00 0.00 0.00 0.01
Mult 1.09 6.85 46.61 409.89

Table 5 Running time in seconds for operations in our
Python implementation of our LPR-type scheme. We set
plaintext modulus t = 3. We set r/q = q/p = 16.
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Appendix A Omitted proofs

Proof of Lemma 2.

Proof. It is clear that the uniform distribution on Rαq×Rαp is mapped to the uniform
distribution on Rq × Rp. Next, given a Ring-LWRn,αq,αp sample (a, b), with b :=
ba · seαq,αp and (ā, b̄) := π((a, b)), we need to show that b̄ = bā · seq,p, as in a Ring-
LWRn,q,p sample. Notice that b = bas · αp/αqe mod αp = bas · p/qe + i · αp and
bā · seq,p = b(a+ j · q) · s · p/qe mod p which is equal to bas · p/qe+ j · s · p. Therefore
bā · seq,p = b mod p, which is the same as b̄.

Proof of Lemma 3.

Proof. Let (r1, . . . , r`) 6= (r′1, . . . , r
′
`) ∈ E`p,q. Notice that there must exist i ∈ {1, . . . , `}

such that ri 6= r′i. Since the set Ep,q is exceptional and ri − r′i is nonzero, ri − r′i is
invertible both modulo p and q. Using this, we have that

P := Prh←H[h(r1, . . . , rk) = h(r′1, . . . , r
′
k)]

= Pr(vk,wk)k∈[`]←R`
q×R`

p
[(
∑̀
k=1

rkvk,
∑̀
k=1

rkwk) = (
∑̀
k=1

r′kvk,
∑̀
k=1

r′kwk)]

= Pr(vk,wk)k∈[`]←R`
q×R`

p
[
∑̀
k=1

(rk − r′k)vk = 0 ∧
∑̀
k=1

(rk − r′k)wk = 0]

= Pr(vk,wk)k∈[`]←R`
q×R`

p
[vi = −(ri − r′i)−1

∑̀
k=1,k 6=i

(rk − r′k)vk

∧ wi = −(ri − r′i)−1
∑̀

k=1,k 6=i

(rk − r′k)wk]

=
1

|Rq ×Rp|
.

Proof of Corollary 1.

Proof. Take r and r′ two distinct elements from Ep,q. Notice that r − r′ is therefore
bounded by B, and by the choice of B, taking its representatives via Chinese Remain-
der Theorem does not change it. By the primality of p1,..., ps, the difference r − r′ is
invertible mod p1,..., ps. Therefore, by Chinese Remainder Theorem, it is also invert-
ible mod p. Similarly, by the primality of q1,..., qt, the difference r−r′ is invertible mod
q. Therefore, the difference r− r′ is invertible both mod p and mod q. The conclusion
now follows by applying Theorem 3 and Theorem 4.

Proof of Corollary 2.

Proof. Take r and r′ two distinct elements from Ep,q. Notice that r − r′ is a nonzero
polynomial with coefficients bounded (in absolute value) by B, and since B is of course
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less than minimum of all the primes, taking its representatives via Chinese Remainder
Theorem does not change it. By the choice of B and by [55, Corollary 1.2], it follows
that r − r′ is invertible mod pi and mod qj , for any 1 ≤ i ≤ s and 1 ≤ j ≤ t.
Therefore, by Chinese Remainder Theorem, r − r′ is invertible both mod p and mod
q. The conclusion now follows by applying Theorem 3 and Theorem 4 and the fact
that |Ep,q| = (B + 1)n.

Appendix B Bound for multiplication noise growth

In this section we analyse the noise Nmult from the multiplication operation, for both
the LPR-type and Regev-type schemes. To determine the noise Nmult, we first note
that by definition of noise in the input ciphertexts ct and ct′ we have:

t

p

(
−p
q
· ct0 · s+ ct1

)
= m+N + tG ,

t

p

(
−p
q
· ct′0 · s+ ct′1

)
= m′ +N ′ + tG′ .

Multiplying these two equations, and expanding the left hand side, we obtain:

t2

p2

(
−p
q
ct0s+ ct1

)(
−p
q
ct′0s+ ct′1

)
= (m+N + tG)(m′ +N ′ + tG′)

t2

q2
ct0ct

′
0s

2 − t2

pq
(ct0ct

′
1 + ct′0ct1)s+

t2

p2
ct1ct

′
1 = (m+N + tG)(m′ +N ′ + tG′) .

Moreover, we note that, for some H = Gm′ +G′m+ tGG′,

(m+N + tG)(m′ +N ′ + tG′) = mm′ +Nm′ +N ′m+NN ′ + tGN ′ + tG′N + tH .

Next, we make explicit the modular reduction in the intermediate (c2, c1, c0) as
follows, where A0, A1 and A2 are integer polynomials.

c2 =
t

p
ct0ct

′
0 + ε2 +

q2

p
A2

c1 =
t

p
(ct0ct

′
1 + ct′0ct1) + ε1 + qA1

c0 =
t

p
ct1ct

′
1 + ε0 + pA0 .

By the definition of noise in (c2, c1, c0), we see that, for A = A2s
2 −A1s+A0,

t

p

((
p

q

)2

c2s
2 − p

q
c1s+ c0

)
=
t

p

(
p

q

)2(
t

p
ct0ct

′
0 + ε2 +

q2

p
A2

)
s2
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− t

p

p

q

(
t

p
(ct0ct

′
1 + ct′0ct1) + ε1 + qA1

)
s

+
t

p

(
t

p
ct1ct

′
1 + ε0 + pA0

)
=
t2

q2
ct0ct

′
0s

2 − t2

pq
(ct0ct

′
1 + ct′0ct1)s+

t2

p2
ct1ct

′
1

+
tp

q2
ε2s

2 − t

q
ε1s+

t

p
ε0 + tA

= mm′ +Nm′ +N ′m+NN ′ +
tp

q2
ε2s

2

− t

q
ε1s+

t

p
ε0 + tGN ′ + tG′N + t(A+H) ,

so that

Nmult = NN ′ + (m′ + tG′)N + (m+ tG)N ′ +
tp

q2
ε2s

2 − t

q
ε1s+

t

p
ε0 .

In particular, the resulting expression for Nmult is the same for both schemes. More-
over, we can compare this with the corresponding invariant noise expression presented
in [84] for the multiplication noise in the BFV scheme. It is clear that the noise growth
in multiplication of either the LPR-type or Regev-type scheme is entirely analogous
to the noise growth in BFV.

We show that with high probability, the canonical norm of Nmult can be bounded
by:

‖Nmult‖can ≤ ‖N‖can · ‖N ′‖can
+ t ·

√
2n2 + 3n ·

(
‖N‖can

+ ‖N ′‖can)
+
tp

q2
· 4
√

3 · n3/2 + t ·

√
2n2

q2
+

3n

p2
.

To see this, we rewrite the expression of Nmult as follows

Nmult = NN ′ + (m′ + tG′)N + (m+ tG)N ′ +
tp

q2
ε2s

2 − t

q
ε1s+

t

p
ε0

= NN ′ + (− t
q
ct′0s+

t

p
ct′1 −N ′)N + (− t

q
ct0s+

t

p
ct1 −N)N ′ +

tp

q2
ε2s

2 − t

q
ε1s+

t

p
ε0

= −NN ′ + (− t
q
ct′0s+

t

p
ct′1)N + (− t

q
ct0s+

t

p
ct1)N ′ +

tp

q2
ε2s

2 − t

q
ε1s+

t

p
ε0,

which implies that:

‖Nmult‖can ≤ ‖N‖can ‖N ′‖can
+

∥∥∥∥− tqct′0s+
t

p
ct′1

∥∥∥∥can

‖N‖can
+

∥∥∥∥− tqct0s+
t

p
ct1

∥∥∥∥can

‖N ′‖can
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+

∥∥∥∥ tpq2
ε2s

2

∥∥∥∥can

+

∥∥∥∥− tq ε1s+
t

p
ε0

∥∥∥∥can

.

We consider the terms in turn, and develop bounds using Section 2.5. We have∥∥∥ tpq2 ε2s2
∥∥∥can

≤
∥∥∥ tpq2 ε2s∥∥∥can

· ‖s‖can
and with high probability, this can be further

bounded by

6
√
n
tp

q2

√
nVε2Vs · 6

√
n
√
Vs =

tpn

q2
· 6
√

1

12
· 2

3
· 6
√
n

√
2

3
=

4
√

3n3/2tp

q2
.

Let A := − t
q ε1s+ t

pε0. Then we can bound
∥∥∥− t

q ε1s+ t
pε0

∥∥∥can

≤ 6
√
n
√
VA, where

VA =
t2

q2
nVεVs +

t2

p2
Vε = t2

(
n

18q2
+

1

12p2

)
.

Let B := − t
qct0s + t

pct1. Then we can bound
∥∥∥− t

qct0s+ t
pct1

∥∥∥can

≤ 6
√
n
√
VB ,

where

VB =
t2

q2
nVct0Vs +

t2

p2
Vct1 =

t2

q2
n · q

2

12
· 2

3
+
t2

p2
· p

2

12
= t2

(
n

18
+

1

12

)
.

By symmetry, the term
∥∥∥− t

qct
′
0s+ t

pct
′
1

∥∥∥can

can be bounded in the same way. By

substituting the established bounds and rearranging the terms, we obtain the desired
bound.

Appendix C Relinearization noise growth

In this section we analyse the noise Nrelin from the relinearization operation, for both
the LPR-type and Regev-type schemes. Let (c2, c1, c0) be an intermediate obtained
from multiplication that encrypts m with noise N . Let (ct0,relin, ct1,relin) defined
either as in Section 3. Then we have

t

p

(
−p
q
· ct0,relins+ ct1,relin

)
=
t

p

(
−p
q

(
c1 +

k∑
j=0

c
(j)
2 aj + qA

)
s

)
+
t

p

(
c0 +

k∑
j=0

c
(j)
2 bj + pB

)

= − t
q

k∑
j=0

c
(j)
2 ajs+

t

p

k∑
j=0

c
(j)
2 bj −

t

q
c1s+

t

p
c0 + t(B −As)

= − t
q

k∑
j=0

c
(j)
2 ajs+

t

p

k∑
j=0

c
(j)
2

(⌈
ajs
⌋
q,p

+

⌈
p2

q2
ωjs2

⌋)
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− t

q
c1s+

t

p
c0 + t(B −As)

= − t
q

k∑
j=0

c
(j)
2 ajs+

t

p

k∑
j=0

c
(j)
2

(
p

q
(ajs) + ε1 +

p2

q2
ωjs2 + ε2

)
− t

q
c1s+

t

p
c0 + t(B −As)

=
t

p

p2

q2
s2

k∑
j=0

c
(j)
2 ωj − t

q
c1s+

t

p
c0 +

t

p

k∑
j=0

c
(j)
2 (ε1 + ε2) + t(B −As)

=
t

p

(
p2

q2
c2s

2 − p

q
c1s+ c0

)
+
t

p

k∑
j=0

c
(j)
2 (ε1 + ε2) + t(B −As)

= m+N +
t

p

k∑
j=0

c
(j)
2 (ε1 + ε2) + t(B −As+G) .

Thus ctrelin encrypts m with noise Nrelin = N+ t
p

∑k
j=0 c

(j)
2 (ε1+ε2), with ε1, ε2 polyno-

mials with coefficients in (− 1
2 ,

1
2 ] and c

(j)
2 polynomials with coefficients in {−ω2 , . . . ,

ω
2 }.

Using Section 2.5, the variance of the additive term is

Vrelin =
t2

p2
· (k + 1) · n · V

c
(j)
2
· (Vε1 + Vε2)

=
t2

p2
· (k + 1) · n · ω

2

12
· 1

6

With high probability, using Section 2.5, we have the bound ‖Nrelin‖can ≤ ‖N‖can
+

tnω
p ·

√
k+1

2 , which can be seen as follows:

‖Nrelin‖can ≤ ‖N‖can
+
t

p

∥∥∥∥∥
k∑
j=0

c
(j)
2 (ε1 + ε2)

∥∥∥∥∥
can

≤ ‖N‖can
+
t

p
· 6n

√
(k + 1) · ω

2

12
· 1

6
.

Notice that in the case ω = 2, the polynomials c
(j)
2 from the decomposition have

coefficients 0 or 1, and hence by using Section 2.5, with high probability ‖Nrelin‖can ≤
‖N‖can

+ tn
p ·
√

3(k+1)
2 , as

‖Nrelin‖can ≤ ‖N‖can
+
t

p

∥∥∥∥∥
k∑
j=0

c
(j)
2 (ε1 + ε2)

∥∥∥∥∥
can

≤ ‖N‖can
+
t

p
· 6n

√
(k + 1) · 1

4
· 1

6
.
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Appendix D Modulus switching

Defining a modulus switch method is more challenging for LWR-based schemes such
as ours due to the two ciphertext moduli q and p at each level, as opposed to the single
ciphertext modulus q of comparable LWE-based schemes such as BGV [3] and BFV [6].
In this section, we show that it can be done. We present a modulus switching algorithm
that is compatible with either the LPR-type or Regev-type scheme. This is possible
as the schemes share the same decryption equation and ciphertext space Rq×Rp. We
describe modulus switching from a ciphertext (ct0, ct1), that encrypts m with noise
N at level i to a ciphertext ctmod = (ct0,mod, ct1,mod) at level i − 1. The approach
is analogous to the BFV modulus switching presented in [58]. We define ct0,mod =⌊
qi−1

qi
ct0

⌉
(mod qi−1) and ct1,mod =

⌊
pi−1

pi
ct1

⌉
(mod pi−1). Then, the ciphertext

(ct0,mod, ct1,mod) at level i−1 encrypts m with noise Nmod = N− t
qi−1

ε1s+ t
pi−1

ε0. To

see this, we make the modular reduction in ct0,mod and ct1,mod explicit and denote
the rounding by the addition of some εi whose coefficients are uniform in (− 1

2 ,
1
2 ], so

that, for some integer polynomials A and B, we have

ct0,mod =
qi−1

qi
ct0 + ε0 + qi−1A

ct1,mod =
pi−1

pi
ct1 + ε1 + pi−1B .

We then have, for some polynomial C = B −As:

t

pi−1

(
−pi−1

qi−1
ct0,mods+ ct1,mod

)
= − t

qi
ct0s−

t

qi−1
ε0s−Ats+

t

pi
ct1 +

t

pi−1
ε1 + tB

=
t

pi

(
−pi
qi
ct0s+ ct1

)
− t

qi−1
ε1s+

t

pi−1
ε0 + tC

= m+N − t

qi−1
ε0s+

t

pi−1
ε1 + t(G+ C) .

We can bound Nmod with high probability as follows:

‖Nmod‖can ≤ ‖N‖can
+

∥∥∥∥− t

qi−1
ε0s+

t

pi−1
ε1

∥∥∥∥can

≤ ‖N‖can
+ 6t
√
n

√
n

18q2
i−1

+
1

12p2
i−1

≤ ‖N‖can
+ t ·

√
2n2

q2
i−1

+
3n

p2
i−1

.
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Appendix E Equivalence between 2DKS and DKS

In this section we give the definition of the Decisional Knapsack Problem in a single
ring [54, Definition 1], and show that our two-ring version of the problem is equivalent
with this problem. Let p be an integer and n a power of two. Let X be a finite subset
of the ring R = Z[x]/(xn + 1). Recall that Rp = Zp[x]/(xn + 1).
Definition 11 (DKS distribution). The Decisional Knapsack Problem distribution
with parameters n, p, `, X (denoted by the DKSn,p,`,X distribution) is the distribution
over R`p×Rp which outputs a sample (a1, . . . , a`, a), where a1, . . . , a` are independent

and uniformly random in Rp and a =
∑`

k=1 rkak, for some independently chosen,
uniformly random elements rk from X.
Definition 12 (DKS problem [54]). The Decisional Knapsack Problem with pa-
rameters n, p, `, X, denoted by DKSn,p,`,X , is defined as follows: given samples
(a1, . . . , a`, a) from R`p × Rp, decide whether they are sampled from the DKSn,p,`,X
distribution or are uniformly random in R`p ×Rp.
Theorem 5. Let p and q be two coprime integers, let ` be a positive integer, and let X
be a finite subset of R. Then the two-ring Decisional Knapsack Problem 2DKSn,p,q,`,X
and the Decisional Knapsack Problem DKSn,pq,`,X are equivalent.

Proof. Recall the notation Rm = Zm[x]/(xn + 1) for any integer m. Both reductions
will make use of an application of the Chinese Remainder Theorem. This theorem
states that, due to the choice of p and q, we have an R module isomorphism map ϕ:

Rpq
ϕ−→ Rp ×Rq,

defined as ϕ(x) = (x (mod p), x (mod q)).
Assume that we are given an efficient algorithm A for solving 2DKS. We want to

construct an efficient algorithm B for solving DKS, meaning that, given an instance
(a1, . . . , a`, a), for a1, . . . , a` ← Rpq, the algorithm B decides if a ← Rpq or if a =∑`

k=1 rkak, for some rk ← X. The algorithm B sets (wk, vk) = ϕ(ak) and (w, v) =
ϕ(a). Notice that the tuples (wk, vk) are uniform over Rp×Rq, as ϕ is an isomorphism
and ak’s are uniform over Rpq. Hence, B can run A on input ((wk, vk)k, w, v) and
return as output whatever A outputs. We argue now that if (a1, . . . , a`, a) is a DKS

instance, then (vk, wk)k, w, v) is a 2DKS instance. Indeed, as a =
∑`

k=1 rkak, for some
rk ← X, since ϕ is an R-module map and X ⊆ R, we have

ϕ(a) = ϕ(
∑̀
k=1

rkak) =
∑̀
k=1

rkϕ(ak) =
∑̀
k=1

rk(wk, vk) = (
∑̀
k=1

rkwk,
∑̀
k=1

rkvk),

and this proves the claim. If a is uniform over Rpq, then (w, v) = ϕ(a) is also uniform
over Rq ×Rp, as ϕ is an isomorphism.

Now assume that we are given an efficient algorithmA for solving DKS. We want to
construct an efficient algorithm B for solving 2DKS, meaning that, given an instance
(w1, . . . , w`, v1, . . . , v`, w, v), for w1, . . . , w` ← Rp, v1, . . . , v` ← Rq, to tell if w ← Rp
and v ← Rq or if v =

∑`
k=1 rkvk and w =

∑`
k=1 rkwk, for some rk ← X. The algorithm
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B sets ak = ϕ−1(wk, vk) and a = ϕ−1(w, v). Notice that the ak’s are uniform over
Rpq, as ϕ is an isomorphism and the tuples (wk, vk) are uniform over Rq×Rp. Hence,
B can run A on input (a1, . . . , a`, a) and return as output whatever A outputs. We
argue now that if ((wk, vk)k, w, v) is a 2DKS instance, then (a1, . . . , a`, a) is a DKS

instance. Indeed, as w =
∑`

k=1 rkwk and v =
∑`

k=1 rkvk for some rk ← X, since ϕ is
an R-module map and X ⊆ R, we have

a = ϕ−1(w, v) = ϕ−1(
∑̀
k=1

rkwk,
∑̀
k=1

rkvk) =
∑̀
k=1

rkϕ
−1(wk, vk) =

∑̀
k=1

rkak,

and this proves the claim. If (w, v) is uniform over Rq × Rp, then a = ϕ−1(w, v) is
also uniform over Rpq, as ϕ is an isomorphism.

Appendix F On the DKS-LWE equivalence [70]

Theorem 5 shows that our two-ring decisional knapsack problem 2DKSn,p,q,`,X (Def-
inition 9) is equivalent to a decisional knapsack problem DKSn,pq,`,X in a single ring,
for a finite set X of polynomials from R = Z[x]/(xn + 1). This latter problem can be
further expressed in terms of linear algebra as in Section 5.2, which resonates with
the knapsack terminology of [70]. In fact, it can be shown that the one-ring decisional
knapsack problem is equivalent to a corresponding decision LWE problem.

More precisely, when X = SB/2, the set of scalars bounded (in absolute value) by
B/2, we can consider the equivalent knapsack function in the notation of [70] as the
function fg with input distribution the uniform distribution over {−B/2, . . . , B/2}`,
indexed by g ∈ (Znpq)` and defined as fg(r) = 〈g, r〉. When X = PB/2, the set of
polynomials with coefficients bounded (in absolute value) by B/2, we can consider
the equivalent knapsack function in the notation of [70] as the function fg with input
distribution the uniform distribution over {−B/2, . . . , B/2}`n, indexed by g ∈ (Znpq)`n
and defined as fg(r) = 〈g, r〉. It is shown in [70, Lemmas 4.8, 4.9] that, for such a
knapsack function, inverting its output, respectively distinguishing it from uniform, is
equivalent to solving the search variant, respectively the decision variant, of the LWE
problem. Here we give the full statements, for the sake of completeness. We denote
by U(X) the uniform distribution over a set X.
Corollary 3 (Adapted from [70]). For X = SB/2, the DKSn,pq,`,X problem is
equivalent to the LWE`,`−n,U({−B/2,...,B/2}`),q problem.
Corollary 4 (Adapted from [70]). For X = PB/2, the DKSn,pq,`,X problem is
equivalent to the LWE`n,`n−n,U({−B/2,...,B/2}`n),pq problem.

Corollary 3 shows that for X = SB/2 the decisional knapsack problem is equiva-
lent to an LWE instance of modulus pq, secret dimension `− n, number of samples `,
secret distribution as uniform over Zpq and error distribution as uniform distribution
over {−B/2, . . . , B/2}. Corollary 4 shows that for X = PB/2 the decisional knap-
sack problem is equivalent to an LWE instance of secret dimension `n − n, number
of samples `n, and the same secret and error distribution as before. Hence, for a spe-
cific choice of ` and B, we can estimate the security of the DKSn,pq,`,X instance by
estimating the security of the implied LWE instance, using the Lattice Estimator.
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n
`

B = 2
`

B = 4
`

B = 6
215 98164 98104 98064
214 49022 48962 48922

X = SB/2 213 24456 24396 24356
212 12178 12118 12078
211 6044 5984 5944
210 2982 2922 2882
215 3 3 3
214 3 3 3

X = PB/2 213 3 3 3
212 3 3 3
211 3 3 3
210 3 3 3

Table F1 Suggested values of ` for our Regev-type
scheme, chosen according to the DKS-LWE
equivalence [70]. The randomness is set as X = SB/2 or
X = PB/2, for B ∈ {2, 4, 6}. The parameters are targeted
at 128-bit security.

When attempting to call the Estimator on such LWE instances, we found that
setting the secret distribution as uniform modulo pq failed due to the modulus being
too large. Hence, we modelled the implied LWE instances in Hermite Normal Form
(i.e. with the secret distribution following the error distribution), at the cost of n
samples, as in [85]. Table F1 shows for X = SB/2 and for fixed choices of B ∈ {2, 4, 6},
a choice of ` ≈ 3n that, with n, p and q as in Table 3, leads to an implied LWE
instance that is estimated to be 128-bit secure following Section 5.1. Table F1 further
shows for X = PB/2 and for fixed choices of B ∈ {2, 4, 6}, the choice of ` = 3 with
n, p and q as in Tables 4 leads to an implied LWE instance that is estimated to be
128-bit secure following Section 5.1.

Appendix G Zooming in on Figure 1

In this section we present zoomed in versions of Figure 1, which illustrates the results
of Table 6. Figure G1 presents the results of Table 6 when restricting the multiplica-
tive depth considered to between 1 and 9. Figure G2 presents the results of Table 6
when restricting the multiplicative depth considered to between 11 and 19. Figure G3
presents the results of Table 6 when restricting the multiplicative depth considered to
between 21 and 29.

Appendix H Background for RNS

In this section we include details from [52], on RNS building blocks, namely on basis
extension and simple scaling. We also discuss their complexity analysis. We show that
these tools may actually require fewer floating-point operations than claimed in [52],
whenever the input and output RNS bases of the operations have some common
elements.
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Figure G1 Partial plot of Figure 1. Minimal ciphertext size in kilobytes (kB) for which decryption
is guaranteed to work for depth L ∈ {1, 3, 5, 7, 9}, when fixing plaintext modulus t = 3.
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Figure G2 Partial plot of Figure 1. Minimal ciphertext size in kilobytes (kB) for which decryption
is guaranteed to work for depth L ∈ {11, 13, 15, 17, 19}, when fixing plaintext modulus t = 3.
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Figure G3 Partial plot of Figure 1. Minimal ciphertext size in kilobytes (kB) for which decryption
is guaranteed to work for depth L ∈ {21, 23, 25, 27, 29}, when fixing plaintext modulus t = 3.

H.1 Basis extension as in [52, Section 2.2]

Suppose we have an integer x modulo q, i.e. x ∈
[
− q2 ,

q
2

)
, that is given in the RNS

representation {xi}i∈I with respect to the RNS basis {qi}i∈I . We want to efficiently
compute [x]p, for some modulus p that is coprime with all the qi’s. Denote by q?i :=
q/qi, where q =

∏
i∈I qi and q̃i := (q?i )−1 mod qi. By CRT we have:

x =

(∑
i∈I

[q̃i · xi]qi · q?i

)
− v · q, for some v ∈ Z.

From this we can easily deduce that v =
⌈∑

i∈I
[xi·q̃i]qi

qi

⌋
. So we can compute [x]p as

[x]p =
[∑

i∈I yi · [q?i ]p − v · [q]p
]
p
, where yi := [xi · q̃i]qi .

Complexity analysis.

The values [q]p, [q
?
i ] and q̃i are all pre-computed. Computing v requires |I| single-

precision integer multiplications (to compute any yi) and |I| floating-point divisions
followed by one floating-point rounding. Finally, another |I|+1 integer multiplications
(mod p) are required. In total there are 2|I| + 1 integer multiplications followed by
|I|+ 1 floating-point operations.
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H.2 Simple scaling as in [52, Section 2.3]

Again suppose that we have an integer x ∈
[
− q2 ,

q
2

)
, given in the RNS representation

{xi}i∈I with respect to the RNS basis {qi}i∈I . We want to efficiently compute
⌈
t
q · x

⌋
(mod t) with the result represented in the RNS basis {tl}l∈L of t. Using the notation
of q?i and of q̃i as above, we have by CRT the following:

x =

(∑
i∈I

[q̃i · xi]qi · q?i

)
− v · q, for some v ∈ Z,

which leads to ⌊
t

q
· x
⌉

=

⌊∑
i∈I

xi ·
tq̃i
qi
− tvx

⌉
.

Therefore, ⌊
t

q
· x
⌉

=

⌊∑
i∈I

xi ·
tq̃i
qi

⌉
mod t

The rational values tq̃i
qi

, are known in advance, so they are pre-computed as integral

and fractional parts: tq̃i
qi

= ωi + θi, with ωi ∈ Z, θi ∈
[
− 1

2 ,
1
2

)
. Notice that in the case

when qi is a prime of t, the rational value becomes an integer one, so θi = 0. The pre-

computed values that are stored are {[ωi]tj , θi}i,j . In order to compute
[⌈

t
q · x

⌋]
tj

, we

start with v :=
[⌈∑

i∈I xi · θi
⌋]

and wj :=
[∑

i∈I xi · [ωi]tj
]
tj

, then output [v + wj ]tj .

Complexity analysis.

Denote by C the subset of I, {i ∈ I : qi|t}. As for the case when qi is a prime of
t, i.e. i ∈ C, tq̃i

qi
= ωi ∈ Z. Therefore, computing v requires only |I \ C| floating-

point multiplications and one rounding, in total |I \ C|+ 1 floating point operations.
Moreover,

wj : =

[∑
i∈I

xi · [ωi]tj

]
tj

=

[∑
i∈C

xi · [ωi]tj

]
tj

+

[∑
i/∈C

xi · [ωi]tj

]
tj

=

 ∑
i∈C:qi=tj

xi · [ωi]tj


tj

+

[∑
i/∈C

xi · [ωi]tj

]
tj

,

as if qi|t and qi 6= tj , then tj | tq̃iqi , so [ωi]tj = 0. Therefore, the first sum contains

only one term and hence, computing wj requires |I \ C| + 1 single precision integer
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multiplications. The total cost is therefore |J | · (|I \ C| + 1) single precision integer
multiplications.

Appendix I Further RNS details

In this section, we present details of RNS variants of our Regev-type and LPR-type
schemes that were omitted from Section 7.

Regev-type secret/public key generation and encryption.

The secret key (with small coefficients) can be interpreted directly mod each qi. The
public key can have each vk sampled directly mod each qi, then each wk = bvk · seq,p
can be computed modulo the qj using simple scaling. For encryption, if the rk are
small enough then rk mod qi = rk mod pj for all i and j. The RNS components
of the scaled message can be computed as ∆pm mod pj . Encryption can then be
implemented RNS-component-wise as it is simply a linear operation in each ciphertext
part: ct0 =

∑`
k=1 rkvk (mod q) and ct1 = ∆pm+

∑`
k=1 rkwk (mod p).

LPR-type secret/public key generation and encryption.

The secret key (with small coefficients) can be interpreted directly mod each rι, where
rι’s are the components of r = q2/p (c.f. Theorem 1, Section 5.3). For the public key,
a can be sampled directly mod each rι, then ba · ser,q can be computed modulo the qj
using simple scaling. For encryption, the random element u (with small coefficients)
can be interpreted directly mod each rι and qi, for all ι and i. Interpreting u as
mod r, we can compute pk0u RNS-componentwise mod r and then compute ct0 =
bpk0uer,q (mod q) using simple scaling. Interpreting u as mod q, we can compute pk1u
RNS-componentwise mod q and then compute bpk1ueq,p (mod p) using simple scaling.
The RNS components of the scaled message can be computed as ∆pm mod pj . The
final addition operation to obtain ct1 = ∆pm+ bpk1ueq,p (mod p) can be computed
RNS-component-wise mod p as it is simply a linear operation.

Correctness of decryption.

The only source for possible errors comes from using floating-point numbers. Because
all the values θi,q and θj,p live in (−1/2, 1/2], for i ∈ I and j ∈ J , we can approximate

them as θi,q = θ̃i,q+εi,q and θj,p = θ̃j,p+εj,p, where the approximation errors given by
the “double float” IEEE 754 standard satisfy |εi,q| < 2−53 and |εj,p| < 2−53. Besides
the usual noise, there is some extra error that might affect decryption, which can

be bounded as
∣∣∣∑i∈I xi · εi,q +

∑
j∈J yj · εj,p

∣∣∣ ≤ 2−53 ·
(∑

i∈I qi/2 +
∑

j∈J pj/2
)

. For

q = q0 · p, for I = J ∪{0}, where in this work q0 = k ≤ 16 and assuming each prime is
at most α bits long, an upper bound on the error term is given by 2−53 · (|J | · 2α + 8).
For |J | = 32 and α = 46 (i.e. pj ≤ 246) we are guaranteed that this extra error is
smaller than 1/4. By making sure that the ciphertext we decrypt has a noise value
smaller than 1/4, decryption always works in RNS.

58



Relinearisation noise growth.

Consider decrypting the output of relinearisation (ct0, ct1):⌈
t

p

(
−p
q
· ct0 · s+ ct1

)⌋
(mod t)

=

⌈
t

p

(
−
(
p

q
· (c̃t1 + c1)

)
· s+ c̃t0 + c0

)⌋
(mod t)

=

⌈
t

p

(
−p
q
c1s+ c0 −

p

q
c̃t1s+ c̃t0

)⌋
(mod t)

=

⌈
t

p

(
−p
q
c1s+ c0 −

p

q

∑
h∈H

αhc2,hs+
∑
h∈H

βhc2,h

)⌋
(mod t)

=

⌈
t

p

(
−p
q
c1s+ c0 −

p

q

∑
h∈H

αhc2,hs+
∑
h∈H

(⌈
αhs

⌋
q,p

+

⌈
p2

q2
Q̃hQ

∗
hs

2

⌋)
c2,h

)⌋
(mod t)

=

⌈
t

p

(
−p
q
c1s+ c0 +

p2

q2
s2
∑
h∈H

Q̃hQ
∗
hc2,h +

∑
h∈H

(ε1,h + ε2,h)c2,h

)⌋
(mod t)

=

⌈
t

p

(
p2

q2
s2c2 −

p

q
c1s+ c0 +

∑
h∈H

(ε1,h + ε2,h)c2,h

)⌋
(mod t) ,

where we used that c2 =
∑

h∈H Q̃hQ
∗
hc2,h mod Q. Thus, if the ciphertext input to

relinearisation has noise N , then the output ciphertext has noise

Nrelin = N +
t

p

∑
h∈H

(ε1,h + ε2,h)c2,h .
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