
Signer Revocability for Threshold Ring Signatures

Da Teng1,2,3 and Yanqing Yao1,2,3*

1*State Key Laboratory of Software Development Environment, Beihang University,
Beijing, 100191, China.

2State Key Laboratory of Cryptology,Beijing, 100878, China.
3Key Laboratory of Aerospace Network Security, Ministry of Industry and Information

Technology, School of Cyber Science and Technology, Beihang University, Beijing, 100191,
China.

Abstract

t-out-of-n threshold ring signature (TRS) is a type of anonymous signature designed for t signers to
jointly sign a message while hiding their identities among n parties that include themselves. However,
can TRS address those needs if one of the signers wants to revoke his signature or, additively, sign
separately later? Can non-signers be revoked without compromising anonymity? Previous research
has only discussed opposing situations. The present study introduces a novel property for TRS-
revocability- addressing the need for improved flexibility and privacy security in TRS. Our proposed
revocable threshold ring signature (RTRS) scheme is innovative in several ways: (1) It allows a signer to
non-interactively revoke their identity and update the signature from t-out-of-n to t−1-out-of-n; (2)
It is possible to reduce the ring size and clip non-signers along with revoked signers while maintaining
the anonymity level. We analyze and define the boundaries for these operations and implement and
evaluate our structure. With a sufficiently large ring size, we can optimize the signature size, resulting
in better signing performance as compared to the extensible signature scheme.

Keywords: Threshold ring signatures, Revocability, Anonymity, Electronic voting

1 Introduction

Threshold ring signatures (TRS) [1] are an exten-
sion of ring signature (RS) schemes and a type of
digital signature that certifies t signers, among a
group of n participants, jointly signed a specific
message, without revealing which are the actual
signers. Similar to ring signatures, this group of
participants is referred to as a “ring”, and any ver-
ifier cannot distinguish the members of the ring
who are signers from those who are not. More-
over, signers do not need to inform non-signers
who are used as the anonymous set when gen-
erating signatures. The anonymity of (threshold)

ring signatures makes them very useful in some
privacy-demanding scenarios, such as e-voting or
elections, where the results need to be collected
without revealing the identity of supporters or
excluding the effect of supporters’ positions on
the proposals. Existing anonymous voting mech-
anisms lack provisions for pre-voting or revoking
votes, allowing some voters who have already cast
their ballots to revoke them before the final tally.
Allowing participants to regret can help ensure
fair voting, encourage thoughtful decision-making,
and avoid regrettable decisions made on impulse.

In psychology, there exists a phenomenon
known as “buyer’s remorse”, commonly used to

1

describe post-purchase regrets. Similarly, buyer’s
remorse for voters (or voters’ remorse) specifi-
cally refers to the situation where individuals feel
regret after an election or voting process. Vot-
ers may experience unease regarding their chosen
candidates or voting decisions after casting their
ballots. This regret may stem from a reassessment
of a candidate’s performance, policy positions, or
other factors. This psychological phenomenon is
widespread among populations, with its roots in
decision-making processes, individual values, and
societal influences, among other factors. There-
fore, considering these factors in the design of
voting systems and allowing voters the oppor-
tunity for reconsideration is meaningful for the
fairness of elections or voting processes.

In the context of TRS, what does a voter’s
“regret” mean? In a (t, n)−TRS signature, if a
signer, i.e., a participating voter, decides to with-
draw his vote, he must revoke his signer identity
in the signature, which can be achieved by down-
grading the identity to a non-signer in the ring.
This results in a reduction of the signature thresh-
old from t to t − 1, thus decreasing the level of
anonymity of the signers in the ring from t/n
to (t − α)/n, where α is the number of revoked
signers. Moreover, this provides an opportunity to
improve storage efficiency by appropriately reduc-
ing anonymity. On a threshold ring signature
that has experienced partial signer revocation, the
elimination of certain confounding options, i.e.,
non-signer within the ring, through an operation
known as “clipping”, is effective in conserving the
actual storage space of the ring signature. This
efficiency stems from the existing construction of
ring signatures, where the size of the signature
is closely correlated with the scale of the ring.
Still, given the initial anonymity of the co-signers
who generated the signature, the anonymity of the
signature cannot be reduced below the consensus
threshold of t/n, regardless of how many rounds
of revocation have taken place. In electronic vot-
ing, this clipping process offers an additional level
of flexibility by effectively reducing the actual
storage requirements of voting information with-
out compromising the anonymity of the voters.
This proves particularly advantageous in large-
scale electronic voting scenarios with heightened
confidentiality requirements.

As shown in Figure 1, our voting process sup-
ports the revocation of votes. Voters can retract

their votes after casting their preliminary bal-
lots before the final tally is counted, allowing for
dynamic adjustments. Further, we consider how
to achieve this. Even after revocation, the revoked
voters remain members of the ring, which means
that in the view of any third-party verifier, they
may still be signers. Can we let the revoked signers
directly exit the signature ring? The answer is no.
In a (T)RS, the public key set that form the ring is
public, which means that an attacker can identify
who the former signers were based on the differ-
ence between the ring public keys used before and
after modification. Although the votes have been
revoked, the fact that some specific voters changed
their voting intention may still affect the fairness
of the election results. For signatures with revoked
ring members, trimming a portion of non-signing
ring members can help reduce the size of the
signatures, corresponding to the dynamic adjust-
ment in our voting application. This is because,
in most (T)RS schemes, the signature size is pos-
itively correlated with the size of the ring. Our
proposed scheme is also based on modifying and
expanding the construction of ring signatures with
O(n) space complexity. Therefore, a more reason-
able way to reduce the ring size is to randomly
clip members of the non-signing set in the ring,
including participants who have been revoked and
demoted to non-signers. Through this approach,
although third-party attackers can still identify
the pruned ring members by comparison, they
cannot confirm whether they have ever signed the
vote. Consequently, dynamic adjustments effec-
tively reduce the storage space requirements for
the election results.

Fig. 1: Dynamic electronic voting application
workflow

1.1 Related Work

There were some similar notions in early research
regarding revocability, but they were not equiva-
lent to the “revocability” described in this work.

2

Partially revocable signature. As is often
the practice case, exposing only part of the sig-
natures of a given set of messages may be desired
while ensuring that the remaining signatures are
only valid on a subset of the messages. A con-
struction of RSA-based signature is proposed by
Nojima et al. [2], which hides part of messages for
sensitive data release or other particular scenar-
ios without random oracle. Similarly, Brzuska et
al. [3] introduced the concept of a tree-structured
signature, which allows for the revocation of
part of the signature through subtree revision
while maintaining the validity of other compo-
nents. This approach has gained attention and has
been applied in several blockchain-related research
efforts. Additionally, Camenisch et al. [4] pro-
posed an unlinkable editable signature scheme
that allows for the partial display of a signature
and was used to build the first effective UC-
secure anonymous credential system. Sanders [5]
also proposed a constant size modifiable signature
scheme that supports editing a message signature
to make it valid only on a subset of its signature
messages.

Revocability of RS. A separable TRS
scheme was proposed by Liu et al. [6], which
defines separability as the ability to use various
kinds of public keys in the same signature scheme,
such as RSA and DL. It should be noted that sep-
arability, while not involving any changes to the
signer set or anonymity set of TRS signatures,
enables separate processing by different signers
and has inspirational significance for subsequent
research. Coincidentally, Liu et al. [7] later for-
mally proposed a revocability property of ring
signatures. They introduced a trusted authority
and defined revocability as allowing the author-
ity to de-anonymize signers and reveal their true
identities. Clearly, this is not the same as the revo-
cability described in this paper, and the goal of
de-anonymization is inconsistent with the goal of
maintaining anonymity in our proposal.

Previous research has defined the property of
changing the threshold size of signers in TRS.
Okamoto et al. [8] proposed and defined “flexi-
bility” to update generated signatures to increase
the number of signers. Similar to our scheme, both
reuse the original signature and do not require
interaction from other signers to make changes to
the signature. However, they did not consider the
case of reducing the number of signers without

interaction, which is a valuable property in prac-
tice, as described earlier. The signer revocation
proposed in this paper complements the defini-
tion of “flexibility”. In response to the issue of
fixed potential signers once generated, Aranha et
al. [9] further defined the notion of “extendabil-
ity” based on flexibility, in addition to proposing
a TRS scheme that not only satisfies threshold
extendability but also allows for the expansion of
the potential signer set. Moreover, they proved
the indistinguishability of the execution sequence
and rounds for the two functions of the proposed
extendability. However, they did not consider the
opposite of extendability, i.e., revocability, which
includes the revocation of signers for the thresh-
old and the reduction of the potential signer set
while maintaining anonymity, as well as the indis-
tinguishability of the revocation order. Gennaro
et al. [10] pointed out a weakness in the work of
[9]: it only guarantees anonymity against attack-
ers who just observe the final signature and cannot
access the “full evolution” of ETRS. Our proposed
revocable signature inherently addresses this defi-
ciency, meeting the slightly stronger anonymity
requirement proposed by [10]. Regardless of “flex-
ibility” or “extendability”, the proposed scheme
in this paper supplements the opposite properties
to their definitions, which have not been sys-
tematically defined or implemented in previous
research.

1.2 Contributions

The following are our contributions in this work:

• We introduce a novel concept called revocability
of TRS. Our revocability has an opposite prop-
erty to the extendability proposed in [9] and is
distinct from the commonly understood concept
of “signature revocation”.

• We define the first sub-property of revocability,
called clippability, which allows the signer of a
(T)RS to reduce the anonymity set of a given
signature. We provide the first construction of
the clippable ring signature (CRS).

• We define the second sub-property of revocabil-
ity, called splittability, which allows the signer
of a TRS to exit the set of signers for a given
signature while preserving the anonymity set.
We present the first splittable threshold ring
signature (STRS) construction:

3

– By employing improved sum argument to
establish threshold relationships, we convert
the above ring signature construction to a
TRS construction.

– Based on this TRS, we provide the STRS
construction.

• Combining the above two sub-properties, we
first construct a revocable threshold ring signa-
ture (RTRS, as Figure 2 shows). It is important
to note that through analysis and control of the
trimming boundary, the level of anonymity for
the signers is maintained at a minimum of the
same level as the original.

• Security definitions and proofs are presented for
the proposed scheme, along with an evaluation
and comparison of signature generation time
and signature size for our implementation. The
results demonstrate that, our proposed scheme
can complete signature generation in less time
and effectively save storage space when the ring
size is sufficiently large.

S
S

N
N

N

S S
S

N
N

N

N
S S

N

N

N

Signer Other signer

secret key secret key

splittable clippable

Fig. 2: Definition of revocability

1.3 Organization

The following sections of this paper are structured
as follows. Sec. 2 provides some preliminaries,
while in Sec. 3, the security model is defined. Then
we offer our proposed CRS, STRS, and RTRS in
Sec. 4-6, respectively. We implement and evaluate
our schemes in Sec. 7. We conclude in Sec. 8.

2 Preliminaries

2.1 (Threshold) Ring Signature

Let us revisit the definition of a ring signature:

Ring signature [11]. A tuple of polynomial-time
algorithms RS = (Setup, KeyGen, Sign, Verify)
forms a ring signature scheme:

- Setup(1λ) → pp. The public parameters,
denoted as pp, are outputted and implicitly
serve as inputs to the subsequent algorithms,
given a security parameter λ.

- KeyGen() → (sk, pk). Produce a secret-public
key pair.

- Sign(m, {pki}i∈R, sk)→ σ. Given a message m
to be signed, a ring of public keys {pki}i∈R with
index set R, and the signer’s secret key sk, this
algorithm produces a ring signature σ.

- Verify(m, {pki}i∈R, σ)→ 0/1. Given a message
m, a ring of public keys {pki}i∈R, and a signa-
ture σ, this algorithm outputs a bit b ∈ {0, 1},
where b = 1 indicates a valid signature and
b = 0 indicates an invalid signature.

Dualring ring signature. Dualring is a generic
construction for ring signatures, as described in
[12]. Schnorr signature is one possible instantia-
tion of Dualring, which has been proven to be
secure in the random oracle model with respect
to unforgeability and anonymity. Next, we intro-
duce the signing and verifying part of this DL-
based Dualring instance DualringEC , shown in
Algorithm 1, while some details are omitted.

Note that this work refers to the original Dual-
ring signature structure but not the optimized
logarithmic size version.

The security of DualRing is defined by
Unforgeability w.r.t. Insider Corruption and
Anonymity against full key exposure.

(Unforgeability w.r.t Insider Corrup-
tion). For any polynomial-time adversary A, a
ring signature is considered unforgeable if there
exists a polynomial related to integers qk in λ,
where λ is the security parameter:

Pr


1← V erify(m∗,
{pk∗i }i∈R, σ∗),
{pk∗i }i∈R ⊆ S\C,
(m∗, {pk∗i }i∈R, ·)

was not the
input of OS

param← Setup(λ),
for i ∈ [1, qk] :

(pk′i, sk
′
i)← KeyGen(),

S := {pk′i}
qk
i=1,

(m∗, {pk∗i }i∈R, σ∗)←
AOC,OS(param, S)

 ≤ (λ).

The two oracle definitions involved are as follows:

4

Algorithm 1:DualringEC .Sign & Verify

Sign-Input : param, m, {pki}i∈R, skj
Sign-Output: σ
1 random r, ci for all i ̸= j;
2 R = gr ·

∏
i ̸=j pk

ci
i ;

3 c = H(m, {pki}i∈R, R);
4 cj = c−

∑
i̸=j ci;

5 z = r − skj · cj ;
6 return σ = (c1, ..., cn, z);

Verify-Input : param, m, {pki}i∈R, σ
Verify-Output: 0 or 1
7 parse σ = (c1, ..., cn, z);
8 R = gz ·

∏
i∈R pkcii ;

9 c =
∑n

i=1 ci;
10 if c ̸=H(m, {pki}i∈R,R) then
11 return 0;

12 return 1.

• OC(i): Corruption Oracle, outputs sk′i. Let the
set of corruption queries for OC(i) be denoted
as C.

• OS(m, {pki}i∈R, j): Signature Oracle, where j
is the index of the signer, outputs the signature
σ ← (m, {pki}i∈R, skj).

(Anonymity against full key exposure).
For any polynomial-time adversaries (A1,A2), the
ring signature satisfies anonymity if there exists a
polynomial related to the integer qk in λ:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr



b = b′,
pk′i0 ,

pk′i1 ∈ S∩
{pk∗i }i∈R.

param← Setup(λ),
for i ∈ [1, qk] :
(pk′i, sk

′
i)←

KeyGen(param,ωi),
S := {pk′i}

qk
i=1,

(m∗, {pk∗i }i∈R, i0, i1, St)
← AOS

1 (param, S),
b←$ {0, 1},

σ ← Sign(m∗,
{pk∗i }i∈R, sk′ib),

b′ ← A2(σ, {ωi}qki=1, St)


− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ negl(λ).

Threshold ring signature [13]. A
TRS scheme is composed of a 4-tuple of
polynomial-time algorithms, denoted as
TRS = (Setup,KeyGen,Sign,Verify). The def-
initions for Setup,KeyGen remain the same as
those used in RS. The rest algorithm is defined
as follows:

- Sign(m, {pki}i∈R, {skj}j∈S) → σ. In the sign-
ing algorithm for a TRS scheme, a set of t secret
keys (indexed by S) is inputted instead of a sin-
gle secret key. These secret keys correspond to
public keys located in the ring, and together
they produce a t-out-of-n signature.

- Verify(m, {pki}i∈R, t, σ)→ 0/1. In the verifica-
tion algorithm of the TRS scheme, the input
consists of the signature, its corresponding mes-
sage m′, the set of ring public keys, and the
threshold t. The algorithm is responsible for
verifying the legitimacy of the signature.

Recent non-interactive constructions, as
described in [14] and [15], include an additional
algorithm called CombiSign, which is used to
combine partial signatures into a TRS:

Combisign(pp, {σi}i∈S , t)→ σ

Each signer executes the signing algorithm locally
using their own secret key ski, resulting in partial
signatures σi. The algorithm CombiSign takes all
the partial signatures {σi}i∈S and the threshold t
as input, and outputs the combined signature.

2.2 Argument of Knowledge

Argument of Knowledge (AoK) [16]. An
argument is defined as a tuple of probabilistic
polynomial time algorithms (Setup,P,V), where
Setup is the generator of the common reference
string, P is the prover, and V is the verifier:

- Setup(1λ) → cr. Output a common reference
string cr.

- ⟨P(s),V(t)⟩ → tr. On input s and t, P and V
outputs a transcript through interacting.

- ⟨P(s),V(t)⟩ = b ∈ {0, 1}. Write b = 1 denotes
the verifier accepts, and b = 0 denotes reject.

Define a formal language:

L = {x|∃ω : (cr, x, ω) ∈ R}

where the variables ω and x represent the witness
and the set of statements, respectively, in the given
relation R.

The AoK (Setup,P,V) is defined by satisfy-
ing perfect completeness and statistical witnessex-
tended emulation:

(Perfect Completeness). For any non-
uniform polynomial time adversaries A, the tuple

5

(Setup,P,V) satisfies perfect completeness if

Pr

[
(cr, u, ω) /∈ R or

⟨P(cr, u, ω),V(cr, u)⟩ = 1
cr ← Setup(1λ),
(u, ω)← A(cr)

]
= 1.

(Statistical Witness-Extended Emula-
tion). For all deterministic polynomial time
prover P∗, the property holds for the 3-tuple of
algorithms (Setup,P,V) if there exists a polyno-
mial time emulator E such that for any pairs of
interactive adversariesA1,A2, the following holds:

Pr

 A1(tr) = 1
cr ← Setup(1λ),
(u, s)← A2(cr),

tr ← ⟨P∗(cr, u, s),V(cr, u)⟩


≈ Pr

 A1(tr) = 1
∧(tr is accepting
⇒ (cr, u, ω) ∈ R)

cr ← Setup(1λ),
(u, s)← A2(cr),

(tr, ω)← EO(cr, u)


where the oracle is defined as O =
⟨P∗(cr, u, s),V(cr, u)⟩, which allows for rewinding
to a specific point and generating new randomness
for the verifier V from that point onwards.
Inner Product Argument (Bulletproof).
Bünz et al. [17] introduce an improved AoK to
prove inner-product relations. The inner-product
argument is an efficient proof system for relations
such as

{(g,h ∈ Gn, P ∈ G, c ∈ Zp;a,b ∈ Zn
p) :

P = gahb ∧ c = ⟨a,b⟩}
(1)

where the prover P tries to convince the verifier
V that c denotes the dot product of vectors a and
b, without giving away their values directly.

Overview. To reduce the cost of communi-
cation, they modified the relation being proved
to

{(g,h ∈ Gn, u, P ∈ G;a,b ∈ Zn
p) : P = gahb·u⟨a,b⟩}

(2)
where u is a fixed group element, corresponding
to the unknown discrete logarithm of the group
generator.

They achieved the proof system by a recursive
alogorithm.

Intuitively, P can be parsed as folllows

P = gahb ·uc = g
a[:n]

[:n] g
a[n:]

[n:] h
b[:n]

[:n] h
b[n:]

[n:] ·u
c ∈ G (3)

In each round, the prover P computes two

commitments L = g
a[:n]

[n:] h
b[n:]

[:n] · u
⟨a[:n],b[n:]⟩ and

R = g
a[n:]

[:n] h
b[:n]

[n:] · u
⟨a[n:],b[:n]⟩, then sends (L,R)

to verifier V and gets a challenge x. Two proof
vectors a′ and b′ of size n/2 are computed from

x, and set P ′ = Lx2

PRx−2

to reconstruct a sim-
ilar commitment relation of a′,b′ and ⟨a′,b′⟩.
Finally, perform the next round algorithm on the
given input (g′,h′, u, P ′;a′,b′) until the size of
vectors are recursed to 1. The dot product rela-
tion between the original vectors can be verified
efficiently using the scalars (a′, b′) and the group
element P ′ output by the last recursion.
Sum Argument(DualRingEC). Yuen et al. [12]
proposed a DualRing scheme based on Elliptic
Curve Cryptography (ECC). In order to optimize
the signature size, they introduced a “Sum Argu-
ment” algorithm by enhancing the inner product
proof algorithm in Bulletproofs. This algorithm is
employed to prove the relationship:

{
(g ∈ Gn, P ∈ G, a ∈ Zp;a ∈ Zn

p) : P = ga ∧ a =
∑

a
}

(4)
In the proposed schemes in this paper, the Sum

Argument algorithm, as introduced by Yuen et
al. [12], is also referenced. However, its utilization
and purpose in our scheme differ. We represent the
sum argument algorithms by the following syntax:

- NISA .Proof(g, u, P, a,a)→ π.
- NISA .Verify(g, u, P, a, π)→ 0/1.

2.3 Pseudo-random Number
Generators(PRNG)

PRNG [18]. A PRNG G is defined as a tuple
(Y, µ, f,U , g), where consists the states set Y, the
probability distribution µ on Y corresponds to
the initial seed s0, the transition function f :
Y → Y, the output space U and the output
function g : Y → U . The generator G produces
the pseudo-random numbers through the following
operations:

1. Input the initial seed s0 ∈ Y ground on µ, and
the first pseudo-random number is u0 = g(s0).

2. For each step i ≥ 1, compute the seed as si =
f(si−1) and the output value is ui = g(si).

6

3 Formal Definition

3.1 Syntax

The definition of a non-interactive RTRS
scheme consists of a set of 7 PPT algo-
rithms denoted by RTRS = (Setup,Keygen,
Sign,Verify,Split,SplitCheck,Clip). The first four
algorithms are inherited from TRS, whereas the
remaining three algorithms permit signatories to
revoke their own signatures, authenticate the iden-
tity of the revoker, and clip anonymous rings.

- Split(σT ,m, {pki}i∈R, pktemp, sktemp, sk ∈
{skj}j∈S)→ σ

- SplitCheck(m, {pkj}j∈S , {pki}i∈R, (sk, r), σ)→
Lsp = {pkj}j∈S′⊂S .

- Clip(m, (sk, r), pktemp, {pki}i∈R, k, σ)→ σ

where SplitCheck allows any signer of a signa-
ture to query the identity of the former signers
who have abandoned their signing and return their
public keys.

3.2 Security model

EUF-CMA for RTRS [14]. An existentially
unforgeable under chosen-message attack (EUF-
CMA) RTRS scheme is defined as follows: Let
A be any probabilistic polynomial-time (PPT)
adversary. The probability that A wins the follow-
ing game against the challenger C is considered
negligible:

• Setup. The challenger C performs Setup(1λ)→
pp and KeyGen() → (ski, pki) for R = {i|i =
1, ..., n} to generate the public parameters along
with a set of n key pairs. Then C transmits
pp and pk1, ..., pkn to A. Initialize empty sets:
Lcorr, Lsign.

• Queries. The adversary A can make polynomi-
ally many queries to the following oracles:

– OSign. A selects a message m and
provides it to C. The challenger runs
Sign(m, {pki}i∈R, {skj}j∈S) → σ and
sends σ to A. Add to Lsign : Lsign =
Lsign ∪ (m,σ,S)

– OCorrupt. On input a pk and its index i,
this oracle returns the corresponding secret
key ski. Add to Lcorr : Lcorr = Lcorr ∪ (i)
The number of corrupted queries should not
exceed the signature threshold.

• Forge. The game is won by A if they can pro-
duce a valid RTRS for message m∗, where m∗

has not been queried.

Signer Ambiguity for RTRS. We say that
a RTRS scheme is signer ambiguous if for any
PPT adversary A, it is infeasible to disclose which
subset of t signers participated in generating σ.
The chance of adversary A winning the game
against challenger C is so small as to be considered
negligible:

• Setup. Same as above.
• Queries 1. Same as above.
• Challenge. Adversary A selects a message
m∗ and different groups of t signers PK0 =
(pkj0,1 , ..., pkj0,t), PK1 = (pkj1,1 , ..., pkj1,t),
both of which are subsets of ring {pki}i∈R, and
have not been queried in Queries 1 phase. A
gives them to C. A bit b is randomly selected
from the set {0, 1}. C runs signing algorithm to
sign m∗ and get σb, using a set of secret keys
corrresponding to one of the signer groups PKb.
Then give σb to A.

• Queries 2. Same as above, except that PK0

and PK1 have not been queried before.
• Guess. A provides a guess b′. The adversary
A is considered to have won the game if the
probability that b′ = b is greater than 1/2.

Revoker Anonymity for RTRS.

• Setup. Same as above.
• Queries 1. Same as above, with additional
oracle ORevoke.

– ORevoke. The adversary A transmits a tuple
(m,σ) to the challenger C. The challenger
then executes the function Split(σ,m, ·, sk ∈
{skj}j∈S),producing σ∗ as the output. Then
sends σ∗ to A.

• Challenge. A selects a message m∗, a groups
of signers PK = (pk1, ..., pkt), which is subset
of ring {pki}i∈R, and pkb0 , pkb1 ∈ PK and gives
them to C. The index b is randomly selected
from the set {b0, b1}. C runs signing algorithm
to sign m∗ by PK to get σ, and revoke pkb from
the σ and output a (t−1)-out-of-n signature σ∗

b .
Then give σ∗

b to A.
• Queries 2. Same as above with ORevoke,
except that pk0 and pk1 have not been revoked
before.

7

• Guess. A provides a guess b′. The adversary
A is considered to have won the game if the
probability that b′ = b is greater than 1/2.

Intuitively, the definition of revoker anonymity
is that any attacker cannot distinguish the iden-
tity of the revoker, even if they can obtain the
signatures both before and after the revocation.
The concepts of signer ambiguity and revoker
anonymity are defined to maintain the anonymity
of the signer and the revoker, respectively, before
and after the revocation process.

4 Clippable Ring Signatures

The concept of extensibility for RS proposed
by Aranha et al. [9] breaks the limitation that
the ring of potential signers cannot be changed
once its signature has been produced. Their
scheme allows for extending an already formed
ring to a larger anonymous set without involv-
ing another case, shrinking the set by eliminat-
ing several insignificant non-signers, which is the
role of our proposed concept of clippability. As
the anonymity provided by the RS ensures that
any non-signer or third party cannot distinguish
between the signer and non-signers in the ring, the
act of reducing the security can only be carried
out by the signer themselves. The same is true in
our subsequent work on threshold ring signatures.

It is worth noting that in the absence of other
background information or conditions, such clip-
ping of ring signatures is at the cost of certain
anonymity, and its standalone application would
compromise the anonymity of the signers. The
independent clippability feature may find rele-
vance in scenarios where anonymity requirements
are not as stringent, providing a balance between
storage efficiency and privacy needs. However, for
our subsequent work on threshold ring signatures
and their application in electronic voting sce-
narios, despite not being suitable for standalone
use, clippability remains meaningful. In Section
6, when designing the revocable threshold ring
signature scheme, we rigorously constrained the
conditions under which clipping is applicable.

4.1 Syntax

The Clippable Ring Signature (CRS) scheme is a
variant of the ring signature scheme that includes

an additional algorithm called Clip. This algo-
rithm enables the signer (in the case of TRS, one
of the signers) to reduce the size of the group of
potential signers associated with a given signature:

Clip(m, skj , sktemp, {pki}i∈R, pk∆, pktemp, σ)→ σ′

where σ is the signature of message m on ring
{pki}i∈R signed by signer’s secret key skj (corre-
sponds to some j ∈ R), R denotes the index set of
the ring and pk∆ denotes one of the ring members
to be clipped, with ∆ ∈ R ∩ ∆ ̸= j. The pktemp

is the signature’s public key, which is temporary
and not bound to the identity of the signer. The
algorithm generates a modified signature σ′ of the
message m on the shrunken ring {pki}i∈R−∆.
Remark. We need to consider the case of mul-
tiple clipping by iterative calls to Clip,referred
to as atomization. Atomization of the operation
involves manipulating one member of the ring at
a time and subsequently completing the operation
on multiple members through an iterative algo-
rithm. The concept of atomizing the operation is
indeed inspired by the work presented in [9]. In [9],
this concept is applied to their proposed Extend-
able Ring Signatures, while in our paper, we apply
this idea to our proposed clippability.

4.2 Clippable Ring Signature
Scheme

This subsection describes a modified Clippable
Ring Signature (CRS) scheme based on the DL-
based “Dualring” construction proposed by Yuen
et al. [12]. The reasons for choosing dualring are: A
Dualring signature consists of a singular response
element and a ring of challenge elements, unlike
traditional ring signatures. This feature can signif-
icantly save the signature size when the challenge
scale is smaller than the response scale. Its ring
structure is also more “loose”, which is helpful for
us to adjust the ring size.

Correctness. The correctness of the CRS
scheme relies on DualRing and the following for-
mula:

R1 = gz ·
∏
i∈R

pkcii · pk
c0
temp (5)

8

Algorithm 2: CRSEC .Sign & Verify & Clip

Sign-Input : param,m, skj , sktemp, pktemp,
{pki}i∈R

Sign-Output: σ
1 σdr ← DualRingEC .Sign(m, {pki}i∈R, skj);
// σdr = (c1, ..., cn, z)

2 set c0 = H(pktemp);
3 return σ = (c0, c1, ..., cn, z);

Clip-Input : param,m, skj , sktemp,
{pki}i∈R, pk∆, pktemp, σ

Clip-Output: σ′

4 if S ̸⊂ R ∨ j ∈ S then
5 return ⊥;
6 if CRSEC .Verify(m, {pki}i∈R, σ) = 0 then
7 return ⊥;
8 parse σ = (c0, c1, ..., cn, z);
9 random r2;
// r1 can be computed from z by signer

10 R′
1 = gr1+r2 ·

∏
i̸=j,i ̸=∆ pkcii ;

11 c′ = H(m, {pki}i∈R−∆, R
′
1);

12 c′0 = c′ −
∑n

i=1,i̸=∆ ci;

13 z′ = r1 + r2 − skj · cj − sktemp · c′0;
14 return σ′ = (c′0, {ci}ni=1,i̸=∆, z

′);

Verify-Input : param,m, {pki}i∈R, pktemp, σ
Verify-Output: 0 or 1
15 parse σ = (c0, c1, ..., cn, z);
16 if c0 = H(pktemp) then
17 return DualRingEC .V erify(m,

{pki}i∈R, σ\c0);
18 else

19 c =
∑l

i=0 ci;
20 R1 = gz ·

∏
i∈R pkcii · pk

c0
temp;

21 c′ = H(m, {pki}i∈R, R1);
22 if c’=c then
23 return 1;

24 else
25 return 0;

= gr1+r2−skj ·cj−sktemp·c0 ·
∏
i∈R

pkcii · pk
c0
temp

(6)

= gr1+r2 ·
∏
i̸=j

pkcii (7)

As Algorithm 2 shows, our clippable scheme
includes a DualRing signature when generating a
signature, with an additional component c0 ini-
tialized to H(pktemp). If no clipping occurs, it is
evidently a DualRing signature. When the signer
attempts to clip the ring members, the Clip algo-
rithm first modifies R1 and c, removing the entries
of the members to be clipped. However, this causes
a mismatch between the challenge c′ and the
updated hash value. At this point, the role of
c′0 is to bridge the gap between c′ and the hash
value (the probability of hash collision considered
negligible). To prevent adversaries from manipu-
lating c0 values arbitrarily, the modified c′0 value
is bound to the secret key of the signature, by z′,
deliberately avoiding adversaries deducing secret
information through z and z′ information. Note
the update of R′

1, which differs from the origi-
nal R1 by introducing one value: a new random
value r2. The final signature σ = (c′0, c1, ..., cl, z

′)

includes the updated difference c′0, the challenge
ring after clipping, and the updated response z′.
Intuitively, this design is a variation of DualRing.

Our verification algorithm is nearly identical
to DualRing’s verification. When c0 = 0 and
the signature is not clipped, the verification algo-
rithm is exactly the same asDualRingEC .V erify.
However, when c0 ̸= 0, c′ needs to be calcu-
lated according to the updated formula. Accord-
ing to the correctness analysis provided in the
paper, verification only succeeds when the given
z in the signature is correct and satisfies gz =
gr1+r2pk

−cj
j pk−c0

temp.
In terms of the space complexity of signatures,

the CRS signature only increases the space com-
plexity by adding an additional challenge value
compared to the DualRing signature, and its space
complexity is also O(n). We note that Yuen et
al. [12] proposed a space optimization method
for DualRingEC by using sum proofs based on
improved Bulletproofs to prove the relationship∑

i ci = c instead of directly providing the chal-
lenge ring c1, ..., cn in the signature. The space
complexity of such proofs is O(log n), thereby
optimizing the space complexity of DualRing to
O(log n). In our CRS, since the challenge ring

9

information is needed in the computation of the
clipping operation, it is not possible to use the
sum proof to replace the challenge ring. How-
ever, if after some dynamic clipping processes, the
signature stops updating, then in the last clip-
ping operation, this optimization can be applied
to reduce its storage space.

4.3 Security

4.3.1 Security model

The security definition of our CRS is based on
DualRing and introduces an additional clipping
oracle OClip.
• OClip(m, j, ·, {pki}i∈R, {pkj}j∈R′ , pktemp, σ):
Clipping oracle that outputs the clipped sig-
nature σ′ ← (c0, c1, . . . , cn, z). The corrupted
clipping set is denoted as CL.

Allow the oracles accessible to the adversary to
includeOClip, producing clipped signatures. Mod-
ify the conditions {pk∗j }j∈R ∈ S\CL.

4.3.2 Security proof

Theorem 1. In the random oracle model, the
CRS scheme is clipping unforgeable with respect
to insider corruption if DualRing is unforgeable
w.r.t. insider corruption

Proof. Assume A is an adversary for the unforge-
ability of the CRS clipping, and construct an
adversary B to break the unforgeability of Dual-
Ring.

Setup phase: B obtains initial parameters and
the public key set from the DualRing challenger
and forwards them to A.

Simulation phase: A queries B as oracle for
arbitrary polynomial times. B responds as follows:

• OC is identical to DualRing, returns private key.
• OS: B queries the challenger to obtain a signa-
ture, appends a c0 initialized to H(pktemp), and
returns it to A.

• OClip: B queries OC to obtain skj and sktemp,
executes the Clip algorithm to obtain the
clipped signature, and returns it to A.

• H: The simulated random oracle.

Challenge phase: Adversary A returns a forged
clipped signature (m∗, {pk∗i }i∈R∗ , pktemp, σ

∗ =
(c∗0, c1, . . . , cl, z

∗)).

Adversary B, by including pktemp in the set of
public keys without any other changes, can regard
σ∗ as a DualRing signature with a ring size of l+1,
signed by sktemp, where the used random value is
r = r1 − skj · cj + r2. This is a trivial yet effective
forgery.

Theorem 2. In the random oracle model, the
CRS scheme provides anonymity if DualRing is
anonymous.

Proof. Intuitively, if not clipped, the CRS signa-
ture is identical to the DualRing signature, except
for an additional value, c0. Clearly, the theorem
holds trivially in this case. Therefore, our focus is
on the anonymity of clipped signatures.

The approach for proving the anonymity of
clipped signatures in the CRS is as follows:

Suppose (A1,A2) are adversaries for the
anonymity of clipped signatures in the CRS. We
aim to construct adversaries (B1,B2) to break the
anonymity of DualRing. Setup phase: B1 obtains
initial parameters and the public key set from
the DualRing challenger and forwards them to
A1. Simulation phase: A1 queries B1 as oracles
for arbitrary polynomial times. B1 responds as
follows:

• OS(m, {pki}i∈R, j, ·, pktemp): B1 queries the
challenger to obtain a signature, appends a
cinitialized to H(pktemp), and returns it to A1.

• H: The simulated random oracle.

Challenge phase: A1 provides B1 with a mes-
sage m, a set of public keys {pki}i∈R, a signature
public key pktemp /∈ {pki}i∈R, two indices i0, i1,
and a clipping index j /∈ {i0, i1}. Same chal-
lenge phase as DualRing anonymity, B2 obtains a
DualRing signature σ = (c0, c1, . . . , cn, z) and all
{ωi}qki=1. After receiving the response, B2 removes
the challenge cj and the public key pkj from the
signature, renumbering the remaining ring mem-
bers from 1 to n−1. B2 then randomly samples z′

and c0, calculates R1 = gz
′ ∏

i=1 pk
c0
temp, and sets

H(m, {pki}i∈R, R1) =
∑n

i=0 ci. If the hash value
has already been queried from the H oracle, B2
aborts. B2 returns σ∗ = (c0, c1, . . . , cn−1, z

′) and
{ωi}qki=1 to A2.

Output phase: A2 outputs a guessed bit b′. As
the bit b was not utilized in the generation process
of the clipped signature σ∗, A2 can only succeed
with a probability of 1/2.

10

Analysis: According to [12], the probability of
simulation success (i.e., the event not aborting)
cannot be ignored, and the adversaries (B1,B2)
have no advantage in guessing. As the adversaries
(B1,B2) simulate the challenger for (A1,A2), for
qh queries to the H oracle and qs queries to the SO
oracle, the probability of success on the first query
is at least (1− qh

|∆c|)
2. This pattern continues, and

after qs queries to SO, the probability of success
is at least the square of the success probability in
the DualRing simulation.

In our scheme, we assume the anonymity of
DualRing, meaning the probability of success in
DualRing simulation cannot be ignored. There-
fore, if DualRing is anonymous, it is impossible for
any PPT adversary to win with more than half of
a non-negligible probability.

Hence, our CRS construct is secure; it satisfies
unforgeability and anonymity. Although clipping
reduces the anonymity of the RS, it still can
hide the signer in a set of potentially anonymous
groups.

5 Splittable Threshold Ring
Signatures

In non-interactive TRS systems, the
Sign & Combine (CombiSign) pattern is often
used to assemble threshold signatures. Specifi-
cally, Combine extends signers on the same ring
to their union. The opposite is a case where a
signer in the TRS can choose to demote himself
to a non-signer unless there is only one signer left
in the ring. Our definition of separability aims
to achieve this, reducing the set of signers while
ensuring anonymity.

In the e-voting scenario, splittability gives par-
ticipants a chance to regret. The original signature
can be regarded as a pre-vote. After the signature
is generated and before the final confirmation by
the third party, participants can withdraw their
signer identity through Split. Despite this, the
signer still belongs to the non-signers in the ring
after withdrawal and has the same possibility as
any other signer from the verifier’s view. The clip-
pability of TRS provides the opportunity to leave
and is proven to pose no additional privacy risk to
the parties, which will be elaborated on in Section
6.

Based on our improved RS construction, first
consider how to convert it into a TRS scheme.
Yuen et al. [12] have introduced inner product
proof and improved it in their original EC-based
Dualring scheme, but the role of sum argument
in the signature scheme in our work is quite dif-
ferent. Yuen et al. [12] adopted a unit vector to
transform the inner product argument system into
the argument for sum relation and used it to com-
pact the size of generated DL-based ring signature
from O(n) into a logarithm. In our construction,
we utilize it to ensure that the number of signers
is fixed and that the responses are correct in the
TRS scheme.

5.1 Threshold ring signature

5.1.1 Transform RS to TRS

When considering the signature of t-out-of-n rela-
tions, the similarities and differences with 1-out-
of-n relations are that, on the one hand, they still
need to prove that the public key of each signer
is present in the anonymous ring; on the other
hand, to prevent a single or partial of signers from
randomly forging joint signatures with other sig-
natories. Simply adding secret keys to the original
RS construct is insufficient to prove the abso-
lute number of hiding signers in the ring to the
verifier. Hence we need the help of the Sum Argu-
ment system to confirm this relationship. Through
observation, we found that the computing of z
could be seen as a simple sum relationship con-
sisting of t + 2 scalars. As shown in Algorithm 3,
when provided with the messagem, the set of sign-
ers’ secret keys, signing key pair, and the ring of
public keys, the signing algorithm generates a sig-
nature of size O(n). For verification, on inputting
the same parameters except for the secret info, the
verifying algorithm makes all necessary checking
and informs “yes” or “no”.

As illustrated in Algorithm 3, the fundamental
structure of our TRS remains based on DualRing,
with several distinctions:

• Multiple signers are employed rather than a
single one.

• The generation of the challenge ring is entirely
random, and the difference between the hash
value and the sum of the challenges is filled
with c0. Correspondingly, information related to

11

Algorithm 3: TRSEC .Sign & Verify

Sign-Input : param,m, {pki}i∈R, pktemp,
{skj}j∈S , sktemp

Sign-Output: σT

1 random r, ci for all i ∈ R;
2 R = gr ·

∏
i∈R−S pkcii ;

c = H(m, {pki}i∈R, R);
3 c0 = c−

∑
i∈R ci;

4 z = r −
∑

j∈S skj · cj − sktemp · c0;
5 set

a = (r,−sktemp · c0,−sk1 · c1, ...,−skt · ct);
6 P = ga = gz;
7 π ← NISA .Proof({g, u, P, z},a);
8 return σT = (c0, c1, ..., cn, z, π, t = |S|);
Verify-Input : param,m, {pki}i∈R, pktemp, σT

Verify-Output: 0 or 1
9 parse σT = (c0, c1, ..., cn, z, π, t);

10 R = gz ·
∏

i∈R pkcii · pk
c0
temp;

11 c =
∑n

i=0 ci;
12 P = gz;
13 if NISA .Verify(g, u, P, z, π) = 0 then
14 return 0;

15 if c ̸= H(m, {pki}i∈R, R) then
16 return 0;

17 return 1;

the signing key and c0 is incorporated into the
response z. This technique was employed in the
preceding section.

• The NISA is used to prove the quantity of
secrets utilized during the signing process,
specifically the number of signers.

Some readers may notice that the generation
phase of signatures in our TRS scheme involves
multiple signers collaborating. This process may
entail the use of secret sharing to generate the sig-
natures collectively. However, the specific imple-
mentation of this secret sharing protocol is beyond
the scope of this paper and may serve as a
potential research direction for future work.

5.2 Syntax

A STRS scheme is a type of TRS scheme with
an additional algorithm, Split, which allows one of
the signers to revoke his own authentication and

degrade to a non-signer ring member. When pro-
vided with a t-out-of-n signature σT of message m
on ring pkii ∈ R, as well as the secret key sk of
one of the signers, the algorithm produces a (t−1)-
out-of-n signature σ∗ where sk has been revoked
and degraded.

Split(σ,m, {pki}i∈R, pktemp, sktemp, sk ∈ {skj}j∈S ,
r)→ (σT , {σ∗})

where S denotes the the set of indices corre-
sponding to the signers’ public keys, and S ⊂
R.

5.3 Splittable Threshold Ring
Signature Scheme

For TRS constructions using Sign &Combine
(CombiSign) pattern, CombiSign is usually a sim-
ple connection of the one-signer signatures gen-
erated separately on the same ring. In this case,
Split naturally exists, as simple as its generation
process: cutting the signature into two segments.
If the TRS scheme is constructed this way, then
the RTRS scheme can be constructed directly. We
focus on other cases; in some interactive TRS, it
is a challenge to design a secure splitting scheme.
For example, the splitting algorithm of our pro-
posed TRS scheme can be constructed as shown
in Algorithm 4.

When a signer wants to revoke, all the aux-
iliary information he can give including the ran-
domness of signature and his secret key, and his
knowledge of who the real signers are. The algo-
rithm proceeds as follows. Firstly, essential valida-
tions are conducted to ensure the input signature
is legitimate. Subsequently, the revoker can utilize
their private key to generate a new response. It
takes a form similar to the response in a ring sig-
nature, but it is used to nullify the authorization
concerning the revoker in the original TRS. Corre-
spondingly, based on the variations in the random
numbers used and the signers’ set, the new values
for R∗

1 and c∗0 are sequentially computed. The Sum
Argument also requires updating to prove that the
new TRS has t − 1 signers. The computation of
the revoker’s linkable tag is performed to iden-
tify double-splitting. Finally, the newly generated
values in the above process are appended to the
original signature as σ∗. If the Split operation is

12

Algorithm 4: STRSEC .Split

Input: σ,m, {pki}i∈R, pktemp, sktemp, sk∆ ∈
{skj}j∈S , r

Output: σ
// generate 1− out− of − (n− t+1) RS

1 parse σT = (c0, c1, ..., cn, z, π, t);
if
STRSEC .Verify(m, {pki}i∈R, pktemp, σ) =
0 then

2 return ⊥;
3 random r∗;

R∗
1 = gr−r∗ ·

∏
i∈R−S+∆ pkcii ;

4 c∗0 = H(m, {pki}i∈R, R∗
1)−

∑
i∈R ci;

5 z∗ = r∗ − sk∆ · c∆ − sktemp · c∗0;
6 a∗ = (r∗,−sk∆ · c∆,−sktemp, c

∗
0);

7 P ∗ = ga∗
= gz

∗
;

8 π∗ ← NISAIPr .Proof({g, u, P ∗, z∗},a∗);
9 I = HG(pk∆)

sk∆ ;
10 add σ∗ = (c∗0, z

∗, π∗, I) to {σ∗};
11 return σ = (σT , {σ∗}).

executed multiple times, each updated signature
is appended to the original signature, forming the
set {σ∗}. By adding to the initial threshold sig-
nature, any verifier can be persuaded that some
member of the signers has joined the non-signer
collection anonymously. To achieve those hiding of
the new ring, we modified the original verification
algorithm of ring signature to Verify∗, where R1

is computed by gz−z∗ ·
∏

i∈R pkcii instead.

Algorithm 5 demonstrates the verification pro-
cedure of STRS, which includes regular TRS
verification along with the additional ring signa-
ture verification for splitting (if it exists). The
verifier screens out linked signatures by comparing
the “key image” I.

The correctness can be checked as

R1 = gz−z∗
·
∏
i∈R

pkcii · pk
c0−c∗0
temp (8)

=

(
gr−r∗ · pkc∆∆ · pk

c∗0−c0
temp ·

∏
i∈S

pk−ci
i

)
(9)

·
∏
i∈R

pkcii · pk
c0−c∗0
temp

Algorithm 5: STRSEC .Verify

Input: m, {pki}i∈R, pktemp, (σT , {σ∗})
Output: 0 or 1
1 parse σ = (σT , {σ∗});
2 if

TRSEC .Verify(m, {pki}i∈R, pktemp, σT) =
0 then

3 return 0;

4 for all {σ∗} in set do
// check signatures for link

5 if ∃Ii = Ij , i ̸= j then
6 return 0;

// Verify∗: compute R1 with

R1 = gz−
∑

z∗ ·
∏

i∈R pkcii ·pk
c0−

∑
c∗0

temp

instead.

7 if
TRSEC .Verify∗(m, {pki}i∈R, pktemp, σ

∗∪
{c1, ..., cn, z} ∪ {(z∗, c∗0)}) = 0 then

8 return 0;

9 return 1.

= gr−r∗ ·
∏

i∈R−S+∆

pkcii (10)

Let’s consider whether malicious ring mem-
bers (including non-signers and signers attempting
to forge the actions of other signers) can claim
that a signer has performed a revocation by forg-
ing an additional ring signature. Attackers fall
into several possible categories, each with the
information they possess: firstly, for malicious
non-signers, they only have their own private
keys and some public information from the orig-
inal ring signature. More potent attackers, the
malicious signers, attempt to forge revocations of
other co-signing members. They also have addi-
tional secrets, including the real signer identity
set and the random secrets used in the origi-
nal signature. Finally, conspiracies involving both
malicious signers and non-signers must be consid-
ered.

When attackers attempt to forge a ring signa-
ture using the Split algorithm, they encounter the
following issues: Attackers can generate a seem-
ingly normal ring signature by customizing values
for r, r∗, sk∆, including a normally verifiable Sum

13

Argument π∗. However, only when using the cor-
rect r, signer private key sk∆, and signers set,
can R1 be calculated to recover (as implied by
signature correctness), and the ring signature be
successfully verified. Clearly, any malicious non-
signer, signer, or their collusion cannot collectively
possess this knowledge, resulting in any forgery
leading to verification failure.

In conclusion, based on our design:

1. Signers cannot revoke signatures from others in
the ring, although no verifiers can discern the
revoker’s identity from the output signature.

2. Non-signers in the ring cannot generate a valid
revocation to pass the verification of the output
signature.

Linkability. What is the method for confirm-
ing that two output signatures were not produced
by the same signer? For instance, when there are
multiple π∗ in the set, it signifies that multiple
signers have requested to revoke their authenti-
cation. However, when a single signer generates
multiple ring signatures using distinct randomness
due to malicious intent or communication issues, it
can potentially mislead the verifier into believing
multiple signers have been revoked. To mitigate
this issue, introducing linkability in the ring sig-
nature scheme can be an effective solution. With
linkability, the verifier can easily detect signa-
tures from the same signer by comparing relevant
parameters.

5.4 Security Proof

Since the proof process is similar to Theorem 1
and Theorem 2, we give the sketch of the proofs
to save space.
Theorem 3. In the random oracle model, the
STRS scheme is EUF-CMA.

Proof. Suppose an adversary A can break the
unforgeability of STRS (Splittable Ring Signa-
ture) scheme. In that case, we can construct an
algorithm, denoted as B, that enables the breaking
of the unforgeability of DualRing-EC.

If adversary A makes a signing oracle query,
B responds by making a DualRing signing ora-
cle query, from which it obtains a signature σ =
(c1, ..., cn, z) of the signer j. B get signers’s secret
key set through OCorrupt, randomly samples r′,
and updates r to r′ + r +

∑
i∈S\j , then compute

R′ = gr
′ ·R, c′ = H(m, {pki}i∈R∪{temp}, R

′), c0 =
c′ − c, z′ = z + r′ − sktemp · c0, P = gz, and the
proof π in turn. B then returns to A a TRS sig-
nature σ′ = (c0, c1, ..., cn, z

′, π, t) to simulate the
output of the signing oracle.

During the challenge phase, if A produces
a forgery, B is capable of extracting the secret
vector using the statistical witness-extended emu-
lation property of NISA. This forged signature can
also be regarded as a DualRing ring signature,
constituting a valid forgery against DualRingEC .

Furthermore, when revocation is involved in
the signature, our Split algorithm is designed to
retain the original TRS signature while append-
ing a new TRS. The appended signature σ∗ can
also be verified as a ring signature. In conclusion,
if adversary A can successfully forge STRS, then
an adversary B can be constructed to break the
unforgeability of DualRing signatures.

Theorem 4. In the random oracle model, the
STRS scheme is signer-ambiguous.

Proof. Suppose A is an adversary capable of
breaking the signer ambiguity of the STRS pro-
tocol. Then, an algorithm B can be constructed
to break the anonymity of DualRing. When A
queries the signing oracle, B generates a simulated
signature σ∗ in a similar way as in the proof of
unforgeability and sends it to A.

During the challenge phase, A chooses a mes-
sage m∗,the public key set {pk}i∈R, pktemp, and
the sets of signers’ public keys PK0, PK1 ⊂
{pk}i∈R and sends them to B, t = |PK0| =
|PK1|. Same challenge phase as DualRing
anonymity, B computes a DualRing signature σ =
(c0, c1, ..cn, z). B randomly samples a z′ and cal-
culates R′ using the formula in TRSEC .V erify,
setting H(m, {pk}i∈R, R′) =

∑n
i=0 c

∗
i . The pro-

cess terminates when a collision occurs with a
value previously queried to the hash oracle H. z′

is randomly split into t+2 parts, and a proof π is
generated by executing NISA.Proof . The signa-
ture σ∗ = (c0, ..., cn, z

′, π, t) is then returned to A.
A subsequently returns a guess bit b′ to B. Since
B did not use b in the signature generation pro-
cess, the probability of A guessing correctly can
only be 1/2.

Regarding the probability of termination due
to hash collisions, please refer to the proof section
of Theorem 2. When the signature includes a revo-
cation mechanism, the obtained signature is an

14

attachment of a linkable TRS on the same ring
in TRS. The simulation principle for its challenge
part is similar. In this case, the split operations do
not affect the signer ambiguity of STRS.

Theorem 5. In the random oracle model, the
STRS scheme achieves revoker anonymity.

Proof. Based on the signer-ambiguous property of
STRS, an attacker is unable to distinguish signa-
tures generated by different sets of signers. As a
specific instance, the additional signature σ∗ in
STRS is a linkable TRS attached to the original
signature on the same ring, with the only distinc-
tion being the presence or absence of a revoker
in the signer set. Trivially deduced from the fact
that STRS satisfies signer-ambiguous, an attacker
is further unable to differentiate the changes in the
signer set caused by the Split operation to identify
the revoker.

Hence, our STRS construct is secure; it satis-
fies unforgeability, revoker anonymity, and signer
ambiguity.

6 Revocable Threshold Ring
Signature Scheme

The TRS is a cryptographic building block that
allows multiple signers to collaboratively gener-
ate a signature while maintaining anonymity by
hiding the signers’ identities within a ring of
potential signers. Existing schemes are limited in
that they do not allow for resizing the ring after
signature generation. However, Aranha et al. [9]
proposed a method that overcomes this limitation
by achieving the signers’ flexibility and the ring
size’s extendability. Compared to extendability,
revocability naturally does not require consider-
ation of external members to the ring. However,
additional issues must be taken into account to
reduce the ring’s size and the number of signers
while maintaining the anonymity of the primary
signers. Although we have discussed and presented
solutions for these properties separately in the pre-
vious sections, our proposed revocability concept
aims to integrate these concerns and preserve the
anonymity of the original signers.

6.1 Boundaries for Anonymity

As we all know, for a t-out-of-n RS, the signa-
ture is co-signed by t signers and hides them in an
anonymous set of size n. Each signer’s anonymity
level can be computed: t/n. The objective of our
study is to ensure that any signer’s anonymity is
maintained at not lower than this level through-
out the entire lifecycle of the signature during all
operations.
Remarks on clipping. To execute Clip, the
following items must be observed

1. Limit anonymity level. The precondition for
clipping has not been discussed in the context
of CRS. When it comes to TRS, it is clear that
clipping non-signers in the ring can compro-
mise the anonymity of the signature. However,
to maintain anonymity, never lower than the
original signature, clipping can only be made
by other signers after some signers revoke(by
Split). Let k = n − n∗ be the number of ring
members to be clipped, and let α be the num-
ber of split signers, where α = 1, 1 ≤ t ≤ n, 1 ≤
k ≤ n−t+1. In this case, the inequality (t−1)/
n < (t − 1)/(n − k) ≤ t/n holds. As shown in
Figure 3, the anonymity of the original (t, n)
signature is 3/8. When signer s6 revokes its
signature, the anonymity increases to 2/8. If
other signers clip no more than one non-signer
in the ring, the anonymity drops to 2/7, which
is still higher than the original value. Therefore,
the number of nodes that can be clipped in a
TRS signature depends on its original probabil-
ity, the ring size, and the signers amount who
revoked their signature before clipping.

2. Prevent redundant call attacks. We empha-
size that the clipping of ring members can
only be carried out in a pseudo-randomly,
based on some non-sequential method. Unlike
in RS, where clipping can only be performed
by the sole signer, any signer in TRS can clip
their common signature. If signers clip non-
signers in different or entirely random ways,
when redundant clipping is executed, the num-
ber of declared non-signers may exceed what
is expected, leading to an excessive decrease
in anonymity. Figures 3 (c) and (d) illustrate
that signers s7 and s8, respectively, suggest
removing non-signers s3 and s6 from the ring.
Each clipping generates a signature with an

15

anonymity level of at least 3/8 of the orig-
inal signature requirement. However, if both
clippings occur simultaneously, it would result
in the exposure of the identities of both non-
signers, reducing the actual anonymity level
observed by the verifier to 2/6, which is lower
than the original signature requirement. More-
over, clipping in a completely sequential man-
ner is also not feasible, as by analyzing the
skipped members in the ring, an attacker can
quickly figure out the actual signer’s index.

(a) an example of TRS ring with t = 3, n = 8

(b) Split: transform s6 into non-signer

(c) Clip: signer s7 clips s3 out of the ring

(d) Clip: signer s8 clips s6 out of the ring

Fig. 3: Examples of signer Split and Clip

Clipping boundaries

1. α = 1, k = 1. Only clip one member. The
anonymity of the split signer hiding among the
non-signers, or the probability that the clipped
member is a former signer, is 1

n−t+1 . Although
no longer a signer, the anonymity still needs
to be protected, so it is stipulated 1

n−t+1 ≤
t
n ,

which is always true when 1 ≤ t ≤ n. The
equation holds when t = 1 or n; however, in
practice, this scenario is unlikely to occur.

2. α > 1, k = 1. Similarly, α
n−t+α ≤

t
n holds true

when α ≤ t ≤ n (naturally true in TRS).
3. α = 1, k > 1. The core idea is still to guarantee

k · 1
n−t+1 ≤

t
n . When t = n+1

2 , the rearranged

t2 − (n+ 1)t+ kn ≤ 0 is most likely true. Sub-
stitute t and the inequality can only be true if

n2 + (2− 4k)n+ 1 ≥ 0. So we ask k ≤ (n+1)2

4n ,
the maximum value of k is the largest positive
integer within this range.

4. α > 1, k > 1. Similarly, set t = n+α
2 and the

maximum possible value of k is the greatest
positive integer that satisfies the inequality k ≤
(n+α)2

4nα .

Remarks on anonymity. The definition of
anonymity in [10] includes two aspects: Stronger
Anonymity, in contrast to [9], attackers can
observe all intermediate signatures, not just the
final ETRS. Fellow-signer Anonymity, also known
as inter-signer anonymity, where co-signers remain
anonymous to each other.

As mentioned in Section 1.1, our proposed
revocable signature is “inherently” immune to the
weaknesses in [9] because:

1. In our scheme, not only is the anonymity
of signers protected, but the revoked signer’s
anonymity is always maintained. Specifically,
the Split algorithm declares the revocation
of a signer in the ring without revealing the
revoker’s identity. The Clip algorithm, while
declaring the departure of a non-signer from
the ring, cannot ascertain the identity of this
member in the initial signature. Thus, the
evolution of the signature does not compro-
mise anonymity. Quantitative calculations of
the impact on anonymity have been provided
above.

2. From the perspective of algorithm construc-
tion, our Split and Clip algorithms achieve their
objectives by appending information to the
original signature rather than altering the orig-
inal signature. Therefore, even if adversaries
have access to the “full evolution” of signatures,
they cannot obtain more information than the
last signature. Hence, we describe our design’s
immunity to this weakness as “inherent”.

So, in terms of the anonymity level of our scheme,
it intuitively meets the stronger anonymity
requirements outlined in [10], surpassing the
anonymity in [9] but falling short of the strongest
anonymity in [10]. The reasons for the inapplica-
bility of inter-signer anonymity in the design of the
revocable scheme will be explained in Section 6.2.

6.2 Construct DL-based RTRS

All members in a ring signature are indistin-
guishable for any verifier, but SplitCheck requires
signers in the ring can learn which signers have

16

revoked their authorization. Additionally, Clip
attempts to provide signers with the ability to
delete members from the ring without interaction,
thereby reducing the anonymity of the signa-
ture. To achieve these goals, all signers must have
knowledge of some additional advantages, which
are the original signers set and the randomness
used to sign.

Our clippability rules out the possibility of
anonymity among signers, as signers can use the
Clip algorithm as an oracle to query the identities
of co-signers through the SplitCheck algorithm.
In contrast, in the corresponding extensibility
scheme [9], anonymity among signers is main-
tained. You might question the rationale behind
our design and utilization of SplitCheck in RTRS.
Firstly, we de-anonymize among signers to facil-
itate non-interactive revocation operations for
individual signers. Regarding extendable signa-
tures [9], they facilitate the expansion of the ring
size without compromising the anonymity of the
signers when additional non-signers are added to
the ring; instead, it has the potential to enhance
the overall anonymity of the signature. However,
the situation becomes considerably more com-
plex when considering a reduction in the ring
size. Allowing anonymous signers to adaptively
decrease anonymity is evidently not feasible. Sec-
ondly,while our design sacrifices anonymity among
signers, it comes with practical benefits. Consider
a scenario where actual signers engage in the sign-
ing process without knowledge of their co-signers,
and the resulting signature is subsequently inde-
pendently modified and reissued multiple times by
anonymous participants. For signers, a signature
that has been altered by anonymous participants
may raise trust issues.

To implement SplitCheck, the participant who
performs Split must leave information that other
signers can use to verify their identity while ensur-
ing that no knowledge would be leaked to anyone
else. This can be achieved through simple knowl-
edge proof. To achieve this, a new parameter s is
calculated in algorithm RTRS .Split as following:

s = r + sk∆ ·H(pk∆∥r) (11)

Then add it to the generated signature σ∗:

σ∗ = (c∗0, z
∗, π∗, I, s) (12)

Algorithm 6: RTRSEC .SplitCheck

Input: m, {pkj}j∈S , {pki}i∈R, (sk, r), σ
Output: Lsp

// all signers know the original

signing members and the

randomness r

1 if gsk /∈ {pkj}j∈S then
2 return ⊥;
3 parse σT = (σ,Σs = {σ∗

l });
4 if Σs = ∅ then
5 return ∅;
6 parse σT = (c0, c1, ..., cn, z, π), σ

∗
l =

(c∗0, z
∗, π∗, I, sl);

7 if
RTRSEC .Verify(m, {pki}i∈R, pktemp, σ) =
0 then

8 return ⊥;
9 set Lsp = ∅;

10 for l do
// l is the index of signatures

in set {σ∗}
11 for j ∈ S do
12 if pkj = gsk then
13 return ⊥;

14 else if gsl−r = pk
H(pkj∥r)
j then

15 add pkj to Lsp;

16 if |Lsp| ≠ |Σs| then
17 return ⊥;
18 return Lsp.

As Algorithm 6 shows, after a series of validity
checks, the signers who have passed can search for
the revoked signers as in line 12 and return a set
of splitter public keys. Since all signers share the
initial random value r of the signature, any third
party or non-signer member of the ring cannot
impersonate the signer and obtain valid splitting
information; even for the former signers who have
left the ring due to clipping, they cannot pass the
legitimacy check.

Algorithm 7 presents our clip algorithm for
RTRS. In contrast to the clip in the ring sig-
nature we proposed above, the clip in RTRS

17

Algorithm 7: RTRSEC .Clip

Input: m, (sk, r), pktemp, {pki}i∈R, k,
σ = (σT , {σ∗})

Output: σ
1 if

RTRSEC .Verify(m, {pki}i∈R, pktemp, σ) =
0 then

2 return ⊥;
3 RTRSEC .SplitCheck(m, {pkj}j∈S ,

{pki}i∈R, (sk, r), σ)→ Lsp;
4 α = |Lsp| if α = 0 then
5 return ⊥;
6 index set R̄ = (R/S) ∪ Lsp.index;
7 clipped index set Lc = {j};
// Empty set when no clipping

occurs

8 if K + k > t(n−t+α)
nα then

9 return ⊥;
10 u = |R̄|;
11 for k do
12 p = (PRNG .G(r))%u;
13 add j to Lc where j ∈ R̄ is the pth

index;

14 R′ = gz−z′−
∑

z∗ ∏
i∈R−Lc

pkcii ·
pk

c0−c′0−
∑

c∗0
temp ;

// compute new (c′0, z
′) for the

participant being clipped.

15 c′0 = c′0 +H(m, {pki}i∈R−Lc
, R′)−∑

i∈R−Lc
ci;

16 z′ = z′ + r′ − sktemp · c′0;
17 K = K + 1;
18 update σ′ = ((c′0, z

′), Lc,K)};
19 u = u/j;

20 σ′
T = σT \{cj}j∈Lc ;

21 return σ = (σ′
T , Lσ = ({σ∗}, σ′)).

needs to restrict the clipping authority of the
signer to protect anonymity. The executor of our
clipping algorithm is an actual signer. However,
since revocation and clipping operations are both
non-interactive, this executor first needs to grasp
the current state of the signature to determine
the clipping order, including information such as
which original signers revoked their signatures,
the nodes that have already been clipped, and
their quantities. Moreover, when a revoked signer

attempts to forge a clipping, it cannot pass ver-
ification. Our Clip algorithm achieves this by
invoking the SplitCheck algorithm.

Specifically, in addition to legitimacy verifica-
tion, the content of Algorithm 7 comprises the
following three major parts:

• Invoking SplitCheck to obtain information
about the revokers.

• Verifying that the clipping aligns with the
anonymity level requirements.

• Determining the clipping order, calculating the
values {(c′0, z′)} required for updating the sig-
nature, and updating the signature.

The correctness of Algorithm 7 relies on:

R′ = gz−z′−
∑

z∗ ∏
i∈R−Lc

pkcii · pk
c0−c′0−

∑
c∗0

temp (13)

= gr−
∑

r∗−
∑

r′
∏

i∈R−S+{∆}−Lc

pkcii (14)

Correspondingly, the verification algorithm
must be adjusted by incorporating some legit-
imacy checks, as shown in Algorithm 8. The
primary idea of the verification algorithm is to val-
idate the TRS formed by the updates in signatures
σ∗ and σ′. Before this, a series of legitimacy checks
are conducted, including verification of all NISA
proofs and validation of linkability. Failure in any
of these checks results in signature rejection. Addi-
tionally, legitimacy verification of clipping scale is
performed, as excessively clipped signatures are
inherently illegitimate.

Regarding the clipping sequence, we require a
fixed clipping series that satisfies specific proper-
ties: it should be unpredictable but reproducible,
cover all nodes, avoid clustering, and prevent addi-
tional computations caused by conflicts. We were
inspired by the pseudo-random sequence method
for conflict resolution in search algorithms, and
we used a PRNG to sample values in the set of
non-signer nodes, using the secret random value
shared by all signers as the initial seed for the
PRNG to obtain a clipping sequence that signers
can reproduce.

One possible question is how to deal with
the potential mutual influence between Clip and
Split. For Split, even if the signature has been
split before, other signers only need to add their

18

Algorithm 8: RTRSEC .Verify

Input: m, {pki}i∈R, (σT , {σ∗})
Output: 0 or 1

// Sequentially verify the

signatures in Lσ, ensuring the

legality of each operation step.

1 for every signature in Lσ do
2 int α = 0;
3 for all {σ∗} in set do

// Verify the proofs.

4 if NISA .Verify(g, u, P, z, π) = 0
then

5 return 0.

// check signatures for link

6 if ∃Ii = Ij , i ̸= j then
7 return 0;

8 else
9 α++;

10 if K > t(n−t+α)
nα then

11 return 0.

// Verify the lastest signature

which is σ∗ or σ′ in set

// Verification for proof is not

required.

12 if
TRSEC .Verify(m, {pki}i∈R, pktemp, (c0−
c′0−

∑
c∗0, {ci}i/∈Lc

, z−z′−
∑

z∗)) = 0
then

13 return 0.

14 return 1.

signed σ∗ to the signature when proposing split
without modifying the existing parts of the signa-
ture. Regarding Clip, signers achieve clipping by
updating the common values for the signature. If
Clip and Split are executed alternately, it is only
necessary to update the corresponding ring and
include (z′, c′0) and all (z∗, c∗0) when computing R.
The effectiveness of this approach lies in the fact
that our proposed Clip and Split algorithms do
not disrupt the verification relationship of Dual-
Ring, i.e., R = gr

∏
i∈R−S pkcii = gz

∏
i∈R pkcii .

We only make adjustments to the common param-
eters (c0, z) and the ring members, while still
maintaining the validity of the relationship.

Considering the impact of clipping different
nodes on probability, although the clipped nodes
are either degraded from the previous signer or
initially as the non-signer, there are differences in
the anonymity probability of the following clip-
ping. However, the verifier cannot distinguish the
identity of the declared nodes. Therefore, in prac-
tice, the impact of clipping different non-signing
nodes in the current signature on the anonymity
of the signature is indistinguishable.

7 Implementation

We implement the proposed CRS and TRS con-
structs, as well as the ERS and DualRing schemes
using NIST-192. The hardware support plat-
form is 12th Gen Intel(R) Core(TM) i5-12500H
2.50GHz. Each algorithm in the experiments was
executed 103 times and averaged to obtain sta-
ble results. The average time costs of signature
generation are shown in Figure 4 and 5.

Fig. 4: Time cost for Sign in different ring signa-
ture schemes

Referring to Figure 4, we compared the time
efficiency of the signing algorithms of our pro-
posed TRS scheme, the ERS scheme with opposite
properties, and the prototype DualRing scheme
of our algorithm. As the ring size increases from
the smallest 21 to the largest 211, the time cost
of generating signatures for the three schemes
increases exponentially. The time consumption of
ERS signature generation is significantly higher
than that of the other schemes, while the improved
CRS scheme we propose requires only slightly
more time than the original DualRing signature.

19

Fig. 5: Time cost for Sign in our TRS for different
thresholds

This result is because the ERS scheme uses a
Sign-Extend recursive, iterative method, generat-
ing standard signatures first and then extending
them one by one, and calling the SoK to gener-
ate new proofs each time they are extended, which
greatly reduces the efficiency of generating ring
signatures. In contrast, our scheme is designed
without this construction, directly generating ring
signatures and introducing additional costs mainly
from the initialization hash computation of c0.

As shown in Figure 5, we compared the time
efficiency of our proposed TRS under different
threshold settings. As the ring size increases from
21 to 211, the ring size dominates the time cost
of signature generation. For signature thresholds
of 1, 2, 4, and 8, higher thresholds also bring
some extra costs, and the results show that the
additional costs only depend on the threshold.

Table 1: Time Cost Introduced by
MPyC

Thresholds 1 2 4 8

Time (ms) 0 2.323 3.885 9.3927

It is noteworthy that the TRS algorithm pro-
posed in this study requires collaboration among
multiple participants during the generation of
signatures. Typically, this collaboration can be
achieved through technologies such as multi-party
secure computation(MPC) and secret sharing.
While this falls outside the scope of our research,
it is essential to consider this aspect to align
our study with practical scenarios. However, the

choice of implementation tools also impacts the
testing results of our scheme, hindering our exper-
iments from focusing solely on the contributions
of this paper. Given that the time efficiency of
multi-party secure computation is generally posi-
tively correlated with the number of participants,
and the experimental results in Figure 5 also
support this trend—larger thresholds result in
larger signature sizes—considering the cost of the
MPC phase does not alter this outcome. Tak-
ing these factors into account, we did not include
the additional costs introduced by MPC in the
experiments depicted in Figure 5. However, we
conducted practical tests on the potential scale of
costs introduced by this process.

According to Algorithm 3, MPC only requires
joint completion of an additive homomorphic cal-
culation by the signing participants. Based on the
statistical results regarding the size of parameter
passing, the average size of one parameter pass-
ing is 3.661 bytes. To ensure scientific accuracy,
experiments were conducted based on a 4-byte
data scale, testing the additional costs introduced
during the signature generation phase. We uti-
lized the general MPC library, MPyC, for MPC
experiments. The results are presented in Table
1, indicating that relative to the signature gen-
eration phase, the time cost introduced by MPC
is minimal and does not significantly impact the
time performance of the signature.

Fig. 6: Signature size for RTRS in different
thresholds and different times of Split

The average signature sizes of RTRS are shown
in Figure 6. We compared the size of different

20

signatures under varying ring sizes, including the
initially generated TRS, a signature with one and
two signers revoked without clipping. Two cases
with thresholds of 8 and 4 are performed. The
results indicate that, under the same ring size,
a larger threshold in the TRS leads to a larger
scale, primarily due to the logarithmic correlation
between the proof size of NISA and the signature
threshold. According to our proposed Split algo-
rithm, each revocation operation by a signer adds
information to the signature. Experimental results
validate this observation, showing an increase in
the signature size with each signer revocation.

(a) Threshold = 4

(b) Threshold = 8

Fig. 7: Signature size for RTRS in different
thresholds and different times of Split-and-Clip

Furthermore, we performed maximum clip-
ping on the revoked signatures to examine the
changes in signature size. The results are shown
in Figure 7, where 7a and 7b illustrate the signa-
ture size with and without trimming as the ring
size increases, for threshold values of 4 and 8,
respectively. The results indicate that for smaller
threshold values, the size of withdrawn signatures
can be larger than the original signature. However,
as the ring size increases, this difference reduces
gradually. When the ring is large enough, Split-
and-Clip does not incur an extra spatial cost and
may even decrease the signature size. For instance,

as shown in Figure 7, we observed that the size-
optimized critical point is 256 for a threshold of 8
and about 128 for a threshold of 4.

8 Conclusions and Future
Works

This paper proposes a novel property of threshold
ring signatures, namely revocability. This feature
enables signers to revoke their authentication from
previously generated signatures without requir-
ing other signers’ participation. Moreover, while
maintaining anonymity, signers can appropriately
reduce the signature’s potential anonymity-set
size. Revocability eliminates the restrictions of
flexibility on threshold ring signatures. It effec-
tively shrinks the signature size when the ring
signature’s size is large. We present formal mod-
els and constructions of CRS (clippable), STRS
(splittable), and RTRS (revocable). Furthermore,
security proofs are given, and experiments are per-
formed for time and space testing. The results
support our conclusions. The revocable thresh-
old ring signature proposed in our work applies
to scenarios such as electronic voting, allowing
anonymous voters to withdraw their votes, which
enhances election fairness non-interactively.

The two directions for the flexibility of thresh-
old ring signatures have been achieved based on
the revocability and existing extendability con-
cepts. In future work, exploring the direction of
simultaneously satisfying these two properties in
one signature scheme is an exciting direction to
improve flexibility further. Furthermore, we can
explore the general constructions and transforma-
tion methods of revocable threshold ring signa-
tures for the proposed schemes and analyze the
selection criteria for cryptographic tools suitable
for instantiation.

References

[1] Bresson, E., Stern, J. & Szydlo, M. Threshold
Ring Signatures and Applications to Ad-hoc
Groups, 465–480 (2002).

[2] Nojima, R., Tamura, J., Kadobayashi, Y. &
Kikuchi, H. A Storage Efficient Redactable
Signature in the Standard Model, 326–337
(2009).

21

[3] Brzuska, C. et al. Redactable Signatures for
Tree-Structured Data: Definitions and Con-
structions, 87–104 (Berlin, Heidelberg, 2010).

[4] Camenisch, J., Dubovitskaya, M., Haralam-
biev, K. & Kohlweiss, M. Composable and
Modular Anonymous Credentials: Definitions
and Practical Constructions, 262–288 (2015).

[5] Sanders, O. Efficient Redactable Signature
and Application to Anonymous Credentials,
628–656 (2020).

[6] Liu, J. K., Wei, V. K. & Wong, D. S. A
Separable Threshold Ring Signature Scheme,
12–26 (2004).

[7] Liu, D. Y. W., Liu, J. K., Mu, Y., Susilo, W.
& Wong, D. S. Revocable Ring Signature.
Journal of Computer Science and Technology
22, 785–794 (2007).

[8] Okamoto, T., Tso, R., Yamaguchi, M. &
Okamoto, E. A k-out-of-n Ring Signa-
ture with Flexible Participation for Signers
(2018). URL https://eprint.iacr.org/2018/
728. Published: Cryptology ePrint Archive,
Paper 2018/728.

[9] Aranha, D. F., Hall-Andersen, M., Nitulescu,
A., Pagnin, E. & Yakoubov, S. Count me
in! extendability for threshold ring signatures,
379–406 (2022).

[10] Avitabile, G., Botta, V. & Fiore, D.
Boldyreva, A. & Kolesnikov, V. (eds)
Extendable threshold ring signatures with
enhanced anonymity. (eds Boldyreva, A.
& Kolesnikov, V.) Public-Key Cryptogra-
phy – PKC 2023, 281–311 (Springer Nature
Switzerland, Cham, 2023).

[11] Rivest, R. L., Shamir, A. & Tauman, Y. How
to Leak a Secret, 552–565 (2001).

[12] Yuen, T. H., Esgin, M. F., Liu, J. K., Au,
M. H. & Ding, Z. DualRing: generic con-
struction of ring signatures with efficient
instantiations, 251–281 (2021).

[13] Haque, A., Krenn, S., Slamanig, D. &
Striecks, C. Logarithmic-Size (Linkable)

Threshold Ring Signatures in the Plain
Model, 437–467 (2022).

[14] Melchor, C. A., Cayrel, P.-L., Gaborit, P. &
Laguillaumie, F. A new efficient threshold
ring signature scheme based on coding theory.
IEEE Transactions on Information Theory
57, 4833–4842 (2011).

[15] Gan, Y. A fully adaptively secure thresh-
old signature scheme based on dual-form
signatures technology. Security and Commu-
nication Networks 2021, 1–11 (2021).

[16] Bootle, J., Cerulli, A., Chaidos, P., Groth,
J. & Petit, C. Efficient zero-knowledge argu-
ments for arithmetic circuits in the discrete
log setting, 327–357 (2016).

[17] Bunz, B. et al. Bulletproofs: Short proofs for
confidential transactions and more, 315–334
(2018).

[18] Bhattacharjee, K. & Das, S. A search for good
pseudo-random number generators: Survey
and empirical studies. Computer Science
Review 45, 100471 (2022).

22

https://eprint.iacr.org/2018/728
https://eprint.iacr.org/2018/728

	Introduction
	Related Work
	Contributions
	Organization

	Preliminaries
	(Threshold) Ring Signature
	Argument of Knowledge
	Pseudo-random Number Generators(PRNG)

	Formal Definition
	Syntax
	Security model

	Clippable Ring Signatures
	Syntax
	Clippable Ring Signature Scheme
	Security
	Security model
	Security proof

	Splittable Threshold Ring Signatures
	Threshold ring signature
	Transform RS to TRS

	Syntax
	Splittable Threshold Ring Signature Scheme
	Security Proof

	Revocable Threshold Ring Signature Scheme
	Boundaries for Anonymity
	Construct DL-based RTRS

	Implementation
	Conclusions and Future Works

