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Abstract

We construct a succinct non-interactive argument (SNARG) system for every NP language L
that has a propositional proof of non-membership for each x /∈ L. The soundness of our SNARG
system relies on the hardness of the learning with errors (LWE) problem. The common reference
string (CRS) in our construction grows with the space required to verify the propositional proof,
and the size of the proof grows poly-logarithmically in the length of the propositional proof.

Unlike most of the literature on SNARGs, our result implies SNARGs for languages L with
proof length shorter than logarithmic in the deterministic time complexity of L. Our SNARG
improves over prior SNARGs for such “hard” NP languages (Sahai and Waters, STOC 2014,
Jain and Jin, FOCS 2022) in several ways:

• For languages with polynomial-length propositional proofs of non-membership, our SNARGs
are based on a single, polynomial-time falsifiable assumption, namely LWE.

• Our construction handles propositional proofs of super-polynomial length, as long as they
have bounded space, under the subexponential LWE assumption.

• Our SNARGs have a transparent setup, meaning that no private randomness is required to
generate the CRS.

Moreover, our approach departs dramatically from these prior works: we show how to design
SNARGs for hard languages without publishing a program (in the CRS) that has the power to
verify NP witnesses.

The key new idea in our cryptographic construction is what we call a “locally unsatisfiable
extension” of the NP verification circuit {Cx}x. We say that an NP verifier has a locally
unsatisfiable extension if for every x ̸∈ L, there exists an extension Ex of Cx that is not even
locally satisfiable in the sense of a local assignment generator [Paneth-Rothblum, TCC 2017].
Crucially, we allow Ex to be depend arbitrarily on x rather than being efficiently constructible.

In this work, we show – via a “hash-and-BARG” for a hidden, encrypted computation – how
to build SNARGs for all languages with locally unsatisfiable extensions. We additionally show
that propositional proofs of unsatisfiability generically imply the existence of locally unsatisfiable
extensions, which allows us to deduce our main results.

As an illustrative example, our results imply a SNARG for the decisional Diffie-Hellman
(DDH) language under the LWE assumption.



Contents

1 Introduction 1
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Subsequent Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Paper Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Technical Overview 5
2.1 Handling extensions of super-polynomial size . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Extended Frege proofs and local unsatisfiability . . . . . . . . . . . . . . . . . . . . . 9

3 Preliminaries 14
3.1 Boolean Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Hash Family with Local Opening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Fully Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Succinct Non-Interactive Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Somewhere Extractable Batch Arguments (seBARGs) . . . . . . . . . . . . . . . . . . 19
3.6 Propositional Logic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Cook’s Theory PV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 Theory PV1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 SNARGs from Locally Unsatisfiable Circuit Extensions 25
4.1 Local Unsatisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Encoded Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Main Theorem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 SNARG Construction: Encrypted Hash-and-BARG . . . . . . . . . . . . . . . . . . . 31
4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Subsequent work: a strengthening of Theorem 4.8 . . . . . . . . . . . . . . . . . . . 39

5 SNARGs from Locally Unsatisfiable Extensions of Super-polynomial Size 40
5.1 Theorem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 SNARG Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Subsequent work: a strengthening of Theorem 5.2 . . . . . . . . . . . . . . . . . . . 48
5.5 Limitations of locally unsatisfiable extensions . . . . . . . . . . . . . . . . . . . . . . 49

6 Locally Unsatisfiable Extensions from Propositional Proofs of Unsatisfiability 50
6.1 Binary AND-Tree Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Construction of the Extension Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Proof of Local Unsatisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Locally Unsatisfiable Extensions from Bounded Space Propositional Proofs of
Unsatisfiability 58
7.1 Space Complexity of Propositional Proofs . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Locally Unsatisfiable Extensions from Bounded Space Proofs of Unsatisfiability . . . 59

2



8 Applications 65
8.1 SNARGs for the DDH Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9 Acknowledgements 67



1 Introduction

Succinct non-interactive arguments (SNARGs) are a powerful cryptographic primitive whose feasi-
bility is still poorly understood. Informally, a SNARG for an NP language L is a computationally
sound non-interactive argument system for L whose proofs are short, much shorter than the length
of an NP witness, and easy to verify. To achieve this, the prover and the verifier are given access to
a common reference string crs (also called a structured random string), and this string is used both
to produce the SNARG proofs and to verify them.

In the random oracle model, it is known that there are SNARGs for every NP language
[Kil92, Mic94]. However, constructing SNARGs for NP in the “plain model” under falsifiable
and preferably standard cryptographic assumptions remains a widely open problem. Indeed, Gentry
and Wichs [GW11] formalized a serious barrier to constructing SNARGs in the case where the
cheating prover is allowed to choose the statement x adaptively based on the crs; such a soundness
guarantee is known as adaptive soundness.

Faced with the Gentry-Wichs barrier, we focus on the problem of constructing SNARGs with non-
adaptive soundness, where cheating provers are restricted to choose the statement x independently
of the crs. Non-adaptive soundness is interesting for two reasons: First, in many settings (1) the
adversary indeed does not get to choose the statement depending on the crs, or (2) one can informally
argue that statements that do depend on the crs are likely to be contrived. Moreover, by using
standard complexity-leveraging techniques, one can obtain adaptive soundness from non-adaptive
soundness, at the price of making the SNARG proof grow with the input size, which is often much
smaller than the witness size.

SNARGs vs. Proofs of non-Membership. Let us first describe why even constructing such non-
adaptive SNARGs for all of NP seems to be challenging, by giving an intuitive barrier to constructing
computationally sound argument systems that applies to most known SNARG constructions [KRR14,
BHK17,BKK+18,CJJ22,KVZ21,BBK+23].

Soundness of a SNARG is typically proved by exhibiting a polynomial (or sub-exponential)
time reduction R that uses any cheating prover P ∗, in a black-box way, to break the underlying
(falsifiable) cryptographic assumption. In the case of non-adaptive soundness, the analysis fixes
any x /∈ L and presents a reduction Rx that uses any successful cheating prover P ∗

x to break the
assumption. Intuitively, such an Rx together with the mathematical proof πx, that indeed Rx can
use any successful P ∗

x to break the underlying assumption, constitutes a “witness” for x /∈ L. Note
that for x ∈ L, such a pair (Rx, πx) does not exist (unless the underlying assumption is false), since
for x ∈ L there does exist an efficient convincing prover Px (who is given a corresponding witness w),
and thus there does not exist a poly-time reduction Rx that uses Px to break the assumption (unless,
of course, the assumption is false). We believe that there are NP languages for which membership
for x ∈ L requires a “witness” of size 2|x|, and thus we believe that any such reduction Rx “must
be” of exponential size, which in turn implies that we need to rely on a cryptographic assumption
that is 2|x|-secure. Indeed, the only known SNARG construction for all of NP which is based on
falsifiable assumptions, due to Sahai and Waters [SW14], uses a reduction of size 2|x| and thus relies
on a 2|x|-hard cryptographic assumption.

We note that the above intuitive argument is not a proof.1 Nevertheless, this thought experiment

1A proof of soundness is a single proof π for the statement that for every x /∈ L, the reduction Rx can be used to
break the assumption, whereas the above argument assumes that for every x /∈ L there is a pair (Rx, πx) where πx is
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suggests a connection between constructing SNARGs for an NP language L and the problem of
mathematically proving that an instance x is in the language L. We thus focus on the following
informal question:

Are there non-adaptive SNARGs for every language L ∈ NP with a security
reduction of size poly(T ), where T is the length of a proof for x /∈ L?

1.1 Our Results

In this work, we provide a positive answer for the case where the size-T proof for x /∈ L is a
(extended Frege) propositional proof [Kra95]. Our SNARG proof length grows poly-logarithmically
with T , while the crs grows linearly with the space required to verify this propositional proof, and
non-adaptive soundness relies on the poly(T )-hardness of LWE. In the case that the propositional
proof is of polynomial size (and the instance size is polynomially related to the security parameter)
the assumption becomes the polynomial hardness of LWE.

Theorem 1.1 (Informal). Given functions T = T (n) and S = S(n), there exists a SNARG for any
NP language L such that every x /∈ L has a propositional proof for x /∈ L of length T = T (|x|), that
can be verified in space S = S(|x|). The size of the CRS is S · poly(λ) and the size of the SNARG is
poly(λ, log T ). The SNARG is non-adaptively sound based on the poly(T )-hardness of LWE.

Two remarks about Theorem 1.1 are in order. First, the SNARG construction does not depend
on the propositional proof, rather only on the parameters T and S. The actual propositional proof
appears only in the analysis. Thus, one does not need to “know” such a propositional proof in order
to construct the SNARG, nor does such a proof need to be efficiently computable.

Second, we consider the implications of Theorem 1.1 when T (n) is polynomial in n. In this
setting, we get a SNARG under the polynomial hardness of LWE for a subclass of NP∩ coNP, namely
ones that have a poly-size propositional proof for x /∈ L. While it is tempting to think that languages
in NP ∩ coNP should have propositional proofs of non-membership, it is not necessarily the case.

Nevertheless, important languages in NP∩ coNP do have such proofs. As an example, we observe
that the DDH language does have a poly-size propositional proof of non-membership. We thus
obtain the following corollary.

Corollary 1.2. There is a SNARG for the DDH language that has non-adaptive soundness under
the polynomial hardness of LWE. The proof length is poly(λ) and the crs length is poly(n, λ), where
n is the instance size.

One interesting fact about Corollary 1.2 is that the DDH language does not appear to have a
non-signaling PCP (with small locality). Indeed, it is believed that the DDH language, on groups of
size roughly 2n, are not decidable in DTIME(2n

ϵ
) for some constant ϵ > 0. As a result, our SNARG

has proof length which is less than logarithmic in the deterministic time complexity of the language!
This stands in contrast to (1) most prior works on SNARGs from standard assumptions, which were

a (mathematical) proof that Rx can use any successful prover to break the underlying assumption. It is not clear that
one can convert the proof π into a polynomial size proof πx for every x /∈ L. Indeed, if the underlying SNARG has
statistical soundness then Rx can simply be empty, and the proof π can be trivial. Nevertheless, it turns out that
most known SNARG constructions can be seen as producing a subexponential-length proof πx.
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only for languages that have non-signaling PCPs,2 and (2) the Gentry-Wichs barrier, which says
that exactly this kind of SNARG with adaptive soundness is impossible to achieve. We believe that
the techniques we use in this work to circumvent these barriers are of independent interest and will
lead to further follow-up work.

Encrypt-Hash-and-BARG We propose a new method for constructing SNARGs. Specifically, we
extend the Hash-and-BARG method [CJJ22,KVZ21] to an “encrypt-hash-and-BARG” method. We
elaborate on this method in Section 2, and in what follows we state its implications.

For a given NP language L and for any instance x ∈ {0, 1}∗, we denote by Cx the verification
circuit that given an input w outputs 1 if and only if w is a valid witness for x ∈ L.

Theorem 1.3 (informal, see Theorem 4.8). For every parameter ℓ = ℓ(n), we construct a SNARG
for any NP language L that has the following property: For every x /∈ L there exists an extension Ex

of the verification circuit Cx such that Ex has the property that local consistency with locality ℓ
implies global correctness. The length of the SNARG is poly(λ, ℓ, log |Ex|), and the length of the crs
is |Ex|·poly(λ).3 The SNARG has non-adaptive soundness assuming the poly(|Ex|)-hardness of LWE.

We call such a family of circuits {Ex} a locally unsatisfiable extension of the circuit C(x,w)
(Definition 4.4). We emphasize that in Theorem 1.3, the extended circuit Ex need not be efficiently
computable from x, which is how we circumvent prior barriers. Our SNARG construction does not
use this extension and it is only used in the analysis.

Moreover, we show an improved version of Theorem 1.3 that holds even when the extended circuit
Ex has super-polynomial size, provided that every gate of Ex can be computed by a polynomial-size
sub-circuit.

Theorem 1.4 (informal, see Theorem 5.2). For parameters ℓ = ℓ(n) and γ = γ(n), there exists a
SNARG for any NP language L that has the following two properties: (1) For every x /∈ L there exists
an extension Ex of the verification circuit Cx such that Ex has the property that local consistency
with locality ℓ implies global correctness. (2) For every gate g in Ex the sub-circuit of Ex computing
g is of size at most γ.

The length of the SNARG is poly(λ, ℓ, log |Ex|), the length of the crs is γ · poly(λ),4 and non-
adaptive soundness holds assuming the poly(|Ex|)-hardness of LWE.

We deduce Theorem 1.1 by combining Theorem 1.4 with a construction of such locally unsatisfi-
able extensions for any NP language L with bounded space propositional proofs of unsatisfiability
(Theorem 7.3).

1.2 Related Work

There is a large body of work, especially in recent years, that construct SNARGs under standard
hardness assumptions for more and more expressive languages

2The only other work that break this non-signaling barrier are the works of [SW14,JJ22] which rely on indistin-
guishability obfuscation, and the recent work [BBK+23]. We elaborate on all these three works, and compare them to
our work, in Section 1.2.

3In fact, we can even compress the crs length to polynomial in a succinct description auxx of the circuit Ex, which
may be much smaller.

4One could strengthen this result to make the crs grow only with the (possibly succinct) description of the circuit
computing each gate g. For the sake of simplicity we chose to avoid this extra layer of complication in the technical
section.

3



In what follows, we restrict ourselves to discussing the most closely related works, the ones that
break the non-signaling barrier, and construct SNARGs for languages that we believe do not have
non-signaling PCPs. Similarly to our work, all these works provide non-adaptive soundness.

Comparison with [SW14]. Sahai and Waters [SW14] constructed the first SNARG system for
all of NP, without relying on random oracles or knowledge assumptions. Their SNARG system has
proofs of length O(λ), independent of the statement or witness length, and a CRS of length O(|w|),
where |w| is the length of the NP witness. In contrast to [SW14], in our SNARG system the proof
size also grows poly-logarithmically with the length of the propositional proof of unsatisfiability. On
the other hand, our CRS has length proportional to the space required to verify the propositional
proof, which in general is shorter than the witness length, perhaps even exponentially so.

Importantly, [SW14] requires the full power of secure indistinguishability obfuscation, which
when converted into a falsifiable assumption, becomes a 2|x|-hardness assumption (where x is the
instance). In contrast, our constructions are based on a single, simple, falsifiable, post-quantum
assumption, namely the poly(T )-hardness of LWE, where T is the length of the propositional proof.

Finally, our construction permits a transparent setup, meaning that our CRS can be generated
using public coins, whereas the CRS in the [SW14] construction consists of an obfuscated circuit.

Comparison with [JJ22]. Our work is inspired by the work of Jain and Jin [JJ22], which
pioneered the idea of using co-non-deterministic proofs for a language L to improve the assumption
in [SW14] from a 2|x|-hardness assumption to an assumption falsifiable in time less than 2|x|.
Specifically, in [JJ22], they are able to rely on the 2|x|

ϵ
-hardness of falsifiable assumptions (used to

build indistinguishability obfuscation for circuits of input length |x|ϵ) to instantiate a new variant
of the [SW14] SNARG.

We improve on [JJ22] in several ways: they construct a SNARG for all NP languages L that have
polynomial-size propositional proofs for x /∈ L, and their soundness relies on indistinguishability
obfuscation for circuits with security parameter input length. We construct a SNARG for the same
NP languages assuming the polynomial hardness of LWE. In addition, [JJ22] inherits the trusted
setup of [SW14] while our scheme has transparent setup. Finally, we construct SNARGs for a richer
class of languages: as described in Theorem 1.1, our construction can work with a propositional
proof for non-membership which may be of super-polynomial size T , as long as it can be verified in
polynomial space.

Comparison with [BBK+23]. Our work also draws inspiration from [BBK+23], which constructs
a SNARG with non-adaptive soundness from the polynomial hardness of LWE for any monotone batch
NP language. Their construction relies on the hash-and-BARG blueprint, but they use a special hash
family, which they call predicate extractable. Looking into the details of this predicate-extractable
hash function, one can think of it as a commitment to, and quasi-argument about, the output
of an encrypted, instance-dependent extended circuit. Indeed, there is a specific, simple locally
unsatisfiable extension implicit in [BBK+23], and as a result our main theorem implies the result
of [BBK+23] as a corollary (albeit with a slightly different construction and analysis).

Importantly, such languages are not known to have non-signaling PCPs, and thus [BBK+23] was
the first to break the “non-signaling PCP barrier”. However, the monotone policy batch languages
considered in [BBK+23] were still easy in that they could be decided in time 2ℓ, where ℓ denotes

4



the SNARG proof length. In contrast, in this work we construct SNARGs for hard languages such
as DDH, which is a much more powerful result.

1.3 Subsequent Work

A subsequent work [JKLM24] makes non-black-box use of the proofs of two of our main theorems
(Theorems 5.2 and 6.2) in order to give new constructions of SNARGs for all NP languages (under
stronger assumptions than what was needed in this paper). For ease of understanding, we have
added formulations of the properties used by [JKLM24] as additional theorem statements. The
proofs of these new theorem statements are identical to the proofs of our original theorems, but the
theorem formulations are due to [JKLM24]. See Sections 4.6 and 5.4 and Remark 6.1 for details.

1.4 Paper Organization

We first present our general method for constructing SNARGs. Specifically, Theorem 1.3 is formalized
and proved in Section 4, and Theorem 1.4 is formalized and proved in Section 5. Then we focus on
propositional proofs. Theorem 1.1 is formalized and proved in Sections 6 and 7 and in Section 8 we
derive the corollary for DDH (Corollary 1.2).

2 Technical Overview

Our starting point is the blueprint of constructing a SNARG via the hash-and-BARG paradigm
[CJJ22,KVZ21]. In one variant of this construction, to prove that x ∈ L, the prover takes the
following actions:

• First, the prover uses its witness to compute a “transcript” τ containing the values of all the
wires of the verification circuit Cx when evaluated on w.

• Then, the prover hashes τ using a hash family with local opening, obtaining a hash value v.
The prover sends v to the verifier along with an opening of the output wire of Cx to 1.

• Finally, the prover sends ℓ proofs that these hashed wire values satisfy all the gates of the
circuit, by using a non-interactive batch argument (BARG) [CJJ22]. That is, the prover sends
ℓ BARGs certifying that for every gate g of Cx there is an opening to the input and output
wires of g such that these openings are valid w.r.t. v and they respect the gate.

The parameter ℓ in this construction is called its “locality.” Assuming that the BARG satisfies a
security notion called “somewhere extractability” (Definition 3.7), the above construction is known
to satisfy the following weak soundness guarantee: one can efficiently convert any successful cheating
prover P ∗ into a local assignment generator for the verification circuit Cx, denoted by LocalGen.

A local assignment generator (with locality parameter ℓ) is a randomized algorithm that takes
as input ℓ wires, and outputs an assignment to these wires, with the following guarantees:

1. Local consistency: The assignment is locally consistent (i.e., it respects all the gates).

2. Non-Signaling: for any two possible wire sets T0, T1 of size at most ℓ, the distribution of the
assignments for the wires in T0 ∩ T1 in LocalGen(T0) and in LocalGen(T1) are computationally
indistinguishable.
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A local assignment generator satisfies the circuit Cx if it has one more property:

3. Satisfiability: The output wire of Cx is assigned a value of 1 with high probability.

Unfortunately, it is well known that even if the circuit Cx is unsatisfiable, it may still have a
local assignment generator; in other words, “local consistency” need not imply “global correctness”
for Cx. To remedy this, starting from the work of [KRR14], there have been several attempts to
construct an extension of C, denoted E(C), such that local consistency of the extended circuit
E(C)x does imply global correctness. However, these attempts are inherently limited: such an
extension can exist only for languages that have a PCP with non-signaling soundness, which in turn
is known to limit the underlying language L to the complexity class DTIME(nO(ℓ)) [KRR14].

New Insight. Our new idea is to consider inefficient, instance-dependent encodings of the circuit
Cx. Namely, suppose for any fixed x /∈ L there exists a way to extend the verification circuit Cx into
a new circuit Ex

5 such that local consistency of Ex implies that the specific wire of Ex corresponding
to the output wire of Cx must be 0. We call such a family {Ex} a locally unsatisfiable extension of
the circuit C (Definition 4.4) and remark that in principle, Ex need not even have polynomial size.

A naive proposal would be to ask the prover to hash-and-BARG the extended circuit Ex and
thus derive soundness from the local unsatisfiability of Ex. Unfortunately, it seems like we are in a
lose-lose situation:

• If Ex can be computed efficiently from Cx, then we can essentially think of the extension as
being independent of x, by thinking of the new extended circuit as being E(C)x, similar to
prior works.

• On the other hand, if Ex cannot be computed efficiently from Cx, then the prover does not
know what computation to run, so we do not have completeness.

Additionally, even if the prover magically knew a description of the circuit Ex, if Ex has super-
polynomial size, the honest prover cannot even evaluate it.

Nevertheless, we give a construction of a SNARG assuming the existence of a locally unsatisfiable
extension {Ex} of the NP verification circuit C, despite being unable to compute what it is. Our
construction can handle any polynomial-size such extension, and moreover can handle extensions
where the size of Ex is super-polynomial,6 as long as each individual wire value of Ex(w) is efficiently
computable from the input w.

The encrypt-hash-and-BARG paradigm. How do we build a SNARG that makes use of the
existence of Ex without being able to compute it? We ask the prover to give a hash-and-BARG for
a hidden, encrypted computation that is not checked in the clear! Namely, we include in the crs a
ciphertext (using fully homomorphic encryption); in the actual scheme, this ciphertext can be an
encryption of the all-zero string, but in the analysis we will think of this ciphertext as encrypting
the description of the extension Ex. Since the FHE secret key is not provided to any party, the
success probability of a cheating prover will not change when the encryption of the all zero string is
replaced with an encryption of the description of Ex in the analysis.

5Namely, Ex is obtained by adding wires and gates to Cx
6For technical reasons, our SNARG proof length will grow with log|Ex|, so we can handle |Ex|= 2λ but not |Ex|= 2n.
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In our construction, the prover hash-and-BARGs the original circuit Cx and additionally computes
the values of all the wires of the (homomorphically evaluated) encrypted extended computation, and
adds a hash-and-BARG for this encrypted computation. In more detail, we think of the extended
circuit Ex as first computing Cx and then computing a circuit Dx that takes as input all the wires
of Cx. The prover now takes the following actions:

• As before, compute the transcript τ for Cx(w).

• (New) Consider the encrypted computation Eval(UDx , ·), that takes as input all the wires of
Cx and a circuit description ⟨Dx⟩, and evaluates the circuit Dx on these wires “underneath”
of the encryption. Compute the transcript τ̃ for Eval(UDx , ·) on τ .

• Apply Hash-and-BARG to the joint computation of τ and τ̃ . As before, the prover provides
an opening of the hash value v to demonstrate that the output wire of Cx is assigned 1.

In the actual scheme, the behavior of the prover (and verifier) is completely independent of Ex.
However, in the soundness analysis, we replace the all zero encryption with an encryption of ⟨Dx⟩.
The punchline of this approach is that we can show (Section 4) that given a cheating prover for this
“encrypted-hash-and-BARG” construction on a non-adaptively chosen input x, one can obtain a local
assignment generator for the circuit Ex with a slightly worse locality parameter than before.7 This
requires handling two technical issues:

1. The computation of Dx is encrypted rather than in the clear. Essentially, one needs to show
that a local assignment generator for the encrypted computation implies a local assignment
generator for the computation “underneath” the encryption. This is proven (Lemma 4.12)
assuming that the FHE scheme has gate-by-gate evaluation and satisfies a standard notion of
malicious correctness.

2. Even “underneath the encryption,” what is evaluated (in the honest case) is a universal circuit
U on input (⟨Dx⟩, Cx(w)) rather than the circuit Dx on Cx(w). Thus, one needs to show
that local assignment generators are roughly preserved under a standard universal circuit
transformation (Lemma 4.13).

We handle these technical issues and show that a local assignment generator for Ex can in fact
be constructed. Thus, soundness of our SNARG holds assuming that Ex is locally unsatisfiable. We
refer the reader to Section 4 for further details.

2.1 Handling extensions of super-polynomial size

Thus far, we have described a SNARG construction in which the crs length and prover runtime grow
linearly with the size of a family of extended circuits {Ex}. This suffices to prove Theorem 1.3
but not Theorem 1.4. We next show how to extend this paradigm to handle locally unsatisfiable
extensions of super-polynomial size, as long as each gate in the extension can be computed in
polynomial time.

7In fact, we implicitly show something stronger: a “universal local assignment generator” LocalGen(⟨Ex⟩, S) that
takes ⟨Ex⟩ as additional input, such that for every fixed Ex, LocalGen(⟨Ex⟩, ·) is a local assignment generator for Ex.
We do not use this fact in this paper, but a subsequent work [JKLM24] defines and makes use of this stronger property.
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Suppose that {Ex} is a family of extended circuits such that every wire in Ex is computed by a
circuit of size at most γ = γ(n) = poly(n). Here is a naive idea for reducing the prover complexity
to be linear in γ rather than |Ex|:

• Instead of including an encryption of ⟨Dx⟩ in the crs, include an encryption of the description
of a size-(ℓ · γ) sub-circuit of Dx, denoted Dx[S], corresponding to the sub-circuit necessary to
compute all wires in a set S of size ℓ.

Again, this step only occurs in the analysis; in the real construction, an all-zero circuit of size
ℓ · γ will be used.

• As before, the prover homomorphically evaluates the sub-circuit on τ = Cx(w). Since this
sub-circuit has ℓ specially designated “output wires,” the prover can send the corresponding
encrypted outputs.

• Finally, similarly to before, give a Hash-and-BARG proof of correctness for its claimed
computations (both Cx(w) and the encrypted computation).

Given a cheating prover for this new candidate SNARG, one might hope to obtain a very simple
local assignment generator for Ex: on a set S, the local assignment generator can simulate the
prover on an encryption of ⟨Dx[S]⟩ repeatedly until it produces a valid BARG proof; then, decrypt
(under the FHE) the “evaluated ciphertext” sent by the prover, resulting in an ℓ-bit assignment to S.
Indeed, one can argue that these assignments must always satisfy the gates of Ex contained in S.

Unfortunately, this idea does not work. Briefly, this is because the candidate local assignment
generator for Ex is evaluated using the FHE secret key. Since the circuit Dx[S] is encrypted under
the FHE, this means that all ℓ bits of the output of the local assignment generator may depend on
S, and thus they may not satisfy non-signaling.

To ensure non-signaling, we change the construction to independently encrypt ℓ different size
γ sub-circuits D1, . . . , Dℓ (one for each wire in S) under different FHE keys. Then, the analogous
“local assignment generator” would satisfy a form of non-signaling: by semantic security, the value
decrypted under FHE secret key ski would not signal information about which wires were encrypted
under the other FHE keys. However, this is also unlikely to result in a local assignment generator,
due to the following two (related) issues:

• Wire self-consistency. It is not clear that if the same wire is encrypted under two different
FHE keys, the resulting evaluated ciphertexts will decrypt to the same output.

• Gate consistency. It is not clear that the gates of Ex are respected by this wire assignment
distribution, since the three wires forming a gate are encrypted under different FHE keys.

Why doesn’t the BARG save us? So far, we have not actually invoked security of the hash-and-
BARG in our new analysis. Perhaps hash-and-BARG security can help argue the two consistency
properties above!

Repeating our analysis from the proof of Theorem 1.3, we see that hash-and-BARG security
(along with FHE correctness) has a very specific implication: the existence of a “second-level” local
assignment generator for the following computation:

• Input: a candidate witness w.
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• First, evaluate τ = Cx(w)

• Then, for a fixed tuple i1, . . . , iℓ, evaluate the sub-circuit Dij of Ex(τ) that outputs the ijth
wire of Ex(τ), for all 1 ≤ j ≤ ℓ.

The ℓ output wires of this new circuit correspond to (one sample from) the original local assignment
generator applied to (i1, . . . , iℓ).

Now, we can ask: is this enough to imply self-consistency? If i1 = i2, must the first two output
wires of the second-level local assignment generator be assigned the same value? Unfortunately,
each Dij can be an arbitrary polynomial-size circuit, and local assignment generators on arbitrary
circuits may not satisfy this form of “global consistency.”

Solution: extend the sub-circuits, again. We solve this issue by turning to one of the
original tools from [KRR14]: we will efficiently extend the ℓ sub-circuits to enforce a form of
global consistency on the second-level local assignment generator. Originally, [KRR14] showed
that an appropriate extension CExt of any deterministic circuit C has the property that a local
assignment generator for CExt(x) must assign C(x) to the output wire. Our idea is to have the
prover homomorphically evaluate (and certify having evaluated) (Di1)Ext, . . . , (Diℓ)Ext rather than
Di1 , . . . , Diℓ . Then, making use of a new variant of the [KRR14] analysis of their circuit extension
(Theorem 4.5), we are able to deduce the desired wire self-consistency property for the (first-level)
local assignment generator.

We remark that rather than appealing to [KRR14], one could also cryptographically extend
the Dij using a collision-resistant hash function (as in [KP16,CJJ22]). We use the information-
theoretic [KRR14] extension for technical reasons, in order to simplify some of our intermediate
abstractions and security reductions.

Finally, in order to handle gate consistency, we combine the two approaches described so far.
In the final construction, we use ℓ+ 1 independent FHE keys, where the last key is used to encrypt
a description of the joint computation Dx[S]. We defer the reader to Section 5 for how to prove
gate consistency, but the ideas are similar to how we handled wire self-consistency above.

2.2 Extended Frege proofs and local unsatisfiability

Armed with the new paradigm for constructing SNARGs we now ask: which NP languages have
locally unsatisfiable extensions with the appropriate complexity?

For simplicity, let us consider the case where |Ex|= poly(n). In this case, it is easy to see that any
language L with a ℓ-locally unsatisfiable extension lies in the complexity class NP∩ coNTIME(nO(ℓ))
(Theorem 5.8); to prove that a statement x is not in L, one can non-deterministically guess the
description of Ex and then compute the optimal (perfectly) non-signaling strategy in time nO(ℓ).

Thus, we restrict (essentially without loss of generality) to considering languages in NP ∩
coNTIME(T ) for some parameter T .8 However, even in this restricted setting, it is highly unclear
whether any given family of circuit extensions {Ex}x satisfies the “local consistency implies global
correctness” property that we want.

In this work, we show a connection between propositional proofs (specifically, Extended Frege
proofs) and local unsatisfiability; this corresponds to the sub-class of NP ∩ coNTIME(T ) where

8One can hope to handle super-polynomial T by allowing Ex to have super-polynomial size. In the end, our SNARG
proof length will grow poly-logarithmically with T , which prevents extending our results to NP-complete languages.

9



non-membership in L has a length T EF proof. This begs the question: why propositional proofs?
Extended Frege proofs were utilized to great effect in the related work [JJ22], to reduce the length
of a hybrid argument in proving the security of iO (and therefore of the [SW14] SNARG). But what
do they have to do with local assignment generators?

Special case: deterministic computations. To understand this question, let us consider the
very simple setting of deterministic computations, which were studied in [KRR14]. Here, it is not
obvious (at least from first principles) whether extending the circuit is even necessary. Namely, one
can ask: does a local assignment generator for a deterministic computation C(x) have the property
that the output wire τout is assigned the value C(x) with high probability?

In general, the answer is no (as previously discussed). However, the answer is actually yes if
we restrict to an even simpler and unrealistic special case: if the local assignment generator has
perfect (zero error) non-signaling and local correctness, then the output wire is assigned C(x) with
probability 1. To see this, simply observe that in a deterministic computation, every wire τi has an
associated “correct value” τi(x) that the local assignment generator should provide. One can argue,
by induction on a topological ordering of C, that the ith wire must be assigned the value τi(x) by
making use of the non-signaling and local correctness properties of a local assignment generator.

In [KRR14,BHK17], it is shown how to handle the case where the local assignment generator has
errors. In this case, extending the circuit is actually necessary, because the analysis above requires
exponentially many invocations of non-signaling and local correctness. This seems strange – the
circuit has polynomial size, after all – but the issue is the locality ℓ. It turns out that the number of
steps in the above analysis grows with the number of steps required to pebble the circuit C in the
reversible pebbling game [Ben89], when restricted to ℓ pebbles. In general, a circuit may require
exponentially many steps to pebble for small choices of ℓ, which would lead to an intolerable error
blowup in the analysis. To get around this, [KRR14] extend the circuit C in a way that reduces
the complexity of its pebbling game.

Enter propositional proofs. Now, we return to the general case of non-deterministic computa-
tions Cx(w). Suppose that Cx(·) is unsatisfiable. Here, we know that unlike the deterministic case,
even a perfect local assignment generator for Cx(·) need not satisfy the property that τout is assigned
0 (because this can be tested in sub-exponential time). Intuitively, the operational difficulty is that
individual wires of Cx are no longer supposed to take specific (deterministic) values; each candidate
witness gives a different wire assignment to Cx, so it is not clear what should be argued inductively
about these wire values.

This leads to the key insight of this section:

Propositional proofs give a deterministic handle on a non-deterministic computation.

That is, since a propositional proof is a sequence of tautologies – formulas that must be satisfied by
any assignment to variables satisfying a collection of premises – one can hope to generalize from the
deterministic case by arguing about the sequence of formulas instead of the individual variables.

Bringing this idea to fruition requires significant care, especially in order to handle imperfect
local assignment generators; we outline our approach below.
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Background on Logic. We recall propositional logic systems with extension rules (i.e. Extended
Frege systems) [Kra95]. Such a logic system is defined as a tuple of variables and connectives such
as “∧”, “∨”, “→”, “¬”, “↔”, which represent “and”, “or”, “imply”, “negation”, and “equivalent”,
respectively. A proof in such a logic system is a sequence of “lines”, where each line is a formula
derived via one of the following rules.

• Axioms. The formula is a constant size tautology, which means for every truthful assignment,
the formula is evaluated to 1.

• Modus Ponens. There exist two formulas f, g such that the formulas f, g, f → g are the
lines somewhere before the current line, and the current line is the formula g.

• Extension Rule. The line is in the form v ↔ ϕ, where v is a variable that has not appeared
before the current line, and also does not appear in ϕ.

The size of a formula is the length of the binary string that is used to write down such a formula,
including all the punctuations. The size of a proof is the total size of the lines in the proof.

The extension rule can be used to shorten the size of each line in the proof, by introducing new
propositional variables to the subformulas used in the proof. Indeed, one can assume without loss
of generality that each line of the proofs in the Extended Frege system is a constant size formula,
without significantly blowing up the size of the proofs.

We first describe how to build a polynomial-size extended circuit, if the propositional logic proof
is polynomial size. Indeed, our construction of the extension circuit for polynomial-size propositional
proofs is almost identical to the padded circuit used in [JJ22]. We describe the construction again
in the context of the extended circuits.

Extension from Polynomial Size Propositional Proofs. The key structural property of
propositional logic proofs is that each line of the proof is a formula, and hence is naturally a circuit.
Hence, we can use them in our construction of Ex. Moreover, the proof is local, which means that
the truthfulness only depends on a constant number of previous lines. Recall that, we assume
without loss of generality that each line of the proof has a constant size.

Bearing these structural properties in mind, given a propositional logic proof θ1, . . . , θT for the
unsatisfiability of Cx, the initial attempt to build Ex is as follows. For each θi, we build a circuit
Ci that computes θi, and add Ci in Ex. To prove the local-to-global property, our intuition is
that, since each line must be true, the circuits Ci’s must output 1’s. Moreover, we hope to use an
inductive argument to show that this is indeed true if we extract the output of Ci using the local
assignment generator. For example, suppose θi is derived from θi1 , θi2 , . . . , θic , then we can extract
the outputs of Ci1 , . . . , Cic , Ci to argue that, if all the circuits Ci1 , . . . , Cic outputs 1, then Ci must
also output 1. Finally, the last circuit CT must compute a function checking whether out is 0 or
not, where out is the output gate of Cx. This is because a propositional proof must end with the
statement, and in our case, the statement is “out = 0”. Hence, if we can use the aforementioned
inductive argument to show that CT outputs 1, then it implies out = 0. In this way, we can argue
that local consistency implies global correctness.

However, the above initial attempt does not work directly, because a closer examination will
reveal that the security loss in such an inductive argument is exponential in the length of the proof.
The reason is that, for each θi that follows from an inference rule, the indices i1, . . . , ic may be
different for each i, and they may not follow any pattern. Recall that in the inductive argument
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above, before arguing that Ci must output 1, we need to extract Ci1 , . . . , Cic and prove that they
all output 1 first. However, when we transit from the index (i− 1) to i in the inductive argument,
it is possible that the outputs of Ci1 , . . . , Cic have not been extracted. A potential solution to this
issue is to extract all the outputs of C1, . . . , Ci−1, but we cannot afford such locality in the local
assignment generator.

To resolve this issue, we need to have a mechanism that allows us to “succinctly” memorize the
fact that we have proven that the outputs of C1, . . . , Ci−1 are all 1’s, by only extracting a small
number of wires and gates in Ex. We achieve this by building a binary tree of AND gates, where
the leaf nodes of the tree are the outputs of C1, . . . , CT . In the inductive argument, at the i-th step,
we extract O(log T ) roots of some sub-trees in the binary tree. Those roots are chosen such that
the leaves of those roots consist of the first i leave nodes. Now to ensure the first i circuits output 1,
we only need to examine whether those roots output 1 or not. For more details, see Section 6.

Note that in this construction of Ex, we can only handle polynomial-size propositional logic
proofs. If the propositional logic proof is of super-polynomial size, the number of leaves in the
AND tree is super-polynomial. Then it is not clear how to compute the root node of the AND in
polynomial time, since the root of the tree depends on the values of all the leaves.

Towards Super-polynomial Size Propositional Proofs. To extend the idea to super-
polynomial size propositional proofs, our key observation is that the procedure of adding Ci’s
to the leaves of the AND tree is similar to writing down a mathematical proof on a piece of paper,
where the space of the paper is limited. Note that, sometimes we can erase some formulas on
the paper and rewrite new formulas there, as long as the formulas can be derived only using the
remaining formulas on the paper. Then we can reuse the space of the paper and write long proofs.
This motivates us to define a space notion of propositional proofs, and only keep the formulas in
the space on the leaves of the AND tree.

Indeed, space complexity has been defined for propositional logic proofs [ET01,ABSRW02].
However, to the best of our knowledge, those definitions only define space complexity for propositional
proof systems without the extension rule. In our setting, we can handle the extension rule by adding
new gates in Ex. Specifically, we can have each extended variable be associated to a new gate in
Ex, and use the defining formula of the variable to specify how the gate should be computed from
existing gates.

Defining Space of Extended Frege Proofs. In this work, we introduce a new definition of the
space complexity for propositional proofs with extension rules (i.e., for extended Frege systems).
In our definition, at any point in the derivation of the proof, we maintain a set of formulas as the
“memory”, and we require that new formulas (resp. new variables) must be derived from existing
formulas (resp. variables) in the memory. We also allow the erasure of the formulas in the memory.
However, if the erased formula is the defining formula of some variable v, then we further require
that the variable is not used later in the proof. The space complexity of the proof is then defined as
the maximum total size of the formulas in the memory throughout the derivation of the propositional
proof. For more details, see Section 7.1.

We will show that if a circuit Cx has propositional proofs of unsatisfiability, where the proof has
polynomial space, then we can build an extended circuit Ex, where the size of the circuit grows with
the size of the propositional proof, which we allow it to be super-polynomial. However, each gate in
the extended circuit can be computed using a polynomial-size sub-circuit. From our aforementioned
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construction of SNARGs via Encrypt-Hash-and-BARGs, this would give us SNARGs with CRS size
growing with the space of the propositional proof, and SNARG size grows only logarithmically in
the size of the propositional proofs.

Extended Circuits from Bounded-Space Proofs. The construction of the circuit extension
Ex is as follows. Our starting point is our aforementioned AND tree construction in the case of
polynomial-size propositional proofs. To ensure the AND tree is polynomial size, our idea is to
build the AND with only s leaves, where s is a polynomial upper bound on the space. However,
it remains to handle the erasure operation in propositional proofs. A natural idea is to build a
“dynamic” AND binary tree, with insertions and deletions of the leaves. However, it is not clear if
we can delete the gates in Ex during the construction procedure of Ex. Because if we delete the
gates, what is the point of adding them in the first place?

∧

∧

1 2

∧

3 4

∧

∧

1 2

∧

3 4

∧

2′

∧

Figure 1: An example of inserting a new leaf-to-root path for the second leaf node. Left: original
AND tree circuit. Right: circuit after adding a new leaf-to-root path for the second leaf node. The
new gates are marked in circles.

To deal with deletions, our idea is to use insertions to “emulate” deletions, as follows. To delete
a leaf node, instead of really deleting it, we build an entire new root-to-leaf path for that leaf node
on top of the original tree. Namely, the children of the gates on the new root-to-leaf path are set to
be the nodes in the original tree, if the child is not included in the root-to-leaf path. We show an
illustrative example in Figure 1. Then we set the new leaf node (2′) on the new root-to-leaf path
as a constant 1. Now if we only look at the sub-circuit that the new root in the root-to-leaf path
depends on, it is still a binary tree, but now the leaf (2) can be regarded as “deleted”, because its
value is set to be a constant 1, which does not affect the output of the AND tree.

In summary, to build Ex, we start with a binary tree of s leaves, where s is the space of the
propositional proof. Initially, all the leaf nodes are set to output the constant 1. Then we iterate
through the lines in the proof. If the new line is derived via an inference rule, then we add a
sub-circuit Ci computing the truth value of that line. Then we choose a leaf node that has not
been assigned before. We create a new root-to-leaf path as above for that leaf node, and assign the
output of Ci to the new leaf node. For the erasures, we find the leaf node that was assigned to the
sub-circuit computing the formula being erased, and create an entirely new root-to-leaf path to it,
and set the new leaf node to be the constant 1. Finally, we take the resulting circuit as Ex.

The proof that local consistency implies global correctness follows from the same high-level idea
as the polynomial-size propositional proof case, but there are more technical issues in the detail.
For example, we need a new mechanism to succinctly memorize that all the inputs to the AND
tree are all 1’s, because now the order of assigning Ci’s to the leaves is no longer monotonous and
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consecutive, since the position of the newly assigned leaf may be arbitrary among all the leaves. For
more details, see Section 7.

On the Provability of Propositional Logic. So far, we have shown how to build SNARGs from
LWE, if the language has a polynomial-size or bounded-space proportional proof of non-membership.
It remains to ask, for what languages do we have a propositional proof of non-membership? More
broadly, one may ask what mathematical theorems can be formalized in polynomial-size or bounded-
space propositional logic proofs?

Indeed, the latter question is one of the central questions in proof complexity. On the positive
side, the bounded arithmetic developed by Cook [Coo75], Buss [Bus86], and many others shows
that if a proof can be formalized in certain sub-theories of Peano arithmetic, then the proof can
be translated to propositional proofs of certain lengths in Extended Frege systems. Moreover, any
language in NP has a propositional proof of non-membership of size exponential in the length of
the NP witness. However, it is unlikely that such a proof can always be polynomial size. Indeed,
it has been shown [CR79] that if every tautology has a polynomial-size propositional proof, then
NP = coNP.

In this work, we rely on the propositional translation [Coo75,Bus86] to show that the Diffie-
Hellman language (DDH) has a polynomial-size propositional proof of non-membership. As an
application, we show how to build SNARGs for DDH.

Applications to Diffie-Hellman Language. Recall that, Diffie-Hellman is the following lan-
guage.

L = {(g, h, gw, hw) | g, h ∈ G, w ∈ Zq},

where G is a cyclic group of order q. Let x = (g, h, g′, h′) be a fixed instance with x /∈ L, we
want to show that the verification circuit Cx(w) for L has polynomial-size propositional proof of
unsatisfiability. Note that for any such fixed x, there exists a fixed s ∈ Zq such that h = gs and
h′ ̸= g′s. Then we can write down a mathematical proof that Cx is not satisfiable, as follows.

• Suppose Cx(w) = 1 for some w, then g′ = gw and h′ = hw.

• From h = gs, this means that h′ = hw = (gs)w.

• (gs)w = (gw)s = g′s. We reach a constriction with h′ ̸= g′s. Hence, Cx(w) is unsatisfiable.

We observe that each step of the above mathematical proof can be converted to polynomial-size
propositional proof using Cook’s propositional translation [Coo75]. Putting them together, we
obtain a polynomial-size propositional proof of unsatisfiability of Cx. For more details, see Section 8.

3 Preliminaries

Notation. We will let λ denote the security parameter throughout the paper. We use PPT
to denote probabilistic polynomial-time, and denote the set of all positive integers up to n as
[n] := {1, . . . , n}. For any x ∈ {0, 1}n and any subset J ⊂ [n] we denote by xJ = (xj)j∈J . For
any finite set S, x← S denotes a uniformly random element x from the set S. Similarly, for any
distribution D, x← D denotes an element x drawn from the distribution D.

14



3.1 Boolean Circuits

We describe a formal model for Boolean circuits C : {0, 1}n → {0, 1}m over the gate set of all two-bit
Boolean functions.

The canonical description ⟨C⟩ of a size-s circuit C : {0, 1}n → {0, 1}m is a sequence of gates
(g1, g2, . . . , gs), where each gate gi = (i, j, k, f) is a tuple consisting of:

• The output wire name i

• The two child wires j < k < i, and

• A Boolean function f : {0, 1} × {0, 1} → {0, 1}.

The circuit evaluation C(x) is executed by evaluating each gate gi(x) from 1 to s, where for
1 ≤ i ≤ n we define gi(x) = xi, while for any i > n we have that gi(x) = f(gj(x), gk(x)) for
gate gi = (i, j, k, f). The output wires of C are the wires gs−m+1, . . . , gs, and so we have that
C(x) = (gs−m+1(x), . . . , gs(x)).

We sometimes allow gate names to come from an alphabet Σ which is different from [s] in order
to encode extra information about the circuit topology. For example, in a layered circuit,9 the name
of a wire consists of its layer along with its position within the layer. Throughout this paper, we
typically assume that our circuits are layered.

3.1.1 Universal Circuits

Let C denote a family of circuits, and let ⟨C⟩ denote the canonical representation of a circuit
C ∈ C. We define the explicit universal circuit U(x, ⟨C⟩) to consist of a sequence of sub-circuits
{Ui}1≤i≤s, where Ui evalutes the ith gate of C as follows:

• For every 1 ≤ j ≤ i, the output wire g
(j)
out of Uj is connected to gi via a O(log s)-size circuit

that outputs (1, b) if j is equal to one of the children of i in gi, where b is the wire value of

g
(i)
out; otherwise, the output of this circuit is (0, 0).

• Then, these i ≤ s outputs are converted into two outputs via a O(log s)-depth circuit that
removes all of the computed (0, 0) values. When evaluated honestly, these two wires will be

assigned the values (g
(j)
out, g

(k)
out) (in that order).

• Finally, a constant-size circuit is used to evaluate the function f (in the description of gi) on
these two wires. The result is the output wire of Ui.

The output wire of U is defined to be the output wire of Us. By construction, the output wire of
each Ui in an honest evaluation of U(x, ⟨C⟩) will be exactly gi(x), and thus the output wire of U
will be C(x).

Note that if C is a class of size s, depth d (layered) circuits, the universal circuit U(x, ⟨C⟩) is a
(layered) circuit of size O(s2 log s) and depth O(d log s).10 Moreover, without loss of generality, we
can always write U as a NAND-circuit (every gate is a NAND gate).

9A layered circuit is a circuit where each wire belongs to a layer, and every gate connects an output wire in layer i
to two input wires in layer i− 1.

10There are more efficient known constructions of universal circuits, but this simple construction suffices for our
purposes.
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3.2 Hash Family with Local Opening

In this section we recall the definition of a hash family with local opening [Mer88]. These preliminaries
are due to [BBK+23].

Syntax. A hash family (HT) with succinct local opening consists of the following algorithms:

Gen(1λ)→ hk. This is a PPT algorithm that takes as input the security parameter 1λ in unary and
outputs a hash key hk.

Hash(hk, x)→ rt. This is a deterministic poly-time algorithm that takes as input a hash key hk and
an input x ∈ {0, 1}N for N ≤ 2λ, and outputs a hash value rt.

Open(hk, x, j)→ ρ. This is a deterministic poly-time algorithm that takes as input a hash key hk,
an input x ∈ {0, 1}N for N ≤ 2λ, and an index j ∈ [N ], and outputs an opening ρ.

Verify(hk, rt, j, b, ρ)→ 0/1. This is a deterministic poly-time algorithm that takes as input a hash
key hk, a hash value rt, an index j ∈ [N ], a bit b ∈ {0, 1} and an opening ρ. It outputs 1
(accept) or 0 (reject).

Definition 3.1. (Properties of HT) A HT family (Gen,Hash,Open,Verify) is required to satisfy the
following properties.

Opening completeness. For any λ ∈ N, any N ≤ 2λ, any x ∈ {0, 1}N , and any index j ∈ [N ],

Pr

 Verify(hk, rt, j, xj , ρ) = 1 :
hk← Gen(1λ),
rt = Hash(hk, x),
ρ = Open(hk, x, j)

 = 1− negl(λ).

Succinctness. In the completeness experiment above, we have that |hk|+|rt|+|ρ|= poly(λ).

Collision resistance w.r.t. opening. For any poly-size adversary A there exists a negligible
function negl(·) such that for every λ ∈ N,

Pr

[
Verify(hk, rt, j, 0, ρ0) = 1
∧ Verify(hk, rt, j, 1, ρ1) = 1

:
hk← Gen(1λ),
(rt, j, ρ0, ρ1)← A(hk)

]
= negl(λ).

Remark 3.1. We say that a hash family with local opening is T -secure, for T = T (λ), if the
collision resistance w.r.t. opening property holds against any poly(T )-size adversary (as opposed
to poly(λ)-size) and the probability that the adversary finds a collision is negl(T ) (as opposed to
negl(λ). We refer to this property as T -collision-resistance w.r.t. opening.

Remark 3.2. One can naturally extend the definition of a hash family with local opening to allow
the Open algorithm to take as input (hk, x, J) where J ⊆ [N ] consists of a set of indices, as opposed to
a single index. Open(hk, x, J) will simply run Open(hk, x, j) for every j ∈ J . Verify can be extended
in a similar way to take as input (hk, rt, J, bJ , ρJ), and accept if and only if Verify(hk, rt, j, bj , ρj) = 1
for every j ∈ J .

Theorem 3.2 ( [Mer88]). Assuming the existence of a collision resistant hash family there exists a
hash family with local opening (according to Definition 3.1).
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3.3 Fully Homomorphic Encryption

In this section, we define the type of fully homomorphic encryption used in this paper. We make use
of a leveled, gate-by-gate FHE satisfying a malicious correctness property: for any pair of ciphertexts
ct0, ct1 that decrypt to bits x0, x1, it should be the case that Decsk(Evalek(f, ct0, ct1)) = f(x0, x1).
Moreover, our definition explicitly describes the evaluation key as a sequence of d (small) keys, since
this structure is relevant to our SNARG construction.

Syntax. A leveled, gate-by-gate fully homomorphic encryption scheme consists of a fixed key/ciphertext
size ℓ = ℓ(λ) = poly(λ) and the following polynomial time algorithms:

FHE.Setup(1λ, 1d)→ (pk, e⃗k, s⃗k). This is a probabilistic algorithm that takes as input a security
parameter 1λ and a circuit depth 1d. It outputs a public key pk ∈ {0, 1}ℓ, a tuple of d evaluation
keys e⃗k = (ek1, . . . , ekd ∈ ({0, 1}ℓ)d), and a tuple of d + 1 secret keys s⃗k = (sk0, . . . , skd) ∈
({0, 1}ℓ)d+1.

FHE.Encpk(b)→ c. This is a probabilistic algorithm that takes as input a public key pk and a bit
b ∈ {0, 1}. It outputs a ciphertext c ∈ {0, 1}ℓ.

FHE.Decsk(c)→ b. This is a deterministic algorithm that takes as input a secret key sk and a
ciphertext c ∈ {0, 1}ℓ. It outputs a bit b ∈ {0, 1}.

FHE.GateEvalek(f, c1, c2)→ c∗. This is a deterministic algorithm that takes as input an evaluation
key ek, the truth table of a two input bit function f : {0, 1}×{0, 1} → {0, 1} and two ciphertexts
c1, c2 ∈ {0, 1}ℓ. It outputs a ciphertext c∗ ∈ {0, 1}ℓ.
By iterating the FHE.GateEvalpk algorithm many times, one can generically build a circuit
evaluation algorithm:

FHE.Eval
e⃗k
(f, c1, . . . , cn)→ c∗. This is a deterministic algorithm that takes as input an evaluation

key tuple e⃗k, a circuit representing a function f : {0, 1}n → {0, 1} and n ciphertexts c1, . . . , cn ∈
{0, 1}ℓ. It outputs a ciphertext c∗ ∈ {0, 1}ℓ.

Definition 3.3 (FHE). A leveled, gate-by-gate fully homomorphic encryption scheme FHE =
(FHE.Setup,FHE.Enc,FHE.Dec,FHE.GateEval) is required to satisfy the following properties:

Encryption Correctness. For any choice of (pk, sk0) in the support of FHE.Setup(1λ, 1d), any
b ∈ {0, 1} and any c← FHE.Encpk(b) we have FHE.Decsk0(c) = b.

Honest Evaluation Correctness. For any choice of (pk, e⃗k, s⃗k)← FHE.Setup(1λ, 1d), any hon-
estly generated ciphertexts c1, . . . , cn ∈ {0, 1}ℓ such that ci = FHE.Encpk(bi), and any lay-
ered circuit f : {0, 1}n → {0, 1} of depth d, if we set c = FHE.Eval

e⃗k
(f, c1, . . . , cn) then

FHE.Decskd(c) = f(b1, . . . , bn).

Malicious Gate Correctness. For any choice of (pk, e⃗k, s⃗k)← FHE.Setup(1λ), any index 0 ≤
i ≤ d− 1, any f : {0, 1}2 → {0, 1}, and any ciphertexts c1, c2 ∈ {0, 1}ℓ, if Decski(c1) = b1 and
Decski(c2) = b2, then Decski+1

(FHE.GateEvaleki+1
(f, c1, c2)) = f(b1, b2).

Security. The encryption scheme is semantically secure in the presence of (pk, e⃗k).
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Theorem 3.4 ( [BV11]). Assuming the hardness of Learning with Errors [Reg05], there exists a
leveled, gate-by-gate homomorphic encryption scheme.

Specifically, the properties we require in Definition 3.3 all follow from the (leveled) bootstrapping
construction of [Gen09], provided that the “base” somewhat homomorphic encryption scheme
satisfies perfect correctness. Moreover, the public keys and ciphertexts in this LWE-based scheme
will be pseudorandom under the LWE assumption.

Remark 3.3. Given a FHE scheme, one can extend the definition of the encryption algorithm
FHE.Enc to take as input a longer message m ∈ {0, 1}n, as opposed to a single bit. FHE.Encpk(m)
will simply run ci = FHE.Encpk(mi) for every i ∈ [n], and set c = (c1, . . . , cn) ∈ {0, 1}n·ℓ. Similarly,
we extend FHE.Eval to take as input a function f : {0, 1}n → {0, 1}u with multi-bit output.

3.4 Succinct Non-Interactive Arguments

We define succinct non-interactive argument systems (SNARG) [Mic94,GW11,BCCT13] for the
computation of a non-deterministic polynomial-time Turing machineM. Our definition allows for a
long common reference string, maintaining verifier efficiency by requiring that the crs = (crsP , crsV)
be separated into prover and verifier components (where the verifier component is required to be
short).

A SNARG system forM consists of polynomial-time algorithms (SNARG.Gen,SNARG.P,SNARG.V)
with the following syntax:

• The randomized setup algorithm SNARG.Gen takes as input a security parameter λ ∈ N and an
input length n, both in unary, and outputs a pair of common reference strings crs = (crsP , crsV).

• The prover algorithm SNARG.P takes as input the prover reference string crsP , an input
x ∈ {0, 1}n and its associated witness w ∈ {0, 1}m, and outputs a proof π.

• The verifier algorithm SNARG.V takes as input the verifier reference string crsV , an input
x ∈ {0, 1}n and a proof π. It outputs a bit indicating if it accepts or rejects.

Definition 3.5. A triple of algorithms (SNARG.Gen,SNARG.P,SNARG.V) is a SNARG system for
a Turing machineM if the following hold:

Completeness. For every λ, n ∈ N and every x ∈ {0, 1}n and w ∈ {0, 1}m such thatM(x,w) = 1,

Pr

[
SNARG.V(crsV , x, π) = 1 :

(crsP , crsV)← SNARG.Gen(1λ, 1n),
π ← SNARG.P(crsP , x, w)

]
= 1.

Efficiency. The length of crsV is poly(λ, log n, logm). The length of a proof π is also poly(λ, log n, logm).
The runtime of SNARG.V is poly(|crsV |, |π|) + poly(λ, log n, logm) · n.

Non-adaptive Soundness. For every x ∈ {0, 1}n where x /∈ LM and every poly-size adversary
Adv, there is a negligible function µ such that

Pr

[
SNARG.V(crsV , x, π∗) = 1 :

(crsP , crsV)← SNARG.Gen(1λ, 1n),
π∗ ← Adv(crsP , crsV , x)

]
≤ µ(λ).

18



An additional efficiency parameter of interest is the length of crsP ; we do not impose any explicit
requirements on it, but seek to minimize the length of crsP when possible.

Remark 3.4 (Transparent Setup). The SNARGs constructed in this paper can be made to satisfy
an additional property called transparent setup: the non-adaptive soundness notion above holds
even if Adv is given the random coins used by SNARG.Gen. All of our SNARGs can be made to
satisfy this property because in all of our constructions, the algorithm SNARG.Gen(1λ, 1n) generates
a polynomial number of ciphertexts for an LWE-based encryption scheme along with a hash key hk,
and outputs these strings (for the prover) along with a tree hash of the ciphertexts (for the verifier).
Since the encryption scheme we use has pseudorandom ciphertexts and the hash family may be
chosen to have uniformly random keys, we may modify the SNARG.Gen algorithm to simply output
a long, uniformly random string along with a tree hash of this string (this modification preserves
non-adaptive soundness). This modified SNARG.Gen algorithm has no private randomness and thus
these SNARGs have transparent setup.

3.5 Somewhere Extractable Batch Arguments (seBARGs)

The following preliminaries on seBARGs are due to [BBK+23].
A batch argument system BARG for an NP language L enables proving that k NP statements

are true with communication cost that is polylogarithmic in k. There are many BARG variants
which are known to be existentially equivalent under mild computational assumptions (see, e.g.,
[CJJ22,KVZ21,KLVW23]). In this work, for simplicity in our constructions, we make use of an
argument system for what we call “batch index Turing machine SAT” (BatchTMSAT), defined
below.

Definition 3.6. The language BatchIndexTMSAT consists of instances of the form x = (M, z, k, T ),
where:

• M is the description of a Turing machine.

• z is an input string (to M)

• k is a batch size, and

• T is a running time.

An instance x = (M, z, k, T ) is in BatchIndexTMSAT if for all i ≤ i ≤ k, there exists a string wi

such that M(z, i, wi) accepts within T steps.

We sometimes use the notation R(x, i, wi) to denote the relation with instance (x, i) and
corresponding witness wi.

Syntax. A (publicly verifiable and non-interactive) somewhere extractable batch argument system
seBARG for BatchIndexTMSAT consists of the following polynomial time algorithms:

Gen(1λ, 1n, 1m, k, i∗)→ (crs, td). This is a probabilistic polynomial-time algorithm that takes as
input a security parameter 1λ, input length 1n, witness length 1m, a parameter k, and an
index i∗ ∈ [k]. It outputs a common reference string crs along with a trapdoor td.
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P(crs,M, z, 1T , w1, . . . , wk)→ π. This deterministic polynomial-time algorithm takes as input a crs,
Turing machine M , input z, runtime 1T , and k witnesses w1, . . . , wk. It outputs a proof π.

V(crs, x, π)→ 0/1. This deterministic polynomial-time algorithm takes as input a crs, instance
x = (M, z, k, T ), and a proof π. It outputs a bit (1 to accept, 0 to reject).

Extract(td, π)→ w∗. This deterministic polynomial-time algorithm takes as input a trapdoor td and
a proof π. It outputs a single witness w∗.

Definition 3.7 (seBARG). A somewhere-extractable batch argument system seBARG = (Gen,P,V,Extract)
for BatchIndexTMSAT is required to satisfy the following properties:

Completeness. For any λ ∈ N, any k(λ), n(λ),m(λ), T (λ) ≤ 2λ, any instance x = (M, z, k, T ) ∈
BatchIndexTMSAT with |M |+|z|= n, any corresponding witnesses w1, . . . , wk ∈ {0, 1}m and
any index i∗ ∈ [k],

Pr

[
V(crs, x, π) = 1 :

(crs, td)← Gen(1λ, 1n, 1m, i∗),
π ← P(crs,M, z, 1T , w1, . . . , wk)

]
= 1.

Efficiency. In the completeness experiment above, |crs|+|π|≤ m · poly(λ, log(knT )). The running
time of the verifier is at most poly(|crs|+|π|) + poly(λ) · |x|.

Index hiding. For any poly-size adversary A and any polynomials k(λ), n(λ),m(λ), there exists
a negligible function negl(·) such that for every λ ∈ N and every pair of indices i0, i1 ∈ [k],

Pr

[
A(crs) = b :

b← {0, 1},
(crs, td)← Gen(1λ, 1n, 1m, ib)

]
≤ 1

2
+ negl(λ).

Somewhere argument of knowledge. For any poly-size adversary A and any polynomials
k(λ), n(λ),m(λ), T (λ) there exists a negligible function negl(·) such that for any index i∗ ∈ [k]
and for every λ ∈ N,

Pr

 V(crs, x, π) = 1
∧ (x, i∗, w∗) ̸∈ R :

(crs, td)← Gen(1λ, 1n, 1m, i∗)
(M, z, π) = A(crs)
w∗ ← Extract (td, π)

 ≤ negl(λ).

Remark 3.5. We say that a seBARG scheme is T ∗-secure, for T ∗ = T ∗(λ), if the index hiding
property and the somewhere argument of knowledge property hold w.r.t. a poly(T ∗)-size adversary
(as opposed to a poly(λ)-size), and the advantage probability is negl(T ∗) (as opposed to negl(λ)).
In addition, the index hiding property and the somewhere argument of knowledge property are
required to hold even if the parameters k(λ), n(λ),m(λ), T (λ) are polynomial in T ∗(λ). We refer to
these properties as T ∗-index-hiding and T ∗-somewhere-argument-of-knowledge, respectively.

Throughout this paper, when we refer to a BARG or seBARG, we will implicitly mean a seBARG for
BatchIndexTMSAT.

Remark 3.6. Given an seBARG, one can naturally extend the definition of the key generation
algorithm Gen to take as input an index set I ⊂ [k], as opposed to a single index. Gen(1λ, 1n, 1m, I)
will simply run Gen(1λ, 1n, 1m, i) for every i ∈ I. The prover algorithm P, given a crs that encodes
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the |I| indices, will simply generate |I| proofs (one for each crs), and the verifier will check these
|I| proofs independently. In this situation, the seBARG trapdoor td = (td1, . . . , td|I|) is written in
|I| components, and the scheme inherits a strong form of index hiding: given seBARG.crs, the jth
index ij remains hidden even given all |I|−1 other trapdoors tdij′ .

Theorem 3.8 ( [CJJ22,WW22,HJKS22,KLVW23]). There exists an seBARG for BatchIndexTMSAT
assuming LWE or DLIN or (subexponential DDH and QR).11

The remaining preliminaries in Section 3 are due to [JJ22].

3.6 Propositional Logic Systems

We use extended Frege systems (denote as EF) for propositional logic. Such a system is described
by a set of variables, a set of connectives, and a set of inference rules. Variables are the most basic
elements, usually represented by letters such as x, y, z. Connectives are used to connect variables.
We only use two connectives → and ¬ for “imply” and “negation”, respectively. Other connectives
such as ∧,∨,⊕ for “and”, “or”, “xor”, can be defined using → and ¬. We use ↔ to denote “if and
only if”, and formally, a↔ b is the abbreviation of (a→ b)∧ (b→ a). We use F to represent “false”,
and define “true” T as ¬F.

Formulas are defined inductively: F (“false”) is a formula; any variable is a formula; if u, v are
formulas, then u→ v, ¬u are formulas. A formula can be treated as a labeled tree, where leaves are
labeled with variables, and internal nodes are labeled with connectives. A subformula of A is defined
as a subtree of A. We define the following complexity measures of formulas. For each formula A, we
define the size of A as the number of nodes in the tree. We denote ldp(A) as the logical depth of A,
which represents the depth of the tree. Formally, it can be inductively defined as follows: ldp(F) = 0;
for any variable a, ldp(a) = 0; for any two formulas u, v, ldp(u→ v) = 1 +max(ldp(u), ldp(v)), and
ldp(¬u) = 1 + ldp(u).

A substitution σ is a map from the set of variables to the set of formulas. If A is a formula,
then the result of applying σ to A is denoted as Aσ, which is a formula obtained by replacing each
occurrence of the variables in A by its image under σ. For example, let A = p→ (q → p) and let a
substitution σ be p 7→ a ∧ b, q 7→ a ∨ b, then Aσ = (a ∧ b)→ ((a ∨ b)→ (a ∧ b)).

A Frege system is specified by a set of inference rules. Each inference rule is defined as
A1, A2, . . . , Ak ⊢ A0, where A0, A1, . . . , Ak are formulas. Intuitively, it means that “if A1, A2, . . . , Ak

are valid, then A0 is also valid”. If k = 0, then we say such an inference rule is an axiom.
In this work, we use the following set of axioms and modus ponens as inference rules for

propositional logic.

• Axiom 1: p→ (q → p)

• Axiom 2: (p→ (q → r))→ ((p→ q)→ (p→ r))

• Axiom 3: ¬¬p→ p

• Modus Ponens: p, p→ q ⊢ q

11The work [CGJ+23] also constructs seBARGs based on subexponential DDH, but not with efficiency parameters
matching our definition. Relatedly, the seBARGs of [CGJ+23] cannot be sub-exponentially secure and therefore cannot
be used in our Section 5 as written.
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In a proposition p1, p2, . . . , pn ⊢ q, we refer to p1, p2, . . . , pn as the premise and refer to q as the
conclusion. A derivation for the proposition p1, p2, . . . , pn ⊢ q is a series of formulas θ1, θ2, . . . , θℓ
with θℓ = q, and for each i ∈ [ℓ], θi is either

• A premise pj with j ∈ [k], or

• A0σ, where A1, A2, . . . , Ak ⊢ A0 is an inference rule, σ is a substitution, and {A1σ,A2σ, . . . ,
Akσ} are a subset of the formulas {θ1, θ2, . . . , θi−1}.

A proof is a derivation with no premise.
The extended Frege system denoted as EF is a logic system that additionally has the following

extension axioms. Namely, for a derivation (θ1, θ2, . . . , θℓ) in EF , for each i ∈ [ℓ], θi needs to satisfy
the aforementioned constraint or θi is of the form t ↔ A, where A is a formula, and t is a new
variable that has not occurred in θ1, θ2, . . . , θi−1, and also does not occur in A. We define the size
of a derivation (θ1, θ2, . . . , θℓ) as the summation of the sizes of the formulas θ1, θ2, . . . , θℓ.

Remark 3.7. First note that since the axioms and Modus Ponens are of constant size, each line in
the proof (i.e., each formula θi) depends on only a constant number of previous lines. Second, we
can assume without loss of generality that each line of the proof is of constant size by using the
extension axiom.

3.7 Cook’s Theory PV

Cook introduced a theory PV [Coo75] to capture the intuition of feasibly constructive proofs (i.e.
polynomial-time reasoning). PV is an equational theory, i.e, each statement in PV asserts that two
terms are equal. Moreover, it allows the introduction of new function symbols by recursive definition
(i.e. Cobham’s definition of polynomial-time functions [Cob65]). Hence, any polynomial-time
function is definable in PV [Coo75]. Moreover, common used arithmetical operations such as
addition, multiplication, and modulus functions can also be defined in PV . Their related properties
such as commutative law, associative law etc. can be proven in PV [Bus86].

Formally, Cook’s theory PV [Coo75] is defined as follows. PV works on the natural numbers that
are represented in the dyadic notation, where any natural number x is uniquely represented as a finite
string of integers in {1, 2}∗. Specifically, we represent x as the string xnxn−1xn−2 . . . x1 ∈ {1, 2}n,
if
∑n

i=1 xi2
i = x, and use an empty string to represent 0. It’s easy to see that such presentation

is unique for any natural number. The function si(x) = 2x+ i, i = 1, 2 appends i to the string x.
Hence, we also denote si(x) as x||i.

We introduce the following terminologies. Terms are defined inductively as follows: any variable
is a term; any function symbol of arity 0 is a term; if t1, t2, . . . , tk are terms, and f is a function
symbol, then f(t1, t2, . . . , tk) is a term. Equations are of the form t = u, where both t and u
are terms. A derivation for the statement E1, E2, . . . , En ⊢PV E in PV is a series of equations
D1, D2, . . . , Dℓ such that Dℓ = E and for any i ∈ [ℓ], the equation Di is either a premise Ej(j ∈ [n]),
or a defining equation for some function symbol that we will introduce later, or follows from some
inference rule that we will introduce later. A proof in PV is a derivation with no premise (n = 0).

Introducing Function Symbols. A new function symbol f can be introduced in PV in the
following two ways. The first way is to define

f(x1, x2, . . . xk) = t,
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where t is a term with variables x1, x2, . . . , xk.
The second way is to recursively define the function on the dyadic notion (i.e. Cobham’s

characterization of polynomial-time functions [Cob65]). Specifically, for existing function symbols
g, h1, h2, k1, k2 in PV , define the following equations as defining equations

f(0,y) = g(y), f(x||i,y) = hi(x,y, f(x,y)), i = 1, 2, (1)

where y = (y1, . . . , yk) is a series of k variables. Then how f is computed for any x,y is fully
specified. To avoid any undecidable issue, PV further requires that the output length of f is bounded
by a polynomial. To ensure this, Cook requires that “|hi(x,y, z)|≤ |z|+|ki(x,y)|” is provable in
PV , where |·| is the length of the dyadic presentation. To achieve this, Cook introduced the LESS
function, and it is defined with other initial functions as follows. si, i = 1, 2 has no defining functions.
0 is also function symbol with arity 0, and has no defining function.

• TR: TR(0) = 0,TR(x||i) = x, i = 1, 2. It cuts off the least significant digit in the dyadic
notion.

• ⋆: ⋆(x, 0) = x, ⋆(x, y||i) = si(x, y), i = 1, 2. It concatenates the string x and y.

• ⃝⋆ : ⃝⋆ (x, 0) = x,⃝⋆ (x, y||i) = ⋆(x,⃝⋆ (x, y)), i = 1, 2. It concatenates |y| copies of x.

• LESS : LESS(x, 0) = x, LESS(x, y||i) = TR(LESS(x, y)), i = 1, 2. It cuts off the |y| right most
digits of x in the dyadic notion. Then we can use LESS(x, y) = 0 to express |x|≤ |y|.

To complete the definition of function f , PV requires two proofs π1, π2 in PV for LESS(hi(x,y, z), z⋆
ki(x,y)) = 0, i = 1, 2. Then a function symbol f is defined as the tuple (g, h1, h2, k1, k2, π1, π2).

The inference rules are in the following. Here, t, u, v are any terms, x is any variable, and
y = (y1, y2, . . . , yk) is any tuple of k ≥ 0 variables. f is any function symbol (we will define later).

• R1: t = u ⊢ u = t.

• R2: t = u, u = v ⊢ t = u

• R3: t1 = u1, t2 = u2, . . . , tk = tk ⊢ f(t1, t2, . . . , tk) = f(u1, u2, . . . , uk).

• R4: t = u ⊢ t(v/x) = u(v/x). Here, the notation “t(v/x)” means replacing each occurrence of
the variable x with the term v. “u(v/x)” is defined in the same way.

• R5: E1, E2, . . . , E6 ⊢ f1(x,y) = f2(x,y), where E1, E2, . . . , E6 are the defining equations 1 for
f1, f2, with the same function symbols g, h1, h2.

Propositional Translation. In the same work [Coo75], Cook showed that any proofs in PV
can be translated to polynomial size propositional logic proofs. The original theorem statement
uses extended resolutions logic. Later [CR79] showed that extended resolution and extended Frege
system are essentially equivalent in terms of proof size. For simplicity, we use extended Frege system
in this work, and state Cook’s result in extended Frege system.

Before we formally state the theorem, we first describe how to transform a theorem statement
in PV to proposition logic. The idea is to use variables in EF to present each digit in the dyadic
notation. Specifically, let m be an integer. For each term t in PV , let P0[t], P1[t], . . . , Pm[t] and
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Q0[t], Q1[t], . . . , Qm[t] be a set of variables in EF . For each i ∈ [m], use Qi[t] to indicate whether t
has i-th digit, and use Pi[t] to indicate the i-th digit of t, i.e.

Qi[x] =

{
T, if t ≥ 2i+1 − 1

F, otherwise
Pi[x] =

{
T, if the i-th dyadic digit of t is 2

F, otherwise

For the easy of representation, in this work we use the following notation Vm[t] to denote the
variables {Pi[t], Qi[t]}mi=1 corresponds to t. For each term t, one can associate it with a proposition
formula propm[t], asserting Vm[t] is computed correctly from the variables Vm[p1], . . . , Vm[pk], where
p1, p2, . . . , pk are all variables appear in t. For any variable x, propm[x] is the formula asserting
Vm[x] is well-formed, i.e. ¬Qi[x] implies ¬Qi+1[x] for i ∈ [m− 1]. The definition of propm[t] can be
inductively defined for any term t. For more details, see [Coo75].

For any integer n, if the computation of all terms in the proof only needs m dyadic digits, then
m is called a bounding value. For any equation t = u, where t and u are both terms. Jt = uKnm is
defined as the propositional formula asserting that if the variables in t are all less than n digit, then
the value of t and u are equal. For its formal definition, see [Coo75].

Next, we present the theorem statement for Cook’s propositional translation.

Theorem 3.9 (Corollary of ER Simulation Theorem in [Coo75]). For any two terms t and u, and
any n and any polynomial bounding value m = m(n), if ⊢PV t = u, then Jt = uKnm has polynomial
size logic proofs in extended Frege logic.

The idea of Theorem 3.9 is to do an induction on the length of the proofs in PV , and translate
each step of the proof in PV to a polynomial size proof in the extended Frege.

3.8 Theory PV1

In the same work [Coo75], Cook also introduced a theory PV1 in which formalizing proofs is easier
than PV . [Coo75] showed that the theory PV1 is a conservative extension of PV , which means that
any theorem proven in PV1 can also be proven in PV . Hence, in this work, we do not distinguish
PV and PV1.

The theory PV1 contains all variables, function symbols, and terms in PV . Furthermore, it
contains formulas, which is either equations, or truth-functional combinations of equations, using
“∧,∨,¬,→,↔”, which express “and”, “or”, “negation”, “imply”, and “equivalent”.

The axioms of PV1 are defined as follows. Here, x is a variable, t, u, ti, ui are terms.

• E1: t = t

• E2: t = u→ u = t

• E3: t = u ∧ u = v → t = v

• E4: (t1 = u1 ∧ . . . ∧ tk = uk)→ f(t1, . . . , tk) = f(u1, . . . , uk), where f is a function symbol
in PV .

• E5: x = y ↔ x||i = y||i, i = 1, 2

• E6: ¬(x||1 = x||2)
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• E7: ¬(0 = x||i), i = 1, 2

• Defining Functions: Defining equations for any function symbol in PV is axioms in
PV1. Moreover, PV1 allows defining multi-variable functions via recursion as follows. Let
g00, g01, g10, {hij , kij}i,j∈{1,2} be function symbols. Then a new function symbol f can be
defined by the following defining equations.

f(0, 0, z) = g00(z)

f(0, y||j, z) = g01(z), j = 1, 2

f(x||i, 0, z) = g10(z), i = 1, 2

f(x||i, y||j, z) = hij(x, y, z, f(x, y, z)), i, j ∈ {1, 2}

Moreover, LESS(hij(x, y, z, u), u ⋆ kij(x, y, z)) = 0, i, j ∈ {1, 2} needs to be provable in PV .
Finally, the defining of the initial functions TR, ⋆,⃝⋆ , and LESS are also axioms of PV1.

• Tautology: The truth-functionally valid formulas of PV1 are axioms.

The inference rules of PV1 are as follows.

• Substitution. A ⊢ A(t/x), where A is a formula in PV1, t is a term and x is a variable. Here,
we use A(t/x) to denote the formula Aσ, where σ is the substitution σ : x 7→ t.

• Implication. A1, A2, . . . , Ak ⊢ B, where the formula B is a truth-functional implication of
formulas A1, . . . Ak.

• k-Induction. {A(0/xi)}i∈[k], {A → A(x1||j1/x1, . . . , xk||jk/xk)}j1,j2,...,jk∈{1,2} ⊢ A, where A
is a formula of the variables x1, . . . , xk.

4 SNARGs from Locally Unsatisfiable Circuit Extensions

In this section, we define the new notion of locally unsatisifiable extension (Definition 4.4) and
construct a SNARG for any NP language with a locally unsatisfiable extension of polynomial size
(Theorem 4.8). In Section 5, we extend this result to handle certain types of superpolynomial-size
extension circuits.

4.1 Local Unsatisfiability

We begin by recalling the definition of a local assignment generator [PR17].

Definition 4.1 (Local Assignment Generator). Let C : {0, 1}n → {0, 1}m denote a Boolean circuit
of size s where n = n(λ),m = m(λ) and s = s(λ). For ℓ = ℓ(λ) and ε = ε(λ), we say that C has an
(ℓ, ε)-local assignment generator if there is a (not necessarily efficient) algorithm LocalGen with the
following properties.

• Syntax: The input to LocalGen is the description of a subset of wires T ⊆ [s] of size at most
ℓ and its output is an assignment (σi)i∈T ∈ {0, 1}T to the corresponding wires of C.
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• Local Consistency: for any gate gi = (i, j, k, f) of C connecting input wires j, k to an output
wire i, and any set T ⊇ {i, j, k} of size at most ℓ, we have

Pr
[
σi ̸= f(σj , σk) : (σα)α∈T ← LocalGen(T )

]
≤ ε.

where the probability is over the randomness of LocalGen.

• Computational Non-Signaling: for any sets T0, T1 ⊆ [s] of size at most ℓ, the following
distributions are ϵ-computationally indistinguishable:

({σi}i∈T0∩T1 : {σi}i∈T0 ← LocalGen(T0)) ≈c,ϵ ({σi}i∈T0∩T1 : {σi}i∈T1 ← LocalGen(T1))

An Equivalent Formulation. Definition 4.1 defines local assignment generators to take as input
a set T of wire values. We briefly discuss an equivalent view of local assignment generators with
slightly different syntax, which we make use of in Section 4.5.

Definition 4.2 (Local Tuple Assignment Generator). In the same setting as Definition 4.1, a
(ℓ, ϵ)-local tuple assignment generator LocalGen for a circuit C has the following properties.

• Syntax: The input to LocalGen is the description of an ℓ-tuple of wires (i1, . . . , iℓ) ∈ [s]ℓ. Its
output is an assignment (σi1 , . . . , σiℓ) ∈ {0, 1}ℓ to the corresponding wires of C.

• Wire Consistency: for any ℓ-tuple (i1, . . . , iℓ) and any pair j1, j2 such that ij1 = ij2, we
have

Pr
[
σij1 ̸= σij2 : (σij )

ℓ
j=1 ← LocalGen(i1, . . . , iℓ)

]
≤ ε.

• Gate Consistency: for any tuple (i1, . . . , iℓ) and triple (j1, j2, j3), if (ij1 , ij2 , ij3) form a gate
of C with corresponding function f , we have

Pr
[
σij1 ̸= f(σij2 , σij3 ) : (σij )j∈[ℓ] ← LocalGen(i1, . . . , iℓ)

]
≤ ε.

• Computational Non-Signaling: for any pair of ℓ-tuples (i1, . . . , iℓ), (i
′
1, . . . , i

′
ℓ), let T =

{j ∈ [ℓ] : ij = i′j}. Then, the following distributions are ϵ-computationally indistinguishable:

({σij}j∈T : {σij}j∈[ℓ] ← LocalGen(i1, . . . , iℓ)) ≈c,ϵ ({σi′j}i∈T : {σi′j}j∈[ℓ] ← LocalGen(i′1, . . . , i
′
ℓ))

The key difference between Definition 4.2 and Definition 4.1 is that the non-signaling property
in Definition 4.2 is defined with respect to tuple indices rather than sets of wires (and is therefore
weaker). To compensate for this, the wire consistency property implies that a tuple assignment is
roughly order-invariant.

Lemma 4.3. If a circuit C has a (ℓ, ϵ)-local tuple assignment generator, then it also has a (ℓ, O(ℓ·ϵ))-
local assignment generator.

Proof. Given a tuple local assignment generator LocalGen(i1, . . . , iℓ), we can define a (standard)
local assignment generator LocalGen′(T ) that converts a set T into an ℓ-tuple (i1, . . . , iℓ) listing the
elements of T in lexicographic order, including “dummy” copies ij+1, . . . , iℓ = s if |T |= j < ℓ. Local
consistency follows immediately from the gate consistency property of LocalGen.
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Computational non-signaling of LocalGen′ follows from a hybrid argument. Given sets T, T ′,
let (i1, . . . , iℓ) and (i′1, . . . i

′
ℓ) denote their corresponding ℓ-tuples, and let π denote a permutation

on [ℓ] that matches the indices of T ∩ T ′ between these two ℓ-tuples. Then π can be written as a
composition of at most ℓ transpositions. For every 0 ≤ r ≤ ℓ, let πr denote the composition of the
first j such transpositions, so that πℓ = π. Then, one can show inductively that

({σij}ij∈T∩T ′ : {σij}j∈[ℓ] ← LocalGen(i1, . . . , iℓ)) ≈c,O(rϵ)

({σiπr(j))}iπr(j)∈T∩T ′ : {σiπr(j)}j∈[ℓ] ← LocalGen(πr(i1), . . . , πr(iℓ))),

where the inductive step requires a constant number of invocations of the gate consistency and
computational non-signaling of LocalGen.

We now proceed to define a new object related to local assignment generators: family of locally
unsatisfiable circuit extensions.

Definition 4.4 (Locally Unsatisfiable Extension). A circuit family {Cx}x∈{0,1}∗ is said to have
an ℓ-locally unsatisfiable extension of size s = s(λ) if there exists a family of circuits {Ex}x∈{0,1}∗
satisfying the following properties:

• For every x ∈ {0, 1}∗, Ex is a size-s extension of Cx, meaning that the gates of Ex consist of
(a) the gates of Cx; and (b) the gates corresponding to the evaluation of some circuit Dx(τ),
where τ denotes the values of all the wires of Cx(w).

In particular, the output of Ex(w) is identical to that of Cx(w); there are simply additional
(unnecessary) “intermediate” gates.

• For every x ∈ {0, 1}n(λ) and every ε = ε(λ), if Cx is unsatisfiable, then for any (ℓ, ε)-local
assignment generator LocalGen for Ex such that

Pr[σout = 1 : σout ← LocalGen({out})] ≤ poly(λ, s) · ε

where out denotes the output wire of Ex (which is also the output wire of Cx) and where the
probability is over the randomness of LocalGen.

4.2 Encoded Computation

In this section, we describe a variant of encoded computation that captures the “augmented circuit”
construction of [KRR14]. We state two local unsatisfiability properties that the encoded computation
satisfies; the first of these properties is proved directly in [KRR14], while the second has not been
previously stated but follows fairly straightforwardly from [KRR14].

Theorem 4.5. There exists a polynomial p and an efficient (extension) function Ext that takes any
circuit C : {0, 1}n → {0, 1} and converts it into a new circuit CExt : {0, 1}n → {0, 1} such that for
every circuit C : {0, 1}n → {0, 1} and every λ ∈ N the following holds:

1. |CExt|≤ p(|C|).
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2. Let ℓ = p(log|C|), and suppose that LocalGen is a (ℓ, ϵ) local assignment generator for CExt

whose input wires are deterministic; that is, there exists a string x ∈ {0, 1}n such that for any
set of input wires T ⊆ [n] of size at most ℓ it holds that

Pr[LocalGen(T ) ̸= xT ] ≤ ϵ.

Then,
Pr[LocalGen(out) ̸= C(x)] ≤ poly(|C|) · ϵ.

3. Define the “double circuit” C
(2)
Ext to consist of two parallel copies of CExt that share their input

wires. We define C
(2)
Ext to have two output wires, out0 and out1. For ℓ = p(log|C|) as above,

suppose that LocalGen is an (2ℓ, ϵ) local assignment generator for C
(2)
Ext. Then, for any set

T ⊃ {out0, out1}, of size at most 2ℓ,

Pr
[
σout0 ̸= σout1 : {σi}i∈T ← LocalGen(T )

]
≤ poly(|C|, λ) · ϵ

Property (3) above is (up to a factor of 2 in the locality) a strict generalization of property (2),
which is only stated for convenience. Unlike property (2), it gives a meaningful guarantee for certain
kinds of non-deterministic computations.

Proof. Let Ext denote the augmented circuit construction from [KRR14]. Properties (1) and (2)
of this construction are proved directly in [KRR14].

To establish property (3), we make use of two key properties of Ext. The first of these properties
is a strengthening of property (2). For any Boolean circuit E : {0, 1}n → {0, 1} and any input
x ∈ {0, 1}n, we define a weak (ℓ, ε)-local assignment generator for E with respect to x to be a PPT
algorithm LocalGen with the same syntax as in Definition 4.1, satisfying the same computational
non-signaling property as in Definition 4.1, but satisfying a relaxed local consistency property:

• Relaxed Local Consistency w.r.t. x: for any gate gi = (i, j, k, f) of E connecting input
wires j, k to an output wire i, and any set T ⊃ {i, j, k} of size at most ℓ, we have

Pr
[
σj = gj(x) ∧ σk = gk(x) ∧ σi ̸= gi(x) : (σα)α∈T ← LocalGen(T )

]
≤ ε.

where the probability is over the randomness of LocalGen. Moreover, we require that for any
input wire i ∈ [n] and any set T ⊃ {i} of size at most ℓ, we have

Pr
[
σi ̸= xi : (σα)α∈T ← LocalGen(T )

]
≤ ε.

We then make use of the following fact about the [KRR14] augmented circuit (for appropriately
chosen ℓ = poly(log|C|)):

Fact 4.6. Suppose that LocalGen is a weak (ℓ, ϵ) local assignment generator for CExt with respect to
an input x ∈ {0, 1}n. Then,

Pr[LocalGen(out) ̸= C(x)] ≤ poly(|C|) · ϵ.
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The second fact about Ext that we make use of is structural :

Fact 4.7 ( [KRR14], Sections 9 and A). For any layered Boolean circuit C, the circuit CExt consists
of C along with a Boolean sub-circuit for each layer i of C, whose input wires are the wires of the ith
layer of C and whose gates all compute linear functions on their two input wires. Moreover, these
linear functions depend only on the topology of C and do not depend on the gate description of C.

To conclude property (3), fix any circuit C and consider any (2ℓ, ε) local assignment generator

LocalGen for C
(2)
Ext. We define a new circuit C⊥ as follows:

• C⊥ has the same topology as C.

• For every gate gi of C
⊥, the Boolean function f : {0, 1} × {0, 1} → {0, 1} is the OR function.

In total, this means that if the ith gate gi of C is (i, j, k, f), then the ith gate of C⊥ is (i, j, k,OR).
We claim that there is a weak (ℓ, 2ϵ) local assignment generator LocalGen⊥ for (C⊥)Ext with

respect to the input 0n. Indeed, for any subset T of size at most ℓ, we define LocalGen⊥(T ) as
follows:

• Call LocalGen(T × {0, 1}) to obtain values {σi,b}i∈T,b∈{0,1}, where (i, b) denotes the ith wire
in the bth copy of CExt (note that if i ∈ [n], then the (i, 0) and (i, 1) wires refer to the same
wire).

• Define σ⊥
i = σi,0 ⊕ σi,1.

By construction, we have that σ⊥
i = 0 (with probability 1) for all i ∈ [n], because the two copies of

CExt in C
(2)
Ext share their input wires. Next, we show that for all gates gi = (i, j, k, f) in the circuit

(C⊥)Ext and all T ⊃ {i, j, k}, we have that

Pr
[
σ⊥
j = g⊥j (0

n) ∧ σ⊥
k = g⊥k (0

n) ∧ σ⊥
i ̸= g⊥i (0

n) : (σ⊥
α )α∈T ← LocalGen⊥(T )

]
≤ 2ε.

To show this, we make use of the fact that g⊥i (0
n) = 0 for every i, which is true because:

• For every gate i of the original circuit C⊥, it holds that g⊥i (0
n) = 0 (because g⊥i is computed

by repeatedly applying an OR to two previously computed values).

• For every gate in the “extended” part of (C⊥)Ext, we know that the output wire of this gate is
a linear (note: not affine) function of the wires of C⊥, which is therefore equal to zero.

To prove the weak local consistency property of LocalGen⊥, we consider two cases:

• If g⊥i is a gate of C⊥, then the event that σ⊥
i = 0 is equivalent to the statement that σi,0 = σi,1

for {σα,b} ← LocalGen(T ×{0, 1}). The same is true for σ⊥
j and σ⊥

k . Therefore, our probability
is upper bounded by 2ϵ by the local correctness of LocalGen w.r.t. the gates gi,0 and gi,1.

• If g⊥i is a gate of the extended part of (C⊥)Ext, then we know that g⊥i is supposed to compute
a linear function ϕi of the jth and kth wire values of (C⊥)Ext. Moreover, by Fact 4.7, the
corresponding gate gi of CExt is supposed to compute the same linear function ϕi on the jth
and kth wire values of CExt. Thus, our probability is again upper bounded by 2ϵ by the local
correctness of LocalGen w.r.t. the gates gi,0 and gi,1.
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We have therefore established that LocalGen⊥ is a weak local assignment generator for (C⊥)Ext with
respect to the input 0n. Thus, by Fact 4.6, we conclude that

Pr[LocalGen⊥(out) ̸= 0] ≤ poly(|C|) · ϵ,

which is the desired conclusion because LocalGen⊥(out) = σout0 ⊕ σout1 except with probability at
most 2ϵ. This completes the proof of Theorem 4.5.

4.3 Main Theorem Statement

Our main theorem holds under the following setup.
Fix any NP language L ⊆ {0, 1}∗ with a corresponding NP relation RL. Moreover, let C =

{C(n)(x,w)}n∈N be a circuit family deciding RL and ML denote a polynomial-time Turing machine
that on input (1n, i) outputs the ith gate of C(n).

Suppose that the circuit family C = {Cx}x∈{0,1}∗ has an ℓ-locally unsatisfiable extension
{Ex}x∈{0,1}∗ of polynomial size, where Ex is the composition of Cx with a circuit Dx. Finally, let

auxx denote a polynomial-size description of Dx, let R = R(n) denote a circuit such that R(auxx)
outputs the canonical description ⟨Dx⟩, and let MC denote a polynomial poly(n, s)-time Turing
machine that on input (n, i) outputs the ith gate of R.12

Theorem 4.8. Assume the existence of a leveled, gate-by-gate FHE scheme (Definition 3.3) as well
as a seBARG scheme (Definition 3.7). Then, L as above has a SNARG with the following properties:

• The proof length is poly(λ, ℓ, log|Cx|).

• The crs length is poly(λ) · (|auxx|+Depth(R) + Depth(Ex)).

• The scheme is non-adaptively sound.

Remark 4.1. Under the stronger assumption that a (gate-by-gate) unleveled FHE scheme exists,
the crs length above can be improved to poly(λ) · |auxx|.

We prove Theorem 4.8 in several steps.

• We first describe our SNARG construction, and show that a (non-adaptive) adversarial prover
convincing the verifier of a false statement x /∈ L implies the existence of a local assignment
generator for an encrypted universal computation ÛEx , defined as follows:

Definition 4.9 (Encrypted Universal Computation). ÛEx is the circuit that on input w
computes the values all the wires of the circuit Cx(w), denoted by τ = τ(x,w), and then

computes FHE.Eval(Uτ , ⟨̂Dx⟩), where

– Uτ is the (explicit) universal circuit that on input ⟨Dx⟩ computes U(τ, ⟨Dx⟩) = Dx(τ).

– ⟨̂Dx⟩ is an encryption of ⟨Dx⟩ that is hard-coded in the description of ÛEx.

• We show that such a local assignment generator generically implies a local assignment generator
for the unencrypted universal computation UEx , which on input w computes the values all the
wires of the circuit Cx(w), denoted by τ , and then evaluates U(τ, ⟨Dx⟩).

12For example, one can always set dx = ⟨Dx⟩ and define R to be the trivial “do nothing” circuit. However, the
additional parameters allow use of a compressed representation of Dx, which decreases the crs size in our SNARG.
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• We then show that this generically implies a local assignment generator for Ex.

The definition of a locally unsatisfiable extension then guarantees the soundness of our protocol.

4.4 SNARG Construction: Encrypted Hash-and-BARG

Let L, C,ML, {Ex, Dx, auxx}x∈{0,1}∗ , R,MC be as in the Theorem statement. For every n ∈ N and
every x ∈ {0, 1}n, we denote by s = s(n) the number of gates in the circuit UDx , and we denote by

S = S(n, λ) the number of gates in the circuit ÛDx .
We define a candidate SNARG for L using the following building blocks:

• A hash family with local opening HT = (HT.Gen,Hash,HT.Open,HT.Verify), defined in Sec-
tion 3.2.

• A leveled fully homomorphic encryption scheme

FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.GateEval,FHE.Eval)

with gate-by-gate evaluation, defined in Section 3.3

• A somewhere extractable batch argument system seBARG, defined in Section 3.5.

Our SNARG construction works as follows:

The Setup Algorithm. SNARG.Gen(1λ, 1n) does the following:

1. Set the FHE depth parameter dFHE = poly(λ, log s) · (Depth(R)+Depth(Ex)) for a polynomial
poly specified in the description of the Prover algorithm.

2. Sample FHE keys (pk, e⃗k, s⃗k)← FHE.Gen(1λ, 1dFHE).

3. Sample a ciphertext ct← FHE.Enc(pk, 0|aux0n |).

4. Sample a hash key hk← HT.Gen(1λ) and compute v = Hash(hk, (e⃗k, ct)).

5. Sample (crsseBARG, tdseBARG)← seBARG.Gen(1λ, 1n
∗
, 1m

∗
, k, (i∗1, . . . , i

∗
L)), where

• The parameters n∗ = poly(λ), m∗ = poly(λ) and k = poly(s) are all defined below (when
we describe the prover algorithm).

• L = ℓ · poly(λ) is roughly the length of ℓ FHE ciphertexts.

• i∗1, . . . , i
∗
L are arbitrary indices in [k]. We arbitrarily set (i∗1, . . . , i

∗
L) = (1, . . . , L).

The common reference string is set to be crs = (crsP , crsV), where

crsP = (hk, e⃗k, ct, crsseBARG)

and
crsV = (hk, v, crsseBARG).
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The Prover Algorithm. SNARG.P(crsP , x, w) operates as follows.

1. Parse crsP = (hk, e⃗k, ct, crsseBARG).

2. Run the Turing machine MC repeatedly to generate the full gate-by-gate description ⟨R⟩ of
the circuit R.

3. Given w, compute Cx(w) and let τ = τx(w) denote the wire assignment for this computation.

4. Run the (uniformly described) circuit
(
FHE.Eval

e⃗k
(U⟨R⟩, ·)

)
Ext

on ct, gate-by-gate, where U⟨R⟩

expands an input aux into a circuit description ⟨D⟩ and Ext denotes the extended circuit from
Theorem 4.5. Note that this can be described as the execution of a sequence of (extended)
circuits that each evaluate a single gate homomorphically This results in an intermediate FHE
ciphertext ct′ that the prover continues to operate on in the next step.

5. Run the (uniformly described) circuit FHE.Eval
e⃗k
(Uτ , ·) on ct′, gate-by-gate, where Uτ (⟨D⟩) =

D(τ) is another universal circuit. The depth parameter dFHE is chosen to be the depth of the
computation homomorphically evaluated in Steps 4-5.

6. Let τ̃ denote the wire assignment for the gate-by-gate homomorphic computation in Steps 4-5.

7. Compute vinp = Hash(hk, x) and vP = Hash(hk, (⟨R⟩, vinp, τ, τ̃)). In the following description,
we define an opening of vP to a bit b in location i of the string (⟨R⟩, x, τ, τ̃) as follows:

• If i corresponds to a wire of x, an opening in location i consists of an opening of vP to
vinp along with an opening of vinp to b in location i.

• Otherwise, we use the usual notion of an opening of vP w.r.t. Hash(hk, ·).

8. Compute an seBARG proof for the (informal) claims that (1) every bit of ⟨R⟩ was computed
correctly, and that (2) every gate of τ, τ̃ was computed correctly.

Formally, let x∗ = (M, z, k, T ), where

• k = |τ |+|τ̃ |+|⟨R⟩|
• z = (hk, v, vP).

• M is the Turing machine that on input (z, i, wi) does the following:

– If 1 ≤ i ≤ |⟨R⟩|, M checks that wi is a valid local opening of vP (in the ith location)
to the ith bit of ⟨R⟩ (as computed by MC).

– If i > |⟨R⟩|, M checks that wi = (b1, ρ1, b2, ρ2, b3, ρ3) is a valid local opening of (v, vP)
to three bits b1, b2, b3 in the locations i1, i2, i3, where (i1, i2, i3) are the (i− |⟨R⟩|)th
gate13 of the circuit describing Steps 3-5.14 Moreover, M checks that b1 = fi(b2, b3)
satisfies the ith gate equation.

• T is the run-time of M , n∗ = |(M, z, k, T )| and m∗ = 3(|ρ|+1), where |ρ| is the size of
one opening.

13By construction, the description of this gate is computable by a fixed Turing Machine.
14Note that this includes “input” wire values corresponding to the bits of ek and ct.
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Let
πseBARG ← seBARG.P(crsseBARG,M, z, 1T , (w1, . . . , wk)),

where w1, . . . , wk are honestly generated witnesses. Note that n∗ and m∗ are polynomial in
(λ, log s), while T = poly(λ, s).

9. Send π = (vP , πseBARG, ρinp, ρout) to the verifier, where ρinp is an opening of vP to vinp and ρout
is an opening of vP to τout, the output bit of τ .

The Verifier Algorithm. SNARG.V(crsV , x, π) does the following:

1. Parse crsV = (hk, v, crsseBARG) and π = (vP , πseBARG, ρinp, ρout).

2. Let z = (hk, v, vP) and let M be the Turing machine defined in the Prover algorithm.

3. Check that seBARG.V(crsseBARG, x∗, πseBARG) = 1, where x∗ = (M, z, k, T ).

4. Compute vinp = HT.Hash(hk, x) and check that HT.Verify(hk, vP , Tinp, vinp, ρinp) = 1, where
Tinp is the subset of [k] corresponding to vinp.

5. Check that HT.Verify(hk, vP , out, τout, ρout) = 1, for τout = 1.

4.5 Analysis

We prove that the SNARG construction presented in Section 4.4 satisfies Theorem 4.8. To this end,
let L, C,ML, {Ex, Dx, auxx}x∈{0,1}∗ , R,MC be as in the Theorem statement.

The completeness guarantee follows immediately from the completeness guarantees of the
underlying primitives. The efficiency guarantees can also be easily observed from the construction:

• The length of crsP is poly(λ) · (|aux0n |+dFHE) + |crsseBARG|, where dFHE is nearly linear15 in
Depth(R) + Depth(Dx) and |crsseBARG|= poly(λ,m∗) = poly(λ, log s).

• The length of crsV is poly(λ, log s).

• The length of π is poly(λ, log s) + |πseBARG|= poly(λ, log s,m∗) = poly(λ, log s).

• The runtime of SNARG.V is poly(λ) · n+ poly(λ, |π|) by the efficiency property of seBARG.

We thus focus on proving the non-adaptive soundness, which follows from the following four lemmas.
Let CP [x, ⟨R⟩, e⃗k, ct] denote the following circuit:

• Input: the input wires of CP correspond to a witness w along with hard-coded inputs
(x, e⃗k, ct)).

• Run Steps 3-5 of SNARG.P.

• The output gate is the output gate of C(x,w).

15Recall that our universal circuits preserve circuit depth up to a logarithmic factor.
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Lemma 4.10. Let ℓ be larger than some absolute constant. Suppose that there exists a poly(λ)-size
prover P∗ and a non-negligible function ϵ = ϵ(λ), and for every λ ∈ N there exists x∗ = x∗λ /∈ L of
size n(λ) such that

Pr[SNARG.V(crsV , x∗, π∗) = 1 : (crsP , crsV)← SNARG.Gen(1λ, 1n);P∗(crsP , crsV) = π∗] ≥ ϵ (2)

Then, assuming the underlying FHE, HT, and seBARG schemes are poly(λ, 1/ϵ)-secure, there exists
a choice of inputs (pk, e⃗k, ct) such that:

• (pk, e⃗k) are valid outputs of FHE.Gen(1λ, 1dFHE), and

• ct is a valid encryption of auxx under pk,

as well as a (L, δ)-local assignment generator for CP , such that δ = negl(λ) and the output gate is
assigned 1 with probability 1− negl(λ).

Lemma 4.11. Let (pk, e⃗k, ct) be as in the conclusion of Lemma 4.10. Given a (L, δ)-local assignment
generator for CP , there exists a ciphertext ct′ that decrypts to ⟨Dx⟩ and a (L, δ2 = poly(log(λs)) · δ)-
local assignment generator for the circuit ÛEx (using these hard-coded keys and ciphertexts) with the
same marginal distribution on its output gate.

Lemma 4.12. Let (pk, e⃗k, ct′) be as in the conclusion of Lemma 4.11. Given an (L, δ2)-local

assignment generator for ÛEx , one can construct an (ℓ, δ3 = poly(λ) · δ2)-local assignment generator
for UEx, with the same marginal distribution on its output gate.

Lemma 4.13. For all ℓ ≥ 3 · log(s) + O(1), given an (ℓ, δ3)-local assignment generator for UEx,
one can construct a (ℓ, δ4 = poly(s) · δ3) local assignment generator for Ex, with the same marginal
distribution on its output gate.

Combining these claims, we conclude that the candidate SNARG is sound for all languages L
that have locally unsatisfiable extensions (Definition 4.4).

Proof of Lemma 4.10 Fix P∗ and {x = x(n(λ))}λ∈N as in the lemma statement. First, we
consider an alternative algorithm SNARG.Gen′ that differs from SNARG.Gen only on λ, n(λ). It is
identical to SNARG.Gen(1λ, 1n) except for the following differences:

• It samples ct differently: Rather than encrypting 0|aux0n |, it encrypts the string auxx. Namely,
ct← FHE.Enc(pk, auxx).

Equation (2), together with the security of the underlying FHE scheme, implies that there is a
negligible function µ such that for every λ ∈ N,

Pr[SNARG.V(crs′V , x, π∗) = 1 : P∗(crs′P) = π∗] ≥ ϵ− µ (3)

where (crs′P , crs
′
V)← SNARG.Gen′. At this point, we non-uniformly fix the best choice of randomness

for (pk, e⃗k, ct) (for each security parameter) for the rest of the analysis, so that Eq. (3) holds for
these fixed strings.

Next, we will construct a (L, negl(λ))-local tuple assignment generator (Definition 4.2) for CP ;
by Lemma 4.3, this implies a (L, negl(λ))-local assignment generator for CP .

For any i1, . . . , iL ∈ [k], consider another alternative algorithm SNARG.Gen′i1,...,iL that differs

from SNARG.Gen′ only on λ, n(λ). For these parameters, SNARG.Gen′i1,...,iL(1
λ, 1n) has hardwired

auxx as well as i1, . . . , iL. It is identical to SNARG.Gen′(1λ, 1n) except for the following difference:
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• Rather than setting (i∗1, . . . , i
∗
L) = (1, . . . , L), it sets (i∗1, . . . , i

∗
L) = (i1, . . . , iL).

Equation (3), together with the index-hiding property of the underlying seBARG scheme, implies
that there exists a negligible function µ such that for every λ ∈ N, and every i1, . . . , iL ∈ [k],

Pr[SNARG.V(crs′V , x, π∗) = 1 : P∗(crs′P) = π∗] ≥ ϵ− µ (4)

where (crs′P , crs
′
V)← SNARG.Gen′i1,...,iL(1

λ, 1n).
Recall that π∗ = (vP , πseBARG, ρinp, ρout), where πseBARG is a seBARG proof for the claim x∗ =

(M, z, k, T ) ∈ BatchIndexTMSAT, where (M, z, k, T ) is defined as in Item 8 of the definition of
SNARG.P . As before, we define n∗ = |x∗| and m∗ to be the length of a witness corresponding to x∗,
and let R denote the NP-relation for BatchIndexTMSAT. By the somewhere argument of knowledge
property of the underlying seBARG scheme (Definition 3.7), it holds that there exists a negligible
function ν such that for every λ ∈ N, every i1, . . . , iL ∈ [k],

Pr


seBARG.V(crsseBARG, x∗, πseBARG) = 1
∧ ∃j ∈ [L] s.t. (x∗, ij , w

∗
ij
) ̸∈ R :

(crsseBARG, tdseBARG)←
seBARG.Gen(1λ, 1n

∗
, 1m

∗
, k, (i1, . . . , iL))

hk← HT.Gen(1λ)

crs′P = (hk, pk, e⃗k, ct, crsseBARG)
(vP , πseBARG, ρinp, ρout) = P∗(crs′P)
(w∗

i1
, . . . , w∗

iL
)← Extract (tdseBARG, πseBARG)

 ≤ ν(λ).

(5)
We next use the above equations to construct an (L, δ)-local tuple assignment generator LocalGenx

for CP , as follows:

1. Re-define i1 = i1 + |⟨R⟩|, . . . , iL = iL + |⟨R⟩|.16

2. Set c = 1 and K = λ
ϵ(λ) .

3. Sample (crsseBARG, tdseBARG)← seBARG.Gen(1λ, 1n
∗
, 1m

∗
, k, (i1, . . . , iL)).

4. Sample hk← HT.Gen(1λ).

5. Let crs′P = (hk, e⃗k, ct, crsseBARG) and crs′V = (hk,HT.Hash(hk, (e⃗k, ct)), crsseBARG).

6. Compute π = (vP , πseBARG, ρinp, ρout) = P∗(crs′P).

7. If SNARG.V(crs′V , x, π) = 0:

(a) If c < K then set c = c+ 1 and go to Item 3.

(b) Otherwise output ⊥.

8. Compute (w∗
i1
, . . . , w∗

iL
)← Extract (tdseBARG, πseBARG).

9. For every j ∈ [L] parse wij = (bj,1, bj,2, bj,3, ρj,1, ρj,2, ρj,3).

10. Output (bj,1)j∈[L].

16This step occurs because we are building a local assignment generator for the computation that already has ⟨R⟩
hard-wired.
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Equation (4) implies that there exists a negligible function negl such that for every i1, . . . , iL ∈ [k]

Pr[LocalGenx(i1, . . . , iL) = ⊥] = negl(λ).

Moreover, Eq. (5) directly implies that the probability that LocalGenx(i1, . . . , iL) ̸= ⊥ but some
triple (bj,1, bj,2, bj,3) fails to satisfy the gate ij is also negl(λ)! In order to conclude that LocalGenx
is a valid local tuple assignment generator, we verify the necessary properties:

• Computational Non-Signaling. By a hybrid argument, it suffices to prove the com-
putational non-signaling property on tuples (i1, . . . , iL), (i

′
1, . . . , i

′
L) that differ on a single

coordinate ij ̸= i′j .

We further do a hybrid argument over theK steps of the main loop defining LocalGen. We claim
that in each step of the loop, we may replace an invocation of seBARG.Gen(1λ, 1n

∗
, 1m

∗
, k, i1, . . . , iL)

with an invocation of seBARG.Gen(1λ, 1n
∗
, 1m

∗
, k, i′1, . . . , i

′
L). This follows immediately from

the index hiding property of seBARG (as in Remark 3.6), as an adversary distinguishing these
two hybrids (given only the output of LocalGen restricted to [L]\{j}) immediately gives an
algorithm violating the index hiding property of seBARG in the presence of the L− 1 seBARG
trapdoor components (outside of index j).

• Wire consistency. There are two consistency properties that we have to verify:

– If a wire is opened in two different indices ij1 , ij2 , the bit assigned to the wire is consistent
except with negl(λ) probability.

– For any wire corresponding to an input bit (of x, ⟨R⟩, e⃗k, or ct), the bit assigned to this
gate by LocalGen matches the input except with negl(λ) probability.

These consistency properties (almost) all follow from the computational binding property
of HT. To prove this, we union bound over the K steps of the main loop in LocalGen, so
it suffices to show that in each step of the main loop, the probability that LocalGen assigns
inconsistent wire values across indices (or compared to the inputs x, e⃗k, ct) is negligible. This
follows immediately from computational binding, because LocalGen only assigns a wire value
when it has a local opening of (v, vP) to this wire value in the correct location. Moreover, v
is computed honestly by the Gen algorithm and the verifier explicitly checks an opening of
vP to vinp = Hash(hk, x). Thus, any inconsistency directly implies a violation of the binding
property of HT using the hash key hk generated in the current execution of LocalGen.

Finally, we must prove the consistency claim about the bits of ⟨R⟩. Rather than following
from computational binding, this follows from the somewhere argument of knowledge property
of the seBARG (Eq. (5)), as the seBARG directly claims that for 1 ≤ i ≤ |⟨R⟩|, the bit bi1 is
equal to the ith bit of ⟨R⟩.

• Gate Consistency. The wire consistency analysis above implies that all 3L wire values that
are revealed in the execution of LocalGen (rather than just the L wire values that are output)
must be internally consistent (assuming the computational binding property of HT), except
with negligible probability. Gate consistency follows from this, combined with the fact that
any extracted triple (bj1 , bj2 , bj3) fails to satisfy the gate ij with negligible probability.

Having verified all of the claimed properties of LocalGen, we have completed the proof of Lemma 4.10.
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Proof of Lemma 4.11. Let (pk, e⃗k, ct) be hard-coded strings such that (pk, e⃗k) are valid keys
output by FHE.Gen and ct is a valid encryption of auxx.

Let LocalGen denote a (L, δ) local assignment generator CP with the above hard-coded inputs
along with hard-coded (⟨R⟩, x). We use essentially the same algorithm and claim that it is also a

(L, δ2)-local assignment generator for ÛEx with respect to the hard-coded input

ct′ = FHE.Eval
e⃗k
(U⟨R⟩, ct).

More formally, our new local assignment generator LocalGen′, for any set T of wires of ÛEx , calls
LocalGen(T ′) for the following set T ′:

• For any input wire in T corresponding to a bit of the hard-coded ciphertext ct′, the set T ′

contains the corresponding output wire of the sub-circuit
(
FHE.Eval

e⃗k
(U⟨R⟩, ct)

)
Ext

inside CP .

• For any non-input wire of ÛEx in T , the set T ′ contains the corresponding wire of CP , which

contains ÛEx as a sub-circuit.

By construction, non-signaling and gate correctness of LocalGen′ follow immediately from the
corresponding properties of LocalGen. The only property that needs to be verified is that LocalGen′

assigns input wires consistently with ct′, with probability 1− δ2. This holds by an invocation of
Theorem 4.5, because LocalGen also definitionally contains a local assignment generator for the sub-

circuit
(
FHE.Eval

e⃗k
(U⟨R⟩, ·)

)
Ext

evaluated on deterministic input ct, which by Theorem 4.5 implies

that every output wire of this sub-computation is correct except with probability poly(λ, |⟨R⟩|) · δ.
Finally, the correctness property of the FHE implies that ct′ does indeed decrypt to ⟨Dx⟩. This
completes the proof of Lemma 4.11.

Proof of Lemma 4.12. Let (pk, e⃗k, ct′) be hard-coded strings such that (pk, e⃗k) are valid keys
output by FHE.Gen (with corresponding secret keys s⃗k) and ct′ decrypts (under the appropriate ski)
to ⟨Dx⟩.

Finally, let LocalGen denote a (L, δ2)-local assignment generator for ÛEx . We now describe a
(ℓ, δ3)-local assignment generator LocalGen′ for UEx : the algorithm LocalGen′(T ), on a set T of size

at most ℓ, constructs the set T ′ containing all ≤ L wires of ÛEx that compute the ℓ ciphertexts
corresponding to the encrypted17 wire values of T . Finally, for each index j ∈ T , if the jth wire
of the layered circuit UEx is in layer i, the local assignment generator sets the jth wire value to
Decski(ctj), where ctj is the string of wire values associated to j from the output of LocalGen.

The computational non-signaling property of LocalGen′ immediately follows from that of LocalGen
(recall that the ski are fixed and, in particular, not secret).

To prove local correctness of LocalGen′, we first invoke the local correctness of LocalGen. That is,
suppose that the set T contains a gate gi = (i, j, k, f) that occurs in layer α of UEx , and let (σi, σj , σk)
denote the wire values output by LocalGen′. Then, we know there are ciphertexts cti, ctj , ctk such
that σi = Dec

s⃗k
(cti), σj = Dec

s⃗k
(ctj), σk = Dec

s⃗k
(ctk), such that the output of LocalGen(T ′) contains

the output of a (L, δ2)-local assignment generator for the evaluation of the computation

FHE.GateEvalekα(f, ctj , ctk).

17Wires in the unencrypted evaluation of C(x,w) are left unchanged.
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Since the locality L is larger than the entire homomorphic gate evaluation circuit, we can union
bound over the errors from each of its poly(λ) gates and conclude that

cti = FHE.GateEvalekα(f, ctj , ctk)

with probability 1− poly(λ) · δ2.
Finally, by the malicious gate correctness of the FHE, this implies that

σi = FHE.Dec
s⃗k
(FHE.GateEval

e⃗k
(f, ctj , ctk)) = f(σj , σk)

with probability 1− poly(λ) · δ2. This completes the proof of Lemma 4.12.

Proof of Lemma 4.13. Let LocalGen denote an (ℓ, δ3)-local assignment generator for the universal
circuit UEx with the canonical description ⟨Dx⟩ of Dx hard-coded. We then give a simple definition
of a local assignment generator for Ex: for any subset T ⊂ [s], LocalGen′(T ) calls LocalGen(T̃ ), where
T̃ denotes the set containing the output wire of each sub-circuit Ui for i ∈ T (see Section 3.1.1). The
computational non-signaling property of LocalGen′ then follows immediately from the analogous
property of LocalGen.

What remains is to prove is the local correctness property of LocalGen′. At a high level, local
correctness holds because while LocalGen does not compute the gates of Ex directly, a “gate” of
Ex is computed via a simple (low-depth) NAND-circuit deterministically with respect to a small
number of wire values, and so the correctness error only “blows up” by a polynomial factor. This
argument necessarily involves the details of our universal circuit implementation (Section 3.1.1).

Formally, we wish to show that for every gate (i, j, k, f) of Ex, the probability that σi ̸= f(σj , σk)
is at most poly(s) · δ3. To see this, let i∗, j∗, k∗ denote the indices corresponding to the output wires
of Ui, Uj , Uk in UEx . In UEx , the wire i

∗ is computed by a constant-size NAND-circuit on input wires
(j′, k′, aux1, aux2), where aux1, aux2 are copies of the two wires containing f in the (hard-coded)
description of gate gi. Finally, let Ti denote the set of 3 log s + 2 indices corresponding to the
hard-coded input gi.

By the computational non-signaling of LocalGen, it suffices to show that for every set T̃ con-
taining {i∗, j∗, k∗, j′, k′, aux1, aux2} ∪ Ti, we have that σi∗ = f(σj∗ , σk∗) with all but poly(s) · δ3
probability. To prove this, we observe that the desired claim follows from three properties of
(σi∗ , σj∗ , σk∗ , σj′ , σk′ , σaux1 , σaux2):

1. σj∗ = σj′ ,

2. σk∗ = σk′ , and

3. σi∗ = f(σj′ , σk′), where f is the function described by (σaux1 , σaux2).

The probability that property (3) fails is at most O(δ3) by the local correctness of LocalGen. Thus,
it suffices to show that properties (1) and (2) hold except with probability poly(s) · δ3. This
holds because the computation of σj′ , σk′ is deterministic as a function of σj∗ , σk∗ , and σgi , and is
computed via a depth O(log s) circuit. Specifically, for all indices α in the sub-circuit Ui, there is
a deterministic polynomial-time function fα(σj∗ , σk∗) (corresponding to the honest evaluation of

Ui) such that we expect σα = fα(σj∗, σk∗) on any set S̃ containing (j∗, k∗, α). We claim inductively
with respect to α that

Pr
[
σα ̸= fα(σj∗ , σk∗)

]
≤ 2(dα + 1)δ3 · 2dα ,
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where dα denotes the depth of α within the circuit Ui. This holds immediately for the base cases
of α = j∗, k∗. For the inductive step, let α have children β, γ in Ui, whose corresponding depths
satisfy dβ, dγ ≤ dα − 1. Then, by the non-signaling property of LocalGen (up to error δ3), it suffices
to consider sets S̃ that contain (i∗, j∗, α, β, γ); by the inductive hypothesis, we have that

Pr
[
σβ ̸= fβ(σj∗ , σk∗)

]
≤ 2(dβ + 1)δ3 · 2dβ

and
Pr

[
σγ ̸= fγ(σj∗ , σk∗)

]
≤ 2(dγ + 1)δ3 · 2dγ .

Finally, by the local correctness of LocalGen, we have that

Pr
[
σα ̸= NAND(σβ, σγ)

]
≤ δ3.

Since fα(σj∗ , σk∗) = NAND(fβ(σj∗ , σk∗), fγ(σj∗ , σk∗)) by definition, we conclude that

Pr
[
σα ̸= fα(σj∗ , σk∗)

]
≤ 2δ3 + 2(dβ + 1)δ3 · 2dβ + 2(dγ + 1)δ3 · 2dγ

≤ 2(dα + 1)δ3 · 2dα ,

completing the induction. Substituting α = j
′
and α = k

′
respectively, and observing that

fj′(σj∗ , σk∗) = σj∗ and fk′(σj∗ , σk∗) = σk∗ , we conclude the correctness of properties (1) and (2) up
to error poly(s) · δ3. This proves the local correctness property of LocalGen′ and thus completes the
proof of Lemma 4.13.

4.6 Subsequent work: a strengthening of Theorem 4.8

Subsequent to the original results of this paper, it has proved useful to view the soundness analysis
used to prove Theorem 4.8 as an efficient (black-box) reduction that outputs an (efficient!) local
assignment generator LocalGen given an efficient prover P∗ breaking soundness of the SNARG
construction. Moreover, one can view this reduction as taking the description ⟨Ex⟩ of the extended
circuit as input; that is, it is universal with respect to Ex.

For ease of understanding, we formally state a strengthening of Theorem 4.8 that follows
immediately from our proof of Theorem 4.8.

Theorem 4.14 ( [JKLM24]). Assume the existence of a leveled, gate-by-gate FHE scheme (Defini-
tion 3.3) as well as a seBARG scheme (Definition 3.7). Then, the SNARG construction of Section 4.4
has the following soundness property: there exists a polynomial-time universal local assignment
generator

LocalGen(1λ, T, ⟨Ex⟩, ϵ)P
∗(·)

with the following guarantees.

• LocalGen(1λ, T, ⟨Ex⟩, ϵ)P
∗(·) is an oracle algorithm running in time poly(s, λ, 1/ϵ) for any

circuit Ex of size s.

• For any poly(λ)-size prover P∗, any non-negligible function ϵ = ϵ(λ), and for every λ ∈ N and
x∗ = x∗λ of size n(λ), if

Pr[SNARG.V(crsV , x∗, π∗) = 1 : (crsP , crsV)← SNARG.Gen(1λ, 1n);P∗(crsP , crsV) = π∗] ≥ ϵ
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then for any extension Ex∗ of Cx∗ of size s, that can be described by a string auxx of (fixed)
polynomial length, it holds that LocalGen(1λ, T, ⟨Ex⟩, ϵ)P

∗(·) is a (ℓ, negl(λ))-local assignment
generator for the circuit Ex∗.

The statement of Theorem 4.14 is due to [JKLM24] and is not required for the results of this work.
In Section 5.4, we state a similar rephrasing of Theorem 5.2 that is also due to [JKLM24].

5 SNARGs from Locally Unsatisfiable Extensions of Super-polynomial
Size

In Section 4, we constructed a SNARG for any non-deterministic computation that has a ℓ-locally
unsatisfiable extenstion. However, the runtime of the honest prover in this SNARG grows with the
size of the extension Ex (while the size of the proof only grows with the locality ℓ). As a result, we
could only handle extensions of polynomial size.

In this section, we show how to construct SNARGs even for languages that have locally unsatisfi-
able extensions of super-polynomial size, as long as each gate in the extension can be computed in
polynomial time. We formalize this via the notion of “dependent subcircuit” below.

Dependent Subcircuit. For any circuit C, we define the “dependent subcircuit” Dep[g] for every
gate g in C. Informally, Dep[g] contains all the wires (and gates) in C that are used to compute the
output of g.

Formally, we define a set of gates Dep[g] that g depends on. Dep[g] is defined recursively as
follows. Suppose that g is computed using the input wires l, r. Let gl, gr be the gates that compute
l, r, respectively. If l (resp. r) is an input wire to C, then we denote gl (resp. gr) as an empty gate.
Then we define Dep[g] = {g} ∪ Dep[gl] ∪ Dep[gr] inductively. If g is an empty gate, then we define
Dep[g] as the empty set.

With this definition, we may view Dep[g] as a subcircuit of C whose output wire is the output of
g. Similarly, for any set T of gates, one can define the dependent subcircuit Dep[T ] =

⋃
g∈T Dep[g].

Finally, these definitions allow us to define what it means for a circuit extension {Ex} to be locally
computable.

Definition 5.1. We say that a locally unsatisfiable extension {Ex}x∈{0,1}∗ for the circuit family
{Cx}x∈{0,1}∗ is γ(n)-locally computable for a function γ = γ(n), if for any x ∈ {0, 1}n, every gate g
of Dx satisfies |Dep[g]|≤ γ(n).

In Section 7.2, we show that if a circuit family has a bounded space propositional proof of
unsatisfiability, then it has a locally computable locally unsatisfiable extension.

5.1 Theorem Statement

Fix any NP language L ⊆ {0, 1}∗ with a corresponding NP relation RL. Let C = {C(n)(x,w)}n∈N
be a circuit family deciding RL, and let ML denote a polynomial-time Turing machine that on
input (1n, i) outputs the ith gate of C(n). Finally, suppose that the circuit family C = {Cx}x∈{0,1}∗
has an ℓ-locally unsatisfiable extension {Ex}x∈{0,1}∗ of size s(n) that is γ(n)-locally computable
(Definition 5.1).
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Theorem 5.2. Assume the existence of a leveled, gate-by-gate FHE scheme (Definition 3.3) as well
as a seBARG scheme (Definition 3.7) with subexponential security. Then, L as above has a SNARG
with the following properties:

• The proof length is poly(λ, ℓ, log s).

• The crs length and prover complexity is poly(λ, ℓ, γ, log s).

• The scheme is non-adaptively sound.

The proof of Theorem 5.2 is similar to the proof of Theorem 4.8, with the following high-level
differences:

• Most importantly, the honest prover cannot afford to homomorphically evaluate all of an
extended circuit E of size s. Instead, we have the prover homomorphically evaluate an
arbitrary set of ℓ (intermediate) wires of this circuit. Since each wire can be computed in time
γ(n), a polynomial-time prover can carry out this operation.

• We would like to say that the resulting ciphertexts encrypt wire values forming a local
assignment generator for a variant of the circuit Ex. In order to ensure both non-signaling
and local correctness of these decrypted wire values, we have the prover compute these ℓ wire
values in two different ways: (1) jointly, to ensure local correctness, and (2) separately (under
ℓ independent keys), to ensure non-signaling.

• The technical crux of the argument is showing that these two different computations of the
wire values (under different keys) are consistent; this follows by applying arguments made in
the proof of Theorem 4.8 to a second, nested local assignment generator.

5.2 SNARG Construction

Let L, C,ML, {Ex, Dx}x∈{0,1}∗ be as in the Theorem statement. For every n ∈ N and every

x ∈ {0, 1}n, we denote by S(n) = Õ(s(n)2) the number of gates in the circuit UDx , noting that S(n)
is not required to be a polynomial function.

We define a candidate SNARG for L using the following building blocks:

• A hash family with local opening HT = (HT.Gen,Hash,HT.Open,HT.Verify), defined in Sec-
tion 3.2.

• A leveled fully homomorphic encryption scheme

FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.GateEval,FHE.Eval)

with gate-by-gate evaluation, defined in Section 3.3

• A somewhere extractable batch argument system seBARG, defined in Section 3.5.

Our construction makes use of the following definitions:

• For any gate g of Dx, we define Dep[g] to be the sub-circuit of Dx required to compute the
gate g, and Dep[T ] similarly for a set T of gates.
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• We define Dep[g]Ext to be the [KRR14] extension of the circuit Dep[g], which consists Dep[g]
along with an encoding of each layer of Dep[g].

• For a set T of gates, we define a circuit Dep∗[T ], which will be an extension of Dep[T ] that is
different from Dep[T ]Ext. We define Dep∗[T ] to be the circuit containing Dep[T ] along with
a copy of Dep[g]Ext for every g ∈ T . These copies of Dep[g]Ext are all defined to contain the
sub-circuit Dep[g] inside Dep[T ].

• We define the parameter Γ(n) = poly(γ(n)) to be the size of the canonical description of the
circuit Dep[g]Ext for a gate g of Dx.

• We define ∆(n, ℓ) = poly(ℓ, γ) to be the size of the canonical description of the circuit Dep∗[T ]
for a set T of ℓ gates of Ex.

Our SNARG construction works as follows:

The Setup Algorithm. SNARG.Gen(1λ, 1n) does the following:

1. Set the FHE depth parameter dFHE = poly(λ, log s, γ, ℓ) for a polynomial poly specified in the
description of the Prover algorithm.

2. Set the security parameter κ = λ · poly(log s) so that the primitives FHE, HT, and seBARG are
negl(λ) · s−α-secure when using κ as a security parameter for a sufficiently large constant α
(for simplicity of notation below, we will assume negl(λ, s)-security, but this is unnecessary).

3. Sample ℓ FHE key tuples (pki, e⃗k
(i)
, s⃗k

(i)
)1≤i≤ℓ each by calling FHE.Gen(1κ, 1dFHE).

4. Sample FHE key tuple (pkjoint, e⃗k
joint

, s⃗k
joint

)← FHE.Gen(1κ, 1dFHE).

5. Sample ℓ ciphertexts cti ← FHE.Enc(pki, 0
Γ).

6. Sample a ciphertext ctjoint ← FHE.Enc(pkjoint, 0
∆).

7. Sample a hash key hk← HT.Gen(1κ) and compute v = Hash(hk, (e⃗k
joint

, e⃗k1, . . . , e⃗kℓ, ctjoint, ct1, . . . , ctℓ)).

8. Sample (crsjointseBARG, td
joint
seBARG)← seBARG.Gen(1κ, 1n

∗
, 1m

∗
, k, (i∗1, . . . , i

∗
L)), where

• The parameters n∗ = poly(λ, log s), m∗ = poly(λ, log s) and k = poly(λ, γ, log s) are all
defined below (when we describe the prover algorithm).

• L = ℓ+ poly(λ) is chosen large enough for the analysis below.

• i∗1, . . . , i
∗
L are arbitrary indices in [k]. We arbitrarily set (i∗1, . . . , i

∗
L) = (1, . . . , L).

9. For 1 ≤ i ≤ ℓ, sample (crs
(i)
seBARG, td

(i)
seBARG)← seBARG.Gen(1κ, 1n

∗
, 1m

∗
, k, (i∗1, . . . , i

∗
L)) for the

same parameters above.

10. Sample (crsseBARG, tdseBARG)← seBARG.Gen(1κ, 1n
∗
, 1m

∗
, k, (i∗1, . . . , i

∗
L)) for the same parame-

ters above.
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The common reference string is set to be crs = (crsP , crsV), where

crsP = (hk, e⃗k
joint

, e⃗k
(1)

, . . . , e⃗k
(ℓ)
, ctjoint, ct1, . . . , ctℓ, crs

joint
seBARG, crs

(1)
seBARG, . . . , crs

(ℓ)
seBARG, crsseBARG)

and
crsV = (hk, v, crsjointseBARG, crs

(1)
seBARG, . . . , crs

(ℓ)
seBARG, crsseBARG).

The Prover Algorithm. SNARG.P(crsP , x, w) operates as follows.

1. Parse crsP = (hk, e⃗k
joint

, e⃗k
(1)

, . . . , e⃗k
(ℓ)
, ctjoint, ct1, . . . , ctℓ, crsseBARG, crs

(1)
seBARG, . . . , crs

(ℓ)
seBARG).

2. Given w, compute Cx(w) and let τ = τx(w) denote the wire assignment for this computation.

3. Run the (uniformly described) circuit that computes FHE.Eval
e⃗k

joint(Uτ , ·) on ct, gate-by-gate,

where Uτ (⟨A⟩) = A(τ) is a universal circuit. The depth parameter dFHE is chosen to be the
depth of the computation homomorphically evaluated in this step.

4. Let τ̃ joint denote the wire assignment for the above gate-by-gate homomorphic computation.

5. For 1 ≤ i ≤ ℓ, run the (uniformly described) circuit that computes FHE.Eval
e⃗k

(i)(Uτ , ·) on cti,

gate-by-gate.

6. Let τ̃ (i) denote the wire assignment for this gate-by-gate homomorphic computation.

7. Compute vinp = Hash(hk, x) and vP = Hash(hk, (vinp, τ, τ̃
joint, τ̃ (1), . . . , τ̃ (ℓ))). In the following

description, we define an opening of vP to a bit b in location i as follows:

• If i corresponds to a wire of x, an opening in location i consists of an opening of vP to
vinp along with an opening of vinp to b in location i.

• Otherwise, we use the usual notion of an opening of vP w.r.t. Hash(hk, ·).

8. Compute an seBARG proof for the (informal) claims that every gate of τ was computed
correctly.

Formally, let x∗0 = (M ′
L, z, k, T0), where

• k = |τ |+|Uτ |, noting that k ≥ |τ |= |Cx|.
• z = (hk, v, vP).

• M ′
L is the Turing machine that on input (z, i, wi) does the following:

– If 1 ≤ i ≤ |C|, M checks that wi = (b1, ρ1, b2, ρ2, b3, ρ3) is a valid local opening of
vP to bits (b1, b2, b3) in the locations corresponding to the ith gate of C, and that
b1 = f(b2, b3) respects the gate computation.

Note that C has a uniform description ML, so there is a Turing machine M ′
L with the

above behavior.

• T0 is the run-time of M , n∗ = |(M, z, k, T )| and m∗ = |wi|= poly(λ, log s).

Let
πseBARG ← seBARG.P(crsseBARG,M ′

L, z, 1
T0 , (w

(0)
1 , . . . , w

(0)
k )),

where w
(0)
1 , . . . , w

(0)
k are honestly generated witnesses.
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9. Compute an seBARG proof for the claim that every homomorphic gate of τ̃ joint was computed
correctly.

Formally, let x∗ = (M, z, k, T ), where

• k = |τ |+|Uτ | as above.
• z = (hk, v, vP) as above.

• M is the Turing machine that on input (z, i, wi) does the following:

– M checks that wi = (ekjointd , ρ, b̂1, ρ1, b̂2, ρ2, b̂3, ρ3) is a valid local opening of (v, vP)
to:

∗ Three strings b̂1, b̂2, b̂3 in the (block) locations i1, i2, i3, where (i1, i2, i3) are the
ith gate of U(τ, ·), and

∗ An evaluation key ekjointd in the dth block location of v, where d is the layer index
of the ith gate of U(τ, ·).

– M checks that b̂1 = FHE.GateEval
ekjointd

(f, b̂2, b̂3) respects the ith homomorphically

evaluated gate of U(τ, ·) on ctjoint.

Note that the universal circuit U has a uniform description, so there is a polynomial-time
Turing machine M with the above behavior.

• T is the run-time of M , n∗ = |(M, z, k, T )| and m∗ = |wi|= poly(λ, log s).

Let
πjoint
seBARG ← seBARG.P(crsjointseBARG,M, (z, i), 1T , (wjoint

1 , . . . , wjoint
k )),

where wjoint
1 , . . . , wjoint

k are honestly generated witnesses.

10. Similarly, generate seBARG proofs π
(1)
seBARG, . . . , π

(ℓ)
seBARG for the same computation as above

w.r.t. the ciphertexts ct1, . . . , ctℓ (and using evaluation keys e⃗k
(1)

, . . . , e⃗k
(ℓ)
), to verify the

computations of each τ̃ (i).

11. Send π = (vP , πseBARG, π
joint
seBARG, π

(1)
seBARG, . . . , π

(ℓ)
seBARG, ρinp, ρout, τ̃

joint
out , ρjoint, τ̃

(1)
out, ρ

(1), . . . , τ̃
(ℓ)
out, ρ

(ℓ))
to the verifier, where:

• ρinp is an opening of vP to vinp in the appropriate locations.

• ρout is an opening of τout, the output bit of τ ,

• ρjoint is an opening of the output wires of τ̃ joint, and

• For each 1 ≤ i ≤ ℓ, ρ(ℓ) is an opening of the output wires of τ̃i.

The Verifier Algorithm. SNARG.V(crsV , x, π) does the following:

1. Parse (crsV , π) as

crsV = (hk, v, crsjointseBARG, crs
(1)
seBARG, . . . , crs

(ℓ)
seBARG, crsseBARG).

π = (vP , πseBARG, π
joint
seBARG, π

(1)
seBARG, . . . , π

(ℓ)
seBARG, ρinp, ρout, τ̃

joint
out , ρjoint, τ̃

(1)
out, ρ

(1), . . . , τ̃
(ℓ)
out, ρ

(ℓ)).
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2. Let z = (hk, v, vP) and let M be the Turing machine defined in the Prover algorithm.

3. Check that seBARG.V(crsseBARG, (M ′
L, z, k, T0), πseBARG) = 1.

4. Check that seBARG.V(crsjointseBARG, (M, z, k, T ), πjoint
seBARG) = 1.

5. For 1 ≤ i ≤ ℓ, check that seBARG.V(crs(i)seBARG, (M, (z, i), k, T ), π
(i)
seBARG) = 1.

6. Compute vinp = HT.Hash(hk, x) and check that HT.Verify(hk, vP , Tinp, x, ρinp) = 1, where Tinp

is the set corresponding to the input hash.

7. Check that HT.Verify(hk, vP , out, τout, ρout) = 1, for τout = 1.

8. Check that ρjoint is a valid opening to τ̃ jointout and that each ρ(i) is a valid opening to τ̃
(i)
out.

5.3 Analysis

We prove that the SNARG construction presented above satisfies Theorem 5.2. To this end, let
L, C,ML, {Ex, Dx}x∈{0,1}∗ be as in the Theorem statement.

The completeness guarantee follows immediately from the completeness guarantees of the
underlying primitives. The efficiency guarantees can also be easily observed from the construction:

• The length of crsP is

poly(κ) · (∆ + ℓ · dFHE + ℓ · |crsseBARG|) = poly(λ, log s, γ, ℓ),

where dFHE = Õ(∆) and |crsseBARG|= poly(κ, log k,m∗, L) = poly(λ, log s).

• The length of crsV is poly(λ, log s) · ℓ+ ℓ · |crsseBARG|= poly(λ, log s, ℓ).

• The length of π is similarly poly(λ, log s, ℓ).

• The runtime of SNARG.V is poly(κ) · n+ poly(κ, |π|) by the efficiency property of seBARG.

We thus focus on proving non-adaptive soundness, which directly follows from the main claim below.

Lemma 5.3. Suppose that there exists a poly(λ)-size prover P∗ and a non-negligible function
ϵ = ϵ(λ), and for every λ ∈ N there exists x∗ = x∗λ /∈ L of size n(λ) such that

Pr[SNARG.V(crsV , x∗, π∗) = 1 : (crsP , crsV)← SNARG.Gen(1λ, 1n);P∗(crsP , crsV) = π∗] ≥ ϵ (6)

Then, assuming the underlying FHE scheme is negl(λ, s)-secure against poly(λ)-time adversaries,
there is a function δ = negl(λ, s) and a (ℓ, δ) local assignment generator LocalGenx for the circuit
Ex such that the output wire σout = 1 with probability 1− δ.

As before, to construct a local assignment generator, we first construct a local tuple assignment
generator (Definition 4.2). The local tuple assignment generator LocalGenx that we work with
is constructed slightly differently from what was done in Section 4.5; we give a description of
LocalGenx(i1, . . . , iℓ).
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1. (Preprocessing phase): Compute the extended dependent circuits Dep[gi1 ]Ext, . . . ,Dep[giℓ ]Ext,
Dep∗[{gi1 , . . . , giℓ}] w.r.t. the circuit Dx. The result is a collection of ℓ+ 1 polynomial-size
circuit descriptions ⟨Di1⟩, . . . , ⟨Diℓ⟩, ⟨D∗⟩.

2. Auxiliary inputs: we think of LocalGenx receiving additional inputs (i∗1, . . . , i
∗
L). For every

index j such that ij corresponds to a wire of (x, τ), we define i∗j = ij . For all other j, we
define i∗j = 1.

3. Set c = 1 and K = λ·log(s)
ϵ(λ) .

4. Sample (crsseBARG, tdseBARG)← seBARG.Gen(1κ, 1n
∗
, 1m

∗
, k, (i∗1, . . . , i

∗
L)).

5. Sample (crsjointseBARG, td
joint
seBARG)← seBARG.Gen(1κ, 1n

∗
, 1m

∗
, k, (i∗1, . . . , i

∗
L)).

6. For 1 ≤ j ≤ ℓ, sample (crs
(j)
seBARG, td

(j)
seBARG)← seBARG.Gen(1κ, 1n

∗
, 1m

∗
, k, (i∗1, . . . , i

∗
L)).

7. Sample (pkjoint, e⃗k
joint

, s⃗k
joint

)← FHE.Gen(1κ, 1dFHE).

8. For 1 ≤ j ≤ ℓ, sample (pkj , e⃗k
(j)

, s⃗k
(j)

)← FHE.Gen(1κ, 1dFHE).

9. Sample hk← HT.Gen(1κ).

10. Compute ctjoint ← FHE.Enc(pkjoint, ⟨D∗⟩).

11. For 1 ≤ j ≤ ℓ, compute ctj ← FHE.Enc(pkj , ⟨Dij ⟩).

12. Let crs′P = (hk, e⃗k
joint

, e⃗k
(1)

, . . . , e⃗k
(ℓ)
, ctjoint, ct1, . . . , ctℓ, crs

joint
seBARG, crs

(1)
seBARG, . . . , crs

(ℓ)
seBARG, crsseBARG).

13. Let crs′V = (hk, v, crsjointseBARG, crs
(1)
seBARG, . . . , crs

(ℓ)
seBARG, crsseBARG) for v = HT.Hash(hk, (e⃗k, e⃗k

(1)
, . . . , e⃗k

(ℓ)
,

ct, ct1, . . . , ctℓ)).

14. Compute π = (vP , πseBARG, π
joint
seBARG, π

(1)
seBARG, . . . , π

(ℓ)
seBARG, ρinp, ρout, τ̃

joint
out , ρjoint, τ̃

(1)
out, ρ

(1), . . . , τ̃
(ℓ)
out, ρ

(ℓ)) =
P∗(crs′P).

15. If SNARG.V(crs′V , x, π) = 0:

(a) If c < K then set c = c+ 1 and go to Item 4.

(b) Otherwise output ⊥.

16. Compute (w∗
i1
, . . . , w∗

iL
)← Extract (tdseBARG, πseBARG).

17. For all j such that ij corresponds to a wire of (x, τ), set bij to the “output wire bit” of w∗
ij
.

18. For all other j, compute bij = FHE.Dec(sk
(ij)
dFHE

, τ̃
(j)
out).

19. Compute (b∗ij )
ℓ
j=1 = FHE.Dec(skjoint, τ̃ jointout )

20. Output (σij = bij )j∈[ℓ].
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Just as in the proof of Lemma 4.10, Eq. (6) along with the negl(λ, s)-security of the FHE implies
that the probability that LocalGenx(i1, . . . , iℓ) outputs ⊥ is negl(λ, s). Moreover, the negl(λ, s)-
computational non-signaling of LocalGenx follows immediately from the security of the FHE, because

in each loop iteration, each bij depends only on s⃗k
(j)

and no other secret keys.
Thus, to prove Lemma 5.3, it suffices to show that LocalGenx satisfies wire consistency and

gate consistency. This relies crucially on the seBARG to “tie together” the ℓ plaintext values
encrypted under unrelated FHE keys. On the other hand, we will not rely on FHE security at all,
but rather use the FHE secret keys freely in our analysis.

We establish the wire consistency and gate consistency properties by considering a simple exten-
sion LocalGen∗x(i1, . . . , iℓ) of LocalGenx(i1, . . . , iℓ) that outputs two tuple assignments (bij , b

∗
ij
)ℓj=1

instead of just one. We then make the following claim.

Claim 5.4. The probability that bij ̸= b∗ij for any 1 ≤ j ≤ ℓ is negl(λ, s).

Claim 5.4 implies both wire consistency and gate consistency because, just as in the proof of
Lemma 4.10, there is a local assignment generator for the circuit (x,w) 7→ D∗(C(x,w)) whose ℓ
output wire values match (b∗ij )

ℓ
j=1. If ij1 = ij2 , then the two output wires are actually identical wires

in D∗, and thus they trivially have the same assignment. Additionally, for any gate g = (i, j, k, f)
of Ex, the corresponding wires of D∗ are connected via an f -gate, and thus we can conclude that
b∗i = f(b∗j , b

∗
k) with all but negl(λ, s) probability.

Thus, it suffices to establish Claim 5.4, which we can prove via a union bound over all 1 ≤ j ≤ ℓ.
Fix a tuple (i1, . . . , iℓ) and an index j ∈ [ℓ]. We define the following two circuits.

• Let Ei1,...,iℓ,j be the circuit that on input w ∈ {0, 1}m:

– computes Cx(w), resulting in wire assignment τ .

– computes D∗(τ).

– computes Dij (τ).

• Let Ui1,...,iℓ,j be the universal circuit that on input (w, ⟨D∗⟩, ⟨Di⟩) computes Ei1,...,iℓ,j(w). Note
that this “universal” circuit still contains a copy of Cx in it; only the D∗, Dij computations
are made universal.

We prove Claim 5.4 by proving the following two lemmas.

Lemma 5.5. There is a negligible function δ′(λ, s) such that for every (i1, . . . , iℓ, j) as above, there
is a (L, δ′)-local assignment generator LocalGen′x,i1,...,iℓ,j for Ui1,...,iℓ,j such that for any index j and
any set T containing {outDij

, (outD∗)j}, the marginal distribution of σ′
T on {out(Dij ), out(D

∗)j} is
δ(λ, s)-close to that of (bij , b

∗
ij
) from LocalGen∗x(i1, . . . , iℓ).

Proof. We describe the algorithm LocalGen′x,i1,...,iℓ,j(i
∗
1, . . . , i

∗
L) for a local tuple assignment generator:

• Hard-coded inputs: the circuit descriptions ⟨Dij ⟩ for j ∈ [ℓ] and the circuit D∗.

• Run the algorithm LocalGen∗x(i1, . . . , iℓ) using auxiliary inputs i∗1, . . . , i
∗
L.

• Compute (w∗
i1
, . . . , w∗

iL
)← Extract (tdseBARG, πseBARG).
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• Compute (wjoint
i1

, . . . , wjoint
iL

)← Extract
(
tdjointseBARG, π

joint
seBARG

)
• For 1 ≤ α ≤ L, compute (w

(α)
i1

, . . . , w
(α)
iL

)← Extract
(
td

(α)
seBARG, π

(α)
seBARG

)
.

• For 1 ≤ α ≤ L, output the following value of σi∗α :

– If i∗α is a wire in Cx, output the wire value bi∗α contained in w∗
iα
.

– If i∗α is a wire in D∗, output the wire value FHE.Dec
s⃗k

joint(b̂i∗α) computed from the b̂i∗α

contained in wjoint
iα

.

– If i∗α is a wire in Di, output the wire value FHE.Dec
s⃗k

(i)(b̂i∗α) computed from the b̂i∗α

contained in w
(i)
iα

The non-signaling property of LocalGen′ holds by the same argument for non-signaling in
Lemma 4.10; namely, by a hybrid argument over the loop in the algorithm LocalGen, invoking
the index hiding property of all of the seBARGs. The wire and gate consistency of LocalGen′

follows by combining the somewhere argument-of-knowledge property of the seBARGs with the
computational binding property of HT (as in the proof of Lemma 4.10) and the malicious gate
correctness property of the FHE schemes (as in Lemma 4.12). Crucially, the non-signaling and local
correctness errors are now negl(λ, s) because the index hiding, computational binding and somewhere
argument-of-knowledge properties all have security error negl(λ, s) under our new parameter settings
and assumptions.

Lemma 5.6. For all L ≥ ℓ+3 log(∆)+O(1), given a (L, δ′)-local assignment generator for Ui1,...,iℓ,j,
one can construct a (L, poly(∆) · δ′)-local assignment generator LocalGen′′ for Ei1,...,iℓ,j preserving
(exactly) the marginal distribution on {out(Dij ), out(D

∗)j}.

The proof of Lemma 5.6 is almost identical to that of Lemma 4.13, so we omit the proof.
Finally, Claim 5.4 follows from Lemmas 5.5 and 5.6, and Theorem 4.5, because within the circuit

Ei1,...,iℓ,j , the wires out(Dij ) and out(D∗)j are jointly computed by a “double encoded circuit” of
Dij . This completes the proof of Claim 5.4 and therefore the proof of Theorem 5.2.

5.4 Subsequent work: a strengthening of Theorem 5.2

Just as in Section 4.6, one can view Theorem 5.2 as an efficient reduction that outputs a local
assignment generator LocalGen given an efficient prover P∗ breaking soundness of the SNARG
construction, along with a description ⟨Ex⟩ of an extended circuit.

While one benefit of doing this over Theorem 4.14 is that it applies to super-polynomial size
circuit extensions, another benefit is that evaluating the local assignment generator LocalGen here
does not even require knowing the full description of Ex. Indeed, inspecting the proof of Theorem 5.2,
it is clear that LocalGen(T ) only requires knowing the dependent sub-circuit Dep[T ] rather than
⟨Ex⟩. We give one formalization of this fact below.

Theorem 5.7 ( [JKLM24]). Fix any NP language L ⊆ {0, 1}∗ with a corresponding NP relation
RL. Let C = {C(n)(x,w)}n∈N be a circuit family deciding RL, and let ML denote a polynomial-time
Turing machine that on input (1n, i) outputs the ith gate of C(n).
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Let ℓ(·), γ(·), s(·) denote efficiently computable functions of n. Assume the existence of a leveled,
gate-by-gate FHE scheme (Definition 3.3) as well as a seBARG scheme (Definition 3.7) with negl(λ, s)
security. Then, there exists a SNARG for L with the following properties.

• The proof length is poly(λ, ℓ, log s).

• The crs length and prover complexity is poly(λ, ℓ, γ, log s).

• Soundness: there exists a polynomial-time universal local assignment generator

LocalGen(1λ, T, ⟨Ex⟩, ϵ)P
∗(·)

with the following guarantees for any family of extensions {Ex}x of size s that is γ-locally
computable.

– LocalGen(1λ, T, ⟨Ex⟩, ϵ)P
∗(·) is an oracle algorithm running in time poly(s, λ, 1/ϵ).

– For any poly(λ)-size prover P∗, any non-negligible function ϵ = ϵ(λ), and for every λ ∈ N
and x∗ = x∗λ of size n(λ), if

Pr[SNARG.V(crsV , x∗, π∗) = 1 : (crsP , crsV)← SNARG.Gen(1λ, 1n);P∗(crsP , crsV) = π∗] ≥ ϵ

then LocalGen(1λ, T, ⟨Ex⟩, ϵ)P
∗(·) is a (ℓ, negl(λ, s))-local assignment generator for Ex∗.

– Extension hiding: For P∗ as above, any set T of size at most ℓ, and any two extensions
Ex, E

′
x such that the dependent sub-circuits Dep[T ],Dep′[T ] are identical, we have that

LocalGen(1λ, T, ⟨Ex⟩, ϵ)P
∗(·) ≈c,negl(λ,s) LocalGen(1

λ, T, ⟨E′
x⟩, ϵ)P

∗(·).

The statement of Theorem 5.7 is due to [JKLM24] and is not required for the main results of this
work. Its proof follows immediately from that of Theorem 5.2.

5.5 Limitations of locally unsatisfiable extensions

At the end of this section, we briefly remark some complexity-theoretic limitations of our approach
based on locally satisfiable extensions. Specifically, we claim:

Theorem 5.8. Any NP language with a ℓ-locally unsatisfiable extension of size s is contained in
coNTIME(sO(ℓ)).

Indeed, one co-nondeterministic algorithm for deciding such a language is, given x, to guess the
description of Ex and then (approximately) compute the optimal probability that gout = 1 over all
perfectly non-signaling local assignment generators for Ex. This can be computed in time sO(ℓ) by
linear programming [KRR14].

To see that this algorithm correctly decides L, we observe that when x ∈ L, this maximum
probability is equal to 1 for any choice of Ex, while when x ̸∈ L, by assumption there exists some
Ex such that this probability is bounded away from 1.

As a result, we conclude that under standard complexity-theoretic conjectures, there exist NP
complete languages that do not have poly(λ)-locally unsatisfiable extensions of size s = 2λ,18 for
appropriate parameter settings such as λ = nϵ. On the other hand, it remains plausible that every
NP language has a non-trivial locally-unsatisfiable extension.

18We restrict to s = 2λ ≪ 2n because in Theorem 5.2, SNARGs based on locally unsatisfiable extensions have proof
length that grows logarithmically in s.
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Question 5.9. Does every NP language with witness length m have a
√
m-locally unsatisfiable

extension of size 2O(
√
m)?

6 Locally Unsatisfiable Extensions from Propositional Proofs of
Unsatisfiability

In this section, we prove that if a circuit has a polynomial-size propositional logic proof of unsat-
isfiability, then it has a locally unsatisfiable extension. This is stated formally (in Theorem 6.2)
below.

Circuit as a Set of Propositions. For any circuit C, we define a set of propositional formulas
Prop[C], which represents that each gate computation in C is correct. More specifically, we assign
each wire in C a propositional variable. Then for each gate g in C with input wires l, r and output
wire o, we can use the propositional formula o↔ g(l, r) to represent that g is computed correctly.
We put all such formulas together as a set, and define it as Prop[C].

Definition 6.1 (Propositional Proofs of Unsatisfiability). For any set S ⊆ {0, 1}∗, for any circuit
family {Cx}x∈S over S, we say {Cx}x∈S has an ℓ-propositional proof of unsatisfiability for a function
ℓ = ℓ(n), if there exists a family of propositional logic proof {πx}x∈S in the Extended Frege system,
where πx is the derivation of

Prop[Cx] ⊢ out↔ F,

where out is the output wire of Cx. Moreover, the size of πx is bounded by ℓ(n) for any x ∈ S∩{0, 1}n.

In this section, we will prove the following main theorem.

Theorem 6.2. For any set S ⊆ {0, 1}∗ and any circuit family {Cx}x∈S, if {Cx}x∈S has an ℓ-
propositional proof of unsatisfiability, where ℓ = ℓ(n) is a polynomial, then there exists a family
of polynomial-size circuits {Ex}x∈S and a constant A, such that {Ex}x∈S is an A log ℓ-locally
unsatisfiable extension.

We prove this Theorem in three steps: We first build a helper circuit in Section 6.1; then we
construct the extension circuit in Section 6.2; finally, we prove its local unsatisfiability in Section 6.3.

Remark 6.1. We extend Theorem 6.2 to the following Theorem 6.3, which will be used in the
subsequent work [JKLM24]. The main difference is that we bound the size of the Turing machine
used to describe the extension circuit in Theorem 6.2, when Cx and its EF proof of unsatisfiability
can be described by uniform Turing machines with input aux, auxEF , respectively. We can extend
the proof of Theorem 6.2 to this uniform setting, because our extension circuit in the proof of
Theorem 6.2 is highly uniform from the circuit Cx and the EF proof.

Theorem 6.3. There exists a polynomial poly such that the following holds. Fix parameters
T = T (n), d = d(n), D = D(n), and L = L(n). Fix any circuit family {Cx}x∈{0,1}∗ such that each
Cx is of size T = T (|x|) and depth d = d(|x|), and can be generated by a (T + L)-time uniform
Turing machine with advice aux = auxx.

If S ⊆ {0, 1}∗ is a subset such that for every x ∈ S, Cx is unsatisfiable and has an EF proof
for the statement “for all w, Cx(w) = 0” of length L(|x|), and this EF proof can be generated by a
(T + L)-time uniform Turing machine with advice auxEF = auxEF ,x of length D, then there exists a
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circuit family {Ex}x∈S where each Ex is of size T ′ ≤ poly(T +L), depth D′ ≤ (d+L) · poly(n), and
it can be generated by a T ′-time Turing machine with advice (aux, auxEF ). Moreover, there exists an
ℓ = polylog(T ′, L′), and {Ex}x∈S is an ℓ-locally unsatisfiable extension of {Cx}x∈S.

6.1 Binary AND-Tree Circuits

Before we prove Theorem 6.2, we first build a family of helper circuits {∆n}n∈N in Figure 2. The
circuit ∆n is simply the binary AND tree on n inputs when n is a power of 2. For general n, we
first find the largest n′ ≤ n that is a power of 2, and build a binary tree on the first n′ input wires,
and then we recursively apply the same procedure to the remaining (n− n′) input wires.

The circuit ∆n is a sub-circuit in the extended circuit construction (in Section 6.2). We will
prove that the circuit ∆n achieves the following property, which will be useful in arguing the local
unsatisfiability of our extended circuit construction. For any n, suppose we want to argue that
for some (Θ(log n), ϵ)-local assignment generator LocalGen, all the input wires w1, w2, . . . , wn are
all 1’s with overwhelming probability. However, we do not wish to extract all the input wires
w1, w2, . . . , wn, because we can only extract a small number of wires. To resolve this issue, we only
extract the output of the root nodes of the binary trees in ∆n.

19 Let Rootn be the set of the root
nodes in ∆n. Clearly, w1, . . . , wn are all 1’s if and only if the outputs of Rootn are all 1’s. Moreover,
we will further use the following properties of ∆n and Rootn, which we formally prove in Lemma 6.4.

• Read. We can “read” any input wire wi from Rootn if all gates in Rootn output 1. Namely, if
we extract Rootn and an input wire wi, and all the gates in Rootn output 1’s, then the input
wire wi must also be 1 except for a small probability. This property can be generalized from a
single index i to any constant-size subset of indices S ⊆ [n].

• Increment. For any k < n, ∆k is a sub-circuit of ∆n, where the input to ∆k are the first
k input wires w1, w2, . . . , wk. Hence, a local assignment generator for ∆n is also a local
assignment generator for the sub-circuit ∆k.

• Append. We can “append” Rootn−1 to Rootn if the n-th input wire is always 1. Namely, if
we extract all the wires in Rootn−1 ∪ Rootn and also the n-th input wire wn, and all the gates
in Rootn−1 output 1’s and wn = 1, then all the gates in Rootn also output 1’s except for a
small probability.

Lemma 6.4. For the circuit ∆n in Figure 2, for any constant c ≥ 1, any function ϵ = ϵ(λ), and
any (4c⌈log n⌉, ϵ)-local assignment generator LocalGen, ∆n satisfies the following properties. Recall
that w1, w2, . . . , wn are the input wires of ∆n and Rootn is the set of the output gates of ∆n.

• Read. For any subset of input wires S ⊆ [n] with |S|≤ c, we have

Pr [∀i ∈ Rootn, wi = 1 and ∃j ∈ S,wj ̸= 1] ≤ poly(n) · ϵ(λ),

where {wi}i∈S∪Rootn ← LocalGen(S ∪ Rootn).

• Increment. For any integer k < n, there is a sub-circuit in ∆n that is identical to ∆k.
Moreover, the input wires to the sub-circuit are the first k input wires w1, w2, . . . , wk of ∆n.

19Note that if n is a power of 2 then there is a single root note, however for general n there may be as many as
logn root nodes.
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Circuit ∆n

Input: n wires w1, w2, . . . , wn.
Output: O(log n) values of the gates in a set Rootn.

1. If n = 1, we build a gate computing the identity function, set its input wire as
w1, and let Root be the set only contains that gate. Otherwise, n > 1, then we
continue to do the following.

2. Find the largest n′ that is a power of 2, and build a perfect binary tree of n′

leaves, where each internal node of the tree is an AND gate, and each leaf node
of the tree computes the identity function. For every i ∈ [n′], the i-th leaf node
uses the wire wi as its input wire. Let Rootn be the single element set that
only contains the root gate of the perfect binary AND tree.

3. If n > n′, we build a circuit ∆n−n′ recursively on the remaining n− n′ input
wires wn′+1, . . . , wn, and let Root′ be the set of the output gates of it. Update
Rootn := Rootn ∪ Root′.

4. Set the output as the outputs of Rootn.

Figure 2: Construction of the Binary AND-Tree circuit ∆n.

• Append. Define Root0 = ϕ as the empty set and ∆0 as the empty circuit. For any integer
n ≥ 1, since ∆n−1 is a sub-circuit of ∆n, Rootn−1 is a subset of gates in ∆n. We have

Pr[∀i ∈ Rootn−1, wi = 1, wn = 1, and ∃j ∈ Rootn, wj ̸= 1] ≤ poly(n) · ϵ(λ),

where {wi}i∈Rootn−1∪Rootn∪{n} ← LocalGen(Rootn−1 ∪ Rootn ∪ {n}).

Proof. Before we prove the properties, we first introduce the following notations.

• For any input wire wi, we define PATHi as the path containing all the gates from the i-th leaf
to one of the roots in Rootn. Note that ∆n consists of several disjoint perfect binary AND
trees, and hence there exists a unique binary tree that contains the i-th leaf.

• For any input wire wi, we define OPENi as the set that contains PATHi and also the left child
and right child nodes of every non-leaf node in PATHi. More generally, for any subset of input
wires S ⊆ [n], we denote OPENS = ∪i∈SOPENi.

Proof of “Read” Property. Suppose LocalGen is a (4c⌈log n⌉, ϵ)-local assignment generator, for
any subset of input wires S ⊆ [n], we have LocalGen extract all the gates in Rootn ∪ OPENS ∪ S.
Then except with poly(n) · ϵ(λ) probability over the randomness of LocalGen, the extracted gates
and wires in Rootn ∪ OPENS ∪ S are locally consistent. Namely, for each gate x ∈ Rootn ∪ OPENS ,
then wx = wl ∧ wr, where wl, wr are the left and right input wires of x and wx is the output of the
gate x.
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Hence, the gates in Rootn ∪ OPENS ∪ S form a subcircuit that computes an AND of its inputs,
where the output gates are a subset of Rootn. Moreover, if the extracted gates and wires are locally
consistent, then the sub-circuit is computed corretly. Hence, if all the gates in Rootn output 1, then
all the wires in S must also be 1’s. Hence, we have proven

Pr [∀i ∈ Rootn, wi = 1 ∧ ∃i ∈ S,wi ̸= 1] ≤ poly(n) · ϵ(λ),

where {wi}i∈Rootn∪OPENS∪S ← LocalGen(Rootn ∪ OPENS ∪ S).
Applying the no-signaling property again to have LocalGen only extract Rootn ∪ S, we finish the

proof of the “read” property.

Proof of “Increment” Property. We prove the “increment” property inductively on the input
length n. For the base case n = 1, the property clearly holds. For the inductive step, assume
that the property holds for all input length less than n, now we prove the property holds for n,
where n ≥ 2. To prove this, it suffices to show that ∆n−1 is a sub-circuit of ∆n on the first (n− 1)
input wires w1, w2, . . . , wn−1. This is because for any k < n, from the induction hypothesis, ∆k is a
sub-circuit of ∆n−1 on the first k input wires. Once we prove that ∆n−1 is a sub-circuit of ∆n, ∆k

is also a sub-circuit of ∆n on the first k input wires, and hence we finish the proof.
Next, we show that ∆n−1 is a sub-circuit of ∆n on the first (n− 1) input wires. We have two

cases depending on whether n is a power of 2.
If n is not a power of 2, then in Step 2 of the construction (Figure 2) of ∆n−1 and ∆n, we choose

the same largest n′ that is a power of 2 and n′ ≤ n − 1, and build the same perfect binary AND
tree circuit over the first n′ input wires. The remaining parts (Step 3) in the constructions of ∆n−1

and ∆n are ∆n−1−n′ and ∆n−n′ on the remaining input wires, respectively. Now we can use the
induction hypothesis to argue that ∆n−1−n′ is also a sub-circuit of ∆n−n′ on the first (n− 1− n′)
input wires. Hence, we have proven the property for n when n is not a power of 2.

In the case that n is a power of 2, then n = 2m for some integer m. In this case, ∆n is a perfect
binary tree, where each gate is an AND gate. ∆n−1 consists of m perfect binary AND trees, each of
input length 2i, i = m − 1,m − 2, . . . , 0. Clearly, ∆n−1 is a sub-circuit of ∆n on the first (n − 1)
input wires due to the structure of the perfect binary trees.

We have shown that ∆n−1 is a sub-circuit of ∆n in both cases, and hence the “increment”
property holds for any n from the inductive argument.

Proof of “Append” Property. We claim that for any n, if all the gates in OPENn are locally
consistent, then wi = 1 ∀i ∈ Rootn−1 ∪ {n} implies that wi = 1 ∀i ∈ Rootn. Then we have LocalGen
extract the wires in Rootn−1 ∪ Rootn ∪ OPENn. Except with poly(n) · ϵ(λ) probability, the wires in
OPENn are locally consistent and then we can apply the claim. Finally, we use the no-signaling
property to have LocalGen only extract the wires in Rootn−1 ∪ Rootn ∪ {n} and finish the proof of
the “append” property. Hence, it remains to prove the claim.

We will prove the claim inductively on the input length n. For the base case n = 1, the claim
clearly holds. We only need to prove the inductive step. Assume that the claim holds for any input
length less than n, and now we prove that the claim holds for the input length n. We again have
two cases depending on whether n is a power of 2.

If n is not a power of 2, then from the same argument in the proof of “increment” property,
in Step 2 of the constructions of ∆n−1 and ∆n, they use the same n′ that is a power of 2, and
build the same binary AND trees over the first n′ input wires. Since OPENn is fully contained in
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the remaining part ∆n−n′ , we can invoke the induction hypothesis, and use the fact that the claim
holds for the circuits ∆n−n′ . Moreover, Rootn−1 and Rootn has the following struture.

Rootn−1 = {r} ∪ Rootn−1−n′ , Rootn = {r} ∪ Rootn−n′ ,

where r is the root gate of the perfect binary AND tree of the first n′ input wires, and Rootn−1−n′ ,Rootn−n′

are the output gates of ∆n−1−n′ ,∆n−n′ on the remaining input wires, respectively. Hence,
∀i ∈ Rootn−1 ∪ {n}, wi = 1 now translated to wr = 1, ∀i ∈ Rootn−1−n′ ∪ {n}, wi = 1. ∀i ∈
Rootn−1−n′ ∪ {n}, wi = 1 can be combined with the induction hypothesis to argue that ∀i ∈
Rootn−n′ , wi = 1. Hence, the claim holds for the input length n when n is not a power of 2.

If n = 2m is a power of 2 for some integer m, then ∆n is a perfect binary AND tree with n input
wires, and ∆n−1 consists of m perfect binary AND trees of input lengths 2m−1, 2m−2, . . . , 20. In this
case, PATHn is the root-to-leaf path for the rightmost n-th input wire. Hence, the claim holds due
to the perfect binary tree structure of ∆n.

From the induction argument, we prove the claim for any input length n.

Given the helper circuit in Figure 2, we are ready to construct the extension circuit.

6.2 Construction of the Extension Circuit

In this section, for any set S ⊆ {0, 1}∗, we construct the extension circuit for any circuit family
{Cx}x∈S with propositional proofs of unsatisfiability.

We first describe an initial attempt to construct the extension circuit Ex. We build the circuit
Cx as part of Ex, then we iterate through the lines of the propositional proof to process all the
extension rules by adding new gates in Ex. Each new gate represents a new propositional variable.
Next, we build a helper circuit ∆ℓ from Figure 2, where the input length ℓ is set to be the same as
the number of lines in the propositional proof. Then we iterate through the propositional proof
again, and add all the lines as sub-circuits in Ex, and set their outputs as the input wires of ∆ℓ.

However, there is an issue in the above construction. Note that each line of the propositional
proof might be of polynomial size in n, whereas in the proof of local unsatisfiability, we can only
extract a small number of wires from the local assignment generator. This is an issue because we
will need to extract the entire line later in our proof of unsatisfiability. To resolve this issue, we
break down the lines by introducing new variables to the subformulas in the lines, and hence the
size of each line can be a constant.

The following Lemma 6.5 shows that we can convert any extended Frege proof to a new extended
Frege proof where each line is constant size, and the number of lines only blows up a polynomial.

Lemma 6.5 (Implicit in [Sta77]). Let T be a set of formulas, and θ be a formula. For any extended
Frege proof (θ1, . . . , θℓ) of T ⊢ θ, there exists another extended Frege proof (θ′1, . . . , θ

′
ℓ′) of T ⊢ θ,

where ℓ′ = poly(ℓ) and the size of each line is bounded by poly(|θ|).

Proof Sketch. The proof of the lemma is also implicit in [Kra95], Lemma 4.5.7. We provide a sketch
here to be self-contained. Let Q be a set of formulas which contains all the subformulas in the lines
of the propositional logic proof (θ1, . . . , θℓ). Next, we assign each formula ϕ in Q a new propositional
variable V [ϕ] if ϕ itself is not already a propositional variable nor F, otherwise, we let V [ϕ] be ϕ
itself.
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Then for each formula ϕ ∈ Q, we add an extension rule for V [ϕ], as follows. If ϕ is in the form
α→ β from some formulas α, β, then we add the extension V [ϕ]↔ (V [α]→ V [β]). Otherwise, if ϕ
is in the form ¬α, then we add the extension V [ϕ]↔ ¬V [α].

For each line θi, i ∈ [ℓ] in the original proof, we will derive the V [θi] as a line in the new proof of
constant size. For each θi, if θi is a promise or an extension, then we can derive V [θi] via poly(|θi|)
lines of constant size proofs. Otherwise, if θi is derived from the previous lines θi1 , θi2 , . . . , θic using
an inference rule, then we can also derive V [θi] from V [θi1 ], . . . , V [θic ] via a constant size of lines.

Applying Lemma 6.5 to the propositional proof of unsatisfiability, we can always assume without
loss of generality that every line in the propositional proof of unsatisfiability is a constant size
formula. We formally state this in the following corollary.

Corollary 6.6. There exists a constant C > 0 such that, for any set S ⊆ {0, 1}∗, if a circuit
family {Cx}x∈S has ℓ-propositional proof of unsatisfiability for a polynomial function ℓ = ℓ(n), then
{Cx}x∈S has a poly(ℓ)-propositional proof of unsatisfiability, where the size of each line in the proof
is at most C.

Construction of the Extension Circuit Ex. For any integer n and x ∈ {0, 1}n ∩ S, suppose
that (θ1, θ2, . . . , θℓ) is the propositional logic proof in the Extended Frege system for

Prop[Cx] ⊢ out↔ F,

where out is the output wire of Cx, and each line θi is a constant size formula. We construct the
extension circuit Ex for Cx as follows.

Input: wires w1, w2, . . . , wn.
Output: single bit.

1. Compute Cx(w1, . . . , wn). Each gate in Cx is treated as a variable in Prop[Cx]. Hence, each
propositional variable in Prop[Cx] is associated to a gate in the circuit. For each input wire
wi, we also build a gate which takes wi as input, and computes an identity function. Then we
treat the gate as the propositional variable wi.

2. Adding Extensions. We iterate through the propositional proof, and process each extension
rule in the proof by specifying how each new variable is computed in the circuit Ex.

More specifically, for each i = 1, 2, . . . , ℓ, if θi is an extension, then θi is in the form vi ↔ ϕi,
where vi is the new variable and ϕi is a propositional formula of the existing variables. Then
we build a circuit Ei which takes the variables that appear in ϕi as its input and computes ϕi.
Finally, we set the output gate of Ei as vi.

3. Adding Proofs. We build a circuit ∆ℓ from Lemma 6.4, where the input length is set to be
the same as the number of lines. Then we iterate through the lines in the propositional proof
and add each line to the input wires to ∆ℓ.

Specifically, for each θi, i ∈ [ℓ], we build a circuit Ci computing θi. Ci takes the wires
corresponding to the propositional variables that appear in θi as input. Then we connect the
output gate of Ci to the i-th input of ∆ℓ.

4. Set the output of Ex as the output of Cx.
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We will prove that the above construction of Ex satisfies Definition 4.4. The first property
in Definition 4.4 follows directly from the construction, since we compute Cx in Step 1. We now
proceed to prove the second property in Definition 4.4, which is the local unsatisfiabilty.

6.3 Proof of Local Unsatisfiability

If Cx has a propositional proof of unsatisfiability, then Cx is certainly unsatisfiable, and we will
prove that there exists a constant A such that, for any function ϵ = ϵ(λ), and any (A log ℓ, ϵ)-local
assignment generator LocalGen for Ex, Pr[wout = 1] can be bounded. To show this, we first prove
the following lemma.

Lemma 6.7. There exists a constant A > 0 such that for any function ϵ = ϵ(λ), any (A log ℓ, ϵ)-local
assignment generator LocalGen of Ex, we have

Pr[∃i ∈ Rootℓ, wi ̸= 1] ≤ poly(n) · ϵ(λ).

Lemma 6.7 follows from the following Lemma 6.8 by a direct inductive argument on the index
k ∈ [ℓ]. In each induction step, we switch from LocalGen(Rootk−1) to LocalGen(Rootk), and use the
no-signaling property of the local assignment generator to ensure that the gate values in Rootk are
all 1’s, except with a small probability. Next, we state and prove Lemma 6.8.

Lemma 6.8. There exists a constant A > 0 and a polynomial q = q(n), such that for any function
ϵ = ϵ(λ), for any (A log ℓ, ϵ)-local assignment generator LocalGen of Ex, for every k ∈ [ℓ],

Pr [∀i ∈ Rootk−1, wi = 1,∃i ∈ Rootk wi ̸= 1] ≤ q(n) · ϵ(λ), (7)

where {wi}i∈Rootk−1∪Rootk−1
← LocalGen(Rootk−1 ∪ Rootk), and Rootk is the set specified in the

Lemma 6.4.

Proof. We will use the “append” property of ∆ℓ to prove the lemma. Namely, we will extract
Rootk−1 ∪ Rootk ∪ {yk} from LocalGen, where yk is the gate connecting to the k-th input of ∆ℓ.
We will leverage the “read” property from Lemma 6.4 to argue that yk is also 1 if all the gates in
Rootk−1 output 1’s. Then we can apply the “append” property.

Specifically, we rely on the following information theoretical property about Ex to argue that yk
must also be 1 if all gates in Rootk−1 output 1’s. We defer the proof of the claim to the end of the
proof.

Claim 6.9. For each index k ∈ [ℓ], there exists a constant number of indices i1, . . . , ic < k and a
constant-size set of gates S in Ex such that, if the gates in S are locally consistent, and yi1 , . . . , yic
all output 1’s, then yk must also output 1. Here, yi1 , . . . , yic are the gates connecting to the i1-th,
. . ., ic-th input wires of ∆ℓ, respectively.

From the claim, there exists a set S of constant size such that if the gates in S are locally
consistent, and yi1 , . . . , yic are all 1’s, then yk must also be 1. Hence, we further have LocalGen
extract S ∪ {yi1 , . . . , yic}. Then we use the “read” property from Lemma 6.4 to argue that if all
the gates in Rootk−1 output 1’s, then {yi1 , . . . yic} ∪ Rootk−1 are all 1’s, except with probability
poly(n) · ϵ(λ). Moreover, except with an additional poly(n) · ϵ(λ) probability, the gates in S are
locally consistent, then yk must also output 1 from Claim 6.9. Relying on the no-signaling property,
we can argue that if we only extract Rootk−1 ∪ Rootk ∪ {yk} and all the gates in Rootk−1 output
1’s, then yk must also outputs 1, except with probability poly(n) · ϵ(λ).
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Now we are ready to apply the “append” property from Lemma 6.4, and argue that the extracted
wires in Rootk are all 1’s, if all gates in Rootk−1∪yk output 1’s, except with probability poly(n) · ϵ(λ).
We finish the proof.

Finally, we prove Claim 6.9.

Proof of Claim 6.9. Depending on how θk is derived, we have the following cases.

Premises. If θk is a premise, then we let S be the following set of gates in Ex. S contains

• All the gates that correspond to the variables appeared in the premise.

• All the gates in the sub-circuit Ck in Step 3.

For example, if the premise is a gate computing a↔ (b ◦ c) for a function “◦”, then we extract the
wires a, b, c, and also the gates in Ck, which takes a, b, c as input, and computes the truth value of
the formula a↔ (b ◦ c) as its output. The case when the premise is a negation gate in Cx is similar.

If the gates in S are locally consistent, i.e. a = b ◦ c, then Ck will output 1, i.e., the gate yk
outputs 1.

Extensions. If θk is an extension v ↔ ϕ, where v is the new variable and ϕ is a formula. Recall
that, in Step 2, we add a sub-circuit Ek which takes all the variables in ϕ as input and computes
the truth value of ϕ, and in Step 3, we add a sub-circuit Ck which computes the truth value of
v ↔ ϕ from the gate v and all the gate representing variables in ϕ. Hence, we let S be the set of
gates in Ek and Ck. If the gates in S are locally consistent, then the truth value of v equals the
truth value of ϕ, and hence Ck outputs 1, which means the gate yk outputs 1.

Inferences. In this case, there exist integers i1, i2, . . . , ic < k for a constant c such that

θi1 , θi2 , . . . , θic ⊢ θk

is an application of an inference rule (See Section 3.6). Then the formula θi1 ∧ θi2 ∧ . . . ∧ θic → θk
must be a tautology. We let {i1, . . . , ic} be the set of indices required in the statement of Claim 6.9,
and let S be the set of gates in Ci1 , Ci2 , . . . , Cic , Ck. Recall that, the sub-circuit Ci is defined in
Step 3 for every i ∈ [ℓ]. If the gates in S are locally consistent, then Ci1 , . . . , Cic , Ck compute the
truth values of θi1 , . . . , θic , θk, respectively. Moreover, if yi1 , . . . yic are all 1’s, then all of Ci1 , . . . Cic

output 1’s, and hence Ck must also output 1, which follows from the property of tautology.
This finishes the proof of the claim.

Lemma 6.10. There exists a constant A > 0 such that, the construction of {Ex}x∈S in Section 6.2
is an A log n-locally unsatisfiable extension of the circuit family {Cx}x∈S.

Proof. The first property of Definition 4.4 is satisfied by the construction of Ex in Section 6.2, since
Cx is part of the circuit Ex.

Now we only need to prove that the construction of Ex satisfies the second property in Defini-
tion 4.4. Let ϵ = ϵ(λ) be a function and let LocalGen be an (A log n, ϵ)-local assignment generator
for Ex. From Lemma 6.7, if we extract {wi}i∈Rootℓ ← LocalGen(Rootℓ), then ∀i ∈ Rootℓ wi = 1
with probability 1− poly(ℓ(n)) · ϵ(λ). Then we apply the “read” property of ∆ℓ to show that, if we
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extract yℓ from LocalGen({ℓ}), where yℓ is the ℓ-th input wire of ∆ℓ and ℓ is the index for yℓ, we
have yℓ = 1 with probability 1− poly(ℓ(n)) · ϵ(λ).

Moreover, note that the last line of the propositional logic proof θℓ must be the statement
wout ↔ F, where wout is the output wire of Cx. If we extract LocalGen({yℓ} ∪ {out}), then
from the no-signaling property of LocalGen, yℓ = 1 except with probability 1 − poly(ℓ(n)) · ϵ(λ).
Furthermore, except with probability O(ϵ(λ)), the computation of the wire yℓ := wout ↔ F is correct.
Then wout ↔ F happens with probability 1− poly(ℓ(n)) · ϵ(λ). Finally, applying the no-signaling
property again to only extract the output wire out, we have that wout = 1 with probability at most
poly(ℓ(n)) · ϵ(λ). This finishes the proof.

Theorem 6.2 follows directly from Lemma 6.10.

7 Locally Unsatisfiable Extensions from Bounded Space Proposi-
tional Proofs of Unsatisfiability

In this section, we show that if a circuit family has a polynomially bounded space propositional
proof of unsatisfiability, then we can build a locally unsatisfiable extension with locally computable
property (Definition 5.1). We will first define the space complexity of propositional proofs (extended
Frege system) in Section 7.1.

7.1 Space Complexity of Propositional Proofs

We define the propositional proofs of bounded space in the Extended Frege system as follows. The
space complexity of propositional proofs has been defined [ET01,ABSRW02] in logic proof systems
without the “extension rule”. In this work, we extend those definitions to Frege systems with
extension rules. Specifically, we allow the introduction of new propositional variables in the proof,
and we count the size of the defining formula of the new variable into the space measure. When
we erase an existing formula in the configuration, if the formula is a definitional formula for some
variable, then we require that the variable no longer appear later in the proof. Formally, we define
the space complexity as follows in Definition 7.1.

Definition 7.1. Let T be a set of propositional formulas, and θ be a propositional formula, we say
T ⊢ θ has a (t, s)-propositional proof, if there exists a sequence of “configurations” M1,M2, . . . ,Mu,
which are sets of formulas, with the following property. For any i ∈ [u], define M0 as the empty set,
then Mi is derived from Mi−1 via one of the following rules.

• Premise Download. There exists a formula ϕ ∈ T such that

Mi = Mi−1 ∪ {ϕ}.

• Extension. There exists a variable v and a formula ϕ such that v does not appear in
M1, . . . ,Mi−1, ϕ, and the premise T , and

Mi = Mi−1 ∪ {v ↔ ϕ}.

• Inference. There exists a formula ϕ and ϕ1, ϕ2, . . . , ϕc ∈Mi−1 such that

Mi = Mi−1 ∪ {ϕ}.

Moreover, ϕ1, ϕ2, . . . , ϕc ⊢ ϕ follows from an inference rule.
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• Erasure. There exists a formula ϕ ∈Mi−1 such that

Mi = Mi−1 \ {ϕ},

where ϕ is either

– an extension of a variable v and v does not appear in Mi, or

– ϕ is derived via an inference rule, or

– ϕ is a premise in T .

Moreover, we require that the last configuration Mu must contain θ. The total size of the formulas
in each Mi is at most s for every i ∈ [u], and

∑u
i=1

∑
ϕ∈Mi

|ϕ| is at most t.
We say T ⊢ θ has a propositional proof of length t and space s, if T ⊢ θ has a (t, s)-propositional

proof.

Similar to Definition 6.1, we define bounded space propositional proofs of unsatisfiability as
follows.

Remark 7.1. We remark that there is an alternative way to define the space complexity of extended
Frege systems. Namely, when we erase a defining formula for some variable, instead of requiring
the variable no long to appear in the proof later, the alternative definition allows the variable to
appear later in the proof, and only prohibits the use of its defining formula. In this work, we choose
Definition 7.1 as our space complexity definition.

Definition 7.2 (Bounded Space Propositional Proofs of Unsatisfiability). For any set S ⊆ {0, 1}∗
and any circuit family {Cx}x∈S over S, let t = t(n), s = s(n) be two functions in n, we say {Cx}x∈S
has a (t, s)-propositional proof of unsatisfiabilty, if there exists a (t(n), s(n))-propositional proof of

Prop[Cx] ⊢ out↔ F,

for every x ∈ S ∩ {0, 1}n, where out is the output wire of Cx, and Prop[Cx] is the set of formulas
defined in Definition 6.1.

7.2 Locally Unsatisfiable Extensions from Bounded Space Proofs of Unsatisfia-
bility

In this section, we prove the following theorem, which shows that if a circuit family has bounded
space propositional proofs of unsatisfiability, then it has a locally unsatisfiable extension that is
locally computable.

Theorem 7.3. For any set T ⊆ {0, 1}∗ and any family of circuits {Cx}x∈T , let t = t(n) and
s = s(n) be two functions, if {Cx}x∈T has a (t, s)-propositional proof of unsatisfiability, then there
exists a circuit family {Ex}x∈T such that,

• There exists a constant A > 0, {Ex}x∈T is an A log n-locally unsatisfiable extension of {Cx}x∈T .

• {Ex}x∈T is poly(s)-locally computable.

• The size of Ex is bounded by poly(t(n), s(n)) for any x ∈ T ∩ {0, 1}n.

59



We will prove that the helper circuits {∆n}n∈N in Section 6.1 satisfy some additional properties.

We first introduce a new subset of gates R̂ootk.
Recall that, for each k ∈ [n], we denote PATHk as the set of gates in the root-to-leaf path of the

k-th input wire in the circuit ∆n.

Definition 7.4 (Set R̂ootk). For every k ∈ [n], we define R̂ootk be the set that contains the root
nodes of ∆n after deleting the nodes in PATHk.

Clearly, |R̂ootk|= O(log n). R̂ootk contains the roots of some subtrees, whose leaf nodes contain

all the leaves in ∆n except the k-th leaf. Then R̂ootk satisfies that, all the gates in R̂ootk output 1’s
if and only if all the input wires in [n] \ {k} are all 1’s. Formally, we prove the following properties

about R̂ootk.

Lemma 7.5. For any integer n, the helper circuit ∆n constructed in Figure 2 satisfies the following
property. For any index k ∈ [n] of the input wires, there exists a subset of gates R̂ootk of size

|R̂ootk|= O(log n).
Moreover, there exists a constant A > 0 such that, for any function ϵ = ϵ(λ), for any (A log n, ϵ)-

local assignment generator LocalGen for ∆n, we have the following properties.

• Split. For any input wire k ∈ [n], if all the gates in Rootn output 1’s, then all the gates in

R̂ootk must also output 1’s. Formally,

Pr
[
∀i ∈ Rootn, wi = 1 ∧ ∃i ∈ R̂ootk, wi ̸= 1

]
≤ poly(n) · ϵ(n),

where {wi}i∈Rootn∪R̂ootk ← LocalGen(Rootn ∪ R̂ootk).

• Merge. If all the gates in R̂ootk output 1’s and the k-th input wire wk is also 1, then all the
gates in Rootn must also output 1’s. Formally,

Pr
[
∀i ∈ R̂ootk, wi = 1 ∧ wk = 1 ∧ ∃i ∈ Rootn, wi ̸= 1

]
≤ poly(n) · ϵ(n),

where {wi}i∈R̂ootk∪Rootn∪{k} ← LocalGen(R̂ootk ∪ Rootn ∪ {k}).

Proof. Recall that we denote OPENk as the set of gates that contains PATHk, as well as the gates
that produce the input wires to the gates in PATHk and ∆n consists of a series of perfect binary
trees.

We will use the following information-theoretic property of ∆n to prove both properties. We
defer the proof of the claim to the end of the proof.

Claim 7.6. If the gates and wires in OPENk ∪ Rootn ∪ {k} are locally consistent, then all the gates

in Rootn output 1’s, if and only if all the gates in R̂ootk outputs 1’s and the k-th input wire is 1.

Proof of “Split” Property. For any local assignment generator LocalGen, if we extract OPENk∪
Rootn ∪ {k}, then except with O(log n) · ϵ probability, all the gates in OPENk ∪ Rootn are locally
consistent. From the “only if” part of Claim 7.6, if all the gates in Rootn output 1, then all the gates

in R̂ootk also output 1. Using the no-signaling property to only extract the gates in Rootn ∪ R̂ootk,
we prove the split property.
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Proof of “Merge” Property. We use LocalGen to extract OPENk ∪ Rootn ∪ {k}. Except with
probability O(log n) · ϵ, the extracted gates are locally consistent. From the “if” part of Claim 7.6,

if R̂ootk output 1’s and wk = 1, then Rootn output 1’s. Applying the no-signaling property to only

extract Rootn ∪ R̂ootk ∪ {k}, we finish the proof.

Proof of Claim 7.6. Note that R̂ootk almost contains all the gates in Rootn, except the root node
of the perfect binary tree that contains the k-th input wire. Namely, let rt denote the root node of

the trees that contains the k-th input wire in ∆n. Then Rootn \ R̂ootk = {rt}. Moreover, the gate rt
can be computed via a subcircuit formed by the gates in OPENk. The subcircuit simply computes

an AND of gates in R̂ootk \ Rootn and wk. Hence, if the gates in OPENk are locally consistent, then

wrt = 1 if and only if wk = 1 and all gates in R̂ootk \ Rootn output 1. This finishes the proof of the

claim, because {wrt}∪ (R̂ootk ∩Rootn) = Rootn and (R̂ootk \Rootn)∪ (R̂ootk ∩Rootn) = R̂ootk.

Similar to Corollary 6.6, we have the following lemma for bounded space propositional proofs.
Intuitively, it states that we can always break the lines in a bounded space propositional proof to
constant-size lines while preserving the space.

Lemma 7.7. For any set T ⊆ {0, 1}∗ and functions t = t(n), s = s(n), if there exists a (t, s)-
propositional proof of unsatisfiability for a circuit family {Cx}x∈T , then there exists a (poly(s, t), poly(s))-
propositional proof of unsatisfiability, where each line in the proof is a constant-size formula.

The proof of the lemma follows the same strategy as Lemma 6.5.

Construction of Locally Computable Extension Ex. Our construction will use the helper
circuit {∆n}n∈N in Figure 2 as an ingredient.

Let T ⊆ {0, 1}∗ be a set, and let M1,M2, . . . ,Mt be a (t(n), s(n))-propositional proof of

Prop[Cx] ⊢ out↔ F,

where out is the output wire of Cx. From Lemma 7.7, we assume without loss of generality that the
formulas in Mi are of constant sizes.

Input: wires w1, . . . , wn

Output: single bit.

1. Compute Cx(w1, . . . , wn).

2. Adding Extensions. This part is exactly the same as the Step 2 in the construction of Ex

in Section 6.2. Namely, if θi is an extension v ↔ ϕ, we add a new sub-circuit Ei computing ϕ,
and set the output gate of Ei as the gate representing v.

3. Adding Lines. We build a helper circuit ∆0
s of input length s = s(n). ∆0

s is identical to the
circuit ∆s in Section 6.2. We set all the input wires to ∆0

s as 1’s, and let UNUSED = [s] be
the set of indices of all the “unused” input wires.

We iterate through the sets M1,M2, . . . ,Mt one-by-one. At the i-th iteration (i ∈ [t]), we will
find a subcircuit ∆i

s of Ex, which is identical to ∆s. We will build a new subcircuit Ci, and
select an input wire ji to ∆i−1

s .

Denote M0 as the empty set. Depending on how Mi is derived from Mi−1, we do the following.
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• Premise, Extension, or Inference. Then Mi = Mi−1 ∪ {ϕ} for some formula ϕ.

We build a subcircuit Ci computing ϕ. The input to Ci are the gates representing the
proportional variables in ϕ. Take an arbitrary index ji ∈ UNUSED.

We update UNUSED := UNUSED \ {ji}.
• Erasure. In this case, Mi = Mi−1 \ {ϕ} for some formula ϕ ∈Mi−1.

Let ji be the index in [s] \ UNUSED such that the ji-th input to ∆i−1
s is a subcircuit

computing ϕ.

Build Ci as a new subcircuit that always outputs 1.

We update UNUSED := UNUSED ∪ {ji}.

4. Generate a new root-to-leaf path for the ji-input wire of ∆i−1
s . Then we set the new ji-th

input wire as the output of Ci.

Specifically, recall that, ∆i−1
s consists of a series of perfect binary trees, and we use PATHji to

denote the set containing all the gates from the ji-th input wire to the root of the tree that
contains the ji-th input wire.

(a) For each gate g in PATHji , we add a new gate g′ computing the same function as g. If g
is a non-leaf node, then we set the input wires to g as follows.

(b) Let gl, gr be the gates producing the input wires to g. If gl ∈ PATHji (resp. gr ∈ PATHji),
then gl (resp. gr) is on the root-to-leaf path of the ji-th input wire, then we define u as
the new gate g′l (resp. v = g′r). Otherwise, we define u as the old gate gl (resp. v = gr).

(c) We set the input wires of g′ as the outputs of u and v.

We define ∆i
s as the updated version of ∆i−1

s containing the new root-to-leaf path. We
illustrate in Figure 3 for an example.

5. We set the ji-th input wire to ∆i
s as the output of Ci.

6. Set the output gate as the same output gate of Cx(w1, . . . , wn).

∧

∧

1 2

∧

3 4

∧

∧

1 2

∧

3 4

∧

2′

∧

Figure 3: An example of adding a new leaf-to-root path for jk = 2. Left: original ∆i−1
s circuit.

Right: ∆i−1
s and ∆i

s after adding a new leaf-to-root path for the second leaf node. The new gates in
∆i−1

s are marked in circles.

Lemma 7.8. There exists a constant A > 0 such that, the above construction of {Ex}x∈T is a
A log n-locally unsatisfiable extension of {Cx}x∈T .
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We prove the lemma following the same strategy as Lemma 6.7. We first prove the following
Lemma 7.9. Then we use an inductive argument on the index of the configurations k ∈ [t(n)]. In
each step of the inductive argument, we argue that the gates in Root(∆k

s) output 1’s, except with a
small probability poly(s, t) · ϵ. We use the no-signaling property and Lemma 7.9 to transit from

(k − 1) to k. Finally, we derive that all gates in Root(∆
t(n)
s ) output 1’s except with probability

poly(s, t) · ϵ. The rest of the proof follows the same strategy as Lemma 6.10.

Lemma 7.9. There exists a constant A > 0 and a polynomial q = q(s) such that, for any A log s-local
assignment generator LocalGen, the following holds for every k ∈ [t(n)],

Pr
[
∀i ∈ Root(∆k−1

s ), wi = 1 ∧ ∃i ∈ Root(∆k
s), wi ̸= 1

]
≤ q(s) · ϵ.

Proof Sketch. The proof follows the same strategy as Lemma 6.8. The only difference is that, here,
we need to deal with dynamic addition and deletion of the formulas on the leaves of ∆s.

For every fixed k, depending on how Mk is derived from Mk−1, we have the following cases.

Premise, Extension, or Inference. In these cases, Mk = Mk−1 ∪ {ϕ} for some formula ϕ. Let
jk be the output gate of the subcircuit Ck. We will use the following claim modified from Claim 6.9
to fit in our bounded space setting. The proof of Claim 7.10 follows the exact same strategy as
Claim 6.9.

Claim 7.10. There exists a constant-size subset S of gates in Ex, and a constant number of input
wires i1, i2, . . . , ic of ∆k

s which are not the output wire of jk, such that if the gates in S are locally
consistent, and all the i1-th, i2-th, . . ., ic-th input wire of ∆k

s are 1’s, then jk must also output 1.

Given Claim 7.10, we prove the lemma as follows. We first use LocalGen to extract Root(∆k−1
s )∪

{i1, i2, . . . , ic} in the subcircuit ∆k−1
s . We can do this, because i1, . . . , ic-th input wires of ∆k

s

are also input wires of ∆k−1
s . Applying the “read” property in Lemma 6.4 to ∆k−1

s , we have
that if Root(∆k−1

s ) output 1’s, then the input wires i1, . . . , ic are all 1’s, except with probability
poly(s(n)) · ϵ(λ).

Now we extract Root(∆k−1
s ) ∪ {i1, i2, . . . , ic} ∪ S ∪ {jk} from LocalGen. From the no-signaling

property, except with probability poly(s(n))·ϵ(λ), we still have that if Root(∆k−1
s ) are all 1’s, then the

wire values of {i1, . . . , ic} are all 1’s. Moreover, except for an additional |S|·ϵ(λ) = poly(s(n)) · ϵ(λ)
probability, the gates in S are locally consistent. From Claim 7.10, this implies that the wire value
of jk must also be 1 if Root(∆k−1

s ) are all 1’s, except for some small probability.

Next, using the “split” property from Lemma 7.5, we know that if we extract Root(∆k−1
s )∪R̂ootjk

in ∆k−1
s and Root(∆k−1

s ) are all 1’s, then R̂ootjk are all 1’s. Note that from our construction of R̂ootjk ,

the set R̂ootjk in ∆k−1
s is also the set R̂ootjk in ∆k

s . Hence, we can use the no-signaling property
to combine this with the conclusion in the last paragraph. That is, if we extract Root(∆k−1

s ) ∪
R̂ootjk ∪ {jk}, then if Root(∆k−1

s ) are all 1’s, then R̂ootjk are all 1’s, and jk also outputs 1, except
with poly(s) · ϵ probability. Now we can apply the “merge” property from Lemma 7.5 to obtain that
if Root(∆k−1

s ) are all 1’s, then Root(∆k
s) are all 1’s, except for some small probability. We finish the

proof in this case.
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Erasure. In this case, Mk = Mk−1 \ {ϕ} for some formula ϕ ∈Mk−1. Let jk be the output gate
of Ci.

We first apply the “split” property from Lemma 7.5 and no-signaling property to show that, if

we extract Root(∆k−1
s ) ∪ Root(∆k

s) ∪ R̂ootjk ∪ {jk} from LocalGen and Root(∆k−1
s ) are all 1’s, then

R̂ootjk are all 1’s, except for poly(s) · ϵ probability. Since we set Ck to be a circuit that allows
outputs 1, except with an additional O(ϵ) probability, the wire value of jk is 1. Finally, applying

the “merge” property from Lemma 7.5 to R̂ootjk ∪ {jk} and the no-signaling property, we derive
that Root(∆k

s) must also be 1’s, except for poly(s) · ϵ probability. Hence, we finish the proof.

Lemma 7.11. The above construction of the extension circuit {Ex}x∈T is O(s)-locally computable
extension of {Cx}x∈T . Moreover, the size of Ex is poly(t(n), s(n)) for any x ∈ T ∩ {0, 1}n.

Proof. For each gate g added in Ex, the subcircuit of gates that g depends on is included in the
configuration that contains g as a propositional variable. Hence, the size of the subcircuit is bounded
by the total size of formulas in the configuration, which is at most O(s). The fact that the size of
Ex is poly(t, s) follows directly from the construction.

Layered Extension Circuit. In the following lemma, we prove that any extension circuit can be
converted into a layered circuit.

Lemma 7.12 (Layered Extension Circuit). Let S ⊆ {0, 1}∗ be a set, and {Cx}x∈S be a family of
circuits. Let s = s(n), ℓ = ℓ(n), size = size(n) be functions. If {Cx}x∈S has an ℓ-locally unsatisfiable
extension of size size that is s-locally computable, then there exists a circuit family {Ex}x∈S such
that,

• Ex is a layered circuit for every x ∈ S.

• {Ex}x∈S is an O(ℓ)-locally unsatisfiable extension of {Cx}x∈S.

• Ex is poly(s)-locally computable.

• The size of Ex is bounded by poly(size(n)) for every x ∈ T ∩ {0, 1}n.

Proof Sketch. Let {E′
x}x∈S be an ℓ-locally unsatisfiable extension of size size for {Cx}x∈S , and

{E′
x}x∈S is s-locally computable. We create a layered circuit family {Ex}x∈S from {E′

x}x∈S , as
follows.

We iterate the layers of E′
x one by one, from the bottom layer (input wires) to the top layer

(output gates). At each layer, Ex contains all the gates of E′
x in the same layer, and also includes

some additional auxiliary gates that save the values from the previous layers. Namely, at the i-th
layer of Ex, we add the auxiliary gates that copy the outputs of gates of E′

x in the (i− 1)-th layer,
and also add the auxiliary gates that copy the outputs of the auxiliary gates in the (i− 1)-th layer of
Ex. Finally, for each gate g′ in i-th layer of E′

x, we add a gate g in Ex computing the same function.
If the inputs to g′ are the gates in the (i− 1)-th layer of E′

x, then we connect the same gates in the
(i− 1)-th layer of Ex to g. Otherwise, we use the auxiliary gates in (i− 1)-th layer to compute g.

The size of Ex is bounded by O((size(n))2). From the construction, if E′
x is s-locally computable,

then Ex is O(s)-locally computable, because the depth of E′
x is at most s. If LocalGen is an (ℓ, ε)-

local assignment generator for {Ex}x∈S , then we can build a new (O(ℓ), O(s) · ε)-local assignment
generator LocalGen′ for {E′

x}x∈S , as follows. To extract a set S′ of gates from LocalGen′, we
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extract the corresponding set S of gates using LocalGen. To show that local consistency holds with
probability 1− s · ε, we use the no-signaling property of LocalGen′ to trace through the auxiliary
gates. Hence, {Ex}x∈S is O(ℓ)-locally unsatisfiable, if {Ex}x∈S is ℓ-locally unsatisfiable.

8 Applications

In this section we show how to build SNARGs for Diffie-Hellman languages. We choose the
Diffie-Hellman language as an illustration of Theorem 1.1.

8.1 SNARGs for the DDH Language

Let p be a prime, and let G be a cyclic subgroup of Z∗
p, where Z∗

p is the multiplicative group modulo
p. Let q be the order of the group G. The Diffie-Hellman language is defined as follows.

LDH = {(g, h, g′, h′) ∈ G4 | ∃w ∈ [0, q) : g′ = gw ∧ h′ = hw}.

We prove the following theorem.

Theorem 8.1. Assuming the existence of an FHE scheme, for any n-bit prime integer p, there
exists a non-adaptively sound SNARG for LDH with the following parameters.

• The proof length is poly(λ, log n) = poly(λ, log log p).

• The crs length is poly(λ, n) = poly(λ, log p).

We prove Theorem 8.1 as follows. For x = (g, h, g′, h′) ∈ G4, let Cx(w) be the circuit that takes
an n-bit string w as input, and output a boolean value of

g′ = gw ∧ h′ = hw.

We will prove in Lemma 8.2 that there exists a polynomial-size propositional proof of unsatisfiability
for {Cx}x/∈LDH

. Once we have Lemma 8.2, we can apply Theorem 6.2 to obtain a locally unsatisfiable
extension of {Cx}x/∈LDH

. Finally, from Theorem 4.8, we obtain a SNARG for LDH with the claimed
proof length and crs length.

Lemma 8.2. Let Cx be as defined above. There exists a polynomial ℓ = ℓ(n) such that {Cx}x/∈LDH

has ℓ-propositional proof of unsatisfiability.

Proof. Instead of directly proving the unsatisfiability of Cx for any x /∈ LDH in the propositional
logic proof system, we first prove that Cx(w) is unsatisfiable in Cook’s theory PV [Coo75], which
is more convenient because PV supports basic arithmetic operations and their related theorems
can also be formalized in PV . Then we use Cook’s propositional translation [Coo75] to translate
this proof in PV to a polynomial-size proof of unsatisfiability in the Extended Frege system (See
Section 3.7).

For any fixed x = (g, h, g′, h′) ∈ G4, since G is a cyclic group, if g is not the identity element,
then there exists an s such that h = gs. For any x /∈ LDH, we have h′ ̸= g′s. Note that the value s
can be viewed as a fixed constant once we choose a fixed x = (g, h, g′, h′) ∈ G4.

In Cook’s theory PV , we formalize a function F as

F (g, h, g′, h′, w) = Eq(g′, gw) ∧ Eq(h′, hw) (8)
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where Eq(x, y) is a function symbol that outputs 1 if x and y are the same, and outputs 0 otherwise.
Note that we treat g, h, g′, h′ as variables in PV throughout the proof of unsatisfiability in PV . We
will replace the variables g, h, g′, h′ with their concrete fixed values in the final step. Now we can
prove in PV that

h = gs ∧ h′ ̸= g′
s ⊢PV F (g, h, g′, h′, w) = 0,

with the following derivation. Here we only give a sketch of the derivation.

1. F (g, h, g′, h′, w) = Eq(g′, gw) ∧ Eq(h′, (gs)w). (This follows from Equation 8 and h = gs.)

2. (gs)w = (gw)s. (This follows from basic properties about arithmetic [Bus86].)

3. F (g, h, g′, h′, w) = Eq(g′, gw) ∧ Eq(h′, (gw)s). (This follows from Line 1 and Line 2.)

4. Eq(g′, gw) = 1→ g′ = gw. (This line is an application of the tautology Eq(x, y) = 1→ x = y.)

5. Eq(g′, gw) = 1→ Eq(h′, (gw)s) = Eq(h′, g′s). (Replace gw with g′ via Line 4.)

6. Eq(h′, g′s) = 0. (This line can be derived from the premise h′ ̸= g′s.)

7. Eq(g′, gw) = 1→ Eq(h′, (gw)s) = 0. (This line is obtained from Line 5 and Line 6.)

8. F (g, h, g′, h′, w) = 0. (This line follows from Line 3 and Line 7.)

By Cook’s propositional translation [Coo75] (Theorem 3.9), there exists a propositional logic
proof for

h = gs ∧ h′ ̸= g′
s → F (g, h, g′, h′, w) = 0,

where the variables h, g, h′, g′, s, w are decomposed as a series of propositional variables, and each
propositional variable represents one bit. Crucially, the translated propositional proof in Extended
Frege system has size polynomial in the bit-length of p. Our final propositional proof of unsatisfiability
of Cx is the concatenation of the following two parts.

• A propositional proof of h = gs ∧ h′ ̸= g′s, where h, g, h′, g′ are represented as series of
propositional variables. Note that since h, g, h′, g′ are fixed values here, the propositional proof
consists of all the wire values of computing h = gs ∧ h′ ̸= g′s. Hence, the size of this part is
polynomial in log p.

• A translated proof of h = gs ∧ h′ ̸= g′s → F (g, h, g′, h′, w) = 0 from Cook’s propositional
translation, where the propositional variables used in g, h, g′, h′, s are replaced with their fixed
constant values, respectively. Since the translated proof is of polynomial size, the size of this
part is also polynomial in log p.

Now we have shown a polynomial-size Extended Frege proof for Cx(w)↔ F which finishes the proof
of Theorem 8.1.
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