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1. INTRODUCTION

We take a step towards unifying mathematically structured programming (by which we mean ‘computa-
tion that is specified using logic’) with cryptographically verifiable computation (meaning ‘executions
that can be cryptographically verified’). We do this by giving

(1) a compositional, shallow translation of first-order logic to polynomials (Figure 2),

(2) asound and complete translation of logical validity (i.e. predicates being true) to corresponding
polynomial equalities (Theorems 2.3.4 and 4.2.7), and

(3) aschema for succinct proofs (in the cryptographic sense) of the resulting polynomial equalities.

Schemes with this effect exist for von Neumann style abstract machines (a brief but clear survey
is included here), logic circuits [DFGK14; LCL"24], and even LISP [LUR] (reference list not
exhaustive).! Yet first-order logic has as good a claim as any to be a universal language of mathematics
— and in particular it is a commonly and successfully used as a high-level language for specifying
computation. To our knowledge, it has not yet been compositionally encoded in polynomials in the
manner of this paper.

We summarise what this means and why it matters. This summary is aimed not only at cryptogra-
phers but also at readers from a logic and computation background, to provide some context:

Boolean circuits contrasted with arithmetic circuits. Logic uses Boolean circuits: combinations
of and, or, and not operating on variables that each hold one bit of information: frue or false. Because
and and or distribute over one another, and because not satisfies de Morgan dualities, Boolean circuits
have a normal form called a disjunctive normal form.

Cryptography uses arithmetic circuits: combinations of +, %, and € Z operating on variables
that hold numbers (either from a finite field or possibly just integers). Because + distributes over *,
arithmetic circuits also have a normal form: polynomials, as familiar e.g. from maths in school.

Polynomials are very expressive: they can represent functions (through interpolation [SW22,
Chapter 9]%), vectors of integers (by evaluating at {1, ...,n} where n is the length of the vector),
multisets (by identification with their multiset of roots), and they can be composed. Polynomials over
integers can be evaluated to numbers, and this has unexpected implications including the Schwartz-
Zippel lemma (permalink) [Tha22, Lemma 3.3, Subsection 3.4].

Propositions in disjunctive normal form are not quite as expressive as polynomials, but they have
excellent properties: distributivity of and over or and of or over and; de Morgan duality between
true and false; and bitwise number representation which are the basis of computer chips;’ and an
extremely well-developed theory which includes logic (including first-, higher-order, and modal
logics), declarative programming languages, type-checkers, model-checkers, SAT solvers, formal
verification tools, and moving on from there to dependent type theories, modal logics (like TLA+),
model theory, and more.

Mathematically structured programming contrasted with cryptography. Mathematically struc-
tured programming (MSP) is an approach to programming, based on logic, that tries to minimise the
distance between a program and its specification, such that (ideally) the specification is the program

1...and it would be impossible to even try, because progress in verifiable computation is currently so rapid.

2See also this compact but clear overview.
3There are two distinct notions of ‘number’ in play here: integers, which relate to arithmetic circuits; and bitwise integers,
which are a distinct thing and relate to Boolean circuits.


https://blog.lambdaclass.com/our-highly-subjective-view-on-the-history-of-zero-knowledge-proofs/
https://rjlipton.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/
https://rjlipton.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/
https://web.archive.org/web/20240420174331/https://rjlipton.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Numerical_Methods_(Chasnov)/05%3A_Interpolation/5.01%3A_Polynomial_Interpolation
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and is directly executable, without requiring the programmer to code up a realisation in a lower-level
programming language.”

Benefits include (arguably) easier verification, and greater productivity, because the code is kept
close to its logical intention. Disadvantages include lower efficiency: it can be harder to write high-level
code that runs quickly.’

Cryptography has historically been about secure and verifiable communication (think: encryption
and error-correcting codes); but with the rise of distributed systems, cloud computing, and layer 2
blockchains, the focus of interest in cryptographic techniques has shifted and broadened to include
secure and verifiable computation. Thus we see modern interest in applications such as succinct proofs
of executions, fully homomorphic encryption, multiparty computation, zero knowledge computation,
garbled circuits, and more.

The Unique Selling Point. First-order logic has as good a claim as any logic to be a universal
(or at least a canonical) mathematical language, and it is heavily used in mathematically structured
programming. Thus, giving a compositional shallow mapping of first-order logic predicates to
polynomials, and mapping judgements to polynomial equalities, such that succinct proofs for these
equalities can be provided, has as good a claim as any to being a universal (or at least a canonical)
treatment of verifiable computation.

Note that our mapping encodes semantics and validity, not syntax and derivability. In particular, it
would be mistaken to assume that this paper works by encoding the syntax of FOL and the structure
of well-formed derivation trees into arithmetic circuits. We take a semantic approach that is arguably
simpler; see Remark 6.3.4 for more discussion, with an example.

We will see how we can write specifications in first-order logic, compile them to polynomials, and
evaluate them there. The translation has low overhead, and it bridges the gap between the abstractness
of logic and having direct access to the underlying polynomials. Because our translation is very
compositional, we will be able to compose simple specifications to make more complex ones. We
hope this will inform both concrete applications as well as new research in mathematical logic.

2. POLYNOMIAL SEMANTICS

2.1. Some background on polynomials
We recall some standard definitions and notations. We start off very simply:

NortaTion 2.1.1. We will be interested in Z (integers), N (nonnegative whole numbers), and Q
(rationals).

‘We may use subscripts to indicate ranges, writing e.g. N> (which is just N), N> (strictly positive
whole numbers), Q>, and so on.

Note in particular that N = {0, 1,2, ... }; as is standard in computer science, we start counting at
0, not 1. However, in keeping with standard usage in mathematics, we will start indexing matrix rows
and columns from 1, not 0.

DerintTION 2.1.2. For the purposes of this paper, a rational univariate polynomial (or just polyno-
mial for short) is an element P € Q[X], where X is a variable.
Thus, P € Q[X] is a formal sum of powers of X . For example 0, 1+ X, and X? are all polynomials.
Polynomials can be added and multiplied in the usual way. For example, (1+X)*(1—X) = 1— X2

40f course, all programming languages do this to some extent (an XKCD comic strip makes a pithy, and entertaining, comment
on this), but MSP takes this abstraction to its logical (pun intended) extreme. Aside from the exceptionally high levels of
abstraction, MSP is also characterised by something else: using specification languages based on mathematical logic and its
semantics.

5...on a von Neumann architecture implemented in silicon. But polynomials are not silicon, and it is debatable whether a
von Neumann architecture is an optimal compilation target in a world made out of polynomials. A remarkable article in The
Register (permalink) provides further context and is well worth reading (see the discussion of Dylan).


https://www.explainxkcd.com/wiki/index.php/378:_Real_Programmers
https://www.theregister.com/2023/12/25/the_war_of_the_workstations/
https://www.theregister.com/2023/12/25/the_war_of_the_workstations/
http://web.archive.org/web/20240329060101/https://www.theregister.com/2023/12/25/the_war_of_the_workstations/
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to=X|qeQ|t+t|t—t|txt
| Ci(t) | len(C) | term(¢) (1 <i€Nsy < arity(C))
Q=TI L[t=t|¢AS| OV
|VXC.¢ ‘ HXC.¢ | Ci<’l)ﬂ' ‘ vft<Ci

(vft variable-free, 1 < i€N>; < arity(C))

The grammars above are in BNF style, such that ¢ to the right of ::= represents any predicate. In
particular, ¢ N\ ¢ is not a typo; it denotes a conjunction of two (possibly non-equal) predicates.
Similarly the two t in t =t denote two (possibly non-equal) terms.

Fig. 1: Syntax of terms and predicates (Definition 2.2.3(3))

RemaRrk 2.1.3. Definition 2.1.2 might seem simple, but for clarity we note a distinction between
expressions denoting polynomials, and polynomials.

For example: (1 + X) * (1 — X) a polynomial expression. It denotes the polynomial 1 — X2, but
is not identical to it.

So given P,@Q € Q[X], when we write P x () the reader should understand this polynomial
expression to mean ‘that polynomial in Q[X] obtained by performing a polynomial multiplication of
P and @’, unless stated otherwise.

Polynomial interpolation in Definition 2.1.4 describes a standard method for using a polynomial to
express a vector [SW22, Chapter 9].°

DeriniTION 2.1.4 (Polynomial interpolation). Suppose n > 0 and suppose that M = (my,...,m,) €
Z™ is an n-tuple of integers.

(1) Say that a polynomial P € Q[X] interpolates M at (1,2,...,n) when P(i) = m; for each
1§(i€N21)§n.
(2) Recall that every n-tuple of integers M can be interpolated by a unique polynomial interpolant

intrplnt(my,...,my) € Q[X]
of degree n-1 (at most). Thus, intrplnt(ma, ..., my)(1) = m; for1 < (i € N>1) <n.
See also Notation 5.1.3, where we extend interpolation to matrices.

NortarioN 2.1.5 (Instantiation). Suppose P, Q) € Q[X] are polynomials. Write P(Q) for the polyno-
mial obtained by instantiating X to () in P. For example if P = X + 1 and Q = 2 * X then

P@Q)=2xX+1.

In the case that () is just a number € Q, then we may identify this with the number obtained by
instantiating X to x and evaluating the result using arithmetic. For example:

(X*x(X+1))(6) =6x(6+1) = 42.
It will alway be clear what is intended.

2.2. Definition of the denotation, and some discussion

RemMaRrk 2.2.1. Our goal in this paper is to define a logic, give it a semantics in Q[X], and explore
the properties of this semantics. We will:

(1) define the formal syntax of terms and predicates in Definition 2.2.3;

(2) discuss some intuitions in Remark 2.2.5;

(3) define the polynomial semantics for our formal syntax in Definition 2.2.8;
(4) discuss the semantics in Remark 2.2.9; and

6The Wikipedia page and this overview are excellent and very accessible introductions.


https://en.wikipedia.org/wiki/Polynomial_interpolation
https://math.libretexts.org/Bookshelves/Applied_Mathematics/Numerical_Methods_(Chasnov)/05%3A_Interpolation/5.01%3A_Polynomial_Interpolation
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(5) prove a soundness and completeness result in Theorem 2.3.4.

REMARKk 2.2.2. Note that in the interpretation we are about to build in Figure 2, 0 represents truth and
any non-zero value represents false; furthermore A and V (conjunction and universal quantification)
map to + (addition), and V and 3 (disjunction and existential quantification) map to .

If the reader is used to thinking of truth as 1 and false as 0, as is traditional in logic circuits, then
be careful: everything below will be flipped with respect to what you initially expect.

One motivation for representing truth by 0 is that it gives us Theorem 2.3.4. More on this in
Remarks 2.2.9 and 2.3.5).

DEerintTION 2.2.3 (Syntax of terms and predicates).

(1) Fix one index variable symbol X .
(2) Fix a set of matrix variable symbols C, D € MatrixVar.
To each matrix variable symbol we associate a fixed but arbitrary arity arity(C) € N>;.
(3) Define terms and predicates inductively as in Figure 1. In that Figure:
(a) ¢ ranges over whole numbers between 1 and the arity of C inclusive, or in symbols: 1 < (i €
N>1) < arity(C).
(b) This is just formal syntax; we give it meaning later in Figure 2. In particular, C;, C;(t), len(C),
and term(¢) are just formal syntax.
(c) We call a predicate or term variable-free when it does not mention X.
uft in the clauses C; < vft and vft < C; in Figure 2 ranges over variable-free terms. For
instance, vft could be 0, or len(C). Put simply, vft ranges over terms that will denote a
polynomial that is just a number.

NortaTion 2.2.4. We set up some convenient abbreviations, writing:

uft < C; for vft—1<CGC;

C; < uft for C;<uft+1

oft < Ci<uft’ for (uft < C;)A(C; < uft)

vt < Cy < uwft’ for (uft —1<C)A(C;<uft+1).

Note that this is meaningful because when we build our semantics, our notion of valuation in
Definition 2.2.8(1) will evaluate matrix variable symbols C to integer matrices.

There is not much to this otherwise: we could also just as well take the notation above as primitive
in our syntax from Figure 1, and interpret < (a binary predicate symbol in our formal syntax) using
< (the binary predicate ‘less than or equals’ on numbers, which returns a truth-value) in Figure 2,
alongside interpreting < (the predicate symbol) using < (the predicate ‘strictly less than’).

RemMaARrk 2.2.5. We give some intuitive discussion of the syntax in Definition 2.2.3. Formal definitions
will follow below:

(1) The index variable symbol X is the (unique) variable of the polynomial semantics. Terms and
predicates will map to Q[X] (polynomials over X), as per Figure 2.

(2) Intuitively a matrix variable symbol C € MatrixVar ranges over all integer matrices of size
arity(C) x n, forall n € N>;.
Using interpolation (Definition 2.1.4) we can also think of C as ranging over elements of
Q[X]o(©) x N, where the first component is an arity(C)-tuple of polynomials over Q[X],
and the second component is the n > 1 that tells us how to reconstruct the matrix by considering
the values of those polynomials on {1,...,n}.

(3) Terms let us build elements of Q[X].
The intuition of C;(¢) is an interpolating polynomial for the ith row of C, applied to ¢ (more on
this below). The intuition of len(C) is the number of columns in C (its length). The intuition of
term(¢) is to treat ¢ as a number (this makes the logic impredicative; we fold predicates back
down into terms).

(4) Predicates are based on first-order logic. There is equality (of terms) but no negation.
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S Zlg(mENzﬂglen(c(C)) |[¢]]§

[X]. =X
[d.=q¢ (¢€Q)
[t+¢] =[l +[t].
-t =0l - It
[t = t’]]C = [[.t]]g * [[t’]]<
[Ci(1)]. = intrpint(<(C):)([t].)
|[Ien(C)]]g = len(c(C))
[term(o)]. = [¢].
[T].=0
[1]. =1
[t=t1 = ([tl, - [t'].)?
[6A ¢ =9l +[¢].
[¢V qg = [¢]. = [¢].
]

¢ = [hic@ens)<iens(oy [91

0 ifV1<j < len(s(C)).(s(C)iy < [uft],)
1 otherwise

_ f0 i1 < j < len(<(Q)).([uft], < <(C)iy)
[oft < C]. = {1 otherwise ]

zk ¢ [0 (x) =0
Negation is expressible using the rest of the logic: see Subsection 4.2.2.

Fig. 2: Polynomial semantics for terms and predicates (Definition 2.2.8)

Intuitively, quantification V.X¢ quantifies over X ranging over whole numbers from 1 to the
number of columns in the matrix denoted by C; so if C denotes an arity(C) X n matrix, then
VXc.¢ checks ¢(1), ..., ¢(n), where ¢(i) is the value of (some polynomial denotation which
we have not yet constructed of) ¢ for X instantiated to s € {1,...,n}.

(5) The intuition of the range check vft < C; and C; < vft is to statically check that elements of the
ith row of C takes values greater than or less than vft respectively. We use this later to statically
check for out-of-bounds pointer errors (see the discussion in Examples 3.2.8 and 3.2.9), and we
make further use of this in Section 4.

REMARK 2.2.6. We make a few comments on some simple (non)redundancies in the syntaxes of terms
and predicates:

(1) Subtraction in terms is redundant: we can just express t — ¢’ as t + (-1) x t'.
(2) T and L are redundant: we can just express T as 0=0, and L as 1=0.

(3) If we admit a unary predicate-former isZero(t) with semantics [isZero(t)] . = [[t]]z, then T, L,
and t — ¢’ become expressible as
T = isZero(0), 1 =isZero(1), and (t=t')=isZero(t—t).

(4) Negation does not appear explicitly in the syntax or semantics of Figures | and 2. Surprisingly,
negation is expressible in the rest of the logic: see Subsection 4.2.2.

See also Remark 2.3.6.
Some notation will be useful for Figure 2 and Definition 2.2.8:
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NortaTion 2.2.7 (Some basic matrix syntax). Suppose M is a matrix. Then:

(1) We may write len(M) for the number of columns in M, and we may call this the length of M.

(2) We may write M; for the ith row in M, which is a vector of length len(M).

(3) As usual, we may write M; ; for the 4, j-th element in M; 4 is the row number and j is the column
number.

DEerintTION 2.2.8 (Polynomial semantics).

(1) A valuation ¢ assigns to each matrix variable symbol C € MatrixVar with arity arity(C) € N>4
an arity(C) x n integer matrix (= having elements from Z).
Using interpolation (Definition 2.1.4) the reader can also think of ¢(C) as a vector of arity(C)
many polynomials in X, along with a number n encoding the information that we care about the
values of these polynomials on {1,...,n}.

(2) Given a valuation ¢, define polynomial semantics

[], € Q[X] and [¢] € Q[X]
for terms and predicates as in Figure 2. See Remark 2.2.9 below for exposition on the notation
and design.
If ¢ is irrelevant (e.g. because no matrix variable symbols are mentioned), we may drop the
subscript ¢ and write [t]_just as [t], or [¢]_ just as [#]. For example, we may write [2= 0] = 4.
(3) Given x € Q, define a judgement by

rF; ¢ means [¢] (x) =0,

as per Figure 2. Judgements return truth-values (‘true’ or ‘false’).”
(4) If x or g is irrelevant in x F. ¢ (e.g. because ¢ is fully-quantified, or mentions no matrix variable
symbols) then we may omit it, writing

FE.¢ or xzF¢ orevenjust F ¢.
REMARK 2.2.9. Some comments on Figure 2:

(1) T maps to [T]. = 0 and L maps to [L] = 1. Conjunction and universal quantification
map to addition, and disjunction and existential quantification map to multiplication (cf. also
Remark 2.3.5). Consequently we can say:

In our denotation, ‘zero’ means ‘true’ and ‘nonzero’ means ‘false’.
This might be confusing because usually (e.g. in logic gates) 1 means ‘true’ and (just) 0 means
‘false’, but setting things up as we do gives us Theorem 2.3.4.

(2) The semantics maps terms and predicates to polynomials over X. So for example, the clause
[X]. = X says that the X denotes itself.

(3) Similary the clause [¢]_ = g says that ¢ € Q denotes itself.

(4) The clause [C;(t)]. = intrpint(c(C);)([t].) carries an implicit condition that 1 < (i € N) <
arity(C), since as per Definition 2.2.3(3a) and Notation 2.2.7(2) it would not make sense to talk
about C; or ¢(C); otherwise.

(5) We break down the clause [C;()]_ = intrpint(s(C);)([t].), as follows:

—¢(C) is an integer matrix with arity(C) rows and len(¢(C)) columns. For brevity we may write
C =¢(C).
Note that the number of rows in C' must be arity(C); but the number of columns in C is
determined by the choice of <.
— As per Notation 2.2.7(2), C; denotes the ith row of C, which is a vector of len(C) integers.
— intrplnt(C;) = P is a polynomial in X that interpolates the vector C; at values 1,...,n, as
per Definition 2.1.4.

7So if ¢ is a predicate and € Q and ¢ is a valuation then: |[¢]|§ is a polynomial; |[¢>]|§(:c) is a rational number; and x F¢ ¢ is
a truth-value.
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— P([t],) is P instantiated at [¢] , as per Notation 2.1.5.

(6) Reading the previous point, the reader might ask why we bother with matrices at all. Why not
just let ¢(C); be a polynomial?
Because a matrix and its interpolant are not the same thing, if we care about bounds (which we
do); a vector has a length, and a polynomial a priori does not. For example, the same polynomial
X interpolates many distinct vectors, including (1), (1,2) and (1,2,3).}

REMARK 2.2.10. Some comments on Definition 2.2.8:

(1) ¢(C) in Definition 2.2.8(1) is an integer matrix C' with arity(C) rows and n columns. The number
of rows in C is determined by arity(C), but its number of columns depends on .

(2) Valuations ¢ map matrix variable symbols to integer matrices. They do not instantiate the (single)
variable symbol X!

(3) In Definition 2.2.8(2), [¢] . is a polynomial in X' — it is not a truth-value. For example,

[X=2xX] =X?
(there are no matrix variable symbols here so the choice of ¢ does not matter).
(4) In Definition 2.2.8(3), x F¢ ¢ is a truth-value — it is not a polynomial. For example,
O0F, X=2%X istrue,and 1F. X =2x% X is false.

(5) The denotation of universal quantification V is a summation, like the denotation of A. However,
V cannot be emulated in the logic by repeated A, because the length of the summation depends
on the number of columns in the matrix ¢(C), which varies depending on the choice of ¢. So
universal quantification has its own distinct identity.

(6) A design path which we do not explore in this paper is that our denotation is compatible with
notions of ‘logical implication’ P = () and ‘logical equivalence’ P <= () on polynomials
P,Q € Q[X], such that

P = @Q when Y2€Q.P(z) =0= Q(z) =0 and

P < @ when Vz€Q.P(z) = 0 <= Q(z) = 0.
Note that P — () does not quite mean the same thing as P | @ (P divides @), because the
multiplicities of the roots in P may differ from those in @). Similarly, P <= () does not quite
mean the same thing as P = (). For example:

(X -1 <= (X -1D*(X*+1) and (X —1) <= (X —1)%

We do not explore these notions of implication and equivalence explicitly in what follows, but
they are implicit in much of the maths; exploring this explicitly is future work.
For now, it seems to be more useful to explore a technically different design path and consider a
complementation operation ~¢; see Notation 4.2.6 and Theorem 4.2.7.

2.3. Soundness and completeness of the denotation
DerinNtTION 2.3.1. Call a polynomial P € Q[X] nonnegative when P(x) > 0 for every = € Q.
LemMmA 2.3.2. Suppose ¢ is a predicate and < is a valuation and x € Q.
Then [¢]. is a nonnegative polynomial (Definition 2.3.1).
Proof. By aroutine induction, following Figure 2:

—[T]. =0and [L]_= 1. We note that 0 and 1 are nonnegative.
_ _ 2 . . . P . . .
—[t=¢]= (E[t]] < — [t'].)?. Ttis a fact of arithmetic that this is a nonnegative polynomial, because it
is a square.’

8Qbviously, in an implementation we care about efficiency so we might (or might not) prefer the rows of our matrix to be
delivered as a vector of interpolating polynomials, along with an intended length. We can choose how best to represent our
data. But, what that representation represents, is a matrix.

91ndeed, the square is there precisely to guarantee nonnegativity.
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—[oAd]. =[9]. + [¢]. and [¢p V ¢']. = [¢]. * [¢'].. We observe that the sum and product of
two (by inductive hypothesis) nonnegative polynomials, is nonnegative.

— As per figure 2, [VXc.¢] = > 1< en. ) <ien(o(c)) [@]c- We observe that this is a sum of (by
inductive hypothesis) nonnegative polynomials, and so it is also nonnegative. Similarly for 3¢ X.¢.

— [vft < Ci], and [C; < vft]_ are equal to 0 or 1, and both are nonnegative. O

ReEmARK 2.3.3. Lemma 2.3.2 is interesting because it suggests that we can identify the nonnegative
polynomials in Q[X] as having logical content, in the sense that these can be the denotations of
predicates; in contrast to the class of all polynomials in Q[X ], which can be the denotation of terms
but not necessarily of predicates.

TueorEM 2.3.4 (Soundness & completeness). Suppose ¢ and ¢ are predicates, and t and t' are terms,
and s is a valuation and x € Q. Then:

() zF. Tandz . L

(2) xFct=t"ifand only if [t] (x) = [t'] (2).

3 xEcoNP ifandonlyifx Ec o N xE. Q.

@ zE. oV @ ifandonlyifvFEc ¢ V x k. @

(5) x Ec VXc.¢ifand only if ' E¢ ¢ for every 1 < (2’ € N>1) < len(s(C)).

(6) = E; AXc.¢ if and only if ' E; ¢ for some 1 < (z' € N>1) < len(s(C)).

(7) x B¢ uft < C; if and only if every entry in the ith row of <(C) is strictly greater than [uvft] . 10
(8) = F¢ C; < uft if and only if every entry in the ith row of ¢(C) is strictly less than [vft]_.

Proof. We consider each part in turn, unpacking Figure 2. The argument is just by routine arithmetic:

(1) x ET when 0 = 0, which is true. x F L when 1 = 0, which is false.

(2) * F t=1t when (t — t)%(z) = 0. By elementary facts of arithmetic, this is if and only if
t(z) = t'(z).

3) zF ¢ A ¢ when [¢](z) + [¢'](x) = 0. Using Lemma 2.3.2, this holds if and only if [¢] = 0
and [¢'] = 0, and thus if and only if x F ¢ Az E ¢'.

4) zE ¢V ¢ when [¢] * [¢'] = 0. Using the fact that Q is an infegral domain [Hun12, page 48],
this holds and only if [¢] = 0 or [¢'] = 0.

(5) As for the case of A, using Lemma 2.3.2 and arithmetic, the sum Zlg(xENzl)glen(g(C)) [[gb]]g is
zero if and only if all of its component summands are zero.

(6) The product [, < (,en.,)<ien(c(c)) [¢]. is zero if and only if one of its component summands is
zero.

(7) By Figure 2, [uft < C;] . means precisely that vft is strictly less than every entry in the ith row of
¢(C). Similarly for C; < vft.
We will also use vft < C; and C; < vft as per Notation 2.2.4. Because ¢(C) is an integer matrix,
[uft < C;]. means precisely that vft is less than or equal to every entry in the ith row of ¢(C),
and similarly for C; < vft. O

RemMARrk 2.3.5. Theorem 2.3.4 is important — a logical judgements is valid precisely when its
polynomial translation is — but mathematically it is elementary. It just dresses up the fact that in Q,

— a sum of two nonnegative numbers is zero if and only if both numbers are zero, and
— a product of two nonnegative numbers is zero if and only if at least one of the numbers is zero.

But of course, this is just what we need to precisely interpret logical conjunction / universal quantifi-
cation, and logical disjunction / existential quantification, respectively.

What is absent from Theorem 2.3.4, because it is absent from our syntax in Figure 1, is negation
— there is no explicit predicate-former —¢. This is because it can be expressed using the rest of the

10Note that [uft] . is just a number, because vft is a term that is assumed to not mention X.
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logic; we will see later in Notation 4.2.6 and Theorem 4.2.7 that our logic is complemented. That is:
given ¢, we can write a complement predicate ~¢ that is valid if and only if ¢ is not valid.

But note also that our examples will show that even the negation-free fragment of FOL is very
expressive (expressive enough to e.g. encode a Turing-complete model of computation; see Subsec-
tion 3.9).

For now, we just note that Theorem 2.3.4 is more powerful than it looks, and it will turn out that it
can indeed lay claim to expressing full first-order logic with negation.

Remark 2.3.6 is in a sense a continuation of Remark 2.2.6:

RemARrk 2.3.6 (Dualities).

(1) 3is anatural de Morgan dual to V (as usual). We will use V all the time in our practical examples
below, but not make much use of 3. It costs nothing to include it anyway.

(2) term maps from nonnegative polynomials to all polynomials just by being the identity. This is in a
sense dual to the ‘comparison with zero’ (¢=0), which maps from all polynomials to nonnegative
polynomials by squaring. We will use this, most notably in our complementation operation from
Notation 4.2.6.

REemaARrk 2.3.7. Later on in Subsection 5.1.3 we show how to obtain succinct proofs of our polynomial
semantics using an inner product argument. Soundness and completeness of the overall translation
follow by combining Theorem 2.3.4 with soundness and completeness of the inner product argument.
This is not complicated, but readers from cryptography may not be expecting it (they may be used to
seeing monolithic arguments for soundness and completeness). We see this as a feature, not a bug,
because it makes the reasoning simple and modular.

3. EXPRESSING FUNCTIONS
3.1. Simpler is better

RemMARKk 3.1.1. We have our logic and its denotation. We are now ready to use it to specify functions.
The format of the results in this section is generally the same:

(1) We specify some (well-known) mathematical function, such as exponentiation.

(2) We write a predicate in our formal syntax from Definition 2.2.3(3&3). This will correspond in
some fairly natural way to the specification.

(3) We state a soundness lemma, whose proof is usually obvious from Theorem 2.3.4, that the
semantics of the predicate as per Figure 2 accurately captures the specification.

This can be a bit fiddly, because concretely manipulating large-ish expressions by hand can be
fiddly, but mathematically it is straightforward. There is supposed to be a close match between the
mathematical intuition, the formal syntax, and the semantics, so that the soundness proofs become
straightforward. Our framework is designed to impose a minimal overhead, above and beyond any
complexities that may be inherent in what is being expressed.

So for example, if the reader

—looks at Definition 3.2.1 (mathematical definition of exponentiation), and then
—looks at Figure 3 (formal predicate in our logic), and finally perhaps
— looks at Example 3.2.11 (unpacking the polynomial to which the formal predicate compiles)

and finds that this all looks rather straightforward, then that is a good thing and a sign that matters are
working out as intended.

3.2. Expressing a power function (with worked examples)
We start with a simple example: how to express a power function (exponentiation) a’ for a, b € N>g.
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DEerINITION 3.2.1. Recall the standard inductive definition of a® for a, b € N>g:

base case pow(a,0) =1

inductive step pow(a,b+ 1) = a* pow(a,b)
Remark 3.2.2. The reader may know that this definition is not particularly efficient. In Remark 3.2.14
we mention the efficient definition; but for the purposes of an initial example, Definition 3.2.1 will
serve us very well.

Note an elementary point that definitions like Definition 3.2.1 implicity equate computation with

derivation, because when we try to compute a value — pow(2, 2), say — we end up with a simple
derivation-tree as follows:

——— base case
pow(2,0) =1

pow(2,1) =2
pow(2,2) =4

This derivation-tree, simple as it is, illustrates the close link between logic and computation.

inductive step

inductive step

DeriNtTION 3.2.3. Assume a matrix variable symbol pow with arity arity(pow) = 4. Thus, a denota-
tion ¢(pow) is a 4 X n integer matrix, for n > 1. We will encode an assertion that pow encodes a
(partial) power function, such that:

(1) Row 1 (the values of pow; (X)) stores input values a.

(2) Row 2 (the values of pow, (X)) stores input values b.

(3) Row 3 (the values of pow; (X)) stores result values ab.

(4) Row 4 (the values of pow, (X)) stores a pointer (specifically: a column index) to a column in the
pow matrix that represents the recursive call to pow in clause 2 of Definition 3.2.1 above.

The schema in Definition 3.2.5 is typical of how we will work, so we spell it out now:
NortaTiON 3.2.4.

(1) For each matrix variable symbol C of interest, we write out a corresponding validity predicate
Xc, in which we assume X is not free (e.g. it is bound by a VX quantifier).

(2) We say that ¢ satisfies this validity predicate when F. xc.
Recall that the F. x¢ notation is from Definition 2.2.8(4); it means x E¢ xc and so [xc](z) =0
for some x, the choice of which does not matter, because X is not free in xc.

DerintTION 3.2.5. In Figure 3 we

(1) define syntactic sugar,
(2) use it to express the clauses from Definition 3.2.1, and
(3) write a validity predicate X pow, to express that pow encodes a partial power function.

Examples of matrices that do and do not satisfy the validity predicate pow are in Examples 3.2.8
and 3.2.9.

DEeriNITION 3.2.6. Suppose n € N>1. Say that a 4 x n matrix M encodes a partial power function
when

Vi<e<n.M(3,z) = M(1,z)MZ2),
In words, M encodes a partial power function when for each column, the third entry of that column
is equal to the first entry raised to the power of the second.
LemmMma 3.2.7. Suppose < is a valuation (Definition 2.2.8(1)). Then

—if B Xpow
— then ¢(pow) encodes a partial partial power function (Definition 3.2.6).
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pow, (t) sugarsto a(t) pow,(t) sugarsto b(t)
pows(t) sugars to out(t) pow,(t) sugarsto rec(t)

clausel(X) = (b(X)=0) A (out(

X
clause2(X) = a(X)=a(rec(X)) A
b(X)=b(rec(X))+ 1A
out(X) =a(X) * out(rec(X))

Fig. 3: Expressing a power function (exponentiation) a’ (Definitions 3.2.1 and 3.2.5)

Proof. We examine the clauses in Figure 3 and using Theorem 2.3.4 we check that they correctly
encode the definition in Definition 3.2.1. O

ExampLE 3.2.8. We illustrate some matrices that pass the validity check F. Xpow and so by
Lemma 3.2.7 encode a partial power function:

299 2922 2222 32302
012 4 (210 4 0210 4 (0011
124| 4921 4 1421] 2 1132
112 233 2311 1112

Note how all of these matrices can be viewed as concrete implementations of the derivation-tree
illustrated in Remark 3.2.2:

(1) The leftmost matrix encodes the base case of a derivation that 22 = 4 in column 1, the second
step in column 2, and the third and final step of the derivation in column 3. The fourth entry in
columns 2 and 3 contain a number which is a pointer to the previous step/column in the derivation;
the fourth entry in column 1 also contains a number, but it is not used.

(2) The columns do not need to appear in any particular order, so long as the pointers match up; the
next matrix illustrates this (by putting the columns in the reverse order).

(3) Columns can also be duplicated; the third matrix illustrates this.

4) TPe fourth (rightmost) matrix includes information from two computations; that 2! = 2 and
3t =3.

ExampLE 3.2.9. The converse implication for Lemma 3.2.7 does not hold: it is possible for ¢(pow) to
encode a partial power function yet —=(F¢ Xpow). Take for example

s(pow) =

DO = DN DN

This one-column matrix encodes a partial power function because 22 = 4, but it fails the validity
predicate because the entry in the fourth row does not point to a column showing that 2! = 2, so
this fails the last line of clause2 in Figure 3. We can think of it as corresponding to an incomplete
derivation-tree:
777
——  inductive step
pow(2,2) =4
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We consider another example:
222
210
slpow) =14 91
230

This matrix encodes a partial power function because 22 = 4 and 2! = 2 and 2° = 1. Furthermore,
the entry in the fourth row of the first column does point to a column showing that 2! = 2, that the
fourth row of the second column does point to a column showing that 20 = 1. However, this fails the
range check just for a technical reason: the entry in the fourth row of the third column is 0, which is
not in the range 1 to 3.

ReMARK 3.2.10. In constructive logic, something is only deemed ‘true’ when we have a concrete
witness for its truth.'!

The way our encoding of logic works, as illustrated in Examples 3.2.8 and 3.2.9, feels constructive
in this sense. It might help such a reader to think of matrices as follows: the matrices are used to
encode deduplicated derivation-trees. Columns correspond to nodes, and we include index pointers
to link these nodes together.

ExampLE 3.2.11. We take a moment to unpack the concrete polynomial that Figure 3 expresses.
Assume we have some valuation ¢ and write pow = ¢(pow). Recall from Definition 2.2.8(1) that
this is a 4 X n matrix for some n > 1. Mirroring the sugar in Figure 3, we write:

a = intrplnt(pow,)
b = intrplnt(pow,)
out = intrplnt(pows)
rec = intrplnt(pow,)

Assume that every entry in pow, is a valid index of a column in pow, so that pow passes the range
check and

[0 < pow, < len(pow) 4 1] =0

— meaning that this is ‘true’.
Then |[Xpow]|§ from Figure 3 expands as follows — where, as per Figure 2, A maps to +, V maps to

*, ¥V maps to Y, and t =t maps to (t — t')?:
Xpow = 1 < pow, < len(pow) A
VX pow-(clausel(X) V clause2(X))
[[XPOW]Ig =0+
Sicoca ((al@)? + (out(x)-1)%) «

(z)—a(rec(x)))?+
( )+1))%+

*out(rec(x)))Q))

If this evaluates to zero, then pow really does encode a partial power function.'?

~

out(z) — a(x

ReEMaRK 3.2.12 (Analysis of polynomial degree). Examining the polynomial in Example 3.2.11, we
can make some comments on its degree:

(1) Range checks correspond to constant numbers (0 if true, 1 if false). This makes range checks
‘free’, in the sense that they contribute nothing to the degree of the polynomial.

HFor example, in classical logic P = Q is equivalent to =P V Q. Constructively, P = @ is a concrete method for
turning a witness to the truth of P, into a witness to the truth of Q.
12We consider a succinct check of this using the Schwartz-Zippel lemma later, in Lemma 5.1.6.
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(2) A and V corresponds to +. This means that conjunction and universal quantification are ‘free’,
in the sense that they do not increase the degree of a polynomial beyond the degrees of the
components.

(3) V corresponds to *. This is linearly expensive, in the sense that the degree is the sum of the
degrees of the components.

(4) Polynomial instantiation, as triggered e.g. by the recursive call out(rec(x)) above, is multi-
plicatively expensive: it multiplies degrees of the polynomials involved. For example, if we set
P(X) = X?and Q(X) = X3 then P(Q)(X) = (X?)? = X6,

(5) The length of the matrix is linearly expensive in the degree of the interpolating polynomial: as
per Definition 2.1.4(2), to interpolate a vector of length n requires a polynomial of degree at
most n-1.

For brevity write n = len(pow); so this is the number of columns in pow and is (one plus) the degree
of the interpolants a, b, out, and rec. Checking the polynomial, we see that its degree is O(n2),
coming from the component (a * out(rec))? on the far right-hand side, and in particular from the
polynomial instantiation out(rec). Now for pow as specified in Definition 3.2.1, n (the number of
columns) is equal to b, so the degree order of this specification, by which we mean the degree of the
polynomials it produces, is O(b?).

RemaRrk 3.2.13. Just because a polynomial has high degree does not necessarily make it complicated
nor expensive to compute. For instance, X '°° had degree 100, but 101 is not particularly expensive
to compute, and the polynomial has only one root up to multiplicities, so in the logical sense mentioned
in Remark 2.2.10(6) it is equivalent to X2."?

Degree order as a complexity metric is its own thing.

ReEMARK 3.2.14. Continuing Remark 3.2.12, we can also try to keep n as small as possible, which
amounts to minimising the number of calls to pow. As is well-known, a more efficient specification
of a® is this:
pow(a,0) =1
pow(a,2 x b) = pow(a,b) * pow(a,b)
pow(a,2* b+ 1) = ax* pow(a,b) x pow(a,b)

Logically, this leads to smaller derivations, and algorithmically it yields a runtime that is logarithmic
in b rather than linear (parametrically over the complexity of our multiplication algorithm).

We could translate this into our logic as we did in Definition 3.2.5, and this would yield an
implementation of degree order O(log(b)?). More on efficiency in Remark 3.4.6(2) and Section 5.

3.3. Expressing a square root function

The square root /a is a simple example which nicely illustrates that validity predicates are assertions,
not computations. In particular, we can verify that a matrix represents a partial square root function;
just square the claimed root (see Definition 3.3.3). We do not have to design a square root algorithm
ourselves. This is an elementary point, which may be familiar to readers familiar with succinct proofs,
but we spell out the details:

DeriniTION 3.3.1. Recall that for a € Q, the (positive) square root function \/a is specified by

(Va)* =aA+a>0.

DerintTION 3.3.2. Assume a matrix variable symbol sqrt with arity arity(sqrt) = 2. In Figure 4
we use our logic to express a validity predicate sqrt that sqrt encodes a partial positive square root
function, such that:

131t might be possible to efficiently ‘renormalise’ our polynomials to eliminate repeated roots, using formal derivatives and
polynomial long division. Indeed, what really matters to us is not the degree of the polynomial itself, but how many distinct
rational roots it has. But for now, just looking a the degree of the polynomial will suffice.
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Xsqt = 0=<sqrty A
V X sqre-sqrty (X)) s sqrty (X) = sqrt; (X)

Fig. 4: Expressing a positive square root function /a (Definitions 3.3.1 and 3.3.2)

(1) Row 1 (values of sqrt, (X)) stores input values a.
(2) Row 2 (values of sqrt, (X)) stores output values v/a > 0.

DeriniTION 3.3.3. Suppose n € N>1. Say that a 2 x n matrix M encodes a partial positive square
root function when

V1<e<n.0 < M(2,2) A M(2,2)* = M(1,z).
Lemma 3.3.4. Suppose < is a valuation (Definition 2.2.8(1)). Then the following are equivalent:

) k¢ Xsqrt-
(2) <(sqrt) encodes a partial positive square root function, as per Definition 3.3.3.

Proof. We examine xqr in Figure 4 and see that it correctly encodes the definition in Definition 3.5.1.
O

Remark 3.3.5. There are no pointers involved in Lemma 3.3.4, so we get a logical equivalence.
Contrast with Lemma 3.2.7 and Examples 3.2.8 and 3.2.9 for pow.

ReMARKk 3.3.6. The point made by Definition 3.3.3, Figure 4, and Lemma 3.3.4 is not that positive
square roots are particularly interesting.'* What matters is that actually computing \/a is done by
whoever provides ¢ (i.e. the ‘prover’). Intuitively, our logic is about verification. Thus, we assume a ¢
is provided, and we verify that it satisfies whatever validity predicates have been claimed of it.

3.4. Expressing Fibonacci

The Fibonacci function is a classic example in a certain kind of undergraduate course. We consider it
in our system. It is a simple example, though nontrivial, and as we discuss in Remark 3.4.6 it raises
some useful points:

DeriniTION 3.4.1. Recall that the Fibonacci sequence fib(a) for a € N> is defined by:

fib(0) =0
fib(1) =1
fib(a+2) = fib(a) + fib(a+ 1)

DEerINITION 3.4.2. Assume a matrix variable symbol fib with arity arity(fib) = 3. We can think of
this as a three-row matrix.

We will use our logic to express a validity predicate ys, that fib encodes the Fibonacci function,
such that:

(1) Row 1 (values of fiby (X)) stores input values a.

(2) Row 2 (values of fiby (X)) stores result values fib(a).

(3) Row 3 (values of fib3(X)) stores an index of a column in fib, corresponding to the first recursive
call to fib in clause 3 of Definition 3.4.1.

(4) Row 4 (values of fib3(X)) stores an index of a column in fib, corresponding to the second
recursive call to fib in clause 3 of Definition 3.4.1.

14They are, but not in ways that matter to us here.
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fiby () sugarsto a(t) fibo(t) sugars to out(t)
fibs(t) sugars to recl(t) fiby(t) sugarsto rec2(t)

clausel(X) = (a(X)=0)A )
clause2(X) = (a(X)=1)A (out(X)=
clause3(X) = a(X)=a(recl(X)) + 2 A
a(rec2(X))=a(recl(X)) +1 A
out(X) = out(rec1(X)) + out(rec2(X))
xiib = 1<recl<len(fib) A 1< rec2< len(fib) A
V Xip.(clausel(X) V clause2(X) V clause3(X))

Fig. 5: Expressing the Fibonacci function fib(a) (Definitions 3.4.1 and 3.4.4)

DEriNITION 3.4.3. Suppose n € Nxq. Say that a 4 X n matrix M encodes a partial Fibonacci
function when

Vi<z<n.M(2,z) = fib(M (1, z)).
DeriniTION 3.4.4. In Figure 5 we

(1) define syntactic sugar,
(2) use it to express the clauses from Definition 3.4.1, and
(3) write a validity predicate s, to express that fib encodes a partial Fibonacci function.

LemwMma 3.4.5. Suppose < is a valuation (Definition 2.2.8(1)). Then

(1) if E¢ Xfibs
(2) then <(fib) encodes a partial Fibonacci function, as per Definition 3.4.3.

Proof. We examine the clauses in Figure 5 and see that they correctly encode the definition in
Definition 3.4.1. The range checks 1 < fibs < len(fib) and 1 < fiby < len(fib) are there to exclude
out-of-bounds pointer errors. O

ReEmaARK 3.4.6. There are a few interesting observations to make about Definition 3.4.1 and Figure 5.

(1) Tt is not the case that ¢(fib) has to contain the entries of the Fibonacci sequence in order. Each
column has to contain a value a, the number fib(a), and (if a ¢ {0, 1}) it contains pointers to
two columns representing ‘recursive calls’. Where those recursive calls are located inside ¢(fib)
does not really matter.

(2) We put ‘recursive calls’ in scare quotes because these are not recursive calls to a computation. '
Definition 3.4.1 is famous in undergraduate courses because, if translated directly to code, it
is very inefficient; each call to fib creates two sub-calls, thus giving the program exponential
complexity.

A standard solution is to memoise the computation; store the results of previous calls and replace
them with lookups if the function is called again on the same input.
Figure 5 is already naturally memoised. Indeed, it is nothing more than a lookup-table. As we
noted in Remark 3.3.6, our logic is verifying (not computing!) a ¢.'°

L5Well ... it depends on your point of view. They are recursive calls, but in a computation that is a verification of another
computation that we assume has already been made.

16 A valuation ¢ could contain repeated columns, corresponding to repeated calls to the same function on the same inputs, but
this would be an inefficient prover; the verifier is still efficient on that (needlessly complex) input. Example 3.2.8 includes
some basic examples with duplicated columns; they could be removed, but beyond padding out the matrix they do no harm.
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Ack; (t) sugars to a(t)
Acks(t) sugars to out(?)

Ackso(t) sugarsto b(t)
Acky(t) sugarsto recl(t)

Acks(t) sugarsto rec2(t)

17

clausel(X) = (a(X)=0)A (out(X)=b(X)+1)
clause2(X) = a(X)=a(recl(X))+ 1A
b(X)=0 A
out(X) = out(recl(X))
clause3(X) = a(X)=a(rec2(X))+1A
b(X)=b(recl(X))+ 1A
out(X) =out(rec2(X)) A
a(recl(X))=a(rec2(X)) +1A
b(rec2(X)) = out(recl(X))
Xack = 1<recl<len(Ack) A 1<rec2<len(Ack)A

VX ack-(clausel(X) V clause2(X) V clause3(X))

Fig. 6: Expressing Ackermann’s function Ack(a, b) (Definitions 3.5.1 and 3.5.4)

So the complexity of the program implicit in Definition 3.4.1 is actually linear (not exponential),
because our semantics is in some sense inherently memoised.

RemArk 3.4.7 (Fast Fibonacci and algebraic extensions of Q). Optimised methods for computing
Fibonacci numbers exist. See for instance this webpage (permalink) and especially this webpage
(permalink), which uses the Binet formula — a paper on this topic exists [Das18], however, the
webpage incudes significant additional optimisations.

This is interesting because The Binet formula uses /5, which is irrational and so is not in Q, which
is the field we use in this paper. So what this example illustrates is that Q may not be enough: we may
wish to talk about roots of polynomials that are not rationals, such as 22 = 5, and if so, we might
need to consider algebraic extensions, such as Q(+/5). Technically, this should not be a problem.

3.5. Expressing Ackermann’s function
Ackermann’s function is another classic example. We check how it comes out in our framework:

DeriniTioN 3.5.1. Recall Ackermann’s function Ack(a, b) for a,b € N>, defined by:

Ack(0,b) = b+ 1
Ack(a+1,0) = Ack(a,1)
Ack(a+ 1,04+ 1) = Ack(a, Ack(a + 1,b))

DEerINITION 3.5.2. Assume a matrix variable symbol Ack with arity arity(Ack) = 5. We can think of
this as a five-row matrix.

We will use our logic to express a validity predicate xack that Ack encodes a (partial) Ackermann
function, such that:

(1) Row 1 (values of Acky (X)) stores input values a.

(2) Row 2 (values of Acks (X)) stores input values b.

(3) Row 3 (values of Acks(X)) stores result values Ack(a, b).

(4) Row 4 (values of Acks(X)) stores an index of a column in the Ack matrix, corresponding to the
first recursive call to Ack in clauses 2 and 3 of Definition 3.5.1.

(5) Row 5 (the values of Acks (X)) stores an index of another column in the Ack matrix, corresponding
to the second recursive call to Ack in clause 3 of Definition 3.5.1.


https://www.nayuki.io/page/fast-fibonacci-algorithms
https://web.archive.org/web/20240413071256/https://www.nayuki.io/page/fast-fibonacci-algorithms
https://mancap314.github.io/fastest-fibonacci.html
https://web.archive.org/web/20240509194316/https://mancap314.github.io/fastest-fibonacci.html
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DErINITION 3.5.3. Suppose n € N>;. Say that a 5 x n matrix M encodes a partial Ackermann’s
function when

Vi<e<n.M(3,z) = Ack(M(1,z), M(2,x)).
DEerintTION 3.5.4. In Figure 6 we

(1) define syntactic sugar,
(2) use it to express the clauses from Definition 3.5.1, and
(3) write a validity predicate yack to express that Ack encodes a partial Ackermann function.

LemwMma 3.5.5. Suppose < is a valuation (Definition 2.2.8(1)). Then

(1) lf 'ZC XAck
(2) then ¢(Ack) encodes a partial Ackermann function, as per Definition 3.5.3.

Proof. We examine the three clauses in Figure 6 and see that they correctly encode the definition
in Definition 3.5.1. The range checks 1 < Acky < len(Ack) and 1 < Acks < len(Ack) are there to
exclude out-of-bounds pointer errors. O
3.6. Bitwise representation

Unsigned 64-bit integers — the familiar uint64 datatype — are a standard datatype of practical
interest. It is straightforward to represent them:

DeriniTION 3.6.1. We express that ¢ is equal to zero or one (i.e. that ¢ represents a single bit of binary
data) using a little syntactic sugar:

isBinary(t) issugarfor t=0Vi=1.
Unpacking Figure 2, isBinary(t) corresponds to a polynomial #2 x (t — 1)

DEeriNITION 3.6.2. Assume a matrix variable symbol uint64 with arity(uint64) = 65, which we can
think of as representing a 65-row matrix.

(1) Row 1 should store a whole number 0 < n < 254, and
(2) rows 2 to 65 should store its binary expansion (with smallest bit first).

Validity of uint64 is simply

Xuint6d = VXuint64- (uint641 (X) = ZOg(iEN20)<64 21 * uint64i+2(X) A
isBinary (uint64,(X)) A ... A isBinary(uint64s5(X)))

This just asserts that for each column in uint64, elements 2 to 65 of that vector do indeed store bits
representing the binary representation of element 1.

LemMmA 3.6.3. Suppose < is a valuation (Definition 2.2.8(1)). Then the following are equivalent:

(1) E¢ Xuintea for Xuintea as defined in Definition 3.6.2.
(2) <(uintb4) encodes a list of bitwise expansions, by which we mean precisely that
V1 < 2 < len(s(uint64)). s(uint64)y (z) = > 2" xc(uint64);5(x).
0<(i€N>() <64
Proof. We examine Y inte4 in Definition 3.6.2 and using Theorem 2.3.4 and basic arithmetic see that
this is precisely what it encodes. Note that there are no range checks, pointers, or recursive calls

involved; this is just straightforward arithmetic. Note also that 2° is in the predicate above is just a
number (not a power of X), so has degree zero in X. O

ReEMARK 3.6.4. We get a decimal representation just by generalising isBinary to isDecimal:

isDecimal(¢) issugarfor t=0Vit=1V...V{=9.
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4base 10

and use a matrix variable symbol uint6 with validity predicate

clause(X) = (uint64y" *(X) = Y0 (ien, ) <ps 107 * Uint64755 10 (X) A
isDecimal(uint645° '°(X)) A ... A isDecimal(uint64gs° '*(X))).

We can also nest representations and for example represent a number in the range 0 to (264)54 by
taking its 64-digit expansion base 264.

3.7. Range check

Remark 3.7.1. The clause for the range check < in Figure 2 is very simple — just check that the
relevant row in the matrix satisfies the required bound, and return 0 if it is satisfied and 1 if it is not.
However, later on in Subsection 5.1 it will be convenient to express < inside the language without <.

In particular, we see from our examples — such as those in Figures 3 and 6 — that we typically
want to prove range checks that have an upper and lower bound, having this form:

1< C; <len(Q).
We can translate predicates of this form into ones that does not mention <, as follows:

DEerINITION 3.7.2. Suppose [, 7 € Z and [ < r. Then define a polynomial range; ,.(X) by
range, .(X) = (X=))V(X=I+1)V...V(X=r-1)V (X =1).

(range, . is closely related to the zeroes polynomial which we define later in Definition 5.1.2. The
difference is just that range is a predicate in our logic.)

Remark 3.7.3. Range checks are special cases of set membership assertions. Succinct (and zero
knowledge) set membership schemes are a field of research in their own right ((BCF'23] contains a
recent survey). So: the schema in Definition 3.7.2 may not be optimal and in a practical implementation
of these ideas we might wish to improve it further, but for proof-of-concept Definition 3.7.2 will
serve our purposes perfectly well, and it has the benefit of being very simple. Lemma 3.7.4 says that
it does what we need it to do:

LemMA 3.7.4. Suppose < is a valuation. Then the following are equivalent:

) B 1< C; <len(C).
@) ':§ VXC'rangel,len(C)(Ci(X))'

Proof. <(C) is by Definition 2.2.8(1) an integer matrix, and the polynomial [range; ,.] by construction
in Definition 3.7.2 and Figure 2 has zeroes precisely at the integers between [ and r inclusive, which
by Notation 2.2.4 and Figure 2 is precisely what 1 < C; < len(C) checks. O

RemARK 3.7.5. If ¢(C) is a very long matrix then [range; jen(c)(Ci(X))] might be alarge (high-degree)
polynomial. But, in the context of the succinct proofs that we will consider later in Subsection 5.1,
this may be is a worthwhile tradeoff.

Remark 3.7.6. We can also exploit uint64 from Subsection 3.6 to do a simple range check. Assume
a matrix variable symbol range64 with arity(range64) = 2, and with validity condition

clause(X) = 1< range64, < len(uint) A (range64,(X) = uinty(range64,(X))).
Intuitively, we can think of the above as follows:

(1) range64,(X) holds some number n.

(2) range64,(X) holds a pointer to a proof in uint64 that n has a 64-bit representation.

(3) The pointers in range64, must be in-bound for the addressable range in uint; i.e. they must be
numbers between 1 and len(uint64).

The above can only happen if 0 < n < 254, so this all amounts to doing range checks.
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!terfyl(t) sugars to a(t) !terﬁg(t) sugars to b(t) _
itery 3(t) sugars to out(t) iters 4(t) sugars to rec(t) iters5(t) sugars to callf(t)
clausel(X) = (a(X)=0) A (out(X)=b(X))
clause2(X) = a(X)=a(rec(X))+1A
b(X) =b(rec(X)) A
out(X) =fa(callf(X)) A
f1(callf (X)) = out(rec(X))
Xiter; = 1< rec<len(iter) A 1< callf <len(f) A

V Xiter,-(clausel(X) V clause2(X))
Fig. 7: Expressing iter ¢(a)(b); a-fold application of f to b (Definitions 3.8.1 and 3.8.2)

3.8. lteration
DerintTION 3.8.1. Recall that if f : Z — Z is a function and a € N>, then the a-fold iteration

a times

—_——

iterg(a) : Z — Z of f is the function that inputs b € Z and returns (f o --- o f)(b).

This can be defined by:

iter;(0)(b) =0
iter¢(a + 1)(b) = f(iters(a)(b))

DeriniTION 3.8.2. Assume a binary propositional constant symbol f, with arity arity(f) = 2, along
with a validity predicate xf which expresses that f3(X) = f(f1(X),f2(X)). We can think of this
intuitively as a matrix of columns all having the form (a, b, f(a, b)), for various values of a and b.
There is no obstacle to having more rows, as we did for instance in Figure 6; we take three just for
simplicity.

We now assume a binary propositional constant iter s with arity arity(itery) = 5. In Figure 7 we
use our logic to express that itery encodes an a-fold iteration of f on an input value b, such that:

(1) Row 1 (values of itery 1 (X

(2) Row 2 (values of iters o (X)) stores input values b.

(3) Row 3 (values of iter s 3(X)) stores result values iter s(a)(b).

(4) Row 4 (values of iter; 4(X)) stores pointers to recursive calls to iter s, as required in clause 2 of
Definition 3.8.1 above.

(5) Row 5 (values of iter s (5, X)) stores pointers to calls to f, corresponding to the call to f in clause 2
of Definition 3.8.1 above.

)) stores the number of iterations a.

DeriniTION 3.8.3. Suppose f : Z — Z is a unary function and suppose n € N>;. Say thata b x n
matrix M encodes a partial iteration of / when

Vi<e<n.M(3,z) = fMOD(M(2, ).
Lemma 3.8.4. Suppose < is a valuation (Definition 2.2.8(1)). Then
(1) if F¢ iterfValid
(2) then <(iterf) encodes a partial iteration of f, as per Definition 3.8.3.

Proof. We examine the clauses in Figure 7 and using Theorem 2.3.4 see that they do indeed encode
the definition in Definition 3.8.1. The bound checks 1 <iter, <len(iter) and 1 <iters <len(f) exclude
out-of-bounds pointer errors.

ReEmARK 3.8.5. We see no inherent barrier to mutual inductive definitions. We just declare several
matrix variable symbols and engineer pointers between them for the (mutual) inductive calls.
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3.9. SK combinators
DeriNITION 3.9.1.

(1) Combinator expressions are a formal syntax defined by:
tu=S5|K|tt.
So a combinator is either an S, a K, or an application of a combinator term to a combinator
term.
(2) A big-step evaluation relation for combinators is as follows: '’
sis sulls tult st v
—— (Ki)  ——(Si) ——— (Ke) (Se)
K| K S4S (Ks)t | s (Ss)t)u J v
Remark 3.9.2. Combinator expressions and their evaluation form a Turing-complete model of com-
putation (see [Bim20] or [Bar84, Chapter 7].'®
So, to specify combinators inside our logic is to build a Turing-complete model of computation
inside it, which demonstrates that (at least in principle) it has a certain computational content.
We start with a trick that will make our encoding a little more compact:

DEeFINITION 3.9.3.

(1) The Cantor pairing function is a well-known way of bijecting N> x N>q with N>q. It has the
characteristic that it can be expressed as a polynomial over Q (indeed, this is the only quadratic
polynomial pairing function) [Nat15]:"

z+y)*x(r+y+1 22+ 3xx+ 2%y +y+y>
<x’y>/:( y) (2 y+h) .- . yty+y 0
(2) The pairing function (z, y)’ above is not quite what we need, because we want to reserve 0 to

represent the combinator S and 1 to represent the combinator K. Accordingly, we adjust it with
a two-element offset:

<$7y> = <$,y>/ +2.

(3) We then define a Gédel encoding® from the syntax of combinator expressions (Definition 3.9.1(1))
to N, which is an injection defined by:

gdl(S) =0 gdi(K)=1 gdl(tt'") = (gdl(t), gdl(t")).
It is routine to prove that this injection is actually a bijection between combinator expressions
and the nonnegative natural numbers N> .

ReEMARK 3.9.4. In Equation (1) in Definition 3.9.3, we divide by 2. If we want a polynomial with
coefficients over Z we could just as well use (x, y)’ * 2, and retain integer coefficients throughout.
We would lose bijectivity of the pairing function, but in the context of this prototype that would be
fine too.

DEeFINITION 3.9.5. Assume a matrix variable symbol evl with arity arity(evl) = 8, which we can
think of as storing an 8-row matrix. In Figure 8§, we

(1) define syntactic sugar,

(2) use it to express the clauses from Definition 3.9.1, and

(3) write a validity predicate x sk to express that evl encodes a partial combinator big-step reduction
relation.

7The ‘i’ in the name (Ki) and (Si) is short for ‘introduction’, and ‘e’ in the name (Ke) and (Se) is short for ‘elimination’.
These are just names we gave the rules.

18 A quite clear treatment is available online here (permalink).

19Clear and accessible accounts of the Cantor pairing function are also on Wikipedia here and here.

20By which we mean an injective map from the syntax of a language to natural numbers. Such maps are so called because
Godel used one such in his 1931 paper on incompleteness results.


http://people.cs.uchicago.edu/~odonnell/Teacher/Lectures/Formal_Organization_of_Knowledge/Examples/combinator_calculus/combinator_calculus.html
https://web.archive.org/web/20230307183658/http://people.cs.uchicago.edu/~odonnell/Teacher/Lectures/Formal_Organization_of_Knowledge/Examples/combinator_calculus/combinator_calculus.html#SECTION00030000000000000000
https://en.wikipedia.org/wiki/Pairing_function#Cantor_pairing_function
https://en.wikipedia.org/wiki/Fueter%E2%80%93P%C3%B3lya_theorem
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0 sugarsto S 1 sugarsto K
evaly (t) sugarsto lhs(?) evaly(t) sugars to rhs(?) evals(t) sugarsto s(t)
evaly(t) sugars to t(¢) evals(t) sugars to u(t)
evalg(t) sugars to recl(t) evalr(t) sugarsto rec2(t) evalg(t) sugarsto rec3(t)
clausel(X) = Ihs(X)=S A rhs(X)=S
clause2(X) = Ihs(X)=K A rhs(X)=K
clause3(X) = Ihs(X) = ((K, Ihs(s(X))), t(X)) A
rhs(X) = rhs(recl1(X)) A
lhs(recl(X)) =s(X)
clause4(X) = lhs(X) = ({(S, (X)), t(X)), u(X)) A
rhs(X) = rhs (rec3(X)) A
Ihs(recl(X)) = (s(X), t(X)) A
lhs(rec2(X)) = (s(X), u(X)) A
lhs(rec3(X)) = (rhs(rec1(X)), rhs(rec2(X)))
xsk = 1<recl<len(ev <rec2<len(evl) A 1<rec3<len(evl) A

H A1
VXeui-(clausel(X) V clause2(X) V clause3(X) V clause4(X))

Fig. 8: Expressing big-step evaluation of combinator expressions (Definitions 3.9.1 and 3.9.5)

REMARK 3.9.6. We read through the rows in evl one by one:

(1) Row 1 represents the left-hand (unreduced) term.

(2) Row 2 represents the right-hand (reduced) term.

(3) Row 3 represents a subterm s of the term on the left-hand side (as required in rules (Ke) and
(Se)).

(4) Row 4 represents a subterm ¢ (as required in rules (Ke) and (Se)).

(5) Row 5 represents a subterm u (as required in rule (Se)).

(6) Rows 6, 7, and 8 represent pointers to proof-obligations above the line (= inductive function-calls)
as may be required: none are required for (Ki) and (Si); one is required for (Ke); and three are
required for (Se).

DEriNiTION 3.9.7. Suppose n € N3i. Say that an 8 X n matrix M encodes a partial big-step
combinator reduction relation when

V1 <z <ngd (M, 2)) 4 gdi™* (M2, x)).

Above, the | relation is defined in Definition 3.9.1. The gdl function bijects combinator expressions
with nonnegative natural numbers (Definition 3.9.3(3)).

Lemma 3.9.8. Suppose < is a valuation (Definition 2.2.8(1)). Then

(1) if ¢ xsk,
(2) then ¢(evl) encodes a partial combinator big-step reduction relation, as per Definition 3.9.7.

Proof. We examine the clauses in Figure 8 and using Theorem 2.3.4 see that they do indeed encode the
definition in Definition 3.9.1. This is a little bit fiddly because of the Godel encoding of the combinator
syntax, and the fact that there are four derivation rules, and one of them has three subderivations, so it
is a challenge to not make a typo or miss out a bit of a rule — but conceptually this is a straightforward
translation from one logical syntax into another. O

RemMARrk 3.9.9. We use the Cantor pairing function to build a simple Godel encoding that packs a
combinator term into a single number. We might prefer instead to store a combinator term as a list or
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as a tree of symbols. This is possible: it would add complexity to the representation above and thus to
its validity predicate, but would not change the fundamental nature of what we are doing.

4. FROM RANGE CHECK TO GENERAL RECURSION
4.1. Simple functions obtainable directly from the range check

ReEMARK 4.1.1. A curious feature of our syntax in Figure 1 is the range check predicate <.
Our logic does not have a ‘runtime’ and a ‘compile time’ as such, but < has the flavour of a static
‘compile time’ check, in the sense that (for example) given ¢, [vft < C;]_ computes a number rather

than a polynomial in X.?!

In the examples above, we use range check to check for out-of-bounds pointer errors (see Exam-
ples 3.2.8 and 3.2.9 for concrete examples). But what is the range check really doing, and what is its
full power? In this section we will examine this operator in more detail. We start by using the range
check to specify some simple predicates and functions:

4.1.1. Strictly positive numbers pos
DerinNtTION 4.1.2 (Strictly positive numbers). Assume a matrix variable symbol pos with arity(pos) =
1 and validity predicate

Xpos(X) = (0 < posy ).
Lemma 4.1.3. Suppose < is a valuation. Then the following are equivalent:

() F¢ Xpos-
(2) <(pos) is a I-row matrix (i.e. a vector) of strictly positive integers in Nx.

Proof. This is exactly what the clause for range check in Figure 2 expresses, for 0 < pos; . O

Remark 4.1.4. We introduce a strict inequality < rather than an inequality < in Figure 1 so that we
can express being strictly positive pos. If we took < as primitive, it would be harder to express pos.
This is because our logic does not include negation as primitive, so we cannot just express pos from a
combination of < and #.

4.1.2. The sign function sign and its corollary functions

DeriniTION 4.1.5. We define functions

sign: Q= {-1,0,1} CQ
isZero : Q — {0,1}
neg : Q — {0,1}
neq : (Q x Q) — {0,1}
leg : (Q x Q) — {0,1}
such that for a, b € Q:
0 ifa=0
sign(a) =<1 ifa>0
-1 ifa<O
. 0 ifa=0 1 ifa=0
”ZQTO(“){1 ifa#0 "eg(a){o if a0

0 ifa#b 0 ifa<bd
neq(a’b):{l ifa=b leq<a’b):{1 ifa b

2180 we can still say that our semantics is polynomial, even though vft < C; does not look like a polynomial expression: it
evaluates to a number [vft < C;]_, and a number is trivially a polynomial.
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REMARK 4.1.6. sign is the fundamental entity in Definition 4.1.5, and isZero, neg, neq, and leg
follow from it, in the sense that we can derive everything using polynomial expressions using sign:

isZero(a) = sign(a)?

neg(a) =1 — isZero(a) = 1 — sign(a)?
neq(a,b) = nfag(a -b=1 - (sign(a — b))?
leq(a,b) = sign(a — b) * (sign(a — b) — 1)/2

We can use pos from Definition 4.1.2 to express sign, isZero, neg, neq, and leq from Defini-
tion 4.1.5:

DEerINTTION 4.1.7. Assume matrix variable symbols sign, isZero, and neg all with arity 3, so that
arity(sign) = arity(isZero) = arity(neg) = 3.

(1) Sugar sign,(X) to sign.in(X). This stores an input value a.

(2) Sugar sign,(X) to sign.out(X). This stores the corresponding output value sign(a).

(3) Sugar sign4(X) to sign.ptr(X). This stores a pointer to a column in pos; (Definition 4.1.2)
holding the absolute value of a.

We use similar sugar for isZero and neg. The validity predicates for sign, isZero and neg (using pos)
are:

Xsign (X) = 1 <sign.ptr <len(pos) A
VX.( (sign.in(X)=0Asign.out(X)=0) Vv
(sign.in(X) = pos, (sign.ptr(X)) A sign.out(X)=1) vV
(((-1) * sign.in(X)) = pos, (sign.ptr(X)) A sign.out(X)=-1))

Xiszero(X) = 1 <isZero.ptr <len(pos) A
VX.( (isZero.in(X)=0A isZero.out(X)=0) V
(isZero.in(X)? = pos, (isZero.ptr(X)) A isZero.out(X) =1))

Xneg(X) = 1 < neg.ptr <len(pos) A
VX.( (neg.in(X)=0A neg.out(X)=1)V
(neg.in(X)? = pos, (neg.ptr(X)) A neg.out(X) =0))

Assume matrix variable symbols neq, and leq with arity 4, so that arity(neq) = arity(leq) = 4.

(1) Sugar neq;(X) to neq.a(X). This stores an input value a.

(2) Sugar neq4(X) to neq.b(X). This stores an input value b.

(3) Sugar neq;(X) to neq.out(X). This stores the corresponding output value neq(a, b).

(4) Sugar neq,(X) to neq.ptr(X). This stores a pointer to a column in pos; (Definition 4.1.2).

We use similar sugar for leq. The validity predicates for neq and leq (using pos) are:

Xneq(X) = 1< neq.ptr Slen(pos) A
VX.( ((neg.a(X) — neq.b(X))=0A neq.out(X)=1) V
((neg.a(X) — neq.b(X))? = pos, (neq.ptr(X)) A neq.out(X)=0))

Xieq(X) = 1 < leq.ptr <len(pos) A
VX.(((leq.a(X) — leq.b(X)) =0 A leq.out(X)=0) V
((leq.b(X) — leq.a(X)) = pos; (leq.ptr(X)) A leq.out(X)=0) V
((leq.a(X) — leq.b(X)) = pos, (leq.ptr(X)) A leq.out(X) =1))
Lemma 4.1.8. Suppose f € {sign, isZero, neg, neq, leq} is one of the functions from Definition 4.1.5.

Then the corresponding validity predicate x¢ from Definition 4.1.7 correctly encodes f, in the formal
sense that — taking the corresponding f € {sign,isZero, neg, neq, leq} — for every valuation s, if
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F¢ Xpos (Definition 4.1.2) and . xs then for every 1 < (x € N>1) < len(s(f)) we have

<(sign)(2, z) = sign(s(sign)(1, z))
¢(isZero)(2,x) = isZero(s (lsZero(l7 x)))

<(neg)(2. 2) = neg(<(neg) (1, z))

s(neq)(3, ) = neq(s(neq)(1, z),<(neq)(2, 7))

<(leq)(3,2) = leg(s(leq) (1, 7). <(leq) (2, 7))
Proof. The functions in Definition 4.1.5 are simple enough, and so are the validity predicates in
Definition 4.1.7. We check the correspondence and use Theorem 2.3.4. O
REMARK 4.1.9.

(1) There is some apparent overlap between #sZero from Definition 4.1.5 and the ‘is equal to zero’
function Az.[X = 0](x) = Az.x? which we can build from the syntax and denotation in Figures 1
and 2.

But these are different functions: with #sZero, the output is either O or 1, whereas with Ax.x? the
output may be any nonnegative value. For example:

isZero(2) =1 whereas [2=0] =4

as per Figure 2.

Knowing that the output is precisely equal to O or 1 is a stronger property, and it matters because

(for example) we can then easily get the ‘negation’ predicate (mapping O to 1 and any nonzero

value to 0) as 1 — isZero(a). We cannot do this with Az.[X = 0](z) = \z.22.

(2) neg is short for negation. It maps 0 (corresponding to ‘truth’) to 1, and any nonzero value

(corresponding to ‘false’) to 0.

This is a negation, and we have:

(a) We have excluded middle, since a * neg(a) = 0 for every a € Q.*

(b) a+ neg(a) # 0 for every a € Q. This equals a if a # 0, and equals 1 if a = 0.7

(c) Double negation neg(neg(a)) maps 0 to 0 and any nonzero element to 1.
If we think of a truth-value a € Q>¢ as being either 0 or a nonzero ‘error value’, then
neg(neg(a)) throws away the precise error value and just retains the information whether a
was true or false.

neg is not unique with the properties above; e.g. neg’ mapping a to 2 * neg(a) has similar

properties. This is as expected and it just reflects that there are many false (= nonzero) values.

4.1.3. Back from pos to the range check

RemaRrk 4.1.10 (From pos back to <). We saw above how, in the presence of the rest of the logic, the
range checks vft < t and t < vft can express predicates for strictly positive numbers (Definition 4.1.2),
and a sign function (Definition 4.1.5).

We take a moment to note that we can also go in the other direction, from pos to range checks. Let
us for this Remark take a pos predicate as primitive in our syntax.

We can express the range check

uft<C; as VXc.pos(Ci(X) — uft),
and
Ci<uft as VXc.pos(vft — C;i(X)).
Thus in some sense, <, pos, and also sign are all doing the same thing.
22Excluded middle is the property ‘¢-or-not-¢’, which when filtered through our polynomial semantics from Figure 2 renders

as a x neg(a) = 0.
23This corresponds to ‘¢-and-not-¢’, which we expect to be false, i.e. nonzero.
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RemARrk 4.1.11. Continuing Remark 4.1.10, < is also clearly different from pos and sign, because
vft < C; is variable-free and so has the flavour of a static check on the valuation ¢, whereas pos(x)
and sign(x) have the flavour of being predicates.

Yet, in the context of the rest of the system they have the same expressivity. What deeper structure
is being manifested here?

We propose that at a deeper level, what these constructs do is introduce the power of a knowledge
modality. This is a modal operator that internalises some notion of necessitation, truth, knowledge, or
provability inside the logic itself [Ver24] — that something is not just true or false, but also known to
be such, proved to be such, or necessarily such, etc.

A feature of the notion of ‘false’ in our logic is that it is modelled by being nonzero, and there are
infinitely many nonzero numbers so we cannot explicitly enumerate over all the possible ways of
being false within our logic.>* What is significant about <, pos, and sign is not so much what they
detect (though this is of course relevant); what really matters is that they map the truth or falsity of
what they measure, to a finite set of values ({0,1} or {0, 1,-1}), and this is where the effect of a
knowledge modality comes from.

What makes < special, and better to use as a primitive than pos and sign, is that it still has a
polynomial semantics — because (as we mentioned in Remark 4.1.1) [vft < C;]_ returns a number,
which is a polynomial. More on this in future work.

4.2. Representing arbitrary functions in terms

REMARK 4.2.1. The term language in Figure 1 does not accommodate arbitrary functions f : Q" — Q.
This is by design, since Figure 2 presents a polynomial semantics. But it would be nice if we could have
our cake and eat it too: use arbitrary functions in our terms, and still get the goodness of polynomial
expressions.

This is impossible in the general case, but we do not need the general case: a simple polynomial
approximation is sufficient. So, we will use a matrix variable symbol f, with a validity predicate that
expresses that f approximates the desired function f.

4.2.1. Enriched syntax and its compilation back down to unenriched syntax. Suppose we have
the following scenario:

(1) Suppose we have some function f : QQ — Q. (For simplicity we assume f is unary, but functions
with more arguments can also be accommodated.)
(2) Suppose we have represented f in our logic with
— a matrix variable symbol f of arity arity(f) > 2, and
— a validity predicate s, such that f; represents input values, and f5 represents output values. In
symbols, we write:

Fexr = V1< (zeNyxg) <len(s(f)).fa(z) = f(fi(z)).

Other rows may be present in f (see for example our implementation of sign in Definition 4.1.7,
which requires a third row of data). This is fine and will not affect our reasoning.

(3) Suppose we have another matrix variable symbol P with arity(P), and suppose P has a validity
predicate xp that uses an f-enriched term syntax, which enriches the syntax from Figure 1 such
that if ¢ is an f-enriched term then f(¢) is an f-enriched term.

There are no other restrictions on xp; it is just some predicate, but in the f-enriched syntax.
The denotation of the f-enriched term f(¢), is f applied to the denotation of ¢. That is, we enrich
Figure 2 with a clause

Lf 0] (z) = f([t].(2)- )

24This would not be solved by switching to a finite field. In practical terms, any finite field large enough to be cryptographically
secure is also large enough to be practically unenumerable. This is why cryptographic assurances work! Thus, modelling ‘true’
by a single value and ‘false’ by many values is not a bug of our semantics. Far from it; it reflects an essential feature of the
cryptographic notion of proof.
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We want to transform xp into another validity predicate xp such that

— Xp means the same thing as xp (in a sense we will make formal in Definition 4.2.3 and Proposi-
tion 4.2.4) but
— Xp is in the unenriched syntax, and it will replace calls to f with uses of the matrix variable symbol

f.
Specifically, in Definition 4.2.3 we will show how to transform

— a matrix variable symbol P with arity arity(P) and validity predicate yp that contains some
innermost instance of f(t),> into

— a matrix variable symbol P’ with arity arity(P") = arity(P)41 and a validity predicate yp: that
does not contain this instance of f(t).

Since syntax is finite, we can eliminate all instances of f from our validity predicate by repeating this
transformation.

ReEMARK 4.2.2. The idea that motivates the transformation outlined in Definition 4.2.3 is straightfor-
ward: we replace calls to f with pointers to a matrix that stores a polynomial approximation with the
same values at those calls. A polynomial can approximate a function at any finite number of points,
so we know this can work; the rest is just a matter of getting the technicalities right.

DerintTION 4.2.3 (The transformation). For clarity, we sugar f1(¢) to f.in(¢) and f2(¢) to f.out(¢).

(1) Looking at the syntax in Figure 1, we see that the instance of f(¢) must occur inside some
subpredicate ¢ = (t' =t"") where f(t) appears in ¢’ or t”. We obtain xp: from yp by replacing ¢
in xp with

(fin(Py 1 (X)) =1) A S[f(t) = fout(P), (X)),

where ¢[f(t) — f.out(P;,,;(X))] denotes the predicate obtained by replacing any instances of
f(t) in ¢ (of which we assumed there is at least one) with f.out(P;, | (X)).

Using Theorem 2.3.4 we see that xp expresses (subject to range checks which we will add below)
that the value in P;,__; (X) points to a column in f that contains (¢, f(t)).

(2) We repeat the transformation above until there are no mentions of f left. The result is a matrix
variable symbol P of arity arity(P™) = arity(P) + n (where n is the number of times we
applied our transformation), and with validity predicate xp().

(3) Now we just need to wrap this in range checks to prevent out-of-bounds pointer errors in the
extra rows, so we set:

Xb = Xpon A (1< P <len(f)) A ... A (1< P <len(f)).
ProposiTiON 4.2.4. Suppose < is a valuation such that =_ xs. Then the following are equivalent:
(1) E¢ xp in the enriched syntax and denotation described above — in which f(t) is a term if t is a
term, and [f(t)] (x) = f([t].(x)) as per equation 2.
(2) E¢ xp in the unenriched semantics.
Proof. The argument is already in Definition 4.2.3: calls to f are replaced by range-checked pointers
to columns in f. We have assumed that F. xf, and we have assumed that this implies that ¢(f)o(z) =

f(s(f)1(z)) for every column x in ¢(f), so that a call to f acting on some term in the enriched syntax
is precisely equivalent to a lookup in ¢(f) of a column starting with the denotation of that term. [

RemaARrk 4.2.5. Each step of the transformation in Definition 4.2.3(1) removes one innermost instance
of f(t) and increases the arity of the matrix variable symbol by 1 (modulo optimisations, e.g if f(t)
appears more than once). So we can say that, roughly speaking,

25Innermost’ means that ¢ does not itself contain some subterm of the form f(¢').
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each function-call to f costs an extra row in the validity matrix.

This is fine because it does not affect the width of the matrices, and so does not increase the degree
of the interpolating polynomials.”®

Overall, the process described above is not much different from what we do in ordinary mathematics,
when we define e.g. Kuratowski pairs as (x, y) = {{z}, {z, y}} and then proceed to use (z, y) directly;
or when we define and use functions in any modern programming language and expect that these
may be inlined, optimised, or compiled to a lower-level representation. In principle everything will
get unwound to some more primitive syntax, so we know we are safe, but the higher-level syntax is
more usable.

In a practical implementation of this logic, we might expect to provide functions as primitive, and
let the compiler translate them to a lower-level representation as described above.

4.2.2. A simple application: predicate complementation. We conclude by bringing together what
we have learned, to express negation as a macro. In more technical terminology: we will show that
our logic is complemented.

Recall from Figures 1 and 2 that our syntax and semantics do not include predicate negation .
This is because we have one ‘true’ truth-value 0, and many ‘false’ truth-values Q \ {0}.

However, in the presence of the rest of the logic, the range-check < allows us to implement negation
as a macro operation. We saw a strong indication of this in neg and neg from Subsection 4.1.2. This
negation acts at the level of terms, but using the ideas in this Subsection we can fold it back into our
logic.

Notation 4.2.6 and Theorem 4.2.7 are written in a syntax enriched with neg, as per Subsection 4.2.1:
NotaTion 4.2.6. Suppose ¢ is a predicate. Then we define ~¢ the complement of ¢ by”’

~¢ as shorthand for neg(term(¢))=0.

As described in Proposition 4.2.4, ~¢ can be compiled down to an unenriched syntax that assumes
a matrix variable symbol neg of arity 3 and a validity predicate Xneg as per Definition 4.1.7. This
licenses us to work directly with neg-enriched syntax, and we obtain Theorem 4.2.7:

THEOREM 4.2.7. Suppose < is a valuation and x € Q and ¢ is a predicate. Then
xEc~¢g ifandonly if xFo ¢.

Proof. By chasing definitions. The fact that this works is in itself a mathematical result that needs to
be checked, so we give full details:

1~y = [~o] (2) = Figure 2
|[neg(term(q§)) 0].(z) =0 Notation 4.2.6
—( neg(term(qﬁ))]]g 0)2(z) =0 Figure 2
<= [neg(term(¢))] (x) =0 Fact
<= neg([term( )}]c( )) =0 Equation 2 from Subsection 4.2.1
= [term(9)] (x) # Definition 4.1.5
= [¢].(z) #0 Figure 2
= zF ¢ Figure 2

The use of equation 2 from Subsection 4.2.1 above (i.e. treating neg as a primitive in our syntax) is
justified by Proposition 4.2.4. U

Theorems 4.2.7 and 2.3.4 taken together prove that our logic can translate the expressive power of
full first-order logic — at least! — into polynomials. Each step in the path to this is arguably quite
elementary, but the overall result seems surprising and powerful.

26Tall but narrow matrices are cheap; see Remark 6.2.1(2). Thus, a transformation that increases arity (and thus the height of
matrices) but does not affect their width, is free, to a first approximation.
27This implementation is not necessarily optimal, but it is simple.
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4.3. General recursion

We show how to implement a minimisation function, in the sense of general recursive func-
tions [DN24], in our logic.”® The construction below is rather fiddly, but this is worth doing because
it demonstrates that our logic is expressive enough to verify general recursion.

We already had a hint of this, because we specified Ackermann’s function in Subsection 3.5 and
this is known as a canonical function that is recursive but not primitive recursive. But here, we isolate
and implement a minimisation function in and of itself.

Recall the (standard) definition:

DeriniTION 4.3.1. Suppose f : (N>q x N*) — N.% Then define the minimisation 1(f) : N* — N
by

w(f)(x1,...,2,) = min{n € N>1 | f(n,2z1,...,25) = 0}.

In words: u(f) maps (z1,...,x) € NP to the least zero value of anf(n,zr,. .., k).

If no such zero value exists, so that {n € N>1 | f(n,z1,...,2;) = 0} = &, then the value of
w(f)(xq,. .., zx) is not specified.*’
ReMARK 4.3.2. We can think of u as generalising a while loop: given some parameters (1, ..., Tx) €
N*, w searches n € Nx>p and continues while the value of f(n,z1,...,z5) # 0. If
f(n,21,...,2,) = 0, then u stops and returns that (first) value of n.

Now we give a slightly lower-level version of Definition 4.3.1. It is still abstract, but it is closer to
what we would implement in our logic.

Norartion 4.3.3. Suppose U € N>; x N and b € N. Then define
Uy = {CL S Nzl | (a,b) S U}.

If Uy, is an initial segment of N> for every b € N, then call U initial in its first component.’'
Recall that sign is defined in Definition 4.1.5, and note that if we restrict sign to N then it maps to
{0,1}.

DEFINITION 4.3.4. Assume we are given the following data:

(1) A function f : (N>1 x N) — N (i.e. for simplicity we have set k¥ = 1 in Definition 4.3.1).
(2) AU C N> x N that is initial in its first component (Notation 4.3.3).

We specify a pair of functions
mingy,accyy U — N
(min ¢,y is short for ‘minimal point” and accy ¢ is short for ‘accumulator’) as follows:
1 < minsy(a,b)
a#1= minsy(a,b) =minsy(a—1,b)
f(mingu(a,b),b) < f(a,b)
a=1= accyy(a,b) = sign(f(a,b) — f(minsu(a,b),d))
a# 1= accyy(a,b) = accyy(a-1,b) * sign(f(a,b) — f(minsy(a,b),b))
mingu(a,b) #1 = accyy(mingy(a,b) —1,0) =1
We make sense of Definition 4.3.4 using a lemma:

Lemma 4.3.5. Continuing the notation of Definition 4.3.4, we have the following properties, for each
beN:

28The Wikipedia page gives a clear and accessible presentation.

29We starting counting at 1 in the first argument for the technical reason that we will be most interested in applying this to
identify columns in matrices, which we count from 1, not 0. There is no deeper mathematical significance here.

30 or undefined.

31 An initial segment I C N> issuchthatifa € I anda > 1thena — 1 € I. Note that & C N> is initial.
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muy 1(X) sugarsto ptr.min(X) muyo(X) sugarsto ptr.f(X)
f1(ptr.f(X)) sugarsto a(X)

fo(ptr.f(X)) sugarsto b(X) f3(ptr.f(X)) sugarsto f.ab(X)
muy 3(X) sugars to acc(X) muy 4(X) sugarsto ptr.prev(X)

Write ¢ # ' as shorthand for sign(t — t')? = 1. Write t < #' as shorthand for sign(t —t' +1)=1
Xu; = 1< ptr.min<len(mu) A 1< ptr.prev<len(mu) A1<ptr.f<len(f) A

VX | (a(X)=1 V ptr.min(ptr.prev(X)) = ptr.min(X)) A
(f.ab(ptr.min(X)) < f.ab(X)) A
< (a(X) =1A acc(X)= sign(f.ab(X) — f.ab(ptr.min(X)))) V > A
(a(X) # 1A acc(X)= sz’gn(f.ab(X)) - f)ab(ptr min(X))) * acc(ptr.prev(X)))

(a(ptr.min(X))=1 V acc(ptr.prev(X)
(a(X)=1 Vv a(ptr.prev(X))=a(X) —1) A
(a(

a(X)=1V b(ptr.prev(X))= b(X)))
Fig. 9: Expressing a minimisation operator x (Definition 4.3.6)

(1) Aa€Uy.ming y(a,b) is a constant function into N> 1.
Write 117,17 (b) € N1 for its unique value.
@ (ugo(b).b) < f(@.b) for everya € U,
Thus, f(py,0(b),b) is a lower bound for { f(a,b) | a € Up}.
(3) Furthermore, since f(pyu(b),b) = f(ugu(b),b), also f(psu(b)) is a greatest lower bound
for this set. Thus,
pr,u(b) € N>y is the index of a minimal value of A\a€Uy. f(n, b).
@ aceyu(a,b) = [i<icq sign(f(a,0) = pyu(0))-
We observe by arithmetic that this is equal to 1 or 0, and furthermore accy 7 (a,b) is equal to 0
precisely when f(i,b) = f(ps,0(b),b) for some 1 <i < a.
(5) If piy.u(b) > 1then accyy(pyu(b) —1,b) = 1, which means that py iy (b) < f(a,b) for every
1 <a< pusu(d). Thus,
pg,u (D) is also least such that \a€Uy. f(a, b) attains its minimal value.

Proof. Direct from the construction, as described in the statement of this Lemma. O

We can now implement minimisation in our logic, just by translating Definition 4.3.4 into it:

DerintTION 4.3.6. Suppose we are given a matrix variable symbol f whose first three rows f1, o, and
f3 are intended to represent the two input values a and b and one output value f(a,b) of a binary
function f : (N>; x N) - N.

Assume a matrix variable symbol mu; with arity arity(mu) = 4. In Figure 9, we define syntactic
sugar and use it to express a validity predicate x,, ,, based on Definition 4.3.4.

RemARrk 4.3.7. Note that in the predicate y, , in Figure 9 we use the function sign from Definition 4.1.5
directly in terms (its implementation in matrix semantics is in Definition 4.1.7). We can do this because
as per Subsection 4.2, the function call can be compiled down to the purely polynomial term language.
This is not a problem and our presentation in Figure 9 is more readable as a result.

A simple and natural bit of terminology will be useful in a moment:

DEFintTION 4.3.8. Suppose that:
() f:(N>; xN) = N.

(2) f with arity arity(f) > 3 is a matrix variable symbol.
(3) ¢ is a valuation.
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Then say that ¢ interprets f when

s(f)s(x) = fls(F)r(z),s(F)2(2))
forevery 1 < (z € N>1) < len(s(f)).

ProposiTioN 4.3.9. Suppose f : (N>1 x N) — N, and f with arity arity(f) > 3 is a matrix variable
symbol, and suppose < is a valuation that interprets f (Definition 4.3.8). Then

—IifE. Xpey (Figure 9),
— then [ptr.min(X)] (z) = pru([b(X)] ().

where we define U C N>; x N by
U = {[a(X)](2), [b(X)](z) | 1 < (v€Nz1) < len(s(mu)) }

(this is just a fancy way of setting U to be the set of (a, b) pairs over which ¢(mu) minimises).

Proof. We examine Figure 9 and see through careful inspection that it translates Definition 4.3.4 into
our logic: ¢(muy); corresponds to min s,y and ¢(muy)s corresponds to accy . O

RemARK 4.3.10. Proposition 4.3.9 does not describe the full minimisation outlined in Definition 4.3.1,
but this is only because minimisation implicitly contains an unbounded search, whereas a valuation ¢
delivers finite matrices.

This is reasonable, because it is the prover’s job to run a program and — after a finite time — it
must stop and present the ¢ it has generated. If the prover does not terminate then no ¢ is generated
and there is nothing for the verifier to do. So in our context, minimisation means finding minimal
values within a given run.

Thus Proposition 4.3.9 does the reasonable thing, which is to tell us that if we are given some
b € Nand a € N> and a ¢ that satisfies the validation predicates and for which ¢(mu) contains a
column which references f(a, b) — if all the above holds, then ¢(mu) will correctly identify the first
index 1 <4 < a to yield the lowest value of f(7,b) in the range 1 < ¢ < a.

4.4. Logic gates

We conclude with a small detour: how to encode a circuit of logic gates in our framework.

In one sense, considering logic gates is a waste: we already have predicates and terms, which are
higher-level and (as we have seen) compile to polynomials. Yet it is still an interesting exercise to
spell out how this might be done.

We will only implement a nand gate; this is known to be a universal logic gate from which all
others may be derived (see [Kup24] for a clear presentation), and it will also be completely clear
from the example of nand below how other logic gates could be directly implemented.

Recall from Remark 2.2.9(1) that we model O as ‘true’ and 1 as ‘false’, so the bits are flipped. nand
should return 1 (false) if both of its inputs are O (true), and O (true) otherwise.

DEerinITION 4.4.1. Tt is straightforward to encode NAND as a simple polynomial:
nand(a,b) = (1 —a) * (1 = b).

Now we want to connect our individual logic gates into circuits.
We could try to nest our gates as functions, but we see from Remark 3.2.12(4) that this would
result in polynomials of high degree; a more efficient method is available.

DEeFINITION 4.4.2. Assume a matrix variable symbol nand with arity arity(nand) = 5. In Figure 10,
we define syntactic sugar and use it to express a validity predicate xnand, based on Definition 4.4.1.

ReEMARK 4.4.3. We read through this carefully. Suppose we are given a valuation ¢ and consider
column number z in ¢(nand), which is a 5-tuple of elements (a, b, 7, p1,p2) € Z°:
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nand; (X) sugars to nand.a(X) nandy(X) sugars to nand.b(X)
nand3(X) sugars to nand.out(X)
nands(X) sugarsto a.ptr(X) nands(X) sugars to b.ptr(X)

Xnand = 0< a.ptr < len(nand) A 0< b.ptr < len(nand) A
VX and. ( (nand.out(X) = (1 — nand.a(X)) * (1 — nand.b(X))) A
(a.ptr(X)=0 V nand.out(a.ptr(X)) = nand.a(X)) A
(b.ptr(X)=0 V nand.out(b.ptr(X)) = nand.b(X)) A
(nand.a(X)=0Vnand.a(X)=1) A
(nand.b(X)=0V nand.b(X)=1))

Fig. 10: Expressing a circuit of NAND gates (Definition 4.4.2)

(1) a represents the first argument to the NAND gate. This must be equal to either 0 or 1.3

(2) brepresents the second argument to the NAND gate.

(3) r represents the result. Note that ynang insists that r = nand(a, b).

(4) p; represents either a null pointer 0, or it is a pointer to the output of some other gate. Note that
Xnand insists that the value of that output is equal to a; thus we ‘wire’ the output to the first input
of this gate.

(5) Similarly for ps.

Visibly this implements a circuit of NAND gates, where input wires are ones such that p; (or ps) is
zero, and output wires are outputs that are not pointed to.*> A more explicit encoding would also be
possible, but this will do.

REMARK 4.4.4.

(1) Circuits with multiple types of gate (AND, OR, NOT) could be encoded, either as distinct matrix
variable symbols with their own validity predicates, or by generalising Figure 10 directly with an
additional row of data to describe what type of gate is stored.

(2) The degree of the polynomial [Xnand], scales as O(n?), where n is len(s(nand)).

Our framework is not optimised for the special case of representing a circuit of simple logic gates,
but if we specialise anyway then this does not obviously incur any serious overhead.

5. EFFICIENCY: SUCCINCTNESS AND BUILTIN FUNCTIONS

5.1. Succinctness

ReEMARK 5.1.1. A succinct proof in the cryptographic sense is when a prover does a computation
and provides a certificate that can be checked by a verifier to verify (to a high degree of certainty)
that the computation has been correctly carried out.**

We will now illustrate how the maths in this paper leads to succinct proofs.

5.1.1. Some notation. It will be useful to give a name to the polynomial that is 0 on {1,...,n}:

32We impose this condition explicitly in Figure 10 as nand.a(X)=0V nand.a(X) =1 and similarly for nand.b; however, we
could also insist on 0 < nand.a < 1. Because a valuation ¢ returns an infeger matrix, this would suffice. These two methods
are however subtly different: if we care about zero knowledge then it may be that range checked values get exposed to the
validator. See point 2 of the discussion in Subsection 5.2.

33Note that in this system wires can be duplicated; the output of a gate can be wired to zero, one, or many outputs.

34Note: a succinct proof in the cryptographic sense is not a formal proof in the logical sense.
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DEriNITION 5.1.2. Suppose n € N>q. Define a polynomial zeroes,, over X inductively on n as
follows:

zeroesg = 1 zeroesp+1 = (X — (n+ 1)) x zeroes,,.
Thus for example:
zeroesy = 1 zeroes; = 1% (X — 1) zeroess = 1% (X — 1) (X —2) % (X — 3).
NorartioN 5.1.3. Suppose M is an integer matrix of size a x b and recall from Notation 2.2.7(2) that
M; denotes the ith row of M (which is a vector of length b), and intrpint(M;) (Definition 2.1.4)
is a polynomial that interpolates M; on {1,. .., b} (which means that intrpint(M;)(j) = M, ; for
1 < (jeNx1) < ).
Then define the polynomial interpolant of M
intrplnt(M) = (intrplnt(My), . . ., intrplnt(M,)).

Thus intrplnt(M) is an a-tuple of polynomials such that that ith polynomial interpolates the ith row
of M.

DeriniTION 5.1.4 (Tasks and solutions).

(1) Atask 7 is a finite set of pairs (C, ¢) such that for each (C, ¢) € T

(a) Cisa matrix variable symbol.

(b) ¢ is a quantifier-free predicate.

We may abuse notation and write

— C € T for “there exists a ¢ such that (C, ¢) € 77, and

— ¢ € T for “there exists a C such that (C, ¢) € T, respectively.
(2) A solution to a task consists of a pair (s, h), where:

(a) ¢ is a valuation such that

V(C,¢) € T. E. VXc.. 3)

Recall that the F. VX ¢.¢ notation is from Definition 2.2.8(4), and it makes sense because X
is not free in V.X¢.¢.
(b) h is amap that assigns to each (C, ¢) € T a quotient polynomial ic , € Q[X] such that

|[¢}]< = hc ¢ * 2€T0€S 1 (<(C)) -
Note that this is a polynomial equality in Q[X], not a numerical equality in Q. Recall that

len(c(C)) is the number of columns in the matrix ¢(C); the number of rows is always arity(C),
but the number of columns depends on the choice of s.

5.1.2. Applying Schwartz-Zippel. This Subsection does not solve the problem of succinct proofs
for tasks, but it will set the scene for the next Subsection.>

REMARK 5.1.5. Suppose that a prover wants to convince a verifier that it knows a solution (s, k) to a
task 7 (Definition 5.1.4). The prover could send (s, ) to the verifier and invite it to check F. VX¢.¢
for every (C, ¢) € T but this would defeat the purpose of having a prover and a verifier, since the
verifier is just duplicating the prover’s work and the network has to communicate all of ¢, which is
the prover’s data.

Now note that it would suffice for the verifier to check for each (C, ¢) € T the polynomial equality

ML = hc,¢ * 2€T0€S8en(<(C))

because this implies that [¢] (i) = 0for 1 < (i€ N) < len(c(C)) and F V.Xc.¢ follows.
So, we have replaced checking a quantification over 1, . . ., len(s(C)) with checking a polynomial
equality involving zeroes;q, s (cy)- How is this an improvement?

351f you are familair with this material then remember that some other readers might not be, and this paper is for them too; so
please either bear with me or just skip to the next Subsection.
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We start with something very simple, which is just to apply the Schwartz-Zippel lemma:

LeMMA 5.1.6. Suppose T is a task and suppose (s, h) is a claimed solution to T. We proceed as
Sollows:

(1) Foreach (C, ) € T, choose a random q € Q, and
(2) check that

[9].(q) = hc,g(q) * zeroesien(c(c))(q)-
If are these equalities hold, then with a high degree of probability (<, h) is indeed a solution to T.

Proof. By elementary properties of polynomials, if [¢] . and hc g * 2€70€81en((C)) are not equal
polynomials then they agree on at most d € N points, where d is the highest power of X in either
polynomial.

Thus if we choose ¢ € Q at random, it is almost certain to not be one of those points. This is the
basis of the Schwartz-Zippel lemma; we can check polynomial equality to a high degree of probability,
by checking equality at a random point [Tha22, Lemma 3.3, Subsection 3.4]. So, if we evaluate our
two polynomials at a random point and get the same answer, then they are almost certainly equal. By
the discussion in Remark 5.1.5 above, . VX ¢.¢ is proven (to a high degree of probability). O

ReEMARK 5.1.7. The scheme above is not what a cryptographer would call a succinct proof system.
Lemma 5.1.6 does save the verifier some computation, since for each (C, ¢) € T the verifier needs to
evaluate [@]_, hc, ¢, and zeroes e (¢(c)) at one point ¢ instead of atevery 1 < (z € N>1) < len(c(C)).

However, the prover still needs to communicate the full solution (g, k) to the verifier, and the
verifier still needs to directly evaluate large polynomials (albeit at a single point). There are ways to
make this more efficient, as we discuss next.

5.1.3. Checking solutions using inner product arguments. For concreteness we consider our
scheme for the case of the validity predicate for the power function from Subsection 3.2. This is a
simple example, but it illustrates the issues involved and it will be clear how to generalise to the
arbitrary case.

Recall the validity predicate Xpow for pow from Figure 3. Using Lemma 3.7.4 and Definition 3.7.2,
we can express this as the following simple task:

T = {(pow, ¢1), (pow, ¢2)}

where
$1 = rangey 1o (c(pow))(rec(X)) and ¢z = clausel(X) V clause2(X).

Above, range; ., (¢(pow)) is from Definition 3.7.2, and clause; and clause; and rec are from Figure 3.

The prover computes a solution (s, h) for this task. If the prover is honest and correct then by
Lemma 3.2.7 ¢(pow) encodes a partial power function (Definition 3.2.6).

The verifier should now choose some very large prime p — one that that is larger than any coefficient
or power mentioned in 7 or its solution (¢, h). Bearing in mind that ¢ and h are physically constrained
by the prover’s memory, a prime close to 22°¢ should suffice. The verifier communicates this p to the
prover.

The prover then homomorphically maps the equalities

[9i]c = Ppow,¢; * 2€T0€S 1en(c(pow)) TOri € {1,2}

into the finite field F(p) (which is isomorphic to Z/Zp). The prover and verifier will perform the
succinct check in F(p).*

36Note that we can do this even if our original logical assertion used conjunction, and even if we have done other things, such
as the Godel encoding of combinator syntax mentioned in Definition 3.9.3(3). We just have a polynomial in F(p) and we want
to check it.
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So now we have a polynomial equality over F(p). Note that ¢; and ¢o are fixed, because they
define the problem to be solved (namely: computing an exponential). The part that varies is ¢(pow),
and evaluating (the interpolants to) its rows; namely a (row 1 of ¢(pow)), b (row 2), out (row 3), and
rec (row 4).

This is made mildly more complicated because we evaluate not only at some x € F(p), but also at
values derived from x. To see how, we unpack our example of Figure 3 and note that to check

|[¢l]]g(x) = hPOW,¢7‘, (I) * Zeroeslen(((pow))(x) (mOd p)

it suffices to evaluate the following quantities — which the reader can check are the component
polynomials used in Figure 3 — mod p:

a(x), out(z), rec(z) =r, a(r), b(r), out(x), out(r), hpow,s; (),
mngeuen(g(pow))(x) and 2eroes jen (c(pow)) (7). (4)

Above, the value of rec(x) is re-used, so for brevity we give it the name 7.
Succinctly proving the evaluations should be straightforward by (for example) an inner product
argument [BCCT16]*7 — except for the values of 7a19€; jen(c (pow)) () and 267068 jen (< (pow)) (T)

which the verifier would need to compute itself.*®

Once the prover has proven to the verifier that it knows polynomials a, out, rec, b, and hpow, 6,
with suitable evaluations, the verifier can just perform a few IF,,-additions and -multiplications as per
Example 3.2.11, as follows:

[¢1]. () = rangey jen(c (pow)) (T)
[#2] () = (a(x)? + (out(x)—1)?)*
((a(z)=a(ra))? + (b(x)—(b(rs)+1))* + (out(x) — a(z)*out(rs))?)

We count fifteen additions or multiplications above, so this is very easy. Then, with two more
multiplications in [, the verifier checks that [¢;] () = hpow,s, (T) * 267065 1en (¢ (pow)) () for
i€ {1,2}.

ExaMPLE 5.1.8. Suppose a prover wants to prove to a verifier that 10> = 100. It can proceed as
follows:

(1) The prover publishes the predicate
d1 N d2 A (a(1)=10Ab(1)=2 A out(1)=100)
and computes a ¢ that makes this predicate valid.
(2) The prover and verifier perform the verification ceremony as described above. The verifier is
assured that the prover has a ¢(pow) such that that 0w, and furthermore the first column of
¢(pow) asserts that 102 = 100.

REMARK 5.1.9. Our scheme is sound and complete by construction, in the sense that by Theorem 2.3.4
we generate polynomial equalities that are valid if and only if the logical assertion is true (up to a high
degree of certainty in the sense of Schwartz-Zippel), and to prove these equalities valid, it suffices to
provide succinct proofs of their component parts as outlined above.

Still, the above is proof-of-concept; it remains to make it optimal. If these ideas were applied in a
real implementation, we would want to add more advanced techniques, to increase efficiency or to
attain a zero-knowledge proof (in which the verifier has no information at all about the solution ¢).

Fortunately such techniques are available off-the-shelf. A common practice to achieve zero-
knowledge is to apply recursive proof composition [BCCT13] on an existing SNARK. Similarly, since

37 An precise yet accessible survey, with references, is here.

38The difference is that range and zeroes are known polynomials; they are not arbitrary ones provided by the prover. If the
verifier lacks the computational resources to perform these computations then the task could be passed to a trusted service.
Note that this is a one-off cost, and so can be amortised over multiple clauses.
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the complexity of the verifier in an IPA scheme is linear in time, it is also possible to add another
layer of recursion using a SNARK of sublinear verification time. Halo2 [BGH19] leverages recursive
proof composition techniques to amortise verification costs by constructing an accumulation scheme
on a proving system based on the IPA. A KZG-based method should also be possible [KZG10] but
describing it is more complex. Investigating this is future work.

REMARK 5.1.10. Our translation from FOL to polynomials works for all FOL predicates, but the
schema for succinct proof above works only on (the translation of) predicates with a single universal
quantifier at top level (so a fragment of TI{ in the arithmetical hierarchy; but note Remark 6.1.1(6)).
This is all we need for our examples.

We suspect it is all we will ever need, in the sense that we suspect (but have not proved) that the
effects of nested quantifiers could be emulated using techniques similar to the encoding of arbitrary
functions described in Subsection 4.2. Checking this, or generalising the schema, is future work.

5.2. Built-in functions

Having considered cryptographic notions of efficiency in the previous Subsection, we now make a
few observations about making things run quickly on native silicon. In this case, we may prefer to
check some validity properties directly:

(1) We gave a polynomial circuit to check that a matrix expresses bitwise expansion of 64-bit unsigned
integers in Subsection 3.6. But bitwise operations may be rapid on underlying hardware — not
least because this is how numbers are represented anyway. In practice, rather than check a validity
predicate, a verifier might recognise that this is a bitwise expansion operation and prefer to just
traverse the matrix and check its correctness directly.

In a monolithic system, where everything has to run in an abstract machine built in arithmetic
circuits, this might be a bit problematic because it would involve stepping outside the abstraction
provided. Here, the system is very modular, so this may be less of a problem.

(2) The range check primitive < in Figure 1 can be checked rapidly in silicon.

If we are just using < to range check that pointers are in bound for the matrices they point to,
then information leakage would be minimal: all a validator would have is a set of pointers, but
without knowing how the prover has laid out its data in its matrices, this does not impart much
useful information. For extra security, the numbers could always be obfuscated.

Concretely, we would do this by providing pos from Definition 4.1.2 as a built-in matrix variable
symbol of infinite length — calls to the validity check of pos would just get passed directly to the
underlying silicon. As per Remark 4.1.10, just providing this would provide all the power of <.

So we see that if we just care about speed, then efficient checking in silicon for a small set of special
built-in validity predicates, like range checks and bitwise operations, should be fine. If we want a full
zero-knowledge treatment, such that the verifier never learns the precise witnesses used, this would
not be possible.

But even here, we might (depending on circumstances) be happy to accept a small amount of
information leakage, if this buys us enough efficiency. In particular, range checks for pointers could
be done outside of a zero knowledge wrapper and information leakage may be acceptable, if all the
verifier has is a bunch of pointers but no information about what they point to or how they connect.
This seems plausible, but working through how to do it in practice is future work.

6. CONCLUSIONS AND FURTHER WORK

6.1. Future work and other observations
REMARK 6.1.1. There are plenty of directions to go from here. For example:

(1) We have set up a shallow translation of logic to polynomials, and logical judgements to polynomial
equalities. An obvious next step is to engineer a practical proving system based on these ideas.
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We include an existential quantifier 3 in our syntax and semantics, but in practice a more efficient
technique might be to use Skolem functions [AZ20]. A Skolem function is just a way to replace an
existential quantifier with a function symbol; e.g. Vx.3y.x = y becomes A f.Vz.z = f(z). The f
can then be compiled down to a matrix variable symbol in our base syntax, using the techniques
in Subsection 4.2.

Thus mathematically, one way to view our matrix variable symbols is as Skolem functions.
Our polynomials are univariate, and correspondingly our first-order logic has just one variable
symbol X (and arbitrarily many matrix variable symbols). It would be natural to generalise to the
multivariate case — thus permitting X, but also X’ and Y, and so on, in Figure 1. This would
naturally give a translation to multivariate first-order logic, just by setting [X’] = X’ for each
variable symbols in Figure 2. Nothing in the maths in Figure 2 would be affected.

This might be convenient and useful for applying multivariate arithmetisation techniques, but we
do not think it would increase expressivity. It seems likely that we could emulate the multivariate
case using Skolem functions (as discussed above) and (functions representing) e-terms [AZ20].
Looking into this generalisation is future work.

We can consider extending the logic with constructs based on polynomial division. For instance,
define P\ @ to be P with any roots it shares with ) divided out. This would model non-implication
¢ 7> 1) (which can also be written as ¢ A —).

We could finesse the logic to make it resource-sensitive.

The validity judgement of our logic is clean and simple

z ke ¢ = [9](x) =0,

as per Figure 2. This just says that x is a root of [¢]_.
However, a polynomial is a multiset of roots, which suggests a validity judgement of the form

Fo (@ Fv) <= [ [] [4].

PP

This polynomial divisibility assertion is also extremely natural.

Note that this would change the logic; it would become resource-sensitive, in the sense of
linear logic. Whether this is a feature or a bug depends on what we want to achieve; see e.g.
Remark 3.2.12 which comments on the efficiencies of being able to remove repeated roots.
How powerful is our logic, really? In fact, extremely powerful.

The syntax in Figure 1 has a term-former term that maps predicates back down to terms. This
reflects the fact that in our semantics, terms map to polynomials, and so do predicates (predicates
map to non-negative polynomials, but a non-negative polynomial is still just a polynomial).
This is unusual and it makes the logic impredicative. We have called our logic ‘first-order logic’,
and this was not untrue since it comes with a specific intended model in which the variable X
ranges over numbers. But what that left unsaid at the start, for simplicity, was that our logic also
has an in-built encoding and decoding of predicates as terms; with term going from predicates to
terms, and ¢ = 0 going from terms to predicates (cf. Remark 2.3.6).

So this is FOL, but not just FOL, and the full expressivity of the syntax in Figure 1, with its
intended semantics in Figure 2 is a topic for future research.

Tree-structured data is a used pervasively in declarative programming. In light of this paper, it
would be interesting to give labelled trees additive and multiplicative structure sufficient to do
polynomial arithmetic directly over trees (something along these lines has been done [Tar16]) so
that, instead of working as we do in this paper with a ring of polynomials over rationals (Q[X]),
we could work with a ring of polynomials over trees: Tree[X]. Integers can already emulate trees
via a Godel encoding, but if we had polynomials with coefficients that already are trees, then we
might be able to avoid some encoding and decoding. This is speculative but would be interesting
to consider for future work.
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6.2. More on efficiency

We discussed efficiency and succinctness in Remarks 3.2.12 and 3.4.6(2) and Section 5. We make a
few more general observations, based on the following question:

How big do our polynomials get?
ReEMARK 6.2.1.
(1) When we succinctly check a polynomial equality

[9].(a) = hc,p(q) * zeroesien(c(c)) (@),

lower-degree polynomials are better because a) they are easier to evaluate and b) they have fewer
roots (so that a succinct check is less likely to give a false positive).

So we can ask what contributes to the degree of the polynomial that is [¢] . We disussed this in
the context of a simple but paradigmatic example in Remark 3.2.12.

One important point is that A maps to addition, which does not increase degree — we can say:
conjunction is free. Thus, succinctly checking a conjunction of validity predicates is no more
expensive than checking the most expensive (= highest degree) clause.

Thus, a program consisting of a large number of matrix variable symbols with relatively simple,
low-degree validity predicates, is better than a program with a smaller number of matrix variable
symbols with more complex validity predicates. This fits in nicely with a modular programming
philosophy, where we try to factor our system into a many relatively simple parts. The reader
will know that factoring a system into smaller pieces, where possible, is generally accepted as
good practice anyway — but here it has concrete mathematical implications: we get lower degree
polynomials.

(2) Having matrices with lots of rows is cheap, because rows do not directly increase the degree of
polynomials. Long interpolation vectors cost, because (as we noted in Definition 2.1.4(2) and
Remark 3.2.12(5)) a vector of length n requires in general a degree n-1 interpolating polynomial.
So we want to design our validation predicates to create tall but narrow matrices.

(3) So our question becomes:

What leads to wide matrices?
Broadly speaking, this is bounded by how many distinct function calls are made overall (‘distinct’,
because the system is naturally memoised; see Remark 3.4.6(2)).
Counting such calls is a familiar task; for example, exponentiation a” can be computed in O(In(b))
distinct calls (as discussed in Remark 3.2.14). So after all this discussion, our conclusion is fairly
straightforward:
(a) computation and control flow are free, and
(b) the cost of verification scales with the size of the longest deduplicated derivation chain.
Broadly speaking, this corresponds to the inherent complexity of proving something, so we can
say that our translation is efficient in the sense that it converts a logical problem into an arithmetic
one of roughly equal (and thus not much larger) complexity.

6.3. Other comments

RemARK 6.3.1 (Logic programming). Logic programming can be understood as the engineering of
predicates and derivation rules to make the search for derivation-trees computationally efficient (an
old but to-the-point research survey is in [MNPS89]).

Our examples in Section 3 show how we can encode computation using derivation-trees, as is
standard in mathematically structured programming. A so-called validity predicate xc expresses
when a matrix ¢(C) expresses a valid derivation-tree, and thus a valid computation. The reader can
think of ¢(C) as being a kind of ‘generalised computation trace’; just note that derivation trees are
not necessarily linear.

Given that this paper uses derivation-trees, and so does logic programming, is there a connection?
Yes, and no.
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For us in this paper, finding a valid derivation-tree / providing a suitable ¢ is for the prover. Many
methods for generating derivation-trees exist — including logic-programming systems, but also
rewrite systems, or just by some suitable evaluation strategy. What is true is that logic programming
is one way to efficiently construct derivation-trees, and our semantics consumes them, so there is a
natural match here.

REMARK 6.3.2 (Why matrices?). Why do we need matrices variable symbols in Figure 2? Why not
just encode all our information into natural numbers, as we do e.g. when we use a Cantor pairing
function to Godel encode combinator terms in Definition 3.9.3? Why not just do this or something
like it throughout?

We could try, but a key issue is our use of pointers. The reader can see in the examples in Section 3
how we use entries in our matrices to point to columns in matrices (we make an effort to really spell
this out in Examples 3.2.8 and 3.2.9). If we Godel encode all structure in natural numbers, then this
would be harder to do because we would have to unpack those pointers from the encoding before
using them. This is not necessarily impossible, but it would add layers of complexity which for now
we prefer to do without.

To put this another way: we use derivation-trees a lot in our semantics, and trees are graphs, and
graphs are labelled nodes with edges. There is a natural structural map from here to matrices, and
thence to interpolating polynomials and succinct proofs in the cryptographic sense. Other design
decisions may be possible, but this paper follows a(n in retrospect) natural structural path through the
mathematics.

REMARK 6.3.3 (Why Q?). We give predicates semantics as nonnegative polynomials in Q[ X ], interpret
truth as the number 0, and map A to +. This may seen counterintuitive: yes if x,y > O thenx+y = 0
if and on only if z = 0 A y = 0 — but we lose this property if we work in a p-element finite field
F(p), as is common in cryptography. How is this consistent with our semantics for A as addition?

The point is that once we have transformed our logical judgements into a polynomial equalities
over Q[ X] as per Figure 2 or Lemma 5.1.6, all we have is a polynomial equality. We are free to verify
this by the method of our choice, including mapping to a prime field (so long as the prime p is chosen
sensibly and large enough that Schwartz-Zippel works), and use whatever cryptographic apparatus
we wish. There is no contradiction between that and our use of Q.

RemMARrk 6.3.4 (FOL truth vs. FOL derivability). This paper maps FOL judgements directly to
polynomial equalities (Figure 2), such that valid (true) judgements map to valid (true) equalities.

Another approach to encoding FOL is to map its syntax and derivation-trees to polynomials with a
circuit that identifies the (encodings of) well-formed derivation trees. That is also a good approach,
but it encodes derivability, not validity. To see how these differ, consider the FOL predicate 0= 0.
This is valid, since 0 is equal to 0; and it is derivable by the equality right-derivation rule. As per
Figure 2 [0= 0] = 0, which represents ‘true’. Thus, [0= 0] _is true because it literally is true; indeed
no reasoning or circuitry is required in this case; it is just a fact! An arithmetisation of FOL that uses
derivability would encode a (simple) derivation tree like this

To=o TR

along with a circuit expressing that this is well-formed. This also makes sense, but it is a different
approach.

It is the difference between asserting ‘Va.3y.x =y is true in some finite model’ and ‘I have a valid
derivation-tree of Vx.3y.x =y . The former is a (true) assertion about concrete behaviour in finite
models (finite, because ¢ is unbounded, but finite), whereas the latter is an assertion about derivability.

For computation, finite models are what matters most, so our design choice is natural. We labour
this point because derivation-trees still feature in this paper (they are a common structure), but they
arise in the spirit of being generalised computation traces; the embedding of the FOL logic remains
semantic and direct as discussed above. An ‘infinite models’ version of the ideas in this paper, possibly
working through explicit consideration of FOL derivation-trees, is possible future work.
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ReEMARK 6.3.5 (Rapid coprocessors). We could use the ideas in this paper for fast and efficient
prototyping of a correct-by-construction coprocessor for an existing system: to create some function,
specified and arithmetised using the techniques in this paper, for the specific purpose of being called
from some other zero-knowledge abstract machine.

We have seen how the compositional nature of our semantics lends itself — by design — to speci-
fying functional programs, which require no external state and which are correct by construction.*”
Functional components are modular and compositional, and therefore portable and well-suited to
being plugged together.

This compositionality could be useful and may mean that the barrier to extracting practical value
from these ideas may be relatively low.

Furthermore, pure speed is not the only metric of success: shorter development time, greater mod-
ularity, readability, maintainability, portability, and amenability to formal verification of correctness,
are also valid criteria, amongst others. High-level specifications tend to perform well by these metrics,
so a compositional shallow translation directly to polynomials is interesting.

6.4. Final remarks

We have mapped logic to polynomials, and logical judgements to polynomial equalities. At a high
level, the mapping is simple:

(1) Truth maps to zero, and falsity maps to one.
(2) A and V¥ map to +, and V and 3 map to * (see Figure 2 and the discussion in Remark 3.2.12).

Simple facts of arithmetic — notably that a sum of two nonnegative numbers is zero if and only if both
numbers are zero (Lemma 2.3.2) — give us a soundness and completeness result (Theorem 2.3.4).

It is perhaps surprising that from this elementary arithmetic beginning, we manage to pull out so
much logical and computational content.

Using matrix variable symbols and some simple logic, we specify a library of exemplar functions
(Subsection 3), including the Turing-complete SK-combinator system.*’ Note that the valuation ¢
may have arbitrary size; its size and the size of the validity predicate are two orthogonal parameters,
so that even a fairly simple and compact validity predicate (like the one in Figure 8) can express the
correctness of an arbitrarily complex computation trace as encoded in ¢. Furthermore, computations
corresponds to derivations (in the style of mathematically structured programming), which are trees:
they are not restricted to being a linear trace. Finally, we note that the range check primitive acts in
the context of our logic as a truth modality (see Remark 4.1.11) and using this we can encode even
more interesting structure (see Section 4).

Our semantics maps logical assertions to polynomial equalities (Definition 2.2.8(3)), which can be
checked succinctly and/or in zero knowledge (Subsection 5.1.3). The semantics is clean, compositional,
and modular, and overheads seem to be pleasingly low — the cost of verifying a derivation scales
(roughly speaking) with its deduplicated size. We get a nice mapping from derivation-trees to matrices,
and modularity in the specification corresponds to relatively lower degree polynomials. Practical
application is plausible both in and of itself, and as a coprocessor for other systems.

Because this system is based on logic, implementations based on it are likely to be amenable
to tools from computer science such as formal verification, correctness-by-construction, and type
systems. It is true that not everything in this paper is elementary, but even here it is noteworthy that
the complexities that arise come from the applications, and not from the framework; in other words,
our logic and its polynomial translation do not seem to make a thing any harder than it inherently
already is. For instance: a A turns into a + and a V turns into *, thus one connective = one arithmetic
operation — it is hard to imagine a translation being more efficient or direct than that!

39Correct by construction with respect to the specification. If the specification is buggy then the program constructed from it
will be too. But it will faithfully satisfy the (incorrect) specification.
408K combinators are not user-friendly, but they are one paradigmatic example of a Turing-complete system.
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Finally, logics other than first-order logic exist, so implicit in the act of mapping of this logic to
polynomials is an implication that we could do the same for others — and conversely, there is an
implication that it may be fruitful for logicians to study novel logics based on polynomial semantics
motivated by succinct proofs.
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