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Abstract. In this short paper we share our experience on instantiating the width-
extension construct TLR3, based on a variety of tweakable block cipher constructs.
As many of our attempts failed, we highlight the complexity of getting a practical
tweakable block cipher and the gap between theory and practice.
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1 Introduction
As part of our research we studied a possibility to use an n-bit width block cipher E with
n- or 2n-bit key (e.g., AES-128 or AES-256, where n = 128), to create a 2n-bit width
block cipher with a 2n-bit key. We assume the attacker has 22n of compute time at his
disposal and can make up to q ≈ 2n queries – as it is naturally expected from a 2n-bit
secret permutation. We also wanted to have as little calls to the base E as possible.

We denote a block cipher by E(k, m) or E(k0||k1, m) where the key is of size either n
or 2n bits (depending on the context), and the message m is an n-bit block. Respectively,
a tweakable block cipher (TBC) to be denoted by Ẽ(k, t, m) or Ẽ(k0||k1, t, m) where the
tweak t is also n-bit long. For the wanted 2n-bit extended width block cipher we denote
the input message by (L||R), the output by (S||T ), and the 2n-bit key by K = (k0||k1) –
all halves are n-bit long.

At one point, we found the tweakable Left-Right with 3 rounds (TLR3) construct
[CDMS10] by Coron et.al., which is a Feistel-based design and defined through three
independent tweakable block ciphers as follows:

X = Ẽ1(k, R, L)
S = Ẽ2(k, X, R)
T = Ẽ3(k, S, X)

where the key k is only n bits long. For the TLR3 instance, there is a need for ideal TBCs,
where the authors say: “To get an ideal cipher, it suffices to prepend a key k to the 3
ideal ciphers E1, E2 and E3; one then gets a family of independent random permutation,
parametrised by k, i.e. an ideal cipher.” Then the proposed instantiation of TBCs with
n-bit secret key Ẽ : Kn × T n × Mn is to utilise a base block cipher E : K2n × Mn in a
straightforward manner by simply mapping 1-to-1 the set of Kn × T n in Ẽ to K2n in E as
Ẽ(k, t, m) = E(k||t, m), and such a construct is a secure TBC up to ≈ 2n queries. The
same idea has been used in e.g. the construct TAES in [BGIM19].

The original paper [CDMS10] only has a security proof for TLR3 up to q ≈ 2n/2, but
that bound was significantly improved by Bhaumik et. al. [BNR21], where the security of
TLR3 was improved to (n − 2 log n) bits of indifferentiability. In the proof it is considered
that ideal tweakable ciphers are utilised. The question about choosing the plurality of
tweakable block ciphers Ẽ∗ based on the secret key was not considered in the formal proof
for indifferentiability, and it is left out of scope.
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However, for a concrete instantiation of a construct that would be keyed, one has to
consider the key space that is at least of size of the security level in a formal proof. That
is to say, any TLR3 instance with a secret key at least (n − 2 log n) bits would satisfy the
[BNR21] security proof of indifferentiability, as long as the underlying TBCs are secure up
to at least 2(n−2 log n) queries. Otherwise, a simple key exhaustive loop would break the
construct faster.

Introduction of a secret key for a concrete instantiation of TLR3 also brings another
aspect to the security – the attacker’s time that is available. For example, the attacker
may have time 22n but can only make up to 2n queries, for which the [BNR21] proof then
applies. The main obstacle in these two targets is that besides the need for the attacker
to spend time for collecting 2n queries, he also has additional time 2n to guess parts of
the TBC construct and make it “insecure”. For example, consider a TBC with 2n-bit key:
Ẽ(k0||k1, t, m) = E(k0 ⊕ t||k1, m) – here the attacker guesses k1 in time 2n, then he has a
TBC with a simple XOR of the n-bit remaining secret half k0 and the tweak – that has
security only up to 2n/2 queries, which contradicts the [BNR21] proof.

This way, we want to find an n-bit width TBC instance with a 2n-bit key and an n-bit
tweak, where the attacker would have time 22n (where 2n is the extra time) with TBC being
secure up to (or close to) 2n queries. Then we could instantiate TLR3 with wanted security
levels. A possible way forward to construct a tweakable block cipher Ẽ : K2n × T n × Mn

is to use another (3n, n) block cipher E′ with the key-interface being 3n-bits long, and
similarly to Coron’s [CDMS10] and TAES [BGIM19] approach, as follows:

Ẽ(k0||k1, t, m) = E′(k0||k1||t, m)

But we only have e.g. E =AES-256 which is a (2n, n) block cipher, and here is where the
problem starts with.

2 Some failed attempts on TBCs for TLR3
Examples of trivial constructs

A TBC construct may be as simple as Ẽ(k, t, m) = E(k ⊕ t, m) (e.g., E =AES-128).
However, it is only secure for up to 2n/2 queries in a single-key model, and only 2 queries
are needed in the related-key model since Ẽ(k, t, m) = Ẽ(k ⊕ δ, t ⊕ δ, m).

Another trivial example is given by Simpira authors in Eq.(2) of [GM16] where

c = Ẽ(k, t, m) := π(m ⊕ k · t) ⊕ k · t.

One can ignore t, or simply set t = 1. Then consider two related pairs (m, k) and (m′, k′)
such that (m ⊕ k) = (m′ ⊕ k′), then the outputs are heavily related c ⊕ c′ = k ⊕ k′.
In an ideal keyed block cipher we want that for a distinct k we get a pseudo-random
permutation/mapping on all 22n input values (t, m), which is not the case here in this
construct as k and m are heavily correlated.

LRW1 construct as given in Theorem 1

Liskov et. al. propose two TBC constructs secure up to q ≈ 2n/2 [LRW02]. We call these
two constructs as LRW1 and LRW2 followed by the names of the authors. Let us try to
build a TLR3 instance with these secure TBCs, and we would even use three independent
n/2n-bit subkeys k1, k2, k3, e.g. derived from the master 2n-bit key in some way. The
analysis that we sketch below seems to show a general weakness of a TBC construct where
the tweak t is not well mixed with the key k nor an independent part of the key to the
base building block.
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Theorem 1 of [LRW02] defines the following TBC: Ẽ(k, t, m) = E(k, t ⊕ E(k, m)),
which has the property that Ẽ(k, t, m) ̸= Ẽ(k, t ⊕ δ, m) and this can be distinguished with
q ≈ 2n/2 queries. When using the above construct as the building block for TLR3, we get
the following instance:

X = E(k1, R ⊕ E(k1, L))
T = E(k2, X ⊕ E(k2, R))
S = E(k3, T ⊕ E(k3, X))

Note that here all three instances E(ki, m) may have distinct keys each of which is of
length n or 2n bits. For an attack, collect q ≈ 2n/2 queries (Li, Ri) such that Ri = Rj = c
and Li ̸= Lj , which implies:

Xi = E(k1, c ⊕ E(k1, Li)) ⇒ Xi ̸= Xj

T i = E(k2, Xi ⊕ E(k2, c)) ⇒ T i ̸= T j

Due to the birthday paradox we would expect a pair of queries i and j where T i = T j , but
this will never happen as seen in above derivations, thus we have a distinguishing attack
of complexity q ≈ 2n/2.

LRW2 construct as given in Theorem 2

A seemingly more secure TBC is given as Ẽ(k, t, m) = E(k, m ⊕ h(t)) ⊕ h(t), where h() is
a hash function. Applying Theorem 2 of [LRW02] for TLR3 we get the following instance:

X = E(k1, L ⊕ h(R)) ⊕ h(R)
T = E(k2, R ⊕ h(X)) ⊕ h(X)
S = E(k3, X ⊕ h(T )) ⊕ h(T )

An attacker collects 2n/2 queries (Li, Ri) such that Ri ̸= Rj and Li = h(Ri), which implies:

Xi = c ⊕ h(Ri), where the constant c = E(k1, 0)
Si = E(k3, c ⊕ h(Ri) ⊕ h(T i)) ⊕ h(T i)

Due to the birthday paradox we should find a pair of queries i and j where h(Ri)⊕h(T i) =
h(Rj) ⊕ h(T j). Then we take that pair and check that Si ⊕ h(T i) = Sj ⊕ h(T j) with
probability 1, while in a random construction that match should happen with probability
2−n. This results in a distinguishing attack of complexity q ≈ 2n/2.

Yet another example when the tweak is not mixed with the key

Let us have a 2n-bit key (k0||k1) and we construct TBC as E(k0, (k1 ⊕ t) ⊕ E(k0, m)). The
TLR3 instance is then:

X = E(k0, k1 ⊕ R ⊕ E(k0, L))
T = E(k0, k1 ⊕ X ⊕ E(k0, R))
S = E(k0, k1 ⊕ T ⊕ E(k0, X))

For an attack we collect q ≈ 2n/2 queries such that Ri = Rj = c and Li ̸= Lj which
implies:

Xi = E(k0, k1 ⊕ c ⊕ E(k0, Li)) ⇒ Xi ̸= Xj

T i = E(k0, k1 ⊕ Xi ⊕ E(k0, c)) ⇒ T i ̸= T j

I.e., we never see T i = T j among the chosen set of inputs, thus we have a distinguishing
attack of complexity q ≈ 2n/2.
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When the tweak is mixed with the key, but not good enough

Let us now try to mix the tweak with the key in a linear way and create TLR3 subkeys as
(k0||k1) ⊕ (t||t) ⊕ i, where i serves as a constant in order to force the three subkeys to be
distinct. Then we have:

X = E((k0||k1) ⊕ ‘0’ ⊕ (R||R), L)
T = E((k0||k1) ⊕ ‘1’ ⊕ (X||X), R)
S = E((k0||k1) ⊕ ‘2’ ⊕ (T ||T ), X)

The three secret permutations will be distinct due to distinct subkeys, and the tweak plays
the role of selecting the plurality of permutations, along with the secret key.

As a related key attack (RKA) example in a combination with a distinguishing attack,
let us have 2n/2 related pairs ((k0||k1)i, Ri) such as

(k0||k1)i = (k0 ⊕ i||k1 ⊕ i)0 ⊕ (i||i)
Ri = R0 ⊕ i

for some random initial (k0||k1)0 and R0. Then, the subkey for the first E will be

subkey1i = (k0||k1)i⊕(Ri||Ri) = (k0||k1)0⊕(i||i)⊕(R0⊕i||R0⊕i) = (k0||k1)0⊕(R0||R0) = c

i.e., some constant value c for all 2n/2 related pairs ((k0||k1)i, Ri). Then we make q ≈ 2n/2

queries of the form (L, R)i = (0, Ri), and for the ith query we apply TLR3 with the key
(k0||k1)i. Since now Li = Lj = 0 for all queries and the first subkey also coincides, then
we get that for all 2n/2 queries the first E outputs the same value, i.e. Xi = c′.

The attacker observes 2n/2 output pairs (Si, T i). Among the output pairs, one can
find such pair (i, j) where T i ⊕ i = T j ⊕ j. At least one such pair should exist among 2n/2

queries due to the birthday paradox. Let W = T i ⊕ i for simplicity. For such a “specially
obtained” pair we derive:

subkey3i = (k0, k1)i ⊕ ‘2’ ⊕ (T i||T i) = (k0, k1)0 ⊕ (i||i) ⊕ ‘2’ ⊕ (W ||W ) ⊕ (i||i)
= (k0, k1)0 ⊕ ‘2’ ⊕ (W ||W )

subkey3j = (k0, k1)j ⊕ ‘2’ ⊕ (Tj ||Tj) = (k0, k1)0 ⊕ (j||j) ⊕ ‘2’ ⊕ (W ||W ) ⊕ (j||j)
= (k0, k1)0 ⊕ ‘2’ ⊕ (W ||W )

i.e., we get a matching Xi = Xj and also matching 3rd subkeys. Thus, the resulting Si

and Sj must coincide with probability 1, while in a pure random case it should happen
with probability 2−n. This example demonstrates how having 2n/2 related keys we can
have a distinguishig attack of complexity q ≈ 2n/2.

Yet another linear mixing

One more attempt was made to construct subkeys as (k0||k1) ⊕ (t||0) ⊕ i, by adding the
tweak to only one half of the 2n-bit key. Then we have:

X = E((k0||k1) ⊕ ‘0’ ⊕ (R||0); L)
T = E((k0||k1) ⊕ ‘1’ ⊕ (X||0); R)
S = E((k0||k1) ⊕ ‘2’ ⊕ (T ||0); X)

For an attack, let us have 2n/2 related pairs ((k0||k1)i, Ri) such as

(k0||k1)i = (k0||k1)0 ⊕ (i||0)
Ri = R0 ⊕ i
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for some random initial (k0||k1)0 and R0. Then the subkey for the first E is

subkey1i = (k0||k1)i ⊕ (Ri||0) = (k0||k1)0 ⊕ (i||0) ⊕ (R0 ⊕ (i||0)) = (k0||k1)0 ⊕ (R0||0) = c

i.e., some constant value c for all 2n/2 related pairs ((k0||k1)i, Ri). We make q ≈ 2n/2

queries of the form (L, R)i = (0, Ri), and for the ith query we apply TLR3 with the key
(k0||k1)i. Since now Li = Lj = 0 for all queries and the first subkey also coincides, all
outputs from the first E is a constant Xi = c′ for all 2n/2 queries.

The attacker can observe 2n/2 output pairs (Si, T i). Among the output pairs, one can
find such pair (i, j) where T i ⊕ i = T j ⊕ j. At least one such pair should exist among 2n/2

queries due to the birthday paradox. Let W = T i ⊕ i, and for such a “special” pair we get:

subkey3i = (k0||k1)i ⊕ ‘2’ ⊕ (T i||0) = (k0||k1)0 ⊕ (i||0) ⊕ ‘2’ ⊕ (W ||0) ⊕ (i||0)
= (k0||k1)0 ⊕ ‘2’ ⊕ (W ||0)

subkey3j = (k0||k1)j ⊕ ‘2’ ⊕ (Tj ||0) = (k0||k1)0 ⊕ (j||0) ⊕ ‘2’ ⊕ (W ||0) ⊕ (j||0)
= (k0||k1)0 ⊕ ‘2’ ⊕ (W ||0)

i.e., we get matching Xi = Xj and also matching 3rd subkeys. Thus, the resulting Si and
Sj must coincide with probability 1, while in a pure random case it should be 2−n. The
attack is similar to the previous case and could be generalised to when the tweak and the
key are mixed in a linear way.

Nonlinear mixing of the tweak and the key

A preferable case for security is when there exists a security proof for beyond birthday
bound (BBB) with the number of queries closer to 2n. An example of such a constructs,
thought with only n-bit keys, is Mennink’s F̃ [2](k, t, m) = E(k ⊕ t, m ⊕ z) ⊕ z with
z = E(2k, t) [Men15], where the nonlinear mixing of the tweak and the key happens in z.
In [WGZ+16] it was shown that the original design of F̃ [2] where z = E(k, t) is without
multiplication, has security of only 2n/2 queries when the padding and encryption uses the
same key of the tweakable block cipher and t = 0. The patched design with “2k” seems
now more secure but that multiplication happens in GF (2n) and there are still certain
weak combinations of keys and tweaks when, for example, k ⊕ t ≡ 2k in GF (2n).

On the contrary, the authors of [WGZ+16] analysed 32 TBC constructs Ẽ1.. ˜E32, such
as ˜E12(k, t, m) = E(k ⊕ t, m ⊕ y) ⊕ y, where y = E(0, k), with the claimed full security 2n.
Here we would favour ˜E12 as an interesting and practical case since y can be computed
only once, as it has also been noted in [Men20].

However, the above schemes are only secure for n-bit keys and when a 2n-bit security
is needed (i.e., when the attacker has an extra 2n of time) for TLR3 instantiation these
TBCs seem not secure enough. Just consider the attacker can simply guess n bits of the
key while still having 2n of time to perform the remaining part of, for example, a complete
key recovery. Moreover, there is no gain in ˜E12 for the case of TLR3 when there (2n, n)
block ciphers are already available – as mentioned earlier an alternative would then be
simply E(k||t, m).

3 Conclusions
Likewise with AES-128 and AES-256, we would like to have a secure tweakable block
cipher that can accept a secret key up to 2n bits, while the block width and the tweak
itself can be n bits. Some practical tweakable ciphers with full security that we considered
support only n-bit keys and thus the attacker only has 2n of time. A block cipher with
(3n, n) parameters would be a perfect solution to a tweakable block cipher (2n, n, n), which
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may in turn be used as a building block for other constructs, whether it is a block width or
key length extension, or other applications. Standardising a (2n, 2n) block cipher such as a
256-bit width Rijndael-256 would be a perfect building block for relatively simple external
extension schemes (also, for constructs such as tweakable block ciphers) that would in
turn easily reach security up to 2n queries, and, perhaps, an even higher security on the
cost of more complex constructs.

Any design of a tweakable block cipher should clearly state it’s security model (e.g.,
whether it is secure in KPA, CPA, CCA, RKA, indistinguishability or indifferentiability
models, etc), and the number of queries as well as the attacker’s time are also crucial
parameters to take into consideration, while many security proofs omit the latter and
simply assume ideal building blocks. It might also be noted that a secret permutation
selected by both the key and the tweak should be done in a pseudo-random fashion, and
there should not be any obvious relation between the key, the tweak, and the message.

Finally, larger constructs using tweakable block ciphers as a building block should also
specify how distinct subkeys to be derived from a master key, and whether they should be
of size n or 2n bits. For example, TLR3 assumes three independent TBCs, which implies
an additional complexity for obtaining these subkeys.
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