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ABSTRACT
Dynamic searchable encryption (DSE) with forward and backward

privacy reduces leakages in early-stage schemes. Security enhance-

ment comes with a price – maintaining updatable keyword-wise

state information. State information, if stored locally, incurs sig-

nificant client-side storage overhead for keyword-rich datasets,

potentially hindering real-world deployments.

We propose DISCO, a simple and efficient framework for de-

signing DSE schemes using constant client state. DISCO combines

range-constrained pseudorandom functions (RCPRFs) over a global

counter and leverages nice properties from the underlying primi-

tives and index structure to simultaneously achieve forward-and-

backward privacy and constant client state. To configure DISCO
concretely, we identify a set of RCPRF properties that are vital for

the resulting DISCO instantiations. By configuring DISCO with

different RCPRFs, we resolve efficiency and usability issues in ex-

isting schemes. We further optimize DISCO’s concrete efficiency

without downgrading security. We implement DISCO construc-

tions and report performance, showing trade-offs from different

DISCO constructions. Besides, we compare the practical efficiency

of DISCO with existing non-constant-state DSE schemes, demon-

strating DISCO’s competitive efficiency.

CCS CONCEPTS
• Security and privacy→Management and querying of en-
crypted data.
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Searchable encryption, Forward privacy, Backward privacy, Client
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1 INTRODUCTION
Searchable encryption [25] allows a client to search over its remote

outsourced encrypted database held by a serverwhile only revealing

well-defined leakages. Dynamic searchable encryption (DSE) fur-

ther supports updates (i.e., adding/deleting files) to the encrypted
database at the client’s request. Earlier DSE schemes [4, 19, 20]

reveal the linkage between a new update query with previous

search/update queries, which is vulnerable to the adaptive file-

injection attack [34]. Forward privacy ensures that the server can-

not match an update with the prior search/update queries to the

same keyword, and backward privacy prevents documental reveal-

ing afterward if a keyword has been deleted from this document.

Recently, many forward/backward private DSE schemes [1, 2, 12, 14,

21, 22, 26, 32] were proposed. Most of them employing lightweight

primitives can achieve competitive efficiency as early-stage efficient

DSE schemes [4, 19, 20] without forward/backward privacy.

To achieve forward privacy, existing DSE schemes, despite slight

differences, maintain some necessary updatable state for each key-

word. For instance, in a counter-based DSE scheme, the client main-

tains an update counter 𝑎𝑤 for a keyword 𝑤 . The client simply

stores encrypted indexes at positions of 𝐹 (k,𝑤 | |1), 𝐹 (k,𝑤 | |2), · · · ,
𝐹 (k,𝑤 | |𝑎𝑤) on the server side, where 𝐹 is a pseudorandom func-

tion (PRF) and k is a secret key owned by the client. To perform

a new update to 𝑤 , the client sends a new encrypted index with

𝐹 (k,𝑤 | |𝑎𝑤 + 1) to the server and updates 𝑎𝑤 ← 𝑎𝑤 + 1. Intuitively,

𝐹 (k,𝑤 | |𝑎𝑤 + 1) is unpredictable to the server from the security of

PRF 𝐹 , thus accomplishing forward privacy.

Storing the keyword-wise state locally demands extra client stor-

age. Typically, client storage can be divided into two categories:

permanent storage (e.g., holding secret key) and temporary stor-

age (e.g., caching updates and search results). While temporary

storage is acceptable since update pairs or search results can be

discarded when no longer needed, local maintenance of the state

incurs permanent storage linear to the size of the keyword set,

raising challenges in both efficiency and usability.

1.1 Existing Solutions
Outsourcing encrypted states to the server is feasible, and the client

accesses states when necessary. However, encryption is insufficient

as the server can match queries from the storage access pattern,

which motivates ORAM-based solutions of removal of access pat-

terns [15, 28]. Specifically, Moneta [2] utilized Tworam [13] to de-

sign small-client-storage DSE through garbled circuits and ORAM.

Alternative constructions [11, 14] with small client storage utilized

Oblivious MAP (OMAP) [33], a more advanced oblivious primitive

from ORAM. However, these solutions are mainly on theoretical

https://doi.org/10.1145/3634737.3637674
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Table 1: Efficiency comparison with several DSE schemes. Let DB be an index database, 𝑁=#indexes in DB. Let DB(𝑤) denote the
documents containing𝑤 , then𝑛𝑤 = |DB(𝑤) | denotes the number of documents containing𝑤 . 𝑎𝑤 = #updates (insertions/deletions)
for𝑤 . 𝑖𝑤=#insertion updates for𝑤 . 𝑑𝑤 = # deletion updates for𝑤 .W denotes the keyword set. 𝐷=#documents, |W| = #distinct
keywords. 𝑐 is the global counter value. RTs denotes #roundtrips for search (we count the round for the actual file retrieval),
and RTu denotes #roundtrips for an update. 𝐿 is an upper bound for the number of batch updates, and 𝐿 ≪ 𝑁 in practice. All
listed schemes support forward privacy. BP means backward privacy. Type-I BP reveals the least and type-III reveals the most.

Scheme Computation Communication State BP
Search Update Search Update RTs RTu

Sophos [1] 𝑂 (𝑎𝑤 ) 𝑂 (𝑎𝑤 ) 𝑂 (𝑛𝑤 ) 𝑂 (1) 1 1 𝑂 ( |W | ) -

FAST [26] 𝑂 (𝑎𝑤 ) 𝑂 (1) 𝑂 (𝑛𝑤 ) 𝑂 (1) 1 1 𝑂 ( |W | ) -

Mitra [14] 𝑂 (𝑎𝑤 ) 𝑂 (1) 𝑂 (𝑎𝑤 ) 𝑂 (1) 2 1 𝑂 ( |W | ) II

Moneta [2] 𝑂 (𝑎𝑤 log𝑁 + log
3 𝑁 ) 𝑂 (log

2 𝑁 ) 𝑂 (𝑎𝑤 log𝑁 + log
3 𝑁 ) 𝑂 (log

3 𝑁 ) 2 2 𝑂 (1) I

Orion [14] 𝑂 (𝑛𝑤 log
2 𝑁 ) 𝑂 (log

2 𝑁 ) 𝑂 (𝑛𝑤 log
2 |W | ) 𝑂 (log

2 𝑁 ) 𝑂 (log𝑁 ) 𝑂 (log𝑁 ) 𝑂 (1) I

Horus [14] 𝑂 (𝑛𝑤 log𝑑𝑤 log𝑁 + log
2 |W | ) 𝑂 (log

2 𝑁 ) 𝑂 (𝑛𝑤 log 𝑖𝑤 + log
2 |W | ) 𝑂 (log

2 𝑁 ) 𝑂 (log𝑁 ) 𝑂 (log𝑁 ) 𝑂 (1) III

QOS [11] 𝑂 (𝑛𝑤 log 𝑖𝑤 + log
2 |W | ) 𝑂 (log

2 𝑁 ) 𝑂 (𝑛𝑤 log 𝑖𝑤 + log
2 |W | ) 𝑂 (log

2 𝑁 ) 𝑂 (log |W | ) 𝑂 (log |W | ) 𝑂 (1) III

SD𝑎 [11] 𝑂 (log𝑁 + 𝑎𝑤 ) 𝑂 (log𝑁 ) (am.) 𝑂 (log𝑁 + 𝑎𝑤 ) 𝑂 (log𝑁 ) (am.) 1 2 𝑂 (1) II

SD𝑑 [11] 𝑂 (log𝑁 + 𝑎𝑤 ) 𝑂 (log
3 𝑁 ) 𝑂 (log𝑁 + 𝑎𝑤 ) 𝑂 (log

3 𝑁 ) 2 𝑂 (log𝑁 ) 𝑂 (1) II

Close-fb [17] 𝑂 (𝐿 + 𝑎𝑤 ) 𝑂 (𝐿 − 𝑐 ) 𝑂 (𝑎𝑤 ) 𝑂 (1) 2 1 𝑂 (1) II

DISCOh 𝑂 (𝐿 + 𝑎𝑤 ) 𝑂 (𝐿 − 𝑐 ) 𝑂 (𝑎𝑤 ) 𝑂 (1) 2 1 𝑂 (1) II

DISCOt 𝑂 (𝑐 + 𝑎𝑤 ) 𝑂 (𝑐 ) 𝑂 (𝑎𝑤 ) 𝑂 (1) 2 1 𝑂 (1) II

DISCOg 𝑂 (𝑐 + 𝑎𝑤 ) 𝑂 (log𝐿) 𝑂 (log𝐿 + 𝑎𝑤 ) 𝑂 (1) 2 1 𝑂 (1) II

interest, hardly achieving practical efficiency compared with DSE

schemes [1, 2, 12, 14, 22, 26] built on lightweight techniques.

CLOSE-FB [17] is a DSE scheme employing a fixed-length chain

of secrets 𝑠0
𝐻←− 𝑠1 · · ·

𝐻←− 𝑠𝐿 in reverse order during updates, where

𝐻 is a cryptographic hash function, 𝑠𝐿 is an initial (pseudo) random

seed, and 𝑠𝑖 = 𝐻 (𝑠𝑖+1) for 1 ≤ 𝑖 < 𝐿. The onewayness of the hash
chain ensures that the server can recover nodes {𝑠1, 𝑠2, · · · 𝑠𝑐 } from
𝑠𝑐 (thus enabling search), but not beyond the range (thus ensuring

forward privacy). In CLOSE-FB, the client stores only a single global

counter shared by all keywords. Yet, CLOSE-FB increases computa-

tional costs linear to the length of hash chains. When running out

of available nodes in a hash chain, CLOSE-FB rebuilds the whole

database from scratch, severely downgrading usability.

1.2 Our Solution
This paper proposes DISCO (Dynamic searchable encryptIon with

Small Client stOrage), a simple and efficient framework for de-

signing constant-client-state DSE. We design DISCO inspired by

CLOSE-FB and DSE schemes from range constrained pseudoran-
dom functions (RCPRFs). We exploit nice properties of involved

primitives and structure for designing DSE using constant state.

RCPRF abstraction for DSE. RCPRF is a PRF variation that allows
an RCPRF master key holder to delegate PRF evaluation over a

range by issuing a constrained key. The constrained key can only

be used to evaluate PRF over a restricted range defined by the key.

Previous works [1, 2] leveraged RCPRF to evolve secret tokens,

yet requiring permanent client storage proportional to keywords

set. We borrow the idea of using a global counter [17] and exploit

properties from cryptographic primitive and structures, attaining

constant client-side permanent state.

We formalize several RCPRF schemes and identify a set of RCPRF

properties vital in the design of DISCO. Atop formalization, we

propose a hybrid RCPRF abstraction for combining good properties

given different RCPRF schemes. Since RCPRFs are useful in other

areas [3] beyond DSE, our findings are of independent interest.

Our framework and practical instantiations. DISCO is not lim-

ited to one construction but provides a simple and generic frame-

work for designing low-client-state DSE. DISCO captures several

DISCO instantiations when parameterized with different RCPRFs.

For example, CLOSE-FB can be regarded as a concrete DISCO in-

stantiation, yetDISCO provides a simpler index structure and more

optimizations. When we configure DISCO with different RCPRFs,

DISCO resolves efficiency and usability issues in existing works,

achieving improved efficiency with versatile trade-offs.

We provide three DISCO instantiations DISCOh, DISCOg, and

DISCOt with different efficiency tradeoffs as compared in Table 1.

Overall, three constructions trade communication and client’s state

with a price of increased computation compared with [1, 14, 26],

while ORAM-based approaches [2, 11, 14] require more communi-

cation and higher round complexity. Indeed, communication, rather

than computation, is more likely to be a bottleneck, which is also

confirmed in our performance evaluation, showing DISCO’s supe-
rior efficiency during updates and searches. Moreover, we propose

practical techniques to reduce computational overhead concretely.

In particular, we show how to achieve parallel search, reduce RCPRF

evaluation, and perform database merge to alleviate the side effects

of using a global counter. These optimizations improve DISCO’s
concrete efficiency without downgrading security.

We implement DISCO and compare the performance trade-offs

from different DISCO constructions, showing distinct efficiency

properties of different DISCO constructions. We also compare

DISCO with other DSE schemes. The evaluation results show that

DISCO is much more efficient than state-of-the-art small-client-

state DSE schemes. Compared with previous DSE schemes with a

non-constant state, DISCO only introduces a small increased run-

ning time that is unnoticeable from human perception, while the

communication remains almost the same.

Contribution. We summarize our contributions as follows:

• WeproposeDISCO, a simple framework for constructing forward-

and-backward private DSE under the constraint of a constant

client state.
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• We identify a set of RCPRF properties that are vital in the design

ofDISCO. We also propose a hybrid RCPRF design by combining

properties from different RCPRF schemes.

• We present candidate DSE constructions with small client stor-

age under DISCO framework with configuable trade-offs. Our

construction and the following optimizations resolve efficiency

issues in previous low-client-storage DSE constructions.

• We implement three DISCO constructions and perform evalu-

ations. The performance shows our constructions are practical

and efficient. We report the efficiency and trade-off properties

of different DISCO constructions.

2 PRELIMINARIES
2.1 Notations
𝑥

$←− 𝑋 denotes sampling an element 𝑥 randomly from a set 𝑋 and

|𝑋 |means the set cardinality. {0, 1}ℓ is a set of strings with ℓ bits and
{0, 1}∗ means a set of strings in the arbitrary length. 𝑎 | |𝑏 denotes
the concatenation of string 𝑎 and string 𝑏. |𝑎 | is 𝑎’s bit length. For
integers 𝑐, 𝑎, 𝑏, we use [𝑐] to denote the set {1, 2, · · · , 𝑐}, and [𝑎, 𝑏]
to denote {𝑎, 𝑎+1, · · · , 𝑏−1, 𝑏}. Let 𝜆 be the computational security

parameter. A function 𝜈 : N → R is negligible in 𝜆 if for every

positive polynomial 𝑝 , 𝜈 (𝜆) < 1/𝑝 (𝜆) for a sufficiently large 𝜆. We

use poly(𝜆) and negl(𝜆) to represent the unspecified polynomial

and negligible functions in 𝜆, respectively. Probabilistic polynomial

time is abbreviated to PPT.

2.2 Cryptographic Primitives
Pseudorandom functions. Let 𝐹 : D × K → R be a length-

preserving, keyed function. 𝐹 is a pseudorandom function (PRF) if

for all PPT adversary A, it holds that |Pr[Adv𝐹 (𝑘,· ) (1𝜆) = 1] −
Pr[Adv𝑓 ( ·) (1𝜆) = 1] | ≤ negl(𝜆) where 𝑘 ∈ K is chosen uniformly

and 𝑓 : D → R is a truly random function.

Trapdoor permutations. A trapdoor permutation (TDP) 𝜋 : PK×
Dt → Dt is an asymmetric primitive. Using a public key pk ∈ PK ,

one can efficiently compute𝑦 ← 𝜋pk (𝑥) for 𝑥 ∈ Dt. Only the secret

key holder can efficiently compute its inverse 𝜋−1
: SK×Dt → Dt,

i.e., 𝑥 ← 𝜋−1

sk (𝑦). The security of TDP requires that those who only

have the public key can compute 𝜋 (𝑥) for any 𝑥 ∈ D𝑡 but not

𝜋−1 (𝑦) for 𝑦 $←− D𝑡 . Refer to Def. A.1 in §A for a formal definition.

Goldreich-Goldwasser-Micali PRF. Let 𝐺 : {0, 1}𝜆 → {0, 1}2𝜆
be a length-doubling pseudo-random generator (PRG) and 𝐺0 (s)
and𝐺1 (s) be the first and second half of𝐺 (s) for a seed s ∈ {0, 1}𝜆 ,
the GGM-PRF [16] over an 𝑛-bit input 𝑥 is defined as 𝐹G (s, 𝑥) =
𝐺𝑥𝑛−1

(...𝐺𝑥1
(𝐺𝑥0
(s))), where s ∈ {0, 1}𝜆 is a seed associated with

the root and 𝑥 = 𝑥0 | | . . . | |𝑥𝑛−1 is the binary representation of 𝑥 .

The GGM PRF allows delegated evaluation over a range to an

evaluator by issuing a constrained key ck𝑐 . The idea is to compute

the minimum nodes in the tree to cover the subset, for which we

call the Best Range Cover (BRC) nodes. In this paper, we denote the

algorithm of finding the best range cover as ck𝑐 ← 𝐹G .BRC(s, [𝑐]).
For example, in Fig. 1, to delegate the range between the first leaf

and the seventh leaf, the key holder computes the green nodes,

from which the evaluator can reconstruct all leaves corresponding

to the range, but not the leaves out of the range.

0 1

0 1 0 1

0 1 0 1 0 1 0 1

Figure 1: An example of GGM tree.

Symmeric Encryption. A symmetric encryption scheme with key

spaceK , message spaceM and ciphertext space C consists of three

polynomial-time algorithms SE = (Gen, Enc,Dec).
• Gen(1𝜆): It takes as input a computational security parameter 𝜆,

outputs a secret key k ∈ K .
• Enc(k,𝑚): It takes as input a secret key k and a message𝑚 ∈ M,

outputs a ciphertext 𝑐 ∈ C.
• Dec(k, 𝑐): It takes as input a secret key k and a ciphertext 𝑐 ∈ C,
output a decrypted message𝑚 ∈ M or a failure symbol ⊥.

Security. We require a stronger security notion for symmetric en-

cryption called pseudo-randomness against chosen-plaintext attack
(PCPA) [10]. The security is defined in Def. A.2 from §A.

2.3 Dynamic Searchable Encryption
Let a database DB = {(id𝑖 ,W𝑖 )}𝐷𝑖=1

be a 𝐷-vector of identifier-

keyword pairs, where id𝑖 is a document identifier and W𝑖 is the

keyword set contained in document id𝑖 . |W| and |DB| denote the
number of keywords and the number of documents. The universe of

keywords is W = ∪𝐷
𝑖=1

W𝑖 , and 𝑁 =
∑𝐷
𝑖=1
|W𝑖 | denotes the number

of document-keyword pairs. DB(𝑤) = {id𝑖 |𝑤 ∈ W𝑖 } denotes the
set of documents containing the keyword𝑤 . Given a set of updates

of tuples IN = {(op𝑖 ,𝑤𝑖 , id𝑖 )} with |IN| keyword/document pairs,

we use IN(𝑤) = {(op𝑖 ,𝑤, id𝑖 ) ∈ IN} to denote updates correspond-

ing to the keyword𝑤 . We useW(IN) to denote the set of unique
keywords contained in IN.

Definition 2.1. ADSE scheme Π is defined by a triple of protocols:

• ((𝐾, 𝜎);EDB) ← Setup(1𝜆,DB;⊥): On input security parameter

𝜆 and a database DB, the protocol outputs secret key and client’s
state (𝐾, 𝜎) to the client, and the encrypted database EDB to the

server. We use notation Setup(1𝜆 ;⊥) when DB is empty.

• ((𝜎′,DB(𝑤));EDB′) ← Search(𝐾, 𝜎,𝑤 ;EDB): On input 𝐾 , 𝜎 ,

and a keyword 𝑤 , the client outputs an updated state 𝜎′ and
DB(𝑤). On input EDB, the server outputs the updated encrypted
database EDB′.
• (𝜎′;EDB′) ← Update(𝐾, 𝜎, IN;EDB): On input 𝐾, 𝜎 , and an

update batch IN, the client outputs 𝜎′. On input EDB, the server
outputs updated EDB′.

Security definition. The security definition follows Ideal and Real

simulation paradigm [18, 20], which guarantees that no more in-

formation is leaked except for the explicit leakages L = {LSetup,

LSearch, LUpdate}. Two games RealΠA and IdealΠA,S are defined to

the real-world execution and ideal-world simulation, respectively.

In RealΠA , DSE protocols are executed as proposed, where the ad-

versary A observes the real transcripts of execution. In IdealΠA,S ,
a simulator S simulate the transcript S(L) to the adversary A by
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accessing to the leakage function L. The adversary is required to

output a bit 𝑏 that represents the ability to distinguish two games.

Definition 2.2. A DSE scheme is an L-adaptively-secure if for
any PPT adversary A, there exists a PPT simulator S such that

|Pr(RealΠA (𝜆) = 1) − Pr(IdealΠA,S (𝜆) = 1) | ≤ negl(𝜆).

2.4 Leakage Functions
Let Q be the list of all queries performed in the history in which

the search query is denoted as (t,𝑤) and an update query is de-

noted as (t, op, id,𝑤). The timestamp t identifies each query. Let

sp(𝑤) denote the search pattern defined as sp(𝑤) = {t : (t,𝑤) ∈
Q}, which only matches search queries. We use TimeDB(𝑤) =

{(t, id) | (t, add, id,𝑤) ∈ Q ∧ ∀t′, (t′, del, id,𝑤) ∉ Q} to denote all

timestamps of updates to keyword 𝑤 excluding the deleted ones.

Updates(𝑤) = {t | (t, add, id,𝑤) ∈ Q ∨ (t, del, id,𝑤) ∈ Q} is a
function that returns all timestamps of update queries (add/del)
to 𝑤 . DelHist(𝑤) = {(tadd, tdel) | ∃ id : (tadd, add, (𝑤, id)) ∈ Q ∧
(tdel, del, (𝑤, id)) ∈ Q} is the function that returns for all deletion

operations to𝑤 , together with the timestamp of the inserted entry

it removes. We have the following formal privacy definitions.

Forward and backward privacy. Forward privacy ensures an

update is not linked with any previous queries. Backward privacy

limits the leakage from a search for𝑤 for which some identifiers

have been previously deleted. Backward privacy is formally defined

by Bost et al. [2] for three types with different leakage patterns.

Type-I BP reveals the least information and type-III reveals the

most.

Definition 2.3 (Forward privacy [2]). AnL-adaptively-secure DSE
scheme is forward private if the update leakage satisfies LUpdate
((op,𝑤, id)) = L′ (op, id). L′ is a stateless function and leaks no

keyword information.

For batch update IN = {op𝑖 ,𝑤𝑖 , id𝑖 } containing many update

tuples, the update leakage function satisfying forward privacy can

be written as LUpdate (IN) = L′ ( |IN|, {op𝑖 , id𝑖 }𝑖∈ |IN | ).
Definition 2.4 (Backward privacy [2]). An L-adaptively-secure

DSE scheme achieves backward privacy:

• BP-I (BP with insertion pattern): iff LUpdate (op,𝑤, id) = L′ (op)
and LSearch (𝑤) = L′′ (TimeDB(𝑤), 𝑎𝑤).
• BP-II (BPwith update pattern): iffLUpdate (op,𝑤, id) = L′ (op,𝑤)
and LSearch (𝑤) = L′′ (TimeDB(𝑤), Updates(𝑤)).
• BP-III (weak BP): iff LUpdate (op,𝑤, id) = L′ (op,𝑤) and LSearch
(𝑤) = L′′ (TimeDB(𝑤), DelHist(𝑤)).
where L′, L′′ are stateless functions.
All three types of backward privacy leak the documents currently

matching𝑤 and when they were inserted. For other leakages: BP-I

only allows the leakage of “the total number of updates on𝑤"; BP-II

further allows the leakage of “when all the updates on𝑤 happened”;

and BP-III further allows the leakage of “which deletion update

canceled which insertion update".

3 RANGE CONSTRAINED PSEUDORANDOM
FUNCTION: REVISITING AND FINDINGS

In this section, we revisit range-constrained pseudorandom func-

tions (RCPRF) and several concrete instantiations from different

cryptographic primitives. We identify properties and new findings

that are vital for designing DISCO.

3.1 RCPRF Definition
An RCPRF enables a master key holder to delegate PRF evalu-

ations over a constrained range to an evaluator by revealing a

constrained key. An RCPRF 𝐹rc : Dr × Kr → Rr with an addi-

tional constrained key space 𝐾r contains the following algorithms

(GenKey, Constrain, Eval):
• 𝐹rc .KeyGen(1𝜆): It takes as input a security parameter 𝜆, outputs

a master key k
$←− Kr.

• 𝐹rc .Constrain(k, [𝑐]): It takes as input a master key k and a range
[𝑐], outputs a constrained key ck𝑐 ∈ 𝐾r.

• 𝐹rc .Eval(ck𝑐 , 𝑥): It takes as input a constrained key ck𝑐 and an

element 𝑥 ∈ Dr, outputs 𝑦 = 𝐹rc (k, 𝑥) iff 𝑥 ∈ [𝑐]; ⊥ otherwise.

We use 𝐹rc .BEval(ck𝑐 , [𝑐]) to denote a batch evaluation of 𝐹rc

over the range [𝑐], which outputs 𝑐 PRF outputs. The correctness

of RCPRF requires that Eval(ck𝑐 , 𝑥) = 𝐹rc (k, 𝑥) iff 𝑥 ∈ [𝑐]. The
security of RCPRF is defined in Def. 3.1.

Definition 3.1 (Security of RCPRFs). An RCPRF 𝐹rc is secure if

every PPT adversary A has negligible advantage in 𝜆, where the

advantage is defined as AdvΠA,𝐹rc

(𝜆) = | Pr[Exprcprf

A,𝐹rc

(𝜆) = 1] −1/2|,

and Exprcprf

A,𝐹rc

(𝜆) is defined in Fig. 17 from §A.

3.2 Concrete RCPRF Instantiations
We can construct RCPRFs from hash chains, GGM trees, and trap-

door permutations. We formalize these constructions under the

same algorithm interface and show three RCPRF schemes 𝐹
(h)
rc

,

𝐹
(g)
rc

, 𝐹
(t)
rc

, respectively. Looking ahead, these RCPRF instantiations

feature different properties, bringing different properties to DISCO.

KeyGen(1𝜆 )

1: 𝑠𝐿
$←− {0, 1}2𝜆

2: k← {𝐿, 𝑠𝐿 }
3: Return k

Constrain(k, [𝑐 ] )
1: parse k = (𝐿, 𝑠𝐿 )
2: 𝑠𝑐 ← 𝐻𝐿−𝑐 (𝑠𝐿 )
3: ck𝑐 ← {𝐿, 𝑠𝑐 , 𝑐 }
4: Return ck𝑐

Eval(ck𝑐 , 𝑖 )
1: ck𝑐 = (𝐿, 𝑠𝑐 , 𝑐 )
2: 𝑠𝑖 ←⊥, st𝑖 ←⊥
3: if 𝑖 ∈ [𝑐 ] then
4: 𝑠𝑖 ← 𝐻𝑐−𝑖 (𝑠𝑐 )
5: st𝑖 ← 𝐻 (𝑠𝑖 | |𝑖 )
6: Return st𝑖

Figure 2: RCPRF 𝐹 (h)
rc

from hash chains.

𝑠1

st1

𝐻 (𝑠1 | |1)

𝑠2

st2

𝐻 (𝑠2 | |2)

𝑠3

st3

𝐻 (𝑠3 | |3)

𝑠4

st4

𝐻 (𝑠4 | |4)

𝐻 ( ·) 𝐻 ( ·) 𝐻 ( ·)

Figure 3: RCPRF 𝐹 (h)
rc

from hash chains. 𝐻 is a hash function.
The green node corresponds to a constrained key for [1, 3].

RCPRF from hash chains. We review RCPRF using hash chains

in Fig. 2. Given a hash function𝐻 : {0, 1}∗ → {0, 1}2𝜆 , a hash chain

contains 𝐿 nodes derived from one initial seed 𝑠𝐿 ∈ {0, 1}2𝜆 , where
the 𝑖-th node is computed as 𝑠𝑖 ← 𝐻 (𝑠𝑖+1) for 𝑖 ∈ [1, 𝐿 − 1]. We use
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𝑦 = 𝐻𝑛 (𝑥) = 𝐻 (· · ·𝐻 (𝐻 (𝑥))) to denote 𝑛-th fold iteration of 𝐻 .

The master key is (𝑠𝐿, 𝐿). To generate a constrained key ck𝑐 , the
Constrain algorithm computes the 𝑐-th hash node from 𝑠𝐿 , which

invokes 𝐻 for 𝐿 − 𝑐 times. The evaluation algorithm Eval taking as

the input a constrained key ck𝑐 can recover any hash node 𝑠𝑖 for

𝑖 ∈ [𝑐], but not the nodes 𝑠𝑖 for 𝑖 > 𝑐 . Fig. 3 depicts an example.

KeyGen(1𝜆 )

1: s
$←− {0, 1}𝜆

2: k← {𝐿, s}
3: Return k

Constrain(k, [𝑐 ] )
1: ck𝑐 ← 𝐹G .BRC(s, [𝑐 ] )
2: Return ck𝑐

Eval(ck𝑐 , 𝑖 )
1: st𝑖 ←⊥
2: if 𝑖 ∈ [𝑐 ] then
3: st𝑖 ←

𝐹G (ck𝑐 , 𝑖 − 1)
4: Return st𝑖

Figure 4: RCPRF 𝐹 (g)
rc

from GGM PRF.

RCPRF from GGM PRF. Fig. 4 shows how to convert GGM PRF

to an RCPRF. We define (𝐿, kG) as the master key. To generate a

constrained key ck𝑐 for a range [𝑐], one can compute a best range
cover (BRC) of the GGM tree corresponding to a range [𝑐]. The
BRC corresponding to a range [𝑐] is sufficient to recover all leaf

nodes st𝑖 for 𝑖 ∈ [𝑐], but not for those beyond the range. As a toy

example, Fig. 5 shows a GGM tree with 𝐿 = 4. A constrained key

ck3 contains two green nodes in this tree.

st1 st2 st3 st4

0 1

0 1 0 1

Figure 5: RCPRF 𝐹 (g)
rc

from GGM trees. The green nodes cor-
respond to a constrained key for the range [1, 3].

RCPRF from trapdoor permutations. The hash-based and GGM-

based RCPRFs only require symmetric primitives, but both ap-

proaches only support a bounded domain (i.e., 𝐿). The RCPRF from
trapdoor permutations avoids this limitation.

KeyGen(1𝜆 )

1: 𝑠1

$←− {0, 1}𝜆
2: (pk, sk) ←

𝜋.Gen(1𝜆 )
3: k← {pk, sk, 𝑠1}
4: Return k

Constrain(k, [𝑐 ] )

1: 𝑠𝑐 ← 𝜋
−(𝑐−1)
sk (𝑠1 )

2: ck𝑐 ← {pk, 𝑠𝑐 , 𝑐 }
3: Return ck𝑐

Eval(ck𝑐 , 𝑖 )
1: ck𝑐 = {pk, 𝑠𝑐 , 𝑐 }
2: 𝑠𝑖 ←⊥, st𝑖 ←⊥
3: if 𝑖 ∈ [𝑐 ] then
4: 𝑠𝑖 ← 𝜋𝑐−𝑖

pk (𝑠𝑐 )
5: st𝑖 ← 𝐻 (𝑠𝑖 | |𝑖 )
6: Return st𝑖

Figure 6: RCPRF 𝐹 (t)
rc

from trapdoor permutation.

Fig. 6 shows an RCPRF scheme from trapdoor permutation

𝜋 . Fig. 7 depicts an example. Like hash-based RCPRF, the TDP-

based RCPRF maintains a linked-list structure where 𝜋 is used to

evolve the list for both directions. In particular, KeyGen samples

a random 𝑠1
$←− Dt and initializes the public and secret key pair

(pk, sk) for trapdoor permutation 𝜋 , using the TDP key generation

algorithm 𝜋.Gen(1𝜆). The master key of the resulting RCPRF is

𝑠1

st1

𝐻 (𝑠1 | |1)

𝑠2

st2

𝐻 (𝑠2 | |2)

𝑠3

st3

𝐻 (𝑠3 | |3)

𝑠4

st4

𝐻 (𝑠4 | |4)

𝜋pk (·) 𝜋pk (·) 𝜋pk (·)

𝜋−1

sk (·) 𝜋−1

sk (·) 𝜋−1

sk (·)

Figure 7: RCPRF 𝐹 (t)
rc

from a trapdoor permutation 𝜋 , and
𝐻 is a hash function. The green node corresponds to the
constrained key for the range [1, 3].

k = (pk, sk, 𝑠1). To generate a constrained key ck𝑐 for a range [𝑐],
the master key holder only needs to compute 𝑠𝑐 ← 𝜋

−(𝑐−1)
sk (𝑠1),

where 𝜋
−(𝑐−1)
sk (𝑠1) = 𝜋−1

sk (· · · 𝜋
−1

sk (𝜋
−1

sk (𝑠1))) denotes (𝑐−1)-th fold
iteration of 𝜋−1

. Anyone who has pk can only recover {𝑠𝑖 }𝑖∈[𝑐 ]
given ck𝑐 and pk. In particular, 𝑠𝑖 ← 𝜋𝑐−𝑖pk (𝑠𝑐 ), where 𝜋

𝑐−𝑖
pk (𝑠𝑐 ) =

𝜋pk (· · · 𝜋pk (𝜋pk (𝑠𝑐−1))), i.e., 𝜋pk is invoked for 𝑐 − 𝑖 times.

Anote on security. Onemaywonder whywe define RCPRF output

st𝑖 by applying𝐻 over 𝑠𝑖 in the hash-based and TDP-based RCPRFs.

This is necessary, otherwise, we cannot achieve the claimed RCPRF

security: assume the adversary has queried 𝑂Constrain

k ( [𝑐]), which
means the adversary learns 𝑠𝑐 . Now the adversary issues a challenge

query over 𝑐+1 and obtains a challenge output𝑦. The adversary can

simply check whether 𝑠𝑐 = 𝐻 (𝑦) (resp. 𝑠𝑐 = 𝜋pk (𝑦)) for 𝐹
(h)
rc

(resp.

𝐹
(h)
rc

). This means the adversary can distinguish 𝑦 from a random

value, which is not allowed by the RCPRF security definition. Using

𝐻 cancels the relation.

Master key derivation from a seed. For all the above RCPRFs,
a master key contains two parts: the public part containing non-

secret parameters (e.g., 𝐿, pk in the above RCPRFs) and the secret
part containing secret states and keys (e.g., 𝑠𝐿 , s, and (sk, 𝑠1)). In the

above specification, KeyGen samples the secret parts using uniform

randomness. Indeed, it’s possible to determine the secret part from

a 𝜆-bits pseudorandom seed. Looking ahead, we will set up an

RCPRF instance for each keyword on-the-fly in DISCO, where a
pseudorandom seed (derived from another pseudorandom function)

is used to configure the secret part for each RCPRF instance, and

all instances share the common public parameters (e.g., 𝐿, pk). We

defer the details to §4.2.

Trade-off discussions. Different RCPRFs enjoy distinct properties.
We identify several properties in terms of efficiency and usability

that will be vital in the design of DISCO.

• Key size. Key size refers to the size of themaster/constrained key).

The master key size is constant for three RCPRFS. In terms of

constrained keys, both the hash-based and TDP-based RCPRFs

require constant size, while the GGM-based RCPRF requires

𝑂 (log𝐿) elements of 𝜆 bits (i.e., the BRC nodes).

• Constrained key generation. The hash-based RCPRF requires 𝐿 −
𝑐 hash invocations for constrained key generation, the TDP-

based requires 𝑐 TDP inverse computation, and the GGM-based

requires 𝑂 (log𝐿) PRG invocations.

• Batch evaluation. The batch computation overhead corresponds

to the overhead for evaluating a batch of RCPRF evaluation (i.e.,
RCPRF evaluation over a range [𝑐]). Concretely, both hash-based
and GGM-based RCPRFs require 𝑂 (𝑐) invocations, though the
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hash-based RCPRF performs hash computation and the TDP-

based RCPRF invokes TDP inverse. The GGM-based RCPRF per-

forms 𝑂 (𝑐) PRG invocations.

• Domain size. This refers to whether an RCPRF requires explicitly

defining an upper bound 𝐿 for the RCPRF evaluation domain.

We note that both the hash-based and GGM-based RCPRFs only

support a pre-defined evaluation domain, while the TDP-based

RCPRF supports an unbounded (polynomial) domain.

A summary is shown in Table 2. Looking ahead, when utilizing

RCPRFs for designing DSE, the master key is stored by the client,

which contributes to the client-side local storage. Constrained key

generation contributes to the client-side computational overhead.

The constrained key is sent to the server to perform constrained

evaluation, contributing to client-to-server communication. Batch

RCPRF evaluation contributes to server-side computation during a

search. We leave more details in the next section.

Table 2: Main efficiency properties of RCPRF schemes.
Scheme Con. Key Size Key Gen. Comp. Bat. Eval. Comp. Unb. rang.

𝐹
(h)
rc

𝑂 (𝜆) 𝑂 (𝐿 − 𝑐 ) 𝑂 (𝑐 ) No

𝐹
(g)
rc

𝑂 (𝜆 log𝐿) 𝑂 (𝑐 ) 𝑂 (𝑐 ) No

𝐹
(t)
rc

𝑂 (𝜆) 𝑂 (𝑐 ) 𝑂 (𝑐 ) Yes

A hybrid RCPRF design. Beyond DSE, RCPRFs are useful in other

privacy-preserving applications [3]. A pre-defined upper bound of

evaluation may restrict usability for update-frequent applications.

We also propose a hybrid unbounded RCPRF by combining good

properties from different RCPRFs, which is of independent interest.

Due to the page limit, we move the details to §C.

4 DSE WITH CONSTANT CLIENT STATE
This section details the DISCO framework, concrete instantiations,

and optimizations.

4.1 Overview
Update fashion. DISCO works in the batch update setting, where

the client periodically updates a batch of indexes to the server-side

encrypted database. A batch update setting is reasonable in many

scenarios, e.g., when data updates arrive in a batch manner or the

client catches a small number of updates locally before pushing

them to the remote encrypted database. For example, the client may

perform a daily batch update, i.e., pushing updates (if they exist) to

the server-side encrypted database at the end of each day.

Database organization. Following the batch update fashion, we

can logically parse the server-side encrypted database EDB =

EDB(1) ∪ EDB(2) ∪ · · · ∪ EDB(𝑐 ) as a union of the sub batched en-

crypted databases, where EDB(𝑖 ) is the encrypted indexes from the

𝑖-th batch. In DISCO, the encrypted database contains a collection

of encrypted index pairs with the form (𝑢, 𝑒), where 𝑢 is the refer-

ence/address, 𝑒 is the encrypted content, and 𝑒 can be efficiently

fetched using 𝑢.

Index structure. DISCO aims to achieve forward-and-backward

privacy efficiently only using a constant client-side state. Before

introducing the high-level idea of DISCO, we first overview the

high-level index structure in previous DSE works.

Index structure in previous works. We will use a toy example to

elaborate on the index structure.Without loss of generality, suppose

we have two keywords 𝑤1 and 𝑤2 in the system, and the client

issues three batches of updates:

• IN(1) : {[𝑤1 : {(add, id1), (add, id2)}]; [𝑤2 : {(add, id1)]};
• IN(2) : {[𝑤2 : {(del, id1), (add, id3), (add, id4)}]};
• IN(3) : {[𝑤1 : {(add, id5)}]; [𝑤2 : {(add, id5)]}

𝑤1: st(𝑤1)
1

add | |id1

st(𝑤1)
2

add | |id2

st(𝑤1)
3

add | |id5

𝑤2: st(𝑤2)
1

add | |id1

st(𝑤2)
2

del | |id1

st(𝑤2)
3

add | |id3

st(𝑤2)
4

add | |id4

st(𝑤2)
5

add | |id5

Figure 8: The index data structure using 𝑂 ( |W|) state.

The index structure of previous works is sketched in Fig. 8. De-

spite slight differences, the key idea is how to evolve secret tokens

during updates and how to reveal tokens to the server to enable

search under the constraint of forward privacy. This is done by the

client locally maintaining an updatable state (e.g., a counter) per
keyword. The client generates a fresh secret token for each new

update and uses the new token to encrypt the update. Only the

client can evolve the token list for a new token (using client-known

secrets and states) such that the server receiving the new encrypted

index cannot link it with previous queries. To enable search, the

client only reveals the secret tokens confined to the update history

of the keyword to be searched, but not the tokens used for future

updates; this ensures forward privacy.

Index structure in DISCO. Our goal is to design a different index

structure only using a constant state. The index structure is sketched

in Fig. 9. Now we overview its high-level design.

First, we remove the 𝑂 ( |W|) state using a global counter as

considered in [17]. Instead of using 𝑂 ( |W|) counters, the client

uses one single global counter 𝑐 shared among all keywords, and

the client increases 𝑐 once per update batch.

𝑤1: st(𝑤1)
1

1

2

add | |id1

add | |id2

st(𝑤1)
2

st(𝑤1)
3

1 add | |id5

𝑤2: st(𝑤2)
1

1 add | |id1

st(𝑤2)
2

1

2

3

del | |id1

add | |id3

add | |id4

st(𝑤2)
3

1 add | |id5

𝑐 = 1 𝑐 = 2 𝑐 = 3

Figure 9: Index structure in DISCO using 𝑂 (1) state.

Second,DISCO re-uses a secret token for a keyword𝑤 to encrypt

all updated indexes associated with 𝑤 within a batch. Note that

a secret token in Fig. 8 is only for one single update. Differently,

DISCO takes a secret token for a keyword𝑤 with a sub-counter to
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encrypt indexes corresponding to𝑤 . For example, the client uses

st(𝑤1 )
1

to handle both (add, id1) and (add, id2) for𝑤1 when 𝑐 = 1.

Another issue is how to efficiently evolve secret tokens during an

update and perform restricted token revealing during a search. We

resort to RCPRF for evolving and controlling ranged secrets. We ap-

ply RCPRFs to the global counter setting to get rid of𝑂 ( |W|) client
state. As a promising property, DISCO permits different RCPRF

configurations. Indeed, one can regard CLOSE-FB as a concrete in-

stantiation within the DISCO framework, yet DISCO can provide

flexible trade-offs when configured with different RCPRFs, opening

the possibility of efficiency improvement.

An issue that comes with using a global counter is that the server

must search through each sub-database to find all possible matched

indexes, which increases computational overhead, particularly for

search queries with a small number of matched indexes.We propose

practical optimizations to alleviate the issue without downgrading

security. We refer to §4.3 for the details.

Remark. The above index structure is only for conceptual under-

standing.Wewill encrypt the index securely and properly inDISCO.

4.2 The DISCO Framework
Following the overview, this section details the DISCO framework

and its concrete instantiations. We also propose optimizations to

improve DISCO’s efficiency concretely.

Generic constant-state DSE framework. Fig. 10 presents the

pseudocode of DISCO. We show details of update and search pro-

tocols as follows.

Update. Give an update batch IN containing possibly many up-

dates, DISCO encrypts the indexes only using a constant number

of keys. To achieve forward privacy, DISCO implicitly maintains

an RCPRF instance for each keyword, and the client computes the

RCPRF master key k(𝑤 )
r
← 𝐹1 (k1,𝑤) for𝑤 on the fly using a nor-

mal PRF 𝐹1.
1
Using the master RCPRF key k(𝑤 )

r
, the client derives

a fresh secret token st(𝑤 )𝑐 corresponding to 𝑐 , and uses st(𝑤 )𝑐 to

perform index encryption. Within an update batch, it’s possible

to have multiple document-keyword pairs for the same keyword.

DISCO employs a simple counter-based index encryption trick to

encrypt these indexes corresponding to the same keyword𝑤 (line.

8-11, Update). The client uploads EDB(𝑐 ) , completing the update.

Search. To search a keyword𝑤 , the client only needs to release

the constrained key ck(𝑤 )𝑐 (for the RCPRF instance associated with

the keyword 𝑤 being searched) for range [𝑐]. Using ck(𝑤 )𝑐 , the

server can recover all PRF values {st𝑖 }𝑖∈[𝑐 ] . Note that the server
uses each st(𝑤 )

𝑖
to perform a search over EDB(𝑖 ) to find all the

matched indexes. The server performs the encrypted search and

returns a collection of encrypted items to the client. The client

simply decrypts the encrypted values and removes deleted ids to

obtain DB(𝑤); here we rely on result-hiding to achieve type-II

backward privacy, which is a standard technique from [2].

Concrete DISCO instantiations. While some ideas from DISCO
are already discovered by previous DSE works [1, 2, 17], DISCO

1
We abuse the notation without explicitly specifying the public parameters of the

master key, and the secret part is determined by a𝜆-bits pseudorandom value generated

by 𝐹1 . We note all RCPRFs formalized in this paper support this seed-setup property

and will show in detail when configuring DISCO with a concrete RCPRF scheme.

combines these techniques together as a new and simple framework

for designing constant-state FB-DSE. Moreover, we can configure

DISCO with different RCPRFs to obtain configurable trade-offs.

DISCO from hash-based RCPRF. To concretely configureDISCO

with 𝐹
(h)
rc

, the client simply uses k(𝑤 )
r

as an initial seed to setup a

hash chain for𝑤 . In particular, the client uses k(𝑤 )
r

as the seed to

determine the secret part (i.e., st(𝑤 )
𝐿

) and computes the hash chain

on the fly whenever needed. The public parameter contains 𝐿 and

the hash function 𝐻 for the hash chain.

We can interpret CLOSE-FB as a concrete instantiation ofDISCO
using the hash-based RCPRF. However, both DISCOh and CLOSE-

FB suffer from efficiency/usability issues due to using hash chains.

In particular, the client must specify an upper bound 𝐿 for the size

of the hash chains. After running up the hash chains (i.e., 𝑐 = 𝐿),
CLOSE-FB requires the client to download all the encrypted indexes,

decrypt them, and perform database rebuilding using new hash

chains. To avoid database rebuilding too frequently, it’s better to use

hash chains with large 𝐿. However, we stress that the client must

perform 𝐿−𝑐 invocations of hash evaluation for updating or search-

ing one single keyword, thus a large 𝐿 will significantly increase

client-side computation overhead; it seems that the hash-based

construction is only desired for DSE with low update frequency.

DISCO from GGM-based RCPRF . We can instantiate the RCPRF

with the GGM-based RCPRF, and we call the resulting DISCO con-

struction DISCOg. To concretely configure DISCO with 𝐹
(g)
rc

, the

client simply uses k(𝑤 )
r

as an initial seed of the GGM tree for𝑤 . In

particular, the client uses k(𝑤 )
r

as the seed to derive a GGM tree on

the fly whenever needed. The public parameter contains tree size 𝐿

and the PRG 𝐺 for the GGM trees.

As a benefit of using GGM-based PPRF, the client-side computa-

tion is𝑂 (log𝐿) during search/update, which is sublinear in 𝐿 and is

much more efficient thanDISCOh for large 𝐿. ThoughDISCOg still

requires a pre-specified upper bound 𝐿 like DISCOh, the client-side

computation overhead is reduced significantly for large 𝐿. Note that

the constrained key for GGM-based RCPRF is 𝑂 (log𝐿) BRC nodes,

whereas the constrained key size of hash-based RCPRF is one single

value. Overall, DISCOg requires much less computation overhead

than DISCOh for large 𝐿, with a slightly increased client-to-server

communication from the constrained key.

DISCO from TDP-based RCPRF . We can configure DISCO with

𝐹
(𝑡 )
rc

, and we call the resulting DISCO construction DISCOt. The

client simply uses k(𝑤 )
r

to determine the initial seed 𝑠
(𝑤 )
1

. The client

sets up a pair of public/secret key pair (pk, sk) ← 𝜋.Gen(1𝜆). We

note that the client can use this key pair across all RCPRF instances.

While the TDP-based RCPRF is generally computationally more

expensive than prior symmetric-based alternatives, the efficiency

gap is not as significant as expected in practice because in most

cases the bottleneck of SSE schemes is not computation. Also, the

TDP-based RCPRF has a distinguishing property: it supports an

unbounded (polynomial-size) domain without any restriction. We

leverage this property in the design of the hybrid RCPRF construc-

tions in §C. Using this hybrid RCPRF, we can achieve both low

computational overhead and unbounded evaluation domain; resolv-

ing issues from running out hash chains in CLOSE-FB [17].
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Setup(1𝜆 ;⊥)
Client:

1: k1 ← {0, 1}𝜆 , k2 ← SE.Gen(1𝜆 ) , 𝑐 ← 0

2: Store 𝜎 ← (k1, k2, 𝑐 )
Server :

3: EDB← ∅
Update(𝜎, IN;EDB)

Client:
1: Parse 𝜎 as (k1, k2, 𝑐 )
2: Update 𝑐 ← 𝑐 + 1.

3: EDB(𝑐 ) ← ∅
4: for 𝑤 ∈ W(IN) do
5: k(𝑤)

r
← 𝐹1 (k1, 𝑤 ) , st(𝑤)𝑐 ← 𝐹rc (k(𝑤)r

, 𝑐 )
6: 𝑗 ← 1

7: for (op, 𝑤, id) ∈ IN(𝑤 ) do
8: 𝑢 ← 𝐻1 (st(𝑤)𝑐 | | 𝑗 )
9: 𝑒 ← SE.Enc(k2, op | |id)
10: EDB(𝑐 ) ← EDB(𝑐 ) ∪ { (𝑢, 𝑒 ) }
11: 𝑗 ← 𝑗 + 1

12: Send EDB(𝑐 ) to the server

Server :
16: EDB← EDB ∪ EDB(𝑐 )

Search(𝜎 ;EDB)
Client:

1: Parse 𝜎 as (k1, k2, 𝑐 )
2: k(𝑤)

r
← 𝐹1 (k1, 𝑤 )

3: ck(𝑤)𝑐 ← 𝐹rc .Constrain(k(𝑤)r
, [𝑐 ] )

4: Send (ck(𝑤)𝑐 , 𝑐 ) to the server

Server :
5: E← ∅
6: {st(𝑤)

𝑖
}𝑖∈ [𝑐 ] ← 𝐹rc .BEval(ck(𝑤)𝑐 , [𝑐 ] )

7: for 𝑖 ∈ [𝑐 ] do
8: 𝑗 ← 1, 𝑢 ← 𝐻1 (st(𝑤)𝑐 | | 𝑗 )
9: while EDB(𝑖 ) [𝑢 ] ≠⊥ do
10: 𝑒 ← EDB(𝑖 ) [𝑢 ], E← E ∪ {𝑒 }
11: 𝑗 ← 𝑗 + 1, 𝑢 ← 𝐻1 (st(𝑤)𝑐 | | 𝑗 )
12: Send E to the client

Client:
13: Decrypt E using k2 and remove deleted identifiers

to obtain DB(𝑤 ) .

Figure 10: The pseudocode of DISCO.

Security. DISCO achieves forward privacy and type-II backward

privacy. Intuitively, DISCO achieves forward privacy from the se-

curity of RCPRF since the server cannot learn future secret tokens

from a constrained key. The search result is encrypted using a

PCPA-secure symmetric-key encryption and only the client can de-

crypt it to learn plaintexts; this result-hiding property is a standard

technique to obtain type-II BP. We refer to §D for the proof.

Summary. The main idea in DISCO is to trade a low client state

with the price of increased computation, and previous work [11]

trades a low client state with the price of increasing communication.

The trade-off from DISCO is more desired because communication,

especially round complexity, is more likely to be a bottleneck for

cloud-based applications. Also,DISCOmainly relies on lightweight

cryptographic operations. The increased computational overhead is

mainly on the server side, and the client-side computation is almost

the same as the previous lightweight DSE with 𝑂 ( |W|) state. Our
following experiment results show that the increased computational

overhead is almost unnoticeable from human perception. Moreover,

DISCO is conceptually simple, and simplicity is also one important

principle when designing new protocols and applications.

4.3 DISCO+: Optimized DISCO
Using a global counter achieves a constant client state but incurs

more computational overhead. To alleviate this issue, we propose

optimizations to improve DISCO’s efficiency concretely; we denote

the optimized version as DISCO+. Fig. 12 shows the formal descrip-

tion, and Fig. 11 sketches optimizations on the index perspective.

Enable parallel search. DISCO+ additionally supports parallel

search. We modify the index encryption method in DISCO to sup-

port parallel search. Roughly speaking, the idea is to somehow let

the server learn the number of matched indexes before perform-

ing an actual search, then the server can allocate multi-thread to

perform a parallel search if necessary (e.g., for a search query with

many matched indexes). To support this, we modify the update

protocol by additionally encrypting the counter 𝑗 = |IN(𝑤) | as
a part of the encrypted indexes (line. 12-15, Update), which can

only be decrypted when the server learns st(𝑤 )𝑐 during a search. By

knowing 𝑗 = |DB𝑐 (𝑤) |, the server can perform a parallel search to

find out all matched encrypted indexes.

Reduce RCPRF evaluation. DISCO incurs additional overhead

from redundant RCPRF invocations as the server must search over

all sub-databases to find matched indexes. For keywords with few

matchings, the extra RCPRF evaluation may dominate computation.

To reduce the overhead, the server can perform a post-search re-

keying strategy to re-organize the encrypted indexes after a search,

reducing RCPRF evaluation to the same keyword in a future search

query; similar tricks can be found from previousworks [1, 12, 21, 26].

In particular, the server can re-use the latest ephemeral token st(𝑤 )𝑐

to re-generate new (pseudorandom) addresses for the encrypted

indexes E after each search and update the re-encrypted items back

to EDB(𝑐 ) (line. 19-26, Search); the server also removes old indexes

during the search to save storage. As a result, the server has no

need to perform RCPRF evaluation over 𝑖 < 𝑐 for the next search

to the same keyword.

Following the intuition, DISCO+ additionally stores one bit of

information indicating whether the server should stop during a

search. Specifically, the client encrypts a bit 𝑏 ∈ {0, 1} along with
the counter 𝑗 = |IN(𝑤) |, where 𝑏 = 0 tells the server to stop.

Initially, the client sets 𝑏 = 1 for all the keywords. Once a keyword

is searched, the server updates 𝑏 ← 0 during the post-search re-

keying phase. By doing this, the server can know when to stop

searching in a future search query to the same keyword (line. 17,

Search), reducing RCPRF evaluation overhead. Fig. 11 shows an

example from keyword𝑤1.

Enable database merging. For applications with small update

batches, the client can merge small encrypted sub-databases to-

gether periodically to reduce the overhead from RCPRF evalua-

tion. When necessary, the client can periodically download several
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𝑤1: st(𝑤1)
1

0
2||1

1

2

add | |𝑤1 | |id1

add | |𝑤1 | |id2

st(𝑤1)
2

st(𝑤1)
3

0
1||1

1 add | |𝑤1 | |id5

𝑐 = 1 𝑐 = 2 𝑐 = 3

Index structure before search𝑤1

𝑤1: st(𝑤1)
1

st(𝑤1)
2

st(𝑤1)
3

0
3||0

1 add | |𝑤1 | |id1

2 add | |𝑤1 | |id2

3 add | |𝑤1 | |id5

𝑐 = 1 𝑐 = 2 𝑐 = 3

Index structure after search𝑤1

Figure 11: The (sketched) index data structure in DISCO+. The structure and information are reorganized after searching𝑤1.

Setup(1𝜆 ;⊥)
Client:

1: k1 ← {0, 1}𝜆 , k2 ← SE.Gen(1𝜆 ) , 𝑐 ← 0

2: store 𝜎 ← (k1, k2 )
Server :

3: EDB← ∅
Update(𝜎, IN;EDB)

Client:
1: Parse 𝜎 as (k1, k2, 𝑐 )
2: update 𝑐 ← 𝑐 + 1

3: EDB(𝑐 ) ← ∅
4: for 𝑤 ∈ W(IN) do
5: k(𝑤)

r
← 𝐹2 (k1, 𝑤 ) , st(𝑤)𝑐 ← 𝐹rc (k(𝑤)r

, 𝑐 )
6: 𝑗 ← 0

7: for (op, 𝑤, id) ∈ IN(𝑤 ) do
8: 𝑗 ← 𝑗 + 1

9: 𝑢 ← 𝐻1 (st(𝑤)𝑐 | | 𝑗 )
10: 𝑒 ← SE.Enc(k3, op | |𝑤 | |id)
11: EDB(𝑐 ) ← EDB(𝑐 ) ∪ { (𝑢, 𝑒 ) }
12: 𝑢 ← 𝐻1 (st(𝑤)𝑐 | |0)
13: k𝑡 ← 𝐻2 (st(𝑤)𝑐 )
14: 𝑒 ← SE.Enc(k𝑡 , 𝑗 | |1)
15: EDB(𝑐 ) ← EDB(𝑐 ) ∪ { (𝑢, 𝑒 ) }
16: Send EDB(𝑐 ) to the server

Server :
17: EDB← EDB ∪ EDB(𝑐 )

Search(𝜎 ;EDB)
Client:

1: Parse 𝜎 as (k1, k2, 𝑐 )

2: k(𝑤)
r
← 𝐹2 (k2, 𝑤 )

3: ck(𝑤)𝑐 ← 𝐹rc .Cons(k(𝑤)r
, [𝑐 ] )

4: Send (ck(𝑤)𝑐 , 𝑐 ) to the server

Server :
5: E← ∅
6: {st(𝑤)

𝑖
}𝑖∈ [𝑐 ] ← 𝐹rc .REval(ck(𝑤)𝑐 , [𝑐 ] )

7: for 𝑖 ∈ [𝑐 ] do
8: 𝑢 ← 𝐻1 (st(𝑤)𝑖

| |0) , 𝑒 ← EDB(𝑖 ) [𝑢 ]
9: if 𝑒 ≠⊥ then
10: k𝑡 ← 𝐻2 (st(𝑤)𝑖

)
11: 𝑗 | |𝑏 = SE.Dec(k𝑡 , 𝑒 )
12: EDB(𝑖 ) ← EDB(𝑖 ) \ { (𝑢, 𝑒 ) }
13: for 𝑘 ∈ [1, 𝑗 ] do ⊲ parallelable

14: 𝑢 ← 𝐻1 (st(𝑤)𝑖
| |𝑘 )

15: 𝑒 ← EDB(𝑖 ) [𝑢 ], E← E ∪ {𝑒 }
16: EDB(𝑖 ) ← EDB(𝑖 ) \ { (𝑢, 𝑒 ) }
17: if 𝑏 = 0, break the loop

18: Send E to the client

Server-side post-search re-keying:
19: Let 𝑗 ← |E |, 𝑏 ← 0

20: 𝑢 ← 𝐻1 (st(𝑤)𝑐 | |0) , k𝑡 ← 𝐻2 (st(𝑤)𝑐 )
21: 𝑒 ← SE.Enc(k𝑡 , 𝑗 | |𝑏 )
22: EDB(𝑐 ) ← EDB(𝑐 ) ∪ { (𝑢, 𝑒 ) }
23: 𝑗 ← 0

24: for 𝑒 ∈ E do
25: 𝑗 ← 𝑗 + 1, 𝑢 ← 𝐻1 (st(𝑤)𝑐 | | 𝑗 )
26: EDB(𝑐 ) ← EDB(𝑐 ) ∪ { (𝑢, 𝑒 ) }

Client:
27: Decrypt E using k2 and remove deleted identifiers

to obtain DB(𝑤 ) .

Figure 12: The pseudocode of DISCO+. Here 𝐻2 is for generating a key k𝑡 used for encrypting counter information. To make the
encrypted counter ciphertext indistinguishable from normal indexes from size, padding is done whenever necessary.

batches of encrypted databases, decrypt them, and encrypt them as

a whole new batch. The client uploads the encrypted indexes (using

st(𝑤 )𝑐 associated with a new fresh 𝑐) to the server, and the server

can delete the old ones. To enable rebuilding, we modify the index

encryption method by adding the keyword within the encrypted

indexes (line. 10, Update); this allows the client to fully recover all

the (op,𝑤, id) tuples after local decryption. The client removes the

deleted identifiers during rebuilding to save server-side storage.

Security. Similiar as previousworks [12, 21, 22, 26, 32], optimizations

in DISCO+ don’t introduce more leakage than DISCO. Therefore,
we only provide security proof for DISCO in this paper.

5 EXPERIMENTAL EVALUATION
5.1 Implementation and Setting
We implemented DISCO (https://github.com/BintaSong/opensse-

schemes) in C++. We use OpenSSL for cryptographic operations,

Rocksdb (http://rocksdb.org) for database storage, and gRPC (http:

//www.grpc.io) for network communication. The identifier length is

64-bit. We run evaluation on a PC with four cores Intel(R) Core(TM)

i7-10850 CPU, 2.7GHz, 16GB RAM, and 256G SSD disk, running

Ubuntu 16.04. We use Linux tc tool to simulate local-area net-

work (LAN, RTT: 0.1 ms, 1 Gbps), wide-area network (WAN, RTT:

6 ms, 100 Mbps).

https://github.com/BintaSong/opensse-schemes
https://github.com/BintaSong/opensse-schemes
http://rocksdb.org
http://www.grpc.io
http://www.grpc.io


ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Xiangfu Song, Yu Zheng, Jianli Bai, Changyu Dong, Zheli Liu, and Ee-Chien Chang

We use DB(𝑛,𝑚, 𝑁 ) to denote a database with 𝑛 documents,

𝑚 keywords, and 𝑁 document/keyword pairs. We follow a DB

generation method from OpenSSE(https://github.com/OpenSSE/

opensse-schemes/blob/master/lib/utils/db_generator.cpp) used by

previous works [1, 2], and generate three databases DB1, DB2, DB3

in Table 3, and the Enron dataset is between DB2 and DB3. We set

the upper bound 𝐿 for DISCOh (CLOSE-FB) and DISCOg in our

experiment. For example, setting 𝐿 = 2
14

supports more than 44

years if the client performs a daily update fashion.

Table 3: Database size
Database 𝑛 𝑚 𝑁

DB1 100, 000 23, 050 1, 737, 895

DB2 1, 000, 000 229, 835 18, 212, 888

DB3 10, 000, 000 2, 315, 889 189, 516, 363

Enron 517, 080 390, 423 22, 900, 317

Storage. We measure the client-side and server-side Rocksdb stor-

age. DB3, Sophos, FAST, and Mitra require about 500MB of client

storage for storing counter information, while the encrypted data-

base on the server side is about 6GB. DISCO requires ≤ 2KB per-

manent client storage without blowing up server-side storage.

5.2 Update Performance
Comparison between different DISCO constructions. To show
the trade-offs between DISCO constructions under different 𝑐 and

𝐿, we report update efficiency under different 𝑐 = 𝛼 · 𝐿, where
𝛼 ∈ [0, 1] is a configurable parameter called update rate.
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(d) 𝐿 = 2
14

Figure 13: Update time for DISCO constructions in the LAN
setting.

We first report update efficiency and discuss trade-offs from

different DISCO constructions. In these settings, we vary 𝐿 ∈ {28
,

2
10
, 2

12
, 2

14} and 𝑐 = 𝛼 · 𝐿 where 𝛼 ∈ {0.2, 0.4, 0.6, 0.8}. We update

DB1 into the server-side database and measure the atomized update

time for each document/keyword pair. Fig. 13 shows the update

efficiency for DISCO under different 𝐿 and 𝛼 . The performance

evaluation is consistent with the complexity properties of different

DISCO constructions. In particular, we have the following findings.

DISCOh ranks the best for large enough 𝛼 . DISCOh is the least

efficient scheme for sufficiently large 𝐿, consistent with complexity

analysis, i.e., performing 𝐿 − 𝑐 hash invocations for secret token

generation. DISCOh is computationally bounded for large 𝐿 and

small 𝛼 . When 𝛼 approaches 1, the computational overhead is not

the bottleneck anymore; in this case, DISCOh ranks at the top.

DISCOt outbeats DISCOh for large 𝐿 and small 𝛼 . NoteDISCOt
requires relatively inefficient asymmetric computation. Though

DISCOt generally has the worst update efficiency, it still beats

DISCOh for large 𝐿 and small 𝛼 . As shown in Fig. 13(d), DISCOt is

about 1.7× faster than DISCOh when 𝐿 = 2
14

and 𝛼 = 0.2. This is

because DISCOh performs worse if 𝐿 − 𝑐 is large.
DISCOg has the most stable update efficiency. We can see that

DISCOg owns the most stable update efficiency among the three

constructions, achieving about 0.01ms/pair update efficiency for

any 𝐿 and 𝛼 . Even for large 𝛼 , DISCOg is only 0.1× slower than

DISCOh. DISCOh owns the most unstable update efficiency.

Comparison with previous DSE constructions. We compare

update efficiency with previous DSE schemes. We choose DISCOg
(we set 𝐿 = 2

14
and 𝛼 = 0.5) for comparison since DISCOg is the

most stable version amongDISCO constructions. We compare with

Sophos, FAST, Mitra, and SD𝑑 .
2
We do not compare with Moneta,

Orion, and Horus that use oblivious primitive like SD𝑑 ; since SD𝑑

is more efficient than them according to [11].

Running time. We first compare update time in Fig. 14. For each

construction, we update𝑢 ∈ {2000, 4000, 6000, 8000, 10000} indexes
into the server-side encrypted database and measure the total time

to complete 𝑢 updates in the LAN and WAN setting, respectively.

2,000 4,000 6,000 8,000 10,000

10
−2

10
−1

10
0

10
1

10
2

10
3

#Updates

U
p
d
a
t
e
t
i
m
e
(
m
s
)

DISCOg

FAST [26]

Mitra [14]

Sophos [1]

SD𝑑 [11]

(a) LAN setting

2,000 4,000 6,000 8,000 10,000

10
−2

10
0

10
2

10
4

#Updates

U
p
d
a
t
e
t
i
m
e
(
m
s
)

DISCOg

FAST [26]

Mitra [14]

Sophos [1]

SD𝑑 [11]

(b) WAN setting

Figure 14: Update time for different DSE schemes.

As we can see, DISCOg requires the least running time, or equiv-

alently, the best update throughput, among all schemes. The reason

is thatDISCOg batches all updates to the same keyword and re-uses

the secret token derived from the RCPRF to encrypt these indexes.

In previous DSE schemes, the client computes a fresh secret token

for each update index regardless of whether the same keyword is

updated in the same batch. As a result, DISCOg is about 2× faster

2
The original implementation of SD𝑑 holds encrypted indexes in RAM without

network communication, which cannot show the impact of network condition. To

make the comparison fair, we use the version with network from https://github.com/

MonashCybersecurityLab/SDd. We note this version still has an I/O advantage over

other DSE schemes since it still uses RAM to hold encrypted indexes.

https://github.com/OpenSSE/opensse-schemes/blob/master/lib/utils/db_generator.cpp
https://github.com/OpenSSE/opensse-schemes/blob/master/lib/utils/db_generator.cpp
https://github.com/MonashCybersecurityLab/SDd
https://github.com/MonashCybersecurityLab/SDd
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than the previous fully symmetric DSE scheme FAST and Mitra.
3

SD𝑑 has the worst update throughput among all reported DSEs.

There is no wonder since SD𝑑 is based on OMAP, which requires

𝑂 (log𝑁 ) rounds and 𝑂 (log
3 𝑁 ) communication per update. Over-

all, SD𝑑 is about three orders of magnitude slower even compared

with Sophos, which owns the lowest update efficiency among the

remaining DSE schemes. Another finding is that the update effi-

ciency of SD𝑑 is enlarged in the WAN setting. In particular, SD𝑑 ’s

update throughput is about 7.5× slower in WAN compared with

the LAN setting. This is because SD𝑑 ’s update protocol is not con-

stant round; thus, network latency is more influential to its update

efficiency. Like previous DSE schemes Sophos, FAST, and Mitra,

DISCOg enjoys constant round update protocol; thus, its update

efficiency only downgrades slightly in the WAN setting.

Communication. We report the total communication for each

scheme in Table 4, where the number of updated indexes is from

{2000, 4000, 6000, 8000, 10000} and we measure the communica-

tion using Linux command IPTraf-ng. We note that DISCO enjoys

the same update communications as previous DSE constructions

Sophos, FAST, and Mitra; all DISCO constructions own the same

update communication complexity. SD𝑑 requires two orders of mag-

nitude more communication than DISCO. The reason is that SD𝑑

entails a “download-merge-upload" update fashion which requires

significantly more communication.

Table 4: Update communication (MB) for different schemes.
#Updates DISCO Sophos FAST Mitra SD𝑑

2000 0.49 0.49 0.59 0.49 47.94

4000 0.97 0.97 1.18 0.97 103.87

6000 1.46 1.46 1.77 1.46 163.45

8000 1.95 1.95 2.36 1.95 223.91

10000 2.43 2.43 2.94 2.43 287.66

Summary of update efficiency. All DISCO constructions enjoy

optimal update communication. Computation-wise, DISCOh owns

the worst efficiency for large 𝐿 and small 𝛼 , but the best efficiency

occurs when 𝛼 is large.DISCOg enjoys the most balanced efficiency

and DISCOt provides unbounded evaluation domain.

5.3 Search Performance
Performance comparison of DISCO constructions. We report

the search performance (running time and communication) of three

DISCO constructions. Due to the page limit, we move the detailed

performance to §B, elaborating the trade-offs between different

DISCO constructions. Here, we plot the running time in Fig. 15,

where each sub-figure reports the search running time for three

DISCO constructions under different values of global counter 𝑐 .

DISCOh owns the worst search efficiency for small 𝑐 . As we dis-

cussed, DISCOh requires the client to compute 𝐿 − 𝑐 hash invoca-

tions to compute and reveal a search token st(𝑤 )𝑐 to the server, and

the server receiving the token must perform 𝑐 invocations of the

hash function to perform a search. This means DISCOh performs 𝐿

hash invocations independent of 𝑐 . One may wonder why DISCOh
performs well when 𝑐 is large since the total hash invocations are

3
This shows that secret-reuse does improve efficiency. Therefore, the same batch

update trick can be used to optimize previous schemes.

always 𝐿. The reason is that we use two threads for the server-side

search process in DISCOh’s implementation: the first is to recover

all search tokens from the hash chain using the constrained key,

and the second is to perform I/O to fetch desired indexes using

the tokens from the first thread. Since I/O contributes to the main

overhead during the search (also observed from [1, 22, 26]), the com-

putation overhead of server-side RCPRF evaluation is covered by

I/O. Therefore, when 𝑐 approaches 𝐿, the total search running time

is reduced. DISCOh’s search running time is the worst among all

DISCO’s constructions for small 𝑐s, even compared with DISCOt.
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Figure 15: Search running time for different DISCO instanti-
ations over DB3 (LAN setting).

DISCOg has the most stable search efficiency. DISCOg owns the

most stable search efficiency among three DISCO constructions.

In particular, DISCOg is 10× and 4.5× faster than DISCOh and

DISCOt, respectively, when |DB(𝑤) | = 10 and 𝑐 = 10. For large 𝑐 ,

DISCOh is only about 1.2× faster thanDISCOg when |DB(𝑤) | = 10

and 𝑐 = 10; note that DISCOh has the best advantage in this case.

DISCO enjoy good search communication. DISCOh and DISCOt

enjoy 𝑂 (𝑎𝑤) communications, which is the same as previous DSE

works [1, 2, 12, 26], while DISCOg only slightly increases the com-

munication due to its non-constant constrained key. In practice,

different DISCO constructions have very closed communication

(less than 1KB difference when 𝑎𝑤 = 10
5
).

Performance comparison with previous DSE works. We com-

pare DISCO with previous works on search efficiency. As we know,

the general idea of DISCO is to trade constant client state and low

communication with the price of increasing running time (due to

redundant RCPRF evaluation). We show that this increased compu-

tational overhead is small and acceptable.

Fig. 16 shows the search time for different DSE schemes in the

LAN and WAN settings, respectively. As we can see, DISCOg does

require more running time for search queries with a small result set

(e.g., |DB(𝑤) | = 10 and 100), which is about 10× slower than SD𝑑 .
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Figure 16: Search running time of different DSE schemes.

However, the running time is unnoticeable from a human perspec-

tive: DISCOg requires less than 80ms (resp. 100ms) to complete a

search query in the LAN (resp. WAN) setting when |DB(𝑤) | = 10

and 100. As the number of matched identifiers increases, the run-

ning time of DISCOg performs even better than other schemes.

The reason is that DISCOg entails a parallel search optimization. In

the implementation, the server can allocate one thread for RCPRF

evaluation and another thread to perform the search. Because the

search efficiency is I/O bound, the running time from RCPRF evalu-

ation is totally covered by the I/O overhead. Also, the server can

allocate multiple threads to perform I/O since the indexes organi-

zation of DISCOg totally supports it. All these optimizations result

in that DISCOg achieves the best search efficiency when searching

keywords with a large number of matched identifiers.

Summary of search efficiency. Communication-wise, all DISCO
constructions enjoy (near) the same communication (i.e.,𝑂 (𝑎𝑤)) as
previous works [1, 14, 26]; onlyDISCOg requries slightly more com-

munication (i.e., 𝑂 (𝑎𝑤 + log𝐿)). Computation-wise, DISCOh owns

the worst efficiency for large 𝐿 and small 𝛼 , but the best efficiency

when 𝛼 is large. DISCOg enjoys the most balanced efficiency.

6 RELATEDWORK
Dynamic searchable encryption. Searchable encryption (SE) was
first proposed by the seminal work [25]. Curtmola et al. [10] for-
malized the most widely accepted security model for SE. Dynamic

searchable encryption (DSE) allows the client to update the remote

encrypted database after setup. Rather than sequentially scanning

the whole database [25], Kamara et al. [20] proposed a DSE scheme

atop the work [10], achieving sub-linear search time. The following

works [4–6, 19, 23] further improved the efficiency and functionality

of SSE schemes. Early DSE schemes cannot achieve forward privacy.

Forward privacy was first formalized by [29]. Bost [1] proposed an

elegant work to achieve forward privacy using trapdoor permuta-

tion. A serial of the following works [1, 2, 12, 14, 21, 26, 31] showed

that forward privacy can be achieved efficiently using symmet-

ric primitives. Backward privacy was first considered by Stefanov

et al. [29] and formally defined by Bost et al. [2] with three types of

backward privacy. Recent works [8, 30, 31] proposed new efficient

(symmetric) primitives to achieve backward privacy with improved

efficiency. Some DSE works [9, 24, 27] leveraging a multi-server par-

adigm achieve better efficiency with less leakage. There is another

line of works [7, 11, 14, 24] design DSE atop oblivious primitives.

These works achieve advanced security properties and/or asymp-

totically efficient DSE schemes, but their practical efficiency can be

worse than prior DSE schemes based on lightweight primitives.

DSE with small client storage. Reducing client storage is vital

in real-world applications. Existing lightweight DSE schemes re-

quire a client to maintain the state for each keyword to achieve

forward privacy efficiently, thwarting feature-rich usage (e.g., video

retrieval [35]). The ORAM-based DSE scheme Moneta [2], Orion

[14], and Horus [14] do not require client-side storage, the price is

increased round and/or communication complexity. Without using

ORAM, Demertzis et al. [11] proposed a construction using static-
to-dynamic transform that transforms any static data structure to be

dynamic. The idea is that the client downloads and merges several

databases together when necessary. The download-merge-upload
process causes a cascade effect, saying 𝑂 (𝑁 ) communication for

one update in the worst case. The authors also proposed a lazy

rebuilding strategy based on Oblivious Map to resolve the issue

by reducing the worst 𝑂 (𝑁 ) communication, requiring 𝑂 (log
3 𝑁 )

communication overhead per update pair. He et al. [17] use hash-
chains to design small-client-storage DSE with linear computation

in the length of the hash chain. Their works inspired our framework

using RCPRF over a global counter. Since DISCO supports different

RCPRF configurations, it achieves flexible trade-offs than [17].

7 CONCLUSION
We propose an efficient DSE framework DISCO using a constant

client state. DISCO employs RCPRF to generate and release the

search tokens. By instantiating RCPRFwith different techniques, we

design three DISCO constructions. All three constructions require

a constant client state with different trade-offs. We evaluate the

performance of DISCO, showing their improved efficiency.

Future work. While DISCO only requires constant client-side

permanent storage, it still requires temporary storage to catch

updates. For a client with little storage (e.g., IoT sensors), the client

may increase the global counter frequently; this can increase server-

side computational overhead during a search query. Reducing the

increment of the global counter in such extreme cases is still an open

problem. Another direction is exploring DISCO in the multi-device

setting, where a user owns multiple devices, and each may perform

updates. How to leverage DISCO into such a scenario efficiently

and securely in a user-friendly way requires further investigation.
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A ADDITIONAL DEFINITIONS
Definition A.1. A TDP 𝜋 is secure if for all PPT adversary A,

A successfully computes an inverse of 𝑦 = 𝜋pk (𝑥) for a uni-

formly sampled 𝑥
$←− Dt without the secret key is negligible in

𝜆, i.e., AdvTDPA,𝜋
(𝜆) = |Pr[𝑥 ′ = 𝑥 : 𝑥

$←− Dt, 𝑦 ← 𝜋pk (𝑥), 𝑥 ′ ←
A(pk, 𝑦)] | ≤ negl(𝜆).

Definition A.2. A symmetric encryption scheme SE = (Gen, Enc,
Dec) is secure against pseudo-randomness chosen-plaintext at-

tack (PCPA) if for all PPT adversary A, A has a negligible ad-

vantage in 𝜆, where the advantage is defined as AdvPCPA

A,SE (𝜆) =

| Pr[ExpPCPA

A,SE (𝜆) = 1] − 1/2| and ExpPCPA

A,SE (𝜆) is an experiment

between an adversary A = (A1,A2) and a challenger in Fig. 18.

B SUPPLEMENTAL EXPERIMENTS
Table 5 details running time and communication under the LAN.

C HYBRID RCPRF CONSTRUCTION
We can combine good properties from different RCPRFs using a

hybrid construction method. In a nutshell, a hybrid RCPRF is com-

posed of two (or more) instances of RCPRF: the upper layer and

the lower layer. The upper layer is for deriving a group of master

keys, and each key parameterizes a low-level RCPRF. We exploit

a re-keying property of all existing RCPRFs. In particular, we can

choose the master key pseudorandomly, and define new RCPRF

instances from the chosen key. Following the intuition, our frame-

work just uses an upper-level RCPRF to derive the master keys for

the lower level and initiates a lower-level RCPRF using the derived

master keys. In this manner, we can obtain good properties that

cannot be achieved from one single kind of RCPRF.

As an example, Fig. 19 shows a two-layer RCPRF from TDP-

based RCPRF and the GGM-based RCPRF, where the TDP-based

RCPRF serves as the upper layer and the GGM-based RCPRF as the
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Table 5: Running time and communication for three DISCO’s instantiations.
Running time (ms) Communication (MB)

c = 10 c = 102 c = 103 c = 104 c = 10 c = 102 c = 103 c = 104

DISCOg

𝑎𝑤 = 10 0.30 1.11 6.15 53.29 0.003 0.003 0.003 0.003

𝑎𝑤 = 10
2

1.17 1.72 7.15 53.98 0.008 0.008 0.008 0.008

𝑎𝑤 = 10
3

9.37 10.15 14.99 61.67 0.056 0.056 0.056 0.056

𝑎𝑤 = 10
4

82.23 83.88 87.20 132.52 0.530 0.527 0.527 0.532

𝑎𝑤 = 10
5

780.88 783.20 780.17 827.03 5.122 5.310 5.305 5.303

DISCOh

𝑎𝑤 = 10 3.67 4.00 7.70 43.82 0.003 0.003 0.003 0.003

𝑎𝑤 = 10
2

4.56 4.95 8.69 44.57 0.008 0.008 0.008 0.008

𝑎𝑤 = 10
3

14.21 14.02 18.74 53.96 0.056 0.056 0.056 0.056

𝑎𝑤 = 10
4

101.02 99.16 104.83 144.61 0.533 0.533 0.533 0.533

𝑎𝑤 = 10
5

936.87 933.61 948.24 977.31 5.298 5.298 5.298 5.298

DISCOt

𝑎𝑤 = 10 1.34 3.23 22.73 199.16 0.004 0.004 0.004 0.004

𝑎𝑤 = 10
2

2.17 4.18 23.64 199.83 0.009 0.009 0.009 0.009

𝑎𝑤 = 10
3

12.30 13.82 32.85 207.48 0.056 0.056 0.056 0.056

𝑎𝑤 = 10
4

99.24 101.06 120.02 292.11 0.532 0.532 0.532 0.532

𝑎𝑤 = 10
5

933.89 936.86 959.16 1187.99 5.307 5.307 5.307 5.307

Exprcprf

A,𝐹
(𝜆)

1 : 𝑏
$←− {0, 1};𝐸,𝑄,𝑍 ← ∅

2 : k← 𝐹rc .KeyGen(1𝜆 )

3 : ({𝑥𝑖 }𝑖∈ [𝑛] , st ) ← A
𝑂Eval

k ( ·),𝑂Constrain

k ( ·)
1

(1𝜆 )
4 : 𝑍 ← 𝑍 ∪ {𝑥𝑖 }𝑖∈ [𝑛]

5 : For 𝑖 ∈ [0], 𝑦 (0)
𝑖

$←− Rr; 𝑦
(1)
𝑖
← 𝐹 (k, 𝑥𝑖 )

6 : 𝑏′ ← A2 (𝑠𝑡, {𝑦 (𝑏)𝑖
}𝑖∈ [𝑛] )

7 : return (𝑏 = 𝑏′ ∧ 𝑍 ∩ 𝐸 = ∅ ∧ 𝑍 ∩𝑄 = ∅)

Oracle𝑂Eval

k (𝑥 )
1 : 𝑦 ← 𝐹rc (k, 𝑥 )
2 : 𝐸 ← 𝐸 ∪ {𝑥 }
3 : return 𝑦

Oracle𝑂Constrain

k (𝑐 )
1 : ck𝑐 ← 𝐹rc .Constrain(k, [𝑐 ] )
2 : 𝑄 ← 𝑄 ∪ [𝑐 ]
3 : return ck𝑐

Figure 17: RCPRF security game. Here 𝑛 = poly(𝜆) and st
contains all constrained keys and RCPRF evaluation result
from querying 𝑂Constrain

k (·) and 𝑂Eval

k (·), respectively.

ExpPCPA

A,SE (𝜆)

1 : 𝑏
$←− {0, 1}; k← SE.Gen(1𝜆 )

2 : (𝑚∗, st ) ← A
𝑂Enc

k ( ·)
1

(1𝜆 )
3 : If 𝑏 = 0, ct∗ ← SE.Enc(k,𝑚∗ ) ;

4 : Else ct∗
$←− C

5 : 𝑏′ ← A
𝑂Enc

k ( ·)
2

(𝑠𝑡, ct∗ )
6 : return (𝑏 = 𝑏′ )

Oracle𝑂Enc

k (𝑥 )
1 : 𝑦 ← SE.Enc(k, 𝑥 )
2 : return 𝑦

Figure 18: PCPA security of symmetric encryption.

lower layer. The resulting RCPRF enjoys good properties of two

involved RCPRFs: supporting unbounded RCPRF evaluation (from

the TDP-based RCPRF) while most of the evaluation only involves

symmetric evaluation (from the GGM-based RCPRF). This hybrid

design enables trade-offs between computation, communication,

0 1

0 1 0 1

0 1

0 1 0 1

0 1

0 1 0 1

𝜋pk (·)𝜋pk (·)

𝜋−1

sk (·) 𝜋−1

sk (·)

Figure 19: RCPRF from TDP-based and GGM-based RCPRF.
Green nodes correspond to a constrained key range [11].

and usability. In particular, we still mainly use the GGM-based

RCPRF for key derivation and only use the TDP-based RCPRF over

the root to derive a fresh root when updates run out of the previous

GGM tree. In terms of the constrained key, its size corresponds to

the constrained key from the third GGM tree and the second node

in the TDP-based RCPRF (i.e., the green nodes in Fig. 19). Overall,

the key size is still 𝑂 (log𝐿).
One can generally extend the above idea to other RCPRFs, e.g.,

combining hash-based RCPRF with the TDP-based one.

D SECURITY PROOF FOR DISCO
Theorem D.1. Let 𝐹 be a pseudorandom function, 𝐹rc be a range-

constrained pseudorandom function, 𝐻1 be a hash function modeled
as random oracles, and SE be a semantic secure symmetric encryption.
Define leakage L = (LSetup,LSearch,LUpdate) as:

LSetup (⊥) = (⊥)
LSearch (𝑤) = (sp(𝑤), TimeDB(𝑤),Updates(𝑤))
LUpdate (IN) = ( |IN|, {op𝑖 , id𝑖 }),

then DISCO is an L-adaptively-secure DSE with forward privacy
and backward privacy (BP-II).

Proof. We define a sequence of games and prove Theorem D.1

by showing the distinguishability betweenRealΠA (𝜆) and Ideal
Π

A,S (𝜆)
is negligible in 𝜆.
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HybridG1:G1 is the same asRealΠA (𝜆) except that the experiment

maintains a map K to store k(𝑤 )
r

for each keyword𝑤 instead of gen-

erating k(𝑤 )
r

using 𝐹1. Whenever k(𝑤 )
r

is needed, the experiment

first checks whether K contains (𝑤, k(𝑤 )
r
), if so returns the entry

K; otherwise the experiment randomly picks a k(𝑤 )
r

$←− {0, 1}𝜆

and stores the (𝑤, k(𝑤 )
r
) pair in K. It’s easy to see that G0 and

RealΠA (𝜆) are indistinguishable, otherwise we can build an adver-

sary B1 to distinguish 𝐹 from a truly random function, thus we

have Pr[RealΠA (𝜆) = 1] − Pr[G1 = 1] ≤ Advprf

𝐹,B1

(𝜆).
Hybrid G2: G2 is the same as G1 except that instead of computing

u← 𝐻1 (st(𝑤 )𝑐 | | 𝑗), the client executes: u $←− {0, 1}ℓ ,U[𝑤 | |𝑐 | | 𝑗] ← u,
where U is a map maintained by the experiment. Correspondingly,

the next change is to the search protocol. Instead of performing

u← 𝐻1 (st(𝑤 )𝑐 | | 𝑗),G2 programs the random oracle𝐻1 before search:

𝑗 ← 0, u← U[𝑤 | |𝑐 | | 𝑗]
while u ≠⊥ do

H1 [st(𝑤 )𝑐 | | 𝑗] ← 𝑢

𝑗 ← 𝑗 + 1, 𝑢 ← U[𝑤 | |𝑐 | | 𝑗]
where H1 is the table for random oracle 𝐻1.

G2 and G1 behave exactly the same except that in G2, with

a probability of inconsistency in querying random oracle that is

observed by the distinguisher. InG1,H1 is not updated immediately

but programmed before the search. Therefore, if the adversary

A queries 𝐻1 with st(𝑤 )𝑐 | | 𝑗 for some 𝑗 before the next searching,

u′ ≠ u is returned with an overwhelming probability. This is from

H1 [st(𝑤 )𝑐 | | 𝑗] is not updated and a random string u′ is chosen by

the oracle in this case. For the following search, the adversary A
queries 𝐻1 (st(𝑤 )𝑐 | | 𝑗). 𝐻1 (st(𝑤 )𝑐 | | 𝑗) is then updated to u, and u is

returned as the query result of random oracle. The only difference

between G1 and G2 is the above inconsistency (denoting this event

as Bad). Thus, we have Pr[G1 = 1] − Pr[G2 = 1] ≤ Pr[Bad].
We show that if A can make such inconsistent queries with

non-negligible probability, then we can build adversary B2 to break

the security of RCPRF with the same probability. In particular, B2

guess (𝑤∗, 𝑐∗) for which Bad is set to be true for the first time when

querying 𝐻1 (st(𝑤
∗ )

𝑐∗ | | 𝑗) for some 𝑗 . B2 works as follows: When

update to 𝑤∗ for 𝑖 < 𝑐∗ and any 𝑗 is issued, B2 query OEval

k𝑤∗
(𝑖) to

obtain st(𝑤
∗ )

𝑖
and use st(𝑤

∗ )
𝑖

to perform updates related to 𝑤∗ in
the 𝑖-th batch. For all updates corresponding to𝑤∗ in the 𝑖-th batch

for 𝑖 > 𝑐∗, B2 sends 𝑖 as the challenge queries to Exprcprf

A,𝐹
(𝜆) and

receives back st(𝑤
∗ )

𝑖
, By definition of Exprcprf

A,𝐹
(𝜆), st(𝑤

∗ )
𝑖∗ is either

1) a random value or 2) the real RCPRF evaluation output.

Note that Bad is set to be true only if𝐻1 is queried on (st(𝑤
∗ )

𝑐 , 𝑗)
such that 𝑐 is not queried over OEval

k𝑤∗
(𝑐), and no query OConstrain

k𝑤∗
(𝑐)

for 𝑐 > 𝑐∗. This means all the challenge queries for 𝑖 > 𝑐∗ are
valid. The values st(𝑤

∗ )
𝑖

for 𝑖 > 𝑐∗ raising Bad to be true is in-

distinguishable from random by the security of RCPRF. Now con-

sider st(𝑤
∗ )

𝑖
for 𝑖 > 𝑐∗ are uniformally randomly generated. If A

queries random oracle for at most 𝑞 times, then the probability 𝐻1

was called on st(𝑤
∗ )

𝑐 | | 𝑗 for some 𝑗 is bounded by 𝑞/2𝜆 . Therefore,
we have Pr[Bad is set to true by quering st(𝑤

∗ )
𝑐 | | 𝑗 for some 𝑗] ≤

Advrcprf

𝐹CR,B2

(𝜆) + 𝑞/2𝜆 . Since guessing (𝑤∗, 𝑐) implies a at most 𝑁
loss in security reduction, then we have Pr[G1 = 1] −Pr[G2 = 1] ≤
Pr[Bad] ≤ 𝑁 · Advrcprf

𝐹CR,B2

(𝜆) + 𝑁𝑞/2𝜆 .
Hybrid G3: G3 is the same as 𝐺2 except that it replaces all cipher-

texts generated by SE.Enc with random strings from the ciphertext

domain C. If G2 is distinguishable from G3, then we can build an

adversary B3 to break the PCPA security of SE. Thus, we have

Pr[G2 = 1] − Pr[G3 = 1] ≤ AdvpcpaSE,B3

(𝜆).

S.Setup(LSetup (⊥) )
1: 𝑐 ← 0

2: U,K← empty map

S.Update(LUpdate (IN) )

1: EDB(𝑐 ) ← ∅, 𝑐 ← 𝑐 + 1

2: for 0 ≤ 𝑗 < |IN | do
3: u𝑗

$←− {0, 1}ℓ
4: U[𝑐, 𝑗 ] ← u𝑗

5: e𝑗
$←− C

6: EDB(𝑐 ) ← EDB(𝑐 ) ∪
{ (u𝑗 , e𝑗 ) }

7: send EDB(𝑐 ) to Server

S.Search(sp(𝑤 ),Update(𝑤 ) )
1: 𝑤 ← min sp(𝑤 )
2: k

(𝑤)
r
← K[𝑤 ]

3: ck
(𝑤)
𝑐 ← 𝐹rc .Constrain(k

(𝑤)
r

, [𝑐 ] )
4: send ck

(𝑤)
𝑐 to Server

S programs 𝐻1 before searching:
5: 𝛾 ← |Updates(𝑤 ) |
6: { (𝑐 𝑗 , 𝑖 𝑗 ) } 𝑗 ∈ [𝛾 ] ← Updates(𝑤 )
7: for 1 ≤ 𝑗 ≤ 𝛾 do
8: st

(𝑤)
𝑐 𝑗
← 𝐹rc .Eval(ck

(𝑤)
𝑐 , 𝑗 )

9: H1 [st
(𝑤)
𝑐 𝑗
| | 𝑗 ] ← U[𝑐 𝑗 , 𝑖 𝑗 ]

Figure 20: Pseudocode of simulator

HybridG4:G4 is the same asG3 except that it indexesU by 𝑐 | | 𝑗, 0 ≤
𝑗 < |IN| instead of indexing U by𝑤 | |𝑐 | | 𝑗 . Specifically, we identify
each update by (𝑐, 𝑗), where 𝑐 is the batch number and 𝑗 denotes

the update number in the 𝑐-th batch. It is easy to see G5 and G4 are

indistinguishable. Hence, we have Pr[G3 = 1] = Pr[G4 = 1].
IdealΠA,S : The simulator accessing the allowed leakage functions

needs to generate a viewing that is indistinguishable fromG4. Here,

we consider the view of generating the index rather than the whole

viewing such as file operation. We use 𝑤 = min sp(𝑤) to denote

the first index that𝑤 appeared in search pattern.𝑤 is used as the

identifier to identify a keyword without knowing the keyword

information. Before performing search on the server, the simula-

tor programs H1 by learning all updates corresponding to 𝑤 of

Updates(𝑤). As we can see, IdealΠA,S is identical to G4 except that

all needed information for simulation is from the leakage functions.

Then, we get Pr[IdealΠA,S = 1] = Pr[G4 = 1]. All sum up, we have:

Pr[RealΠA (𝜆) = 1]−Pr[IdealΠA,S (𝜆) = 1] ≤ Advprf

𝐹,B1

(𝜆)

+ 𝑁 · Advrcprf

𝐹CR,B2

(𝜆) + 𝑁𝑞/2𝜆 + AdvpcpaSE,B3

(𝜆)
□
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