
A Modular Approach to Registered ABE for Unbounded
Predicates

Nuttapong Attrapadung1 and Junichi Tomida2

1 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan. n.attrapadung@aist.go.jp

2 NTT Social Informatics Laboratories, Tokyo, Japan. tomida.junichi@gmail.com

Abstract. Registered attribute-based encryption (Reg-ABE), introduced by Hohenberger et
al. (Eurocrypt’23), emerges as a pivotal extension of attribute-based encryption (ABE), aimed
at mitigating the key-escrow problem. Although several Reg-ABE schemes with black-box use of
cryptography have been proposed so far, there remains a significant gap in the class of achiev-
able predicates between vanilla ABE and Reg-ABE. To narrow this gap, we propose a modular
framework for constructing Reg-ABE schemes for a broader class of predicates. Our framework
is a Reg-ABE analog of the predicate transformation framework for ABE introduced by Attra-
padung (Eurocrypt’19) and later refined by Attrapadung and Tomida (Asiacrypt’20) to function
under the standard MDDH assumption. As immediate applications, our framework implies the
following new Reg-ABE schemes under the standard MDDH assumption:
– the first Reg-ABE scheme for (non-)monotone span programs with the traditional completely

unbounded property.
– the first Reg-ABE scheme for general non-monotone span programs (also with the completely

unbounded property) as defined in the case of vanilla ABE by Attrapadung and Tomida
(Asiacrypt’20).

Here, the term “completely unbounded” signifies the absence of restrictions on attribute sets for
users and policies associated with ciphertexts.
From a technical standpoint, we first substantially modify pair encoding schemes (PES), origi-
nally devised for vanilla ABE by Attrapadung (Eurocrypt’14), to make them compatible with
Reg-ABE. Subsequently, we present a series of predicate transformations through which we can
construct complex predicates, particularly those with an “unbounded” characteristic, starting
from simple ones. Finally, we define new properties of PES necessary for constructing Reg-ABE
schemes and prove that these properties are preserved through the transformations. This imme-
diately implies that we can obtain Reg-ABE schemes for any predicates derived via predicate
transformations.

Keywords: attribute-based encryption, registered attribute-based encryption, registration-based en-
cryption, pair encodings

Table of Contents

1 Introduction . 3
1.1 Our Results . 3
1.2 Technical Overview . 5

2 Preliminaries . 11
2.1 Definitions . 11

3 Pair Encoding Schemes for sReg-ABE . 14
3.1 Evaluating PES with Vectors/Matrices . 15
3.2 Properties of PES . 16

4 Predicate Transformations . 18
4.1 Addition of Null Attribute . 18
4.2 Addition of Wild Card . 19
4.3 Key-Policy Disjunction . 20
4.4 Key-Policy Conjunction . 21
4.5 Static Predicate Compositions . 23
4.6 Dual Predicates . 25
4.7 Key-Policy Augmentation . 26
4.8 Efficiency of Transformations . 27

5 Conforming PES for sReg-ABE . 27
6 sReg-ABE from PES . 28

6.1 Construction . 28
6.2 Security . 30

7 Applications and Comparisons . 32
7.1 sReg-ABE for Unbounded Span Programs . 32
7.2 Efficiency and Comparison to Previous Works . 33

References . 34
A Matrix Substitution from Simplified to Full-fledged Schemes . 37
B Registered ABE . 37
C Lemmata for Predicate Transformations . 38

C.1 Lemmata for Null-Trans . 38
C.2 Lemmata for WC-Trans . 40
C.3 Lemmata for KP1OR-Trans . 40
C.4 Lemmata for KP1AND-Trans . 42
C.5 Lemmata for SPCM-Trans . 44
C.6 Lemmata for Dual-Trans . 46
C.7 Lemmata for KP1-Trans . 49

D Lemmata for Security Proof of sReg-ABE . 51
E PES Instantiations . 57

E.1 Embedding Lemma . 57
E.2 PES for Completely Unbounded MSP Predicates . 58
E.3 PES for Completely Unbounded NMSP Predicates . 64
E.4 PES for More Complex Non-monotone Span Programs . 66

1 Introduction

Registered Attribute-base Encryption. Attribute-based encryption (ABE) [GPSW06] stands as
a versatile cryptographic primitive enabling fine-grained access control over encrypted data. Registered
attribute-based encryption (Reg-ABE) has recently emerged as a pivotal extension of ABE, designed
to tackle the notorious key-escrow problem [HLWW23]. More precisely, in traditional ABE systems, a
trusted authority needs to maintain a long-term master secret key (msk) to generate secret decryption
keys as long as the system is in operation. However, the possession of msk grants adversaries the ability
to decrypt all ciphertexts within the system, thereby rendering the authority a single point of failure.

In contrast, Reg-ABE presents a novel paradigm by introducing the “key curator” concept instead
of relying on a trusted authority. Each user within a Reg-ABE system generates a pair of public and
secret keys and registers the public key, along with its associated attribute y, with the key curator.
The key curator then aggregates these pairs into a compact master public key (mpk) in a completely
verifiable and transparent manner. In a Reg-ABE system, a user encrypts a message with respect to
a policy x using mpk to generate a ciphertext. Decryption of the ciphertext is possible only for users
possessing the attribute y satisfying the policy x with their secret key. More generally, decryption is
feasible if and only if the predicate P(x, y) = 1 holds for some predicate P.

The study of Reg-ABE began with registration-based encryption (RBE) [GHMR18], which can be
conceptualized as Reg-ABE for the equality predicate P(x, y) = 1⇔ x = y, to address the key escrow
problem of identity-based encryption [BF01]. The first RBE scheme [GHMR18] uses indistinguishability
obfuscation (iO) [GGH+13]3, and lately RBE schemes relying on standard assumptions were proposed
[GHM+19,GV20,CES21]. However, these schemes heavily rely on non-black-box use of cryptographic
primitives, making them impractical (ciphertext size estimated at 4.5 terabytes for 2 billion users
[CES21]). The non-black-box approach is also used for constructing Reg-ABE and more generalized
registered functional encryption [FWW23,FFM+23,DPY23].

Reg-ABE via Black-box Approach. Motivated by the inefficiency of non-black-box constructions,
several Reg-ABE (including RBE) schemes with only black-box use of cryptography have recently been
proposed in succession [HLWW23, DKL+23, GKMR23, FFM+23, FKdP23, ZZGQ23]. These schemes
exhibit concrete efficiency, with some even rivaling vanilla ABE schemes for the same predicate. Among
them, the most general scheme is that proposed by Zhu et al. [ZZGQ23], where the term “general” refers
to its capability to handle any predicates P that have predicate encodings [Wee14], and the predicates
supported by the other schemes can be captured by predicate encodings (predicate encodings will be
explained later in the technical overview).

Predicate Encodings vs. Pair Encodings. One of the main focuses in ABE research is exploring
which class of predicates can be achieved under certain assumptions. While predicate encodings offer
a versatile framework capable of capturing various predicates, there exist ABE constructions beyond
its scope, such as unbounded ABE [LW11], non-monotone ABE with large universes [OSW07], ABE
supporting multi-use of attributes [KW19], and ABE for DFA [Wat12]. On the other hand, pair en-
codings [Att14] present a more general framework, encompassing most pairing-based ABE schemes,
including the aforementioned examples [AC17,Att19,AT20]. A natural question arises: can pair encod-
ings be applied to Reg-ABE, potentially broadening the class of Reg-ABE schemes? Zhu et al. [ZZGQ23]
explicitly stated that their scheme cannot operate with pair encodings, leaving this unresolved.

1.1 Our Results

In this work, we take a significant stride towards addressing the challenge of applying pair encodings
to Reg-ABE. Our main contributions are three-fold:

– New Notion of Pair Encoding Schemes: Pair encoding schemes (PES) designed for vanilla
ABE are incompatible with Reg-ABE (we will discuss this later in the technical overview). To
overcome this obstacle, we carefully devise a new notion of PES tailored for Reg-ABE compatibility.

3 They also constructed a “weakly-efficient” RBE scheme from standard assumptions.

3

Table 1. Comparison among Reg-ABE schemes for span program predicates.

Schemes Achievable properties for span program predicates Properties of constructions

Comprising completely unbounded property

Large
universe

Unbounded
attributes

Unbounded
policy sizes

Multi-
use

Non-mono-
tonicity

KP/CP
Unbounded

users
Prime-
order

Assumption
W/O

Non-BB

HLWW [HLWW23, §5] − − − − − CP − − GS X
(Pairing-based)

HLWW [HLWW23, §7]† X − X X XX CP X n/a iO,SSB,PRG −
(iO-based)

FWW [FWW23]† X − − − XX CP X n/a WE,FBH,PKE −
ZZGQ [ZZGQ23, §D1] − − − − − KP, CP − X MDDH X

Ours 1 X X X X − CP − X MDDH X
Ours 2 X X X X X CP − X MDDH X
Ours 3 X X X X XX CP − X MDDH X

Note: Large universe ABE involves attribute universes of super-polynomial size; unbounded attributes imply no prior limit on attributes
per user; unbounded policy sizes mean policy sizes (span program matrix sizes) are not bounded in advance; multi-use allows attributes to
be used arbitrarily many times in a policy; KP and CP denote key-policy and ciphertext-policy, respectively. Unbounded users mean the
setup running time (and the size of common reference string output from the setup) is at most polylogarithmic in the maximum number
of users. Prime-order refers to constructions in pairing groups with prime order. GS stands for generalized subgroup assumption. iO is for
indistinguishability obfuscation; SSB is for somewhere statistically binding hash function; PRG is for pseudorandom generator; WE is for
witness encryption; FBH is for function-bindng hash function; PKE is for public-key encryption. W/O Non-BB means: without relying
on non-black-box use of cryptographic primitives. XX (for non-monotonicity) denotes general non-monotone span programs (referred to as
OSWOT-type in [AT20]). †: The iO-based scheme of [HLWW23] and the WE-based scheme of [FWW23] support circuit predicates; we
envision instantiating a circuit to implement a span program and write the properties that are possibly achieved by their resulting schemes
for span programs here to ensure a direct comparison; see a discussion in §7.2.

– Framework: We propose a framework that enables us to construct Reg-ABE schemes in a mod-
ular manner. Our framework serves as a Reg-ABE counterpart to the predicate transformation
framework introduced by Attrapadung [Att19] for vanilla ABE, refined further by Attrapadung
and Tomida [AT20], enabling the handling of PES (including predicate encodings) for Reg-ABE.
The resulting Reg-ABE is secure under the standard MDDH assumption. Our framework does not
rely on non-black box use of cryptography.

– Concrete Instantiations: As a usage example of our framework, we present three new instanti-
ations of Reg-ABE that are not known prior to our work:

1. the first completely unbounded Reg-ABE for monotone span programs;
2. the first completely unbounded Reg-ABE for non-monotone span programs, as defined by

[OSW07] for vanilla ABE;
3. the first completely unbounded Reg-ABE for general non-monotone span programs that unify

the two types of existing non-monotonicity by [OSW07] and [OT10] (see [AT20, §6.5] for the
motivation of this predicate).

We employ the term “completely unbounded Reg-ABE” to signify satisfaction of large universe,
unbounded attribute and policy size, and multi-use criteria. We compare our Reg-ABE instan-
tiations for span program predicates to prior works qualitatively in Table 1 and quantitatively
in Table 3 in §7.2. Notably, none of these properties were previously realized within the context of
pairing-based Reg-ABE. However, if one allows iO or witness encryption (WE) with non-black-box
usages of cryptographic primitives, the Reg-ABE schemes in [HLWW23,FWW23] already achieve
some of these properties, notably including the large-universe property, as shown in Table 1. We
also note that the iO/WE based schemes of [HLWW23, FWW23] supports circuit predicates; we
adapt them to span programs to ensure a direct comparison of equivalent functionalities here.
Definitions of predicates and comparisons to prior works are provided in §7.

Similar to prior pairing-based Reg-ABE schemes [HLWW23, FFM+23, ZZGQ23], our system requires
a structured common reference string crs. Its generation necessitates a trusted party or multi-party
computation at the system’s inception. It is essential to note that once crs is published, no trusted
party is required. Additionally, as with prior pairing-based schemes [HLWW23,FFM+23,ZZGQ23], we

4

need to fix a bound L on the number of registered users in the system beforehand, with the size of crs
quadratic in L (ignoring a polylogarithmic factor). Therefore, all these pairing-based schemes and ours
are bounded-user schemes. Contrastingly, the iO/WE-based Reg-ABE schemes of [HLWW23,FWW23]
obtain the size of crs being polylogarithmic in L, and hence are unbounded-user schemes. We also note
these latter two schemes can rely on random crs. On a flip side, the WE-based scheme of [FWW23] is
only selectively secure, while all the rest including ours are adaptively secure.

1.2 Technical Overview

Slotted Registered ABE. Hohenberger et al. proposed a primitive called slotted registered ABE
and showed that full-fledged Reg-ABE can be generically constructed from slotted registered ABE
[HLWW23]. Notably, as described in [HLWW23], the conversion preserves the (un)bounded-user prop-
erty: if the slotted registered ABE is a bounded-user scheme, so is the resulting Reg-ABE. We focus on
constructing pairing-based Reg-ABE, for which only bounded-user schemes are currently known. Lever-
aging the conversion of [HLWW23], our focus shifts to constructing bounded-user slotted registered
ABE. Throughout the paper, unless specified otherwise, we use sReg-ABE to refer to bounded-user
slotted registered ABE.

sReg-ABE and Predicate Encodings. Our starting point is the ZZGQ framework [ZZGQ23],
which allows us to construct sReg-ABE schemes from predicate encodings [Wee14]. We briefly recall
sReg-ABE and predicate encodings. The sReg-ABE system is started by generating and publishing
common reference string crs. Each user generates a pair of its public and secret keys (pk, sk) from crs.
In sReg-ABE for a predicate P : X×Y→ {0, 1}, the number L of users who can join the system is fixed
in advance4, and all users join the system all at once by registering their pk and key attribute y ∈ Y.
Then, the system generates a compact master public key mpk and helper secret keys hski for user i,
i.e., |mpk| and |hski| are O(logL), in a deterministic manner. An encryptor takes mpk, a ciphertext
attribute x ∈ X, and a message M to generate ciphertext ctx. Finally, ctx can be decrypted with ski
and hski for user i if and only if P(x, yi) = 1.

Predicate encodings for P : X × Y → {0, 1} is a set of matrices depending on key and ciphertext
attributes (x, y) ∈ X × Y, which was originally used for abstracting structure of the ABE scheme for
P. Specifically, (ω, nc, nk)-predicate encodings for P uniquely specify matrices

Cx ∈ Zω×ncp , Ky ∈ Zω×nkp , ay ∈ Znkp , dx,y ∈ Znk+nc
p , Mx,y =

(
ay 0
Ky Cx

)
for all (x, y) ∈ X× Y, which satisfies decoding correctness, i.e., Mx,yd

>
x,y = (1,0)> if P(x, y) = 1 and

security, i.e., the columns of Mx,y do not span (1,0)> if P(x, y) = 0 (the above formulation of predicate
encodings follows [ZZGQ23]). For instance, predicate encodings P for identity-based encryption (IBE),
i.e., P(x, y) = 1⇔ x = y, are given as Cx = (x, 1)>,Ky = (y, 1)>,ay = 1,dx,y = (1,−1).

sReg-ABE from Predicate Encodings. Next, we recall the simplified ZZGQ sReg-ABE scheme
from predicate encodings [ZZGQ23]. Let e : G1 × G2 → GT be bilinear groups, and [·]i denotes
element-wise exponentiation to gi ∈ Gi. Their scheme is described as follows:

crs = ([α]T, {[wj,0,wj]1}j∈[L], {[ri, riwj,0, riwj , riwi,0 + α]2}i,j∈[L],i6=j)

pki = ([vi]1, {[virj]2}j 6=i), ski = vi

mpk = ([
∑
j∈[L]((wj,0 + vj)ayj + wjKyj),

∑
j wj]1, [α]T)

hski = [ri, ri
∑
j 6=i((wj,0 + vj)ayj + wjKyj)︸ ︷︷ ︸

h1

, ri
∑
j 6=i wj︸ ︷︷ ︸
h2

, riwi,0 + α︸ ︷︷ ︸
h3

]2

ctx = ([s, s
∑
j((wj,0 + vj)ayj + wjKyj)︸ ︷︷ ︸

c1

, s
∑
j wjCx︸ ︷︷ ︸
c2

]1, [sα]TM)

(1)

4 A scheme is called unbounded-user if it achieves the generation time and size of crs as polylogarithmic in
L [HLWW23]. Our schemes, however, resort to bounded-user schemes.

5

where α,wi,0, ri, vi, s← Zp,wj ← Zωp , and the system aggregates (pk1, y1), . . . , (pkL, yL) into mpk. In
decryption for user i with attribute y = yi, we compute

[(ric1 − sh1 || ric2 − sh2Cx)d>x,y − sh3 − srivi]T · [sα]TM

=[sri((wi,0 + vi)ayi + wiKyi ||wiCx)d>x,y − sri(wi,0 + vi)− sα]T · [sα]TM

=
[
sri(wi,0 + vi ||wi)

(
ayi 0

Kyi
Cx

)
d>x,y − sri(wi,0 + vi)− sα

]
T
· [sα]TM=M, (2)

where the third equality holds only if P(x, yi) = 1 from the correctness of predicate encodings. Let
mpkj = [(wj,0 + vj)ayj + wjKyj ,wj]1. Then, by stretching the notation a bit, we can view mpk =∑
j mpkj . In essence, ctx represents a ciphertext relative to

∑
j mpkj , and during decryption for user

i, hski enables us to strip ctx of its association with
∑
j 6=impkj , retaining only the relationship with

mpki. This adjustment ensures that the correctness and security of the ZZGQ sReg-ABE scheme rely
primarily on predicate encodings, akin to vanilla ABE.

Pair Encoding Schemes. As in the case of vanilla ABE, we cannot capture unbounded schemes by
predicate encodings and need more generalized framework, namely, pair encoding schemes (PES) [Att14,
AC17]. Roughly speaking, PES for predicate P : X× Y→ {0, 1} define two vectors of polynomials for
all (x, y) ∈ X× Y:

cx(s, ŝ,w) = ŝFx + s(In1 ⊗w)F̂x, ky(r, r̂,w) = r̂Ly + r(Im1 ⊗w)L̂y (3)

in variables s = (s1, . . . , sn1
), r = (r1, . . . , rm1

) (called non-lone variables), ŝ = (ŝ1, . . . , ŝn3
), r̂ =

(r̂1, . . . , r̂m3
) (called lone variables), and w = (w1, . . . , wω) (called common variables).5 Matrices Fx ∈

Zn3×n2
p , F̂x ∈ Zn1ω×n2

p and Ly ∈ Zm3×m2
p , L̂y ∈ Zm1ω×m2

p are coefficient matrices depending on x
and y, respectively.6 It denotes the identity matrix of size t × t. Note that n1, n2, n3 and m1,m2,m3

depend on x and y, respectively. These polynomials satisfy decoding correctness, which says that if
P(x, y) = 1, then there exist Ex,y ∈ Zn2×m1

p ,Ex,y ∈ Zm2×n1
p such that cxEx,yr

> + kyEx,ys
> = s1r̂1

holds symbolically. Intuitively, s1r̂1 is a special term, for which [s1r̂1]T ·M is the masked message term
in the vanilla ABE from PES. Note that predicate encodings are special case of pair encodings where
n1 = m1 = 1, n2 = nc,m2 = nk, n3 = 0,m3 = 1, F̂x = Cx,Ly = ay, L̂y = Ky for all (x, y) ∈ X× Y and
captured as

cx(s1,w) = s1wCx, ky(r1, r̂1,w) = r̂1ay + r1wKy.

Challenges for sReg-ABE from PES. When trying to apply general PES to the ZZGQ sReg-ABE,
two obstacles emerge due to disparities between PES and predicate encodings: (1) Decoding involves
non-lone variables. (2) Sizes m1,m2,m3 and the coefficient matrix Ly (in the polynomial vector ky)
depend on y. Let us explore why these pose obstacles.

Firstly, a crucial difference between sReg-ABE and ABE is that in sReg-ABE, both the key encoding
(Ky,ay) and the ciphertext encoding Cx appear in G1, while in ABE, they appear in G1 and G2

respectively. For predicate encodings, decoding efficiently works even if the entire Mx,y is encoded in
G1, allowing for the computation of [Mx,yd

>
x,y]1 from [Mx,y]1. However, decoding in pair encodings

is not confined to G1 alone: it involves non-lone variables s, r multiplying with encodings cx, ky.
Specifically, [cxEx,yr

> + kyEx,ys
>]1 cannot be efficiently computed from [s, r, cx,ky]1.

Initially, encoding r,ky in G2 and computing cxEx,yr
> + kyEx,ys

> in GT seems intuitive. How-
ever, it is evident that this approach falls short, as an additional pairing between the resulting term
and the “slot-specific” element, namely, ri in hski, is needed. This is since hski must be encoded in

5 The naming terminology follows [AC17]. Intuitively, the non-lone ones are multiplied with the common ones,
while the lone ones are not multiplied with other variables. The common ones appear in both vectors of
polynomials.

6 In contrast to previous works where pair encodings are denoted by sets of polynomials, we denote them by
vectors (or matrices) of polynomials in this paper.

6

group elements and linked with ri for each i (to prevent “mix-and-match” attack with other slots).
Consequently, in decryption, the term ri(cxEx,yr

>+kyEx,ys
>) needs to be computed. Intuitively, this

term is the canonical PES counterpart of the expression sri(wi,0 +vi ||wi)
(

ayi 0

Kyi
Cx

)
d>x,y in the ZZGQ

scheme as per Eq. (2).

New PES Formulation. We resolve the above problem by observing that:

cxEx,yr
> + kyEx,ys

> = tr(Ex,y r>cx︸ ︷︷ ︸
C

) + tr(Ex,y s>ky︸ ︷︷ ︸
K

)

where tr(M) denotes the trace of square matrix M, i.e., the sum of its diagonal entries. In other
words, we can efficiently compute [cxEx,yr

> + kyEx,ys
>]1 from [C,K]1 = [r>cx, s

>ky]1. For security
reasons, we use the following replacement of variables in (C,K): r>ŝ 7→ T, s>r̂ 7→ U, r>s 7→ S′

where T = (ti,j)i,j ,U = (ui,j)i,j ,S
′ = (s′i,j)i,j (recall that we have C = r>ŝFx + r>s(In1

⊗ w)F̂x

and K = s>r̂Ly + s>r(Im1 ⊗w)L̂y from Eq. (3)). Intuitively, this replacement increases the entropy
of (C,K) when all variables are randomly taken from Zp and thus does not harm the security of the
original PES. This leads to a new variant of PES for sReg-ABE:

Cx,y(S′,T,w) = TFx + S′ (In1
⊗w)F̂x︸ ︷︷ ︸

Ĉx(w)

,

Kx,y(S′,U,w) = ULy + S′> (Im1 ⊗w)L̂y︸ ︷︷ ︸
K̂y(w)

(4)

Note that the special term s1r̂1 is now replaced with u1,1, the (1, 1)-th entry of U. A caveat is that both
Cx,y and Kx,y depend on (x, y) since Cx,y and Kx,y depend on m1 and n1, which depend on y and
x, respectively. Looking ahead, it will be useful to separate a term which depends only on y, namely,
K̂y(w) in Eq. (4); we call it a common variable encoding. This is since we use K̂y(w) in generation of
mpk where x is not given at this point, as we will see in Eq. (5).

Generalizing the ZZGQ scheme so as to be compatible with our variant of PES above leads to the
following candidate scheme (but not yet correct, see below):

crs = ([α]T, {[wj,0,wj]1}j∈[L], {[ri, riwj,0, riwj , riwi,0 + α]2}i,j∈[L],i6=j)

pki = ([vi]1, {[virj]2}j 6=i), ski = vi

mpk = (y1, [
∑
j∈[L](wj,0 + vj)︸ ︷︷ ︸

p1

,
∑
j K̂yj (wj)︸ ︷︷ ︸

P2

,
∑
j wj]1, [α]T)

hski = [ri, ri
∑
j 6=i(wj,0 + vj)︸ ︷︷ ︸

h1

, ri
∑
j 6=i K̂yj (wj)︸ ︷︷ ︸

H2

, ri
∑
j 6=i wj︸ ︷︷ ︸
h3

, riwi,0 + α︸ ︷︷ ︸
h4

]2

ctx = ([s0,S
′,
∑
j Kx,yj (S

′,U,wj)︸ ︷︷ ︸
C1

,Cx,y1(S′,T,
∑
j wj)︸ ︷︷ ︸

C2

]1, [s0α]TM)

(5)

where all variables are randomly taken from Zp except that we set u1,1 = s0p1, where p1 is defined
as above. As a side note, generalizing ZZGQ with PES is already not trivial in the first place; for
example, we have to split the first term in mpk into the terms p1 and P2, to accommodate potential
multiplications of P2 by various non-lone variables in C1 during encryption. (Recall that predicate
encoding has only one non-lone variable in each encoding.)

The second obstacle arises here: if the sizes mj,1,mj,2,mj,3 depend on an attribute yj , defining
the terms P2,H2,C1 becomes problematic due to the potential variation in sizes for matrices in the
sums. To address this, for now, we assume the existence of constants m1,m2,m3 ∈ N such that
K̂y(w) ∈ Zm1×m2

p and Ly ∈ Zm3×m2
p for all y ∈ Y. With this adjustment, all the “ciphertext encoding”

7

of x remains invariant across different values of yi, i.e., Cx,y1 = · · · = Cx,yL . This is since the only
factor of Cx,yi that is affected by yi is the size mi,1. In decryption for user i with P(x, yi) = 1, we
would compute

[d]T =[tr(E(riC2 − S′Ĉx(h3))) + tr(E(riC1 − S′>H2))]T

=[ri(tr(E(Cx,yi(S
′,T,w))) + tr(E(Kx,yi(S

′,U,w) +
∑
j 6=i ULyj)))]T.

This equality relies on the property of invariant ciphertext encoding. Next, suppose we could remove
the “cross term”

∑
j 6=i ULyj , then we would have d = s0rip1, which follows the correctness of the PES

and be able to compute [d− s0h1 − s0rivi − s0h4]T = [−s0α]T; thus, the decryption would work. Our
idea here is then to further assume that there exists L such that Ly = L for all y ∈ Y and redefine C1

in Eq. (5) with C′1 as follows.

C′1 = UL +
∑
j S′>K̂yj (wj) = C1 −

∑
j 6=i ULyj (6)

Here, the second equality holds for all i ∈ [L], if Ly = L for all y ∈ Y (by the definition in Eq. (4)).
Hence, this replacement prevents the appearance of the “cross term”

∑
j 6=i ULyj for all i and decryption

for every user work.
Although the above ideas work, it turns out that assuming ∃m1,m2,L : K̂y(w) ∈ Zm1×m2

p ,Ly = L
for all y ∈ Y significantly limits expressiveness of PES. More precisely, if the size of Ly is a priori fixed,
we can replace non-lone variables with common variables, and the expressiveness of key encodings
become essentially the same as predicate encodings. Hence, via this PES, we cannot capture unbounded
sReg-ABE scheme, where the number of attribute to be associated with the key encoding element C1

in ctx is not a priori bounded.

Mitigating to Partial Limitation: Well-formedness w.r.t. Registered Set. The main obser-
vation to ease the above limitation is that the scheme in Eq. (5) with the modification in Eq. (6)

remains effective even when the constraint on key encodings is relaxed to: ∃m1,m2,L : K̂yj (w) ∈
Zm1×m2
p ,Lyj = L for all j ∈ [L]. Put simply, this condition need only hold for the attributes {yj}j∈[L]

associated with users registered in the system, rather than the entire attribute space Y. Going forward,
we employ the term “well-formed” in this context, implying that a PES is well-formed if the condition
is met for any given set {yj}j∈[L].

Registered Set Dependency via Short Auxiliary Input. To ensure the significance of the
“partial limitation” compared to the “entire limitation”, it is crucial for the key encoding Kx,yi (cf.
Eq. (4)) to depend on the registered set {yj}j∈[L], since otherwise, both limitations would render to
the same thing.

We investigate how to establish this dependency. First, in PES-based sReg-ABE constructions
(ZZGQ and our candicate), the “key encoding” is embedded into a ciphertext. In particular, the key
encoding Kx,yi resides in C1 of the ciphertext ctx (as in Eq. (5)). Next, considering the definition of
sReg-ABE, a ciphertext ctx is formed from (mpk, x,M), and not from the registered set {yj}j∈[L]. How-
ever, directly incorporating {yj}j into mpk would result in |mpk| = O(L), violating the compactness
requirement for registered ABE. To address this, we observe that it suffices to utilize only auxiliary
information, auxk, that is efficiently computable from {yj}j to serve as a “digest” of the information
about {yj}j∈[L]. Loosely speaking, we can think of yj as a set of attributes, and auxk as the maximum
number of attributes among {yj}j∈[L] in our constructions. It is crucial that |auxk| remains independent
of L, allowing its inclusion in mpk.

In summary, we form our final PES for sReg-ABE as:

Cx,y,auxc(S
′,T,w) = TFx,auxc + S′ (In1 ⊗w)F̂x,auxc︸ ︷︷ ︸

Ĉx,auxc (w)

Kx,y,auxk(S′,U,w) = ULy,auxk + S′> (Im1
⊗w)L̂y,auxk︸ ︷︷ ︸

K̂y,auxk
(w)

8

Note that although auxc is not essential in the sReg-ABE construction, we use it for security analysis
of PES. Our sReg-ABE scheme from well-formed PES is given as follows, where crs, pki, ski are the
same as in Eq. (5), and u1,1 = s0p1:

mpk = (y1, auxk, [
∑
j∈[L](wj,0 + vj)︸ ︷︷ ︸

p1

,
∑
j K̂yj ,auxk(wj)︸ ︷︷ ︸

P2

,
∑
j wj]1, [α]T)

hski = [ri, ri
∑
j 6=i(wj,0 + vj), ri

∑
j 6=i K̂yj ,auxk(wj), ri

∑
j 6=i wj , riwi,0 + α]2

ctx = ([s0,S
′,ULy1,auxk + S′>P2,Cx,y1,auxc(S

′,T,
∑
j wj)]1, [s0α]TM).

sReg-ABE for Unbounded Predicates from Well-formed PES. Next challenge is to devise
PES for sReg-ABE for unbounded predicates that satisfies well-formedness. What makes things more
difficult is that we also need to take security into account for the PES construction. Furthermore, our
goal is sReg-ABE scheme based on the static MDDH assumption, and thus we cannot rely on the
symbolic property which rely on a dynamic assumption [AC17]. We address this formidable challenge
through the PES transformation framework proposed by Attrapadung and Tomida [AT20].

Let us briefly recall their framework. The main idea of their work, which originally observed by
Attrapadung [Att19], is that applying three predicate transformations to a simple predicate (such
as the predicate for IBE) in an appropriate order results in predicates for unbounded ABE. This
approach allows us to construct ABE for a complex predicate in a modular manner. Attrapadung
also provides corresponding PES transformations for the three predicate transformations. The three
predicate transformations are DS,Dual,KP1, which are defined as follows. The direct sum of predicates
P = (P1, . . . ,Pn) where Pi : Xi × Yi → {0, 1} combines predicates as DS[P]((i, x), (j, y)) = 1 ⇔
i = j ∧ Pi(x, y) = 1. The dual transformation switches the ciphertext with key attribute spaces
of P, i.e., Dual[P](x, y) = 1 ⇔ P(y, x) = 1. The key policy (KP) augmentation of P is defined as
KP1[P](x, (M, φ)) = 1 ⇔ (1,0) ∈ span({mi}i∈[n]:Pκ(x,φ(i))=1) where M ∈ Zn×mp is a span program,

mi is the i-th row of M, and φ : [n] → Y is a labeling function.7 For instance, let PIBE(x, y) = 1 ⇔
x = y, then we can obtain by KP1[Dual[KP1[PIBE]]] a predicate for completely unbounded KP-ABE
for monotone span programs (see [AT20, Section 6] for details).

The main technical contribution in [AT20] is to introduce the new security notion for PES called
key-encoding indistinguishability (KE-ind) and prove the three properties on KE-ind under the MDDH
assumption:

1. PES obtained from predicate encodings satisfies KE-ind;

2. KE-ind is preserved through the three PES transformations;

3. Adaptively secure ABE for P can be constructed from PES for P with KE-ind.

As a corollary, an adaptively secure ABE scheme for P can be constructed if P can be obtained by
applying the three transformations to predicates that have predicate encodings.

Our strategy is to introduce a sReg-ABE analog of KE-ind. However, our situation is more intricate
since we need to ensure that the final PES used for constructing a sReg-ABE scheme satisfies both well-
formedness and KE-ind. To this end, we prove the following properties under the MDDH assumption:

1. PES obtained from predicate encodings satisfies KE-ind and well-formedness;

2. KE-ind and well-formedness are preserved through certain PES transforms;

3. A secure sReg-ABE scheme for P can be constructed from PES for P with KE-ind and well-
formedness.

7 [AT20] consider less expressive policy than span programs, namely, Boolean formulae for KP augmentation,
so as to achieve (adaptive) security for ABE under MDDH. For Reg-ABE, the security is inherently less
adaptive (as all keys are embedded already in mpk), and we can consider span programs (while relying in
MDDH).

9

While items 1 and 3 are not so hard to prove, item 2 poses a challenge as two PES transforms, DS
and KP1, do not preserve well-formedness. Hence, we introduce alternative transformations to obtain
sReg-ABE for unbounded predicates.

Alternative Transformations for KP1. First, we elaborate on why KP1 fails to maintain well-
formedness and introduce alternative transformations. Let Γ be a PES for P : X × Y → {0, 1},
KP1-Trans(Γ) be a PES for KP1[P], and Ly =

(
l̄y
Ly

)
be a coefficient matrix in Γ for y ∈ Y (̄ly is

the first row). The PES KP1-Trans(Γ) by [Att19] sets a coefficient matrix L′(M,φ) for key attribute

(M, φ) as:

L′(M,φ) =

m>1 l̄φ(1) · · ·m>n l̄φ(n)

Lφ(1)

. . .

Lφ(n)

where mi is the i-th row of M. (For notational simplicity, we omit to subscript auxk here and in what
follows.) It is clear that L′(M,φ) depends on even the size of M, and thus the coefficient matrices will

never be the same for a set of adversarially chosen key attributes {(Mi, φi)}i∈[L].

To solve this issue, we first observe that some applications of KP1 in obtaining unbounded ABE
are overkilled. Recall that a predicate PKP−MSP for monotone unbounded KP-ABE can be obtained
by KP1[Dual[KP1[PIBE]]]. As observed in [Att19]; however, at the first application of KP1, it suffices to
handle OR policies, denoted by KP1OR. That is, PKP−MSP is obtained by KP1[Dual[KP1OR[PIBE]]].

Let us put the second KP1 aside for a moment and focus on KP1OR. OR policies are captured by
span programs of the form M = (1, . . . , 1)>, or equivalently KP1OR[P](x, φ) = 1⇔

∨
i∈[n] P(x, φ(i)) = 1

(we can omit M from key attribute since it can be specified by only the policy size n). Hence, the
coefficient matrices {L′φi}i∈[L] of OR policies become the same if the domains of {φi}i have the same
size n, and {Lφi(j)}(i,j)∈[L]×[n] are the same. In fact, the latter condition can be straightforwardly
achieved if Γ is well-formed.

To address the former condition, we use the fact that
∨
i∈[n] P(x, φ(i)) = 1 ⇔

∨
i∈[n] P(x, φ(i)) ∨

0∨ · · · ∨ 0 = 1. In other words, if Y contains a null attribute null such that P(x, null) = 0 for all x ∈ X,
we always have KP1OR[P](x, φ) = KP1OR[P](x, φ′) where δ > n, φ : [n] → Y, and φ′ : [δ] → Y such
that φ′(i) = φ(i) for i ∈ [n] and φ′(i) = null for n < i ≤ δ. Hence, for a set of OR policies {φi}i, we
can obtain a set of equivalent OR policies {φ′i}i of the same size by setting δ = maxni where ni is
the domain size of φi. Armed with this idea, we can achieve the PES transformation for KP1OR that
preserves KE-ind and well-formedness by including δ in auxk (see §4.3 for details). Additionally, we
also present a predicate transformation Null that adds null to Y to make the above idea work for any
predicates (§4.1). We also remark that we need KP1 for AND policies, denoted by KP1AND, to obtain a
predicate for non-monotone unbounded ABE. Similar to KP1OR, we can obtain the PES transformation
for KP1AND that preserves KE-ind and well-formedness together with a transformation WC that adds
a wildcard ∗ to Y where P(x, ∗) = 1 for all x (see §4.2 and 4.4 for details).

Finally, we discuss the deferred KP1 transformation, applied second when constructing PKP−MSP.
Due to the need for a fully-fledged KP1 at this stage, we cannot hope that it preserves well-formedness.
However, there is a silver lining: KP1 preserves well-formedness with respect to ciphertext encodings
(note also that other transformations described in this paragraph also do so). Specifically, we can

construct a PES for KP1[P] where ∃n1, n2,F,∀i ∈ [L] : Ĉxi(w) ∈ Zn1×n2
p ,Fxi = F for given {xi}i∈[L]

if the underlying PES for P satisfies ciphertext well-formedness. Leveraging the fact that Dual switches
the well-formedness in ciphertext and key encodings, and only the key well-formedness is needed to
construct a sReg-ABE scheme, we can achieve a predicate PCP−MSP for unbounded monotone CP-ABE
by Dual[KP1[Dual[KP1OR[Null[PIBE]]]]] together with a PES satisfying KE-ind and key well-formedness.
In summary, we introduce four transformations KP1OR,KP1AND,Null,WC for a substitution of some
applications of KP1 while we also use KP1 only in the last step of a series of transformations.

10

Alternative Transformations for DS. Next, let us explore alternative transformations for DS. The
problem of PES for DS[P] for P = (P1, . . . ,Pn) comes from the fact that y in a key attribute (j, y) of
DS[P] belongs to one of Y1, . . . ,Yn. More precisely, the coefficient matrix L′(j,y) of (j, y) in the PES for

DS[P] would be Lj,y, which is the coefficient matrix of y in the PES for Pj . Hence, for an arbitrarily
chosen set of key attributes (j`, y`)`∈[L], the corresponding coefficient matrices {Lj`,y`} will never be
the same unless PES for P1, . . . ,Pn have the same coefficient matrix. However, such a strong restriction
makes DS transformation almost useless for combining predicates.

Looking back at [AT20], we can observe that DS is mainly used to obtain static predicate compo-
sitions [ABS17] and construct two-mode identity-based broadcast encryption (TIBBE). Roughly speak-
ing, static predicate compositions allow us to obtain a predicate like P = P1∧P2 where P((x1, x2), (y1, y2)) =
1⇔ P1(x1, y1) = 1∧ P2(x2, y2) = 1. Furthermore, we find that TIBBE can be constructed from static
predicate compositions (SPC) together with the Null transformation which adds the null attribute to a
key attribute space. Luckily, SPC preserves well-formedness because the coefficient matrix L′(y1,y2) in
the PES for P is specified by coefficients matrices Ly1 in P1 and Ly2 in P2 and the form of composition,
which is a priori fixed. To summarize, we use SPC and Null to substitute DS.

Malicious pk and Prime-order Scheme. The remaining tasks are handling of maliciously generated
public keys and security proofs in prime-order groups. Since this step closely resembles [ZZGQ23], we
omit details here. Briefly, we prevent users from registering malicious keys by forcing them to add a
proof of quasi-adaptive non-interactive zero-knowledge argument [JR13], and to prove the security of
sReg-ABE scheme in prime-order groups via the dual system technique [Wat09] we use the variable-
to-matrix substitution framework in [CGW15] as described in §A.

Discussions on Open Problems. Our study primarily focuses on registered ABE for complex
predicates, particularly those with unbounded characteristics. An orthogonal objective, not addressed
in our work, involves achieving unbounded-user schemes, for which current solutions are limited to
relying on iO or WE and non-black-box usage of cryptographic primitives. Additionally, obtaining
key-policy registered ABE for unbounded span program predicates poses another unresolved challenge.
We leave these issues as open problems.

2 Preliminaries

Notations. For n,m ∈ N, [m] and [n,m] denotes {1, . . . ,m} and {n, . . . ,m}, respectively. O and 0
denotes a zero matrix and a zero vector (with sizes corresponding to the context). For a square matrix
M, tr(M) denotes the trace of M. For matrices M,N, M⊗N denotes the Kronecker product. A useful
fact is that (A ⊗ B)(C ⊗ D) = AC ⊗ BD if AC and BD are defined. For W = (wi,j)i,j , Zp[W]
denotes a set of all polynomials in (wi,j)i,j where coefficients are in Zp. For set S, s ← S means that
s is uniformly chosen from S. For two families of distributions A = {Aλ}, B = {Bλ}, A ≈c B and
A ≈s B mean A and B are computationally and statistically indistinguishable, respectively. For matrix
M = (mi,j)i,j , we define MBT = (m′i,j)i,j where m′i,j = mj,i (BT stands for block transpose). We

sometimes abuse the notation: for SA = (si,jA)i,j denote (s′i,jA)i,j by SBT
A where s′i,j = sj,i. span(M)

denotes the row span of M.

2.1 Definitions

Definition 2.1 (Bilinear Groups). Let {Gλ}λ∈N be a family of bilinear groups. Bilinear groups
Gλ=(p,G1, G2, GT , g1, g2, e) are specified by a prime p, cyclic groups G1, G2, GT of order p, generators
g1 and g2 of G1 and G2 respectively, and a bilinear map e : G1 ×G2 → GT , which has two properties.

– (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(ha1 , hb2) = e(h1, h2)ab.
– (Non-degeneracy): For g1 and g2, gT = e(g1, g2) is a generator of GT .

In what follows, we omit the index λ from Gλ and abuse notation by denoting a family of bilinear
groups {Gλ}λ∈N also by G if it is clear in the context.

11

Definition 2.2 (MDDH Assumption [EHK+13]). Let {G} be a family of bilinear groups. We
consider the following distribution, for any n > k and m ∈ N: M← Zk×np ,R← Zm×kp ,Z0 = RM,Z1 ←
Zm×np , Pi,β = (G, [M]i, [Zβ]i). We say that the MDDHk assumption holds with respect to {G} if
Pi,0 ≈c Pi,1 for i ∈ {1, 2}.

Definition 2.3 (QA-NIZK [JR13]). Quasi-adaptive non-interactive zero knowledge argument (QA-
NIZK) for linear space over bilinear groups G consists of the four algorithms.

LGen(1λ, [A]1): It takes a security parameter 1λ and [A]1 ∈ Gn×m1 as input and outputs a common
reference string crs and a trapdoor td.

LProve(crs, [M]1,V): It takes crs, [M]1 ∈ Gn×`1 with a witness V ∈ Zm×`p as input and outputs a proof
π.

LVerify(crs, [M]1, π): It takes crs, [M]1, π as input and outputs β ∈ {0, 1}.
LSim(crs, td, [M]1): It takes crs, td, [M]1 and outputs a simulated proof π̃.

Perfect Completeness. For all n,m, `, λ,A,V,M such that M = AV,

Pr

[
LVerify(crs, [M]1, π) = 1 :

(crs, td)← LGen(1λ, [A]1)

π ← LProve(crs, [M]1,V)

]
= 1

Perfect Zero-knowledge. For all n,m, `, λ,A,V,M such that M = AV, LProve(crs, [M]1,V) and
LSim(crs, td, [M]1) are identically distributed where (crs, td)← LGen(1λ, [A]1).

Stronger Unbounded Simulation Soundness. For all PPT adversaries A and n,m ∈ N, the
following advantage of A is negligible in λ:

Pr

 ([M∗]1, π
∗) 6∈ L

∧ @V,M∗ = AV

∧ LVerify(crs, [M∗]1, π
∗) = 1

:

A← Zn×mp

(crs, td)← LGen(1λ, [A]1)

([M∗]1, π
∗)← ALSim(crs,td,·)(1λ, crs,A)

where L is a list of pairs of A’s query to LSim and the corresponding response.

A QA-NIZK scheme that satisfies the above properties from MDDH is given in [KW15] (see also
[ZZGQ23, Appindix B]).

We now describe the definition of bounded-user slotted registered ABE, which we refer to as sReg-
ABE throughout the paper. We follow the definition in [ZZGQ23] (which, in turn, follows [HLWW23]).8

A slight difference from their definition is compactness, that is, since we consider sReg-ABE where the
attribute size is not a priori bounded, we allow |mpk| and |hsk| to depend on the size of the longest
attribute to be registered. The definition for full-fledged registered attribute-based encryption (Reg-
ABE) is deferred to §B. It is shown in [HLWW23,ZZGQ23] how to generically convert (bounded-user
or unbounded-user) slotted registered ABE to registered ABE while preserving the (un)bounded-user
property and compactness. We further note that the above modified compactness is also preserved via
the conversion; see §B. We thus focus on constructing sReg-ABE.

Definition 2.4 (Bounded-User Slotted Registered ABE [HLWW23, ZZGQ23]). Let Pκ :
Xκ×Yκ be a predicate indexed by κ, where κ specifies some parameters. Let M be a message space. A
bounded-user slotted registered attribute-based encryption (sReg-ABE) scheme for Pκ consists of the
following algorithms.

Setup(1λ, 1L, κ): It takes a security parameter 1λ, the number of slots 1L, and an index κ as input,
and outputs a common reference string crs.9

8 To avoid ambiguity regarding boundedness, we use the term bounded-user, as opposed to simply bounded,
as used in [HLWW23].

9 In unbounded-user schemes, Setup takes L in binary instead of unary and is efficient even if we set L = O(2λ);
see [HLWW23].

12

Gen(crs, i): It takes crs and an index i ∈ [L] as input, and outputs a public key pki and a secret key
ski.

Ver(crs, i, pki): It takes crs, i, pki as input, and outputs 1 if pki is valid, and 0 otherwise.
Agg(crs, {pki, yi}i∈[L]): It takes crs, a set of pairs pki, and yi ∈ Yκ for i ∈ [L] as input, and outputs a

master public key mpk and a set of helper keys hski for i ∈ [L]. This algorithm is deterministic.
Enc(mpk, x,M): It takes mpk, x ∈ Xκ, and a message M ∈M as inputs, and outputs a ciphertext ctx.
Dec(ski, hski, ctx): It takes ski, hski, ctx as input, and outputs a message M or a symbol ⊥.

Completeness. For all λ, L ∈ N, i ∈ [L] and κ, we have

Pr[Ver(crs, i, pki) = 1 : crs← Setup(1λ, 1L, κ); (pki, ski)← Gen(crs, i)] = 1

Correctness. For all λ, L ∈ N, i ∈ [L], κ, crs← Setup(1λ, 1L, κ), {pkj}j∈[L]\{i} such that Ver(crs, j, pkj) =
1, x ∈ Xκ, y1, . . . , yL ∈ Yκ such that Pκ(x, yi) = 1, and M ∈M, we have

Pr

Dec(ski, hski, ctx) = M :
(pki, ski)← Gen(crs, i)
(mpk, {hskj}j∈[L])← Agg(crs, {pkj , yj}j)
ctx ← Enc(mpk, x,M)

 = 1

Compactness. For all λ, L ∈ N, κ, i ∈ [L], the sizes of mpk and hski obtained from Agg(crs, {pki, yi}i∈[L])
are poly(λ,maxi |yi|, logL).

Security. For all stateful admissible adversaries A, the following advantage AdvsRegABEA (λ) is negligible
in λ:

Pr

β = β′ :

L← A(1λ); crs← Setup(1λ, 1L, κ)
{pk∗i , yi}i∈[L], x,M0,M1 ← AOGen(·),OCor(·)(crs)
(mpk, {hski}i∈[L])← Agg(crs, {pk∗i , yi}i∈[L])
β ← {0, 1}; ctx ← Enc(mpk, x,Mβ); β′ ← A(ctx)

− 1

2

where Di and C are dictionaries that are initially empty, OGen(i) runs (pk, sk) ← Gen(crs, i), set
Di = Di ∪ {(pk, sk)} and returns pk, and OCor(i, pk) returns sk if (pk, sk) ∈ Di (returns ⊥ otherwise)
and set C = C ∪ {(i, pk)}. A is admissible if its queries satisfy

(pk∗i , ∗) 6∈ Di ⇒ Ver(crs, i, pk) = 1

(i, pk∗i) ∈ C ∨ (pk∗i , ∗) 6∈ Di ⇒ Pκ(x, yi) = 0

Definition 2.5 (Predicate Encodings [Wee14]). A (ω, nc, nk)-predicate encoding for P : X×Y→
{0, 1} is the matrix system defined as follows. For every x ∈ X, y ∈ Y, there exist

Cx ∈ Zω×ncp , Ky ∈ Zω×nkp , ay ∈ Znkp , dx,y ∈ Znk+nc
p , Mx,y =

(
ay 0
Ky Cx

)
which satisfy the following two properties:

Correctness: For all (x, y) such that P(x, y) = 1, we have Mx,yd
>
x,y = (1,0)>.

Security: For all (x, y) such that P(x, y) = 0 and α ∈ Zp, the following distributions are statistically
close over w← Zωp :

{α,Mx,y, (α,w)Mx,y} and {α,Mx,y, (0,w)Mx,y}

Lemma 2.1. For any (ω, nc, nk)-predicate encoding for P : X × Y → {0, 1}, we can construct (ω +
2, nc + 1, nk + 1)-predicate encoding for also P such that ay = (1,0) ∈ Znk+1

p for all y ∈ Y. We can
obtain such a predicate encoding by applying the dual conversion [ABS17] to the original predicate
encoding twice.

13

3 Pair Encoding Schemes for sReg-ABE

We define pair encoding schemes (PES) suitable for sReg-ABE, which is majorly modified from the
original PES for vanilla ABE as explained in §1.2

Definition 3.1 (Pair Encoding Schemes). Let Pκ : Xκ × Yκ → {0, 1} be a predicate family. A
PES for Pκ is given by six deterministic polynomial-time algorithms:

– Param(κ)→ ω. When given κ as input, Param outputs ω ∈ N that specifies the number of common
variables, which we denote by w = (w1, . . . , wω).

– CVEncC(x, auxc) → (n1, n2, F̂, Ĉ). On input x ∈ Xκ and auxiliary information auxc ∈ {0, 1}∗, it

outputs a symbol ⊥ or a matrix of polynomials Ĉ = (ĉν,µ)(ν,µ)∈[n1]×[n2] in common variables w as

follows, where F̂ ∈ Zn1ω×n2
p :

Ĉ(w) = (In1
⊗w)F̂

– CVEncK(y, auxk) → (m1,m2, L̂, K̂). On input y ∈ Y(κ) and auxk ∈ {0, 1}∗, it outputs a symbol

⊥ or a matrix of polynomials K̂ = (k̂ν,µ)(ν,µ)∈[m1]×[m2] in common variables w as follows, where

L̂ ∈ Zm1ω×m2
p :

K̂(w) = (Im1 ⊗w)L̂

– EncC(x,m1, auxc) → (n3,F,C). On input m1 ∈ N, x ∈ Xκ, and auxc, EncC outputs a symbol ⊥
or a ciphertext encoding C = (cν,µ)(ν,µ)∈[m1]×[n2] where C is a matrix of polynomials in non-lone
variables S = (sν,µ)(ν,µ)∈[m1]×[n1], lone variables T = (tν,µ)(ν,µ)∈[m1]×[n3], and common variables w

as follows, where F ∈ Zn3×n2
p is a matrix independent of m1, Ĉ is the output of CVEncC(x, auxc):

C(S,T,w) = TF + SĈ(w)

– EncK(y, n1, auxk) → (m3,L,K). On input n1 ∈ N, y ∈ Yκ, and auxk, EncK outputs a symbol ⊥ or
a key encoding K = (kν,µ)(ν,µ)∈[n1]×[m2] where K is a matrix of polynomials in non-lone variables
S = (sν,µ)(ν,µ)∈[m1]×[n1], lone variables U = (uν,µ)(ν,µ)∈[n1]×[m3] and common variables w as follows,

where L ∈ Zm3×m2
p is a matrix independent of n1, K̂ is the output of CVEncK(y):

K(S,U,w) = UL + S>K̂(w)

– Pair(x, y, auxc, auxk)→ (E,E). On input x, y, auxc, auxk, Pair outputs two matrices E ∈ Zn2×m1
p ,E ∈

Zm2×n1
p .

Second Inputs to EncC and EncK. We assume that the second inputs m1 and n1 to EncC and EncK,
respectively, only affect the sizes of the variable matrices T,U,S, and do not affect L or whether they
output ⊥ or not.

Notations for PES. In the outputs of CVEncC,CVEncK,EncC,EncK, we sometimes omit the coeffi-
cient matrices F̂, L̂,F,L, respectively, (e.g., (n1, n2,C) ← CVEncC(x, auxc)) if they are not necessary
in the context. In contrast, when we need only the coefficient matrix F,L, which is independent of
m1, n1, we use the notation like (n3,F)← EncC(x, auxc).

Validity. We say auxc is valid with respect to x if ⊥ 6← EncC(x, auxc). A PES for Pκ : Xκ×Yκ → {0, 1}
is ciphertext valid if for all x ∈ Xκ, there exists an efficiently computable valid auxc with respect to x.
Similarly, the PES is key valid if for all y ∈ Yκ, there exists an efficiently computable valid auxk with
respect to y. We say the PES is valid if it is ciphertext valid and key valid.

Correctness. A PES is correct if for every κ, (x, y) ∈ Xκ × Yκ such that Pκ(x, y) = 1, and valid
auxc, auxk with respect to x, y, respectively, the following holds symbolically:

tr(EC(S,T,w)) + tr(EK(S,U,w)) = u1,1

where (n1, n2, F̂, Ĉ)← CVEncC(x, auxc), (m1,m2, L̂, K̂)← CVEncK(y, auxk), (n3,F,C)← EncC(x,m1, auxc),
(m3,L,K)← EncK(y, n1, auxk).

14

3.1 Evaluating PES with Vectors/Matrices

We can evaluate ciphertext encoding C(S,T,w) and key encoding K(S,U,w) together with matrices

Ĉ(w), K̂(w) with the following substitution from scalar variables to vectors/matrices over Zp: for all

d, d′ ∈ N, sν,µ 7→ sν,µ ∈ Zdp, tν,µ 7→ tν,µ ∈ Zd′p , uν,µ 7→ uν,µ ∈ Zd′p , w` 7→ W` ∈ Zd×d′p . Then, for

S = (sν,µ)(ν,µ)∈[m1]×[n1], T = (tν,µ)(ν,µ)∈[m1]×[n3], U = (uν,µ)(ν,µ)∈[n1]×[m3], W = (W1|| · · · ||Wω), we
define

Ĉ(W) = (In1
⊗W)(F̂⊗ Id′) ∈ Zdn1×d′n2

p

C(S,T,W) = T(F⊗ Id′) + SĈ(W) ∈ Zm1×d′n2
p

K̂(W) = (Im1 ⊗W)(L̂⊗ Id′) ∈ Zdm1×d′m2
p

K(S,U,W) = U(L⊗ Id′) + S
BT

K̂(W) ∈ Zn1×d′m2
p

(7)

Note that Ĉ and K̂ can be efficiently computed over group elements since they are linear in W, e.g.,
Ĉ([W]1) = [(In1

⊗W)(F̂⊗ Id′)]1 can be efficiently computed given [W]1.

Properties. We show several properties of PES over vectors/matrices that we will use in the ABE

construction. The following properties hold for all (x, y) ∈ Xκ×Yκ, where Ĉ,C and K̂,K are obtained
from x and y with valid auxc and auxk via the PES algorithms, respectively.

Property 3.1. For any fixed S, Ĉ is linear in W, and C is linear in (T,W), that is, for any T1,T2,W1,W2

we have

Ĉ(W1) + Ĉ(W2) = Ĉ(W1 + W2)

C(S,T1,W1) + C(S,T2,W2) = C(S,T1 + T2,W1 + W2)

Similarly, K̂ and K are linear in W and (U,W), respectively. This property is obvious from Eq. (7).

Property 3.2. For all ` ∈ N, M ∈ Zd′×`p , we have

C(S,T,W)(In2 ⊗M) = C(S,T(In3 ⊗M),W(Iω ⊗M))

K(S,U,W)(Im2
⊗M) = K(S,U(Im3

⊗M),W(Iω ⊗M))

This property can be shown as follows (the case for K is similar).

C(S,T,W)(In2
⊗M)

=(T(F⊗ Id′) + S(In1
⊗W)(F̂⊗ Id′))(In2

⊗M)

=T(In3
⊗M)(F⊗ I`) + S(In1

⊗W)(In1ω ⊗M)(F̂⊗ I`)

=T(In3
⊗M)(F⊗ I`) + S(In1

⊗W)(In1
⊗ Iω ⊗M)(F̂⊗ I`)

=T(In3
⊗M)(F⊗ I`) + S(In1

⊗W(Iω ⊗M))(F̂⊗ I`)

=C(S,T(In3
⊗M),W(Iω ⊗M))

Property 3.3. For all ` ∈ N, M ∈ Z`×dp , we have

S(In1
⊗M)Ĉ(W) = C(S,O,MW), S

′
(Im1

⊗M)K̂(W) = K(S,O,MW)

This property is obvious from Eq. (7).

Property 3.4. In the case d′ = 1 and Pκ(x, y) = 1, the following holds:

tr(EC(S,T,W)) + tr(EK(S,U,W)) = u1,1

where E,E ← Pair(x, y). This property is obvious from the correctness of PES since this is just
substitution of variables: sν,µw` 7→ sν,µw>` .

15

3.2 Properties of PES

We define two properties of PES, namely, well-formedness and key encoding indistinguishability (KE-ind).
When we construct a sReg-ABE scheme from PES, the former is necessary for compactness and cor-
rectness while the latter is for security of the resulting scheme.

Definition 3.2 (Key Well-formedness). We say that a PES Γ = (Param,CVEncC,CVEncK,EncC,
EncK,Pair) for Pκ : Xκ × Yκ → {0, 1} is key well-formed if it satisfies the following condition: for all
polynomial-size Y ⊆ Yκ, there exist a string auxk ∈ {0, 1}∗, positive integers m1,m2,m3 ∈ N, a matrix
L ∈ Zm3×m2

p , which are all efficiently computable, such that

|auxk|, |m1|, |m2| = poly(maxy∈Y |y|)

and that for all y ∈ Y , when we let (m
(y)
1 ,m

(y)
2 , K̂(y))← CVEncK(y, auxk), (m

(y)
3 ,L(y))← EncK(y, auxk),

we have that m
(y)
1 = m1, m

(y)
2 = m2, m

(y)
3 = m3 and L(y) = L (i.e., all the respective parameters are

the same among y ∈ Y).

This property requires that the size of auxk,m1,m2 depend only on a single element (the one with
maximum size) in Y ; intuitively, looking ahead, the sizes of mpk, hski in sReg-ABE will involve these

three parameters and hence need to be small. The property that the size of K̂(y) and matrices L(y)

are the same for all y ∈ Y is needed for the correctness of sReg-ABE. We also define ciphertext well-
formedness similarly; while this is not directly used in sReg-ABE, it will be useful when converting
PES to its dual predicate.

Definition 3.3 (Ciphertext Well-formedness). A PES Γ for Pκ is ciphertext well-formed if it
satisfies the following condition: for all polynomial-size X ⊆ Xκ, there exist a string auxc ∈ {0, 1}∗,
positive integers n1, n2, n3 ∈ N, a matrix F ∈ Zn3×n2

p , which are all efficiently computable, such that

|auxc|, |n1|, |n2| = poly(maxx∈X |x|)

and that for all x ∈ X, when we let (n
(x)
1 , n

(x)
2 , Ĉ(x))← CVEncC(x, auxc), (n

(x)
3 ,F(x))← EncC(x, auxc),

we have that n
(x)
1 = n1, n

(x)
2 = n2, n

(x)
3 = n3 and F(x) = F (i.e., all the respective parameters are the

same among x ∈ X).

It is not hard to see that a PES is ciphertext (resp. key) valid as per Definition 3.1 if it is ciphertext
(resp. key) well-formed.

KE-ind is a computational security notion of PES, which was originally defined to prove adaptive
security of vanilla ABE schemes [AT20]. We adapt it to the sReg-ABE setting as follows.

Definition 3.4 (Key-Encoding indistinguishability). Let Γ = (Param,EncC,EncK,CVEncC,CVEncK,Pair)
be a PES for a predicate family Pκ : Xκ × Yκ → {0, 1}. We say that Γ satisfies Key-Encoding indis-
tinguishability (KE-ind) if the following holds. Consider a game GKE-ind

β defined in Fig 1, in which an
adversary A can query O at most once on x ∈ Xκ and y ∈ Yκ such that Pκ(x, y) = 0 together with
varid auxc, auxk. Then, we have GKE-ind

0 ≈c GKE-ind
1 .

Lemma 3.1. Predicate encodings (Definition 2.5) can be captured by PES, and PES constructed from
predicate encodings satisfy ciphertext well-formedness, key well-formedness, and KE-ind.

Proof of Lemme 3.1. Given a (ω, nc, nk)-predicate encoding for P : X × Y, we construct a PES for P
as follows. Since we do not use auxc, auxk and n1 = m1 = 1 in the PES from predicate encodings, we
omit them from inputs to the corresponding algorithms.

– Param()→ ω. It outputs ω, which specifies the common variables w = (w1, . . . , wω).

– CVEncC(x)→ (n1, n2, F̂, Ĉ). On input x ∈ X, it outputs (1, nc,Cx, Ĉ) where Ĉ(w) = wCx.

16

GKE-ind
β

ω ← Param(κ), A← Zk×(2k+1)
p , a← Z2k+1

p , B← Z(k+1)×k
p

a⊥ ← Z2k+1
p ,b⊥ ← Zk+1

p conditioned on a⊥(A>||a>) = 0, b⊥B = 0

W = (W1|| · · · ||Wω)← Z(2k+1)×ω(k+1)
p

P = ([A]1, [B]2,a,a
⊥,b⊥, [AW]1, [W(Iω ⊗B)]2)

β′ ← AO(·)(P)

O(·)
Input: (x, y) ∈ Xκ × Yκ and valid auxc, auxk
(n1, n2, Ĉ)← CVEncC(x, auxc), (m1,m2, K̂)← CVEncK(y, auxk)
(n3,C(S,T,w))← EncC(x,m1, auxc), (m3,K(S,U,w))← EncK(y, n1, auxk)

s1,1, . . . , sn1,m1 ← Zkp, t1,1, . . . , tm1,n3 ,u`,2, . . . ,u`,m3 ← Zk+1
p for ` ∈ [n1]

u1,1 = βb⊥, u2,1 = · · · = un1,1 = 0 ∈ Zk+1
p

SA = (sν,µA)(ν,µ)∈[m1]×[n1], T = (tν,µ)(ν,µ)∈[m1]×[n3], U = (uν,µ)(ν,µ)∈[n1]×[m3]

Output: [SA, C(SA,T,W), K(SA,U,W)]1

Fig 1. KE-ind game.

– CVEncK(y)→ (m1,m2, L̂, K̂). On input y ∈ Y, it outputs (1, nk,Ky, K̂) where K̂(w) = wKy.

– EncC(x)→ (n3,F,C). On input x ∈ X, it outputs (1,0,C) where C(s, t,w) = sĈ(w).

– EncK(y)→ (m3,L,K). On input y ∈ Y, it outputs (1,ay,K) where K(s, u,w) = uay + sK̂(w).

– Pair(x, y, auxc, auxk)→ (E,E). On input x, y, Pair outputs (d>x,y ∈ Znc×1
p ,d

>
x,y ∈ Znk×1

p) where d>x,y

and d
>
x,y are vectors consisting of the last nc elements and the first nk elements of dx,y, respectively.

– Correctness: We have

tr(d>x,ysĈ(w)) + tr(d
>
x,y(uay + sK̂(w))) = swCxd

>
x,y + (uay + swKy)d

>
x,y = u

where the second equality follows from the correctness of predicate encodings.

In the above construction, we can observe that n1 = 1, n2 = nc,F = 0 for all x ∈ X, and m1 = 1,m2 =
nk,F = ay for all y ∈ Y. Hence, by apply Lemma 2.1, we can always obtain a PES from a predicate
encoding that satisfies key and ciphertext well-formedness.

Next, we show that the above PES satisfies KE-ind. In the KE-ind game for the above PES con-
struction, A is given P described in Fig 1 and

[sA, sAW(Cx ⊗ Ik+1), βb⊥(ay ⊗ Ik+1) + sAW(Ky ⊗ Ik+1)]1 (8)

as the reply of O((x, y)) such that P(x, y) = 0. What we need to prove is that the elements in Defi-
nition 2.5 for β = 0 and β = 1 are indistinguishable. To this end, we consider a hybrid Hβ where we
change the reply of O((x, y)) as

[c, cW(Cx ⊗ Ik+1), βb⊥(ay ⊗ Ik+1) + cW(Ky ⊗ Ik+1)]1

where c← span((A
a)). We prove GKE-ind

β ≈c Hβ and H0 ≈s H1.

GKE-ind
β ≈c Hβ. Since all elements that A obtains (i.e., P and Eq. (8)) in GKE-ind

β and Hβ are affine in

A,a,a⊥, sA, c, it suffices to show that the following distributions are indistinguishable:

{[A]1,a,a
⊥, [c0]1} ≈c {[A]1,a,a

⊥, [c1]1} (9)

where A ← Zk×(2k+1)
p ,a,a⊥ ← Z2k+1

p conditioned on a⊥(A>||a>) = 0 and c0 ← span(A), c1 ←
span((A

a)). We show that the above indistinguishability under the MDDH assumption. Given an

MDDH instance ([M]1, [zβ]1) where M ← Zk×(k+1)
p , r ← Zkp, z0 = rM, z1 ← Zk+1

p , the reduction

17

algorithm samples X← Z(2k+1)×(2k+1)
p where X is invertible with overwhelming probability and com-

putes

[A]1 = [(M||O)]1X, a = (0, . . . , 0︸ ︷︷ ︸
k

, 1, 0, . . . , 0︸ ︷︷ ︸
k

)X, a⊥ = (0, . . . , 0︸ ︷︷ ︸
2k

, 1)(X−1)>

[cβ]1 = [zβ]1X

Then, the distribution of these elements is statistically close to that in Eq. (9) since the rows of M and
(0, . . . , 0︸ ︷︷ ︸

k

, 1) forms a basis of Zk+1
p with overwhelming probability.

H0 ≈s H1. We redefine W = W′+ã⊥
>

(w⊗b⊥) where W′ ← Z(2k+1)×ω(k+1)
p ,w← Zωp and ã⊥ ∈ Z2k+1

p

be a vector satisfying ã⊥A> = 0, ã⊥c> = 1. It is not hard to see that the distribution of W is not
changed by the new definition. Then related terms can be written as follows: AW = AW′,W(Iω⊗B) =
W′(Iω ⊗B) in P and

cW(Cx ⊗ Ik+1) = cW′(Cx ⊗ Ik+1) + wCx ⊗ b⊥

βb⊥(ay ⊗ Ik+1) + cW(Ky ⊗ Ik+1) = cW′(Ky ⊗ Ik+1) + (βay + wKy)⊗ b⊥

in the reply from O((x, y)) in Hβ . The security of predicate encodings asserts that

(Cx,Ky,wCx,wKy) ≈s (Cx,Ky,wCx,ay + wKy)

which readily implies H0 ≈s H1.

4 Predicate Transformations

We present seven transformations for predicates, which enable us to construct PES for more expressive
predicates from simple ones. We summarize transformation efficiency in §4.8. We prove that these
transformations preserves KE-ind and (partially) well-formedness, which is given in §C. Specifically, we
can classify them into three types with respect to how they preserve well-formedness:

1. both key and ciphertext well-formedness are preserved (§4.1 to 4.5);
2. key and ciphertext well-formedness are switched (§4.6);
3. only ciphertext well-formedness is preserved (§4.7).

4.1 Addition of Null Attribute

Definition 4.1 (Addition of Null Attribute). The predicate obtained by adding the null key-
attribute to a predicate Pκ : Xκ×Yκ → {0, 1}, denoted by Null[Pκ] : X̄κ× Ȳκ → {0, 1}, where X̄κ = Xκ
and Ȳκ = Yκ ∪ {null}, is defined by

Null[Pκ](x, y) = 1⇔ y 6= null ∧ Pκ(x, y) = 1, |null| = min
y∈Yκ

|y|.

PES for Null[Pκ]. Let Γ = (Param,CVEncC,CVEncK,EncC,EncK,Pair) be a PES for Pκ. We con-
struct a PES for Null[Pκ], denoted by Null-Trans(Γ) = (Param′,CVEncC′,CVEncK′,EncC′,EncK′,Pair′)
as follows.

– Param′(κ) → ω′: Run ω ← Param(κ) and output ω′ = ω + 1. This specifies common variables
w′ = (w0, w1, . . . , wω), where w0 is a new common variable. In what follows, we denote (w1, . . . , wω)
by w.

18

– CVEncC′(x, auxc) → (n′1, n
′
2, F̂

′, Ĉ′): Run (n1, n2, F̂, Ĉ) ← CVEncC(x, auxc). Output (n′1, n
′
2, F̂

′, Ĉ′)
where n′1 = n1, n′2 = n2, and

Ĉ′(w′) = Ĉ(w).

It is not hard to see that there exists F̂′ ∈ Zn
′
1ω
′×n′2

p such that Ĉ′(w′) = (In′1 ⊗w′)F̂′.

– CVEncK′(y, auxk) → (m′1,m
′
2, L̂
′, K̂′): If y = null, retrieve y′ ∈ Yκ from auxk (if y′ ∈ Yκ is not in

auxk, output ⊥), run (m1,m2, L̂, K̂)← CVEncK(y′, auxk), (m3,L)← EncK(y′, auxk), and let l̄ be the

first row of L. Otherwise, run (m1,m2, L̂, K̂) ← CVEncK(y, auxk). Output (m′1,m
′
2, L̂
′, K̂′) where

m′1 = m1, m′2 = m2, and

K̂′(w′) =

K̂(w) (y ∈ Yκ)(
w0 l̄

O

)
(y = null)

∈ Zm
′
1×m

′
2

p .

It is not hard to see that there exists L̂′ ∈ Zm
′
1ω
′×m′2

p such that K̂′(w′) = (Im′1 ⊗w′)L̂′.

– EncC′(x,m′1, auxc) = EncC(x,m′1, auxc), that is, n′3 = n3, F′ = F, C′(S′,T′,w′) = C(S,T,w).
– EncK′(y, n′1, auxk) → (m′3,L

′,K′): If y = null, retrieve y′ ∈ Yκ from auxk (y′ ∈ Yκ is not in

auxk, output ⊥), and redefine y = y′. Then, run (m′1,m
′
2, L̂
′, K̂′) ← CVEncK′(y, auxk), (m3,L) ←

EncK(y, auxk) and output (m′3,L
′,K′) where m′3 = m3, L′ = L, and

K′(S′,U′,w′) = U′L′ + S′>K̂′(w′) ∈ Zp[S′,U′,w′]n
′
1×m

′
2 .

– Pair′(x, y, auxc, auxk)→ (E′,E
′
): If y = null, output⊥. Otherwise, output (E′,E

′
)← Pair(x, y, auxc, auxk).

– Correctness: Since Pκ(x, y) = 1⇒ y 6= null, the correctness of Pair′ follows from that of Pair.

4.2 Addition of Wild Card

Definition 4.2 (Addition of Wild Card). Let Pκ : Xκ × Yκ → {0, 1} be a predicate such that for
all y ∈ Yκ, there exists efficiently computable x ∈ Xκ satisfying Pκ(x, y) = 1.10 The predicate obtained
by adding a wild card to Yκ, denoted by WC[Pκ] : X̄κ× Ȳκ → {0, 1}, where X̄κ = Xκ and Ȳκ = Yκ∪{∗},
is defined by

WC[Pκ](x, y) = 1⇔ y = ∗ ∨ Pκ(x, y) = 1, | ∗ | = min
y∈Yκ

|y|.

PES for WC[Pκ]. Let Γ = (Param,CVEncC,CVEncK,EncC,EncK,Pair) be a PES for Pκ. A PES for
WC[Pκ], denoted by WC-Trans(Γ) = (Param′,CVEncC′,CVEncK′,EncC′,EncK′,Pair′) is the same as Γ
except that CVEncK′,EncK′,Pair′ are defined as follows.

– CVEncK′(y, auxk) → (m′1,m
′
2, L̂
′, K̂′): Run (m1,m2, L̂, K̂) ← CVEncK(y, auxk) if y ∈ Yκ. Other-

wise, retrieve y′ ∈ Yκ from auxk (if y′ ∈ Yκ is not in auxk, output ⊥), run (m1,m2, L̂, K̂) ←
CVEncK(y′, auxk). Output (m′1,m

′
2, L̂
′, K̂′) where m′1 = m1, m′2 = m2, and

K̂′(w) =

{
K̂(w) (y ∈ Yκ)

O (y = ∗)
∈ Zm

′
1×m

′
2

p

It is not hard to see that there exists L̂′ ∈ Zm
′
1ω
′×m′2

p such that K̂′(w) = (Im′1 ⊗w)L̂′.

10 If there exist {y} ⊆ Yκ that do not satisfy this condition, just removing these attributes from Yk suffices.

19

– EncK′(y, n′1, auxk) → (m′3,L
′,K′): If y = ∗, retrieve y′ ∈ Yκ from auxk (if y′ ∈ Yκ is not in auxk,

output ⊥), run (m′3,L
′) = (m3,L)← EncK(y′, auxk), and output (m′3,L

′,K′) where

K′(S′,U′,w) = U′L ∈ Zp[S′,U′,w′]n
′
1×m

′
2

In case of y ∈ Yκ, output (m′3,L
′,K′) = (m3,L,K)← EncK(y, n′1, auxk).

– Pair′(x, y, auxc, auxk)→ (E′,E
′
): If y = ∗, retrieve y′ ∈ Yκ from auxk, choose x′ such that Pκ(x′, y′) =

1 (if y′ ∈ Yκ is not in auxk, output ⊥), run (E,E) ← Pair(x′, y′, auxc, auxk) where the number of

columns of E is m1, the number of rows of E is m2 by letting (m1,m2, L̂, K̂)← CVEncK(y′, auxk).

Then, run (n1, n2, F̂, Ĉ) ← CVEncC(x, auxc) and output E′ = O ∈ Zn2×m1
p and E

′
= (ē>||O) ∈

Zm2×n1
p , where ē is the first column of E. If y ∈ Yκ, output (E′,E

′
) = (E,E)← Pair(x, y, auxc, auxk).

– Correctness: First, consider the case y = ∗. Let C,K, K̂,L,E,E be the PES matrices with respect
to (x′, y′). Due to the correctness of Γ , the following holds symbolically:

tr(EC(S,T,w))︸ ︷︷ ︸
A

+tr(EK(S,U,w)) = A+ tr(E(UL + S>K̂(w))︸ ︷︷ ︸
M

) = u1,1

Observe that variable u1,1 does not appear in A, and M = ē>uL + M′ where u is the first row of
U and M′ is a matrix not including variable u1,1. Hence, tr(ē>uL) = u1,1 and A+ tr(M′) = 0 hold
symbolically. Thus, recalling E′ = O and K′(S′,U′,w) = U′L, we have

tr(E′C′(S′,T′,w)) + tr(E
′
K′(S′,U′,w))=tr((ē>||O)U′L)=tr(ē>u′L)=u′1,1

where u′ is the first row and u′1,1 is the (1, 1)-th element of U′. In case of y ∈ Yκ, the correctness of

Pair′ directly follows from that of Pair.

Remark 4.1 (Null Attribute versus Wild Card). By applying Null,Dual,WC in an appropriate order,
we can obtain a predicate Pκ : Xκ× Yκ → {0, 1} where Xκ includes null while Yκ includes ∗. Although
we do not consider such a predicate in this paper, it is worth noting that the attribute added later is
valid in our transformations. For instance, if null is added later, then Pκ(∗, null) = 0.

4.3 Key-Policy Disjunction

Definition 4.3 (Key-Policy Disjunction). Let Pκ : Xκ × Yκ → {0, 1} be a predicate where Yκ
contains null (if not, we can add null via the transformation in Section 4.1). The predicate for key-policy
disjunction over a single predicate Pκ, denoted by KP1OR[Pκ] : X̄κ × Ȳκ → {0, 1}, where X̄κ = Xκ and
Ȳκ =

⋃
n∈N Φn, where Φn consists of all functions φ : [n] → Yκ, is defined as follows. For x ∈ X̄κ and

y = φ ∈ Ȳκ, we define

KP1OR[Pκ](x, φ) = 1⇔
∨
i∈[n]

Pκ(x, φ(i)) = 1, |φ| =
∑
i∈[n]

|φ(i)|.

PES for KP1OR[Pκ]. In the following construction, we use the following fact:

KP1OR[Pκ](x, φ) = 1⇔
∨
i∈[n]

Pκ(x, φ(i)) ∨ Pκ(x, null) ∨ · · · ∨ Pκ(x, null) = 1.

Let Γ = (Param,CVEncC,CVEncK,EncC,EncK,Pair) be a PES for Pκ. We construct a PES for KP1OR[Pκ],
denoted by KP1OR-Trans(Γ) = (Param′,CVEncC′,CVEncK′,EncC′,EncK′,Pair′) as follows.

– Param′(κ) = Param(κ), that is, ω′ = ω and w′ = w.

– CVEncC′(x, auxc) = CVEncC(x, auxc), that is, n′1 = n1, n′2 = n2, F̂′ = F̂, Ĉ′(w′) = Ĉ(w).

20

– CVEncK′(φ, auxk)→ (m′1,m
′
2, L̂
′, K̂′): Retrieve δ from auxk. If n > δ outputs ⊥. Run (mi,1,mi,2, K̂i)

← CVEncK(φ(i), auxk) for i ∈ [n] and (mi,1,mi,2, L̂i, K̂i) ← CVEncK(null, auxk) for i ∈ [n + 1, δ].

Output (m′1,m
′
2, L̂
′, K̂′) where m′1 =

∑
i∈[δ]mi,1, m′2 =

∑
i∈[δ]mi,2, and

K̂′(w) =

 K̂1(w)

. . .
K̂δ(w)

 ∈ Zp[w]m
′
1×m

′
2 .

It is not hard to see that there exists L̂′ ∈ Zm
′
1ω
′×m′2

p such that K̂′(w) = (Im′1 ⊗w)L̂′.

– EncC′(x,m′1, auxc) = EncC(x,m′1, auxc), that is, n′3 = n3, F′ = F, C′(S′,T′,w′) = C(S,T,w).

– EncK′(φ, n′1, auxk) → (m′3,L
′,K′): Retrieve δ from auxk. If n > δ outputs ⊥. Run (mi,3,Li) ←

EncK(φ(i), auxk) for i ∈ [n] and (mi,3,Li) ← EncK(null, auxk) for i ∈ [n + 1, δ]. Let l̄i be the first
row of Li, and Li be the submatrix of Li obtained by removing the first row. Output (m′3,L

′,K′)

where m′3 = 1 +
∑
i∈[δ](mi,3 − 1), L′ =

 l̄1 ··· l̄δ
L1

. . .
Lδ

 ∈ Zm
′
3×m

′
2

p and

K′(S′,U′,w′) = U′L′ + S′>K̂′(w′) ∈ Zp[S′,U′,w′]n
′
1×m

′
2

– Pair′(x, φ, auxc, auxk)→ (E′,E
′
): Retrieve δ from auxk. Let i′ ∈ [n] be an index such that Pκ(x, φ(i′)) =

1. Run (Ei′ ,Ei′) ← Pair(x, φ(i′), auxc, auxk). Output E′ = (E1|| · · · ||Eδ) and E
′

=

(
E1

...
Eδ

)
where

Ei = O ∈ Zni,2×mi,1p and Ei = O ∈ Zmi,2×ni,1p for i ∈ [δ]\{i′}.
– Correctness: Let Ti and Si be the i-th block of T′ and S′ of size mi,1 × n′3 and mi,1 × n′1, that

is, T′ =

(
T1

...
Tδ

)
and S′ =

(
S1

...
Sδ

)
, respectively, U′ = (u>0 ||U1|| · · · ||Uδ) where the width of Ui for

i ∈ [δ] is mi,3. Then, we have

A = tr(E′C′(S′,T′,w′)) = tr
(
Ei′(Ti′F + Si′Ĉ(w))

)
B = tr(E

′
K′(S′,U′,w′))

= tr
(
E
′ (

(u>0 ||U1)L1 + S>1 K(w)|| · · · ||(u>0 ||Uδ)Lδ + S>δ K(w)
))

= tr
(
Ei′((u

>
0 ||Ui′)Li′ + S>i′K(w))

)
.

Thanks to the correctness of Pair, we have A+B = u1,1 where u1,1 is the first element of u>0 as well
as the (1, 1)-th element of U′.

4.4 Key-Policy Conjunction

Definition 4.4 (Key-Policy Conjunction). Let Pκ : Xκ × Yκ → {0, 1} be a predicate such that
Yκ contains a wild card attribute ∗ (if not, we can add ∗ via the transformation in Section 4.2). The
predicate for key-policy conjunction over a single predicate Pκ, denoted by KP1AND[Pκ] : X̄κ × Ȳκ →
{0, 1}, where X̄κ = Xκ and Ȳκ =

⋃
n∈N Φn, where Φn consists of all functions φ : [n] → Yκ is defined

as follows. For x ∈ X̄κ and y = φ ∈ Ȳκ, we define

KP1AND[Pκ](x, φ) = 1⇔
∧
i∈[n]

Pκ(x, φ(i)) = 1, |φ| =
∑
i∈[n]

|φ(i)|.

21

PES for KP1AND[Pκ]. We use the following fact in the construction:

KP1AND[Pκ](x, φ) = 1⇔
∧
i∈[n]

Pκ(x, φ(i)) ∧ Pκ(x, ∗) ∧ · · · ∧ Pκ(x, ∗) = 1

Let Γ = (Param,CVEncC,CVEncK,EncC,EncK,Pair) be a PES for Pκ. We construct a PES for KP1AND[Pκ],
denoted by KP1AND-Trans(Γ) = (Param′,CVEncC′,CVEncK′,EncC′,EncK′,Pair′) as follows.

– Param′(κ) = Param(κ), that is, ω′ = ω and w′ = w.

– CVEncC′(x, auxc) = CVEncC(x, auxc), that is, n′1 = n1, n′2 = n2, F̂′ = F̂, Ĉ′(w′) = Ĉ(w).

– CVEncK′(φ, auxk)→ (m′1,m
′
2, L̂
′, K̂′): Retrieve δ from auxk. If n > δ outputs ⊥. Run (mi,1,mi,2, K̂i)

← CVEncK(φ(i), auxk) for i ∈ [n] and (mi,1,mi,2, L̂i, K̂i) ← CVEncK(∗, auxk) for i ∈ [n + 1, δ].

Output (m′1,m
′
2, L̂
′, K̂′) where m′1 =

∑
i∈[δ]mi,1, m′2 =

∑
i∈[δ]mi,2, and

K̂′(w) =

K̂1(w)
. . .

K̂δ(w)

 ∈ Zp[w]m
′
1×m

′
2

It is not hard to see that there exists L̂′ ∈ Zm
′
1ω
′×m′2

p such that K̂′(w) = (Im′1 ⊗w)L̂′.

– EncC′(x,m′1, auxc) = EncC(x,m′1, auxc), that is, n′3 = n3, F′ = F, C′(S′,T′,w′) = C(S,T,w).

– EncK′(φ, n′1, auxk) → (m′3,L
′,K′): Retrieve δ from auxk. If n > δ outputs ⊥. Run (mi,3,Li) ←

EncK(φ(i), auxk) for i ∈ [n] and (mi,3,Li) ← EncK(∗, auxk) for i ∈ [n+ 1, δ]. Let l̄i be the first row
of Li, Li be the submatrix of Li obtained by removing the first row, m1 = (1, . . . , 1) ∈ Zδp, and

mi = (0i−1,−1, 0δ−i) ∈ Zδp for i ∈ [2, δ]. Output (m′3,L
′,K′) where m′3 =

∑
i∈[δ]mi,3 and

L′ =

m>1 l̄1 · · ·m>δ l̄δ
L1

. . .

Lδ

 ∈ Zm
′
3×m

′
2

p

K′(S′,U′,w′) = U′L′ + S′>K̂′(w′) ∈ Zp[S′,U′,w′]n
′
1×m

′
2

– Pair′(x, φ, auxc, auxk)→ (E′,E
′
): Retrieve δ from auxk. Let

φ′(i) =

{
φ(i) (i ∈ [n])

∗ (i ∈ [n+ 1, δ])

Run (Ei,Ei)← Pair(x, φ′(i), auxc, auxk) for i ∈ [δ]. Output E′ = (E1|| · · · ||Eδ) and E
′

=

(
E1

...
Eδ

)
.

– Correctness: Let Ti and Si be the i-th block of T′ and S′ of size mi,1 × n′3 and mi,1 × n′1, that is,

T′ =

(
T1

...
Tδ

)
and S′ =

(
S1

...
Sδ

)
, respectively, U′ = (U0||U1|| · · · ||Uδ) where the width of U0 is δ and

22

that of Ui for i ∈ [δ] is mi,3. Then, we have

tr(E′C′(S′,T′,w′)) = tr

∑
i∈[δ]

Ei(TiF + SiĈ(w))

=
∑
i∈[δ]

tr(Ei(TiF + SiĈ(w)))︸ ︷︷ ︸
Ai

tr(E
′
K′(S′,U′,w′)) = tr

(
E
′ (

(U0m
>
1 ||U1)L1 + S>1 K(w)|| · · · ||(U0m

>
δ ||Uδ)Lδ + S>δ K(w)

))
=
∑
i∈[δ]

tr(Ei((U0m
>
i ||Ui)Li + S>i K(w)))︸ ︷︷ ︸

Bi

Thanks to the correctness of Pair, we have Ai + Bi = u0,1m
>
i and

∑
i∈[δ](Ai + Bi) = u1,1, where

u0,1 is the first row of U0 and u1,1 is the first element of u0,1 as well as the (1, 1)-th element of U′.

4.5 Static Predicate Compositions

Definition 4.5 (Static Predicate Compositions). Let P
(i)
κi : X

(i)
κi × Y

(i)
κi → {0, 1} be a predicate.

Let κ = (κ1, . . . , κn). The static predicate composition with a span program M ∈ Zn×mp over a

predicate set Pκ = (P
(1)
κ1 , . . . ,P

(n)
κn), denoted by SPCM[Pκ] : X̄κ × Ȳκ → {0, 1}, is defined as follows: let

X̄κ = X
(1)
κ1 × · · · × X

(n)
κn , Ȳκ = Y

(1)
κ1 × · · · × Y

(n)
κn , mi be the i-th row of M, and define

SPCM[Pκ]((x1, . . . , xn), (y1, . . . , yn))⇔ (1,0) ∈ span({mi}i∈[n]:P
(i)
κi

(xi,yi)=1
).

Special Cases. We describe two special cases of SPCM, namely, static disjunctions SPCOR and static
conjunctions SPCAND. Specifically, SPCOR is SPCM where M = (1, . . . , 1)> and SPCAND is SPCM where

M =

(
1 · · · 1

0> −In−1

)
. We sometimes denote SPCOR[(P1,P2)] by P1∨P2 and SPCAND[(P1,P2)] by P1∧P2.

PES for SPCM[Pκ]. Let Γi = (Parami,CVEncCi,CVEncKi,EncCi,EncKi,Pairi) be a PES for P
(i)
κi .

We construct a PES for SPCM[Pκ], denoted by SPCM-Trans(Γ) = (Param′,CVEncC′,CVEncK′,EncC′,
EncK′,Pair′), where Γ = (Γ1, . . . , Γn).

– Param′(κ)→ ω′: Run ωi ← Parami(κ) and output
∑
i∈[n] ωi. This specifies common variables w′ =

(w1, . . . ,wn), where wi = (wi,1, . . . , wi,ωi).

– CVEncC′((x1, . . . , xn), auxc) → (n′1, n
′
2, F̂

′, Ĉ′): Run (ni,1, ni,2, Ĉi) ← CVEncCi(xi, auxc) for i ∈ [n].

Output (n′1, n
′
2, F̂

′, Ĉ′) where n′1 = maxi∈[n] ni,1, n′2 =
∑
i∈[n] ni,2, and

Ĉ′(w′) =

(
Ĉ1(w1) · · · Ĉn(wn)

O · · · O

)
∈ Zp[w′]n

′
1×n

′
2

It is not hard to see that there exists F̂′ ∈ Zn
′
1ω
′×n′2

p such that F̂′(w′) = (In′1 ⊗w′)F̂′.

– CVEncK′((y1, . . . , yn), auxk) → (m′1,m
′
2, L̂
′, K̂′): Run (mi,1,mi,2, K̂i) ← CVEncKi(yi, auxk) for i ∈

[n]. Output (m′1,m
′
2, L̂
′, K̂′) where m′1 = maxi∈[n]mi,1, m′2 =

∑
i∈[n]mi,2, and

K̂′(w′) =

(
K̂1(w1) · · · K̂n(wn)

O · · · O

)
∈ Zp[w′]m

′
1×m

′
2

It is not hard to see that there exists L̂′ ∈ Zm
′
1ω
′×m′2

p such that L̂′(w′) = (Im′1 ⊗w′)L̂′.

23

– EncC′((x1, . . . , xn),m′1, auxc) → (n′3,F
′,C′): Run (ni,3,Fi) ← EncK(xi, auxc) for i ∈ [n]. Output

(n′3,F
′,C′) where n′3 =

∑
i∈[n] ni,3 and

F′ =

F1

. . .

Fn

 ∈ Zp[w′]n
′
3×n

′
2

C′(S′,T′,w′) = T′F′ + S′Ĉ′(w′) ∈ Zp[S′,T′,w′]m
′
1×n

′
2

– EncK′((y1, . . . , yn), n′1, auxk) → (m′3,L
′,K′): Run (mi,3,Li) ← EncK(yi, auxk) for i ∈ [n]. Let l̄i be

the first row of Li, Li be the submatrix of Li obtained by removing the first row, mi be the i-th
row of M for i ∈ [n]. Output (m′3,L

′,K′) where m′3 = m+
∑
i∈[n](mi,3 − 1) and

L′ =

m>1 l̄1 · · ·m>n l̄n
L1

. . .

Ln

 ∈ Zm
′
3×m

′
2

p

K′(S′,U′,w′) = U′L′ + S′>K̂′(w′) ∈ Zp[S′,U′,w′]n
′
1×m

′
2

– Pair′((x1, . . . , xn), (y1, . . . , yn), auxc, auxk) → (E′,E
′
): Run (Ei,Ei) ← Pairi(xi, yi, auxc, auxk) for

i ∈ [n]. Let S be a set such that P
(i)
κ (xi, yi) = 1 for i ∈ S and (1,0) ∈ span({mi}i∈S), and

a1, . . . , an ∈ Zp be coefficients such that ai = 0 for i 6∈ S and
∑
i∈[n] aimi = (1,0). Output

E′ =

(
a1E1 O

...
...

anEn O

)
∈ Zn

′
2×m

′
1

p , E
′

=

(
a1E1 O

...
...

anEn O

)
∈ Zm

′
2×n

′
1

p

– Correctness: Let Ti and Si be the i-th block of T′ and S′ of size m′1 × ni,3 and m′1 × ni,1, that
is, T′ = (T1|| · · · ||Tn) and S′ = (S1|| · · · ||Sn), respectively, and U′ = (U0||U1|| · · · ||Un) where the

width of U0 is m and that of Ui for i ∈ [n] is mi,3. Let T̃i for i ∈ [n] be the matrix consisting of

the first mi,1 rows of Ti, Ũi for i ∈ [0, n] be the matrix consisting of the first ni,1 rows of Ui, and

S̃i for i ∈ [n] be the upper left submatrix of Si of size mi,1 × ni,1. Then, we have

tr(E′C′(S′,T′,w′))

=tr
(
E′
(
T1F1 + S1

(
Ĉ1(w1)

O

)
|| · · · ||TnFn + Sn

(
Ĉn(wn)

O

)))
=
∑
i∈[n]

aitr
(

(Ei||O)
(
TiFi + Si

(
Ĉi(wi)

O

)))
=
∑
i∈[n]

ai tr
(
Ei

(
T̃iFi + S̃iĈi(wi)

))
︸ ︷︷ ︸

Ai

tr(E
′
K′(S′,U′,w′))

=tr
(
E
′ (

(U0m
>
1 ||U1)L1 + S>1

(
K̂1(w1)

O

)
|| · · · ||(U0m

>
n ||Un)Ln + S>n

(
K̂n(wn)

O

)))
=
∑
i∈[n]

aitr
(

(Ei||O)
(

(U0m
>
i ||Ui)Li + S>i

(
K̂i(wi)

O

)))
=
∑
i∈[n]

ai tr(Ei((Ũ0m
>
i ||Ũi)Li + S̃>i Ki(wi)))︸ ︷︷ ︸

Bi

Thanks to the correctness of Pairi, we have Ai +Bi = ũ0,1m
>
i and

∑
i∈[n] ai(Ai +Bi) = u1,1, where

ũ0,1 is the first row of Ũ0 and u1,1 is the first element of u0,1 as well as the (1, 1)-th element of U′.

24

4.6 Dual Predicates

Definition 4.6 (Dual Predicates). The dual predicate of Pκ : Xκ × Yκ → {0, 1} is Dual[Pκ] :
X̄κ × Ȳκ → {0, 1} where X̄κ = Yκ and Ȳκ = Xκ, and defined as Dual[Pκ](x, y) = Pκ(y, x).

PES for Dual[Pκ]. Let Γ = (Param,CVEncC,CVEncK,EncC,EncK,Pair) be a PES for Pκ. We con-
struct a PES for Dual[Pκ], denoted by Dual-Trans(Γ) = (Param′,CVEncC′,CVEncK′,EncC′,EncK′,Pair′)
as follows.

– Param′(κ) → ω′: Run ω ← Param(κ) and output ω′ = ω + 1. This specifies common variables
w′ = (w0, w1, . . . , wω), where w0 is a new common variable. In what follows, we denote (w1, . . . , wω)
by w.

– CVEncC′(x, auxc)→ (n′1, n
′
2, F̂

′, Ĉ′): Run (m1,m2, L̂, K̂)← CVEncK(x, auxc) and (m3,L)← EncK(x, auxc).

Let L be the first row of L. Output (n′1, n
′
2, F̂

′, Ĉ′) where n′1 = m1 + 1, n′2 = m2, and

Ĉ′(w′) =

(
w0L

K̂(w)

)
∈ Zp[w′]n

′
1×n

′
2 .

It is not hard to see that there exists F̂′ ∈ Zn
′
1ω
′×n′2

p such that Ĉ′(w′) = (In′1 ⊗w′)F̂′.

– CVEncK′(y, auxk) → (m′1,m
′
2, L̂
′, K̂′): Run (n1, n2, F̂, Ĉ) ← CVEncC(y, auxk). Output (m′1,m

′
2,

L̂′, K̂′) where m′1 = n1, m′2 = n2 + 1, and

K̂′(w′) =

(
−w0 || Ĉ(w)0>

)
∈ Zp[w′]m

′
1×m

′
2 .

It is not hard to see that there exists L̂′ ∈ Zm
′
1ω
′×m′2

p such that K̂′(w′) = (Im′1 ⊗w′)L̂′.

– EncC′(x,m′1, auxc)→ (n′3,F
′,C′): Run (m3,L)← EncK(x, auxc) and (n′1, n

′
2, Ĉ

′)← CVEncC′(x, auxc).

Output (n′3,F
′,C′) where n′3 = m3 − 1, F′ ∈ Zn

′
3×n

′
2

p be the matrix obtained by removing the first
row of L, and

C′(S′,T′,w′) = T′F′ + S′Ĉ′(w′) ∈ Zp[S′,T′,w′]m
′
1×n

′
2 .

– EncK′(y, n′1, auxk)→ (m′3,L
′,K′): Run (n3,F)← EncC(y, auxk) and (m′1,m

′
2, K̂

′)← CVEncK′(y, auxk).
Output (m′3,L

′,K′) where m′3 = n3 + 1 and

L′ =

(
1 0

0> F

)
∈ Zm

′
3×m

′
2

p

K′(S′,U′,w′) = U′L′ + S′>K̂′(w′) ∈ Zp[S′,U′,w′]n
′
1×m

′
2

– Pair′(x, y, auxc, auxk)→ (E′,E
′
): Run (E,E)← Pair(y, x, auxk, auxc) and set E′ = E ∈ Zn

′
2×m

′
1

p , E
′

=(
1 0
0> E

)
∈ Zm

′
2×n

′
1

p .
– Correctness: Let S be the submatrix of S′ obtained by removing the first column, sc be the first

column of S′, s>r be the first row of S′, u> be the first column of U′, U be the submatrix of U′

obtained by removing the first column, Û be the submatrix of U obtained by removing the first
row, and s1,1 and u1,1 be the (1, 1)-th element of S′ and U′, respectively. Then, we have

tr(E′C′(S′,T′,w′)) = tr(E(T′F′ + S′Ĉ′(w′)))

= tr(E((w0s
>
c ||T)L + SK̂(w))︸ ︷︷ ︸

A

tr(E
′
K′(S′,U′,w′)) = tr(E

′
(U′L′ + S′>K̂′(w′)))

= tr
((

1 0
0> E

)
(u>||UF) + (−w0s

>
r ||S′>Ĉ(w))

)
= u1,1 − w0s1,1 + tr(E(ÛF + S>Ĉ(w)))︸ ︷︷ ︸

B

25

Thanks to the correctness of Pair, we have A+B = w0s1,1, and the correctness of Pair′ holds.

4.7 Key-Policy Augmentation

Definition 4.7 (Key-Policy Augmentation). The predicate for key-policy span program augmen-
tation over a single predicate Pκ : Xκ × Yκ → {0, 1}, denoted by KP1[Pκ] : X̄κ × Ȳκ → {0, 1}, where
X̄κ = Xκ and Ȳκ =

⋃
(n,m)∈N2(Zn×mp × Φn), where Φn consists of all functions φ : [n] → Yκ is defined

as follows. For x ∈ X̄κ and y = (M, φ) ∈ Ȳκ where M ∈ Zn×mp and mi is the i-th row of M, let

KP1[Pκ](x, y) = 1⇔ (1,0) ∈ span({mi}i∈[n]:Pκ(x,φ(i))=1).

PES for KP1[Pκ]. Let Γ = (Param,CVEncC,CVEncK,EncC,EncK,Pair) be a PES for Pκ. We con-
struct a PES for KP1[Pκ], denoted by KP1-Trans(Γ) = (Param′,CVEncC′,CVEncK′,EncC′,EncK′,Pair′)
as follows.

– Param′(κ) = Param(κ), that is, ω′ = ω and w′ = w.

– CVEncC′(x, auxc) = CVEncC(x, auxc), that is, n′1 = n1, n′2 = n2, F̂′ = F̂, Ĉ′(w′) = Ĉ(w).

– CVEncK′((M, φ), auxk) → (m′1,m
′
2, L̂
′, K̂′): Run (mi,1,mi,2, K̂i) ← CVEncK(φ(i), auxk) for i ∈ [n].

Output (m′1,m
′
2, L̂
′, K̂′) where m′1 =

∑
i∈[n]mi,1, m′2 =

∑
i∈[n]mi,2, and

K̂′(w) =

K̂1(w)
. . .

K̂n(w)

 ∈ Zp[w]m
′
1×m

′
2

It is not hard to see that there exists L̂′ ∈ Zm
′
1ω
′×m′2

p such that K̂′(w) = (Im′1 ⊗w)L̂′.

– EncC′(x,m′1, auxc) = EncC(x,m′1, auxc), that is, n′3 = n3, F′ = F, C′(S′,T′,w′) = C(S,T,w).

– EncK′((M, φ), n′1, auxk)→ (m′3,L
′,K′): Run (mi,3,Li)← EncK(φ(i), auxk) for i ∈ [n]. Let l̄i be the

first row of Li, Li be the submatrix of Li obtained by removing the first row, mi be the i-th row of M

for i ∈ [n]. Output (m′3,L
′,K′) where m′3 = m+

∑
i∈[n](mi,3−1), L′ =

m>1 l̄1 ··· m>n l̄n
L1

. . .
Ln

 ∈ Zm
′
3×m

′
2

p

and

K′(S′,U′,w′) = U′L′ + S′>K̂′(w′) ∈ Zp[S′,U′,w′]n
′
1×m

′
2

– Pair′(x, (M, φ), auxc, auxk) → (E′,E
′
): Run (Ei,Ei) ← Pair(x, φ(i), auxc, auxk) for i ∈ [n]. Let S

be a set such that Pκ(x, φ(i)) = 1 for i ∈ S and (1,0) ∈ span({mi}i∈S), and a1, . . . , an ∈ Zp be
coefficients such that ai = 0 for i 6∈ S and

∑
i∈[n] aimi = (1,0). Output E′ = (a1E1|| · · · ||anEn)

and E
′

=

(
a1E1

...
anEn

)
.

– Correctness: Let Ti and Si be the i-th block of T′ and S′ of size mi,1 × n′3 and mi,1 × n′1, that

is, T′ =

(
T1

...
Tn

)
and S′ =

(
S1

...
Sn

)
, respectively, U′ = (U0||U1|| · · · ||Un) where the width of U0 is m

26

Table 2. Parameters obtained from each PES transformation.

Ciphertext Encoding Key Encoding
Transformation ω n′1 n′2 n′3 m′1 m′2 m′3

Null-Trans (§4.1) ω + 1 n1 n2 n3 m1 m2 m3

WC-Trans (§4.2) ω n1 n2 n3 m1 m2 m3

KP1OR-Trans (§4.3) ω n1 n2 n3

∑
i∈[δ] mi,1

∑
i∈[δ] mi,2 1 +

∑
i∈[δ](mi,3 − 1)

KP1AND-Trans (§4.4) ω n1 n2 n3

∑
i∈[δ] mi,1

∑
i∈[δ] mi,2

∑
i∈[δ] mi,3

SPCM-Trans (§4.5)
∑
i∈[n] ωi maxi∈[n] ni,1

∑
i∈[n] ni,2

∑
i∈[n] ni,3 maxi∈[n] mi,1

∑
i∈[n] mi,2 m+

∑
i∈[n](mi,3 − 1)

Dual-Trans (§4.6) ω + 1 m1 + 1 m2 m3 − 1 n1 n2 + 1 n3 + 1
KP1-Trans (§4.7) ω n1 n2 n3

∑
i∈[n] mi,1

∑
i∈[n] mi,2 m+

∑
i∈[n](mi,3 − 1)

Note: This table shows the parameters of the PES Trans[Γ], applied by transformation Trans to the PES Γ . If the transfor-
mation involves single-input attribute, the original parameters for PES are (ω, n1, n2, n3,m1,m2,m3). If the transformation
involves multi-input attribute, the original parameters for PES will have e.g., ωi and ni,j ,mi,j for j = 1, 2, 3 for their pa-
rameters from the i-th input. n ×m is the size of policy matrix for SPCM and KP1. δ = auxk is the auxiliary input that
defines key well-formedness.

and that of Ui for i ∈ [n] is mi,3. Then, we have

tr(E′C′(S′,T′,w′)) =tr

∑
i∈[n]

aiEi(TiF + SiĈ(w))

=
∑
i∈[n]

ai tr(Ei(TiF + SiĈ(w)))︸ ︷︷ ︸
Ai

tr(E
′
K′(S′,U′,w′))

=tr
(
E
′ (

(U0m
>
1 ||U1)L1 + S>1 K(w)|| · · · ||(U0m

>
n ||Un)Ln + S>nK(w)

))
=
∑
i∈[n]

ai tr(Ei((U0m
>
i ||Ui)Li + S>i K(w)))︸ ︷︷ ︸

Bi

Thanks to the correctness of Pair, we have Ai +Bi = u0,1m
>
i and

∑
i∈[n] ai(Ai +Bi) = u1,1, where

u0,1 is the first row of U0 and u1,1 is the first element of u0,1 as well as the (1, 1)-th element of U′.

4.8 Efficiency of Transformations

In each PES construction, we will often show the corresponding parameters of ciphertext and key en-
codings. These will in fact define the efficiency of the resulting registered ABE. For ease of visualization,
we summarize the parameters achieved by the PES transformations in this paper in Table 2.

5 Conforming PES for sReg-ABE

We can apply our transformations described in §4 to a predicate set Pκ multiple times to obtain a new
predicate Pκ. When we apply a PES to construct a sReg-ABE scheme, we need key well-formedness
for correctness and KE-ind for security. The theorem below explains how we can apply transformations
to construct new predicates that satisfy the above properties.

To state the theorem formally, we define a predicate set fc(Pκ) for a predicate set Pκ = (P
(1)
κ1 , . . . ,P

(n)
κn).

Let TS = (Null,WC,KP1OR,KP1AND,Dual,KP1) be a set of transformations that takes one predicate.
Let P̄κ be a predicate set consisting of all predicates obtained by applying one of the transformations

in TS ∪ {SPCM}M∈⋃m∈N Zn×mp
to Pκ. That is, P̄κ = ({SPCM[Pκ]}M∈⋃m∈N Zn×mp

, {T[P
(i)
κi]}T∈TS,i∈[n]).

Let f be a deterministic procedure defined as f(Pκ) = Pκ∪ P̄κ. Denote f ◦ . . .◦f(Pκ) where f appears
c times by fc(Pκ). Then, we have the following theorem.

27

Theorem 5.1. For all constants c and predicate sets Pκ = (P
(1)
κ1 , . . . ,P

(n)
κn), each of which has predicate

encodings, Pκ ∈ fc(Pκ) has a valid PES satisfying key well-formedness and KE-ind under the MDDH
assumption as long as Pκ is generated from Pκ without KP1, or the last two transformations applied
to obtain Pκ are KP1 then Dual and other than that no KP1 is used.

Proof. Theorem 5.1 is straightforward from Lemmata 3.1 and C.1 to C.14. Specifically, (1) Lemma 3.1
says that each predicate in Pκ has a PES satisfying key and ciphertext well-formedness and KE-ind;
(2) Lemmata C.1 to C.12 say that if underlying PES satisfies key and ciphertext well-formedness
and KE-ind, then all the transformations in §4 except KP1 preserve all of these properties; and (3)
Lemmata C.11 to C.14 say that applying KP1 then Dual to a PES satisfying the three properties
makes ciphertext well-formedness lost (but still valid) while the other two properties remain. Hence,
the theorem holds.

6 sReg-ABE from PES

In this section, we present our sReg-ABE scheme from PES satisfying key well-formedness (Defini-
tion 3.2) and KE-ind (Definition 3.4).

6.1 Construction

Let G = {Gλ}λ∈N be a family of bilinear groups where Gλ=(p,G1, G2, GT , g1, g2, e). Let Γ = (Param,CVEncC,
CVEncK,EncC,EncK,Pair) be a ciphertext valid and key well-formed PES (as per Definitions 3.1
and 3.2) with KE-ind for a predicate family Pκ : Xκ×Yκ → {0, 1}. Let Π = (LGen, LProve, LVerify, LSim)
be a QA-NIZK scheme. Then, we can construct a sReg-ABE scheme for predicate Pκ as follows.

Setup(1λ, 1L, κ): It outputs crs as follows.

ω ← Param(κ), A← Zk×(2k+1)
p , B← Z(k+1)×k

p , h← Z2k+1
p

Wi = (Wi,1|| · · · ||Wi,ω)← Z(2k+1)×ω(k+1)
p , Wi,0 ← Z(2k+1)×(k+1)

p

Ri ← Z(2k+2)×(2k+1)
p , ri ← Zkp

(crsi, tdi)← LGen(1λ, [Ai]1) where Ai =
(

A
Ri

)

i∈[L]

crs=

[A]1, [Ah>]T, {crsi, [Ri,AWi,0,AWi]1}i∈[L]

{[Br>i ,Wi,0Br>i + h>]2}i∈[L], {[Wi,0Br>j ,Wi(Iω ⊗Br>j)]2}i,j∈[L]
i6=j

Gen(crs, i): It outputs pki and ski as follows:

Vi ← Z(2k+1)×(k+1)
p , Mi =

(
AVi

RiVi

)
, πi ← LProve(crsi, [Mi]1,Vi)

pki = ([AVi︸︷︷︸
Ti

,RiVi︸ ︷︷ ︸
Qi

]1, {[ViBr>j︸ ︷︷ ︸
p>i,j

]2}j∈[L]\{i}, πi), ski = Vi

Ver(crs, i, pki): It parses pki = ([Ti,Qi]1, {[p>i,j]2}j∈[L]\{i}, πi). It outputs 1 if LVerify(crsi, [Mi]1, πi) =

1 where Mi =
(

Ti
Qi

)
and ∀i 6= j : [Ap>i,j]T = [TiBr>i]T, and outputs 0 otherwise.

Agg(crs, {pki, yi}i∈[L]): It computes auxk that satisfies Definition 3.2 with respect to Y = {yi}i∈[L]. It

parses pki = ([Ti,Qi]1, {[p>i,j]2}j∈[L]\{i}, πi) and computes (m1,m2, K̂i) ← CVEncK(yi, auxk) for
all i ∈ [L] and (m3,L)← EncK(y1, auxk). It outputs mpk and hsk1, . . . , hskL as follows:

28

mpk=

y1, auxk, [Ah>]T,

[
A,
∑
i∈[L]

(AWi,0 + Ti)︸ ︷︷ ︸
P1

,
∑
i∈[L]

K̂i(AWi)︸ ︷︷ ︸
P2

,
∑
i∈[L]

AWi︸ ︷︷ ︸
P3

]
1

hski=

auxk,

[
Br>i︸︷︷︸
h>1

,Wi,0Br>i + h>︸ ︷︷ ︸
h>2

,
∑

j∈[L]\{i}

(Wj,0Br>i + p>j,i)︸ ︷︷ ︸
h>3

]
2

[∑
j∈[L]\{i}̂

Kj(Wj(Iω ⊗Br>i))

︸ ︷︷ ︸
H4

,
∑

j∈[L]\{i}

Wj(Iω ⊗Br>i)

︸ ︷︷ ︸
H5

]
2

Enc(mpk, x,M): It takes mpk, x ∈ Xκ, and M ∈ GT as inputs, and outputs ctx by computing as

follows. It computes auxc that is valid with respect to x as per Definition 3.1. It runs (n1, n2, Ĉ)←
CVEncC(x, auxc), (m1,m2, K̂1)← CVEncK(y1, auxk), (n3,F,C)← EncC(x,m1, auxc), and (m3,L)←
EncK(y1, auxk). It samples s0, s1,1, . . . , sm1,n1 ← Zkp, t1,1, . . . , tm1,n3 ← Zk+1

p , u`,2, . . . ,u`,m3 ←
Zk+1
p for ` ∈ [n1], and computes

u1,1 = s0P1, u2,1 = · · · = un1,1 = 0 ∈ Zk+1
p , S = (sν,µ)(ν,µ)∈[m1]×[n1]

T = (tν,µ)(ν,µ)∈[m1]×[n3], U = (uν,µ)(ν,µ)∈[n1]×[m3]

ctx =

auxc, [s0A︸︷︷︸

c1

,S(In1
⊗A)︸ ︷︷ ︸

C2

,C(S,T,P3)︸ ︷︷ ︸
C3

]1

[U(L⊗ Ik+1) + S
BT

P2︸ ︷︷ ︸
C4

]1, [s0Ah>]TM︸ ︷︷ ︸
C

Dec(ski, hski, ctx): It parses ski = Vi, hski = ([h>1 ,h

>
2 ,h

>
3 ,H4,H5]2), ctx = ([c1,C2,C3,C4]1, C) and

runs (n1, n2, Ĉ) ← CVEncC(x, auxc) and (E,E) ← Pair(x, yi). It outputs M ′ = C/[z3 − z1 − z2]T
where

[z1]T = [tr(E(C3(In2 ⊗ h>1)−C2Ĉ(H5)︸ ︷︷ ︸
Z1

))]T

[z2]T = [tr(E(C4(Im2 ⊗ h>1)−CBT
2 H4︸ ︷︷ ︸

Z2

))]T, [z3]T = [c1(h>2 + h>3) + c1Vih
>
1]T

Completeness. It is obvious that the completeness of the above scheme holds from the perfect
completeness of the QA-NIZK scheme.

Correctness. In decryption, we have

Z1 = C(S,T,P3)(In2 ⊗ h>1)− S(In1 ⊗A)Ĉ(H5)

= C(S,T(In3
⊗ h>1),P3(Iω ⊗ h>1))−C(S,O,AH5)

= C(S,T(In3
⊗ h>1),P3(Iω ⊗ h>1)−AH5)

= C(S,T(In3
⊗Br>1),AWi(Iω ⊗Br>i))

29

where the second equality follows from Properties 3.2 and 3.3, and the third equality follows from
Property 3.1,

Z2 =

Ki(S,U,AWi) +
∑

j∈[L]\{i}

Kj(S,O,AWj)

 (In2
⊗ h>1)− S

BT
(Im1

⊗A)H4

=

Ki(S,U,AWi) +
∑

j∈[L]\{i}

Kj(S,O,AWj)

 (In2
⊗ h>1)

−
∑

j∈[L]\{i}

Kj(S,O,AWj(Iω ⊗Br>i))

=Ki(S,U(Im3 ⊗Br>1),AWi(Iω ⊗Br>i))

where Ki is the output of EncK(yi, n1, auxk), the first equality follows from the key well-formedness
of the PES, the second equality follows from Property 3.3, and the third equality follows from Prop-
erty 3.2, and

z3 =
∑
j∈[L]

s0AWj,0Br>j +
∑

j∈[L]\{i}

s0Ap>i,j + s0Ah> + s0AViBr>i

Observe that z1+z2 = tr(EZ1)+tr(EZ2) = s0P1Br>i =
∑
j∈[L] s0(AWj,0+Tj)Br>i , which follows from

Property 3.4. Hence, we have z3− z1− z2 = s0Ah> and M = M ′, which follows from Ap>i,j = TiBr>j
for i 6= j and Ti = AVi.

Compactness. Since Γ satisfies key well-formedness, for any Y ∈ Yκ, we have |auxk|, |m1|, |m2| =
poly (maxy∈Y |y|). For mpk, it is obvious that

|Ah>|, |A|, |P1|, |P3| = poly(log p) = poly(λ)

|y1|, |auxk|, |P2| = poly(max
y∈Y
|y|, log p) = poly(max

y∈Y
|y|, λ)

and thus |mpk| = poly(maxy∈Y |y|, λ). Similarly, we have

|h1|, |h2|, |h3|, |H5| = poly(λ), |auxk|, |H4| = poly(max
y∈Y
|y|, λ)

and |hski| = poly(maxy∈Y |y|, λ) for i ∈ [L].

Efficiency in Terms of PES Parameters. If we instantiate PES with the parameters (ω, n1, n2, n3,
m1,m2,m3) as defined in Definition 3.1, the resulting sReg-ABE scheme achieves the following sizes,
measured in terms of the number of group elements (in G1, G2, GT , except all ski elements are in Zp).
Note that mpk also contains auxk, y1 besides group elements (similarly, hski has auxk).

|crs| = O(ωL2), |pki| = O(L), |hski| = O(m1m2 + ω),

|mpk| = O(m1m2 + ω), |ski| = O(1), |ct| = O(m1n1 +m1n2 + n1m2).

Note that we treat k from MDDHk as a constant (e.g., MDDH1 is implied by the SXDH assumption);
if we explicitly include k, at most O(k2) appears multiplicatively in each term.

6.2 Security

Theorem 6.1. If Π satisfies perfect zero-knowledge and stronger unbounded simulation soundness for
linear space, and the MDDH assumption holds, then our sReg-ABE scheme satisfies the security defined
in Definition 2.4.

30

Proof. Following the proof strategy outlined in the ZZGQ scheme [ZZGQ23, Section 3], we establish
a series of hybrids. A key distinction from ZZGQ lies in our reliance on the KE-ind property of PES to
demonstrate the indistinguishability of hybrids within H5,v, as defined below, contrasting with their
use of the security property of predicate encodings. It is important to note that while the security of
predicate encodings is an information-theoretic notion, KE-ind is a computational one. Consequently,
constructing a reduction is necessary, rendering this part somewhat more intricate compared to ZZGQ.

G0: This is the original game. In this game, the adversary is given the following elements from the
challenger:

crs=

[A]1, [Ah>]T, {crsi, [Ri H2,H4

,AWi,0,AWi]1}i∈[L]

{[Br>i︸︷︷︸
f>i

,Wi,0Br>i + h>︸ ︷︷ ︸
g>i H5,i

]2}i∈[L], {[Wi,0Br>j︸ ︷︷ ︸
n>i,j

,Wi(Iω ⊗Br>j)︸ ︷︷ ︸
Ni,j

]2}i,j∈[L]
i 6=j

where each element is computed as described in Setup in Section 6.1,

pk`i =
(

[AV`
i︸︷︷︸

T`i

,RiV
`
i︸ ︷︷ ︸

Q`
i

]1, {[V`
iBr>j︸ ︷︷ ︸
p`
>
i,j

]2}j∈[L]\{i}, π
`
i H1

)
, sk`i = V`

i

from the `-th query OGen(i) and OCor(i, pk`i), respectively, where each element is computed as
described in Gen in Section 6.1, and the challenge ciphertext ctx:auxc, [s0A︸︷︷︸

c1 H4

,S(In1
⊗A)︸ ︷︷ ︸

C2

,C(S,T,P3)︸ ︷︷ ︸
C3

]1, [U(L⊗ Ik+1) + S
BT

P2︸ ︷︷ ︸
C4

]1, [s0Ah>]TMβ︸ ︷︷ ︸
C H4,H6

with respect to the attributes x, {yi}i∈[L] and the challenge public keys pk∗i = ([T∗i ,Q

∗
i]1, {[p∗

>

i,j]2}j∈[L]\{i}, π
∗
i),

where β ← {0, 1}, u1,1
H3,H4

= s0P1 (the (1, 1)-th element of U), P1 =
∑
i∈[L] AWi,0 +T∗i , P2 =∑

i∈[L] K̂i(AWi), P3 =
∑
i∈[L] AWi and other elements are computed as described in Enc in Sec-

tion 6.1. The boxed elements element Hj
will be changed in hybrid Hj .

H1: It is the same as G0 except that the reply from OGen(i) is changed. Specifically, π`i for all (i, `) is

generated as π`i ← LSim(crsi, tdi, [M
`
i]1) instead of LProve(crsi, [M

`
i]1,V

`
i) where M`

i =
(

T`i
Q`
i

)
.

H2: It is the same as H1 except that [Ri]1 in crs is defined as Ri = R̃i

(
s0A
I2k+1

)
where R̃i ←

Z(2k+2)×(2k+2)
p , s0 ← Zkp, instead of Ri ← Z(2k+2)×(2k+1)

p . Note that s0 is also used for gener-
ating the challenge ciphertext ctx.

H3: It is the same as H2 except that we change the way [C4]1 in ctx is generated. Recall that u1,1 =
s0P1 (the (1, 1)-th element of U), where P1 =

∑
i∈[L](AWi,0 + T∗i). In H3, u1,1 is generated as∑

i∈[L](s0AWi,0 + e1R̃
−1
i Q∗i) where e1 = (1, 0, . . . , 0).

H4: It is the same as H2 except that we replace the term s0A with c← Z2k+1
p . Specifically, we defined

Ri = R̃i

(c
I2k+1

)
in crs and c1 = c,u1,1 =

∑
i∈[L](cWi,0 + e1R̃

−1
i Q∗i), C = [ch>]TMβ in ctx.

H5,v(v ∈ [L]): It is the same as H4 except that gi in crs is defined as gi = Wi,0Br>i + h> + αia
⊥>

for i ∈ [v] instead of Wi,0Br>i + h> where αi ← Zp,a← Z2k+1
p conditioned on a⊥A = 0.

H6: It is the same as H5,L except that C in ctx is generated as C ← GT instead of [ch>]TMβ .

Observe that the adversary does not obtain the information of β in H6. Theorem 6.1 follows from
Lemmata D.1 to D.6 in §D.

31

7 Applications and Comparisons

7.1 sReg-ABE for Unbounded Span Programs

We describe applications of our framework, namely, ciphertext-policy sReg-ABE for completely-unbounded
monotone, non-monotone, general non-monotone span programs (MSP, NMSP, GNMSP). Thanks to
our generic sReg-ABE construction from PES, it suffices to state our results on respective PESs here.
We emphasize that the term “completely unbounded” refers to the property of span program pred-
icates. Outside the predicate, sReg-ABE also specifies the parameter L on the number of slots (or
also called users). We recall that our sReg-ABE schemes are bounded-user schemes, similarly to prior
pairing-based schemes [HLWW23,ZZGQ23].

Definition 7.1. The predicate of completely unbounded ciphertext-policy monotone span programs
(MSP) PCP−MSP : X̄κ × Ȳκ → {0, 1} for large attribute universe Xκ = Zp is defined as follows. Let
Ȳκ = 2Xκ and X̄κ =

⋃
(n,m)∈N2(Zn×mp × Φn), where Φn consists of all functions φ : [n] → Xκ. For

S ⊆ Xκ (i.e., S ∈ Ȳκ) and (M, φ) ∈ X̄κ where M ∈ Zn×mp and mi is the i-th row of M, we define

PCP−MSP
κ ((M, φ), S) = 1⇔ (1,0) ∈ span({mi}i∈[n]:φ(i)∈S).

We can see that the completely unbounded property of the predicate is enforced by the predicate
definition: it has a large universe and has no bound on policy size n×m (or any multi-use restriction
on φ) or attribute set size for S.

Theorem 7.1. There exists a PES for sReg-ABE for the completely unbounded ciphertext-policy
monotone span programs with large universe U = Zp which satisfies key well-formedness and KE-ind,
while achieving parameters ω = 5, (n1, n2, n3) = (n+1, 2n,m−1), and (m1,m2,m3) = (δ+1, δ+1, 1),
where n × m is the size of the ciphertext policy (M, φ) and δ = auxk is the auxiliary input that de-
fines key well-formedness, which is δ = maxi∈[L] |Si| for a set of registered key attribute sets Y =
{S1, . . . , SL} ⊂ U, where L is the number of slots for sReg-ABE.

Proof sketch. Let PIBE be the equality predicate (IBE), PIBE : Zp × Zp → {0, 1} with PIBE(x, y) = 1⇔
x = y. We can show the following predicate implication:

Dual[KP1[Dual[KP1OR[Null[PIBE]]]]]⇒ PCP−MSP.

This implication sequence follows the approach from [Att19,AT20], with differences in using Null (§4.1)
and key-policy disjunction (§4.3), instead of the OR key-policy augmentation as in [Att19,AT20]. While
we also have OR key-policy augmentation (§4.7), it preserves well-formedness for only ciphertext side;
contrastingly, the key-policy disjunction preserves both. Details of this sequence are provided in §E.2,
including explicit PES descriptions for self-containment and parameter sizes. Beginning with predicate
encoding for IBE [CGW15, Att19], we derive a PES for PCP−MSP via successive transformations. As
discussed in Theorem 5.1, this sequence ends with “KP1 then Dual”, thus the resulting PES achieves
key well-formedness and KE-ind.

Definition 7.2. The predicate of completely unbounded ciphertext-policy non-monotone span pro-
grams PCP−NMSP : X̄κ× Ȳκ → {0, 1} for large attribute universe Xκ = Zp is defined as follows. Let Ȳκ =
2Xκ and X̄κ =

⋃
(n,m)∈N2(Zn×mp × Φn), where Φn consists of all functions φ : [n]→ ({pos, neg} × Xκ).

For S ⊆ Xκ (i.e., S ∈ Ȳκ) and (M, φ) ∈ X̄κ where M ∈ Zn×mp and mi is the i-th row of M, we define

PCP−MSP
κ ((M, φ), S) = 1⇔ (1,0) ∈ span({mi}i∈[n] s.t. P′(φ,S)=1),

P′(φ, S) = 1⇔
(
φ1(i) = pos ∧ φ2(i) ∈ S

)
∨
(
φ1(i) = neg ∧ φ2(i) 6∈ S

)
.

32

Table 3. Efficiency comparison among ciphertext-policy slotted registered ABE schemes for span program
predicates.

Schemes |crs| |pki| |ski| |mpk| |hski| |ct|

HLWW-1 [HLWW23, §5] O(BUL
2c(λ)) O(Lc(λ)) O(c(λ)) O(BUc(λ)) O(BUc(λ)) O(nc(λ))

(Pairing-based)

HLWW-2 [HLWW23, §7]† poly(λ,B|S|, O(λ) O(λ) poly(λ,B|S|, poly(λ,B|S|, |iO(C?)|
(iO-based) logBU, logL) logBU, logL) logBU, logL)

FWW [FWW23]† poly(λ,B|S|,Bn,Bm, poly(λ) O(λ) poly(λ, logL) poly(λ,B|S|, |WE.ct|
(WE-based) logBU, logL) logBU, logL)

ZZGQ [ZZGQ23, §D1] O((BU + Bm)L2p(λ)) O(Lp(λ)) O(p(λ)) O((BU + Bm)p(λ)) O((BU + Bm)p(λ)) O(BUp(λ))

Ours 1,2,3 O(L2p(λ)) O(Lp(λ)) O(p(λ)) O(δ2p(λ)) O(δ2p(λ)) O(δnp(λ))

Note: λ is the security parameter. L is the number of users (slots) in slotted registered ABE. As a convection, we use Bx
to refer to the maximum bound for an amount x that is required to be fixed at setup for that scheme. BU = |U| denotes
the attribute universe size. n × m denotes the size of a span program policy; Bn,Bm are their bounds, resp. |S| denotes
the size of an attribute set; B|S| is its bound. Let p(λ) = poly(λ), c(λ) = poly(λ) specify the sizes of one group element in
prime-order and composite-order pairing groups, resp. For our schemes, δ = maxi∈[L] |Si| for a set of registered key attribute
sets Y = {S1, . . . , SL} where Si ⊂ U = Zp. In the pairing-based scheme of [HLWW23], denoted as HLWW-1, and the
ZZGQ scheme, there exist also implicit bounds B|S|,Bn where B|S| = Bn = BU. For these two schemes, we consider their
(default) one-use schemes. †: The iO/WE-based schemes of [HLWW23, FWW23], denoted as HLWW-2/FWW, respectively,
are originally for circuit predicates; we envision instantiating a circuit to implement a span program and write the efficiency
of its resulting scheme for span programs here. Their |iO(C?)| and |WE.ct| are described in the text below.

Theorem 7.2. There exists a PES for sReg-ABE for completely unbounded ciphertext-policy non-
monotone span programs with large universe U = Zp which satisfies key well-formedness and KE-ind,
while achieving parameters ω = 10, (n1, n2, n3) = (n+ 1, 4n,m− 1), (m1,m2,m3) = (δ + 1, 3δ + 1, δ),
where n,m, δ are as in Theorem 7.1.

Proof sketch. Let PNIBE be the negated IBE (PNIBE(x, y)=1↔ x 6= y). We show:

SPCOR[Null[KP1OR[Null[PIBE]]], Null[KP1AND[WC[PNIBE]]]]⇒ PTIBBE,

Dual[KP1[Dual[PTIBBE]]]⇒ PCP−NMSP.

This sequence roughly follows [Att19, AT20], using an intermediate predicate called two-mode IBBE
(TIBBE), which operates in two modes, combining IBBE and its negation. Our approach to obtain-
ing PES for PTIBBE differs from [Att19, AT20]. We use static OR composition with Null to split the
modes, and non-membership is handled with WC and key-policy conjunction instead of AND key-policy
augmentation as in [Att19, AT20]. Note that while we have AND key-policy augmentation, its PES
transformation preserves well-formedness for only ciphertext side, while the key-policy conjunction
preserves both. The rest can be argued similarly to the previous lemma. See Appendix E.3 for details
and parameter sizes.

PES for General Non-monotone Span Programs (GNMSP). The above non-monotone predi-
cate is a simple type, originally defined in [OSW07], and is thus called the OSW type. There is another
type from [OT10], called the OT type, where an element in an attribute set also takes input a label
with it, but the “atomic” policy check is merely an equality check. A more complex type that unifies
both types was suggested in [AT20], which we call GNMSP here, can deal with labels and set mem-
bership at the same time. We recap the definition and provide how to obtain PES for sReg-ABE for
this in Appendix E.4.

7.2 Efficiency and Comparison to Previous Works

In Table 3, we describe asymptotic efficiency of our sReg-ABE schemes specified by the above three
PESs for span programs, and compare to prior works [HLWW23,FWW23,ZZGQ23]. Details regarding

33

the parameters are provided in the table notes. Via the conversion of [HLWW23], one can obtain full-
fledged registered ABE with size expansion by at most polylogarithmic in L for all the six parameters
in the table. It is thus sufficient to compare among (un)bounded slotted registered ABE schemes.

Comparing to Pairing-based Schemes. The table explicitly displays relevant bounds in each
scheme, facilitating the discussion of boundedness as presented in Table 1. Notably, our schemes do
not impose any bounds on the properties of the span program predicates. On the other hand, it places
a bound on L, the number of users (slots). The previous two pairing-based schemes, HLWW-1 and
ZZGQ, also impose the user bound. Additionally, and perhaps more prominently in our context, both
schemes require linear bounds BU on the universe size, hence they are considered as small-universe
schemes. They also implicitly have linear bounds, denoted as B|S| and Bn, respectively, on attribute
set sizes and span program policy row sizes (both equal to the universe size). The ZZGQ scheme
additionally imposes a bound Bm on span program policy column sizes. Furthermore, the HLWW-1
and ZZGQ schemes are restricted to “one-use” of attributes in a policy, necessitating the map φ of
span program to be injective. Generalizing them to bounded multi-use schemes would incur some size
expansion due to this bound. Contrastingly, our schemes achieve the unbounded multi-use property.

Comparing to iO/WE-based Schemes. Comparing our scheme to the iO-based and WE-based
schemes of [HLWW23, FWW23], denoted as HLWW-2 and FWW, respectively, is more challenging
as they target different predicates, specifically bounded-input-length Boolean circuits. We envision
instantiating a Boolean circuit to implement a span program to compare slotted registered ABE with
similar functionalities as ours.

For the HLWW-2 scheme, due to the various possibilities of circuit instantiations together with
the choices of building block constructions (iO, somewhere-statistically-binding hash (SSB) hash, and
PRG), we have left |ct| simply as the size of the obfuscated program for an embedded circuit defined
in [HLWW23], denoted as C?. This circuit embeds a ciphertext policy (a circuit implementing a span
program policy) and some non-black-box descriptions of its underlying cryptographic primitives, such
as SSB hash and PRG. As C? embeds mpk, the complexity of |iO(C?)| is at least that of |mpk|, but
could be much larger due to the non-black-box usage of primitives and the potentially large overhead
from iO constructions. Similarly, for the FWW scheme, its |ct| corresponds to the ciphertext size of
WE for a relation involving a ciphertext policy and some non-black-box descriptions of its underlying
cryptographic primitives, such as function-binding hash (FBH) and public-key encryption.

Regardless of circuit instantiations and building block choices, the bounded-input-length restriction
of circuits in both the HLWW-2 and FWW schemes will yield a slotted registered ABE scheme for
bounded attribute set sizes. Specifically, we require a bound on the attribute set size B|S|, and the
input length to circuits needs to be B|S| logBU to accommodate an arbitrary attribute set of this size.
Additionally, the FWW scheme requires fixing the maximum policy size in advance, which is reflected
in the policy-size bounds Bn,Bm in crs. Following the size inspection as in [HLWW23, FWW23], we
obtain |crs|, |mpk|, and |hski| at least as detailed in the table. These sizes depend on the choices of
their respective building block constructions.

In summary, the HLWW-2 and FWW schemes depend only polylogarithmically on B|U| and L,
making them large-universe and unbounded-user schemes. The HLWW-2 scheme depends linearly on
B|S|, and thus imposes a bound on attribute set sizes. Non-monotone polynomial-size Boolean circuits
can simulate polynomial-size non-monotone span programs. As iO schemes do not restrict circuit sizes
by definition [GGH+13, JLS21], the HLWW-2 scheme can achieve unbounded policy sizes, multi-use,
and non-monotonicity. Contrastingly, the FWW scheme does not seem to achieve unbounded policy
sizes and multi-use, as it requires fixing the maximum policy size in advance.

Acknowledgement. The authors would like to thank anonymous reviewers for their insightful com-
ments and constructive suggestions. Nuttapong Attrapadung was supported by JSPS KAKENHI Grant
Number JP19H01109 and JST CREST Grant Number JPMJCR22M1, Japan.

34

References

ABS17. Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. Generic transformations of predicate
encodings: Constructions and applications. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 36–66. Springer, Heidelberg, August 2017.

AC17. Shashank Agrawal and Melissa Chase. Simplifying design and analysis of complex predicate en-
cryption schemes. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part I, volume 10210 of LNCS, pages 627–656. Springer, Heidelberg, April / May 2017.

AHY15. Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. Conversions among several classes
of predicate encryption and applications to ABE with various compactness tradeoffs. In Tetsu Iwata
and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 575–601.
Springer, Heidelberg, November / December 2015.

AT20. Nuttapong Attrapadung and Junichi Tomida. Unbounded dynamic predicate compositions in ABE
from standard assumptions. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part III, volume 12493 of LNCS, pages 405–436. Springer, Heidelberg, December 2020.

Att14. Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework, fully
secure functional encryption for regular languages, and more. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 557–577. Springer, Heidelberg,
May 2014.

Att19. Nuttapong Attrapadung. Unbounded dynamic predicate compositions in attribute-based encryp-
tion. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of
LNCS, pages 34–67. Springer, Heidelberg, May 2019.

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg, August
2001.

BH08. Dan Boneh and Michael Hamburg. Generalized identity based and broadcast encryption schemes.
In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 455–470. Springer,
Heidelberg, December 2008.

CES21. Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. Optimizing registration based encryption.
In Maura B. Paterson, editor, 18th IMA International Conference on Cryptography and Coding,
volume 13129 of LNCS, pages 129–157. Springer, Heidelberg, December 2021.

CGW15. Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-order groups via
predicate encodings. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 595–624. Springer, Heidelberg, April 2015.

DKL+23. Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ah-
madreza Rahimi. Efficient laconic cryptography from learning with errors. In Carmit Hazay
and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume 14006 of LNCS, pages 417–446.
Springer, Heidelberg, April 2023.

DPY23. Pratish Datta, Tapas Pal, and Shota Yamada. Registered fe beyond predicates: (attribute-based)
linear functions and more. Cryptology ePrint Archive, Paper 2023/457, 2023. https://eprint.

iacr.org/2023/457.
EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework

for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, August 2013.

FFM+23. Danilo Francati, Daniele Friolo, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, and Daniele
Venturi. Registered (inner-product) functional encryption. In Jian Guo and Ron Steinfeld, editors,
ASIACRYPT 2023, volume 14442, pages 98–133. Springer, 2023.

FKdP23. Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo commitments: Registration-based
encryption and key-value map commitments for large spaces. In Jian Guo and Ron Steinfeld,
editors, ASIACRYPT 2023, volume 14442, pages 166–200. Springer, 2023.

FWW23. Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Regis-
tered ABE, flexible broadcast, and more. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part IV, volume 14084 of LNCS, pages 498–531. Springer, Heidelberg, August
2023.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Can-
didate indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS,
pages 40–49. IEEE Computer Society Press, October 2013.

35

https://eprint.iacr.org/2023/457
https://eprint.iacr.org/2023/457

GHM+19. Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi
Sekar. Registration-based encryption from standard assumptions. In Dongdai Lin and Kazue
Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 63–93. Springer, Heidelberg, April
2019.

GHMR18. Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi.
Registration-based encryption: Removing private-key generator from IBE. In Amos Beimel and
Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of LNCS, pages 689–718. Springer,
Heidelberg, November 2018.

GKMR23. Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient
registration-based encryption. In Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and
Engin Kirda, editors, ACM CCS 2023, pages 1065–1079. ACM, 2023.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati, editors, ACM CCS 2006, pages 89–98. ACM Press, October / November
2006. Available as Cryptology ePrint Archive Report 2006/309.

GV20. Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages
621–651. Springer, Heidelberg, August 2020.

HLWW23. Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered attribute-based en-
cryption. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume 14006
of LNCS, pages 511–542. Springer, Heidelberg, April 2023.

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded as-
sumptions. In Samir Khuller and Virginia Vassilevska Williams, editors, 53rd ACM STOC, pages
60–73. ACM Press, June 2021.

JR13. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. In
Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages
1–20. Springer, Heidelberg, December 2013.

KW15. Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear subspaces revisited. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
101–128. Springer, Heidelberg, April 2015.

KW19. Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure ABE for NC1 from k-Lin. In Yuval
Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 3–33.
Springer, Heidelberg, May 2019.

LW11. Allison B. Lewko and Brent Waters. Unbounded HIBE and attribute-based encryption. In Ken-
neth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 547–567. Springer,
Heidelberg, May 2011.

OSW07. Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-monotonic
access structures. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors,
ACM CCS 2007, pages 195–203. ACM Press, October 2007.

OT10. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general
relations from the decisional linear assumption. In Tal Rabin, editor, CRYPTO 2010, volume 6223
of LNCS, pages 191–208. Springer, Heidelberg, August 2010.

Wat09. Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple as-
sumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619–636. Springer,
Heidelberg, August 2009.

Wat12. Brent Waters. Functional encryption for regular languages. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 218–235. Springer, Heidelberg, Au-
gust 2012.

Wee14. Hoeteck Wee. Dual system encryption via predicate encodings. In Yehuda Lindell, editor,
TCC 2014, volume 8349 of LNCS, pages 616–637. Springer, Heidelberg, February 2014.

ZZGQ23. Ziqi Zhu, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered ABE via predicate encodings.
In Jian Guo and Ron Steinfeld, editors, ASIACRYPT 2023, volume 14442, pages 66–97. Springer,
2023.

36

A Matrix Substitution from Simplified to Full-fledged Schemes

From the simplified scheme in the technical overview (§1.2) to our full-fledged scheme, we use the
following substitution of variables to vectors/matrices:

α 7→ h>, wj,0 7→Wj,0, wj 7→Wj

ri 7→ Br>i , riwj,0 7→Wj,0Br>i , riwj 7→Wj,0(Iω ⊗Br>i), vi 7→ Vi,

s0 7→ s0A, S′ 7→ S(In1
⊗A), T 7→ T, U 7→ U, S′(In1

⊗wj) 7→ S(In1
⊗AWj)

where h ← Z2k+1
p , Wj,0 ← Z(2k+1)×(k+1)

p , Wj ← Z(2k+1)×ω(k+1)
p , B ← Z(k+1)×k

p , r ← Zkp, Vi ←
Z(2k+1)×(k+1)
p , s0 ← Zkp, A← Zk×(2k+1)

p , S← Zm1×kn1
p , T← Zm1×(k+1)n3

p , U← Zn1×(k+1)m3
p :

B Registered ABE

We follow the definition of bounded-user registered ABE in [HLWW23,ZZGQ23]. The definition below
is taken mostly verbatim from [ZZGQ23, Appendix A].

Our definition is slightly different from the previous definition in compactness. More precisely, since
we now consider Reg-ABE with unbounded properties of predicates, attribute sizes are therefore not
a priori bounded. We modify the compactness definition so as to allow |mpk| and |hsk| to depend on
the size of the longest attribute registered so far.

Definition B.1 (Bounded-user Registered ABE [HLWW23,ZZGQ23]). Let Pκ : Xκ×Yκ be a
predicate indexed by κ, where κ specifies some parameters. Let M be a message space. A bounded-user
registered ABE scheme for Pκ consists of the following algorithms.

Setup(1λ, 1L, κ): It takes a security parameter 1λ, the number of users in unary 1L, and an index κ as
input, and outputs a common reference string crs.11

Gen(crs, aux): It takes crs and a public state aux as input, and outputs a public key pk and a secret
key sk.

Reg(crs, aux, pk, y): It takes crs, aux, pk, y ∈ Y as input, and outputs a master public key mpk and
updated state aux.

Enc(mpk, x,M): It takes mpk, x ∈ Xκ, and a message M ∈M as inputs, and outputs a ciphertext ctx.
Upd(crs, aux, pk): It takes (crs, aux, pk) as input and outputs a helper secret key hsk.
Dec(sk, hsk, ctx): It takes (ski, hski, ctx) as input, and outputs a message M or a symbol ⊥ or a special

flag getupd to indicate the need of an updated helper key.

Correctness. For all stateful adversary A, the following advantage function is negligible in λ:

Pr[b = 1 : crs← Setup(1λ, 1L, κ), b = 0,AORegNT(·),ORegT(·),OEnc(·),ODec(·)(crs)]

where the oracles work as follows with initial setting aux = ⊥,E = ∅,R = ∅, t = ⊥:

– ORegNT(pk, y): run (mpk, aux′)← Reg(crs, aux, pk, y), update aux = aux′, append (mpk, aux) to R

and return (|R|,mpk, aux);
– ORegT(y∗): run (pk∗, sk∗)← Gen(crs, aux), (mpk, aux′)← Reg(crs, aux, pk∗, y∗), update aux = aux′,

compute hsk∗ ← Upd(crs, aux, pk∗), append (mpk, y∗, aux) to R, return (t = |R|,mpk, aux, pk∗, sk∗, hsk∗);
– OEnc(i, x,M): let R[i] = (mpk, ∗, ∗), run ctx ← Enc(mpk, x,M), append (x,M, ctx) to E and return

(|E|, ct);
11 When considering bounded-user schemes, it is mandatory to input 1L in unary. This is already discussed

and defined in [HLWW23, Def 4.4]. Note that the definition in [ZZGQ23], which also consider bounded-user
schemes, does not contain 1L; we correct it here.

37

– ODec(j) : let E[j] = (xj ,Mj , ctxj), compute M ′j ← Dec(sk∗, hsk∗, ctj), if M ′j = getupd, run hsk∗ ←
Upd(crs, aux, pk∗) and recompute M ′j ← Dec(sk∗, hsk∗, ctj). Set b = 1 when M ′j 6= Mj ;

with the following restrictions:

– there exists one query to ORegT (we can consider y∗, pk∗, sk∗, hsk∗ to be global);
– for query (i, x, ∗) to OEnc, it holds that i ≥ t,R[i] 6= ⊥ and Pκ(x, y∗) = 1;
– for query j to ODec, it holds that E[j] 6= ⊥.

Compactness and Efficiency. Let R be defined as before. Compactness refers to the property that

|mpki| = poly(λ,max
j∈[i]
|yj |, log i), |hsk∗| = poly(λ, max

j∈[|R|]
|yj |, log |R|)

where we let R[i] = (mpki, yi, ∗) for all i ∈ [|R|]. Furthermore, update efficiency means that the number
of invocations of Upd in ODec is at most O(log |R|) and each invocation costs poly(log |R|) time (in
RAM model).

Security. For all stateful admissible adversaries A, the advantage

Pr

β = β′ :
crs← Setup(1λ, κ)
x,M0,M1 ← AORegCK(·),ORegHK(·),OCor(·)(crs)
β ← {0, 1}; ctx ← Enc(mpk, x,Mβ); β′ ← A(ctx)

− 1

2

is negligible in λ, where the oracles as follows with initial setting aux,mpk = ⊥,R = ∅,C = ∅ and D

being a dictionary with D[pk] = ∅ for all possible pk:

– ORegCK(pk, y): run (mpk′, aux′)← Reg(crs, aux, pk, y), update mpk = mpk′, aux = aux′,D[pk]∪{y},
append pk to C and return (mpk, aux);

– ORegHK(y): run (pk, sk) ← Gen(crs, aux) and (mpk′, aux′) ← Reg(crs, aux, pk, y), update mpk =
mpk′, aux = aux′,D[pk] ∪ {y}, append (pk, sk) to R and return (|R|,mpk, aux, pk);

– OCor(i): let R[i] = (pk, sk), append pk to C and return sk;

with the following restrictions

– for query i to OCor, it holds that R[i] 6= ⊥;
– for all y ∈

⋃
pk∈C D[pk], it holds that P(x, y) = 0.

Conversion from Slotted Registered ABE to Registered ABE. Hohenberger et al. shows a
generic conversion that converts slotted registered ABE to registered ABE and also shows that the
conversion preserves the (un)bounded-user property and compactness [HLWW23]. By inspection of
the conversion of [HLWW23], the size expansions of |mpk| and |hski| are at most polylogarithmic in
the number of registered users. Particularly, the modified definition of compactness for Reg-ABE will
also hold if the underlying sReg-ABE has compactness as per Definition 2.4.

Starting from our bounded-user slotted registered ABE in §6.1, we obtain bounded-user registered
ABE for the same predicate. As the (modified) compactness are preserved, when instantiating with
PESs from §7.1, we obtain bounded-user registered ABE for completely unbounded ciphertext-policy
(monotone, non-monotone, generalized non-monotone) span programs.

C Lemmata for Predicate Transformations

C.1 Lemmata for Null-Trans

Lemma C.1. If PES Γ is ciphertext well-formed (resp. key well-formed), then Null-Trans(Γ) is ci-
phertext well-formed (resp. key well-formed).

38

G ∈
{
GKE-ind
β , Hβ

}
G

ω ← Param(κ), A← Zk×(2k+1)
p , a← Z2k+1

p , B← Z(k+1)×k
p

a⊥ ← Z2k+1
p ,b⊥ ← Zk+1

p conditioned on a⊥(A>||a>) = 0, b⊥B = 0

W′ = (W0||W1|| · · · ||Wω)← Z(2k+1)×(ω+1)(k+1)
p , W = (W1|| · · · ||Wω)

P = ([A]1, [B]2,a,a
⊥,b⊥, [AW′]1, [W

′(Iω ⊗B)]2)

β′ ← AO(·)(P)

O(·)
Input: (x, null) ∈ X̄κ × Ȳκ and valid auxc, auxk, where auxk contains y′

(n1, n2, Ĉ)← CVEncC(x, auxc), (m1,m2, K̂)← CVEncK(y′, auxk)
(n3,F,C)← EncC(x,m1, auxc), (m3,L,K)← EncK(y′, n1, auxk)

K̂′(W′) =

(
W0(̄l⊗ Ik+1)

O

)
s1,1, . . . , sn′1,m′1 ← Zkp, t1,1, . . . , tm′1,n′3 ,u`,2, . . . ,u`,m′3 ← Zk+1

p for ` ∈ [n′1]

u1,1 = βb⊥, u2,1 = · · · = un′1,1 = 0 ∈ Zk+1
p

SA = (sν,µA)(ν,µ)∈[m′1]×[n′1], T = (tν,µ)(ν,µ)∈[m′1]×[n′3], U = (uν,µ)(ν,µ)∈[n′1]×[m′3]

c← span((A
a)), replace s1,1A in SA with c

R′1 = T(F⊗ Ik+1) + SAĈ(W), R′2 = U(L⊗ Ik+1) + S
BT
A K̂′(W′)

Output: [S
′
A, R

′
1, R

′
2]1

Fig 2. KE-ind game for Null-Trans(Γ).

Proof. Ciphertext well-formedness is trivial. For any Y ′ ⊆ Ȳκ, let y′ be the first non-null element of
Y ′ and Y = Y ′\{null} (if Y ′ = {null}, let y′ be the shortest element of Yκ and Y = {y′}). Since
Γ is key well-formed, there exists auxk,m1,m2,m3,L such that the key well-formedness condition in
Definition 3.2 holds with respect to Y . Then, it is not hard to see that Null-Trans(Γ) is key well-
formed since aux′k = (auxk, y

′) where aux′k is efficiently computable and |aux′k| ≤ 2 max(|auxk|, |y′|),
and m′1 = m1,m

′
2 = m2,m

′
3 = m3,L

′ = L satisfy the key well-formedness condition in Definition 3.2
with respect to Y ′.

Lemma C.2. If Γ satisfies KE-ind and the MDDH assumption holds in G, then Null-Trans(Γ) also
satisfies KE-ind.

Proof. We consider two cases, namely, one is that A queries O on (x, y) such that y ∈ Yκ and the other
is that it queries on (x, null) in the KE-ind game for Null-Trans(Γ). Since we have EncC′ = EncC,EncK′ =
EncK in the former case, KE-ind for Γ immediately implies KE-ind for Null-Trans(Γ). Hence, we consider
the latter case. For β ∈ {0, 1}, we can describe the KE-ind game GKE-ind

β for Null-Trans(Γ) in the latter
case as shown in Fig 2. To prove the lemma, we consider a hybrid Hβ , which is also described in Fig 2.
Hβ is the same as GKE-ind

β except that the (1, 1)-th element s1,1A of SA is replaced with a random

element in span((A
a)). We prove that GKE-ind

0 ≈c H0 ≈s H1 ≈c GKE-ind
1 .

GKE-ind
β ≈c Hβ. Since all elements that A obtains are affine in A,a,a⊥, s1,1A, c, it suffices to show that

the following distributions are indistinguishable:

{[A]1,a,a
⊥, [c0]1} ≈c {[A]1,a,a

⊥, [c1]1}

where A ← Zk×(2k+1)
p ,a,a⊥ ← Z2k+1

p conditioned on a⊥(A>||a>) = 0 and c0 ← span(A), c1 ←
span((A

a)). The above indistinguishability was proven in the proof of Lemma 3.1 (see Eq. (9)).

H0 ≈s H1. We redefine W0 = W′
0 + ã⊥

>
b⊥ where W′

0 ← Z(2k+1)×ω(k+1)
p and ã⊥ ∈ Z2k+1

p be a vector

satisfying ã⊥A> = 0, ã⊥c> = 1. Such a vector exists with overwhelming probability. It is not hard
to see that the distribution of W0 is not changed by the new definition. Then related terms can be

39

written as follows: AW0 = AW′
0,W0B = W′

0B in P and

R′2 = U(L⊗ Ik+1) + S
BT

A K̂′(W′)

=

(
u1,1

O

)
(̄l⊗ Ik+1) + UR(L⊗ Ik+1)︸ ︷︷ ︸

M

+

 cW0

s1,2AW0

...
sA1,n1

W0

 (̄l⊗ Ik+1)

= M +

cW0+u1,1

s1,2AW0

...
sA1,n1

W0

 (̄l⊗ Ik+1) = M +

cW′

0+u1,1+b⊥

s1,2AW′
0

...
sA1,n1

W′
0

 (̄l⊗ Ik+1)

where UR consists of the last (k+1)(m3−1) columns of U in the reply from O((x, null)). Hence, setting
u1,1 = 0 and u1,1 = b⊥ in the reply from O((x, null)) are identically distributed with overwhelming
probability.

C.2 Lemmata for WC-Trans

Lemma C.3. If PES Γ is ciphertext well-formed (resp. key well-formed), then WC-Trans(Γ) is ci-
phertext well-formed (resp. key well-formed).

Proof. Ciphertext well-formedness is trivial. For any Y ′ ⊆ Ȳκ, let y′ be the first non-∗ element of
Y ′, and Y = Y ′\{∗} (if Y ′ = {∗}, let y′ be the shortest element of Yκ and Y = {y′}). Since Γ
is key well-formed, there exists auxk,m1,m2,m3,L such that the key well-formedness condition in
Definition 3.2 holds with respect to Y . Then, it is not hard to see that WC-Trans(Γ) is key well-
formed since aux′k = (auxk, y

′) where aux′k is efficiently computable and |aux′k| ≤ 2 max(|auxk|, |y′|),
and m′1 = m1,m

′
2 = m2,m

′
3 = m3,L

′ = L satisfy the key well-formedness condition in Definition 3.2
with respect to Y ′.

Lemma C.4. If Γ satisfies KE-ind, then WC-Trans(Γ) also satisfies KE-ind.

Proof. In the KE-ind game for WC-Trans(Γ), A cannot query O on (x, ∗) for all x ∈ Xκ since this
immediately breaks the query condition. Thus, A is allowed to make queries only of the form (x, y) ∈
Xκ × Yκ. Since we have EncC′ = EncC,EncK′ = EncK in this condition, which immediately implies
Lemma C.4.

C.3 Lemmata for KP1OR-Trans

Lemma C.5. If PES Γ is ciphertext well-formed (resp. key well-formed), then KP1OR-Trans(Γ) is
ciphertext well-formed (resp. key well-formed).

Proof. Ciphertext well-formedness is trivial. For any Y ′ = (φ1, . . . , φL) ⊆ Ȳκ, where φi : [n(1)] →
Yκ, let δ = maxi∈[L] n

(i) and Y =
⋃
i∈[L] Image(φi) ⊆ Yκ. If Γ is key well-formed, there exists

auxk,m1,m2,m3,L such that the key well-formedness condition in Definition 3.2 holds with respect
to Y . Then, it is not hard to see that KP1OR-Trans(Γ) is key well-formed since aux′k = (auxk, δ), which

is efficiently computable, and m′1 = δm1,m
′
2 = δm2,m

′
3 = δm3 − δ + 1, and L′ =

 l̄ ··· l̄
L

. . .
L

 satisfy

the key well-formedness condition in Definition 3.2 with respect to Y ′, where

|aux′k| ≤ 2 max(|auxk|, |δ|) = poly(max
i
|φ(i)|)

m′1 = δm1 = poly(max
i
|φ(i)|)

m′2 = δm2 = poly(max
i
|φ(i)|)

40

G ∈
{
GKE-ind
β , Hvβ

}
G

ω ← Param(κ), A← Zk×(2k+1)
p , a← Z2k+1

p , B← Z(k+1)×k
p

a⊥ ← Z2k+1
p ,b⊥ ← Zk+1

p conditioned on a⊥(A>||a>) = 0, b⊥B = 0

W = (W1|| · · · ||Wω)← Z(2k+1)×ω(k+1)
p

P = ([A]1, [B]2,a,a
⊥,b⊥, [AW]1, [W(Iω ⊗B)]2)

β′ ← AO(·)(P)

O(·)
Input: (x, φ) ∈ X̄κ × Ȳκ and valid auxc, auxk, where auxk contains δ
Define φ′ : [δ]→ Yκ as φ′(i) = φ(i) for φ ∈ [n] and φ′(i) = null for φ ∈ [n+ 1, δ]

(n1, n2, Ĉ)← CVEncC(x, auxc), (m1,m2, K̂i)← CVEncK(φ′(i), auxk)
(n3,F,C)← EncC(x,m1, auxc), (m3,L,Ki)← EncK(φ′(i), n1, auxk)

K̂′(W) =

 K̂1(W)

. . .
K̂δ(W)

 , L′ =

l̄1 ··· l̄δ
L1

. . .
Lδ

s1,1, . . . , sn′1,m′1 ← Zkp, t1,1, . . . , tm′1,n′3 ,u`,2, . . . ,u`,m′3 ← Zk+1

p for ` ∈ [n′1]

u1,1 = βb⊥, u2,1 = · · · = un′1,1 = 0 ∈ Zk+1
p

S
′
A = (sν,µA)(ν,µ)∈[m′1]×[n′1], T = (tν,µ)(ν,µ)∈[m′1]×[n′3], U

′
= (uν,µ)(ν,µ)∈[n′1]×[m′3]

R′1 = T(F⊗ Ik+1) + S
′
AĈ(W), R′2 = U

′
(L′ ⊗ Ik+1) + S

′BT
A K̂′(W) + L̃v

Output: [S
′
A, R

′
1, R

′
2]1

Fig 3. KE-ind game for KP1OR-Trans(Γ).

Lemma C.6. If Γ satisfies KE-ind, then KP1OR-Trans(Γ) also satisfies KE-ind.

Proof. For β ∈ {0, 1}, we can describe the KE-ind game GKE-ind
β for KP1OR-Trans(Γ) as shown in Fig 3.

Let ∆ be the upper-bound of δ in auxk on which A queries O. To prove the lemma, we consider hybrids
Hvβ for v ∈ [∆], which is also described in Fig 3. Hvβ is the same as GKE-ind

β except that L̃v is added to
R′2 where βi ← Zp and i ≤ v, βi = 0 otherwise, and

L̃v =

(
(̄l1 ⊗ β1b

⊥) · · · (̄ln ⊗ βnb⊥)
O · · · O

)
∈ Zn

′
1×m

′
2(k+1)

p

We prove that GKE-ind
0 ≈c H1

0 ≈c · · · ≈c H∆0 ≈s H∆1 ≈c · · · ≈c H1
1 ≈c GKE-ind

1 .

Hv−1
β ≈c Hvβ. Let H0

β = GKE-ind
β , and we prove Hv−1

β ≈c Hvβ for v ∈ [∆] if Γ satisfies KE-ind. Specifically,

we construct an adversary B against the KE-ind game for Γ internally using an adversary A that
distinguishes Hv−1

β and Hvβ . For φ : [n]→ Yκ on which A queries O in the security games, let φ′ : [δ]→
Yκ be the function defined in Fig 3. Note that auxk is valid due to the query condition, and thus δ > n.
Furthermore, it can query O only on (x, φ) such that Pκ(x, φ′(i)) = 0 for all i ∈ [δ].

1. B is given an input of KE-ind game GKE-ind
β′ for Γ , namely, ([A]1, [B]2,a,a

⊥,b⊥, [AW]1, [W(Iω⊗B)]2)

and gives it to A as it is except that b⊥ is replaced with b̃⊥ = zb⊥ where z ← Zp.
2. For A’s query to O on (x, φ, auxc, auxk) such that φ : [n] → Yκ, B queries its oracle O′ in KE-ind

game on (x, φ′(v), auxc, auxk) and receives

[SA,T(F⊗ Ik+1) + SAĈ(W)︸ ︷︷ ︸
R1

,U(L⊗ Ik+1) + S
BT

A K̂(W)︸ ︷︷ ︸
R2

]1

where it parses SA = Sv(In1 ⊗A), U =

(
β′b⊥ ||UvO

)
.

41

3. B samples Si ← Zmi,1×n1k
p , Ui ← Zn1×(mi,3−1)(k+1)

p for i ∈ [δ]\{v}, and sets

U0 =

(
βb̃⊥

O

)
∈ Zn1×(k+1)

p , S
′
A =

(
S1

...
Sδ

)
(In1
⊗A)

R2,i = Ui(Li ⊗ Ik+1) + SBT
i (Imi,1 ⊗A)K̂i(W)

R′2 = U0((̄l1|| · · · ||̄lδ)⊗ Ik+1) + (R2,1|| · · · ||R2,v−1||R2||R2,v+1|| · · · ||R2,δ)

and returns [S
′
A,R1,R

′
2]1 to A. Here, B implicitly define U

′
= (U0||U1|| · · · ||Uδ).

4. B outputs A’s output as it is.

Observe that A’s view corresponds to Hv−1
β if β′ = 0, and Hvβ otherwise.

H∆0 = H∆1 . Let u0, r
′
2 the first rows of U0,R

′
2, respectively, where U0 is the first k+ 1 columns of U

′
.

Then, r′2 in H∆0 can be written as

r′2 = u0((̄l1|| · · · ||̄lδ)⊗ Ik+1) + (̄l1 ⊗ β1b
⊥|| · · · ||̄lδ ⊗ βδb⊥)+m

= (̄l1 ⊗ (u0 + β1b
⊥)|| · · · ||̄lδ ⊗ (u0 + βδb

⊥))+m

= (̄l1 ⊗ (u0 + b⊥ + (β1 − 1)b⊥)|| · · · ||̄lδ ⊗ (u0 + b⊥ + (βδ − 1)b⊥))+m

where u0 = 0, m is a vector independent of u0, and the second equality follows from u0(̄li ⊗ Ik+1) =
l̄i ⊗ u0. Recall that βi for i ∈ [δ] is randomly distributed, and so is βi − 1. Hence, r′2 with u0 = 0 and
that with u0 = b⊥ are identically distributed where the former and the latter distributions correspond
to H∆0 and H∆1 , respectively.

C.4 Lemmata for KP1AND-Trans

Lemma C.7. If PES Γ is ciphertext well-formed (resp. key well-formed), then KP1AND-Trans(Γ) is
ciphertext well-formed (resp. key well-formed).

Proof. Ciphertext well-formedness is trivial. For any Y ′ = (φ1, . . . , φL) ⊆ Ȳκ, where φi : [n(i)] →
Yκ, let δ = maxi∈[L] n

(i) and Y =
⋃
i∈[L] Image(φi) ⊆ Yκ. If Γ is key well-formed, there exists

auxk,m1,m2,m3,L such that the key well-formedness condition in Definition 3.2 holds with respect to
Y . Then, it is not hard to see that KP1AND-Trans(Γ) is key well-formed since aux′k = (auxk, δ), which

is efficiently computable, and m′1 = δm1,m
′
2 = δm2,m

′
3 = δm3, and L′ =

m>1 l̄ ··· m>δ l̄
L

. . .
L

 satisfy the

key well-formedness condition in Definition 3.2 with respect to Y ′, where

|aux′k| ≤ 2 max(|auxk|, |δ|) = poly(max
i
|φ(i)|)

m′1 = δm1 = poly(max
i
|φ(i)|)

m′2 = δm2 = poly(max
i
|φ(i)|)

Lemma C.8. If Γ satisfies KE-ind, then KP1AND-Trans(Γ) also satisfies KE-ind.

Proof. For β ∈ {0, 1}, we can describe the KE-ind game GKE-ind
β for KP1AND-Trans(Γ) as shown in

Fig 4. To prove the lemma, we consider a hybrid Hβ , which is also described in Fig 4. Due to the query
condition, for (x, φ) on which A queries O, there exists at least one index j such that Pκ(x, yj) = 0.

42

G ∈
{
GKE-ind
β , Hβ

}
G

ω ← Param(κ), A← Zk×(2k+1)
p , a← Z2k+1

p , B← Z(k+1)×k
p

a⊥ ← Z2k+1
p ,b⊥ ← Zk+1

p conditioned on a⊥(A>||a>) = 0, b⊥B = 0

W = (W1|| · · · ||Wω)← Z(2k+1)×ω(k+1)
p

P = ([A]1, [B]2,a,a
⊥,b⊥, [AW]1, [W(Iω ⊗B)]2)

β′ ← AO(·)(P)

O(·)
Input: (x, φ) ∈ X̄κ × Ȳκ and valid auxc, auxk, where auxk contains δ
Define φ′ : [δ]→ Yκ as φ′(i) = φ(i) for φ ∈ [n] and φ′(i) = ∗ for φ ∈ [n+ 1, δ]

(n1, n2, Ĉ)← CVEncC(x, auxc), (m1,m2, K̂i)← CVEncK(φ′(i), auxk)
(n3,F,C)← EncC(x,m1, auxc), (m3,L,Ki)← EncK(φ′(i), n1, auxk)

K̂′(W) =

 K̂1(W)

. . .
K̂δ(W)

 , L′ =

m>1 l̄1 ··· m>δ l̄δ
L1

. . .
Lδ

s1,1, . . . , sn′1,m′1 ← Zkp, t1,1, . . . , tm′1,n′3 ,u`,2, . . . ,u`,m′3 ← Zk+1

p for ` ∈ [n′1]

u1,1 = βb⊥, u2,1 = · · · = un′1,1 = 0 ∈ Zk+1
p

S
′
A = (sν,µA)(ν,µ)∈[m′1]×[n′1], T = (tν,µ)(ν,µ)∈[m′1]×[n′3], U

′
= (uν,µ)(ν,µ)∈[n′1]×[m′3]

R′1 = T(F⊗ Ik+1) + S
′
AĈ(W), R′2 = U

′
(L′ ⊗ Ik+1) + S

′BT
A K̂′(W) + L̃

Output: [S
′
A, R

′
1, R

′
2]1

Fig 4. KE-ind game for KP1AND-Trans(Γ).

For (x, φ), let j ∈ [n] be the first index such that Pκ(x, yj) = 0. Hβ is the same as GKE-ind
β except that

L̃ is added to R′2 where βi ← Zp if i = j, βi = 0 otherwise, and

L̃ =

(
(̄l1 ⊗ β1b

⊥) · · · (̄ln ⊗ βnb⊥)
O · · · O

)
∈ Zn

′
1×m

′
2(k+1)

p

We prove that GKE-ind
0 ≈c H0 ≈c H1 ≈c GKE-ind

1 .

GKE-ind
β ≈c Hβ. We prove GKE-ind

β ≈c Hβ if Γ satisfies KE-ind. Specifically, we construct an adversary B

against the KE-ind game for Γ internally using an adversary A that distinguishes GKE-ind
β and Hβ . For

φ : [n] → Yκ on which A queries O in the security games, let φ′ : [δ] → Yκ be the function defined in
Fig 4. Note that auxk is valid due to the query condition, and thus δ > n.

1. B is given an input of KE-ind game GKE-ind
β′ for Γ , namely, ([A]1, [B]2,a,a

⊥,b⊥, [AW]1, [W(Iω⊗B)]2)

and gives it to A as it is except that b⊥ is replaced with b̃⊥ = zb⊥ where z ← Zp.
2. For A’s query to O on (x, φ, auxc, auxk) such that φ : [n] → Yκ, B queries its oracle O′ in KE-ind

game on (x, φ′(j), auxc, auxk) and receives

[SA,T(F⊗ Ik+1) + SAĈ(W)︸ ︷︷ ︸
R1

,U(L⊗ Ik+1) + S
BT

A K̂(W)︸ ︷︷ ︸
R2

]1

where it parses SA = Sj(In1
⊗A), U =

(
β′b⊥ ||UjO

)
.

3. B samples Si ← Zmi,1×n1k
p , Ui ← Zn1×(mi,3−1)(k+1)

p for i ∈ [δ]\{j}, Ũ0 ← Zn1×(m−1)(k+1)
p , and sets

U0 =

(
βb̃⊥ ||Ũ0O

)
, S
′
A =

(
S1

...
Sδ

)
(In1
⊗A),

R2,i = Ui(Li ⊗ Ik+1) + SBT
i (Imi,1 ⊗A)K̂i(W)

R′2 = U0((m>1 l̄1|| · · · ||m>δ l̄δ)⊗ Ik+1) + (R2,1|| · · · ||R2,j−1||R2||R2,j+1|| · · · ||R2,δ)

43

and returns [S
′
A,R1,R

′
2]1 to A. Here, B implicitly define U

′
= (U0||U1|| · · · ||Uδ).

4. B outputs A’s output as it is.

Observe that A’s view corresponds to Hv−1
β if β′ = 0, and Hvβ otherwise.

H0 = H1. Let u0, r
′
2 the first rows of U0,R

′
2, respectively, where U0 is the first m(k + 1) columns of

U
′
. Then, r′2 in H0 can be written as

r′2 = u0((m>1 l̄1|| · · · ||m>δ l̄δ)⊗ Ik+1) + (̄l1 ⊗ β1b
⊥|| · · · ||̄lδ ⊗ βδb⊥)+m

= (̄l1 ⊗ (u0(m>1 ⊗ Ik+1) + β1b
⊥)|| · · · ||̄lδ ⊗ (u0(m>δ ⊗ Ik+1) + βδb

⊥))+m (10)

where u0 = (0,u1,2, . . . ,u1,m), m is a vector independent of u0, and the second equality follows from

u0(m>i l̄i ⊗ Ik+1) =u0(m>i ⊗ Ik+1)(̄li ⊗ Ik+1) = u0(̄li ⊗ (m>i ⊗ Ik+1))

=l̄i ⊗ (u0(m>i ⊗ Ik+1))

Let zj ∈ Zδp be zj = e1 if j = 1, and zj = e1 − ej if j ∈ [2, δ] where ei is the one-hot vector with the

i-th element being 1. Then, it is easy to see that zjm
>
i = 0 for i, j ∈ [δ], i 6= j. Hence, the following

distributions are identical:

(β1, . . . , βδ)⊗ b⊥ and (β1 + zjm
>
1 , . . . , βδ + zjm

>
δ)⊗ b⊥ (11)

This is because βi is a random element in Zp if i = j and βi = 0 otherwise. We also have

(zm>1 , . . . , zm>δ)⊗ b⊥ = ((z⊗ b⊥)(m>1 ⊗ Ik+1)|| · · · ||(z⊗ b⊥)(m>δ ⊗ Ik+1)) (12)

From Eq.(10) to (12), the distribution of r′2 is not changed if we replace u0 in Eq.(10) with u0+zj⊗b⊥ =
(b⊥,u′1,2, . . . ,u

′
1,m) where u′1,i = u1,i+zj,ib

⊥, zj,i is the i-th element of zj . Since u′1,i is also randomly
distributed, this corresponds to the view in H1. Hence, H0 and H1 are identically distributed.

C.5 Lemmata for SPCM-Trans

Lemma C.9. If PES Γ are ciphertext well-formed (resp. key well-formed), then SPCM-Trans(Γ) is
ciphertext well-formed (resp. key well-formed).

Proof. If Γ are ciphertext well-formed, for any X ′ = (x1, . . . ,xL) ⊆ X̄κ, where xi = (xi,1, . . . , xi,n) ∈
X̄κ, there exists auxc,i, ni,1, ni,2, ni,3,Fi such that the ciphertext well-formedness condition in Def-
inition 3.3 holds with respect to (x1,i, . . . , xL,i) for all i ∈ [n]. Then, it is not hard to see that
SPCM-Trans(Γ) is ciphertext well-formed since aux′c = (auxc,1, . . . , auxc,n), which is efficiently com-

putable, and n′1 = maxi∈[n] ni,1, n
′
2 =

∑
ni,2, n

′
3 =

∑
ni,3,F

′ =

(
F1

. . .
Fn

)
satisfy the ciphertext

well-formedness condition in Definition 3.3 with respect to X ′, where

|aux′c| ≤ nmax(|auxc,1|, . . . , |auxc,n|) = poly(max
j∈[L]

|xj |)

n′1 = max
i∈[n]

ni,1 = poly(max
j∈[L]

|xj |)

n′2 ≤ nmax
i∈[n]

ni,2 = poly(max
j∈[L]

|xj |)

The key well-formedness of SPCM-Trans(Γ) is similar.

Lemma C.10. If Γ satisfy KE-ind, then SPCM-Trans(Γ) also satisfies KE-ind.

44

G ∈
{
GKE-ind
β , Hvβ

}
G

A← Zk×(2k+1)
p , a← Z2k+1

p , B← Z(k+1)×k
p

a⊥ ← Z2k+1
p ,b⊥ ← Zk+1

p conditioned on a⊥(A>||a>) = 0, b⊥B = 0

ωi ← Parami(κi), Wi = (Wi,1|| · · · ||Wi,ωi)← Z(2k+1)×ωi(k+1)
p for i ∈ [n]

ω =
∑
i ωi, W = (W1|| · · · ||Wn), P = ([A]1, [B]2,a,a

⊥,b⊥, [AW]1, [W(Iω ⊗B)]2)

β′ ← AO(·)(P)

O(·)
Input: (x,y) = ((x1, . . . , xn), (y1, . . . , yn)) ∈ X̄κ × Ȳκ and valid auxc, auxk
(ni,1, ni,2, Ĉi)← CVEncCi(xi, auxc), (mi,1,mi,2, K̂i)← CVEncKi(yi, auxk)
(ni,3,Fi,Ci)← EncCi(xi,mi,1, auxc), (mi,3,Li,Ki)← EncK(yi, ni,1, auxk)

Ĉ′(W) =
(

K̂1(W1) ··· K̂n(Wn)
O ··· O

)
, F′ =

(
F1

. . .
Fn

)

K̂′(W) =
(

K̂1(w1) ··· K̂n(wn)
O ··· O

)
, L′ =

m>1 l̄1 ··· m>n l̄n
L1

. . .
Ln

s1,1, . . . , sn′1,m′1 ← Zkp, t1,1, . . . , tm′1,n′3 ,u`,2, . . . ,u`,m′3 ← Zk+1

p for ` ∈ [n′1]

u1,1 = βb⊥, u2,1 = · · · = un′1,1 = 0 ∈ Zk+1
p

S
′
A = (sν,µA)(ν,µ)∈[m′1]×[n′1], T = (tν,µ)(ν,µ)∈[m′1]×[n′3], U

′
= (uν,µ)(ν,µ)∈[n′1]×[m′3]

R′1 = T(F⊗ Ik+1) + S
′
AĈ(W), R′2 = U

′
(L′ ⊗ Ik+1) + S

′BT
A K̂′(W) + L̃v

Output: [S
′
A, R

′
1, R

′
2]1

Fig 5. KE-ind game for SPCM-Trans(Γ).

Proof. For β ∈ {0, 1}, we can describe the KE-ind game GKE-ind
β for SPCM-Trans(Γ) as shown in Fig 5.

To prove the lemma, we consider two hybrids Hvβ for v ∈ [n], which is also described in Fig 5. Hvβ is

the same as GKE-ind
β except that L̃v is added to R′2 where βi ← Zp if P

(i)
κi (xi, yi) = 0 and i ≤ v, βi = 0

otherwise, and

L̃v =

(
(̄l1 ⊗ β1b

⊥) · · · (̄ln ⊗ βnb⊥)
O · · · O

)
∈ Zn

′
1×m

′
2(k+1)

p

We prove that GKE-ind
0 ≈c H1

0 ≈c · · · ≈c Hn0 ≈s Hn1 ≈c · · · ≈c H1
1 ≈c GKE-ind

1 .

Hv−1
β ≈c Hvβ. Let H0

β = GKE-ind
β , and we prove Hv−1

β ≈c Hvβ for v ∈ [n] if Γv satisfies KE-ind. Specifically,

we construct an adversary B against the KE-ind game for Γv internally using an adversary A that
distinguishes Hv−1

β and Hvβ . By definition of L̃v, if A queries O on (x,y) = ((x1, . . . , xn), (y1, . . . , yn))

such that P
(v)
κv (xv, yv) = 1, then Hv−1

β = Hvβ . Hence, we only consider the case where A queries O on

(x,y) such that P
(v)
κv (xv, yv) = 0.

1. B is given an input of KE-ind game GKE-ind
β′ for Γv, namely, ([A]1, [B]2,a,a

⊥,b⊥, [AWv]1, [Wv(Iω ⊗
B)]2). B samples Wi ← Z(2k+1)×ωi(k+1)

p for i ∈ [n]\{v}, z ← Zp and sets W = (W1|| · · · ||Wn) and

b̃⊥ = zb⊥. B gives ([A]1, [B]2,a,a
⊥, b̃⊥, [AW]1, [W(Iω ⊗B)]2) to A.

2. For A’s query to O on (x,y, auxc, auxk) such that M ∈ Zn×mp , B queries its oracle O′ in KE-ind
game on (xv, yv, auxc, auxk) and receives

[SA,Tv(Fv ⊗ Ik+1) + SAĈv(Wv)︸ ︷︷ ︸
R̃1,v

,Uv(Lv ⊗ Ik+1) + S
BT

A K̂v(Wv)︸ ︷︷ ︸
R̃2,v

]1

where it parses SA = S(In1 ⊗A),S = (sν,µ)(ν,µ)∈[mv,1]×[nv,1],Uv =

(
β′b⊥ ||UvO

)
.

45

3. B samples sν,µ ← Zkp for ν ∈ [mv,1 + 1,m′1] ∨ µ ∈ [nv,1 + 1, n′1], Tv ← Z(m′1−mv,1)×nv,3(k+1)
p ,

Uv ← Z(n′1−nv,1)×(mv,3−1)(k+1)
p , Ti ← Zm

′
1×ni,3(k+1)

p , Ui ← Zn
′
1×(mi,3−1)(k+1)
p for i ∈ [n]\{v},

Ũ0 ← Zn
′
1×(m−1)(k+1)
p , and sets

S
′
A = (sν,µ)(ν,µ)∈[m′1]×[n′1](In′1 ⊗A), SA,1 = (sν,µ)(ν,µ)∈[mv,1+1,m′1]×[nv,1](Inv,1 ⊗A)

SA,2 = (sν,µ)BT(ν,µ)∈[mv,1]×[nv,1+1,n′1](Imv,1 ⊗A), U0 =

(
βb̃⊥ ||Ũ0O

)
R1 =

(
R̃1

Tv(Fv ⊗ Ik+1) + SA,1Ĉv(Wv)

)
, R2 =

(
R̃2

Uv(Lv ⊗ Ik+1) + SA,2K̂v(Wv)

)

R1,i = Ti(Fi ⊗ Ik+1) + S
′
A

(
Ĉi(Wi)

O

)
, R2,i = Ui(Li ⊗ Ik+1) + S

′BT
A

(
K̂i(Wi)

O

)
R′1 = (R1,1|| · · · ||R1,v−1||R1||R1,v+1|| · · · ||R1,n)

R′2 = U0((m>1 l̄1|| · · · ||m>n l̄n)⊗ Ik+1) + (R2,1|| · · · ||R2,v−1||R2||R2,v+1|| · · · ||R2,n)

and returns [S
′
A,R1,R

′
2]1 to A. Here, B implicitly define Tv =

(
Tv
Tv

)
, Uv =

(
Uv

Uv

)
, T

′
=

(T1|| · · · ||Tn), and U
′

= (U0||U1|| · · · ||Un).
4. B outputs A’s output as it is.

Observe that A’s view corresponds to Hv−1
β if β′ = 0, and Hvβ otherwise.

Hn0 = Hn1 . Let u0, r
′
2 the first rows of U0,R

′
2, respectively, where U0 is the first m columns of U

′
.

Then, r′2 in Hn0 can be written as

r′2 = u0((m>1 l̄1|| · · · ||m>n l̄n)⊗ Ik+1) + (̄l1 ⊗ β1b
⊥|| · · · ||̄ln ⊗ βnb⊥)+m

= (̄l1 ⊗ (u0(m>1 ⊗ Ik+1) + β1b
⊥)|| · · · ||̄ln ⊗ (u0(m>n ⊗ Ik+1) + βnb⊥))+m (13)

where u0 = (0,u1,2, . . . ,u1,m), m is a vector independent of u0, and the second equality follows from

u0(m>i l̄i ⊗ Ik+1) =u0(m>i ⊗ Ik+1)(̄li ⊗ Ik+1) = u0(̄li ⊗ (m>i ⊗ Ik+1))

=l̄i ⊗ (u0(m>i ⊗ Ik+1))

Let S ⊆ [n] be the set such that P
(i)
κi (xi, yi) = 1 ⇔ i ∈ S. Then, since (1,0) 6∈ span({mi}i∈S) due to

the query condition of the KE-ind game, there exists z such that z = (1, z2, . . . , zm), and zm>i = 0 for
all i ∈ S. Hence, the following distributions are identical:

(β1, . . . , βn)⊗ b⊥ and (β1 + zm>1 , . . . , βn + zm>n)⊗ b⊥ (14)

This is because βi is a random element in Zp if i 6∈ S and βi = 0 if i ∈ S. We also have

(zm>1 , . . . , zm>n)⊗ b⊥ = ((z⊗ b⊥)(m>1 ⊗ Ik+1)|| · · · ||(z⊗ b⊥)(m>n ⊗ Ik+1)) (15)

From Eq.(13) to (15), the distribution of r′2 is not changed if we replace u0 in Eq.(13) with u0+z⊗b⊥ =
(b⊥,u′1,2, . . . ,u

′
1,m) where u′1,i = u1,i + zib

⊥. Since u′1,i is also randomly distributed, this corresponds
to the view in Hn1 . Hence, Hn0 and Hn1 are identically distributed.

C.6 Lemmata for Dual-Trans

Lemma C.11. If PES Γ is ciphertext well-formed (resp. key well-formed), then Dual-Trans(Γ) is key
well-formed (resp. ciphertext well-formed).

46

G ∈

{
GKE-ind
β , H1

β , H2
β

}
G

ω ← Param(κ), A← Zk×(2k+1)
p , a← Z2k+1

p , B← Z(k+1)×k
p

a⊥ ← Z2k+1
p ,b⊥ ← Zk+1

p conditioned on a⊥(A>||a>) = 0, b⊥B = 0

W′ = (W0||W1|| · · · ||Wω)← Z(2k+1)×(ω+1)(k+1)
p , W = (W1|| · · · ||Wω)

P = ([A]1, [B]2,a,a
⊥,b⊥, [AW′]1, [W

′(Iω ⊗B)]2)

β′ ← AO(·)(P)

O(·)
Input: (x, y) ∈ X̄κ × Ȳκ and valid auxc, auxk
(n1, n2, Ĉ)← CVEncC(x, auxc), (m1,m2, K̂)← CVEncK(y, auxk)
(n3,F,C)← EncC(x,m1, auxc), (m3,L,K)← EncK(y, n1, auxk)

Ĉ′(W′) =
(

L⊗W0

K̂(W)

)
, K̂′(W′) =

(−W0 || Ĉ(W)O

)
, F′ = L, L′ =

(
1 0

0> F

)
s1,1, . . . , sn′1,m′1 ← Zkp, t1,1, . . . , tm′1,n′3 ,u`,2, . . . ,u`,m′3 ← Zk+1

p for ` ∈ [n′1]

u1,1 = βb⊥, u2,1 = · · · = un′1,1 = 0 ∈ Zk+1
p

S
′
A = (sν,µA)(ν,µ)∈[m′1]×[n′1], T

′
= (tν,µ)(ν,µ)∈[m′1]×[n′3], U

′
= (uν,µ)(ν,µ)∈[n′1]×[m′3]

R′1 = T
′
(F′ ⊗ Ik+1) + S

′
AĈ′(W′), R′2 = U

′
(L′ ⊗ Ik+1) + S

′BT
A K̂′(W′)

R′1 =

(
(1− β)b⊥ ||T′

O

)
(L⊗ Ik+1) + S

′
AĈ′(W′)

c← span((A
a)), replace s1,1A in S

′
A with c

Output: [S
′
A, R

′
1, R

′
2]1

Fig 6. KE-ind game for Dual-Trans(Γ).

Proof. Suppose Γ is ciphertext well-formed, that is, for all X ⊆ Xκ = Ȳκ, there exists auxc, n1, n2, n3,F
such that the ciphertext well-formedness condition in Definition 3.3 holds. Then, it is not hard to see
that Dual-Trans(Γ) is key well-formed since aux′k = auxc,m

′
1 = n1,m

′
2 = n2 + 1,m′3 = n3 + 1,L′ =(

1 0
0> F

)
satisfy the key well-formedness condition in Definition 3.2 with respect to X. The ciphertext

well-formedness of Dual-Trans(Γ) is similar.

Lemma C.12. If Γ satisfies KE-ind and the MDDH assumption holds in G, then Dual-Trans(Γ) also
satisfies KE-ind.

Proof. For β ∈ {0, 1}, we can describe the KE-ind game GKE-ind
β for Dual-Trans(Γ) as shown in Fig 6.

To prove the lemma, we consider two hybrids H1
β ,H

2
β , which is also described in Fig 6. H1

β is the same

as GKE-ind
β except that we change the way [R1]1 is generated as described in Fig 6. H2

β is the same as

H1
β except that the (1, 1)-th element s1,1A of S

′
A is replaced with a random element in span((A

a)). We

prove that GKE-ind
β ≈c H1

β ≈c H2
β and H2

0 ≈s H2
1, which immediately implies GKE-ind

0 ≈c GKE-ind
1 .

GKE-ind
β ≈c H1

β. First, observe that R′1 = T
′
(F′⊗Ik+1)+S

′
AĈ′(W′) = (O||T′)(L⊗Ik+1)+S

′
AĈ′(W′),

and thus GKE-ind
1 = H1

1. Hence, proving GKE-ind
0 = H1

0 suffices. We show that GKE-ind
0 ≈c H1

0 if Γ satisfies
KE-ind, that is, we construct an adversary B against the KE-ind game for Γ internally using an adversary
A that distinguishes GKE-ind

0 and H1
0 as follows:

1. B is given an input of KE-ind game GKE-ind
β′ for Γ , namely, ([A]1, [B]2,a,a

⊥,b⊥, [AW]1, [W(Iω⊗B)]2)
where W = (W1|| · · · ||Wω).

2. B samples W0 ← Z(2k+1)×(k+1)
p and gives P = ([A]1, [B]2,a,a

⊥,b⊥, [AW′]1, [W
′(Iω⊗B)]2) where

W = (W0||W1|| · · · ||Wω).

47

3. For A’s query to O on (x, y, auxc, auxk), B queries its oracle O′ in KE-ind game on (y, x, auxk, auxc)
and receives

[SA,T(F⊗ Ik+1) + SAĈ(W)︸ ︷︷ ︸
R1

,U(L⊗ Ik+1) + S
BT

A K̂(W)︸ ︷︷ ︸
R2

]1

where it parses SA =

 s1,2A · · · sm′1,2A
...

...
s1,n′1

A · · · sm′1,n′1A

 and U =

(
β′b⊥ ||ULO

)
.

4. B samples s1,1, . . . , sm′1,1 ← Zkp, sets

Sc =

 s1,1A
...

sm′1,1A

 , Sr =

 s1,2A
...

s1,n′1
A

 , S
′
A = (Sc||S

BT

A)

R′1 = R2 + Sc(L⊗W0), R′2 =

(
−s1,1AW0 + b⊥ SBT

c Ĉ(W)
SrAW0 R1

)

and returns [S
′
A,R

′
1,R

′
2]1 to A. Note that [SBT

c Ĉ(W)]1 can be computed as (s1,1|| · · · ||sm′1,1)Ĉ([AW]1).

5. B outputs A’s output as it is.

In the above reduction, B implicitly defines T
′

= UL and U
′

=

(
b⊥ ||T
O

)
. Then, we can observe

that

R′1 = U(L⊗ Ik+1) + S
BT

A K̂(W) + Sc(L⊗W0)

=

(
β′b⊥

||T′
O

)
(L⊗ Ik+1) + S

′
AĈ′(W′)

R′2 =

(
b⊥

T(F⊗ Ik+1)

)
+

(
−s1,1AW0 SBT

c Ĉ(W)

SrW0 SAĈ(W)

)

=

(
b⊥ ||T
O

)((
1 0

0> F

)
⊗ Ik+1

)
+

(
SBT
c

SA

)(
−W0 || Ĉ(W)

O

)
= U

′
(L′ ⊗ Ik+1) + S

′BT
A K̂′(W′)

and the view of A corresponds to GKE-ind
0 if β′ = 0 and H1

0 if β′ = 1.

H1
β ≈c H2

β. Since all elements that A obtains are affine in A,a,a⊥, s1,1A, c, it suffices to show that

the following distributions are indistinguishable:

{[A]1,a,a
⊥, [c0]1} ≈c {[A]1,a,a

⊥, [c1]1}

where A ← Zk×(2k+1)
p ,a,a⊥ ← Z2k+1

p conditioned on a⊥(A>||a>) = 0 and c0 ← span(A), c1 ←
span((A

a)). The above indistinguishability was proven in the proof of Lemma 3.1 (see Eq. (9)).

H2
0 ≈s H2

1. In H2
0, we can write

P = ([AW0]1, [W0B]2, P
′)

R′1 =

(
L⊗ (cW0 + b⊥) + M1

M2

)
, R′2 =

(
−cW0 M3

SrAW0 M4

)

48

G ∈
{
GKE-ind
β , Hvβ

}
G

ω ← Param(κ), A← Zk×(2k+1)
p , a← Z2k+1

p , B← Z(k+1)×k
p

a⊥ ← Z2k+1
p ,b⊥ ← Zk+1

p conditioned on a⊥(A>||a>) = 0, b⊥B = 0

W = (W1|| · · · ||Wω)← Z(2k+1)×ω(k+1)
p

P = ([A]1, [B]2,a,a
⊥,b⊥, [AW]1, [W(Iω ⊗B)]2)

β′ ← AO(·)(P)

O(·)
Input: (x, (M, φ)) ∈ X̄κ × Ȳκ and valid auxc, auxk
(n1, n2, Ĉ)← CVEncC(x, auxc), (m1,m2, K̂i)← CVEncK(φ(i), auxk)
(n3,F,C)← EncC(x,m1, auxc), (m3,L,Ki)← EncK(φ(i), n1, auxk)

K̂′(W) =

 K̂1(W)

. . .
K̂n(W)

 , L′ =

m>1 l̄1 ··· m>n l̄n
L1

. . .
Ln

s1,1, . . . , sn′1,m′1 ← Zkp, t1,1, . . . , tm′1,n′3 ,u`,2, . . . ,u`,m′3 ← Zk+1

p for ` ∈ [n′1]

u1,1 = βb⊥, u2,1 = · · · = un′1,1 = 0 ∈ Zk+1
p

S
′
A = (sν,µA)(ν,µ)∈[m′1]×[n′1], T = (tν,µ)(ν,µ)∈[m′1]×[n′3], U

′
= (uν,µ)(ν,µ)∈[n′1]×[m′3]

R′1 = T(F⊗ Ik+1) + S
′
AĈ(W), R′2 = U

′
(L′ ⊗ Ik+1) + S

′BT
A K̂′(W) + L̃v

Output: [S
′
A, R

′
1, R

′
2]1

Fig 7. KE-ind game for KP1-Trans(Γ).

where P ′,M1, . . . ,M4 are independent of W0. By setting W0 = W′
0−ã⊥

>
b⊥ where W′

0 ← Z(2k+1)×(k+1)
p

and ã⊥ ∈ Z2k+1
p is a vector satisfying ã⊥A = 0 and ã⊥c> = 1, we have

P = ([AW′
0]1, [W

′
0B]2, P

′)

R′1 =

(
L⊗ cW′

0 + M1

M2

)
, R′2 =

(
−cW′

0 + b⊥ M3

SrAW′
0 M4

)
which corresponds to the distribution in H2

1. It is obvious that both W0,W
′
0 are random elements in

Z(2k+1)×(k+1)
p . Hence, H2

0 and H2
1 are identically distributed as long as ã⊥ exists, and it is the case if

c 6∈ span(A) which occurs with overwhelming probability.

C.7 Lemmata for KP1-Trans

Lemma C.13. If PES Γ is ciphertext well-formed (resp. key valid), then KP1-Trans(Γ) is ciphertext
well-formed (resp. key valid).

This lemma is trivial by the above construction.

Lemma C.14. If Γ satisfies KE-ind, then KP1-Trans(Γ) also satisfies KE-ind.

Proof. For β ∈ {0, 1}, we can describe the KE-ind game GKE-ind
β for KP1-Trans(Γ) as shown in Fig 7.

Let N be the maximum number of rows of M ∈ Zn×mp on which A queries O (i.e., N is the upper
bound of n). To prove the lemma, we consider hybrids Hvβ for v ∈ [N], which is also described in Fig 7.

Hvβ is the same as GKE-ind
β except that L̃v is added to R′2 where βi ← Zp if Pκ(x, φ(i)) = 0 and i ≤ v,

βi = 0 otherwise, and

L̃v =

(
(̄l1 ⊗ β1b

⊥) · · · (̄ln ⊗ βnb⊥)
O · · · O

)
∈ Zn

′
1×m

′
2(k+1)

p

49

We prove that GKE-ind
0 ≈c H1

0 ≈c · · · ≈c HN0 ≈s HN1 ≈c · · · ≈c H1
1 ≈c GKE-ind

1 .

Hv−1
β ≈c Hvβ. Let H0

β = GKE-ind
β , and we prove Hv−1

β ≈c Hvβ for v ∈ [N] if Γ satisfies KE-ind. Specifically,

we construct an adversary B against the KE-ind game for Γ internally using an adversary A that
distinguishes Hv−1

β and Hvβ . By definition of L̃v, if A queries O on (x, (M, φ)) such that Pκ(x, φ(v)) =

1, then Hv−1
β = Hvβ . Hence, we only consider the case where A queries O on (x, (M, φ)) such that

Pκ(x, φ(v)) = 0.

1. B is given an input of KE-ind game GKE-ind
β′ for Γ , namely, ([A]1, [B]2,a,a

⊥,b⊥, [AW]1, [W(Iω⊗B)]2)

and gives it to A as it is except that b⊥ is replaced with b̃⊥ = zb⊥ where z ← Zp.
2. For A’s query to O on (x, (M, φ), auxc, auxk) such that M ∈ Zn×mp , B queries its oracle O′ in KE-ind

game on (x, φ(v), auxc, auxk) and receives

[SA,T(F⊗ Ik+1) + SAĈ(W)︸ ︷︷ ︸
R1

,U(L⊗ Ik+1) + S
BT

A K̂(W)︸ ︷︷ ︸
R2

]1

where it parses SA = Sv(In1
⊗A), U =

(
β′b⊥ ||UvO

)
.

3. B samples Si ← Zmi,1×n1k
p , Ui ← Zn1×(mi,3−1)(k+1)

p for i ∈ [n]\{v}, Ũ0 ← Zn1×(m−1)(k+1)
p , and

sets U0 =

(
βb̃⊥ ||Ũ0O

)
, S
′
A =

(
S1

...
Sn

)
(In1 ⊗A),

R2,i = Ui(Li ⊗ Ik+1) + SBT
i (Imi,1 ⊗A)K̂i(W)

R′2 = U0((m>1 l̄1|| · · · ||m>n l̄n)⊗ Ik+1) + (R2,1|| · · · ||R2,v−1||R2||R2,v+1|| · · · ||R2,n)

and returns [S
′
A,R1,R

′
2]1 to A. Here, B implicitly define U

′
= (U0||U1|| · · · ||Un).

4. B outputs A’s output as it is.

Observe that A’s view corresponds to Hv−1
β if β′ = 0, and Hvβ otherwise.

HN0 = HN1 . Let u0, r
′
2 the first rows of U0,R

′
2, respectively, where U0 is the first m(k+ 1) columns of

U
′
. Then, r′2 in HN0 can be written as

r′2 = u0((m>1 l̄1|| · · · ||m>n l̄n)⊗ Ik+1) + (̄l1 ⊗ β1b
⊥|| · · · ||̄ln ⊗ βnb⊥)+m

= (̄l1 ⊗ (u0(m>1 ⊗ Ik+1) + β1b
⊥)|| · · · ||̄ln ⊗ (u0(m>n ⊗ Ik+1) + βnb⊥))+m (16)

where u0 = (0,u1,2, . . . ,u1,m), m is a vector independent of u0, and the second equality follows from

u0(m>i l̄i ⊗ Ik+1) =u0(m>i ⊗ Ik+1)(̄li ⊗ Ik+1) = u0(̄li ⊗ (m>i ⊗ Ik+1))

=l̄i ⊗ (u0(m>i ⊗ Ik+1))

Let S ⊆ [n] be the set such that Pκ(x, yi) = 1⇔ i ∈ S. Then, since (1,0) 6∈ span({mi}i∈S) due to the
query condition of the KE-ind game, there exists z such that z = (1, z2, . . . , zm), and zm>i = 0 for all
i ∈ S. Hence, the following distributions are identical:

(β1, . . . , βn)⊗ b⊥ and (β1 + zm>1 , . . . , βn + zm>n)⊗ b⊥ (17)

This is because βi is a random element in Zp if i 6∈ S and βi = 0 if i ∈ S. We also have

(zm>1 , . . . , zm>n)⊗ b⊥ = ((z⊗ b⊥)(m>1 ⊗ Ik+1)|| · · · ||(z⊗ b⊥)(m>n ⊗ Ik+1)) (18)

From Eq.(16) to (18), the distribution of r′2 is not changed if we replace u0 in Eq.(16) with u0+z⊗b⊥ =
(b⊥,u′1,2, . . . ,u

′
1,m) where u′1,i = u1,i + zib

⊥. Since u′1,i is also randomly distributed, this corresponds

to the view in HN1 . Hence, HN0 and HN1 are identically distributed.

50

D Lemmata for Security Proof of sReg-ABE

Lemma D.1. If Π satisfies perfect zero-knowledge, then H0 = H1.

Proof. Lemma D.1 is obvious from perfect zero-knowledge of Π since M`
i = AiV

`
i for all (i, `) in pk`i

from the `-query to OGen(i).

Lemma D.2. H1 ≈s H2.

Proof. Since
(

s0A
I2k+1

)
is full-rank, it suffices to prove that R ≈s R̃M where R ← Z(2k+2)×(2k+1)

p ,

R̃← Z(2k+2)×(2k+2)
p , and M is a full-rank matrix in Z(2k+2)×(2k+1)

p independent of R, R̃. As long as R

and R̃ are full-rank, which occurs with overwhelming probability, R and R̃M are uniformly distributed

in a set of full-rank matrices over Z(2k+2)×(2k+1)
p . Hence, these distributions are statistically close.

Lemma D.3. If Π satisfies unbounded simulation soundness, H2 ≈c H3.

Proof. If for all challenge public keys {pk∗i }i∈[L] that A outputs, there exists V∗i ∈ Z(2k+1)×(k+1)
p such

that
(

T∗i
Q∗i

)
= AiV

∗
i where Ai =

(
A

R̃i

(
s0A
I2k+1

))
, then we have

s0T
∗
i = s0AV∗i = e1R̃

−1
i R̃i

(
s0A
I2k+1

)
V∗i = e1R̃

−1
i Q∗i

Thus, as long as the above condition holds, the views of A in H2 and H3 are identical. Furthermore, the
condition always holds if pk∗ is obtained from OGen(i). Hence, H2 and H3 are identical unless the follow-

ing Bad event happens: let Bad be the event such that there exist pk∗i = ([T∗i ,Q
∗
i]1, {[p∗

>

i,j]2}j∈[L]\{i}, π
∗
i)

such that for all V∗i ∈ Z(2k+1)×(k+1)
p , M∗

i =
(

T∗i
Q∗i

)
6= AiV

∗
i and LVerify(crsi, [M

∗
i]1, π

∗
i) = 1. Hence, to

prove the lemma it suffices to show Pr[Bad] is negligible.
We show that if A makes Bad happen with non-negligible probability, we can construct B that

breaks strong unbounded simulation soundness of Π as follows.

1. B randomly chooses i∗ ← [L] as a guess of the slot for which Bad occurs.
2. B is given an input for the unbounded simulation soundness game (1λ, crsi∗ ,Ai∗), samples s0 ← Zkp,

and parses Ai∗ =
(

A
Ri∗

)
=

(
A

R̃i∗

(
s0A
I2k+1

))
, i.e, randomly samples R̃i∗ ∈ Z(2k+2)×(2k+2)

p satisfying

the equality.

3. B samples R̃i ← Z(2k+2)×(2k+2)
p and sets Ri = R̃i

(
s0A
I2k+1

)
for i ∈ [L]\{i∗}, samples all variable

other than A, crsi∗ , {Ri}i∈[L] in the same manner as Setup(1λ, 1L, κ), and gives crs to A as follows:

crs=

[A]1, [Ah>]T, {crsi, [Ri,AWi,0,AWi]1}i∈[L]

{[Br>i ,Wi,0Br>i + h>]2}i∈[L], {[Wi,0Br>i∗ ,Wi(Iω ⊗Br>j)]2}i,j∈[L]
i 6=j

4. When A queries OGen(i), B computes

Vi ← Z(2k+1)×(k+1)
p , Mi =

(
AVi

RiVi

)
, πi ← LSim(crsi, tdi, [Mi]1)

pki = ([AVi,RiVi]1, {[ViBr>j]2}j∈[L]\{i}, πi), ski = Vi

where B uses the simulation oracle in the unbounded simulation soundness game of Π when
generating πi∗ . Then, B stores a pair (pki, ski) in dictionary Di and gives pki to A.

5. When A queries OCor(i, pk), B replies sk if and only if (pk, sk) ∈ Di.

6. When A outputs a set of challenge public keys {pk∗i }i where pk∗i∗ = ([T∗i∗ ,Q
∗
i∗]1, {[p∗

>

i∗,j]2}j∈[L]\{i∗}, π
∗
i∗),

B outputs
([(

T∗i∗
Q∗i∗

)]
1
, π∗i∗

)
and halts.

51

If Bad occurs, then
(

T∗i∗
Q∗i∗

)
is not in the space spanned by the columns of Ai∗ with probability at least

1/L since i∗ is uniformly chosen from [L]. Hence, B breaks strong unbounded simulation soundness of
Π with Pr[Bad]/L, which is non-negligible if Pr[Bad] is non-negligible.

Lemma D.4. If the MDDH assumption holds in G, H3 ≈c H4.

Proof. Thanks to the MDDH assumption, we have ([A]1, [s0A]1) ≈c ([A]1, [c]1) where A← Zk×(2k+1)
p ,

s0 ← Zkp, c ← Zsk+1
p . Observe that all elements that A obtains in H3 and H4 are affine in A, sA, c.

Hence, we can easily construct a reduction B from the MDDH problem to distinguishing H3 and
H4.

Lemma D.5. H5,L ≈s H6.

Proof. Recall that the terms that involve h in H5,L are [Ah>]T and {[Wi,0Br>i +h>+αia
⊥>]2}i∈[L] in

crs and [ch>]TMβ in ctx. Let h> = h′>+α′a⊥
>

where h′ ← Z2k+1
p , α′ ← Zp. This does not change the

distribution of h. Then, the above terms can be written as [Ah′>]T, {[Wi,0Br>i +h′>+(αi+α
′)a⊥

>
]2},

[c(h> + α′a⊥
>

)]TMβ . Since αi + α′ is randomly distributed in Zp, α′ca⊥
>

is randomly distributed in

Zp unless ca⊥
>

= 0, which occurs with negligible probability. The latter distribution corresponds to
H6. Thus, both hybrids are identical with overwhelming probability.

Lemma D.6. Let H5,0 = H4. If Γ satisfies KE-ind and the MDDH assumption holds in G, then
H5,v−1 ≈c H5,v for v ∈ [L].

Proof. We define intermediate hybrids Ĥ1
5,v−1, Ĥ

2
5,v−1, Ĥ

(3)
5,v−1 between H5,v−1 and H5,v and show that

H5,v−1 ≈c Ĥ1
5,v−1 ≈c Ĥ2

5,v−1 ≈c Ĥ3
5,v−1 ≈c H5,v. These hybrids are defined as follows.

Ĥ1
5,v−1: It is the same as H5,v−1 except that Br>v is replaced with d> where d ← Zk+1

p . Recall that
crs in H5,v−1 is described as

[A]1, [Ah>]T, {crsi, [Ri,AWi,0,AWi]1}i∈[L]

{[Br>i︸︷︷︸
f>i

,Wi,0Br>i + h> + αia
⊥>︸ ︷︷ ︸

g>i

]2}i∈[L], {[Wi,0Br>j︸ ︷︷ ︸
n>i,j

,Wi(Iω ⊗Br>j)︸ ︷︷ ︸
Ni,j

]2}i,j∈[L]
i6=j

where αi ← Zp if i ≤ v− 1 and otherwise αi = 0, and pk`i obtained from the `-th query to OGen(i)
in H5,v−1 is described as (

[AV`
i︸︷︷︸

T`i

,RiV
`
i︸ ︷︷ ︸

Q`
i

]1, {[V`
iBr>j︸ ︷︷ ︸
p`
>
i,j

]2}j∈[L]\{i}, π
`
i

)

In Ĥ1
5,v−1, the following terms are changed as

f>v = d>, g>v = Wv,0d
> + h>, n>i,v = Wi,0d

>, Ni,v = Wi(Iω ⊗ d>)

p`
>

i,v = V`
id
>

Ĥ2
5,v−1: It is the same as Ĥ1

5,v−1 except that u1,1 =
∑
i∈[L](cWi,0+e1R̃

−1
i Q∗i)+ b⊥ where b⊥ ← Zk+1

p

conditioned on b⊥B = 0, instead of u1,1 =
∑
i∈[L](cWi,0 + e1R̃

−1
i Q∗i).

Ĥ3
5,v−1: It is the same as Ĥ1

5,v−2 except that g>v = Wv,0d
> + h> + αva

⊥> where αv ← Zp.

Thanks to Lemmata D.7 to D.10, Lemma D.6 holds.

52

Lemma D.7. If the MDDH assumption holds in G, then H5,v−1 ≈c Ĥ1
5,v−1 for v ∈ [L].

Proof. This lemma is straightforward from the MDDH assumption, which asserts that [B, z0]2 ≈c
[B, z1]2 where B← Z(k+1)×k

p , rv ← Zkp, z0 = Br>v , z1 = d← Zp. Since all the terms that the adversary

is given are affine in B or z0 (resp. z1) in H5,v−1 (resp. Ĥ1
5,v−1), they are simulatable given the MDDH

instance.

Lemma D.8. If the MDDH assumption holds in G, and Γ satisfies KE-ind, then Ĥ1
5,v−1 ≈c Ĥ2

5,v−1

for v ∈ [L].

Proof. We consider two cases of the adversary’s behavior, namely, the honest case and the dishonest
case. The honest cases refer to one in which the adversary outputs the challenge public key pk∗v for
the v-th slot such that (pk∗v, ∗) ∈ Dv and (v, pk∗v) 6∈ C. On the other hand, the dishonest case refers
to one that is not the honest case, that is, (pk∗v, ∗) 6∈ Dv or (v, pk∗v) ∈ C. Thus, it suffices to prove

Ĥ1
5,v−1 ≈c Ĥ2

5,v−1 under both cases.

Honest Case. We prove that Ĥ1
5,v−1 ≈c Ĥ2

5,v−1 in the honest case if the MDDH assumption holds
in G. First, we show the following indistinguishability holds under the MDDH assumption, which we
will use later in the proof:

{[R,RV]1,A,AV,b⊥, c, cV}
≈c{[R,RV]1,A,AV,b⊥, c, cV + b⊥}

(19)

where R← Z(2k+2)×(2k+1)
p ,V← Z(2k+1)×(k+1)

p ,A← Zk×(2k+1)
p ,b⊥ ← Zk+1

p , c← Z2k+1
p . We can prove

this similarly to [ZZGQ23, Lemma2] as follows:

{[R,RV]1,A,AV,b⊥, c, cV}

≈c{[SÃV,SÃV]1,A,AV,b⊥, c, cV}

≈s{[SÃV,SÃV]1,A,AV,b⊥, c, cV + b⊥}
≈c{[R,RV]1,A,AV,b⊥, c, cV + b⊥}

where S ← Z(2k+2)×k
p , Ã ← Zk×(2k+1)

p . The first and third indistinguishability follows from [R]1 ≈c
[SÃ]1, which is exactly what the (2k+ 2)-fold MDDH assumption asserts. The second indistinguisha-

bility can be shown by setting V = V′+ ã⊥
>

b⊥ where V′ ← Z(2k+1)×(k+1)
p and ã⊥ ∈ Z2k+1

p is a vector

satisfying Ãã⊥
>

= 0>,Aã⊥
>

= 0>, cã⊥
>

= 1.

We construct a distinguisher B between the LHS and RHS in Eq. (19) that internally uses a

distinguisher A between Ĥ1
5,v−1 and Ĥ2

5,v−1 in the honest case as follows. Let Q be the maximum
number of A’s queries of the form OGen(i) for all i ∈ [L].

1. B is given an instance ([Rv,RvV]1,A,AV,b⊥, c, zβ′) of Eq. (19) where zβ′ = cV + β′b⊥ for
β′ ∈ {0, 1}. B computes crs as follows and gives it to A:

crs =

[A]1, [Ah>]T, {crsi, [Ri,AWi,0,AWi]1}i∈[L]

{[f>i ,g>i]2}i∈[L], {[n>i,j ,Ni,j]2}i,j∈[L]
i 6=j

53

where

h← Z2k+1
p , (crsi, tdi)← LGen(1λ), Wi,0 ← Z(2k+1)×(k+1)

p , Wi ← Z(2k+1)×ω(k+1)
p

R̃i 6=v ← Z(2k+2)×(2k+2)
p , Ri6=v = R̃i

(c
I2k+1

)
, ri6=v ← Zkp, d← Zk+1

p

αi<v ← Zp, αi>v = 0, a⊥ ← Z2k+1
p conditioned on a⊥A> = 0

B← Z(k+1)×k
p conditioned on b⊥B = 0

f>i =

{
Br>i (i 6= v)

d> (i = v)
, g>i =

{
Wi,0Br>i + h> + αia

⊥> (i 6= v)

Wi,0d
> + h> (i = v)

n>i,j =

{
Wi,0Br>j (j 6= v)

Wi,0d
> (j = v)

, Ni,j =

{
Wi(Iω ⊗Br>j) (j 6= v)

Wi(Iω ⊗ d>) (j = v)

2. B randomly samples q ← [Q] as a guess of the challenge public key for slot v. When A makes the
`-th query OGen(i), B gives pk`i to A as follows:

pk`i = ([T`
i ,Q

`
i]1, {[p`

>

i,j]2}j∈[L]\{i}, π
`
i)

where V`
i ← Z(2k+1)×(k+1)

p and

T`
i =

{
AV`

i ((i, `) 6= (v, q))

AV ((i, `) = (v, q))
, Q`

i =

{
RiV

`
i ((i, `) 6= (v, q))

RiV ((i, `) = (v, q))

p`
>

i,j =

V`
iBr>j (j 6= v, (i, `) 6= (v, q))

VBr>j ((i, `) = (v, q))

V`
id
> (j = v)

, π`i ← LSim
(
crsi, tdi,

[(
T`i
Q`
i

)]
1

)

Then, B sets Di = (pk`i ,V
`
i) ∪Di if (i, `) 6= (v, q).

3. When A makes a query OCor(i, pk), B checks i = v and pk = pkqv, and if so, B returns a random
bit and halts. Otherwise, B gives sk to A if (pk, sk) ∈ Di.

4. When A outputs the challenge ({pk∗i , yi}i∈[L], x,M0,M1), B checks pk∗v = pkqi . If it is not the case,

B returns a random bit and halts. Otherwise, it parses pk∗i = ([T∗i ,Q
∗
i]1, {[p∗

>

i,j]2}j∈[L]\{i}, π
∗
i)

and gives ctx = ([c1,C2, . . . ,C4]1, C) to A, where (n1, n2, Ĉ)← CVEncC(x, auxc), (m1,m2, K̂i)←
CVEncK(yi, auxk), (n3,F,C)← EncC(x,m1, auxc), (m3,L)← EncK(y1, auxk) and

sν,µ ← Zkp, S = (sν,µ)(ν,µ)∈[m1]×[n1], tν,µ ← Zk+1
p , T = (tν,µ)(ν,µ)∈[m1]×[n3]

u1,1 =
∑

i∈[L]\{v}

(cWi,0 + e1R̃
−1
i Q∗i) + cWv,0 + zβ′

uν,µ>1 ← Zk+1
p , uν>1,1 = 0, U = (uν,µ)(ν,µ)∈[n1]×[m3], β ← {0, 1}

c1 = c, C2 = S(In1
⊗A), C3 = C

S,T,
∑
i∈[L]

AWi

C4 = U(L⊗ Ik+1) + S

BT ∑
i∈[L]

K̂i(AWi), C = [ch>]TMβ

5. B outputs A’ output as it is.

Observe that A’s view corresponds to Ĥ1
5,v−1 if β′ = 0 and Ĥ2

5,v−1 otherwise. This follows from the

fact that pk∗v = pkqv implies Q∗v = RvV, Rv = R̃v

(c
I2k+1

)
, and thus e1R̃

−1
v Q∗v = cV. Finally, since we

are considering the honest case, i.e., A outputs pk∗v such that (pk∗v, ∗) ∈ Dv and (v, pk∗v) 6∈ C, B does

54

not halt in step 3 or 4 with the probability not less than 1/Q. Thus, if A distinguishes Ĥ1
5,v−1 and

Ĥ2
5,v−1 with non-negligible advantage, then B distinguishes the two cases of Eq.(19) with non-negligible

advantage, which breaks the MDDH assumption.

Dishonest Case. We prove that Ĥ1
5,v−1 ≈c Ĥ2

5,v−1 in the dishonest case if Γ satisfies KE-ind. Specifi-

cally, we construct a distinguisher B between the KE-ind games GKE-ind
0 and GKE-ind

1 for Γ that internally

uses a distinguisher A between Ĥ1
5,v−1 and Ĥ2

5,v−1 in the dishonest case as follows.

1. B is a KE-ind instance ([A]1, [B]2,a,a
⊥,b⊥, [AWv]1, [Wv(Iω ⊗ B)]2) for Γ . B computes crs as

follows and gives it to A:

crs =

[A]1, [Ah>]T, {crsi, [Ri,AWi,0,AWi]1}i∈[L]

{[f>i ,g>i]2}i∈[L], {[n>i,j ,Ni,j]2}i,j∈[L]
i6=j

where

h← Z2k+1
p , (crsi, tdi)← LGen(1λ), Wi,0 ← Z(2k+1)×(k+1)

p , Wi 6=v ← Z(2k+1)×ω(k+1)
p

c← Z2k+1
p , R̃i ← Z(2k+2)×(2k+2)

p , Ri = R̃i

(c
I2k+1

)
, ri 6=v ← Zkp, d← Zk+1

p

αi<v ← Zp, αi>v = 0

f>i =

{
Br>i (i 6= v)

d> (i = v)
, g>i =

{
Wi,0Br>i + h> + αia

⊥> (i 6= v)

Wi,0d
> + h> (i = v)

n>i,j =

{
Wi,0Br>j (j 6= v)

Wi,0d
> (j = v)

, Ni,j =

{
Wi(Iω ⊗Br>j) (j 6= v)

Wi(Iω ⊗ d>) (j = v)

2. When A makes the `-th query OGen(i), B gives pk`i to A as follows:

pk`i = ([T`
i ,Q

`
i]1, {[p`

>

i,j]2}j∈[L]\{i}, π
`
i)

where V`
i ← Z(2k+1)×(k+1)

p , T`
i = AV`

i , Q`
i = RiV

`
i and

p`
>

i,j =

{
V`
iBr>j (j 6= v)

V`
id
> (j = v)

, π`i ← LSim
(
crsi, tdi,

[(
T`i
Q`
i

)]
1

)

Then, B sets Di = (pk`i ,V
`
i) ∪Di if (i, `) 6= (v, q).

3. When A makes a query OCor(i, pk), B gives sk to A if (pk, sk) ∈ Di.

4. When A outputs the challenge ({pk∗i , yi}i∈[L], x,M0,M1), B computes valid auxc with respect to
x and auxk satisfying the well-formedness with respect to {yi}i∈[L] in the same manner as Enc
and Agg, respectively. Then, B queries the oracle O in the KE-ind game on (x, yv, auxc, auxk) and
receives ([SA, C(SA,T,Wv), Kv(SA,U,Wv)]1), where u1,1 = β′b⊥ (the (1, 1)-th block of U)

and β′ is the challenge bit of the KE-ind game. B parses pk∗i = ([T∗i ,Q
∗
i]1, {[p∗

>

i,j]2}j∈[L]\{i}, π
∗
i)

and gives ctx = ([c1,C2, . . . ,C4]1, C) to A, where (n1, n2, Ĉ)← CVEncC(x, auxc), (m1,m2, K̂i)←

55

CVEncK(yi, auxk), (n3,F,C)← EncC(x,m1, auxc), (m3,L)← EncK(y1, auxk), β ← {0, 1} and

U
′

=

∑
i∈[L](cWi,0 + e1R̃

−1
i Q∗i) 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0

 ∈ Zn1×(k+1)m3
p

c1 = c, C2 = SA, C3 = C(SA,T,Wv) +
∑

j∈[L]\{v}

SAĈ(Wj)

C4 = Kv(SA,U,Wv) + U
′
(L⊗ Ik+1) +

∑
j∈[L]\{v}

S
BT

A K̂j(Wj)

C = [ch>]TMβ

5. B outputs A’s output as it is.

A’s view corresponds to Ĥ1
5,v−1 if β′ = 0 and Ĥ2

5,v−1 otherwise, which follows from the following
observation.

– Since a is not given to A, A and a⊥ are distributed correctly.
– For C3,C4 in ctx, we have

C3 = T(F⊗ Ik+1) +
∑
j∈[L]

SAĈ(Wj) = T(F⊗ Ik+1) +
∑
j∈[L]

SĈ(AWj)

= C

S,T,
∑
j∈[L]

AWj

where SA = (sν,µA)ν,µ and S = (sν,µ)ν,µ, and

C4 = (U + U
′
)(L⊗ Ik+1) +

∑
j∈[L]

S
BT

A K̂j(Wj)

= (U + U
′
)(L⊗ Ik+1) + S

BT ∑
j∈[L]

K̂j(AWj)

Hence, C3,C4 are distributed correctly.

This concludes the proof.

Lemma D.9. Ĥ2
5,v−1 ≈s Ĥ3

5,v−1 for v ∈ [L].

Proof. Let Wv,0 = W′
v,0 + α′a⊥

>
b⊥ where W′

v,0 ← Z(2k+1)×(k+1)
p , α′ ← Zp. Then, Wv,0 and W′

v,0

are equivalently distributed. The terms involving Wv,0 are changed as follows:

AWv,0 = AW′
v,0, g>i =

W′

i,0Br>i + h> + αia
⊥> (i 6= v)

W′
i,0d

> + h> + (α′b⊥d>)︸ ︷︷ ︸
αi

a⊥
>

(i = v)

in crs, and

u1,1 =
∑

i∈[L]\{v}

cWi,0 + cW′
v,0 + e1R̃

−1
i Q∗i + (1 + α′ca⊥

>
)b⊥︸ ︷︷ ︸

b′⊥

in ctx. It is not hard to see that αv and b′⊥ are random elements in Zp and Zk+1
p conditioned on b′⊥B =

0 unless b⊥d> = 0 and 1 + α′ca⊥
>

= 0, respectively, which occur with negligible probability. This
corresponds to the distribution in Ĥ3

5,v−1, and thus Ĥ2
5,v−1 = Ĥ3

5,v−1 with overwhelming probability.

56

Lemma D.10. Ĥ3
5,v−1 ≈c H5,v for v ∈ [L].

This lemma can be proven similarly to H5,v−1 ≈c Ĥ2
5,v−1.

E PES Instantiations

In this section, we describe various PES constructions for sReg-ABE. The main purpose is to explicitly
describe PES constructions that are in the tranformation sequence when constructing PES for sReg-
ABE for completely unbounded ciphertext-policy monotone span programs and non-monotone span
programs, which we show the results in Section 7.

Various PES constructions in this section are for sReg-ABE for their respective predicates. In
particular, they differ from the original PES definition for vanilla ABEs. We do not relate original
PES for ABE to PES for sReg-ABE for the same predicate. Instead, we start from predicate encoding
for basic predicates and consequently apply transformations in Section 4 to obtain PES for sReg-ABE
for more complex predicates until we obtain the ones for unbounded monotone span programs and
non-monotone span programs.

E.1 Embedding Lemma

For arguing implications among PESs, we use the embedding lemma. Such a lemma is already known
and applied for arguing implications among ABE schemes [BH08,AHY15] and PES for vanilla ABEs [Att19,
AT20] . Here we capture that the embedding also preserves properties of our new variant for PES for
sReg-ABE as well, in the lemma below.

Definition E.1 (Embedding [Att19]). Let Pκ : Xκ × Yκ → {0, 1}, and P′κ′ : X′κ′ × Y′κ′ → {0, 1} be
two predicate families, indexed by κ ∈ K and κ′ ∈ K′, respectively. We say that P′ can be embedded
into P if there exists three efficient mappings fp, fc, fk where fp : K′ → K maps κ′ 7→ κ and fc : X′κ′ →
Xκ, fk : Y′κ′ → Yκ such that for all x′ ∈ X′κ′ , y

′ ∈ Y′κ′ , we have:

P′κ′(x
′, y′) = 1 ⇐⇒ Pκ(fc(x

′), fk(y
′)) = 1. (20)

Lemma E.1. If P′ can be embedded into P, then we can construct a PES Γ ′ for P′ from a PES
Γ for P in such a way that it preserves the correctness, the well-formedness, and the key-encoding
indistinguishability of the PES Γ for P.

Proof sketch. Let Γ be a PES for P. We construct a PES Γ ′ for P′ by simply defining

Param′(κ′) = Param(fp(κ
′)),

CVEncC′(x′, auxc) = CVEncC(fc(x
′), auxc),

CVEncK′(y′, auxk) = CVEncK(fk(y
′), auxk),

EncC′(x′,m1, auxc) = EncC(fc(x
′),m1, auxc),

EncK′(y′, n1, auxk) = EncK(fk(y
′), n1, auxk),

Pair′(x′, y′, auxc, auxk) = Pair(fc(x
′), fk(y

′), auxc, auxk).

The correctness and security is guaranteed by the forward and backward direction of Eq. (20), respec-
tively. The well-formedness also preserves due to the existence of respective auxk,m1,m2 in the case of
key well-formedness and auxc, n1, n2 in the case of ciphertext well-formedness, as we use these values
as is in the inputs of the respective algorithms above.

57

E.2 PES for Completely Unbounded MSP Predicates

In this section, we explicitly describe a PES construction for sReg-ABE for completely unbounded
ciphertext-policy monotone span program predicates, which we stated the result in Section 7.

PES for IBE. We start with the predicate encoding Γ IBE for equality or also called IBE predicate,
PIBE. The PES Γ IBE is specified by auxc = auxk = ε (the empty string) and

– Param(κ)→ 2. Let w = (w1, w2).

– CVEncC(x)→ n1 = 1, n2 = 1, F̂ = (x, 1)>, Ĉ = w1x+ w2.

– CVEncK(y)→ m1 = 1,m2 = 1, L̂ = (y, 1)>, K̂ = w1y + w2.

– EncC(x,m1)→ n3 = 0, F = 0, C = s(w1x+ w2).

– EncK(y, n1)→ m3 = 1, L = 1, K = u+ s(w1y + w2).

– Pair(x, y)→ E = −1, E = 1.

The correctness holds as tr(EC(S,T,w))+tr(EK(S,U,w)) = (−1)s(w1x+w2)+(1)(u+s(w1y+w2)) =
u, for x = y.

Lemma E.2. The PES Γ IBE for PIBE satisfies ciphertext and key well-formedness, and KE-ind.

Proof. The above PES is a secure predicate encoding in e.g., [Wee14,CGW15] for PIBE. Via Lemma 3.1,
we obtain the corresponding PES for sReg-ABE which satisfies ciphertext and key well-formedness,
and KE-ind for this predicate.

In what follows, we subsequently apply transformations to the above PES Γ IBE. The correctness
of these PESs then immediately follow from the correctness of respective transformation, and we will
not explicitly show here. Moreover, via Theorem 5.1, we can argue that all the resulting PESs except
the last two satisfy all ciphertext and key well-formedness, and KE-ind. The last one, for unbounded
CP-MSP, satisfies key well-formedness and KE-ind; hence it can be used for sReg-ABE construction
of Section 6.1.

PES for IBE with Null Attribute. We now obtain a PES, denoted as Γ IBE+n. for the predicate
Null[PIBE] via the Null-Trans transformation to the PES for IBE above. We have that auxc = auxk = ε
(the empty string)12 and

– Param(κ)→ 3. Let w = (w0, w1, w2).

– CVEncC(x)→ n1 = 1, n2 = 1, F̂ = (0, x, 1)>, Ĉ = w1x+ w2.

– CVEncK(y)→ m1 = 1,m2 = 1, L̂ = (0, y, 1)>, K̂ =

{
w1y + w2 if y ∈ Yκ

w0 if y = null
.

– EncC(x,m1 = 1)→ n3 = 0, F = 0, C = s(w1x+ w2).

– EncK(y, n1 = 1)→ m3 = 1, L = 1, K =

{
u+ s(w1y + w2) if y ∈ Yκ

u+ sw0 if y = null
.

– Pair(x, y)→

{
E = −1, E = 1 if y ∈ Yκ

E = ⊥, E = ⊥ if y = null
.

PES for Key-Set Membership. We next obtain a PES ΓKSM for the key-set membership predicate
PKSM
κ : Xκ × Yκ → {0, 1}, where Yκ = 2Xκ , defined as PKSM

κ (x, S) = 1 ⇔ x ∈ S. It is straightforward

12 In the Null-Trans transformation, it is indeed the case that we define auxk as follows (see the proof of
Lemma C.1). For Y ′ ⊆ Yκ ∪ {null}, set auxk = y′ ∈ Yκ, where y′ is a non-null element (say, the first) in Y ′.
However, this y′ element is only used to compute L in the case of a generic predicate. However, for the IBE
(with Null) predicate here, we simply have L = 1, and we can neglect auxk completely.

58

to see that PKSM can be embedded into the predicate KP1OR[Null[PIBE]]. Note that KP1OR is the key
policy disjunction as per Definition 4.3. Here the embedding works as:

x 7→ x S 7→ φS where φS :
[z]→ Xκ

j 7→ aj

where z := |S| and write S = {a1, . . . , az} (in a lexicographical order). Hence we apply the KP1OR-Trans
to the PES above and obtain a new PES as follows. For Y = {S1, . . . , SL} ⊆ Yκ, we set auxk = δ :=
maxi∈[L] |Si|. 13 14 Note that auxc = ε.

– Param(κ)→ 3. Let w = (w0, w1, w2).

– CVEncC(x)→ n1 = 1, n2 = 1, F̂ = (0, x, 1)>, Ĉ = w1x+ w2.

– CVEncK(S = {a1, . . . , az}, auxk = δ)→ m1 = δ,m2 = δ, L̂, K̂ where

L̂ =

0
a1
1

...
0
az
1

1
0
0

...
1
0
0

∈ Z3δ×δ

p

K̂ =

w1a1 + w2

. . .

w1az + w2

w0

. . .

w0

= (Iδ ⊗w)L̂ ∈ Zp[w]δ×δ

– EncC(x,m1 = δ)→ n3 = 0, F = 0, C = SĈ = S(w1x+ w2) with S = (s1, . . . , sδ)
>, i.e.,

C =
(
s1(w1x+ w2), . . . , sδ(w1x+ w2)

)>
.

– EncK(S = {a1, . . . , az}, n1 = 1, auxk = δ)→ m3 = 1, L, K where

L = (1, . . . 1) ∈ Z1×δ
p

K = uL + S>K̂ ∈ Zp[S, u,w]1×δ

=
(
u+ s1(w1a1 + w2), . . . , u+ sz(w1az + w2), u+ sz+1w0, . . . , u+ sδw0)

)
where S = (s1, . . . , sδ)

>.
– Pair(x, y, auxk) → E = (0, . . . , 0,−1, 0, . . . , 0), E = (0, . . . , 0, 1, 0, . . . , 0)> where both are of length
δ and −1, 1 is at the i-th position where ai = y.

PES for Ciphertext-Set Membership (IBBE). This predicate is defined as PCSM
κ : Xκ × Yκ →

{0, 1}, where Xκ = 2Yκ , defined as PCSM
κ (S, y) = 1 ⇔ y ∈ S. It exactly defines the predicate for

IBBE (ID-based broadcast encryption). It is the dual of the key-set membership predicate; therefore,
we obtain its PES ΓCSM by the Dual-Trans transformation. For X = {S1, . . . , SL} ⊆ Xκ, we set
auxc = δ := maxi∈[L] |Si|. Note that auxk = ε.

13 Recall that we will use this PES to construct sReg-ABE and the pk1, . . . , pkL corresponding to S1, . . . , SL,
respectively, are to be aggregated into mpk.

14 This follows from the proof of Lemma C.5.

59

– Param(κ)→ 4. Let w = (w̄0, w0, w1, w2).

– CVEncC(S = {a1, . . . , az}, auxc = δ)→ n1 = δ + 1, n2 = δ, F̂, Ĉ where

F̂ =

1 1 ··· 1
0 0 ··· 0
0 0 ··· 0
0 0 ··· 0
0
0
a1
1

...
0
0
az
1

0
1
0
0

...
0
1
0
0

∈ Z4(δ+1)×δ
p

Ĉ =

w̄0 · · · w̄0

w1a1 + w2

. . .

w1az + w2

w0

. . .

w0

= (Iδ+1 ⊗w)F̂ ∈ Zp[w](δ+1)×δ

(21)

– CVEncK(y)→ m1 = 1,m2 = 2, L̂ =

(−1 0
0 0
0 y
0 1

)
, K̂ = wL̂ = (−w̄0, w1y + w2).

– EncC(S = {a1, . . . , az},m1 = 1, auxc = δ)→ n3 = 0, F = 0, C where

C =
(
s̄0w̄0 + s1(w1a1 + w2), . . . , s̄0w̄0 + sz(w1az + w2),

s̄0w̄0 + sz+1w0, . . . , s̄0w̄0 + sδw0)
)

= SĈ ∈ Zp[S,w]1×δ where S = (s̄0, s1, . . . , sδ).

– EncK(y, n1 = δ + 1)→ m3 = 1, L = (1, 0), K where

K = UL + S>K̂ ∈ Zp[S,U,w](δ+1)×2

=

u1,1 − s̄0w̄0, s̄0(w1y + w2)
u2,1 − s1w̄0, s1(w1y + w2)

...
...

uδ+1,1 − sδw̄0, sδ(w1y + w2)

where U = {ui,j}i∈[δ+1],j∈[1] and S = (s̄0, s1, . . . , sδ).

– Pair(x, y, auxk) → E = (0, . . . , 0, 1, 0, . . . , 0)> ∈ Zδ×1
p , s.t. 1 is at i-th row, E =

(
1 0 0 0 0 ··· 0
0 ··· 0 −1 0 ··· 0

)
∈

Z2×(δ+1)
p , where −1 is at the (i+ 1)-th column, where i is such that ai = y.

PES for Key-Policy Monotone Span Programs over Large Universe. This predicate is
defined as PKP−MSP := KP1[PCSM]. Let Yκ be the attribute universe. From Definition 4.7, we obtain
the concrete definition of PKP−MSPκ = KP1[PCSM

κ] : X̄κ × Ȳκ → {0, 1} as follows. We have X̄κ = 2Yκ

60

and Ȳκ =
⋃

(n,m)∈N2(Zn×mp × Φn), where Φn consists of all functions φ : [n] → Yκ. For S ⊆ Yκ (i.e.,

S ∈ X̄κ) and (M, φ) ∈ Ȳκ where M ∈ Zn×mp and mi is the i-th row of M, we have

PKP−MSP
κ (S, (M, φ)) = 1⇔ (1,0) ∈ span({mi}i∈[n]:φ(i)∈S).

We obtain a PES ΓKP−MSP using the KP1-Trans transformation over the above PES for PCSM

as follows. We set auxc, auxk as in the PES for PCSM. That is, for X = {S1, . . . , SL} ⊆ Xκ, we set
auxc = δ := maxi∈[L] |Si|. Note that auxk = ε.

– Param(κ)→ 4. Let w = (w̄0, w0, w1, w2).

– CVEncC(S = {a1, . . . , az}, auxc = δ) → n1 = δ + 1, n2 = δ, F̂, Ĉ where F̂, Ĉ are exactly as in
Eq. (21).

– CVEncK((M, φ))→ m1 = n,m2 = 2n, L̂, K̂ where

L̂ =

−1 0
0 0
0 φ(1)
0 1

. . .
−1 0
0 0
0 φ(n)
0 1

 ∈ Z4n×2n
p .

K̂ =

−w̄0, w1φ(1) + w2

. . .

−w̄0, w1φ(n) + w2

 = (In ⊗w)L̂ ∈ Zp[S,U,w]n×2n.

– EncC(S = {a1, . . . , az},m1 = n, auxc = δ)→ n3 = 0, F = 0, C where

C = SĈ ∈ Zp[S,w]n×δ

where S is of size n× (δ+ 1). To write C explicitly, and to relate terms with the base previous PES
for PCSM

κ , we set

S =

s̄0,1, s1,1, . . . , sδ,1
...

s̄0,n, s1,n, . . . , sδ,n

 .

Then, we have C =

b1

...
bn

 where

bi :=
(
s̄0,iw̄0 + s1,i(w1a1 + w2), . . . , s̄0,iw̄0 + sz,i(w1az + w2),

s̄0,iw̄0 + sz+1,iw0, . . . , s̄0,iw̄0 + sδ,iw0)
)
.

– EncK((M, φ), n1 = δ + 1)→ m3 = m, L, K where

L = (m>1 ,0, · · · ,m>n ,0)

K = UL + S>K̂ ∈ Zp[S,U,w](δ+1)×2n

61

where mi is the i-th row of M, U = {ui,j}i∈[δ+1],j∈[m], and S is as above. In explicit terms, we have
K = (B1, . . . ,Bn) where

Bi :=

u1m

>
i − s̄0,iw̄0, s̄0,i(w1φ(i) + w2)

u2m
>
i − s1,iw̄0, s1,i(w1φ(i) + w2)

...
...

uδ+1m
>
i − sδ,iw̄0, sδ,i(w1φ(i) + w2)

 ∈ Zp[S,U,w](δ+1)×2

where uj := (ui,1, . . . ui,m).

– Pair(x, y, auxc) → E,E described as follows. Let Ω be a set such that φ(i) = aji ∈ S for i ∈
Ω and (1,0) ∈ span({mi}i∈Ω), and τ1, . . . , τn ∈ Zp be coefficients such that τi = 0 for i 6∈

Ω and
∑
i∈[n] τimi = (1,0). We set E′ = (τ1E1|| · · · ||τnEn) and E

′
=

(
τ1E1

...
τnEn

)
where Ei =

(0, . . . , 0, 1, 0, . . . , 0)> ∈ Zδ×1
p where 1 is at ji-th row, and Ei =

(
1 0 0 0 0 ··· 0
0 ··· 0 −1 0 ··· 0

)
∈ Z2×(δ+1)

p , where
−1 is at the (ji + 1)-th column.

PES for Ciphertext-Policy Monotone Span Programs over Large Universe. This predicate
is defined as PCP−MSP := Dual[KP1[PCSM]]. Let Xκ be the attribute universe. We obtain the concrete
definition of PCP−MSPκ : X̄κ × Ȳκ → {0, 1} as follows. We have Ȳκ = 2Xκ and X̄κ =

⋃
(n,m)∈N2(Zn×mp ×

Φn), where Φn consists of all functions φ : [n]→ Xκ. For S ⊆ Xκ (i.e., S ∈ Ȳκ) and (M, φ) ∈ X̄κ where
M ∈ Zn×mp and mi is the i-th row of M, we have

PCP−MSP
κ ((M, φ), S) = 1⇔ (1,0) ∈ span({mi}i∈[n]:φ(i)∈S).

We obtain a PES ΓCP−MSP using the Dual-Trans transformation over the above PES for PKP−MSP

as follows. For Y = {S1, . . . , SL} ⊆ Yκ, we set auxk = δ := maxi∈[L] |Si|. Note that auxc = ε.

– Param(κ)→ 5. Let w = (¯̄w0, w̄0, w0, w1, w2).

– CVEncC((M, φ))→ n1 = n+ 1, n2 = 2n, F̂, Ĉ where

F̂ =

1 ··· 1
0 ··· 0
0 ··· 0
0 ··· 0
0 ··· 0
0 0
−1 0
0 0
0 φ(1)
0 1

. . .
0 0
−1 0
0 0
0 φ(n)
0 1

∈ Z5(n+1)×2n

p .

Ĉ =

¯̄w0m1,1 0 · · · ¯̄w0mn,1 0
−w̄0, w1φ(1) + w2

. . .

−w̄0, w1φ(n) + w2

 = (In+1 ⊗w)F̂ ∈ Zp[w](n+1)×2n.

62

– CVEncK(S = {a1, . . . , az}, auxk = δ)→ m1 = δ + 1,m2 = δ + 1, L̂, K̂ where

L̂ =

1 1 ··· 1
0 0 ··· 0
0 0 ··· 0
0 0 ··· 0
0 0 ··· 0
0
0
0
a1
1

...
0
0
0
az
1

0
0
1
0
0

...
0
0
1
0
0

∈ Z5(δ+1)×(δ+1)
p

K̂ =

− ¯̄w0 w̄0 · · · w̄0

0 w1a1 + w2

. . .

w1az + w2

w0

. . .

w0

= (Iδ+1 ⊗w)L̂ ∈ Zp[w](δ+1)×(δ+1)

– EncC((M, φ),m1 = δ + 1)→ n3 = m− 1, F, C where

F =
(
m>1 , 0, · · · , m>n , 0

)
∈ Z(m−1)×2n

p

C = TF + SĈ ∈ Zp[S,T,w](δ+1)×2n

where here mi = (mi,2, . . . ,mi,m), which is the i-th row of M but without the first element (i.e.,
mi,1) and T = {ti,j}i∈[δ+1],j∈[m−1] and

S =

¯̄s0 s̄0,1 · · · s̄0,n

¯̄s1 s1,1 · · · s1,n

...
¯̄sδ sδ,1 · · · sδ,n

 .

In explicit terms, we have C =
(
B1, · · · , Bn

)
where

Bi :=

t1m

>
i − s̄0,iw̄0 + ¯̄s0 ¯̄w0mi,1, s̄0,i(w1φ(i) + w2)

t2m
>
i − s1,iw̄0 + ¯̄s1 ¯̄w0mi,1, s1,i(w1φ(i) + w2)

...
...

tδ+1m
>
i − sδ,iw̄0 + ¯̄sδ ¯̄w0mi,1, sδ,i(w1φ(i) + w2)

 ∈ Z(δ+1)×2
p

where tj := (ti,1, . . . ti,m−1).
– EncK(S = {a1, . . . , az}, n1 = n+ 1, auxk = δ)→ m3 = 1, L, K where

L = (1,0) ∈ Z1×(δ+1)
p

K = UL + S>K̂ ∈ Zp[S,U,w](n+1)×(δ+1)

63

where U = (u1, . . . , un+1)>. In explicit terms, we have K =

k0

k1

...
kn

 where

k0 :=
(
u1 − ¯̄s0 ¯̄w0, ¯̄s0w̄0 + ¯̄s1(w1a1 + w2), . . . , ¯̄s0w̄0 + ¯̄sz(w1az + w2),

¯̄s0w̄0 + ¯̄sz+1w0, . . . , ¯̄s0w̄0 + ¯̄sδw0)
)
,

ki :=
(
ui+1 − s̄0,i ¯̄w0, s̄0,iw̄0 + s1,i(w1a1 + w2), . . . , s̄0,iw̄0 + sz,i(w1az + w2),

s̄0,iw̄0 + sz+1,iw0, . . . , s̄0,iw̄0 + sδ,iw0)
)
,

for i ∈ [n].

– Pair(x, y, auxk) → E′,E
′

=
(

1 0
0> B

)
described as follows. Let Ω be a set such that φ(i) = aji ∈ S

for i ∈ Ω and (1,0) ∈ span({mi}i∈Ω), and τ1, . . . , τn ∈ Zp be coefficients such that τi = 0 for

i 6∈ Ω and
∑
i∈[n] τimi = (1,0). We set E′ =

(
τ1E1

...
τnEn

)
and B = (τ1E1|| · · · ||τnEn) where Ei =

(0, . . . , 0, 1, 0, . . . , 0)> ∈ Zδ×1
p where 1 is at ji-th row, and Ei =

(
1 0 0 0 0 ··· 0
0 ··· 0 −1 0 ··· 0

)
∈ Z2×(δ+1)

p , where
−1 is at the (ji + 1)-th column.

E.3 PES for Completely Unbounded NMSP Predicates

In this section, we describe a PES construction for sReg-ABE for completely unbounded ciphertext-
policy non-monotone span programs, which we stated the result in Section 7.

PES for NIBE. We start with the predicate encoding ΓNIBE for inequality or also called negated
IBE predicate, PNIBE. We have that auxc = auxk = ε (the empty string) and

– Param(κ)→ 2. Let w = (w1, w2).

– CVEncC(x)→ n1 = 1, n2 = 1, F̂ = (x, 1)>, Ĉ = w1x+ w2.

– CVEncK(y)→ m1 = 1,m2 = 2, L̂ = (y, 1)>, K̂ = (w1, w1y + w2).
– EncC(x,m1)→ n3 = 0, F = 0, C = s(w1x+ w2).
– EncK(y, n1)→ m3 = 1, L = (1, 0), K = (u+ sw1, s(w1y + w2)).
– Pair(x, y)→ E = − 1

x−y , E = (1, 1
x−y)>.

The correctness holds as tr(EC(S,T,w)) + tr(EK(S,U,w)) = (− 1
x−y)s(w1x + w2) + (1, 1

x−y)>(u +

sw1, s(w1y + w2)) = u, for x 6= y.

Lemma E.3. The PES ΓNIBE for PNIBE satisfies ciphertext and key well-formedness, and KE-ind.

Proof. The above PES is a secure predicate encoding in [Att19, Construction 9] for PNIBE. Via Lemma 3.1,
we obtain the corresponding PES for sReg-ABE which satisfies ciphertext and key well-formedness,
and KE-ind for this predicate.

PES for NIBE with Wild Card. We next obtain a PES ΓNIBE+w for the predicate WC[PNIBE] via
the WC-Trans transformation to the PES for NIBE above. We have that auxc = auxk = ε (the empty
string)15 and

15 In the WC-Trans transformation, it is indeed the case that we define auxk as follows (see the proof of
Lemma C.3). For Y ′ ⊆ Yκ ∪ {∗}, set auxk = y′ ∈ Yκ, where y′ is a non-∗ element (say, the first) in Y ′.
However, this y′ element is only used to compute L in the case of a generic predicate. However, for the NIBE
(with wild card) predicate here, we simply have L = (1, 0), and we can neglect auxk completely.

64

– Param(κ)→ 2. Let w = (w1, w2).

– CVEncC(x)→ n1 = 1, n2 = 1, F̂ = (x, 1)>, Ĉ = w1x+ w2.

– CVEncK(y)→ m1 = 1,m2 = 2, L̂ = (y, 1)>, K̂ =

{
(w1, w1y + w2) if y ∈ Yκ

0 if y = ∗
.

– EncC(x,m1)→ n3 = 0, F = 0, C = s(w1x+ w2).

– EncK(y, n1)→ m3 = 1, L = (1, 0), K =

{
(u+ sw1, s(w1y + w2)) if y ∈ Yκ

u if y = ∗
.

– Pair(x, y)→ E =

{
− 1
x−y if y ∈ Yκ

0 if y = ∗
, E =

{
(1, 1

x−y)> if y ∈ Yκ

(1, 0) if y = ∗
.

PES for Key-Set Non-membership. We next obtain a PES ΓKSNM for the key-set non-membership
predicate PKSNM

κ : Xκ × Yκ → {0, 1}, where Yκ = 2Xκ , defined as PKSNM
κ (x, S) = 1⇔ x 6∈ S. Note that

this is exactly the negated predicate of the key-set membership predicate. It is straightforward to see
that PKSNM can be embedded into the predicate KP1AND[WC[PNIBE]], with the same embedding as in
the case of the key-set membership predicate. Note that KP1AND is the key policy conjunction as per
Definition 4.4. Hence we can apply the KP1AND-Trans to the PES ΓNIBE+w above and obtain a new PES
ΓKSM. We will not write the PES explicitly here, as it is somewhat analogous to the key-set membership
predicate. From Table 2, the obtained PES ΓKSNM has parameters ω = 2, (n1, n2, n3) = (1, 1, 0),
(m1,m2,m3) = (δ, 2δ, δ).

PES for Ciphertext-Set Non-membership (IBR). This predicate is defined as PCSNM
κ : Xκ×Yκ →

{0, 1}, where Xκ = 2Yκ , defined as PCSNM
κ (S, y) = 1⇔ y 6∈ S. It exactly defines the predicate for IBR

(ID-based revocation). It is the dual of the key-set non-membership predicate; therefore, we obtain its
PES ΓCSNM by the Dual-Trans transformation to the PES ΓKSNM. From Table 2, the obtained PES
ΓCSNM has parameters ω = 3, (n1, n2, n3) = (δ + 1, 2δ, δ − 1), (m1,m2,m3) = (1, 2, 1).

PES for Ciphertext-Set Two-mode-membership (TIBBE). Let Y = Zp be the base attribute
domain. This predicate is defined as PCSTM

κ : X̄κ × Ȳκ → {0, 1}, where X̄κ = 2Yκ and Ȳκ = {1, 2}× Yκ,
defined as

PCSTM
κ (S, (i, y)) = 1 ⇐⇒ (i = 1 ∧ y ∈ S) ∨ (i = 2 ∧ y 6∈ S).

This is also called two-mode IBBE (TIBBE) in [Att19,AT20]. In [Att19,AT20], a PES for vanilla ABE
for this predicate is obtained by the direct sum composition of PES for IBBE and IBR. However, here,
we do not have the direct sum composition in the case of PESs intended for sReg-ABE. We instead
use the static predicate OR composition, namely, SPCOR (cf. Section 4.5) over IBBE (CSM) and IBR
(CSNM), together with Null attributes in both key attribute domains. More precisely, we observe the
following lemma. Via this lemma, we have a PES, denoted as ΓCSTM for predicate PCSTM.

Lemma E.4. PCSTM can be embedded into P̃ := Null[PCSM]∨Null[PCSNM], where the latter is the static
predicate OR composition defined in Section 4.5.

Proof. The considered predicate P̃ : X̃κ × Ỹκ → {0, 1} can be described explicitly as follows. We have
X̃κ = 2Yκ × 2Yκ and Ỹκ = Yκ ∪ {null′} × Yκ ∪ {null′}.16

P̃((S′, S′′), (y′, y′′)) = 1 ⇔ ((y′ ∈ S′) ∧ (y′ 6= null′)) ∨ ((y′′ 6∈ S′′) ∧ (y′′ 6= null′′)).

We map fc : X̃κ → X̄κ and fk : Ỹκ → Ȳκ as:

fc : S 7→ (S, S) fk :(1, y) 7→ (y, null′′)

(2, y) 7→ (null′, y)

16 Note that PCSM already contains the null attribute but in the ciphertext attribute domain17. In contrast,
we add a new null attribute to the key attribute domain here. For unambiguity, we use two new different
symbol null′, null′′.

65

It is then straightforward to see that PCSTM
κ (S, (i, y)) = 1 ⇔ P̃(fc(S), fk((i, y))) = 1, and hence the

lemma holds.

From Table 2, the obtained PES ΓCSTM has parameters ω = 9, (n1, n2, n3) = (δ + 1, 3δ, δ − 1),
(m1,m2,m3) = (1, 4, 1).

PES for Key-Policy Non-monotone Span Programs. This predicate can be defined exactly
as PKP−NMSP := KP1[PCSTM], where KP1 is the KP augmentation defined as in Definition 4.7. There-
fore, we can obtain a PES, denoted ΓKP−NMSP, for PKP−NMSP by applying the KP1-Trans to the PES
ΓCSTM for the PCSTM predicate. From Table 2, the obtained PES ΓKP−NMSP has parameters ω = 9,
(n1, n2, n3) = (δ + 1, 3δ, δ − 1), (m1,m2,m3) = (n, 4n,m), where n×m is the size of policy matrix.

PES for Ciphertext-Policy Non-monotone Span Programs. This predicate is defined exactly
as PCP−NMSP := Dual[PKP−NMSP]. Therefore, we can obtain a PES, denoted ΓCP−NMSP for PCP−NMSP by
applying the Dual-Trans to the PES ΓKP−NMSP for the PKP−NMSP predicate. From Table 2, the obtained
PES ΓKP−NMSP has parameters ω = 10, (n1, n2, n3) = (n+1, 4n,m−1), (m1,m2,m3) = (δ+1, 3δ+1, δ),
where n×m is the size of policy matrix.

E.4 PES for More Complex Non-monotone Span Programs

The non-monotone predicate in the previous subsection is a simple type called the OSW-type (for
Ostrovsky-Sahai-Waters [OSW07]) as per [AT20]. There is also another type called Okamoto-Takashima
(OT) [OT10]. A more general type that unifies these two types is called the OSWOT-type as per [AT20].
The definition is as follows. The intuition is that a single attribute set associated to a key as in CP-
NMSP now becomes a set of pairs of id and attribute set. The id serves as label and the atomic policy
returns 1 only if there is an attribute with the same label.

Definition E.2. The predicate of completely unbounded ciphertext-policy general OSWOT-type non-
monotone span programs PCP−GNMSP : X̄κ× Ȳκ → {0, 1} for large attribute universe Xκ = Zp is defined
as follows. Let

Ȳκ = { {(id1, S1), . . . , (idt, St)} | idi ∈ Zp, Si ⊆ Zp, t ∈ N, if i 6= j then idi 6= idj }.

and X̄κ =
⋃

(n,m)∈N2(Zn×mp × Φn), where Φn consists of all functions φ : [n]→ ({pos, neg} × Zp × Zp).
For S = {(id1, S1), . . . , (idt, St)} ∈ Ȳκ and (M, φ) ∈ X̄κ where M ∈ Zn×mp and mi is the i-th row of
M, we define

PCP−GNMSP
κ ((M, φ), S) = 1⇔(1,0) ∈ span({mi}i∈[n] s.t. P′′(φ,S)=1),

P′′(φ, S) = 1⇔
(
φ1(i) = pos ∧ (∃j : φ2(i) = idj ∧ φ3(i) ∈ Sj)

)
∨(

φ1(i) = neg ∧ (∃j : φ2(i) = idj ∧ φ3(i) 6∈ Sj)
)
,

where φ(i) = (φ1(i), φ2(i), φ3(i)).

Lemma E.5. There exists a PES for sReg-ABE for completely unbounded ciphertext-policy general
OSWOT-type non-monotone span programs with large universe U = Zp which satisfies key well-
formedness and KE-ind, while achieving parameters ω = 15, (n1, n2, n3) = (2n + 1, 6n,m − 1), and
(m1,m2,m3) = (δ2(δ1 + 1) + 1, δ2(3δ1 + 2) + 1, δ2δ1 + 1), where n×m is the size of the policy matrix
M of the ciphertext policy (M, φ) and if we let {S1, . . . , SL} ⊆ Ȳκ be a set of registered key attributes,
we denote δ1 as the maximum size of set Si’s within any Sj, and δ2 as the maximum size of |Sj |.

Proof Sketch. A PES for this predicate can be constructed by our PES transformations by again
following the idea of [AT20]. A main difference is that we do not have the direct sum transformation
for PESs for sReg-ABE. However, this can be circumvented by using static AND and OR composition

66

and appropriate uses of Null attributes similarly to our construction of ΓCSTM for predicate PCSTM. In
fact, it is not difficult to see the following implications:

KP1OR[Null[SPCAND[PIBE, PKSTM]]]⇒ P′′′,

Dual[KP1[Dual[P′′′]]]⇒ PCP−GNMSP.

where the intermediate P′′′ : ({pos, neg} × Zp × Zp)× Ȳκ is defined by:

P′′′((x1, x2, x3), S) = 1⇔
(
x1 = pos ∧ (∃j : x2 = idj ∧ x3 ∈ Sj)

)
∨(

x1 = neg ∧ (∃j : x2 = idj ∧ x3 6∈ Sj)
)
.

The intuition is that we use static AND composition to combine the IBE and the key-set two-mode-
membership predicate (KSTM) to use as the check for the equality of id and that the (two-mode)
set membership holds. Note that PKSTM can be constructed as the dual of PCSTM. To enable the
∃j quantifier (in the definition of PCP−GNMSP), we then use key-policy disjunction together with null
attributes analogously to e.g., when constructing PES for PKSM. The second line of the implication
holds by definition of PCP−GNMSP. The parameter sizes can be deduced by following the implication
sequence and referring to Table 2. This concludes the proof.

67

	A Modular Approach to Registered ABE for Unbounded Predicates
	Introduction
	Our Results
	Technical Overview

	Preliminaries
	Definitions

	Pair Encoding Schemes for sReg-ABE
	Evaluating PES with Vectors/Matrices
	Properties of PES

	Predicate Transformations
	Addition of Null Attribute
	Addition of Wild Card
	Key-Policy Disjunction
	Key-Policy Conjunction
	Static Predicate Compositions
	Dual Predicates
	Key-Policy Augmentation
	Efficiency of Transformations

	Conforming PES for sReg-ABE
	sReg-ABE from PES
	Construction
	Security

	Applications and Comparisons
	sReg-ABE for Unbounded Span Programs
	Efficiency and Comparison to Previous Works

	References
	Matrix Substitution from Simplified to Full-fledged Schemes
	Registered ABE
	Lemmata for Predicate Transformations
	Lemmata for Null-Trans
	Lemmata for WC-Trans
	Lemmata for KP1OR-Trans
	Lemmata for KP1AND-Trans
	Lemmata for SPCM-Trans
	Lemmata for Dual-Trans
	Lemmata for KP1-Trans

	Lemmata for Security Proof of sReg-ABE
	PES Instantiations
	Embedding Lemma
	PES for Completely Unbounded MSP Predicates
	PES for Completely Unbounded NMSP Predicates
	PES for More Complex Non-monotone Span Programs

