
Provably Secure Butterfly Key Expansion from
the CRYSTALS Post-Quantum Schemes

Edward Eaton1, Philippe Lamontagne1,2 and Peter Matsakis1

1 National Research Council Canada
2 Université de Montréal, Montréal, Canada

Abstract. This work presents the first provably secure protocol for Butterfly Key
Expansion (BKE) – a tripartite protocol for provisioning users with pseudonymous
certificates – based on post-quantum cryptographic schemes. Our work builds upon
the CRYSTALS family of post-quantum algorithms that have been selected for
standardization by NIST. We extend those schemes by imbuing them with the
additional functionality of public key expansion: a process by which pseudonymous
public keys can be derived by a single public key. Our work is the most detailed
analysis yet of BKE: we formally define desired properties of BKE – unforgeability
and unlinkability – as cryptographic games, and prove that BKE implemented with
our modified CRYSTALS schemes satisfy those properties. We implemented our
scheme by modifying the Kyber and Dilithium algorithms from the LibOQS project,
and we report on our parameter choices and the performance of the schemes.
Keywords: Pseudonymous Certificates · Kyber · Dilithium · Post-Quantum

1 Introduction
Public key digital signatures are a powerful and convenient tool to establish the authenticity
of communications in a digital setting. Digital signatures are used to sign web pages, emails
and programs and form an important line of defense against many classes of cyberattacks,
such as phishing, man-in-the-middle, malware and supply chain attacks. Public keys are
the identity users employ to verify signatures. A valid signature for a message under a
particular public key gives confidence that the holder of the corresponding private key did
indeed sign the message.

In practice, public keys are not useful identifiers when compared to names, email
addresses and URLs. So keys are bundled with other identification information. This
bundle is then signed by a central authority to form a certificate. Anyone who trusts the
certificate authority (CA) can validate the identity of certificate holders by storing only
the CA’s public key.

In addition to authenticity, public key signatures offer non-repudiability. If pk is
associated with Alice’s identity through a valid CA certificate, any valid signature σ for a
message m can be traced back to her and her secret key sk. Moreover, she cannot claim
to not have signed m since only she should be able to produce valid signatures for pk.
This is a problem when privacy or anonymity is desired. For example, one may consider
a network where exchanges are authenticated (only authorized entities may send valid
messages), but anonymous (messages can’t be linked to a given entity). To achieve this,
the CA could issue many pseudonymous certificates to each entity, each with a different
public key. Then Alice can use her public key a few times before rotating to a new key.
This has a big communication overhead if keys are rotated often, since Alice must generate
and send many public keys to the CA to be signed. A clever trick to save on bandwidth is

https://orcid.org/0000-0002-4122-0208

2 Provably Secure BKE from pqCRYSTALS

to send a single public key and have the CA expand the key into multiple new public keys.
If the signature scheme has some homomorphic property between its private and public
keys, then Alice can derive the corresponding private key for each expanded public key.
For example in ECDSA, key pairs are of the form sk = u and pk = u ·G where G is a curve
point. The CA expands pk by adding a new multiple of G, obtaining pk′ = u ·G+u′ ·G and
signs pk′. If the CA sends pk′ and u′ to Alice, she can compute u + u′ as the corresponding
secret key.

A downside to the above approach is that the CA is now trusted for both the authenticity
and the anonymity of the scheme. This is remediated with the introduction of a new entity,
the registration authority (RA), responsible for anonymizing requests sent to the CA, such
that no single entity can break anonymity. Briefly, the RA amasses many public keys,
does a first round of key expansion and shuffles the keys before sending them to the CA.
The CA expands them again and signs the resulting keys sending them back to the RA,
who forwards them to Alice. To prevemt the RA from linking expanded keys to identities,
Alice also sends the RA her public key for an encryption scheme, which is expanded by
the RA and used by the CA to encrypt the certificates. The resulting scheme is called1

butterfly key expansion (BKE) [Why+13].

1.1 Related Work
Butterfly key expansion as a solution to the pseudonymity problem in certificate provisioning
comes from a Security Credential Management System (SCMS) designed for vehicle-to-
vehicle (V2V) communication [Why+13]. It is one of the leading candidates for credential
management in V2V, with a recent proof of concept by CAMP [LLC16] and receiving
scrutiny by the US Department of Transportation [Uni19] and Transport Canada [Can19].
The full SCMS includes other entities such as a Linkage Authority and a Misbehavior
Authority which as the names imply exist to identify (link) and revoke certificates issued
to misbehaving entities. Since our work focuses on unlinkability and unforgeability of
certifiate issuance, we do not include those authorities which deal with revocation. A
subsequent work [Sim+18] improves the bandwidth of the SCMS by using the same public
key for both the signature and encryption schemes.

In our literature review, we found two papers focused on implementing butterfly key
expansion with post-quantum schemes.

The first is a 2018 preprint [Bar+18] that focuses on building a unified butterfly key
expansion protocol. In unified butterfly key expansion [Sim+18], only one public key is sent
and expanded, which is used for both signing and encryption. For discrete-logarithm based
systems this is relatively straightforward, but becomes more challenging for lattice-based
schemes. Even though public keys in many lattice-based protocols are module learning
with errors samples, the parameters, rings, and distributions of values are tailored much
more specifically than in discrete logarithm systems.

In [Bar+18], the authors based their signature scheme on
qTESLA [Alk+20] (a Ring-LWE signature scheme conceptually similar to Dilithium
that was not selected for standardization by the NIST process due to efficiency concerns).
The key exchange protocol was based on the Lyubashevsky-Peikert-Regev system [LPR13],
which is also part of the lineage of Kyber.

In a more recent paper [SB23] the authors report the results of replacing elliptic curve
cryptography with the post-quantum system NTRU [Che+20] in butterfly key expansion.
As noted in previous work [Bar+18], the fundamental property that enables butterfly key
expansion is a homomorphism between the secret key and public key domains, something
which both LWE and discrete logarithm based solution enjoy. NTRU has no obvious

1The caterpillar key of Alice is expanded into cocoons by the RA and expanded again into butterflies
by the CA.

Edward Eaton, Philippe Lamontagne, Peter Matsakis 3

homomorphic structure between its secret and public key domains, making it unclear
precisely how butterfly key expansion with NTRU might operate.

The method by which public keys are expanded in BKE is similar to the notion of
public key blinding in the context of digital signatures, which rerandomizes the public key
in such a way that it is unlinkable to the original public key and the secret key owner
can still issue valid signatures with respect to the blinded public key. Post-quantum key
blinding schemes (including for Dilithium) were first introduced in [ESS21].

1.2 Our Contributions

We introduce variants of the Kyber and Dilithium encryption and signature schemes
that allow for their public keys to be expanded – a means by which public keys can be
rerandomized while preserving functionality. We present methods for expanding public
keys and to rederive the corresponding secret keys such that the scheme is still secure
with respect to expanded keys. When we instantiate the butterfly key expansion protocol
with our variants, we obtain a certificate management system that improves upon previous
works in a few key ways.

Standardized Schemes Our protocol is based on Dilithium and Kyber, which have
been selected for standardization by NIST. Our protocol makes minimal changes, largely
focusing on small parameter tweaks. In this way, our protocol benefits in part from the
public scrutiny Dilithium and Kyber have received over the years, as well as the strong
performance characteristics of the two. The end result is smaller as well, with the final
encrypted package sent to vehicles being around 2000 bytes smaller than [Bar+18]2.

Provable Security There are often significant gaps in the scrutiny received by cryp-
tographic primitives compared to more complex cryptographic protocols which are often
presented without security reductions. Our work closes this gap for butterfly key expansion:
we introduce a framework for provable security of BKE. We define the notions of unlink-
ability and unforgeability of BKE as cryptographic games. We prove that our scheme
satisfies those definition assuming the hardness of MLWE, in the random oracle model.
Our definitions are general enough to account for subtle attacks that an adversary could
potentially launch, like being able to see which expanded public keys a vehicle uses or
doesn’t use, and whether that leaks identifying information. This level of detail in the
security analysis was not present in prior works.

Implementations and Benchmarki We have implemented the tweaked Kyber and
Dilithium schemes as a fork of the widely used PQC library LibOQS [SM17]3. We report
on the performance of our implementation in Appendix 5.

Unified Butterfly Key Expansion Previous works introduced the unified variant
of BKE, in which the expanded public keys are used for both encryption and signature
verification. Reusing keys for different purposes is generally seen as unsafe (see for example
Appendix A.1). We describe what types of signature and encryption schemes can be safely
combined to use the same public key. Our results show that Dilithium and Kyber public
keys can in theory be safely used for both encryption and signature verification, as long as
there exist sets of parameters where the public keys of both schemes are compatible.

2See Appendix 5.
3https://github.com/open-quantum-safe/liboqs

https://github.com/open-quantum-safe/liboqs

4 Provably Secure BKE from pqCRYSTALS

2 Background
2.1 Notation and Preliminaries
For n ∈ N, we let [n] = {0, . . . , n− 1}. For a set S, we let u←$ S denote that u is sampled
uniformly at random from S. We write X ← D to denote that X is sampled according to
distribution D. Kyber and Dilithium use the following distributions. We let Bη as the
binomial distribution of width η: sample (a1, . . . , aη, b1, . . . , bη) ∈ {0, 1}2η uniformly at
random and output X =

∑η
i=1(ai − bi). We let Sη denote the uniform distribution over

[−η, η].
The hardness assumption on which both Kyber and Dilithium rely is the module

learning with errors assumption.

Definition 1 (Module learning with errors with static A matrix). Let Rq be the ring
Zq[X]/(Xn +1) of polynomials over Zq and let D be a probability distribution over Rq. Let
A ←$ Rm×k

q , let u1, . . . , uN ←$ Rm
q and let s1, . . . , sN ← Dk and e1, . . . , eN ← Dm. The

decisional module learning with errors problem with static A matrix (S-MLWE) consists of
distinguishing (A, u1, . . . , uN) from (A, As1 +e1, . . . , AsN +eN). For any PPT algorithm A,
we define AdvS-MLWE

A,D as the advantage of adversary A in distinguishing both distributions.

The regular MLWE assumption corresponds to N = 1 in the above definition. The
distribution D is typically the discrete Gaussian distribution. Kyber and Dilithium use
distributions Bη and Sη respectively, as defined above. We state the S-MLWE assumption
as the assumption that AdvS-MLWE

A,D ≤ negl(n) for D ∈ {Bη, Sη}, where the exact values for
η can be found in Sections 3 and 4. We observe that if the MLWE problem is hard with
distribution D, then so is the S-MLWE problem, which reuses the same A matrix over
multiple samples. A standard hybrid argument (to our knowledge first used in the context
of LWE in [PW11]) can reduce S-MLWE to LWE. The proof is straightfoward, so refer to
Appendix B for the details.

2.2 Butterfly Key Expansion
Butterfly key expansion (BKE) was introduced in [Why+13] in the context of vehicle-to-
vehicle (V2V) communications. The BKE process provisions a vehicle with an arbitrary
number of pseudonymous certificates while satisfying two fundamental properties:

• The computational and communication burden on the vehicle is minimized. In
particular, its role is limited to providing two public keys and receiving the certified
public keys.

• Neither the Registration Authority nor the Certificate Authority alone is capable of
compromising the pseudonimity of issued certificates.

Butterfly key expansion works as follows: A single pair of caterpillar public keys (one for
encryption, one for signing)4 is generated by the vehicle and provided to the Registration
Authority (RA). The RA takes these keys and checks the vehicle’s eligibility to receive
a collection of pseudonymous certificates. After this check, the caterpillar public keys
(pks, pke) for a signature and encryption scheme are expanded into many public keys
{(pks,i, pke,i)}i∈[N]. The RA does this by pseudorandomly generating additional public
keys with a seed known to the vehicle and adding them to the caterpillar keys. As noted
in [Bar+18], the essential property to enable this is a homomorphism between the private
and public key spaces. The result of adding together two public keys is still a public key,

4In the unified variant of BKE, the same public key is used for both the signature and encryption
schemes.

Edward Eaton, Philippe Lamontagne, Peter Matsakis 5

with the secret key corresponding to the sum of the two individual secret keys.5 The intent
of this process is that the caterpillar public keys are entirely re-randomized, such that
observing the resulting public keys reveals no information about the original, but such that
the original caterpillar secret keys are still required to sign or decrypt messages. The RA
is then meant to produce and collect a large number of these keys, from a large number
of vehicles. The expanded public keys from many vehicles are then ‘shuffled’ to provide
unlinkability against the CA. This bundle of shuffled expanded key pairs is forwarded on
to the certificate authority.

The certificate authority (CA) receives this bundle of public key pairs, and is unable to
link together any two pairs as coming from the same vehicle. The CA expands each signing
key once more to ensure unlikability against the RA. The CA then creates a certificate
for the doubly expanded signing keys. Note that the RA has never seen this public key,
and the certificate authority has no way to connect one pseudonymous public key to
another. The remaining task is to get the certificates and the final public keys back to the
vehicle. The CA uses the expanded encryption key to encrypt the certificate and its secret
expansion nonce. The CA signs and sends the resulting ciphertexts back to the RA, so
that the RA can sort the encrypted packages out and forward them to the correct vehicle.

Finally, the vehicle receives a collection of encrypted and signed packages {pkgi}i∈[N]
from the RA. Now, whenever they need a new pseudonymous key pair and certificate
they derive the expanded encryption secret key, decrypt the package, and then derive the
(doubly expanded) signature key pair along with the CA’s certificate for this key pair.

This process is illustrated in Figure 1. For the purpose of simplicity, this figure omits
the important step of having the RA bundle and shuffle together expanded public keys
from many vehicles. This is the step that provides unlinkability for the vehicle against the
CA.

In order to be used in a BKE scheme, the public key encryption and signature schemes
must be augmented with the following procedures.

• Expand(pk, τ) produces an expanded public key pk′ using the random seed τ . For
MLWE–based schemes, this means sampling a new public key and adding it to pk.

• Receive(sk, τ) computes the secret key sk′ corresponding to the expanded key pk′

derived from pk and τ .

The security properties that we ask of such public-key schemes are the same as for the
original, but they should hold with respect to the expanded key pair (pk′, sk′) for any seed
τ .

The Expand algorithm is explicit in our modifications to Kyber and Dilithium, but we
do not implement the Receive procedure directly in Kyber. Instead, since encryption keys
are only used once to decrypt the packages, secret key reception for Kyber is done in the
decryption procedure, which receives an additional parameter τ . For Dilithium, public
keys are expanded twice, so the Receive procedure receives two expansion seeds τ and τ ′

and computes the secret key for the doubly expanded public key.

2.3 Security Model
The two stated goals of security with respect to butterfly key expansion are that of
unlinkability and unforgeability. Unlinkability refers to the scheme’s effectiveness at
providing the expected level of pseudonymity. In other words, the resulting public keys
and certificates (as well as any signatures issued under those public keys) cannot be ‘linked’
as having originated from the same vehicle, except possibly through the use of out-of-band

5For MLWE based schemes, the public keys are of the form As + e with private key s. Adding two
public keys (with the same A matrix) yields (As + e) + (As′ + e′) = A(s + s′) + (e + e′) which has the
associated private key s + s′.

6 Provably Secure BKE from pqCRYSTALS

(pke, ske)← PKE.KeyGen()
(pks, sks)← Sig.KeyGen()

For i ∈ [N], do
τi ← H(pke, pks, i)
ske,i ← PKE.Receive(ske, τi)
sks,i ← Sig.Receive(sks,i, τi)

For i ∈ [N], do
(σi, τ ′

i)← PKE.Dec(pkgi, ske,i)
pk′

s,i ← Expand(Expand(pks, τi), τ ′
i)

Reject if Ver(pkCA, pk′
s,i, σi) = 0

or Ver(pkCA, pkgi, sigi) = 0
sk′

s,i ← Sig.Receive(sks, τi)
Output {(σi, pk′

s,i, sk′
s,i)}i∈[N].

For i ∈ [N], do
τi ← H(pke, pks, i)
pke,i ← PKE.Expand(pke, τi)
pks,i ← Sig.Expand(pks, τi)

For i ∈ [N], do
τ ′

i ← {0, 1}λ

pk′
s,i ← Sig.Expand(pks,i, τ ′

i)
σi ← Sign(skCA, pk′

s,i)
pkgi ← PKE.Enc(pke,i, (σi, τ ′

i))
sigi ← Sig.Sign(skCA, pkgi)

Vehicle Registration Authority Certification Authority

(pks, pke) {(pks,i, pke,i)}i∈[N]

{(pkgi, sigi)}i∈[N]

Figure 1: The Butterfly key expansion process with a single vehicle. The full protocol
would include shuffling keys from different vehicles by the registration authority (which
provides unlinkability against the certificate authority and is represented here by the
twirling lines) and the inclusion of additional metadata in the certificate.

data (for example, having observed the origin of two pseudonyms as being the same vehicle).
The unlinkability property is meant to hold even against the registration authority and
certificate authority. It is easy to see that unlinkability cannot hold against a collaborating
registration and certificate authority. We therefore can only prove unlinkability by making
a non-collusion assumption between the RA and the CA.

Unforgeability refers to the idea that only the vehicle should be able to produce
signatures for their public keys. Because we are concerned about the possibility of a
malicious certificate authority, defining what constitutes a public key belonging to a vehicle
becomes trickier. A malicious CA can clearly make their own public key, create a certificate
for it as if it belongs to a vehicle, and then create signatures all without the vehicle’s
knowledge or interaction with the protocol. Indeed, this problem is not unique to SCMS
and corrupted certificate authorities constitute a significant problem in general. For our
purposes, the best we can hope for is that if the vehicle has accepted a butterfly public key
as belonging to them (that is, they have reconstructed it at the end of the pseudonymous
certificate provisioning process) then only they can craft signatures for such a key. Anyone
else, including the CA, cannot create signatures for a public key that the vehicle might
actually use. This helps to minimize the amount of trust that we place in the CA. Note
however, that unforgeability does not require an assumption that the RA and the CA do
not collude.

This results in essentially three security properties (and proofs) being needed – unlink-
ability against the CA, unlinkability against the RA, and unforgeability against the RA
and CA collaborating. Note that these three models imply security in other settings, such
as against an external adversary not involved in the certificate provisioning process. We
now define those security properties as security games.

2.3.1 Unlinkability against a Malicious Certificate Authority

For unlinkability against a malicious certificate authority, we ask that it should not be
able to tell, given two certificates it emitted, whether they correspond to the same vehicle
or not. Unlinkability against the CA is enforced by the random shuffling of the expanded

Edward Eaton, Philippe Lamontagne, Peter Matsakis 7

keys from multiple vehicles that is performed by the registration authority.
To model unlinkability against the CA, we conceive a game between the malicious

CA and a challenger. The challenger plays the role of both the vehicle and the RA: it
generates signature and encryption keys for two vehicles, expands them as the RA would,
shuffles them and sends them to the CA. The goal of the malicious CA is now to output a
pair of indices (i, j) such that the expanded public key pairs (pke,i, pks,i) and (pke,j , pks,j)
originate from the same vehicle. To capture all possible strategies to the malicious CA in
the packages it sends back to the RA, we give it access to a decryption oracle6 for the
expanded encryption keys and to a signature oracle for the expanded signature keys. The
BKE scheme is unlinkable against a malicious CA if the probability of winning the game
is not noticeably larger than the trivial N−1

2N−1 = 2 ·
(

N
2
)
/
(2N

2
)
.

Definition 2 (Unlinkability of BKE against malicious certificate authority). We define
unlinkability against a malicious certificate authority (UL-CA) of butterfly key expansion
as the following game.

1. For b ∈ {0, 1}, the challenger samples key pairs (pk(b)
e , sk(b)

e)← PKE.KeyGen(1λ) and
(pk(b)

s , sk(b)
s)← Sig.KeyGen(1λ) for a public key encryption scheme Enc and signature

scheme Sig.

2. For each b ∈ {0, 1}, the challenger computes N expansions of the public keys
(pk(b)

e , pk(b)
s), resulting in 2N expanded keys {(pke,i, pks,i)}i∈[2N]

3. The challenger picks a random permutation π of 2N elements and sends {(pke,π(i), pks,π(i))}i∈[2N]
to the adversary.

4. The adversary has, for each i ∈ [2N], oracle access to a key decapsulation oracle for
PKE.Dec(pke,i, ·) and to a signing oracle for Sig.Sign(pks,i, ·).

5. The adversary outputs two indices i, j ∈ [2N]. The challenger outputs 1 if the key
pairs indexed by i and j were both expanded from the same key pair (pk(b)

e , pk(b)
s)

for some b ∈ {0, 1}.

The advantage of a malicious CA in the unlinkability game is defined as AdvUL-CA =∣∣∣Pr[Challenger outputs 1]− N−1
2N−1

∣∣∣.
2.3.2 Unlinkability against a Malicious Registration Authority

For unlinkability against a malicious registration authority, we ask that it should not be
able to distinguish whether two sets of expanded public keys with associated certificates
belong to the same vehicle or to different vehicles.

We model this as a game (Definition 3) between a challenger and the malicious RA
where the challenger takes the role of both vehicle and certificate authority. In the game,
the challenger sends a pair of public keys (pke, pks) to the malicious RA which produces a
set of expanded keys {(pke,i, pks,i)}i. The challenger now either expands and produces
certificates for the signature keys pks,i produced by the RA or it samples a fresh public
key pk′

s, expands it as an honest RA would as {pk′
s,i}i and produce the CA message using

this set of expanded keys. If the malicious RA cannot distinguish between which course of
action the challenger took, it means that it cannot distinguish between certificates for pks

and for pk′
s. The definition 3 below also contains other steps to account for the full attack

surface available to the RA.
6In butterfly key expansion, the CA sends a ciphertext which is ultimately decrypted by the vehicle.

Giving the CA query access to the decryption oracle accounts for any linking attacks that may occur this
way.

8 Provably Secure BKE from pqCRYSTALS

Definition 3 (Unlinkability against malicious registration authority). We define the
unlinkability experiment against a malicious registration authority as the following game:

1. The challenger, acting as the vehicle, samples two key pairs (pke, ske)← PKE.KeyGen(1λ)
and (pks, sks)← Sig.KeyGen(1λ); sends pke and pks to the adversary.

2. The adversary sends N public key pairs {pke,i, pks,i}i∈[N] to the challenger.

3. The challenger, now acting as the certificate authority, samples a key pair (pkCA, skCA)←
Sig.KeyGen() and a bit b ∈ {0, 1}.

• If b = 0, it proceeds to the next step.
• If b = 1, it samples a fresh signature key pair (p̂ks, ŝks) and replaces pks,i with

pks,i ← Sig.Expand(p̂ks, H(pke, p̂ks, i)) for i ∈ [N].

4. The challenger computes the N packages and signs them as the CA would, and sends
the resulting message {(pkgi, sigi)}i to the adversary (message from CA to RA).

5. The adversary sends {(pkg′
i, sig′

i)}i to the challenger (message from RA to vehicle).

6. The challenger checks the validity of each package:

(a) (pk′
s,i, σi, τ ′

i)← PKE.Dec(pkgi, ske,i)
(b) Abort the game if σi or sigi are invalid signatures or if pk′

s,i was not expanded
from pks (if b = 0) or from p̂ks (if b = 1).

7. Send the list of certificates {(σi, pk′
s,i)}i to the adversary.

8. The adversary outputs a guess b′ for b.

The advantage of an adversary against the above game is defined as AdvUL-RA =
∣∣Pr[b = b′]− 1

2
∣∣.

For our BKE scheme, unlinkability against the RA is enforced through the encryption
of the certificates using the Kyber expanded public keys. Since the Dilithium public keys
sent from the RA to the CA are expanded again by the CA, they will look independent
from the vehicle’s public key by the MLWE assumption. Because those keys are encrypted
with the vehicle’s Kyber expanded keys before being sent to the RA, it will not be able to
link an expanded Dilithium key with its certificate to the vehicle’s identity public key pks.
To show this, we prove that Kyber still has ciphertext indistinguishability with respect to
expanded public keys (Theorem 2). The full proof is found in Section 6.2.

2.3.3 Unforgeability

In the context of butterfly key expansion, we ask that the signature scheme used by the
vehicle remains unforgeable even against actively colluding RA and CA. Observe that
we cannot hope to achieve unlinkability in this setting. We should also note that if the
certificate authority wishes to usurp the identity of a vehicle, it can just sample a signature
key pair and create a certificate for this key pair with the identity of the vehicle in the
certificate metadata. The reason why we consider both the RA and the CA as adversaries
when proving unforgeability is to show that the key expansion process does not allow
forgeries, even when this expansion is performed by malicious entities.

We refer to the RA and CA as a single entity: the adversary. The adversary’s goal
is to produce a signature public key p̂ks along with a certificate for p̂ks such that 1- the
vehicle accepts the public key and the certifiate and 2- the adversary is able to produce
a forgery for p̂ks. Intuitively, the adversary cannot win such a game with non-negligible
probability since part of the secret key for the expanded public keys pk′

s,i remains known

Edward Eaton, Philippe Lamontagne, Peter Matsakis 9

only to the vehicle. We define unforgeability of expanded signatures with respect to doubly
expanded keys because of the two rounds of expansion that occur in BKE. This trivially
implies unforgeability for a single round of expansion.
Definition 4. We define unforgeability under chosen key expansion and signature attack
of a doubly expanded signature scheme as the following game.

1. The challenger samples a key pair (pk, sk) ← Sig.KeyGen() and sends pk to the
adversary.

2. The adversary sends 2N seeds {(τi, τ ′
i)}i∈[N]. For each i ∈ [N], the challenger

expands pk twice:

(a) pk′
i ← Sig.Expand(Sig.Expand(pks, τi), τ ′

i)
(b) sk′

i ← Sig.Receive(Sig.Receive(sks, τi), τ ′
i)

3. The adversary has oracle access to Sign(sk′
i, ·) for i ∈ [N].

4. The adversary outputs a message m∗, a signature σ∗ and an index i∗ such that
(m∗, i∗) was not previously queried to the signature oracle Sign(sk′

i∗ , ·).
The advantage of an adversary A in this game is defined as the probability AdvUF-exCMA

A =
Pr[Sig.Ver(σ∗, m∗, pk′

i∗) = 1].
The UF-exCMA security of expanded Dilithium is proved under Theorem 4 in Sec-

tion 6.3. Our proof relates the unforgeability of expanded Dilithium to that of “regular”
Dilithium: we construct a reduction, which uses an adversary against expanded Dilithium
and tries to produce a forgery for a target Dilithium public key p̂kD. The reduction
first guesses for which expanded public key the adversary will produce a forgery, then
reprograms the random oracle such that this expanded public key will correspond to
p̂kD. This guess will be correct with inverse polynomial probability and thus leads to a
non-negligible advantage against Dilithium if the adversary against expanded Dilithium
succeeds with non-negligible probability.

3 Expanding Kyber
We modify the Kyber protocols so one can add together two public keys, encrypt under
the resulting public key and decrypt under the induced secret key. Pseudocode for the
modified protocols are presented in Figure 2 and we briefly describe the changes here.

• Kyb.KeyGen is essentially identical except that every public key uses the same Â
matrix (i.e. it is not sampled using a seed ρ as in regular Kyber). This ensures the
additive homomorphic relation between public and private keys.

• Kyb.Expand(pk, τ) is a new algorithm for expanding public keys using τ as a seed
for the pseudorandom values. This algorithm first generates a new Kyber public
key using H(pk, τ) instead of the random value σ in Kyb.KeyGen and adds this new
public key to pk (in the NTT domain) to obtain the expanded public key.

• Kyb.Encaps(pk) is left unchanged with the exception that the Â matrix is fixed.

• Kyb.Decaps(c, sk, τ) takes an additional input the seed τ used to expand the public
key. It uses τ to derive the secret key sk′ for the expanded public key pk′ =
Kyb.Expand(pk, τ) and then decapsulates the ciphertext in the same way as Kyber.

Only Kyber’s KEM meets the stronger IND-CCA2 security definition. Since BKE
needs a public key encryption (PKE) scheme, it will simplify the notation to speak of
Kyber as a PKE. An IND-CCA2 KEM can be combined with an IND-CCA2 symmetric
encryption scheme in a hybrid scheme, resulting in an IND-CCA2 PKE [CS03].

10 Provably Secure BKE from pqCRYSTALS

Decaps(c, sk, τ)
1 : pk ← sk + 12 · k · n/8
2 : h← sk + 24 · k · n/8
3 : z ← sk + 24 · k · n/8 + 32
4 : u⃗← Decompressq(Decodedu (c), du)
5 : v ← Decompressq(Decodedv (c + du · k · n/8), dv)
6 : ŝ← Decode12(sk)
7 : N ← 0
8 : foreach i ∈ {0, . . . , k − 1} do
9 : s′[i]← CBDη1 (PRF(pk, τ, N))

10 : ŝ′ ← NTT(s⃗′)

11 : ŝτ ← ŝ + ŝ′

12 : m′ ← Encode1(Compressq(v − NTT−1(ŝT
τ ◦ NTT(u⃗)), 1))

13 : pk′ ← Expand(pk, τ)

14 : K
′
, r′ ← G(m′∥H(pk′))

15 : c′ ← CP A.Enc(pk′, m′, r′)
16 : if c = c′ then

17 : return K ← KDF(K′∥H(c))
18 : else
19 : return K ← KDF(z∥H(c))

Expand(pk, τ)
1 : N ← 0
2 : foreach i ∈ {0, . . . , k − 1} do
3 : foreach j ∈ {0, . . . , k − 1} do

4 : Â[i][j]← Parse(XOF(j, i))
5 : foreach i ∈ {0, . . . , k − 1} do
6 : s′[i]← CBDη1 (PRF(H(pk, τ), N))
7 : N ← N + 1
8 : foreach i ∈ {0, . . . , k − 1} do
9 : e′[i]← CBDη1 (PRF(H(pk, τ), N))

10 : N ← N + 1

11 : ŝ′ ← NTT(s⃗′)

12 : ê′ ← NTT(e⃗′)

13 : t̂′ ← Â ◦ ŝ′ + ê′

14 : t̂← Decode12(pk)

15 : t̂τ ← t̂ + t̂′

16 : pkτ ← Encode12(t̂τ (mod+ q))
17 : return pkτ

Figure 2: The expanded Kyber algorithms with changes to Decaps highlighted in red. The
key generation and encapsulation algorithms are essentially unchanged with the exception
that the A matrix expanded from a seed is now fixed.

Edward Eaton, Philippe Lamontagne, Peter Matsakis 11

Parameter Description Kyber768 Our System
n Ring dimension 256 256
q Ring modulus 3329 3329
k Number of ring elements 3 3
η1 Binomial width for s, e, and r 2 2 or 4
η2 Binomial width for e1 and e2 2 2
du Number of bits to encode coefficients of u 10 12
dv Number of bits to encode coefficients of v 4 6
|pk| Public key size in bytes 1184 1152
|ct| Ciphertext size in bytes 1088 1344

Figure 3: The parameters that define an instance of Kyber, and their values for the latest
Kyber768 parameter set and for our system. Our system only changes the number of bits
used to encode the ciphertext (u, v). Note that the size of the public key in our system
is actually smaller, simply because we do not use ρ to determine the A matrix, instead
having all participants in the system use the same A matrix for pseudonymity.

3.1 Parameter Selection
In Figure 3 we describe the parameters of Kyber, and what parameters we have chosen for
our system. We compare this with the parameter set that our set most closely resembles,
that of Kyber768. Changes are colored in red. Note that despite basing our parameters
on Kyber768, we are not necessarily trying to maintain exactly the same level of security
as in Kyber768. We have purposely chosen a higher parameter set (than Kyber512) in
order to have a buffer to accommodate small losses in tightness or security induced by the
expansion procedure.

For our purpose, changing the rings R and Rq would be undesirable, as much of Kyber’s
efficiency comes from the careful choice of this ring and the NTT that is possible over it.
Therefore, making minimal changes means only altering k, the η values, representing the
width of the binomial distribution, and the d values, the degree of rounding employed.

When two M-LWE public keys As1 + e1 and As2 + e2 are added together (which use
the same “A” matrix), this is equivalent to using the secret key (s1 + s2) with the public
key A(s1 + s2) + (e1 + e2). When we encrypt with respect to such a matrix, we can analyze
the security by considering the resulting distribution of secret keys. Since components of s
and e are drawn from Bη1 , the binomial distribution of width parameter η1, it is easy to
see that the distribution of s1 + s2 is Bk

2·η1
and the same is true for e1 + e2 (recall that

additions are over the polynomial ring). In other words, using s1 + s2 as the secret key
is equivalent to doubling the η1 parameter during key generation. So for our system we
sample secrets from Bk

η1
, but analyze security as if secrets were drawn from Bk

2·η1
.

Doubling η1 widens the M-LWE secret distribution, which increases the probability
of a decryption failure. There is a growing body of analysis that shows that even a
single decryption failure is unacceptable from a security perspective, and that therefore
decryption failures must be cryptographically unlikely.

In the Kyber768 parameter set, doubling the width of the binomial s and e are drawn
from (and changing no other parameters) increases the probability of a decryption failure
from 2−165 to 2−83, a dramatic and unacceptable difference. To offset this while staying
with R and Rq, we can simply reduce du and dv. These parameters control how much the
ciphertext is rounded for increased efficiency. While they do have an impact on security
(the rounding is treated as slightly increasing the size of the error distribution), their effect
is minimal. By increasing du and dv, we can reduce the probability of a decryption error
back to a cryptographically negligible rate, while only increasing the size of the ciphertext
by a moderate amount.

12 Provably Secure BKE from pqCRYSTALS

The proposed parameter set in Figure 3 achieves a negligible decryption error rate7

of 2−146 at a cost of increasing the size of the ciphertext from 1088 bytes to 1344 bytes.
The main change made in this parameter set is the reduction in the extent to which we
round the ciphertext. As noted in the Kyber specification [Ava+20], Kyber is much less
reliant on rounding than LWR schemes because it also adds noise. Rounding is estimated
to increase security by roughly 6 bits, so rounding less does not substantially decrease the
security level.

4 Expanding Dilithium

The modified Dilithium algorithms are presented in Figure 4. As in Kyber, an important
change to the original Dilithium scheme is that all public keys use the same A matrix.
This change gives the homomorphic property to the public keys required for BKE. We
describe the most important changes below.

• Dil.KeyGen uses the same Â matrix for every public key, so it is expanded deter-
ministically. The helper function Power2Round is replaced with a new function
Power2RoundHigh which only returns the high order bits t (instead of splitting it
into high and low bits) since the lower order bits will be computed in Receive after
the public key is expanded.

• Dil.Expand(pk, τ) is a new algorithm that expands the public key pk by generating a
new public key using τ as seed and returns the sum of both public keys. Note that
as in KeyGen, only the higher order bits of the MLWE sample are kept as part of
the key.

• Dil.Receive(pk, sk, τ, τ ′) is a new algorithm that takes as input a public/private key
pair and two expansion seeds, and returns the secret key corresponding to the doubly
expanded public key pk′ = Expand(Expand(pk, τ), τ ′). When the RA and CA are
expanding the public key, they don’t have access to the lower order bits of the MLWE
sample t = A · s1 + s2 from which pk is obtained (since Dilithium public keys consist
of the high order bits of t). Therefore, the expanded public key that eventually gets
signed by the CA is slightly off from the “full” public key (i.e. what you would get
if you added together three MLWE samples and kept only their high order bits).
The t∆ variable included in the private key serves a similar role to t0, but it also
compensates for this difference between the “full” public key and the signed public
key. The fact that t∆ is larger than t0 is the rational for increasing ω, the maximum
Hamming weight of hints, relative to the Dilithium3 standards.

• Dil.Sign(m, sk) is essentially the same algorithm as in Dilithium except that it uses a
fixed A matrix and computes the hints using t∆.

• Dil.Ver(pk, m, σ) is also essentially the same as in Dilithium except it uses a fixed A
matrix.

• ExpandS(ρ) is a pseudorandom generator that takes as input a seed ρ and produces
a pair (s1, s2) ∈ [−η, η]ℓ × [−η, η]k.

7As estimated by the same failure rate estimation script used by Kyber [DS21]. Note that this
corresponds to the ‘one-shot’ decryption failure rate.

Edward Eaton, Philippe Lamontagne, Peter Matsakis 13

Dil.KeyGen()
1 : ζ←$ {0, 1}256

2 : (ρ′, K) ∈ {0, 1}512 × {0, 1}256 ← H(ζ)

3 : Â← ExpandA()
4 : (s1, s2)← ExpandS(ρ′)

5 : t← NTT−1(Â · NTT(s1)) + s2

6 : t1 ← Power2RoundHighq(t, d)
7 : return (pk = t1, sk = (K, s1, s2))

Dil.Expand(pk, τ ′)
1 : Â← ExpandA()
2 : (s′

1, s′
2)← ExpandS(τ ′)

3 : t′ ← NTT−1(Â · NTT(s′
1)) + s′

2

4 : t′
1 ← Power2RoundHighq(t′, d)

5 : t′′ ← t′
1 + pk

6 : return t′′

Dil.Receive(pk, sk = (K, s1, s2), τ ′, τ ′′)
1 : Â← ExpandA()
2 : (s′

1, s′
2)← ExpandS(τ ′)

3 : (s′′
1 , s′′

2)← ExpandS(τ ′′)
4 : s̄1 ← s1 + s′

1 + s′′
1

5 : s̄2 ← s2 + s′
2 + s′′

2

6 : t̄← NTT−1(Â · NTT(s̄1)) + s̄2

7 : t∆ ← t̄− pk · 2d

8 : tr ← H(pk)
9 : return sk = (K, tr, s̄1, s̄2, t∆)

Figure 4: The expanded Dilithium key generation, public key expansion and secret key
recovery algorithms. Changes in the key generation algorithm are highlighted in red. The
signature and verification algorithms are almost identical with the exception that the
matrix A is fixed and that the public and secret keys used are computed using Expand
and Receive.

Parameter Description Dilithium 2 Our System Dilithium 3
n Ring dimension 256 256 256
q Ring modulus 8380417 8380417 8380417

(k, ℓ) Dimensions of A ∈ Rk×ℓ
q (4,4) (5,4) (6,5)

τ Hamming weight of c 39 39 49
d Bits dropped from public key coeffs. 13 13 13
γ1 Coefficient range for y⃗ 217 219 219

γ2 Low-order rounding range (q − 1)/88 (q − 1)/32 (q − 1)/32
η Range for secret key 2 2 or 6 4
β Bound on size of c times secret vector 78 234 196
ω Maximum Hamming weight of hint 80 70 55
|pk| Public key size in bytes 1312 1600 1952
|σ| Signature size in bytes 2420 2667 3293

Expected signing repetitions 4.25 4.96 5.1

Figure 5: The parameters that define an instance of Dilithium, and their values for the
latest Dilithium 2 & 3 parameter sets and for our system.

4.1 Dilithium Parameters
As in Kyber, we change as few parameters as necessary to still achieve a high level
of security. Unlike in Kyber, we expand Dilithium public keys twice for butterfly key
expansion. Also unlike Kyber, the security of Dilithium is based on both the module LWE
and SIS (short integer solution) problem, so parameters must be tuned to ensure that both
the underlying M-LWE and M-SIS problems remain difficult. We base our parameters off
of a mixture of the Dilithium 2 and 3 parameter sets for a level of security between the
two.

By adding three secrets with size at most η, we greatly reduce the probability of finding
a signature in the while loop. Accordingly, we increase other parameters to keep the
number of expected repetitions similar but accommodate the larger secrets.

For a list of parameters, their descriptions, and the values in Dilithium 2 and in our
system we refer to Figure 5. For security, we need to ensure that the underlying LWE and
SIS problems remain difficult. We rely upon the security estimation scripts used by Kyber
and Dilithium to evaluate the Core SVP hardness of the underlying instances [DS21]. The

14 Provably Secure BKE from pqCRYSTALS

underlying M-LWE instance has a block size of 422, 123 bits of classical core-SVP hardness,
and 111 bits of quantum core-SVP hardness (the numbers for the M-LWE instance in
Dilithium 2 are 423, 123, and 112 respectively). Note that the M-LWE instance here is
taken with η = 2, as we need the M-LWE instance to be indistinguishable from uniform
for a single sample in order to guarantee unlinkability.

The underlying M-SIS instance has a block size of 508, 148 bits of classical core-SVP
hardness, and 134 bits of quantum core-SVP hardness (for Dilithium 2 these numbers
are 423, 123, 112). Note that we have evaluated the hardness only with respect to the
SIS instance induced by existential unforgeability, as our proof does not aim for strong
unforgeability.

5 Implementation Details
We provide an implementation of the cryptographic primitives based on Kyber and
Dilithium. Our implementation is a fork of the PQCrystals reference implementations (in
C), as found in libOQS [SM17]. Our code is based on version 0.8.0-rc1 of libOQS. We
used Dilithium2 and Kyber768 as the basis of our schemes and have modified their set of
parameters as presented in Sections 3.1 and 4.1.

We have compared the running time of our new and modified algorithms against the
reference implementations of Kyber768 and Dilithium2. Our findings, reported in Fig. 6,
are consistent with what one might expect. Key expansion takes about the same time
as key generation for the expanded variants of Kyber and Dilithium. For Kyber, key
generation is slightly faster because of the use of a constant A matrix and decapsulation
is slower since it must compute the expanded key and the corresponding secret key from
the expansion seed. For expanded Dilithium, the runtimes are comparable to Dilithium2
despite the fact that our parameters sit somewhere between Dilithium2 and Dilithium3.

Bandwidth Requirements The outgoing message for the vehicle in the Butterfly Key
Expansion process based on our implementation is 2752 bytes for a pair of expanded Kyber
and Dilithium public keys. The incoming packages consist of (pkg, sig) where sig is a
(regular) Dilithium2 signature of pkg. If we instantiate the PKE scheme with our expanded
Kyber KEM and AES encryption with the resulting key, then pkg consists of an expanded
Kyber ciphertext along with an AES encryption of τ ′ and a signature σ of the expanded
public key pk′

s. With 64 bytes for τ , the complete package size is 2 · |sig|+ |ct|+ |τ | = 6248
bytes.

6 Security of Butterfly Key Expansion
In this section, we define and prove the security of Butterfly Key Expansion when instanti-
ated with expanded Kyber and Dilithium according to the security properties presented in
Section 2.3.

6.1 Unlinkability Against a Malicious Certificate Authority
Our proof that a malicious CA cannot win the unlinkability game with probability much
better than the trivial N−1

2N−1 in our BKE scheme relies on two main facts. First, since
Kyber and Dilithium are based on the Fujisaki-Okamoto and Fiat-Shamir transforms,
respectively, the signature and decryption oracle queries can be simulated without access
to the secret keys by using random oracle recording and reprogramming. Second, because
the public keys are expanded using random MLWE samples, by the S-MLWE assumption
all keys look uniformly random to the PPT malicious RA.

Edward Eaton, Philippe Lamontagne, Peter Matsakis 15

Operation Mean time (µs) pop. stdev Operation Mean time (µs) pop. stdev
Expanded Dilithium Dilithium2
keypair 96.892 13.829 keypair 88.701 13.606
expand 98.692 10.895
receive 224.825 75.465
sign 548.570 390.405 sign 457.450 343.217
verify 115.938 47.940 verify 94.720 8.155
Expanded Kyber Kyber768
keygen 52.773 57.852 keygen 63.325 11.820
expand 39.292 5.450
encaps 72.623 7.401 encaps 71.063 8.814
decaps 141.257 13.690 decaps 82.750 11.147

Figure 6: Benchmarking of the protocols on an Intel Core i5-7300U 2.60GHz processor.
Each protocol ran for 100 000 iterations. The Dilithium2 and Kyber768 figures are for the
reference implementation for version 0.8.0-rc1 of libOQS.

Theorem 1. The butterfly key expansion scheme instantiated with expanded Dilithium
and expanded Kyber is unlinkable against malicious certificate authority (Definition 2) with
advantage

AdvUL-CA ≤4qRO2−h∞ + 2N(ϵdec + ϵsig) + AdvS-MLWE

where ϵdec and ϵsig are the overheads of simulating the decryption and signature oracles
of Kyber and Dilithium, respectively, qRO is the number of oracle queries and h∞ is a
lower-bound on the min-entropy of Kyber and Dilithium public keys.

Proof. In Definition 2, the malicious certificate authority is presented with 2N expanded
Kyber and Dilithium public key pairs ρ1, ρ2, . . . , ρ2N of the form ρi = (pkK,i, pkD,i) with
N pairs expanded from an original key pair ρ(0) := (pk(0)

K , pk(0)
D), and N expanded from

ρ(1) := (pk(1)
K , pk(1)

D). These 2N public keys are shuffled together and presented to the
CA (note that ρ(0) and ρ(1) are kept hidden from the CA). The CA then has access to
a decryption and signing oracle, allowing it to request any ciphertext to be decrypted
with respect to any of the 2N Kyber public keys and any message to be signed for the
2N Dilithium keys. Eventually the CA must submit two indices, i and j (i ̸= j), and is
said to win if pairs ρi and ρj were either both derived from ρ(0) or both derived from ρ(1).
Assuming the security of S-MLWE, we want to establish that any adversary’s success is
negligibly close to trivial success probability of N−1

2N−1 .
We proceed by a game hopping argument in the random oracle model. Game G0

corresponds to the original game.
In game G1, we modify the operation of the decryption oracle so that decryption is

simulated using the random oracle rather than by using the (expanded) secret key. This is
made possible by the (slightly modified) Fujisaki-Okamoto transform that Kyber employs.
Fujisaki-Okamoto is used to upgrade the security of an IND-CPA secure KEM or PKE
to IND-CCA2. This is done by establishing that decryption queries against public key
can be handled without requiring the secret key, which is precisely what we require. In
the random oracle model (our target setting to prove security), this proof is tight, and
essentially comes down to proving that the only valid ciphertexts are the ones created
using proper encryption, which requires the use of the random oracle. Because of this,
plaintexts can be extracted by looking at the adversary’s queries made to the random
oracle, and the actual usage of the secret key is not needed. The only possible issue here
lies in decryption errors: with this technique of returning plaintexts, a decryption error
will never occur, whereas in reality, they occur a negligible fraction of the time. Based

16 Provably Secure BKE from pqCRYSTALS

on the analysis of [Ava+20], this introduces a minor difference between the advantage of
the adversary of 4qROδ, where qRO is the number of queries to the random oracle and
δ is the decryption failure rate of Kyber (which for the parameters we have proposed is
approximately 2−146). We let ϵdec denote the distinguishing advantage between the real
and simulated decryption oracle. Since 2N oracles need simulation, the difference between
G0 and G1 is 2N · ϵdec.

In game G2, we replace the signature oracle with one that does not use the secret
key, and instead uses the HVZK simulator for the Fiat-Shamir NIZK and reprograms the
random oracle accordingly. This is a standard step in proving the EUF-CMA security
of Fiat-Shamir based signature schemes, reducing it to the EUF-NMA by simulating the
signing oracle without the secret key. Simulation of the signing oracle of Dilithium can
be done using the techniques of [KLS18] for signature schemes based on deterministic
Fiat-Shamir with abort, which is the case of Dilithium. This simulation of the signing
oracle introduces an error8 of 2−α+1 + κmqS · ϵzk which we denote ϵsig, where α is the
min-entropy of w in the Dilithium signature scheme, qS is the number of signature queries,
κm is an upper-bound on the number of attempts in the signature algorithm and ϵzk is
the distinguishing advantage between real and simulated transcript for the proof system.
Since 2N signature oracles are simulated, this introduces a difference of 2N · ϵsig in the
advantage term.

In game G3, we modify how the keys are expanded. Instead of deriving the expansion
secrets through the output of the random oracle as τi = H(pk(b)

D , pk(b)
K , i), we simply sample

τi uniformly at random. This does not change distribution of the secret values at all,
and so the only way an adversary can detect such a difference is if it manages to query
the input to the random oracle on a point that would otherwise be used to produce the
random seed for key expansion. Such a point must necessarily have either pk(b)

D or pk(b)
K as

a substring for b ∈ {0, 1}, and so we can say that games G2 and G3 are identical until this
event occurs. We will evaluate the probability that this occurs in a moment.

Finally, in game G4 we replace the S-MLWE samples used for expansion (computed
by Dil.Expand and Kyb.Expand) with uniformly random elements in Rk

q . By the S-MLWE
assumption, the difference between game G3 and G4 is AdvS-MLWE. As a result, each
public key pair ρ1, ρ2, . . . , ρ2N is just a pair of uniformly random element of Rk

q , with no
connection to the original keys ρ(0) or ρ(1). Since at this point nothing the adversary learns
depends on the original key pairs, their success probability is limited to that of guessing:
N−1

2N−1 .
All that remains is the difference in the adversary’s success probability between games

G2 and G3, the probability that the adversary queries the random oracle with an input
that contains pk(0)

D , pk(0)
K , pk(1)

D or pk(1)
K . Note that in G4, the adversary has no information

about any of these public keys, so the probability that it queries them to the random
oracle is bounded by the min-entropy of these public keys. If we let h∞ be a lower-bound
on this min-entropy, then this probability can be upper-bounded by 4qRO2−h∞ . By the
Fundamental Lemma of Game-Playing (Lemma 1 of [BR06]), we can thus bound the
difference between G2 and G3 by 4qRO2−h∞ .

By summing the advantages between the games, we get that the overall advantage is

4qRO2−h∞ + 2N(ϵdec + ϵsig) + AdvS-MLWE .

6.2 Unlinkability Against a Malicious Registration Authority
To prove unlinkability against a malicious RA, we must first show that Kyber retains
ciphertext indistinguishability in the presence of expanded keys.

8Theorem 3.2 of [KLS18].

Edward Eaton, Philippe Lamontagne, Peter Matsakis 17

6.2.1 Indistinguishability of Expanded Kyber

To model indistinguishability, we modify the normal IND-CCA2 security game for PKEs
to introduce features related to key expansion. In particular, the adversary is allowed
to make a decryption query with respect to a public key that results from any of the N
expansions. The adversary may then request a challenge with respect to any expanded
public key of their choosing. It is then provided with the usual PKE IND-CCA2 challenge:
the adversary presents two plaintexts and receives an encryption of one of the two. The
adversary wins if it is able to guess which it received (possibly after more queries to the
decryption oracle).

Our proof below only applies to expansion with respect to a deterministic seed (i.e.,
the output of a hash on a known input). Therefore, our security game is presented in this
setting. It is an interesting open question to prove a reduction from expanded Kyber to
that of regular Kyber when the adversary can choose the expansion seed.
Definition 5. The indistinguishability under adaptively chosen ciphertext attack (IND-
exCCA2) of a deterministically expanded PKE is defined through the following experiment.

1. The challenger samples (pk, sk)← PKE.KeyGen(1λ).

2. The challenger expands9 the public key N times:

• pki ← PKE.Expand(pk, H(pk, i)) for i ∈ [N]

3. Send (pki)i∈[N] to the adversary.

4. The adversary can submit decryption queries to PKE.Dec for a ciphertext c and for
any of the N expanded keys.

5. The adversary requests a challenge for an index i∗ and plaintexts (m∗
0, m∗

1).

6. The challenger picks b←$ {0, 1} and sends c∗ = PKE.Enc(pki∗ , m∗
b) to the adversary.

7. The adversary again has oracle access to the N decryption oracles, but is not allowed
to query (c∗, i∗).

8. The adversary outputs a guess b′ and wins if b = b′.
We let AdvIND-exCCA2 denote the advantage of the adversary in the above game defined as

AdvIND-exCCA2 =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .

Theorem 2. For any PPT adversary,

AdvIND-exCCA2
Kyb ≤ N · AdvIND-CCA2

Kyb + AdvMLWE
Bη1

+ 4qROδ .

To prove security, we will show that an adversary’s advantage in breaking the IND-CCA2
security with the expanded keys translates to an advantage in breaking the IND-CCA2
security without the key expansion, i.e. against the PKE obtained from Kyber’s KEM
and an IND-CCA2 symmetric key encryption. We do this by guessing the index i∗ that
the adversary will choose for their challenge and by reprogramming the random oracle
such that if our guess is right, the challenge comes directly from a “plain” Kyber instance,
and thus the adversary’s distinguishing ability directly translates to their ability to break
Kyber. Since we must correctly guess the index i∗ for which the challenge is requested
(out of N), this results in a tightness loss of N , the number of times that the caterpillar
key pk is expanded. We leave it as an open question to find a proof technique that closes
this tightness gap.

9Although the RA that expands the Kyber public key, this expansion is with respect to a deterministic
seed τ = H(pk, i), so it has no control over the expanded keys. We omit the signature public key from the
oracle input that would be present in the BKE protocol.

18 Provably Secure BKE from pqCRYSTALS

Proof of Theorem 2. Given an adversary A against the indistinguishability of expanded
Kyber, we construct a reduction R against the indistinguishability of “regular” Kyber.
The reduction plays two games simultaneously; it plays the role of the challenger in the
IND-exCCA game with A and plays the role of the adversary in the IND-CCA2 game with
a challenger C. The reduction is provided by C with a Kyber public key p̂kK , which is
an MLWE sample with distribution Bη1 . Before giving anything to the adversary A, the
reduction selects an index î←$ {1, . . . , N}. R then selects a uniform 256 bits τ̂ ←$ {0, 1}256

and samples s′ and e′ as in our Expand functionality (see Figure 2) with τ̂ as the seed.
This allows R to compute t′ (in the NTT domain or not) and to set the identity public
key pk in the IND-exCCA game as p̂kK − t′. Further, R reprograms the random oracle
so that H(pk, î) = τ̂ , such that the îth expanded key will equal p̂kK . Since this is done
prior to starting the interaction with the adversary (and the distribution of τ̂ is uniform),
there is no ability for the adversary to notice this reprogramming. This guarantees that
the expanded public key is equal to p̂kK with probability 1

N .
We must establish that the adversary cannot notice that the original public key pk is

generated in this way. First we consider the distribution of the public key itself. Intuitively,
the adversary expects an MLWE sample, and receives the difference of two (independent)
MLWE samples. So long as the adversary is unable to distinguish MLWE samples from
uniform (which is our security assumption), it should be unable to tell the difference
between the two. In particular, it is the challenge public key p̂kK which we need to be
indistinguishable from uniform. This means that p̂kK − t′ is also indistinguishable from
uniform. This introduces a AdvMLWE

Bη1
term in the reduction’s advantage.

Next we need to work out how R responds to decryption and random oracle queries.
The general idea is that the random oracle will give us a way to “break up” any queries
into those relevant to the challenge public key (queries made with respect to index î) and
all other queries. Relevant random oracle queries can be forwarded to the challenger’s
random oracle, to maintain consistency between the two games R is playing.

Decryption queries must be made with respect to an index i ∈ [N]. For queries
corresponding to the target public key p̂kK (i.e., for index î), we can forward the decryption
queries to the external IND-CCA2 decryption oracle for p̂kK . For any index other than
î, we can use the knowledge extractor that exists for Fujisaki-Okamoto based PKEs to
answer the queries without knowing the secret key. The reduction looks at the random
oracle queries the adversary made to figure out which message corresponds to the query
ciphertext, as we did in the CA unlinkability proof. As in that proof, this introduces a
4qROδ term which corresponds to the adversary’s ability to construct an ciphertext that
should not decrypt.

Finally, when a challenge is requested for index i∗, we hope that the request is issued
with respect to î, which happens with probability 1/N . Assuming this happens, we can
forward the query (m∗

0, m∗
1) to the external IND-CCA2 challenger, and receive back a

challenge ciphertext c∗ that is valid with respect to p̂kK . The adversary’s ability to win
their game then directly translates into the reduction’s ability to win the game with the
external challenger. Summing up, we have

AdvIND-exCCA2
Kyb ≤ N · AdvIND-CCA2

Kyb + AdvMLWE
Bη1

+ 4qROδ .

6.2.2 RA Unlinkability

We are now ready to prove that the BKE protocol instantiated with our expanded Kyber
and Dilithium schemes is unlinkable against malicious RA (Definition 3).

Theorem 3. The butterfly key expansion scheme of Figure 1 is unlinkable against malicious

Edward Eaton, Philippe Lamontagne, Peter Matsakis 19

RA (Definition 3) with advantage

AdvUL-RA ≤ AdvIND-exCCA2
Kyb + AdvUF-CMA

Dil + AdvMLWE
Sη

Proof. We proceed with a game hopping argument. Game G0 corresponds to the unlinka-
bility game from Definition 3.

In game G1, instead of doing the regular checks in step 6 of the game, the challenger
aborts if pkg′

i ̸= pkgi for some i ∈ [N]. Since the challenger checks that sig′
i is a valid

signature of pkg′
i for the CA’s public key in step 6, the outcomes of games G0 and G1 differ

only if the RA can forge a signature sig′
i of pkg′

i ̸= pkgi for some i. By the unforgeability
of Dilithium, this can happen with probability at most AdvUF-CMA

Dil .
In game G2, we replace how the ciphertexts pkgi are generated. Instead of encrypting

(σi, τ ′
i) as the CA would (see Figure 1), the challenger encrypts the all 0 string. In step 4 of

the game, the challenger sets pkgi = Kyb.Enc(pkK,i, 0ℓ) for i ∈ [N], where ℓ = |σi|+ |τ ′
i | is

the bit length of the encrypted message. By the ciphertext indistinguishability of expanded
Kyber (Definition 5), the malicious RA should not be able to detect this change in how
pkgi is constructed. During the unpacking of the certificates (step 6), the challenger still
uses the true values for τ ′

i and σi. The indistinguishability of G1 and G2 follows from the
IND-exCCA2 security of expanded Kyber (Theorem 2):

|Pr[b = b′ | G0]− Pr[b = b′ | G1]| ≤ AdvIND-exCCA2
Kyb

In game G3, instead of computing pk′
D,i as Dil.Expand(pkD,i, τ ′

i) when constructing
pkgi, which adds a random MLWE instance to pkD,i, the challenger adds a uniformly
random value. The indistinguishability of games G2 and G3 follows from the S-MLWE
assumption with distribution Sη.

|Pr[b = b′ | G3]− Pr[b = b′ | G2]| ≤ AdvS-MLWE
Sη

.

What the adversary gets in game G3 is now unrelated to the original public key pkD:
the expanded keys pk′

D,i are uniformly random, so the probability that the adversary can
distinguish b = 0 from b = 1 is exactly 1

2 .
Summing up, we have that the advantage of the adversary in the unlinkability game is

at most
AdvIND-exCCA2

Kyb + AdvUF-CMA
Dil + AdvMLWE

Sη

6.3 Unforgeability of Expanded Dilithium
For unforgeability, we only require a single proof of security since we want to ensure that
even when the RA and CA collude, they cannot forge a valid signature for an expanded
public key accepted by the vehicle. Thus, the adversary is permitted to provide expansion
packages to the vehicle and then request signatures with respect to the resulting public
keys. The adversary wins if they are able to forge a signature with respect to any expanded
key.

Theorem 4. Suppose ExpandS is a random oracles. Let Q be an upper-bound on the
number of random oracle queries and let N be the number of expanded public keys. Then
the butterfly key expansion scheme instantiated with expanded Dilithium is unforgeable
under chosen key expansion and signature attack (Definition 4) with advantage

AdvUF-exCMA ≤Q2 · AdvUF-CMA
Dil + (N + 1) · AdvMLWE

Sη
+ N · ϵsig

20 Provably Secure BKE from pqCRYSTALS

Proof. There are two rounds of expansion with Dilithium, as opposed to the single round
with Kyber. Nonetheless, we can proceed similarly to how we proved the indistinguishability
of Kyber for Theorem 2: by injecting a challenge public key into the adversary’s random
oracle queries.

Consider an attacker A against the unforgeability of expanded Dilithium (Definition 4).
We construct a reduction R that uses A to produce a forgery against the regular chosen
message unforgeability of Dilithium. The reduction is provided with a Dilithium public
key p̂kD by an external challenger and plays the dual role of the adversary in the UF-CMA
game for Dilithium and of the challenger in the UF-exCMA game (Definition 4) played
with A. This means it has access to a signature oracle for p̂kD and to an external random
oracle O for the UF-CMA game. The reduction controls the random oracles ExpandS and
H used by A.

Before interacting with A or providing it with any oracle access, the reduction does
the following oracle reprogramming. The reduction first samples (s1, s2) and (s′

1, s′
2) from

the distribution Sℓ
η × Sk

η (recall that Sη is the uniform distribution over [−η, η]), and it
computes the offsets t← p̂kD−As1−s2 and t′ ← t−As′

1−s′
2 and the key pk← p̂kD−t−t′.

Let Q be an upper-bound on the number of queries to ExpandS by A and recall that N is
the number of expanded keys. The reduction selects two random indices î, ĵ←$ [Q] such
that î < ĵ. When the adversary makes their îth (resp. ĵth) query to ExpandS with an
input τĵ (resp. τĵ), we set the output to be (s1, s2) (resp. (s′

1, s′
2)). The reduction’s gamble

is that the adversary chooses to make their forgery using seeds τî and τĵ corresponding to
the îth and ĵth query, respectively. If this is the case, then the forgery is for the target
Dilithium public key pk + t + t′ = p̂kD.

Now, the reduction proceeds as the challenger in the game of Definition 4: in the first
step, it sends pk = p̂kD − t− t′ to A. Note that the distribution of public key pk is not
the same as in the orginial game, however this change is undetectable to the adversary
from the same logic as in the case of Kyber (see the proof of Theorem 2); by the MLWE
assumption, both the real distribution of pk and the distribution of pk computed by R are
indistinguishable from uniformly random. This introduces a AdvMLWE

Sη
additive loss in R’s

success probability.
In step 2 of the game, for each seed τ sent by the adversary, R rejects if τ was not

queried to ExpandS. The probability that R rejects a seed for which would have been
accepted by the challenger in the UF-exCMA game is at most N ·AdvMLWE

Sη
by the following

argument.
Since the challenger computes pk′

i as pk′
i = Expand(Expand(pk, τi), τ ′

i). If either of τi

or τ ′
i is not queried to ExpandS by A, then the values for (s1, s2) and (s′

1, s′
2) computed

using the random oracle ExpandS are unknown to the adversary. Because Expand adds
A · s1 + s2 and A · s′

1 + s′
2 to the public key, by the MLWE assumption the expanded

public key is indistinguishable from random to the adversary. The probability that the
adversary can guess the value of the doubly expanded public key pk′

i without knowing the
expansion factors (s1, s2) and (s1, s2) is at most AdvMLWE

Sη
. By a union bound over the N

packages, the probability that there is a package rejected by R that would be accepted by
the challenger in the game is at most N · AdvMLWE

Sη
.

Still in step 2 of the game, the reduction aborts if there is no index i such that
pk′

i = p̂kD. This happens if the reduction is wrong in its guess for î and ĵ which happens
with probability 1− 1

Q2 .
We now assume that the reduction does not abort in step 2 and describe the rest of its

strategy. In step 3, whenever the adversary asks for a signature of m for an index i, the
reduction does the following. If the expanded key pk′

i is equal to p̂kD, i.e. the challenge
Dilithium public key for which the reduction tries to build a forgery, then the reduction
submits m to the external signature oracle for p̂kD of the UF-CMA game it is playing. For
any other index, the reduction must simulate the signature oracle for Dilithium without

Edward Eaton, Philippe Lamontagne, Peter Matsakis 21

access to the secret key. This is done by using the Fiat-Shamir HVZK simulator to produce
a valid Fiat-Shamir transcript and by reprogramming the random oracle H used in the
signature algorithm. The simulation of a signature oracle introduces an error ϵsig (see
proof of Theorem 1 for a description of this error term). Since R simulates N oracles, the
loss in success probability is N · ϵsig.

A remaining challenge is to argue that the RO reprogramming done by R to simulate
the signature oracles for pk′

i does not affect the probability that the forgery for p̂kD is valid
with respect to the external (unprogrammed) random oracle from the UF-CMA game.
The adversary has access to the RO to make its forgery, and so it should have access to
the external random oracle O to make a forgery for the target public key p̂kD. There are
2 types of RO queries that occur in the signing and verification algorithms of Dilithium10:
the first query computes µ← H(H(pk)∥M) and then every oracle query contains µ.

To make sure only queries related to the target public key p̂kD are forwarded to the
external RO, R first computes ĥ = O(p̂kD). It then offers an RO interface H to the
adversary in the following way:

• for any query x prefixed by ĥ, forward x to O and record the result µ;

• for any query x that contains a recorded µ as a substring, forward x to O;

• for every other query x, simulate the RO using lazy sampling (i.e. sample H(x)
uniformly at random if it is not already defined).

Thus the reduction R can both respond to signature queries made by A, and the
forgery that the adversary submits will correspond to a forgery for the challenge public
key p̂kD, so long as we guessed the indices î and ĵ correctly.

When the adversary submits its forgery (m∗, σ∗, i∗), the reduction outputs (m∗, σ∗) if
i∗ corresponds to the key expanded from τî and τĵ (if pk′

i∗ = p̂kD) and otherwise aborts.
If the reduction made it to this point, the probability it does not abort is at least 1

Q2 .
Concluding, we have that if A produces a forgery, then R produces a forgery with

probability at least 1
Q2 . By accounting for the times we have invoked the MLWE assumption,

it follows that

AdvUF-exCMA ≤Q2 · AdvUF-CMA
Dil + (N + 1) · AdvMLWE

Sη
+ N · ϵsig

7 Conclusion
We have established a formal framework for proving the security of the butterfly key
expansion pseudonymous certificate provisioning process. Our expanded Kyber and
Dilithium algorithms introduced in this context provide a secure instantiation of BKE.
They may also find applications in other areas employing public key rerandomization for
privacy.

Some of our security reductions incur a tightness loss of N , the number of issued
certificates. The question arises whether this loss is inherent or just a consequence of our
proof techniques. Our proofs hold in the random oracle model, prompting the question of
the applicability of recent techniques in the quantum random oracle model – where the
adversary has quantum access to the oracle – to our proofs for full post-quantum security.

10We refer to the Dilithium specification [Duc+21] for the description of those algorithms.

22 Provably Secure BKE from pqCRYSTALS

8 Acknowledgements
This research was part of the “Quantum Secure Cryptographic Primitives with Applications
to Vehicle-To-Vehicle Networks” project funded by the NRC-Waterloo Collaboration Centre
Funding Program.

References
[Alk+20] Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Juliane Krämer, Patrick

Longa, and Jefferson E. Ricardini. “The Lattice-Based Digital Signature
Scheme qTESLA”. In: Applied Cryptography and Network Security. Ed. by
Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi.
Cham: Springer International Publishing, 2020, pp. 441–460. isbn: 978-3-030-
57808-4. doi: 10.1007/978-3-030-57808-4_22.

[Ava+20] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber Algorithm Specifications And Supporting Documen-
tation. Version 3.0. 2020. url: https://pq-crystals.org/kyber/resource
s.shtml (visited on 08/21/2023).

[Bar+18] Paulo S. L. M. Barreto, Jefferson E. Ricardini, Marcos A. Simplicio Jr., and
Harsh Kupwade Patil. “qSCMS: Post-quantum certificate provisioning process
for V2X”. In: IACR Cryptol. ePrint Arch. (2018), p. 1247. url: https://epr
int.iacr.org/2018/1247.

[BR06] Mihir Bellare and Phillip Rogaway. “The Security of Triple Encryption and a
Framework for Code-Based Game-Playing Proofs”. In: Advances in Cryptology
- EUROCRYPT 2006, 25th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Proceedings. Vol. 4004. Lecture
Notes in Computer Science. Springer, 2006, pp. 409–426. doi: 10.1007/1176
1679_25.

[BR95] Mihir Bellare and Phillip Rogaway. “Optimal asymmetric encryption”. In:
Advances in Cryptology — EUROCRYPT’94. Ed. by Alfredo De Santis. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 1995, pp. 92–111.
isbn: 978-3-540-44717-7. doi: 10.1007/BFb0053428.

[Can19] Transport Canada. Security Credential Management System (SCMS) – Re-
quirements Analysis Report. Nov. 1, 2019. url: https://tc.canada.ca/en/i
nnovation-centre/priority-reports/security-credential-managemen
t-system-scms-requirements-analysis-report (visited on 02/27/2024).

[Che+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Ri-
jneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang,
Tsunekazu Saito, Takashi Yamakawa, and Keita Xagawa. NTRU. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-
3-submissions. 2020.

[CS03] Ronald Cramer and Victor Shoup. “Design and Analysis of Practical Public-
Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack”.
In: SIAM Journal on Computing 33.1 (Jan. 2003), pp. 167–226. issn: 0097-5397.
doi: 10.1137/S0097539702403773. (Visited on 02/05/2024).

[DS21] Leo Ducas and John Schanck. Security Estimation Scripts for Kyber and
Dilithium. available at https://github.com/pq-crystals/security-esti
mates. Accessed September 2023. 2021.

https://doi.org/10.1007/978-3-030-57808-4_22
https://pq-crystals.org/kyber/resources.shtml
https://pq-crystals.org/kyber/resources.shtml
https://eprint.iacr.org/2018/1247
https://eprint.iacr.org/2018/1247
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/BFb0053428
https://tc.canada.ca/en/innovation-centre/priority-reports/security-credential-management-system-scms-requirements-analysis-report
https://tc.canada.ca/en/innovation-centre/priority-reports/security-credential-management-system-scms-requirements-analysis-report
https://tc.canada.ca/en/innovation-centre/priority-reports/security-credential-management-system-scms-requirements-analysis-report
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1137/S0097539702403773
https://github.com/pq-crystals/security-estimates
https://github.com/pq-crystals/security-estimates

Edward Eaton, Philippe Lamontagne, Peter Matsakis 23

[Duc+21] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium – Algorithm Specifi-
cations and Supporting Documentation. Version 3.1. 2021. url: https://pq-
crystals.org/dilithium/resources.shtml (visited on 08/21/2023).

[ESS21] Edward Eaton, Douglas Stebila, and Roy Stracovsky. “Post-Quantum Key-
Blinding for Authentication in Anonymity Networks”. In: Progress in Cryptol-
ogy – LATINCRYPT 2021. Ed. by Patrick Longa and Carla Ràfols. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2021,
pp. 67–87. isbn: 978-3-030-88238-9. doi: 10.1007/978-3-030-88238-9_4.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric
and Symmetric Encryption Schemes”. In: Advances in Cryptology — CRYPTO’
99. Ed. by Michael Wiener. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 1999, pp. 537–554. isbn: 978-3-540-48405-9. doi: 10.1007
/3-540-48405-1_34.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. “Public-key cryptosystems
from lattice reduction problems”. In: Advances in Cryptology — CRYPTO
’97. Ed. by Burton S. Kaliski. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 1997, pp. 112–131. isbn: 978-3-540-69528-8. doi: 10.10
07/BFb0052231.

[HP01] Stuart Haber and Benny Pinkas. “Securely combining public-key cryptosys-
tems”. In: Proceedings of the 8th ACM conference on Computer and Commu-
nications Security. CCS ’01. New York, NY, USA: Association for Computing
Machinery, Nov. 5, 2001, pp. 215–224. isbn: 978-1-58113-385-1. doi: 10.1145
/501983.502013.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. “A Concrete Treat-
ment of Fiat-Shamir Signatures in the Quantum Random-Oracle Model”. In:
Advances in Cryptology – EUROCRYPT 2018. Ed. by Jesper Buus Nielsen
and Vincent Rijmen. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2018, pp. 552–586. isbn: 978-3-319-78372-7. doi:
10.1007/978-3-319-78372-7_18.

[LLC16] Crash Avoidance Metrics Partners LLC. Security Credential Management
System Proof-of-Concept Implementation—EE Requirements and Specifications
Supporting SCMS Software Release 1.1. 2016. url: https://www.campllc.o
rg/security-credential-management-system-scms-proof-of-concept-
poc-implementation/ (visited on 02/27/2024).

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices and
Learning with Errors over Rings”. In: J. ACM 60.6 (2013), 43:1–43:35. doi:
10.1007/978-3-642-1.

[PW11] Chris Peikert and Brent Waters. “Lossy Trapdoor Functions and Their Appli-
cations”. In: SIAM Journal on Computing 40.6 (Jan. 2011), pp. 1803–1844.
issn: 0097-5397. doi: 10.1137/080733954.

[SB23] Ahmad Salman and Zachary Blankinship. “Implementing Butterfly Key Ex-
pansion Using Post-Quantum Algorithms”. In: Proceedings of Seventh Inter-
national Congress on Information and Communication Technology. Ed. by
Xin-She Yang, Simon Sherratt, Nilanjan Dey, and Amit Joshi. Lecture Notes
in Networks and Systems. Singapore: Springer Nature, 2023, pp. 507–516.
isbn: 978-981-19160-7-6. doi: 10.1007/978-981-19-1607-6_45.

https://pq-crystals.org/dilithium/resources.shtml
https://pq-crystals.org/dilithium/resources.shtml
https://doi.org/10.1007/978-3-030-88238-9_4
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1145/501983.502013
https://doi.org/10.1145/501983.502013
https://doi.org/10.1007/978-3-319-78372-7_18
https://www.campllc.org/security-credential-management-system-scms-proof-of-concept-poc-implementation/
https://www.campllc.org/security-credential-management-system-scms-proof-of-concept-poc-implementation/
https://www.campllc.org/security-credential-management-system-scms-proof-of-concept-poc-implementation/
https://doi.org/10.1007/978-3-642-1
https://doi.org/10.1137/080733954
https://doi.org/10.1007/978-981-19-1607-6_45

24 Provably Secure BKE from pqCRYSTALS

[Sim+18] Marcos A. Simplicio, Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jef-
ferson E. Ricardini, and Marcos Vinicius M. Silva. “The Unified Butterfly
Effect: Efficient Security Credential Management System for Vehicular Com-
munications”. In: 2018 IEEE Vehicular Networking Conference (VNC). 2018
IEEE Vehicular Networking Conference (VNC). ISSN: 2157-9865. Dec. 2018,
pp. 1–8. doi: 10.1109/VNC.2018.8628369.

[SM17] Douglas Stebila and Michele Mosca. “Post-Quantum Key Exchange for the
Internet and the Open Quantum Safe Project”. In: Selected Areas in Cryp-
tography – SAC 2016. Ed. by Roberto Avanzi and Howard Heys. Cham:
Springer International Publishing, 2017, pp. 14–37. isbn: 978-3-319-69453-5.
doi: 10.1007/978-3-319-69453-5_2.

[Uni19] United States. Department of Transportation. Intelligent Transportation Sys-
tems Joint Program Office. Connected Vehicle Deployment Technical Assis-
tance: Security Credential Management System (SCMS) Technical Primer.
FHWA-JPO-19-775. Nov. 1, 2019. url: https://rosap.ntl.bts.gov/view
/dot/43635 (visited on 02/27/2024).

[Why+13] William Whyte, André Weimerskirch, Virendra Kumar, and Thorsten Hehn.
“A security credential management system for V2V communications”. In: 2013
IEEE Vehicular Networking Conference. 2013 IEEE Vehicular Networking
Conference. ISSN: 2157-9865. Dec. 2013, pp. 1–8. doi: 10.1109/VNC.2013.6
737583.

A Key Reuse/Unified BKE
A.1 Unsafe Reuse of Key Pairs
For textbook RSA-based schemes, the encryption algorithm is defined as Enc(m) = me

mod N and Dec(c) = cd mod N ; and the signature algorithm as Sign(m) = md mod N

and Ver(σ, m) = m
?= [σe mod N]. As we can see, a query to the decryption oracle on

input m provides a valid signature for m.
The same is true for some lattice-based signature and encryption schemes, in particular

those of [GGH97]. The encryption scheme takes a point on the lattice determined by the
message and adds noise to it. The decryption algorithm maps a ciphertext in Rn to its
closest point on the lattice. The signing algorithm takes a point from Rn and maps it
to the closest point on the lattice. Verification is done by checking that the distance is
at most some threshold. We can see again that the decryption oracle provides a valid
signature.

A.2 Safely Reusing Keys for Unified Butterfly Key Expansion
We rely on the definitions of [HP01]. A combined signature and encryption scheme is a tu-
ple (KeyGen, Sign, Ver, Enc, Dec) such that (KeyGen, Sign, Ver) forms a public-key signature
scheme and
(KeyGen, Enc, Dec) a public-key encryption scheme (or KEM). We ask that the encryption
and signature schemes individually satisfy stronger notions of security than the typical
notions to ensure that we can safely use the same key pair in both settings. We say
that the signature scheme that it is UF-CMA in the presence of a decryption oracle if in
the UF-CMA game, the adversary also has oracle access to Dec(sk, ·) in addition to the
signature oracle and still cannot forge a signature. Similarly, in the IND-CCA game, the
adversary has oracle access to Sign(sk, ·). We say that it is IND-CCA in the presence of a
signature oracle if it still cannot distinguish ciphertexts in this setting.

https://doi.org/10.1109/VNC.2018.8628369
https://doi.org/10.1007/978-3-319-69453-5_2
https://rosap.ntl.bts.gov/view/dot/43635
https://rosap.ntl.bts.gov/view/dot/43635
https://doi.org/10.1109/VNC.2013.6737583
https://doi.org/10.1109/VNC.2013.6737583

Edward Eaton, Philippe Lamontagne, Peter Matsakis 25

Below, we describe a general framework for safely using the same key pair for both
digital signatures and public-key encryption. Since Dilithium and Kyber fit this framework,
it is in principle possible to use the same key pair for both and thus obtain a unified version
of butterfly key expansion. We leave to future work the task of whether the parameters of
both schemes can be tweaked such that they remain secure and the size of the combined
public key is smaller than the sum of Kyber’s and Dilithium’s public key sizes (yielding
a reduction in bandwidth). In particular, the modulus of both schemes differ by a large
amount q = 3329 for Kyber and q = 8380417 for Dilithium.

A.2.1 Security of Signature Schemes in the Presence of a Fujisaki-Okamoto
Decryption Oracle

Haber and Pinkas [HP01] have shown that in the random oracle model, signature scheme
retain their security when combined11 with encryption schemes based on the optimal
asymmetric encryption padding of Bellare and Rogaway [BR95]. The proof relies on the
plaintext awareness property of [BR95], which essentially says that for any valid ciphertext
produced by the adversary, the adversary should “know” the corresponding plaintext. This
is formalized using the concept of knowledge extraction, a PPT algorithm K knowing the
ciphertext and the oracle queries made by the adversay that can decrypt the ciphertext
with good probability. The Fujisaki-Okamoto transform [FO99] on which the CCA secure
variant of Kyber is based admits such a knowledge extractor. Concretely this means that
decryption queries can be answered without the secret key by recording and reprogramming
random oracle queries made by the adversary, so the unforgeability of Dilithium in the
presence of a Kyber decryption oracle can be reduced to the UF-CMA security of Dilithium.

A.2.2 Security of Encryption Schemes in the Presence of a Fiat-Shamir
Signing Oracle

For signature schemes based on the Fiat-Shamir transform, if the underlying identification
scheme is HVZK, then UF-CMA and UF-NMA are tightly equivalent in the ROM since
the signature oracle can be simulated using the HVZK simulator together with oracle
reprogramming. By the same argument as above, the queries to the signature oracle in the
game of ciphertext indistinguishability in the presence of signature oracle can be answered
without the secret key in the ROM, so this notion tightly reduces to the usual IND-CCA
notion.

B Additional Proofs
Lemma 1. Assume the MLWE problem is hard, then so is the S-MLWE problem.

Proof. Let A be an adversary against the S-MLWE problem with N samples. Let A←$

Rm×k
q be a random matrix of polynomials. We construct a series of N hybrids H0, . . . , HN

as follows. Let ui, si, ei be as in Definition 1,

Hi =

(A, As1 + e1, . . . , AsN + eN) i = 1
(A, u1, . . . , ui−1, Asi + ei, . . . , AsN + eN) i = 2, . . . , N − 1
(A, u1, . . . , uN) i = N

(1)

For all i ∈ [N], we have that Hi and Hi+1 are indistinguishable in polynomial time by the
MLWE assumption: they differ only in the ith entry which is Asi + ei in the first case and

11By “combined”, we mean that the public/private key pairs of both schemes are correlated arbitrarily.

26 Provably Secure BKE from pqCRYSTALS

ui in the second. Therefore

|Pr[A(H1) = 1]− Pr[A(HN) = 1]| (2)

≤
∑

i

|Pr[A(Hi) = 1]− Pr[A(Hi+1) = 1]| (3)

≤ N · AdvMLWE
A (4)

	Introduction
	Related Work
	Our Contributions

	Background
	Notation and Preliminaries
	Butterfly Key Expansion
	Security Model

	Expanding Kyber
	Parameter Selection

	Expanding Dilithium
	Dilithium Parameters

	Implementation Details
	Security of Butterfly Key Expansion
	Unlinkability Against a Malicious Certificate Authority
	Unlinkability Against a Malicious Registration Authority
	Unforgeability of Expanded Dilithium

	Conclusion
	Acknowledgements
	References
	Key Reuse/Unified BKE
	Unsafe Reuse of Key Pairs
	Safely Reusing Keys for Unified Butterfly Key Expansion

	Additional Proofs

