
Quantum CCA-Secure PKE, Revisited

Navid Alamati* Varun Maram†

Abstract

Security against chosen-ciphertext attacks (CCA) concerns privacy of messages even if the adversary has access to
the decryption oracle. While the classical notion of CCA security seems to be strong enough to capture many attack
scenarios, it falls short of preserving the privacy of messages in the presence of quantum decryption queries, i.e., when
an adversary can query a superposition of ciphertexts.

Boneh and Zhandry (CRYPTO 2013) defined the notion of quantum CCA (qCCA) security to guarantee privacy
of messages in the presence of quantum decryption queries. However, their construction is based on an exotic
cryptographic primitive (namely, identity-based encryption with security against quantum queries), for which only one
instantiation is known. In this work, we comprehensively study qCCA security for public-key encryption (PKE) based
on both generic cryptographic primitives and concrete assumptions, yielding the following results:

• We show that key-dependent message secure encryption (along with PKE) is sufficient to realize qCCA-secure
PKE. This yields the first construction of qCCA-secure PKE from the LPN assumption.

• We prove that hash proof systems imply qCCA-secure PKE, which results in the first instantiation of PKE with
qCCA security from (isogeny-based) group actions.

• We extend the notion of adaptive TDFs (ATDFs) to the quantum setting by introducing quantum ATDFs, and we
prove that quantum ATDFs are sufficient to realize qCCA-secure PKE. We also show how to instantiate quantum
ATDFs from the LWE assumption.

• We show that a single-bit qCCA-secure PKE is sufficient to realize a multi-bit qCCA-secure PKE by extending
the completeness of bit encryption for CCA security to the quantum setting.

*VISA Research.
†SandboxAQ. The work was done while the author was an intern at VISA Research (and a PhD student at ETH Zürich).

1

1 Introduction
Security against chosen-ciphertext attacks (CCA) concerns privacy of messages against adversaries whose power
is beyond eavesdropping. In a CCA-secure public-key encryption (PKE) scheme, encryptions of two adverserially
chosen messages are computationally indistinguishable even if the adversary has access to the decryption oracle [NY90,
DDN91, RS92]. CCA security is considered to be the de facto notion of security for PKE [Sho98], and there has been a
long line of works studying CCA security from various cryptographic assumptions (e.g., [CS02, PW08, RS09, KMP14,
KW19, KMT19, HLLG19, HKW20, ADMP20]).

Quantum CCA security. While the classical notion of CCA security seems to be strong enough to capture many
attack scenarios, it falls short of preserving the privacy of messages in the presence of quantum decryption queries,
i.e., when an adversary can query a superposition of ciphertexts and receive a superposition of their decryptions. To
capture such attack scenarios, Boneh and Zhandry [BZ13b] defined the notion of quantum CCA (IND-qCCA, or qCCA
for short) security, and as they pointed out, issuing quantum decryption queries (and the notion of qCCA in general)
capture the security of a natural model of ubiquitous quantum computing environment where users encrypt messages on
a quantum computer.

Comparing qCCA to (classical) CCA security, Boneh and Zhandry showed that there exist PKE schemes that
satisfy (post-quantum) CCA security but those schemes can be immediately broken under qCCA attacks, concluding
that qCCA security is stronger than CCA security. In terms of instantiations, they demonstrated a construction of
qCCA-secure PKE from an identity-based encryption (IBE) scheme with selective security against quantum (secret
key) queries (by relying on the generic transformation of [BCHK07]). They showed how to realize qCCA security from
the learning with errors (LWE) assumption by observing that the LWE-based IBE scheme of [ABB10] can be shown to
satisfy selective security against quantum queries.

However, despite considerable progress in the area of quantum cryptography in recent years (e.g., [FKS+13,
BJSW16, RZ21, KNY21, BCKM21, MY22b, AQY22]), to the best of our knowledge, the aforementioned blueprint of
Boneh and Zhandry remains the only way of realizing qCCA-secure PKE from either generic or concrete assumptions
in the standard model after nearly a decade; it is worth pointing out that a line of recent works, namely [XY19, LW21,
SGX23], do provide generic constructions of qCCA-secure PKE albeit in the idealized quantum random oracle model
(QROM). This is in contrast with the (classical) CCA-secure PKE for which we have a variety of constructions from
concrete (post-quantum) assumptions such as learning parity with noise (LPN) or variants of isogeny-based group
actions (e.g., variants of CSIDH [CLM+18]). Thus we ask the following natural question:

Can we construct qCCA-secure PKE from a wider class of concrete assumptions such as LPN or
isogeny-based group actions?

Furthermore, in the past two decades, there has been remarkable progress on realizing CCA security (in a black-box
manner) from generic assumptions starting from hash proof systems [CS02] and lossy/correlated-secure/adaptive
trapdoor functions (TDFs) [PW08, RS09, KMO10] to more recent ones based on circular security and injective trapdoor
functions [KW19, KMT19, HKW20]. On the other hand, the only generic cryptographic primitive which is known
to imply qCCA-secure PKE is IBE with security against quantum queries. Therefore, even in terms of generic
cryptographic assumptions, qCCA security is much less understood compared to its classical counterpart. This is despite
the fact that for many other cryptographic primitives (e.g., symmetric-key primitives, digital signatures, passively secure
PKE, etc.), the gap between classical and quantum security is little to none [Zha12, BZ13a, BZ13b]. In particular, in
case of symmetric-key encryption (SKE), qCCA security has already been shown to be implied by (post-quantum)
CCA-secure SKE (or by the minimal assumption of post-quantum one-way functions) [BZ13b]. This leads to the
following question:

Can we build qCCA-secure PKE from the same set of cryptographic primitives (or a subset thereof) that
imply CCA-secure PKE?

On a related note, it has long been known that bit encryption is complete for CCA security [Ms09]. Specifically,
given a single-bit CCA-secure PKE one can construct a multi-bit PKE with CCA security. However, such an implication
is not known for quantum CCA security. So we ask the following pertinent question:

2

Is bit encryption complete for quantum CCA-secure PKE?

Quantum security for adaptive TDFs. In 2010, Kiltz et al. [KMO10] introduced the notion of adaptive trapdoor
functions, which can be viewed as a “deterministic” form of CCA-secure PKE. Informally, a trapdoor function is said to
be adaptive if it remains one way even if the adversary is given access to an inversion oracle. The authors of [KMO10]
demonstrated a construction of CCA-secure PKE from adaptive TDFs. They also showed how adaptive TDFs can be
constructed from lossy or correlated-secure TDFs. This motivates us to ask the following question:

Does there exist a quantum analog of adaptive TDFs?

1.1 Our Contributions
We answer the questions described above in the affirmative by presenting the following results, narrowing the gap
between CCA and qCCA security for PKE. In particular, our results for qCCA essentially match what is known for
CCA security in terms of generic cryptographic primitives, while also yielding new instantiations of qCCA security
from a variety of concrete assumptions. We refer to Figure 1 for a simplified overview of our results.

LPN (Isogeny-based) group actions LWE

PKE and KDM-secure SKE Hash Proof System Correlated-product TDF

Quantum adaptive TDFQuantum CCA-secure KEM Quantum CCA-secure PKE

Single-bit
quantum CCA-secure PKE

[ACPS09] [ADMP20] [PW08, RS09, MP13]

§4 §3

§5

§6

§6§7

Figure 1: An overview of our results (our contributions are denoted by bold arrows)

Quantum CCA security from KDM-secure SKE and PKE. We show that the CCA-secure PKE construction of
Kitagawa et al. [KMT19] from PKE and a key-dependent message (KDM) secure SKE also satisfies quantum CCA
security if the underlying primitives satisfy post-quantum security. By plugging in the KDM-secure SKE construction
of [ACPS09] from LPN, our result yields the first construction of qCCA-secure PKE from the LPN assumption. Along
the way, we also prove that the KEM-DEM1 hybrid encryption of [CS03] results in a qCCA-secure PKE if (1) the
underlying KEM is qCCA-secure, and (2) the underlying DEM offers (post-quantum) one-time authenticated encryption
security with respect to classical queries only.

Quantum CCA security from hash proof systems. We prove that the CCA-secure PKE construction of Cramer
and Shoup [CS02] from hash proof systems also satisfies quantum CCA security if the underlying hash proof system
satisfies post-quantum security. Coupled with the hash proof system construction of [ADMP20] from variants of
CSIDH, our result yields the first construction of qCCA-secure PKE from isogeny-based group actions.

1Key Encapsulation Mechanism and Data Encapsulation Mechanism, respectively.

3

Completeness of bit encryption for qCCA security. We show the quantum analog of completeness of bit encryption
for CCA security by showing that single-bit qCCA-secure PKE is sufficient to realize multi-bit PKE with qCCA security.
Our result extends the framework of [HLW12] to the quantum setting without any additional assumption.

Quantum adaptive TDFs. We extend the notion of adaptive TDFs (ATDFs) to the quantum setting by introducing
the notion of quantum ATDFs. We also extend the result of Kiltz et al. [KMO10] to the quantum setting by showing
that quantum ATDFs are sufficient to realize qCCA-secure PKE. In addition, in terms of constructions, we describe how
to build quantum adaptive TDFs from (post-quantum) correlated-product TDFs, which in turn yields an instantiation
from the LWE assumption [PW08, RS09, MP13].

Remark 1.1. We emphasize that all the above constructions are classical PKE schemes in the sense that they can be
implemented on classical computers; this is in contrast to so-called quantum PKE schemes constructed in recent works
such as [MY22a, Col23, BGH+23] which inherently require quantum machinery, e.g., requiring public keys to be
quantum states. We essentially share the same goal as [BZ13b] to construct classical cryptosystems which remain
secure when eventually implemented on quantum computers wherein adversaries potentially get quantum decryption
access to such devices.

Remark 1.2. Quantum CCA security restricts the adversary to classical challenge messages (but still allowing quantum
decryption queries; see Definition 2.2 in Section 2). Recently, Chevalier et al. [CEV22] introduced a new quantum
security notion that captures indistinguishability under quantum chosen-ciphertext attacks (i.e., qIND-qCCA security),
where the indistinguishability of ciphertexts holds even for quantum superpositions of messages. They also show that
qIND-qCCA secure PKE can be realized from any qCCA-secure PKE. Hence, by plugging in their lifting theorem in
our results, we get new constructions of qIND-qCCA secure PKE from a variety of generic cryptographic primitives as
well as concrete assumptions.

1.2 Technical Overview
We provide a simplified technical overview of our results. For the ease of exposition, we focus on a particular
construction as a warm-up example. We begin by recalling the construction of CCA-secure PKE scheme from
correlated-product trapdoor functions (CP-TDFs) in [RS09], and next we prove its quantum CCA security (while
relying on the post-quantum security of the underlying CP-TDF). Looking ahead, even though we show in Section 6 that
CP-TDFs imply the stronger notion of quantum adaptive TDFs (which in turn are sufficient to realize qCCA security),
for this overview we aim to highlight the main aspects of extending the classical CCA security proofs of [RS09] to the
quantum setting. It is worth pointing out that the following analysis can be extended in a straightforward fashion to
prove qCCA security of the LWE-based PKE construction in [BZ13b] that relies on quantum selective-secure IBE.

Informally speaking, a CP-TDF is a family of trapdoor functions {fek}ek∈K such that the following family
{fek1,...,ekt}(ek1,...,ekt)∈Kt defined by

fek1,...,ekt(x) = (fek1(x), . . . , fekt(x))

is also one-way, i.e., one-wayness is guaranteed even if one uses the same input (but independently chosen evaluation
keys). The PKE construction of [RS09] from CP-TDFs proceeds as follows. The public key consists of t pairs of
(random) functions (fek01 , fek11), . . . , (fek0t , fek1t), where each ekbi is sampled from K, and the secret key consists of
the trapdoors (td01, td

1
1), . . . , (td

0
t , td

1
t), where each tdbi is a trapdoor corresponding to fekbi . To encrypt a bit m, first

generate (vk, sk) for a one-time signature (Sign,Ver) such that vk = (vk1, . . . , vkt) ∈ {0, 1}t, then choose a random
input x and compute the following:

∀i ∈ [t] : yi = f
ek

vki
i

(x), ct1 = m⊕ h(x), ct2 ← Sign(sk, (y1, . . . , yt, ct1)),

where h is a hard-core predicate of fek1,...,ekt , and output (vk, y1, . . . , yt, ct1, ct2). To decrypt such a ciphertext, check
Ver(vk, ((y1, . . . , yt, ct1)), ct2) = 0. If so, return ⊥. Otherwise, for every i ∈ [t], invert yi using tdvkii to obtain xi. If
x1 = x2 = · · · = xk, output h(x1)⊕ ct1; otherwise, output ⊥.

4

To sketch the CCA security proof of the above PKE construction in [RS09], consider the following distinguisher D
where D gets t functions fek1 , . . . , fekt along with t values y∗1 = fek1(x

∗), . . . , y∗t = fekt(x
∗) for a uniformly random

x∗, and a challenge bit b which is either h(x∗) or a random bit. D can simulate the CCA security game for A by first
generating (vk∗, sk∗) for one-time signature, and computing the public key (fek01 , fek11), . . . , (fek0t , fek1t) to be sent to A
as follows: first, D sets

∀i ∈ [t] : f
ek

vk∗
i

i

:= feki ,

and then for the remaining part of the public key, D samples ek
1−vk∗i
i along with the corresponding td

1−vk∗i
i . Now

observe that D can answer any of A’s decryption queries by using the trapdoor td1−vk
∗
i

i for some index i such that
vki ̸= vk∗i . The challenge ciphertext is later computed as ct∗ = (vk∗, y∗1 , . . . , y

∗
t , ct

∗
1, ct

∗
2) where ct∗1 = m ⊕ b for

a random message m ∈ {0, 1} and ct∗2 ← Sign(sk∗, (y∗1 , . . . , y
∗
t , ct

∗
1)). As before, D can respond to the rest of A’s

decryption queries while responding ⊥ when the query is equal to ct∗. If A later guesses the message m correctly, D
outputs that b = h(x∗); otherwise, D outputs that b is a random bit.

Observe that D perfectly simulates the decryption algorithm above only when vk ̸= vk∗ since otherwise D does
not have access to the corresponding trapdoor for decryption. However, as argued in [RS09], the probability that A
makes a query ct = (vk∗, y1, . . . , yt, ct1, ct2) with Ver(vk∗, ((y1, . . . , yt, ct1)), ct2) = 1 is negligible thanks to the
unforgeability of (Sign,Ver). So if A makes such a query ct, then a signature forger simulating the CCA security game
towards A can use ct to break the unforgeability of (Sign,Ver).

Coming to the qCCA setting however (see Definition 2.2 in Section 2 for a formal definition of qCCA security for
PKE), where A can ask for the decryption of a quantum superposition of different ciphertexts, it is quite possible that
ciphertexts ct of the above form that induce a signature forgery are among the superposition. Therefore, if we want
to repeat the same reduction above, it is not clear how a signature forger can “extract” ct-based forgeries from A’s
quantum queries. This brings us to the main tool we employ in our qCCA security proofs in this paper: the (generalized)
One-Way To Hiding (OW2H) lemma [AHU19]. Informally, the lemma states that given two oracles G,H : X → Y
whose outputs differ with respect to a set of inputs S, and an algorithm A that has quantum access to either G or H , the
probability that A can distinguish between G and H is essentially bounded by the square root of the probability when
measuring a random quantum oracle query made by A results in a classical state in S.

To resolve the issue above in the quantum setting, we use the OW2H lemma as follows. Let G be the original
decryption oracle that A has quantum access to in the qCCA security game. We modify G to obtain a new quantum
decryption oracle H which rejects (i.e., returns⊥) ciphertexts ct of the above form; the difference set S described above
precisely includes such ciphertexts ct. Now note that D can simulate the modified decryption oracle H towards A even
in the quantum setting using the same CCA simulation strategy described above while simply rejecting ciphertexts ct
that contain vk∗ as above. In our qCCA security proof, we argue that A’s winning probability in the original qCCA
security game (where it has access to G) changes by at most a negligible amount when it has access to H instead. Here
we invoke the OW2H lemma to show the quantum indistinguishability of oracles G and H by bounding the probability
when measuring a random decryption query made by A to H results in a ciphertext ct ∈ S that induces a signature
forgery. This follows straightforwardly from the classical unforgeability of the one-time signature scheme. Namely, in
the corresponding reduction, a signature forger simulates quantum access to H towards A and randomly measures one
of A’s decryption queries; if the measurement results in ct, then the forger succeeds. We remark that the reason we
only require classical security from the signature is that, the forger queries a classical message to its one-time signing
oracle (as opposed to querying messages in superposition, which is accounted for by quantum security of signatures
in [BZ13b]) to obtain a signature ct∗2 ← Sign(sk∗, (y∗1 , . . . , y

∗
t , ct

∗
1)), when computing the challenge ciphertext.

This is a common theme across most of our qCCA security proofs, i.e., we extend the classical CCA security proofs
of PKE constructions considered in this paper to the quantum CCA setting by first identifying the modifications made
to the decryption oracle in the classical CCA analysis and then arguing the quantum indistinguishability between these
oracles in our qCCA analysis by relying on the generalized OW2H lemma.1 However, it is not always easy to bound the
probability of “measuring a decryption query to S” when applying the OW2H lemma in our qCCA analysis, in contrast
to our proof sketch above where we relied on the unforgeability of a one-time signature. For instance, as we will see
later, we show that single-bit qCCA secure PKE implies multi-bit qCCA secure PKE by extending the framework

1Sometimes such changes are made implicitly to the decryption oracle, as was the case in the CCA security proof of [RS09] sketched above; but
we have to make these modifications more explicit in our qCCA proofs in order to apply the OW2H lemma.

5

of [HLW12] to the quantum setting, and bounding the measurement probability requires another “nested” application
of the OW2H lemma, which introduces further subtleties in the proof.

On a related note, the original version of the OW2H lemma (introduced in [Unr14]) handled only random oracles
G and H , and found widespread use in proving security of cryptosystems in the QROM [BDF+11]. Later, [AHU19]
introduced a generalized version of the OW2H lemma which not only allowed G and H to have an arbitrary output
distribution but also allowed the distinguisher’s auxiliary input to be arbitrarily correlated with G, H , and the difference
set S. This allows us to apply the generalized OW2H lemma in our qCCA security proofs with respect to quantum
decryption oracles, which are not synonymous with random oracles. To the best of our knowledge, our results include
the first application of the OW2H lemma in the context of proving quantum CCA security of PKE schemes in the
standard model. This is in contrast to relying on, arguably, more complicated techniques such as the compressed
oracle framework introduced in [Zha19], which was used to analyze qCCA security of PKE schemes obtained from
the Fujisaki-Okamoto transformation [FO13] (in the QROM). In fact, the (q)CCA security proof in [Zha19] was later
found to have some subtle gaps in it [DFMS22]. Furthermore, the work of [Unr20] showed a framework for formally
verifying post-quantum security proofs of cryptosystems that involve applications of the OW2H lemma; this can be
seen as evidence of the relative simplicity of the OW2H proof technique.

Remark 1.3. We remark that we chose to present the toy example above (for qCCA security) for the sake of brevity and
providing intuition, since otherwise explaining our main results (e.g., based on hash proof systems or KDM security)
would require recalling a rather lengthy preliminary background. We refer to Sections 3−7 for our detailed results.

Remark 1.4. We note that one might use other well-known techniques (for example, the Gentle Measurement Lemma;
see [BBC+21, Theorem 1], an adaptation of [BBBV97, Theorem 3.3]) to show the indistinguishability of the quantum
decryption oracles G and H in the overview above. We chose to use the OW2H lemma because of its relative simplicity
and that it does not result in a significant loss in security proofs, as evidenced by the widespread usage of this technique
in analyzing CCA security of some proposals (in the QROM) in the NIST standardization process for post-quantum
cryptography. Hence, one of the technical contributions of this paper is finding a novel application for the OW2H
lemma (a popular QROM proof technique) in the standard model, in order to establish the quantum CCA security of
various standard model PKE constructions.

2 Preliminaries
Notations. The value of (x ?

= y) is defined to be 1 if x = y and 0 otherwise. For a positive integer n, we denote [n]
to be the set {1, 2, . . . , n}. We use λ ∈ N to denote the security parameter. For a finite set S, we write x← S to denote
that x is uniformly at random sampled from S, unless stated otherwise. x ∥ y denotes their concatenation. |x| denotes
bit-length of the encoding of x. For probabilistic algorithms we use y ← A(x) to denote a (randomized) output of A
on input x; we also sometimes specify the randomness r used in A as y ← A(x; r). We omit writing λ when it is clear
from context.

Quantum(-accessible) Oracles. We refer the reader to [NC00] for the basics of quantum computation and information.
Here we recall a basic and useful fact about quantum computation.

Fact: Any classical computation can also be implemented on a quantum computer, and also any function
that has an efficient classical algorithm can be implemented efficiently as a quantum-accessible oracle.

Given an algorithmA and a (classical) function O : {0, 1}m → {0, 1}n, we useA|O⟩ to denote thatA has quantum
access to an oracle implementingO. To be more precise,A|O⟩ can make standard superposition queries

∑
x,z ψx,z |x, z⟩

to the quantum oracle |O⟩ and get
∑

x,z ψx,z |x, z ⊕O(x)⟩ as a response; here x and z are arbitrary m-bit and n-bit
strings respectively. (We omit the “ket” notation in A|O⟩, and instead just write AO when it is clear from context.)

Lemma 2.1 (Generalized OW2H [AHU19, Theorem 3]). Let S ⊆ X be a random subset. Let G,H : X → Y be
random oracles satisfying G(x) = H(x) for every x /∈ S . Let z be a random bit string. (S, G,H, z may have arbitrary
joint distribution.) Let A be a quantum oracle algorithm making at most q quantum queries to its corresponding oracle

6

(either G or H). Let BH be an oracle algorithm that on input z does the following: picks i← {1, . . . , q}, runs AH(z)
until (just before) the i-th query, measures all query input registers in the computational basis, and outputs the set
T = {t1, . . . , t|T |} of measurement outcomes (if A makes less than i queries, the measurement outcomes are taken to
be ⊥ /∈ X). Let,

Pleft = Pr[1← AH(z)]

Pright = Pr[1← AG(z)]

Pguess = Pr[S ∩ T ̸= ∅ : T ← BH(z)]

Then, |Pleft − Pright| ≤ 2q
√
Pguess. The same result also holds with BG instead of BH in the definition of Pguess.

Public-Key Encryption (PKE). A PKE scheme PKE = (Gen,Enc,Dec) with message space M is a triple of
algorithms, where the algorithm Gen on input 1λ generates a pair of public and secret keys (pk, sk)← Gen(1λ); the
probabilistic algorithm Enc encrypts a message m ∈ M as ct ← Enc(pk,m) and the deterministic Dec decrypts a
ciphertext ct as m← Dec(sk, ct) (or returns ⊥).

For a function γ : N 7→ [0, 1], we say that PKE is γ-spread if for every key pair (pk, sk), message m ∈ M, and
ciphertext ct, we have

Pr
r←R

[ct = Enc(pk,m; r)] ≤ 2−γ

whereR is the set of all possible randomness that can be sampled in Enc. In particular, we say that PKE is well-spread
if 2−γ is negligible in λ.

Let ε : N 7→ [0, 1] be a function. We say that PKE = (Gen,Enc,Dec) is ε-almost-all-keys correct if we have

Pr
(pk,sk)←Gen(1λ)

[∃(m, r) s.t. Dec(sk,Enc(pk,m; r) ̸= m)] ≤ ε(λ).

We also call key pairs (pk, sk) under which the above decryption error occurs as “erroneous.”

qCCA-Secure PKE. Below we define quantum CCA security for PKE, which is an extension of classical CCA
security to the quantum setting.

Definition 2.2. A PKE scheme PKE = (Gen,Enc,Dec) is said to be qCCA secure if for every QPT adversary A, the
following quantity AdvqCCA

PKE,A is negligible:

AdvqCCA
PKE,A =

∣∣∣∣∣∣∣Pr
b = b′ :

(pk, sk)← Gen(1λ); b← {0, 1}
(m0,m1, st)← A|O⊥(sk,·)⟩(pk)

ct∗ ← Enc(pk,mb); b
′ ← A|Oct∗ (sk,·)⟩(ct∗, st)

− 1

2

∣∣∣∣∣∣∣
where the function Oc̃t(sk, ·) is defined as

Oc̃t(sk, ct) =

{
⊥ if ct = c̃t,

Dec(sk, ct) otherwise,

where st denotes some arbitrary state information and ct∗ is computed in the challenge phase. We require the messages
m0 and m1 to be of the same length. A has access to |O⊥(sk, ·)⟩ and |Oct∗(sk, ·)⟩ in the pre-challenge phase and
post-challenge phase, respectively. As in the qCCA security definition for encryption in [BZ13b], we also encode ⊥
to be a bit-string outside the message spaceM in order to properly define the result z ⊕ ⊥ in the output register of
|Oc̃t(sk, ·)⟩ described above.

The notion of CCA security for PKE schemes differs from Definition 2.2 in that the adversary A has classical
access to O⊥(sk, ·) and Oct∗(sk, ·).

7

Injective Trapdoor Functions. A trapdoor function (TDF) TDF = (Gen,Eval, Invert) is a triple of algorithms
satisfying the following one-wayness property, where the algorithm Gen on input 1λ generates a pair of evaluation and
trapdoor keys (ek, td)← Gen(1λ), Eval(ek, ·) implements a function fek(·) over {0, 1}λ and Invert(td, ·) implements
its inverse function f−1ek (·) (along with outputting ⊥ for invalid inputs). Note that we require TDFs to be injective.

Definition 2.3. A trapdoor function TDF = (Gen,Eval, Invert) satisfies (post-quantum) one-wayness if for every QPT
inverter A, we have

AdvOW
TDF,A = Pr

[
x = x′ :

(ek, td)← Gen(1λ);x← {0, 1}λ

y∗ ← Eval(ek, x);x′ ← A(ek, y∗)

]
≤ negl .

Definition 2.4. We say that the function GL : {0, 1}λ → {0, 1} is a hardcore predicate for a (post-quantum) TDF
TDF = (Gen,Eval, Invert) if for every QPT distinguisher A, the following quantity AdvhcDist

GL,D is negligible:

AdvhcDist
GL,D =

∣∣∣∣∣∣∣Pr
b = b′ :

(ek, td)← Gen(1λ); b← {0, 1}
x← {0, 1}λ; y∗ ← Eval(ek, x);h0 = GL(x)
h1 ← {0, 1}; b′ ← A(ek, y∗, hb)

− 1

2

∣∣∣∣∣∣∣ .
The work of [GL89] showed that there must exist a hardcore predicate for any one-way (trapdoor) function.

qCCA-Secure KEM. A key-encapsulation mechanism KEM = (Gen,Encaps,Decaps) with session-key1 space K is
a triple of algorithms, where the algorithm Gen on input 1λ generates a pair (pk, sk)← Gen(1λ); the algorithm Encaps
generates a session key and the corresponding ciphertext as (ct, k)← Encaps(pk) and the deterministic Decaps returns
a session key (or an error ⊥) from a ciphertext as k← Decaps(sk, ct).

Let ε : N 7→ [0, 1] be a function. We say that KEM is ε-almost-all-keys correct if we have

Pr
(pk,sk)←Gen(1λ)

[∃r s.t. Encaps(pk; r) = (ct, k) ∧ Decaps(sk, ct) ̸= k] ≤ ε(λ).

We call pairs (pk, sk) under which the decapsulation error occurs as “erroneous.”

Definition 2.5. A KEM KEM = (Gen,Encaps,Decaps) is said to be qCCA secure if for every QPT adversary A, we
have

AdvqCCA
KEM,A =

∣∣∣∣∣∣∣Pr
b = b′ :

(pk, sk)← Gen(1λ); b← {0, 1}
(ct∗, k∗1)← Encaps(pk), k∗0 ← K
b′ ← A|Oct∗ (sk,·)⟩(pk, (ct∗, k∗b))

− 1

2

∣∣∣∣∣∣∣ ≤ negl,

where the function Oc̃t(sk, ·) is defined as

Oc̃t(sk, ct) =

{
⊥ if ct = c̃t,

Decaps(sk, ct) otherwise.

(We also encode ⊥ to be a bitstring outside K to properly define the value z ⊕⊥ in the output register of |Oc̃t(sk, ·)⟩
described above.)

The notion of CCA security for KEMs differs from Definition 2.5 in that the adversary A has classical access to the
oracle Oct∗(sk, ·).

Coming to the CPA security of KEMs, it is convenient to define the security notion for the following multi-challenge
experiment; this multi-challenge version of CPA security is polynomially equivalent to the single-challenge version via
a standard hybrid argument. A KEM KEM = (Gen,Encaps,Decaps) is said to be CPA secure if for any polynomial
n = n(λ) and every QPT adversary A, we have that the following quantity AdvmCPA

KEM,n,A is negligible:

1Also sometimes referred to as “encapsulated key” in this paper.

8

AdvmCPA
KEM,n,A =

∣∣∣∣∣∣∣Pr
b = b′ :

(pk, sk)← Gen(1λ); b← {0, 1}
∀i ∈ [n] (ct∗i , k

∗
i,1)← Encaps(pk), k∗i,0 ← K

b′ ← A(pk, (ct∗i , k∗i,b)i∈[n])

− 1

2

∣∣∣∣∣∣∣ .
Authenticated Encryption Scheme. A secret-key encryption (SKE) scheme SKE = (K,E,D) is a triple of algorithms
where the algorithm K on input 1λ generates a key k← K(1λ); the probabilistic algorithm E encrypts a message m as
ct ← E(k,m) and the deterministic (decryption) D decrypts a ciphertext ct as m ← D(k, ct) (or returns an error ⊥).
We also assume perfect correctness of our SKE schemes.

Definition 2.6. An SKE scheme SKE = (K,E,D) is a one-time authenticated encryption scheme if the following two
properties hold:

• CPA security: For every QPT adversary A, it holds

AdvCPA
SKE,A =

∣∣∣∣∣∣∣Pr
b = b′ :

k← K(1λ); b← {0, 1}
(m0,m1, st)← A(1λ)
ct∗ ← E(k,mb); b

′ ← A(ct∗, st)

− 1

2

∣∣∣∣∣∣∣ ≤ negl,

where m0 and m1 are of the same length and st is state information.

• Ciphertext integrity (INT-CTXT security): For every QPT adversary B, we have

AdvINT-CTXT
SKE,B = Pr

win = 1 :

k← K(1λ);win = 0

(m, st)← BO⊥(k,·)(1λ)

ct∗ ← E(k,m);BOct∗ (k,·)(ct∗, st)

 ≤ negl,

where the flag “win” is set to 1 if B makes a query to any of the oracles O⊥(k, ·) or Oct∗(k, ·) such that the
corresponding response is not ⊥. Here the oracle Oc̃t(k, ·) is defined as

Oc̃t(k, ct) =

{
⊥ if ct = c̃t,

D(k, ct) otherwise.

Note that B only has classical access to the oracles.

One-time security stems from the fact that A and B have one-time access to the encryption oracle E(k, ·).

Key-Dependent Message (KDM) Security. A function is said to be a projection function if each of its output bits
depends on at most a single bit of its input. Let SKE = (K,E,D) be an SKE with key space K and message spaceM.
Let P be the family of projection functions with domain K and rangeM.

Definition 2.7. An SKE scheme SKE = (K,E,D) is said to be one-time KDM secure with respect to projection
functions if for every QPT adversary A, we have

AdvKDM
SKE,P,A =

∣∣∣∣∣∣∣Pr
b = b′ :

k← K(1λ); b← {0, 1}
(f0, f1, st)← A(1λ)
ct∗ ← E(k, fb(k)); b

′ ← A(ct∗, st)

− 1

2

∣∣∣∣∣∣∣ ≤ negl

where f0, f1 ∈ P and st is some arbitrary state information.

9

Target Collision-Resistant Hash Functions. A keyed hash function Hash = (HGen,H) is a pair of algorithms where
the algorithm HGen on input 1λ generates a hash key hk← HGen(1λ); the deterministic (evaluation) algorithm H on
input a value x ∈ {0, 1}∗ outputs a hash value y ∈ {0, 1}λ, i.e., y = H(hk, x).

Definition 2.8. A hash function Hash = (HGen,H) is target collision-resistant if for every QPT adversary A, we have

AdvTCR
Hash,A = Pr

[
H(hk, x′) = H(hk, x)

∧ x′ ̸= x
:
(x, st)← A(1λ)
hk← HGen(1λ);x′ ← A(hk, st)

]
≤ negl,

where st is some arbitrary state information.

Note that target collision-resistant hash functions can be constructed from any one-way function [Rom90].

3 Quantum CCA Security from Hash Proof Systems
Cramer and Shoup [CS02] introduced the notion of hash proof systems, which provides a generic framework to construct
CCA-secure PKE. In this section, we show how one can also obtain quantum CCA-secure PKE from hash proof systems
while relying on the same statistical (i.e., universality and smoothness) and computational1 properties that were used for
building CCA-secure PKE. By plugging in the hash proof system construction of [ADMP20] from isogeny-based group
actions (e.g., variants of CSIDH), we obtain the first realization of qCCA-secure PKE from isogeny-based assumptions.

We begin by recalling the definition of universal hash proof systems (also known as projective hash functions) as
in [CS02, ADMP20].

Definition 3.1. Let Λ : K × Σ → Γ be an efficiently computable function, and let L ⊂ Σ. Also, let α : K → S be
a projection function. We say that the tuple Π = (Λ,K, S,Σ,Γ, L) is a universal hash proof system if the following
holds:

• Samplability: There exist efficient algorithms to sample from Σ and from K. In addition, there exists an efficient
algorithm to sample from L along with a witness w that proves membership in L.

• Subset Membership Problem: If σ0 ← L and σ1 ← Σ \ L, it holds that σ0 is computationally indistinguishable
from σ1, i.e., for any PPT distinguisher D, the following is negligible:

AdvSMP
(Σ,L),D =

∣∣∣Pr [b′ = b : b← {0, 1};σ0 ← L, σ1 ← Σ \ L, b′ ← D(σb)
]
− 1

2

∣∣∣.
• Projective Evaluation: There exists an efficient algorithm ProjEval such that for any k ∈ K and any σ ∈ L with

membership witness w, we have

ProjEval(α(k), σ, w) = Λ(k, σ).

• Universality: Π is said to be ε-universal if for any σ ∈ Σ \ L, s ∈ S, and γ ∈ Γ, we have

Pr
k←K

[Λ(k, σ) = γ | α(k) = s] ≤ ε.

Universality2 and smoothness. We recall two stronger notions for universal hash proof systems, namely universality2
and smoothness, as in [CS02].

• Universality2: A hash proof system Π = (Λ,K, S,Σ,Γ, L) is ε-universal2 if for any σ, σ∗ ∈ Σ such that
σ ∈ Σ \ (L ∪ {σ∗}), for any s ∈ S and γ, γ∗ ∈ Γ, we have

Pr
k←K

[Λ(k, σ) = γ | α(k) = s ∧ Λ(k, σ∗) = γ∗] ≤ ε.
1The only difference is that we require the computational properties to hold in the presence of QPT adversaries (i.e., post-quantum security).

10

• Smoothness: A hash proof system Π = (Λ,K, S,Σ,Γ, L) is ε-smooth if for any σ ∈ Σ \ L, k ← K and γ ← Γ,
the statistical distance between (α(k), σ,Λ(k, σ)) and (α(k), σ, γ) is at most ε.

As in [CS02], we also define an extended hash proof system with a tuple of the form Π = (Λ,K, S,Σ×E,Γ, L×E)
associated with a finite set E (where E is going to be used for encoding messages). The only difference between
an extended and an “ordinary” hash proof system is that to compute Λ(k, σ, e) for σ ∈ L and e ∈ E, the ProjEval
algorithm takes as input α(k) ∈ S, σ ∈ L, e ∈ E and a witness w, i.e., ProjEval(α(k), σ, e, w) = Λ(k, σ, e).

Construction. We recall the construction of CCA-secure PKE from universal (and smooth) hash proof systems [CS02].
We then proceed to show that the same construction also results in qCCA-secure PKE, assuming the post-quantum
security of the underlying hash proof system.

Let Π = (Λ,K, S,Σ,Γ, L) be an ε′-smooth hash proof system, and also let α : K → S be its projection function.
Let Π̂ = (Λ̂, K̂, Ŝ,Σ×Γ, Γ̂, L×Γ) be an extended hash proof system with ε-universality2, with α̂ : K̂ → Ŝ being the
corresponding projection function. Consider the scheme PKE = (Gen,Enc,Dec) with message space Γ based on Π and
Π̂ as follows (note that we require Γ to be an abelian group wherein elements can be efficiently added and subtracted):

Gen(1λ): Sample k ← K, k̂ ← K̂, and compute s = α(k), ŝ = α̂(k̂). Output

pk = (s, ŝ), sk = (k, k̂).

Enc(pk = (s, ŝ),m): Sample σ ∈ L with its witness w. Output (σ, e, γ̂) where

γ = ProjEval(s, σ, w), e = m+ γ ∈ Γ, γ̂ = ˆProjEval(ŝ, σ, e, w).

Dec(sk, ct = (σ, e, γ̂)): Compute γ̄ = Λ̂(k̂, σ, e). If γ̂ = γ̄ do the following, else output⊥: compute γ = Λ(k, σ) ∈ Γ
and output m = e− γ ∈ Γ.

Theorem 3.2. If Π is a ε′-smooth hash proof system and Π̂ is a ε-universal2 extended hash proof system for negligible
ε′ and ε, then PKE is qCCA secure.

At a high level, the proof proceeds similarly to that of [CS02] but the main difference is that in [CS02], the original
Dec oracle is replaced with an alternative oracle, and then the ε-universality2 property of Π̂ is invoked in order to argue
the (classical) indistinguishability of decryption oracles. In our case, we argue the quantum indistinguishability of these
decryption oracles by relying on the generalized OW2H lemma [AHU19] (also referred to as Lemma 2.1 in the rest of
this paper, as formally defined in Section 2), in addition to the statistical ε-universality2 property of Π̂.

Proof. LetA be any QPT adversary that breaks the qCCA security of PKE (see Definition 2.2) while making q quantum
decryption queries, with qpre/qpost decryption queries in the pre/post-challenge phase. Consider the following games.

Game 1: This is essentially the same as the qCCA game except for some minor changes.1

• Sample k ← K and k̂ ← K̂ and compute s = α(k), ŝ = α̂(k̂). Set pk = (s, ŝ) and sk = (k, k̂). Generate
σ∗ ∈ L along with a corresponding witness w∗, and sample a random bit b← {0, 1}.

• Forward pk to A and respond to A’s quantum decryption queries using the description of Dec(sk, ·) above, i.e.,
given a ciphertext |ct⟩ = |σ, e, γ̂⟩ in the computational basis, compute γ̄ = Λ̂(k̂, σ, e) and if γ̂ = γ̄ then compute
γ = Λ(k, σ) and output m = e− γ. Otherwise, output ⊥.

• After receiving (m0,m1) from A, output ct∗ = (σ∗, e∗, γ̂∗) where

γ∗ = ProjEval(s, σ∗, w∗), e∗ = mb + γ∗, γ̂∗ = ˆProjEval(ŝ, σ∗, e∗, w∗).

1Specifically, (σ∗, w∗) is generated in the pre-challenge phase (which is going to be used in the challenge phase). However, this change does not
affect A’s view.

11

• Respond to A’s quantum decryption queries in the normal way as above, but this time making sure to reject
ciphertexts that are equal to ct∗.

• A terminates with an output b′ ∈ {0, 1}.

Game 2: In this game, we modify the way ct∗ = (σ∗, e∗, γ̂∗) is computed. Specifically, instead of using pk to
encrypt mb, we use sk = (k, k̂) as follows:

γ∗ = Λ(k, σ∗), e∗ = mb + γ∗, γ̂∗ = Λ̂(k̂, σ∗, e∗).

Game 3: In this game, we sample σ∗ uniformly from Σ \L, instead of L. Note that we do not need a corresponding
witness w∗ as we are not using the ProjEval function (which requires a witness as input) anymore to encrypt mb.

Game 4a: In this game, we modify the decryption oracle in the pre-challenge phase as follows. In addition to
rejecting a ciphertext (σ, e, γ̂) if Λ̂(k̂, σ, e) ̸= γ̂, the modified oracle also rejects the ciphertext if σ /∈ L.

Game 4b: Here we modify the decryption oracle in the post-challenge phase as follows. In addition to rejecting a
ciphertext (σ, e, γ̂) if Λ̂(k̂, σ, e) ̸= γ̂, the modified oracle also rejects the ciphertext if σ /∈ L.1

Game 5: In this game, we modify the challenge phase as follows. Instead of computing γ∗ as γ∗ = Λ(k, σ∗), we
sample γ∗ uniformly from Γ.

We define W (j), for j ∈ {1, 2, 3, 4a, 4b, 5}, to be the event that A succeeds in guessing the bit b (i.e., b′ = b) in
Game j. By definition, we have

AdvqCCA
PKE,A =

∣∣∣Pr[W (1)]− 1

2

∣∣∣.
We now have the following in the subsequent games.

Lemma 3.3. Pr[W (1)] = Pr[W (2)].

Proof. Note that since σ∗ ∈ L (where w∗ is the corresponding witness), by the projective evaluation property we have
γ∗ = ProjEval(s, σ∗, w∗) = Λ(k, σ∗) and γ̂∗ = ˆProjEval(ŝ, σ∗, e∗, w∗) = Λ̂(k̂, σ∗, e∗).

Lemma 3.4. There exists a distinguisher D that solves the subset membership problem of Π (and Π̂) such that
|Pr[W (2)]− Pr[W (3)]| = 2 ·AdvSMP

(Σ,L),D.

Proof. The description of D is as follows: on input σ∗ ∈ Σ, the distinguisher D samples sk = (k, k̂)← K × K̂ and
forwards the corresponding public key pk = (α(k), α̂(k̂)) to the qCCA adversary A. It then samples b← {0, 1} and
answers A’s quantum decryption queries as in Game 2 using sk. When A provides (m0,m1), the distinguisher D
computes the challenge ciphertext as follows: it computes γ∗ = Λ(k, σ∗) using sk. Next, D computes e∗ = mb + γ∗

and γ̂∗ = Λ̂(k̂, σ∗, e∗), and forwards (σ∗, e∗, γ̂∗) to A. The distinguisher D proceeds to respond to A’s quantum
decryption queries again as in Game 2 using sk while making sure to reject ciphertexts equal to ct∗. Finally, when A
terminates with a bit b′, the distinguisher D outputs 1 if b = b′ and outputs 0 otherwise. It is easy to see that D perfectly
simulates Game 2 (respectively, Game 3) if σ∗ ∈ L (respectively, σ∗ ∈ Σ \ L). Therefore, we have

|Pr[W (2)]− Pr[W (3)]| = 2 ·AdvSMP
(Σ,L),D.

Lemma 3.5. |Pr[W (3)]− Pr[W (4a)]| ≤ 2qpre
√
ε.

Proof. Here we use Lemma 2.1 to bound |Pr[W (3)] − Pr[W (4a)]|. In the context of applying Lemma 2.1, let A be
a quantum oracle algorithm which receives as input the hash proof systems Π and Π̂ along with the random values
k ← K and k̂ ← K̂ (namely, the secret key sk = (k, k̂)); i.e., z = ((Π, Π̂), (k, k̂)). A also has quantum access either
to the original decryption oracle G := Dec(sk, ·) used in Game 3 or to the modified decryption oracle H used in Game
4a. Note that the outputs of oracles G and H differ with respect to the set of ciphertexts S = {ct = (σ, e, γ̂)|σ /∈

1As usual, ciphertexts equal to the challenge ciphertext ct∗ will also be rejected.

12

L ∧ Λ̂(k̂, σ, e) = γ̂}. Next, A proceeds to perfectly simulate either Game 3 or Game 4a towards the qCCA adversary
A (depending on whether it has access to G or H) as follows: A first samples b ← {0, 1} and forwards the public
key (s, ŝ) = (α(k), α̂(k̂)) to A. Then A strictly uses its quantum oracle (i.e., G or H) to answer A’s queries in the
pre-challenge phase, i.e., A does not use the secret key (k, k̂) directly for decryption here. To compute the challenge
ciphertext ct∗ = (σ∗, e∗, γ̂∗) in the challenge phase, A uses the private keys k and k̂ for encrypting mb just as in Game
3 (and 4a) above. Finally, A proceeds to answer the rest of A’s quantum decryption queries in the post-challenge
phase as in Game 3, this time using the secret key (k, k̂) (and not the oracles G or H), while at the same time rejecting
ciphertexts that are equal to ct∗. Finally A outputs 1 if and only if A outputs b′ = b.

Observe that in the context of Lemma 2.1, Pr[W (3)] = Pr[1← AG(z)] and Pr[W (4a)] = Pr[1← AH(z)]. Thus,
we have |Pr[W (3)] − Pr[W (4a)]| ≤ 2qpre

√
Pguess where Pguess is the probability of the event when measurement

of a random quantum decryption query made by A in the pre-challenge phase of Game 4a results in a ciphertext
(σ, e, γ̂) ∈ S.

In order to bound the probability Pguess in Game 4a, we first condition on fixed hash proof systems Π and Π̂, as
well as fixed values of k, ŝ, and A’s random coins. These values completely determine the public key received by A in
Game 4a, the quantum decryption queries made by A in the pre-challenge phase, the corresponding responses of the
decryption oracle (note that in Game 4a, the decryption oracle rejects ciphertexts (σ, e, γ̂) when σ /∈ L; hence, when
σ ∈ L, we only need the keys k and ŝ for decryption), and the values m0 and m1 chosen by A in the challenge phase.
Now consider any ciphertext ct = (σ, e, γ̂) which is a result of measuring any quantum decryption query made by A in
the pre-challenge phase. If E is an event in this conditional probability space, then we denote the associated probability
of the event in this space as Prcond[E]. In the next step, we want to bound the following quantity:

Pr
cond

[(σ, e, γ̂) ∈ S] = Pr
cond

[σ /∈ L ∧ Λ̂(k̂, σ, e) = γ̂] ≤ Pr
cond

[Λ̂(k̂, σ, e) = γ̂ | σ /∈ L].

In this conditional probability space where σ, e, and γ̂ are fixed, along with the other values fixed above, note that k̂ is
still uniformly distributed over K̂ conditioned on α̂(k̂) = ŝ. Hence, from the ε-universality2 property of Π̂, we have
Prcond[Λ̂(k̂, σ, e) = γ̂ | σ /∈ L] ≤ ε. Thus, from a simple averaging argument over this conditional probability space, it
follows that Pguess ≤ ε in Game 4a. Therefore, it follows that

|Pr[W (3)]− Pr[W (4a)]| ≤ 2qpre
√
Pguess ≤ 2qpre

√
ε.

Lemma 3.6. |Pr[W (4a)]− Pr[W (4b)]| ≤ 2qpost
√
ε.

Proof. We again use Lemma 2.1 as above to bound |Pr[W (4a)] − Pr[W (4b)]|. We first simulate the pre-challenge
phase of Game 4a (and 4b) as follows: let Apre be an algorithm which receives as input the hash proof systems Π and
Π̂ along with a randomly chosen sk = (k, k̂) generated as in Game 4a above. Apre samples b← {0, 1} and forwards
pk = (s, ŝ) = (α(k), α̂(k̂)) to A. It responds to A’s quantum decryption queries in the pre-challenge phase as in Game
4a using sk: for any ct = (σ, e, γ̂), it returns ⊥ whenever σ /∈ L (note that Apre need not be efficient); otherwise, it
returns Dec(sk, ct). After receiving (m0,m1) from A, the algorithm Apre computes ct∗ = (σ∗, e∗, γ̂∗) using sk as in
Game 4a (and 4b) above. It then forwards ct∗ to A. In addition, in the context of applying Lemma 2.1, Apre forwards
the input z = ((Π, Π̂), (pk, sk), ct∗, b) to a quantum oracle algorithm Apost. The algorithm Apost also has quantum
access either to the corresponding post-challenge decryption oracle G = Dec(sk, ·) in Game 4a (which also rejects
ciphertexts equal to ct∗) or to the modified post-challenge decryption oracle H in Game 4b. Note that the outputs of G
and H differ with respect to the set S = {ct = (σ, e, γ̂)|ct ̸= ct∗ ∧ σ /∈ L ∧ Λ̂(k̂, σ, e) = γ̂}. Next, Apost proceeds to
simulate the post-challenge phase of Game 4a or Game 4b towards A (depending on whether it has access to G or H)
by forwarding A’s quantum decryption queries to its own oracle (i.e., G or H) and returning the corresponding output.
Finally, Apost outputs 1 if and only if A outputs b′ = b.

Observe that Pr[W (4a)] = Pr[1 ← AG
post(z)] and Pr[W (4b)] = Pr[1 ← AH

post(z)]. By applying Lemma 2.1
we have |Pr[W (4a)] − Pr[W (4b)]| ≤ 2qpost

√
Pguess where Pguess is essentially the probability of the event when

measurement of a random quantum decryption query made by A in the post-challenge phase of Game 4b results in a
non-challenge ciphertext ct = (σ, e, γ̂) ∈ S.

13

In order to bound the probability Pguess in Game 4b, we condition on fixed hash proof systems Π and Π̂, fixed
values of k, ŝ, and A’s random coins as in our analysis of the pre-challenge phase in the previous lemma. Moreover,
we also condition on the fixed values of b and σ∗ in the challenge phase (which determine γ∗ and e∗) as well as a
fixed value of γ̂∗ = Λ̂(k̂, σ∗, e∗). These values completely determine all of the quantum decryption queries made by
A in the post-challenge phase and the corresponding responses of the decryption oracle in Game 4b. Now consider
any ciphertext ct = (σ, e, γ̂) which is a result of the measurement of any quantum decryption query made by A in the
post-challenge phase. Using the same notation of Prcond[·] as in the proof of the previous lemma to denote conditional
probabilities, we want to bound:

Pr
cond

[(σ, e, γ̂) ∈ S] = Pr
cond

[(σ, e, γ̂) ̸= (σ∗, e∗, γ̂∗) ∧ σ /∈ L ∧ Λ̂(k̂, σ, e) = γ̂]

≤ Pr
cond

[Λ̂(k̂, σ, e) = γ̂ | (σ, e, γ̂) ̸= (σ∗, e∗, γ̂∗) ∧ σ /∈ L].

If (σ, e) = (σ∗, e∗), then since (σ, e, γ̂) ̸= (σ∗, e∗, γ̂∗) we have Λ̂(k̂, σ, e) ̸= γ̂ with certainty; that is, Prcond[Λ̂(k̂, σ, e) =
γ̂ | (σ, e, γ̂) ̸= (σ∗, e∗, γ̂∗) ∧ σ /∈ L] = 0.

On the other hand, if (σ, e) ̸= (σ∗, e∗), then in this conditional probability space where σ, e, and γ̂ are fixed, along
with the other values fixed above, note that k̂ is uniformly distributed conditioned on α̂(k̂) = ŝ and Λ̂(k̂, σ∗, e∗) = γ̂∗.
Thus, by the ε-universality2 property of Π̂, we have

Pr
cond

[Λ̂(k̂, σ, e) = γ̂ | (σ, e, γ̂) ̸= (σ∗, e∗, γ̂∗) ∧ σ /∈ L] ≤ ε.

By a simple averaging argument, it follows that Pguess ≤ ε, which implies

|Pr[W (4a)]− Pr[W (4b)]| ≤ 2qpost
√
Pguess ≤ 2qpost

√
ε.

Remark 3.7. Note that in our application of the OW2H lemma above (and also in the rest of our qCCA security proofs
below), we first make an explicit distinction between the “pre-challenge” and “post-challenge” decryption oracles and
then apply the OW2H lemma separately to the respective oracles. The reason is that the OW2H lemma, in its current
form, is not directly applicable to stateful oracles (which is the case for decryption oracles in the qCCA security game).
Nevertheless, we believe that a one-shot application of a “stateful”-version of the OW2H lemma would not lead to
improved security bounds compared to our two-fold application of the plain OW2H lemma.

Lemma 3.8. |Pr[W (4b)]− Pr[W (5)]| ≤ ε′.

Proof. We construct a (potentially inefficient) distinguisher D′ as follows: on input the hash proof systems Π, Π̂ and a
tuple (α(k), σ∗, γ∗) where σ∗ ← Σ \ L, k ← K, and an element γ∗ ∈ Γ (where D′ is supposed to determine whether
γ∗ = Λ(k, σ∗) or γ∗ ← Γ), the distinguisher D′ first samples k̂ ← K̂ and forwards pk = (α(k), α̂(k̂)) to A. It then
samples b← {0, 1} and proceeds to answer A’s queries as in Game 4b (and 5) as follows: for any ct = (σ, e, γ̂), return
⊥ whenever σ /∈ L. Otherwise, compute γ̄ = Λ̂(k̂, σ, e) and check if γ̄ = γ̂. If not, output ⊥. Otherwise, find a witness
w corresponding to σ ∈ L and compute γ = ProjEval(α(k), σ, w), and return m = e − γ.1 In the challenge phase,
when A provides (m0,m1), the distinguisher D′ computes ct∗ = (σ∗, e∗, γ̂∗) as follows: it computes e∗ = mb + γ∗

and γ̂∗ = Λ̂(k̂, σ∗, e∗) using k̂. Next, D′ proceeds to respond to the rest of A’s queries as in the pre-challenge phase
while rejecting ciphertexts equal to ct∗. Finally, whenA terminates with a bit b′, the distinguisher D′ outputs 1 if b = b′

and outputs 0 otherwise. Observe that D′ perfectly simulates Game 4b or Game 5 (depending on its input). Therefore,
by the ε′-smoothness property of Π, it follows that the statistical distance between (α(k), σ∗, γ∗ = Λ(k, σ∗)) and
(α(k), σ∗, γ∗ ← Γ) is bounded by ε′, as required.

Lemma 3.9. Pr[W (5)] = 1/2.

Proof. The lemma follows by observing that the view of A is independent of b.

1For a fixed σ ∈ L, finding a corresponding witness w may not be efficient. However, note that D′ is potentially inefficient since our proof relies
on a statistical property of hash proof systems, namely ε′-smoothness (Definition 3.1).

14

By putting together all of the above bounds, it follows that

AdvqCCA
PKE,A ≤ 2 ·AdvSMP

(Σ,L),D + 2q
√
ε+ ε′,

which establishes the qCCA security of PKE.

Quantum CCA-secure PKE from isogeny-based group actions. We remark that an ε′-smooth and ε-universal2 hash
proof system (where ε′ and ε are negligible) can be generically constructed from a 1/2-universal hash proof system by
relying on the leftover hash lemma (as shown by [CS02]), and for the above construction one can take Γ to be the group
of (fixed-length) bit strings with xor operation. Thus, all one needs to realize qCCA-secure PKE is a 1/2-universal hash
proof system. In particular, by relying the hash proof system construction of [ADMP20], Theorem 3.2 immediately
yields a quantum CCA-secure PKE from isogeny-based group actions (e.g., variants of CSIDH). We note that the
transformation of Cramer and Shoup [CS02] to construct a negligibly smooth and universal hash proof system from a
1/2-universal hash proof system is also valid in a quantum setting since it neither requires a computational assumption
nor does it involve interacting with an oracle. Namely, the transformation of [CS02] is entirely statistical, and only
relies on simple statistical techniques/lemmas, e.g., parallelization and the leftover hash lemma (Section 3.5 of [CS02]).

4 Quantum CCA Security from PKE and KDM-Secure SKE
Kitagawa et al. [KMT19] showed how to realize CCA-secure KEM/PKE given any CPA-secure KEM/PKE and any
SKE scheme with one-time KDM security (for projection functions). In this section, we prove that their construction
also satisfies qCCA security while relying on (post-quantum security of) the same building blocks.

4.1 Quantum CCA-Secure KEM
We recall the KEM construction of [KMT19] from the following building blocks (see Section 2 for formal definitions
of various security notions):

• a CPA-secure KEM KEM = (Gen,Encaps,Decaps);

• a one-time KDM-secure SKE (for projection functions) SKE = (K,E,D); and

• a target-collision resistant hash function Hash = (HGen,H).

These building blocks are required to have the following properties:

• The session key space of KEM and the randomness space of Encaps are {0, 1}4λ and {0, 1}λ, respectively. The
secret key space of SKE is {0, 1}n and plaintext space is {0, 1}n·λ+ℓ. The range of H is {0, 1}λ.

• The size of the range of Decaps(sk, ·) (excluding ⊥) for any sk in the support of Gen(1λ) is at most 2λ.

Consider the scheme KEM = (Gen,Encaps,Decaps) described in Figure 2 and Figure 3. Correctness of KEM can
be verified as in [KMT19]. We proceed to prove the quantum CCA security of KEM via the following theorem.

Theorem 4.1. Let KEM, SKE, and Hash be as described above with security against QPT adversaries. If KEM is
almost-all-keys correct1 then KEM is qCCA secure.

Proof. Let A be any QPT adversary that breaks the qCCA security of KEM while making q quantum decapsulation
queries. Let KEM be ε-almost-all-keys correct. Our proof proceeds with a similar sequence of games as in [KMT19].
For the sake of completeness, we provide the descriptions of the games as follows.

Game 1: This is essentially identical to qCCA game for KEM except for a few changes in the ordering.

1This correctness notion is analogous to the almost-all-keys correctness defined for PKE schemes in Section 2.

15

Gen(1λ):

(pkb, skb)← Gen(1λ) for b ∈ {0, 1}
ai, c← {0, 1}4λ for i ∈ [n]
hk← HGen(1λ)

PK := (pk0, pk1, (ai)i∈[n], c, hk)

SK := (sk0,PK)
return (PK,SK)

Encaps(PK = (pk0, pk1, (ai)i∈[n], c, hk)):

∀(i, b) ∈ [n]× {0, 1} :
rbi ← {0, 1}λ, (ctbi ,k

b
i)← Encaps(pkb; rbi)

s = (s1, . . . , sn)← K(1λ), κ← {0, 1}ℓ
ctSKE ← E(s, (rsii)i∈[n] ∥ κ)

h := H(hk, (ct0i , ct
1
i)i∈[n] ∥ ctSKE)

ti := ksi
i + si · (ai + c · h)1 (∀i ∈ [n])

CT := ((ct0i , ct
1
i , ti)i∈[n], ctSKE)

return (CT,κ)

Figure 2: Algorithms Gen and Encaps.

Decaps
(
SK = (sk0,PK),CT = ((ct0i , ct

1
i , ti)i∈[n], ctSKE)

)
:

h := H(hk, (ct0i , ct
1
i)i∈[n] ∥ ctSKE).

For each i ∈ [n]: if Decaps(sk0, ct0i) = ti, set si = 0. Otherwise set si = 1.
((rsii)i∈[n] ∥ κ) := D(s, ctSKE)

If the following holds return κ. Otherwise return ⊥.
∀i ∈ [n] : Encaps(pksi ; rsii) = (ctsii , ti − si · (ai + c · h))

Figure 3: Algorithm Decaps.

• Set PK = (pk0, pk1, (ai)i∈[n], c, hk), SK = (sk0,PK), and then compute the ciphertext ĈT = ((ĉt
0
i , ĉt

1
i , t̂i)i∈[n], ĉtSKE)

as follows:

1. Sample (pkb, skb)← Gen(1λ) for b ∈ {0, 1} and c← {0, 1}4λ.

2. Sample ŝ← K(1λ), κ̂1 ← {0, 1}ℓ, r̂bi ← {0, 1}4λ
(
∀(i, b) ∈ [n]× {0, 1}

)
.

3. Compute ĉtSKE ← E(ŝ, (r̂ŝii)i∈[n] ∥ κ̂1).

4. Compute (ĉt
b
i , k̂

b
i)← Encaps(pkb; r̂bi) for (i, b) ∈ [n]× {0, 1}.

5. Compute hk← HGen(1λ) and ĥ = H(hk, (ĉt
0
i , ĉt

1
i)i∈[n] ∥ ĉtSKE).

6. Sample ai ← {0, 1}4λ for i ∈ [n].

7. Compute t̂i = k̂ŝi
i + ŝi · (ai + c · ĥ) for i ∈ [n].

• Sample a random key κ̂0 ← {0, 1}ℓ and a bit b← {0, 1}, and run A(PK, ĈT, κ̂b). The adversary A may now
start making quantum decapsulation queries.

• Decapsulation queries are answered as follows. We describe the response for any ciphertext |CT⟩ = |((ct0i , ct1i , ti)i∈[n], ctSKE)⟩
in the computational basis; the response to ciphertexts in a superposition follows in a standard way. If
CT = ĈT output ⊥. If Decaps(sk0, ct0i) = ti, set si = 0. Else, set si = 1 (for each i ∈ [n]). Set
h = H(hk, (ct0i , ct

1
i)i∈[n] ∥ ctSKE). Next, compute ((rsii)i∈[n] ∥ κ) := D(s, ctSKE). If for each i ∈ [n] it

holds that Encaps(pksi ; rsii) = (ctsii , ti − si · (ai + c · h)) , return κ. Otherwise return ⊥.

• A finally outputs a bit b′ ∈ {0, 1}.
1The arithmetic is done over GF(24λ) and h is interpreted as an element of {0, 1}4λ.

16

For the sake of convenience, we define the following sets:

S0 := {j ∈ [n] | ŝj = 0}, S1 := [n] \ S0.

Game 2: We modify the decapsulation oracle as follows: if a ciphertext |CT⟩ = |((ct0i , ct1i , ti)i∈[n], ctSKE)⟩
satisfies h = H(hk, (ct0i , ct

1
i)i∈[n] ∥ ctSKE) = ĥ, the modified oracle returns ⊥.

Game 3: We modify how ai for the positions i ∈ S0 are generated: for every i ∈ S0, we generate ai as
ai = k̂0

i − k̂1
i − c · ĥ.

Game 4: We modify the decapsulation oracle as follows: if a (non-challenge) ciphertext satisfies h = H(hk, (ct0i , ct
1
i)i∈[n] ∥

ctSKE) = ĥ, return ⊥ (same as in Games 2 and 3). Otherwise, the quantum oracle uses an alternative decapsulation
algorithm AltDecaps and an alternative secret key SK′ described below.

AltDecaps takes SK′ := (sk1,PK) and CT as input, and proceeds identically to Decaps(SK,CT) except when
computing si. We instead do the following:1

∀i ∈ [n] : si =

{
1 if Decaps(sk1, ct1i) = ti − ai − c · h,
0 otherwise.

Game 5: We modify how ai for the positions i ∈ S1 are generated. For every i ∈ S1, we generate ai as
ai = k̂0

i − k̂1
i − c · ĥ. Due to this change, for every i ∈ [n] we have t̂i = k̂0

i , irrespective of whether ŝi is 0 or 1. Thus,
in this game, only the value of ĉtSKE is dependent on ŝ.

Game 6: In this game, we generate ĉtSKE in the challenge ciphertext ĈT as ĉtSKE ← E(ŝ, 0n·λ+ℓ). In this game,
ĉtSKE has no information on the bit b.

We now define W (j), for j ∈ [6], to be the event when A succeeds in guessing the bit b (i.e., b′ = b) in Game j. By
definition, we have

AdvqCCA
KEM,A =

∣∣Pr[W (1)]− 1/2
∣∣.

Quantum CCA security of KEM follows from the following lemmas, which will be proved subsequently.

Remark 4.2. In the following lemmas, we argue the indistinguishability of certain hybrids. We remark that the proofs
of these lemmas are (almost) identical to those of [KMT19] and we briefly mention them to provide more context. The
main technical part (namely Lemma 4.8) is where the proof significantly differs from its classical counterpart, which
will appear subsequently.

Lemma 4.3. |Pr[W (2)]− Pr[W (3)]| = 2 ·AdvmCPA
KEM,n,B3

cpa
for some QPT adversary B3cpa.

Sketch. In [KMT19, Lemma 2], an (essentially) equivalent result is shown but in the context of CCA security of KEM.
In their reduction, a PPT adversary breaks CPA security of KEM by simulating (the CCA analog of) Games 2 and 3
towards the underlying CCA adversary for KEM. It can be easily verified that their reduction can also be extended
to the qCCA setting, because one can simulate the decapsulation oracles of Games 2 and 3 in quantum superposition
given access to the secret key SK. As mentioned in Section 2, note that any function (in our case, Decaps(SK, ·)) that
has an efficient classical algorithm can also be implemented efficiently as a quantum-accessible oracle.

Lemma 4.4. |Pr[W (3)]− Pr[W (4)]| ≤ 2ε+ n · 2−λ+1.

Sketch. In [KMT19, Lemma 3], it is shown that unless the public key PK generated at the start of the CCA game for
KEM is “bad” in a certain sense, the classical decapsulation oracles in (the CCA analogs of) Games 3 and 4 (namely,
Decaps(SK, ·) and AltDecaps(SK′, ·)) are identical. It was also shown in [KMT19, Lemma 3] that the probability of
choosing such a “bad” PK is bounded by 2ε+ n · 2−λ+1.

The analysis in [KMT19, Lemma 3] also applies to the qCCA setting. This is because the distribution of “bad” PKs
at the start of the (q)CCA game (for KEM) is not in any way affected by the fact that whether the adversary A has
quantum access to the corresponding decapsulation oracle in the rest of the game. Based on [KMT19, Lemma 3], if
PK is not “bad’,’ then for any ciphertext CT we must have Decaps(SK,CT) = AltDecaps(SK′,CT); this means that
provided PK is not “bad,” the quantum decapsulation oracles in Games 3 and 4 are identical.

1Note that we no longer require sk0 in this modified decapsulation oracle.

17

Lemma 4.5. |Pr[W (4)]− Pr[W (5)]| = 2 ·AdvmCPA
KEM,n,B4

cpa
for some QPT adversary B4cpa.

Sketch. A similar reasoning to that of Lemma 4.3 applies here as well.

Lemma 4.6. |Pr[W (5)]− Pr[W (6)]| = 2 ·AdvKDM
SKE,P,Bkdm

for some QPT adversary Bkdm that makes a single KDM
query.

Sketch. In [KMT19, Lemma 5], an (essentially) equivalent result is shown for CCA security of KEM, wherein a PPT
adversary breaks the one-time KDM security of SKE by simulating (the CCA analog of) Games 5 and 6 towards the
underlying CCA adversary for KEM. By a simple extension to the qCCA setting, it is easy to see that the reduction
can also simulate the decapsulation oracles of Games 5 and 6 in quantum superposition towards A as it generates the
corresponding secret key SK′ by itself. (Note that the “alternative” secret key SK′ is used to compute AltDecaps(SK′, ·)
in Games 5 and 6.)

Lemma 4.7. Pr[W (6)] = 1/2.

Sketch. In Game 6, the view of A is completely independent of the bit b (irrespective of whether it has quantum access
to the decapsulation oracle).

We now focus on the main ingredient of the proof, which is to bound the quantity |Pr[W (1)] − Pr[W (2)]|. As
mentioned earlier, here is where the proof differs significantly from its classical counterpart in [KMT19, Lemma 1].
Namely, in the qCCA setting, we argue about the quantum indistinguishability of the decapsulation oracles in Games 1
and 2 using Lemma 2.1, while following a similar “deferred analysis” approach as in [KMT19].

Lemma 4.8. There exist QPT adversaries Btcr, B1cpa, B2cpa, and B′cpa satisfying

|Pr[W (1)]− Pr[W (2)]| ≤ 2q
√

Adv + 10ε+ n · 2−4λ+1 + n · 2−λ+1

where Adv = AdvTCR
Hash,Btcr

+ 2 · (AdvmCPA
KEM,n,B1

cpa
+AdvmCPA

KEM,n,B2
cpa

+AdvmCPA
KEM,n,B′

cpa
).

Proof. Following the terminology of [KMT19], we call a decapsulation query CT = ((ct0i , ct
1
i , ti)i∈[n], ctSKE) of A in

Game j (for some j ∈ [4]) hash-bad if

h = H(hk, (ct0i , ct
1
i)i∈[n] ∥ ctSKE) = ĥ and Decaps(SK,CT) ̸= ⊥

such that CT ̸= ĈT. Observe that the outputs of decapsulation oracles of Games 1 and 2 differ exactly in these hash-bad
queries. We also categorize a hash-bad decapsulation query CT = ((ct0i , ct

1
i , ti)i∈[n], ctSKE) as follows:

• Type 1: (ct0i , ct
1
i)i∈[n] ∥ ctSKE ̸= (ĉt

0
i , ĉt

1
i)i∈[n] ∥ ĉtSKE

• Type 2: (ct0i , ct
1
i)i∈[n] ∥ ctSKE = (ĉt

0
i , ĉt

1
i)i∈[n] ∥ ĉtSKE

We rely on Lemma 2.1 to bound the term |Pr[W (1)] − Pr[W (2)]| as follows. First, let A be a quantum oracle
algorithm which receives as input a public key PK = (pk0, pk1, (ai)i∈[n], c, hk), the “real” encapsulated key κ̂1 ∈
{0, 1}ℓ and a challenge ciphertext ĈT = ((ĉt

0
i , ĉt

1
i , t̂i)i∈[n], ĉtSKE) as generated in Game 1 above. A has quantum

access either to the decapsulation oracle G := Decaps(SK, ·) used in Game 1 (which also rejects ciphertexts equal to
ĈT) or to the modified decapsulation oracle H used in Game 2. A proceeds to simulate either Game 1 or 2 towards
A as follows: A samples a random key κ̂0 ← {0, 1}ℓ and a bit b← {0, 1}, and forwards (PK, ĈT, κ̂b) to A. Then A
responds to A’s quantum decapsulation queries using its oracle (i.e., G or H). A outputs 1 iff b′ = b.

By applying Lemma 2.1, it follows that Pr[W (1)] = Pr[1← AG(z)] and Pr[W (2)] = Pr[1← AH(z)]. Thus we
have |Pr[W (1)]− Pr[W (2)]| ≤ 2q

√
Pguess where Pguess is essentially the probability of the event when measurement

of a random quantum decapsulation query made by A in Game 2 would result in a hash-bad ciphertext CT (̸= ĈT)
defined above, i.e., G(CT) ̸= H(CT).

18

For (j, b) ∈ [4]× [2], let M (b)
j be the event that the measurement of a random i-th quantum decapsulation query

made byA in Game j (where i← [q]) results in a type b hash-bad ciphertext. (Note that Pr[M (1)
2]+Pr[M

(2)
2] = Pguess.)

Based on Lemma 2.1, we have

|Pr[W (1)]− Pr[W (2)]| ≤ 2q

√
Pr[M

(1)
2] + Pr[M

(2)
2].

Observe that a type 1 hash-bad query can be used to break the target collision resistance of Hash. To see this, we
construct a QPT adversary Btcr such that Pr[M (1)

2] = AdvTCR
Hash,Btcr

. First Btcr generates the values (ĉt0i , ĉt
1
i)i∈[n]

and ĉtSKE by itself as in Game 2 and forwards (ĉt0i , ĉt
1
i)i∈[n] ∥ ĉtSKE to its TCR challenger (with respect to Hash).

After obtaining a key hk from its challenger, Btcr forwards the public key PK (which includes hk) along with the
values ĈT, κ̂b to A. Next, Btcr samples i← [q] and proceeds to simulate the quantum decapsulation oracle of Game 2
towards A. Observe that this is possible because Btcr generates the secret key SK by itself. Btcr then measures the i-th
decapsulation query of A and forwards the measurement to its TCR challenger.

It remains to bound Pr[M
(2)
2]. For type 2 hash-bad queries we have CT ̸= ĈT, and hence there exists a position

j ∈ [n] such that tj ̸= t̂j . For a type 2 hash-bad ciphertext CT = ((ĉt
0
i , ĉt

1
i , ti)i∈[n], ĉtSKE), we define SCT = {j ∈

[n] | tj ̸= t̂j}. As in the proof of [KMT19, Lemma 1], we have the following for positions i ∈ SCT conditioned on pk0

and pk1 not resulting in decapsulation errors.

• If ŝi = 0 (i.e., i ∈ SCT ∩ S0), then ti − ai − c · ĥ = k̂1
i where k̂1

i is the encapsulated key corresponding to ĉt
1
i .

• If ŝi = 1 (i.e., i ∈ SCT ∩ S1), then ti = k̂0
i where k̂0

i is the encapsulated key corresponding to ĉt
0
i .

Consider the following categorization of type 2 queries into two sub-types:

• Type 2a: There exists a position i ∈ SCT ∩ S0.

• Type 2b: There exists a position i ∈ SCT ∩ S1.

For j ∈ {2, 3, 4} and b ∈ {2a, 2b}, let M (b)
j be the event that the measurement of a random i-th quantum query

of A in Game j (where i ← [q]) results in a type b hash-bad decapsulation query. First, we have Pr[M
(2)
2] ≤

Pr[M
(2a)
2] + Pr[M

(2b)
2]. Towards bounding Pr[M

(2)
2], we first show that there exists a QPT adversary B1cpa that breaks

the CPA security of KEM and satisfies

Pr[M
(2a)
2] ≤ 2 ·AdvmCPA

KEM,n,B1
cpa

+ 4ε+ n · 2−4λ.

The description of B1cpa is as follows: on input (pk′, (ĉt′i, k̂
′

i,β)) where the bit β is B1cpa’s challenge bit, B1cpa first

runs ŝ ← K(1λ), and sets pk1 := pk′ and ĉt
1
i := ĉt

′
i for the positions i ∈ S0. Next, B1cpa generates the remaining

values of PK, SK, ĈT, and κ̂b by itself as in Game 2 and forwards (PK, ĈT, κ̂b) to A. Next, B1cpa samples i← [q] and
proceeds to simulate the quantum decapsulation oracle of Game 2 towards A until the i-th decapsulation query; B1cpa
measures the i-th query and checks if it is a type 2a hash-bad query CT.

• If the measurement results in a type 2a query CT = ((ĉt
0
i , ĉt

1
i , ti)i∈[n], ĉtSKE), B1cpa checks if there is a position

i ∈ SCT ∩ S0 such that ti − ai − c · ĥ = k̂
′

i,β . If so, B1cpa sets β′ = 1. Otherwise, it sets β′ = 0.

• If the measurement does not result in a type 2a query, then B1cpa sets β′ = 0.

Finally, B1cpa terminates with the output β′.
Observe that B1cpa properly simulates Game 2 towards A (regardless of the challenge bit β) until the i-th quantum

decapsulation query. Hence, the probability that the measurement of the i-th decapsulation query made by A results
in a type 2a query is Pr[M

(2a)
2]. Now recall from the above observation that conditioned on pk0 and pk1 not

resulting in decapsulation errors, if the measurement results in a type 2a query CT = ((ĉt
0
i , ĉt

1
i , ti)i∈[n], ĉtSKE), then

19

ti − ai − c · ĥ = k̂1
i holds for positions i ∈ SCT ∩ S0. Since B1cpa embeds each of its given challenge ciphertexts ĉt′i

as ĉt1i for the positions i ∈ S0, if β = 1 (i.e., the keys k̂′i,β given to B1cpa are “real” encapsulated keys with respect to
ĉt
′
i), then we have k̂1

i = k̂′i,1 for the positions i ∈ S0. Thus, if β = 1, then there is at least one position i ∈ SCT ∩ S0

for which ti − ai − c · ĥ = k̂1
i = k̂′i,1 holds, and B1cpa outputs β′ = 1 (conditioned on pk0 and pk1 not resulting in

decapsulation errors). If we denote E to be the event that the sampled public keys pk0 and pk1 do result in decapsulation
errors, then we have Pr[β′ = 1|β = 1 ∧ ¬E] = Pr[M

(2a)
2 |¬E].

Similarly, if β = 0, then the keys k̂′i,0 for every i ∈ [n] are chosen uniformly from {0, 1}4λ and are completely
independent ofA’s view. Thus, the probability that there exists i ∈ SCT ∩S0 for which ti−ai−c · ĥ = k̂′i,0 holds (and
B1cpa outputs β′ = 1 when β = 0) is at most n·2−4λ by a union bound. Therefore, we have Pr[β′ = 1|β = 0] ≤ n·2−4λ.
It follows that

2 ·AdvmCPA
KEM,n,B1

cpa
= |Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]|.

Since KEM is ε-all-keys correct, we have Pr[E] ≤ 2ε. By a routine calculation we have

Pr[β′ = 1|β = 1] ≥ Pr[β′ = 1|β = 1 ∧ ¬E]− 2ε = Pr[M
(2a)
2 |¬E]− 2ε

≥ (Pr[M
(2a)
2]− 2ε)− 2ε = Pr[M

(2a)
2]− 4ε,

and hence it follows that 2 ·AdvmCPA
KEM,n,B1

cpa
≥ Pr[M

(2a)
2]− 4ε− n · 2−4λ.

Next, we show how to bound Pr[M
(2b)
2]. Here we use a “deferred analysis” approach, as in the proof of [KMT19,

Lemma 1]. By triangle inequality we have

Pr[M
(2b)
2] ≤

∑
j∈{2,3}

∣∣∣Pr[M (2b)
j]− Pr[M

(2b)
j+1]

∣∣∣+ Pr[M
(2b)
4].

Here, with essentially the same argument as in the proof of Lemma 4.3, we have

|Pr[M (2b)
2]− Pr[M

(2b)
3]| = 2 ·AdvmCPA

KEM,n,B2
cpa

for a QPT adversary B2cpa. To be more specific, in the reduction, B2cpa samples a query index i← [q] and runs in exactly
the same way as B3cpa in the proof of Lemma 4.3, until the i-th query made by A. B2cpa instead measures the i-th query
and returns 1 if and only if the measurement results in a type 2b hash-bad query CT, which can be checked since B2cpa
has access to sk0 (to check if Decaps(SK,CT) ̸= ⊥).

Similarly, with the same argument as in the proof of Lemma 4.4, we have |Pr[M (2b)
3]−Pr[M (2b)

4]| ≤ 2ε+n ·2−λ+1.
Finally, we show that there exists a QPT adversary B′cpa that breaks the CPA security of KEM and satisfies

Pr[M
(2a)
4] ≤ 2 ·AdvmCPA

KEM,n,B′
cpa

+ 4ε+ n · 2−4λ.

The description of B′cpa is quite similar to that of B1cpa above: on input (pk′, (ĉt′i, k̂
′
i,β)), B′cpa first runs ŝ ← K(1λ),

and sets pk0 = pk′ and ĉt
0
i = ĉt

′
i for positions i ∈ S1. Next, B′cpa generates the remaining values of PK, SK, ĈT, and

κ̂b by itself as in Game 4, and forwards (PK, ĈT, κ̂b) to A. Next, B′cpa samples i ← [q] and simulates the quantum
decapsulation oracle with respect to AltDecaps(SK′, ·) in Game 4 towards A (note that B′cpa has access to sk1 which is
sufficient to compute AltDecaps(SK′, ·)) until the i-th decapsulation query. B′cpa measures the i-th query (and does not
check if it is a type 2b query since B′cpa does not have sk0). Let the measured query be CT = ((ct0i , ct

1
i , ti)i∈[n], ctSKE).

Finally, B′cpa checks if there exists a position i ∈ SCT ∩ S1 such that ti = k̂′i,β . If so, B′cpa outputs β′ = 1. Otherwise
it outputs β′ = 0.

As in the analysis of B1cpa, observe that B′cpa simulates Game 4 towards A (regardless of the challenge bit β) until
the i-th quantum decapsulation query. Hence, the probability that the measurement of the i-th decapsulation query

20

of A results in a type 2b query is Pr[M (2b)
2]. Recall from the above observation that conditioned on pk0 and pk1 not

resulting in decapsulation errors, if the measurement results in a type 2b query CT = ((ĉt
0
i , ĉt

1
i , ti)i∈[n], ĉtSKE), then

ti = k̂0
i holds for positions i ∈ SCT ∩ S1. Since B′cpa embeds each of its given challenge ciphertexts ĉt′i as ĉt0i for

the positions i ∈ S1, if β = 1 then we have k̂0
i = k̂′i,1 for the positions i ∈ S1. Thus, if β = 1 then there is at least

one position i ∈ SCT ∩ S1 for which ti = k̂0
i = k̂′i,1 holds, and B1cpa outputs β′ = 1 (conditioned on pk0 and pk1 not

resulting in decapsulation errors). Let E denote the event that the sampled KEM public keys pk0 and pk1 do result in
decapsulation errors, then we have Pr[β′ = 1|β = 1 ∧ ¬E] = Pr[M

(2b)
4 |¬E].

Similarly, if β = 0, then the keys k̂′i,0 for every i ∈ [n] are chosen uniformly from {0, 1}4λ and are completely
independent of A’s view. Thus, the probability that there exists i ∈ SCT ∩ S1 for which ti = k̂′i,0 holds (and B′cpa
outputs β′ = 1 when β = 0) is at most n · 2−4λ by a union bound. Therefore, we have Pr[β′ = 1|β = 0] ≤ n · 2−4λ.

By a routine calculation as in the one for B1cpa’s advantage above, we have1

2 ·AdvmCPA
KEM,n,B′

cpa
≥ Pr[M

(2b)
4]− 4ε− n · 2−4λ.

Next, we prove that qCCA-secure KEM implies qCCA-secure PKE by showing that the hybrid encryption (KEM-DEM)
framework of Cramer and Shoup [CS03] results in a qCCA-secure PKE if a qCCA-secure KEM is composed with a
classical (post-quantum) one-time authenticated encryption scheme.2

5 KEM-DEM Composition and Quantum CCA-Secure PKE
In the classical setting, it has long been known that a CCA-secure PKE can be constructed from a CCA-secure KEM
along with a one-time authenticated encryption scheme (which can be constructed from any one-way function) via
the hybrid encryption approach of [CS03]. However, in the quantum setting, it is not known such an approach would
result in a qCCA-secure PKE. A few recent works (e.g., [XY19, LW21]) showed realizations of qCCA-secure KEM in
the QROM, but they did not discuss qCCA-secure KEM (and its implications) in the standard model. In this section,
we prove that the KEM-DEM hybrid encryption of [CS03] can also be used to construct qCCA-secure PKE provided
that the underlying KEM is qCCA-secure and, perhaps somewhat surprisingly, the underlying DEM offers classical
one-time authenticated encryption security (with respect to QPT adversaries).

We recall the PKE construction of [CS03] via the KEM-DEM composition. Let KEM = (Gen,Encaps,Decaps) be
a qCCA-secure KEM and DEM = (K,E,D) be a (classical) one-time authenticated encryption scheme. Consider the
following PKE scheme PKEhyb = (Gen,Enc,Dec):

Gen(1λ): Sample a pair (pk, sk)← Gen(1λ) and output(pk, sk).

Enc(pk,m): Compute (ct, k)← Encaps(pk) and c← E(k,m). Output (ct, c).

Dec(sk, (ct, c)): Compute k← Decaps(sk, ct). If k ̸= ⊥, return m = D(k, c); otherwise, return ⊥.

Theorem 5.1. If KEM is a qCCA-secure scheme with almost-all-keys correctness and DEM is a (classical) one-time
authenticated encryption scheme (with respect to QPT adversaries), then PKEhyb is a qCCA-secure PKE.

Before diving into the proof, note that in the classical setting, one can show the CCA security of PKEhyb either by
relying on the CCA security of DEM or the authenticated encryption security (i.e., CPA + INT-CTXT security) of DEM.
In the former case, the reduction crucially relies on (classical) access to DEM’s decryption oracle D(k∗, ·) to answer
decryption queries. So if we extend this reduction strategy to show qCCA security of PKEhyb, we need to rely on the

1It is worth pointing out that in the bounds obtained on the classical CCA analog of Pr[M(2b)
4] in [KMT19, Lemma 1], there is a (1/q)

multiplicative factor, since in their reduction, the CPA adversary (with respect to KEM) chooses one of A’s decapsulation queries uniformly at
random. However, we do not have such a factor in our bounds since by applying Lemma 2.1, we are already measuring one of A’s decapsulation
queries uniformly at random; i.e., this “random guessing” is accounted for in the definition of Pguess = Pr[M

(2b)
4].

2Such a scheme is implied by post-quantum one-way functions.

21

qCCA security of DEM, i.e., the reduction needs quantum access to |D(k∗, ·)⟩ to answer quantum decryption queries.
However, if we instead extend the latter reduction strategy (based on authenticated encryption security of DEM) to
prove the qCCA security of PKEhyb, then we can use the OW2H lemma (Lemma 2.1) to show that the classical security
of DEM suffices.

Proof. Let A be any QPT adversary that breaks the quantum CCA security of PKEhyb while making q quantum
decryption queries with qpre/qpost queries in the pre/post-challenge phase. Also, let KEM be ε-almost-all-keys correct
for some negligible ε. Now consider the following sequence of games.

Game 1: This is essentially the same as the qCCA game except for some minor changes.1

• Sample (pk, sk)← Gen(1λ) and b← {0, 1}. Compute (ct∗, k∗)← Encaps(pk).

• Forward pk to A and respond to A’s quantum decryption queries in the normal way using the description of
Dec(sk, ·) above.

• After receiving (m0,m1) from A, compute c∗ ← E(k∗,mb) and forward the challenge ciphertext (ct∗, c∗) to A.

• Respond to A’s quantum decryption queries in the normal way, but this time making sure to reject ciphertexts
that are equal to (ct∗, c∗).

• A then terminates with an output b′ ∈ {0, 1}.

Game 2: We modify the decryption oracle as follows: for any ciphertext |(ct, c)⟩ such that ct = ct∗, the oracle uses
the key k∗ directly to decrypt c, instead of first decapsulating ct∗ to recover a session key k.

Game 3: We compute c∗ in the setup as c∗ ← E(k̂,mb), instead of c∗ ← E(k∗,mb), for a random key k̂ independent
of k∗. We also make an appropriate modification to the decryption oracle as well: given a ciphertext |(ct, c)⟩ such that
ct = ct∗, the oracle uses the key k̂ (instead of k∗) to decrypt c.

Game 4a: We modify the decryption oracle in the pre-challenge phase as follows: for any |(ct, c)⟩ such that
ct = ct∗, the modified oracle returns ⊥.

Game 4b: We modify the decryption oracle in the post-challenge phase as follows: for any |(ct, c)⟩ such that
ct = ct∗, the modified oracle returns ⊥.

Let W (j) (for j ∈ [3] ∪ {4a, 4b}) be the event that A succeeds in guessing the bit b (i.e., b′ = b) in Game j. By
definition, we have

AdvqCCA
PKEhyb,A =

∣∣∣Pr[W (1)]− 1

2

∣∣∣.
We now have the following in the subsequent games.

Lemma 5.2. |Pr[W (1)]− Pr[W (2)]| ≤ ε.

Proof. It’s easy to see that Games 1 and 2 proceed identically unless there is a decapsulation error, i.e., (ct∗, k∗)←
Encaps(pk) but Decaps(sk, ct∗) = k ̸= k∗. The probability of generating such an “erroneous” key pair (pk, sk) is
bounded by ε, because of KEM’s ε-almost-all-keys correctness.

Lemma 5.3. There exists a QPT adversary Bqcca such that

|Pr[W (2)]− Pr[W (3)]| = AdvqCCA
KEM,Bqcca

.

Proof. On input (pk, (ct∗, k∗β)) where β ∈ {0, 1} is Bqcca’s challenge bit, Bqcca samples b ← {0, 1}. It forwards
pk to A and responds to A’s quantum decryption queries in the pre-challenge phase using its quantum access to the
decapsulation oracle Decaps(sk, ·) as follows: given any query |(ct, c)⟩ in the computational basis, if ct = ct∗, then
return D(k∗β , c); otherwise, compute k = Decaps(sk, ct) using access to the corresponding decapsulation oracle and

1Specifically, the pair (ct∗, k∗) is generated by running Encaps(pk) before A gets to choose a pair of messages (m0,m1). However, this change
does not affect A’s view compared to the original qCCA game.

22

return D(k, c) . After receiving (m0,m1) fromA, the adversary Bqcca computes c∗ ← E(k∗β ,mb) and forwards (ct∗, c∗)
to A. Then Bqcca proceeds to answer the rest of A’s quantum decryption queries in the post-challenge phase as above
while making sure to reject ciphertexts that are equal to (ct∗, c∗). Finally, whenA terminates with an output b′ ∈ {0, 1},
Bqcca outputs 1 if b′ = b. Otherwise, it outputs 0.

Note that if β = 1, i.e., k∗β is a “real” encapsulated key, then Bqcca perfectly simulates Game 2 towardsA. Similarly,
if β = 0, i.e., k∗β is a uniform encapsulated key independent of ct∗, then Bqcca perfectly simulates Game 3. Hence, we
have Pr[β′ = 1|β = 1] = Pr[W (2)] and Pr[β′ = 1|β = 0] = Pr[W (3)]. It follows that

AdvqCCA
KEM,Bqcca

= |Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 0]| = |Pr[W (2)]− Pr[W (3)]|.

Lemma 5.4. There exists a QPT adversary B1ctxt such that

|Pr[W (3)]− Pr[W (4a)]| ≤ 2qpre

√
AdvINT-CTXT

DEM,B1
ctxt

.

Proof. We use Lemma 2.1 to bound |Pr[W (3)]− Pr[W (4a)]|. Let A be a quantum oracle algorithm which receives as
input a pair (pk, sk), a KEM ciphertext ct∗ where (ct∗, k∗)← Encaps(pk) and a uniform DEM key k̂ as generated in
Game 3 above. A also has quantum access to either the corresponding pre-challenge decryption oracle G in Game 3
(which uses k̂ to respond to ciphertexts of the form |(ct∗, c)⟩) or to the pre-challenge decryption oracle H in Game
4a (which rejects ciphertexts |(ct∗, c)⟩). A then proceeds to simulate either Game 3 or 4a towards A depending on
whether it has access to G or H respectively as follows: A samples b← {0, 1}. It then forwards pk to A and proceeds
to respond to A’s quantum decryption queries in the pre-challenge phase using its own oracle (i.e., G or H). Then after
receiving (m0,m1) from A, the algorithm A computes c∗ ← E(k̂,mb) and forwards (ct∗, c∗) to A. Next, A proceeds
to respond to A’s quantum decryption queries in the post-challenge phase as in Game 3, this time using the keys sk
and k̂ (and not the oracles G or H), while at the same time rejecting ciphertexts that are equal to (ct∗, c∗). Finally A
outputs 1 if the output of A is equal to b.

Observe that Pr[W (3)] = Pr[1 ← AG(z)] and Pr[W (4a)] = Pr[1 ← AH(z)]. By Lemma 2.1, it follows that
|Pr[W (3)]− Pr[W (4a)]| ≤ 2qpre

√
Pguess where Pguess is essentially the probability of the event when measurement

of a random quantum decryption query made by A in the pre-challenge phase of Game 4a results in a ciphertext
(ct, c) such that ct = ct∗ and D(k̂, c) ̸= ⊥ for a uniformly random DEM key k̂. Note that such a ciphertext can be
used to break the integrity of ciphertexts with respect to DEM, i.e., we can construct a QPT adversary B1ctxt such that
Pguess ≤ AdvINT-CTXT

DEM,B1
ctxt

as follows.
B1ctxt generates (pk, sk)← Gen(1λ) and computes (ct∗, k∗)← Encaps(pk). It then forwards pk to A and samples

i← [qpre]. Next, B1ctxt proceeds to respond to A’s quantum decryption queries in the pre-challenge phase as in Game
4a until the i-th query: for any ciphertext |(ct, c)⟩ in the computational basis, if ct = ct∗, then return ⊥; else, compute
k← Decaps(sk, ct) and return D(k, c). Next, B1ctxt measures the i-th decryption query, let the resulting state be (ct, c).
B1ctxt then checks if ct = ct∗. If so, it outputs the forged DEM ciphertext c to its challenger; otherwise, B1ctxt aborts. It
is not hard to see that B1ctxt wins if the event corresponding to Pguess in Game 4a above occurs, where k̂ is the DEM key
chosen by B1ctxt’s challenger. It follows that Pguess ≤ AdvINT-CTXT

DEM,B1
ctxt

and hence

|Pr[W (3)]− Pr[W (4a)]| ≤ 2qpre

√
AdvINT-CTXT

DEM,B1
ctxt

.

Lemma 5.5. There exists a QPT adversary B2ctxt such that

|Pr[W (4a)]− Pr[W (4b)]| ≤ 2qpost

√
AdvINT-CTXT

DEM,B2
ctxt

.

Proof. We again rely on Lemma 2.1 as above to bound |Pr[W (4a)]− Pr[W (4b)]|. First, we simulate the pre-challenge
phase of Game 4a (and 4b) as follows: letApre be an algorithm which generates (pk, sk)← Gen(1λ), a KEM ciphertext
ct∗ where (ct∗, k∗) ← Encaps(pk) and a uniform DEM key k̂ as generated in Game 4a above. Apre then samples
b← {0, 1} and forwards pk to theA. It then proceeds to respond toA’s quantum decryption queries in the pre-challenge

23

phase as in Game 4a using sk. After receiving (m0,m1) from A, the algorithm Apre computes c∗ ← E(k̂,mb) and
forwards (ct∗, c∗) to A. At the same time, Apre forwards the input z = ((pk, sk), ct∗, k̂, b) to the quantum oracle
algorithmApost. The algorithmApost also has quantum access to either the post-challenge decryption oracleG in Game
4a (which uses k̂ to respond to ciphertexts of the form |(ct∗, c)⟩, while rejecting |(ct∗, c∗)⟩) or to the post-challenge
decryption oracle H in Game 4b (which rejects ciphertexts of the form |(ct∗, c)⟩). Next, Apost proceeds to simulate
the post-challenge phase of Game 4a or 4b towards A depending on whether it has access to G or H respectively by
forwarding A’s quantum decryption queries to its own oracle (i.e., G or H) and returning the corresponding output.
Finally, Apost outputs 1 if and only if the output of A is b.

Observe that Pr[W (4a)] = Pr[1 ← AG
post(z)] and Pr[W (4b)] = Pr[1 ← AH

post(z)], and hence by Lemma 2.1 we
have

|Pr[W (4a)]− Pr[W (4b)]| ≤ 2qpost
√
Pguess,

where Pguess is the probability of the event when measurement of a random quantum decryption query made by A in the
post-challenge phase of Game 4b results in a (non-challenge) ciphertext (ct, c) such that ct = ct∗ and D(k̂, c) ̸= ⊥ for
a uniform DEM key k̂. We show that such a ciphertext can be used to break the integrity of ciphertexts with respect
to DEM, i.e., we can construct a QPT adversary B2ctxt such that Pguess ≤ AdvINT-CTXT

DEM,B2
ctxt

.
The description of B2ctxt is as follows: B2ctxt first generates (pk, sk) ← Gen(1λ) and computes (ct∗, k∗) ←

Encaps(pk). It forwards pk to A and responds to A’s quantum decryption queries in the pre-challenge phase as in
Game 4b. After receiving (m0,m1) from A, B2ctxt samples b← {0, 1} and forwards mb to its (one-time) encryption
oracle (provided in the INT-CTXT game of DEM). After receiving c∗ from its challenger, B2ctxt forwards (ct∗, c∗) to
A. B2ctxt also samples a query number i← [qpost] and proceeds to respond to A’s quantum decryption queries in the
post-challenge phase as in Game 4b until the i-th query. Let (ct, c) be the resulting state after measuring the i-th query.
B2ctxt then checks if ct = ct∗ and c ̸= c∗. If so, then it outputs c; otherwise, it aborts. Note that B2ctxt wins if the event
corresponding to Pguess in Game 4b above occurs. Thus, we have Pguess ≤ AdvINT-CTXT

DEM,B2
ctxt

, which implies that

|Pr[W (4a)]− Pr[W (4b)]| ≤ 2qpost

√
AdvINT-CTXT

DEM,B2
ctxt

.

Lemma 5.6. There is a QPT adversary Bcpa such that

|Pr[W (4b)]− 1

2
| = AdvCPA

DEM,Bcpa
.

Proof. Bcpa generates (pk, sk)← Gen(1λ) and computes (ct∗, k∗)← Encaps(pk). It forwards pk to A and responds
to A’s quantum decryption queries in the pre-challenge phase as follows: given any |(ct, c)⟩ in the computational basis,
if ct = ct∗, then return ⊥; otherwise, compute k← Decaps(sk, ct) and return D(k, c). After receiving (m0,m1) from
A, the algorithm Bcpa forwards the pair to its challenger and gets back c∗ ← E(k′,mb) for a uniformly random DEM
key k′ and hidden bit b. Next, Bcpa forwards (ct∗, c∗) to A. Then Bcpa proceeds to answer the rest of A’s quantum
decryption queries in the post-challenge phase as above while rejecting ciphertexts that are equal to (ct∗, c∗). Finally,
when A terminates with an output b′ ∈ {0, 1}, Bqcca terminates with the same output b′. Observe that Bcpa perfectly
simulates Game 4b towards A. It follows that

AdvCPA
DEM,Bcpa

=
∣∣∣Pr[W (4b)]− 1

2

∣∣∣.
By collecting all of the above bounds we get

AdvqCCA
PKEhyb,A ≤ AdvqCCA

KEM,Bqcca
+AdvCPA

DEM,Bcpa
+ 2q ·

(√
AdvINT-CTXT

DEM,B1
ctxt

+
√
AdvINT-CTXT

DEM,B2
ctxt

)
+ ε,

which proves the qCCA security of PKEhyb, as desired.

24

6 Quantum Adaptive Trapdoor Functions
In 2010, Kiltz et al. [KMO10] introduced the notion of adaptive TDFs (ATDFs) and they showed how to realize
CCA-secure PKE from ATDFs. Informally, a TDF is said to be adaptive if it remains one way even if the adversary is
given access to an inversion oracle. In this work, we introduce a quantum analog of ATDFs, namely quantum ATDFs
(qATDFs), which require one-wayness to hold even if the adversary has quantum access to an inversion oracle. In the
first part, we formally define qATDFs and prove that they imply qCCA-secure PKE. Later, we show how qATDFs can
be constructed from (post-quantum) correlated-product TDFs [RS09] or lossy TDFs [PW08], which in turn can be
constructed from the LWE assumption.

Definition 6.1. A trapdoor function TDF = (Gen,Eval, Invert) satisfies quantum adaptive security if for every QPT
inverter A we have

AdvqATDF
A = Pr

[
x = x′ :

(ek, td)← Gen(1λ);x← {0, 1}λ

y∗ ← Eval(ek, x);x′ ← A|Oy∗ (td,·)⟩(ek, y∗)

]
≤ negl

where the function Oy∗(td, ·) is defined as

Oy∗(td, y) =

{
⊥ if y = y∗,

Invert(td, y) otherwise.

(Similar to Definition 2.2, we also encode ⊥ to be a bitstring outside {0, 1}λ in order to properly define the result z⊕⊥
in the output register of |Oy∗(td, ·)⟩ described above.)

Note that adaptive one-wayness for TDFs defined in [KMO10] differs from Definition 6.1 only in that A has
classical access to the oracle Oy∗(td, ·). It is not hard to extend the separation result in [BZ13b, Subsection 4.1] to
TDFs, which implies that our notion of qATDFs is strictly stronger than ATDFs.

6.1 Quantum CCA Security from Quantum ATDFs
Kiltz et al. [KMO10] showed a construction of classically CCA-secure PKE from any ATDF. We prove that the same
construction results in a qCCA-secure PKE if the underlying ATDF satisfies quantum security. To be more specific,
[KMO10] constructs a single-bit CCA-secure PKE from an ATDF and then relies on the “single-bit to multi-bit”
compiler of [Ms09, HLW12]. In the quantum setting, we follow the same blueprint to first build a single-bit qCCA
secure PKE from a qATDF, and then we show that the “single-bit to multi-bit” compiler of [HLW12] also extends to
qCCA-secure PKE.

Let TDF = (Gen,Eval, Invert) be a TDF and GL(·) be the corresponding Goldreich-Levin hardcore bit [GL89].1

We construct a single-bit PKE scheme PKE = (Gen,Enc,Dec) as follows:

Gen(1λ): Run (ek, td)← Gen(1λ), and set (pk, sk) := (ek, td). Return (pk, sk).

Enc(pk,m): For i = 1, . . . , λ, do:
x← {0, 1}λ; h← GL(x); if h = m, return Eval(pk, x)||0.

Return m||1.

Dec(sk, ct): Parse ct→ (ct1||b) with b ∈ {0, 1}. If b = 1, return ct1; else return GL(Invert(sk, ct1)).

Theorem 6.2. If TDF is a qATDF, then PKE is a (single-bit) qCCA secure PKE.
1It is not hard to see that the Goldreich-Levin theorem relating the one-wayness of a TDF to the hardcore bit security also applies when the TDF

inverter and the bit distinguisher have quantum access to the corresponding TDF inversion oracle. This is because the probability-theoretic analysis in
the original Goldreich-Levin theorem [GL89] is agnostic of any oracle access (be it classical or quantum) that the inverter and distinguisher have; the
oracles would only be needed to ensure that the inverter can properly simulate the distinguisher’s view.

25

Proof. LetA be any QPT adversary that breaks the qCCA security of PKE while making q quantum decryption queries,
where qpre/qpost denotes the number of queries in the pre/post-challenge phase. Consider the following games:

Game 1: This is essentially the same as the qCCA game for PKE, except for some changes in the setup.1

• Generate (ek, td)← Gen(1λ), and set (pk, sk) := (ek, td). Then for all i ∈ [λ], generate tuples
(
(yi, hi)

)
i∈[λ]

where yi = Eval(pk, xi) for uniformly random xi ← {0, 1}λ and hi = GL(xi). Also sample a random bit
b← {0, 1}.

• Forward pk to the adversary A and respond to A’s quantum decryption queries in the normal way using the
description of Dec(sk, ·) above.

• After receiving a pair of messages (m0,m1) from A, find the least i∗ ∈ [λ] such that hi∗ = mb. If no such i∗

exists, compute the challenge ciphertext ct∗ as ct∗ := mb ∥ 1; otherwise, set ct∗ := yi∗ ∥ 0.

• Again respond to A’s quantum decryption queries in the normal way as above, but this time making sure to reject
ciphertexts that are equal to ct∗.

• A then terminates with an output b′ ∈ {0, 1}.

Game 2a: In this game, we modify the decryption oracle post-challenge phase such that it rejects ciphertexts (i.e.,
returns ⊥) that are equal to (yi ∥ 0) for some i ∈ [λ], in addition to rejecting ciphertexts equal to ct∗.2

Game 2b: In this game, we modify the decryption oracle pre-challenge phase such that it also rejects ciphertexts
that are equal to (yi ∥ 0) for some i ∈ [λ].

Game 3: In this game, we sample hi ← {0, 1}, instead of hi = GL(xi).
Game 4: During the computation of challenge ciphertext ct∗, when no i∗ ∈ [λ] satisfying hi∗ = mb exists, we set

ct∗ := ⊥ (instead of ct∗ := mb ∥ 1).

Now we define W (j), for j ∈ {1, 2a, 2b, 3, 4}, to be the event when A succeeds in guessing the bit b (i.e., b′ = b) in
Game j. By definition, we have

AdvqCCA
PKE,A =

∣∣∣Pr[W (1)]− 1

2

∣∣∣.
Quantum CCA security of the scheme PKE follows from the following lemmas.

Lemma 6.3. |Pr[W (1)]− Pr[W (2a)]| ≤ 2qpost

√
λ

2λ−1 .

Proof. Here we use Lemma 2.1 to bound |Pr[W (1)]−Pr[W (2a)]|. We simulate the pre-challenge phase of Game 1 (and
2a) using a QPT algorithm Apre which first receives as input a pair (pk, sk) and ((yi, hi))i∈[λ] as generated in Game 1
(and 2a) above. Apre proceeds to simulate the pre-challenge phase (using sk to respond to A’s quantum decryption
queries). After computing ct∗, (by applying Lemma 2.1) Apre forwards the input z = (((pk, sk), ((yi, hi))i∈[λ]), ct

∗, b)
to the oracle algorithm Apost. The algorithm Apost has quantum access either to the corresponding post-challenge
decryption oracleG := Dec(sk, ·) in Game 1 (which also rejects ciphertexts equal to ct∗) or to the (modified) decryption
oracle H in Game 2a (which additionally rejects non-challenge ciphertexts of the form |c⟩ ∈ {|yi ∥ 0⟩ | i ∈ [λ]}). Note
that the outputs of oracles G and H differ with respect to the set S = {ct = (yi ∥ 0) | i ∈ [λ] ∧ ct ̸= ct∗}. Next, Apost

proceeds to simulate the post-challenge phase of Game 1 or Game 2a towards A depending on whether it has access to
G or H respectively by forwarding A’s quantum decryption queries to its own oracle (i.e., G or H) and returning the
corresponding output. Finally, Apost outputs 1 if the output of A is b.

Observe that Pr[W (1)] = Pr[1 ← AG
post(z)] and Pr[W (2a)] = Pr[1 ← AH

post(z)]. Thus we have |Pr[W (1)] −
Pr[W (2a)]| ≤ 2qpost

√
Pguess where Pguess denotes the the probability of the event when measurement of a random

1We “pre-compute” the randomness (xi)i∈[λ] (used to encrypt A’s chosen messages in the challenge phase) already in the pre-challenge phase.
But this does not affect A’s view in any way compared to the original qCCA game.

2In contrast to qCCA security proofs in earlier sections (e.g., Section 3) here we are first modifying the decryption oracle in the post-challenge
phase followed by the pre-challenge phase. This step is crucial in our analysis as will be seen later on.

26

quantum decryption query made by A in the post-challenge phase of Game 1 results in a non-challenge ciphertext
ct := (ct1 ∥ b) ∈ S (b ∈ {0, 1}). To bound Pguess := Pr[(ct1 ∥ b) ∈ S], we consider b = 0 (if b = 1, the corresponding
probability is zero). Now we have

Pr[(ct1 ∥ 0) ∈ S] ≤ Pr[∃i ∈ [λ] s.t. ct1 = yi ∧ ct ̸= ct∗] ≤ Pr[∃i ∈ [λ] s.t. ct1 = yi | ct ̸= ct∗].

Consider the case when ct∗ = yi∗ ∥ 0 for some i∗ ∈ [λ]. This means that for i < i∗, we have GL(xi) = 1 − mb.
Here we use a statistical fact that conditioning on GL(xi) = 1 − mb reduces the min-entropy of xi by one bit.
Hence, A’s view in the post-challenge phase of Game 1 is independent of the values ((yi, hi))i∗<i≤λ (as well as the
corresponding xi’s) and conditionally independent of the values ((yi, hi))1≤i<i∗ , conditioned on GL(xi) = 1−mb

(because the decryption oracle in Game 1 does not use the yi values to reject ciphertexts yet). Therefore, to analyze
Pr[∃i ∈ [λ] s.t. ct1 = yi | ct1 ̸= yi∗], it is easier to consider the values ((yi, hi))i∈[λ] being generated (with an
appropriate distribution following the conditional independence noted above) after measuring A’s decryption query to
ct. Observe that after measurement, each xi for 1 ≤ i < i∗ (respectively, for i∗ < i ≤ λ) is sampled independently
from an entropy source of λ− 1 bits (respectively, λ bits). Moreover, since Eval(pk, ·) is an injection, the probability
that any yi (i ∈ [λ]) coincides with the measured ct1 is at most 1/2λ−1. Hence by applying a union bound, we get

Pr[∃i ∈ [λ] s.t. ct1 = yi | ct1 ̸= yi∗] ≤ (λ− 1) · 1

2λ−1
.

Similarly, if ct∗ = mb ∥ 1 we have GL(xi) = 1−mb for all i ∈ [λ]. Hence, A’s view in the post-challenge phase
of Game 1 is conditionally independent of the values ((yi, hi))i∈[λ], conditioned on GL(xi) = 1−mb. This time, after
measuring A’s random decryption query to ct, we have each xi (i ∈ [λ]) to be sampled independently from an entropy
source of λ− 1 bits. Therefore, by a similar analysis as above, it follows that

Pr[∃i ∈ [λ] s.t. ct1 = yi | ct ̸= (mb ∥ 1)] ≤ λ ·
1

2λ−1
.

By an averaging argument we have Pguess ≤ λ · 1
2λ−1 , as required.

Lemma 6.4. |Pr[W (2a)]− Pr[W (2b)]| ≤ 2qpre

√
λ
2λ

.

Proof. We use Lemma 2.1 as to bound |Pr[W (2a)]− Pr[W (2b)]|. Let A be a quantum oracle algorithm which receives
as input a pair (pk, sk) and ((yi, hi))i∈[λ] as generated in Game 2a (and 2b) above; z = ((pk, sk), ⟨(yi, hi)⟩i∈[λ]). A
also has quantum access to either the corresponding pre-challenge decryption oracle G := Dec(sk, ·) in Game 2a or
to the oracle H in Game 2b (which rejects ciphertexts |c⟩ ∈ {|yi ∥ 0⟩ | i ∈ [λ]}). Note that the outputs of oracles G
and H differ with respect to the set S = {ct = (yi ∥ 0) | i ∈ [λ]}. Using its input z, A proceeds to simulate either
Game 2a or 2b towards A depending on whether it has access to G or H , respectively. It is worth mentioning that A
responds to A’s quantum decryption queries in the pre-challenge phase using its own oracle (i.e., G or H), while in the
post-challenge phase, A uses the secret key sk for quantum decryption while rejecting ciphertexts equal to (yi ∥ 0) for
some i ∈ [λ] or equal to ct∗. Finally A outputs 1 if and only if the output of A equals b.

Similar to the previous case, we have |Pr[W (2a)] − Pr[W (2b)]| ≤ 2qpre
√
Pguess where Pguess is essentially the

probability of the event when measurement of a random quantum decryption query made by A in the pre-challenge
phase of Game 2a results in a ciphertext (ct1 ∥ b) ∈ S (b ∈ {0, 1}). To bound Pguess, note that A’s view in the
pre-challenge phase of Game 2a is completely independent of the values ((yi, hi))i∈[λ] (as well as the corresponding
xi) because these values are only used starting from the challenge phase. Hence to analyze the term Pr[(ct1 ∥ b) ∈ S],
it is easier to consider the values ((yi, hi))i∈[λ] being generated after measuring A’s decryption query to (ct1 ∥ b). In
the rest of this analysis, we consider b = 0 (if b = 1, the corresponding probability is zero). After measurement, each
xi (i ∈ [λ]) is sampled independently from an entropy source of λ bits. Since Eval(pk, ·) is an injection, the probability
that any yi coincides with the measured ct1 is 1/2λ. By applying a union bound, we get Pguess ≤ λ · 2−λ.

Remark 6.5. If we modify the decryption oracle in the pre-challenge phase first followed by the post-challenge phase,
then we cannot use a similar argument as in the proof of Lemma 6.3 to claim that A’s view in the post-challenge phase

27

is (conditionally) independent of the values ((yi, hi))i∈[λ] (and that we can generate the values ((yi, hi))i∈[λ] after
measuring A’s decryption query in post-challenge phase). To see this, note that because of our prior modification to
the decryption oracle in pre-challenge phase, the values ((yi, hi))i∈[λ] are implicitly generated to be used to reject
ciphertexts, and hence A’s view in the pre-challenge (and post-challenge) phase would then depend on these values.

Lemma 6.6. There exists a QPT distinguisher D such that |Pr[W (2b)]− Pr[W (3)]| = 2 ·AdvhcDist
GL,D .

Proof. The description ofD is as follows. It gets as input (ek, ((yi, hi))i∈[λ]) where yi = Eval(ek, xi) for xi ← {0, 1}λ,
and either hi = GL(xi) or hi ← {0, 1}. D also has quantum access to an oracle O implementing the function
Invert(td, ·) while rejecting inputs equal to yi (i.e., returns ⊥) for some i ∈ [λ]. D then proceeds to simulate either
Game 2b or Game 3 by forwarding ek to A and responding to A’s quantum decryption queries as in Game 2b (and
3) using the oracle O. D also uses ((yi, hi))i∈[λ]) to compute the challenge ciphertext ct∗ (after first sampling a bit
b ← {0, 1}). Finally, when A terminates with a bit b′, D outputs 1 if b = b′ and outputs 0 otherwise. The proof is
complete by observe that

Pr[1← D(ek, ((yi, hi))i∈[λ])|hi = GL(xi)] = Pr[W (2b)]

and
Pr[1← D(ek, ((yi, hi))i∈[λ])|hi ← {0, 1}] = Pr[W (3)].

Lemma 6.7. |Pr[W (3)]− Pr[W (4)]| ≤ 2−λ.

Proof. Note that Games 3 and 4 proceed identically unless there does not exist an i∗ ∈ [λ] such that hi∗ = mb, which
happens with probability 2−λ.

Lemma 6.8. Pr[W (4)] = 1/2.

Proof. In Game 4, note that A’s view is completely independent of the bit b.

6.2 Quantum ATDFs from Correlated-Product TDFs
Here we show that the ATDF construction of Kiltz et al. [KMO10] from correlated-product TDFs (CP-TDFs) satisfies
quantum security if the underlying CP-TDF is post-quantum secure, i.e., we prove that (post-quantum) CP-TDFs are
sufficient to realize quantum ATDFs. We recall the definition of CP-TDFs from [RS09].

Definition 6.9. A trapdoor function TDF = (Gen,Eval, Invert) is t-correlated-product (t-CP-TDF) one-way if for
every QPT inverter A, it holds that

AdvCPOW
TDF,A = Pr[x′ = x : x′ ← A((eki)i∈[t],y∗)] ≤ negl,

where (eki, tdi)← Gen(1λ) for i ∈ [t], x← {0, 1}λ, and y∗ = (Eval(eki, x))i∈[t].

Let TDF = (Gen,Eval, Invert) be a TDF with fixed output length n = n(λ). Now we recall the construction of
ATDF TDF = (Gen,Eval, Invert) from TDF in [KMO10] as follows.

Gen(1λ): Let (ek0, td0)← Gen(1λ). Sample (ekbi , td
b
i)← Gen(1λ) for i ∈ [n] and b ∈ {0, 1}. Output (ek, td) where

ek := (ek0, ((ek
0
i , ek

1
i))i∈[n]), td := (td0, ((td

0
i , td

1
i))i∈[n]).

Eval(ek, x): Output (Eval(ek0, x) ∥ Eval(ekb11 , x) ∥ . . . ∥ Eval(ekbnn , x)), where bi denotes the i-th bit of b :=
Eval(ek0, x) for i ∈ [n].

Invert(td, y): Parse y → (b ∥ y1 ∥ . . . ∥ yn). Let x← Invert(td0, b). Return x if x = Invert(tdbii , yi) for all i ∈ [n].
Otherwise, return ⊥.

28

Theorem 6.10. If TDF is an (n+ 1)-CP-TDF, then TDF is a quantum ATDF.

Proof. The proof is quite similar to that of [KMO10, Theorem 3]. Given any efficient inverter A breaking the adaptive
one-wayness of TDF, they describe an efficient inverter B breaking the one-way (n+ 1)-correlated-product of TDF.
In their reduction, B simulates the adaptive one-wayness game with respect to TDF towards A since it is able to
(classically) implement the TDF inversion functionality using some trapdoor information. It is easy to see that their
reduction can be extended to the quantum setting since B can also simulate this TDF inversion oracle in quantum
superposition using the same trapdoor information (we are using the fact, mentioned in Section 2, that any function
which has an efficient classical algorithm computing it can be implemented efficiently as a quantum-accessible oracle).

Quantum ATDF from LWE. We briefly describe two ways to instantiate quantum ATDFs from the LWE assumption.
For the first approach, recall that Rosen and Segev [RS09] showed lossy TDFs imply TDFs with correlated security.
By using the LWE-based lossy TDF construction of [PW08] and relying on our construction of quantum ATDFs from
TDFs with correlated security, we get an instantiation of quantum ATDFs from the LWE assumption. An alternative
(and more efficient) approach is to rely on the LWE-based TDF construction of [MP13] (which also satisfies correlated
security), which in turn yields a construction of quantum ATDF from LWE (based on our generic transformation).

7 Completeness of Bit Encryption for Quantum CCA Security
Given a single-bit CCA-secure PKE, [Ms09] (and later [HLW12]) showed how to realize multi-bit CCA-secure PKE.
In this section, we show an analogous result with respect to quantum CCA security by extending the framework
of [HLW12] to the quantum setting. To obtain a generic single-bit to multi-bit compiler, Hohenberger et al. [HLW12]
introduced a new cryptographic primitive called Detectable Chosen Ciphertext Secure (DCCA-secure) PKE. In the first
step, they showed a construction of (multi-bit) CCA-secure PKE scheme from any (multi-bit) DCCA-secure PKE. In
the second step, they argue that single-bit CCA-secure PKE can be used to construct multi-bit DCCA-secure PKE.

Following a similar approach, we first define a quantum analog of DCCA security called quantum DCCA (qDCCA)
security, and we prove that (multi-bit) qCCA-secure PKE is implied by (multi-bit) qDCCA security. Next, we show that
single-bit qCCA-secure PKE is sufficient to realize multi-bit qDCCA-secure PKE, thereby proving the completeness of
bit encryption for qCCA security.

First, we recall the notion of detectable PKE from [HLW12]. A detectable PKE DPKE = (Gen,Enc,Dec, F) is
a tuple of PPT algorithms where (Gen,Enc,Dec) follow the same definition as in a normal PKE scheme, and the
detecting function F (which is efficiently computable) takes as input a public key pk and two ciphertexts ct, ct′, and
outputs a bit. Correctness of a detectable PKE scheme is same as a normal PKE. We now formally define the qDCCA
security property of such schemes.

Definition 7.1. A detectable PKE scheme DPKE = (Gen,Enc,Dec, F) is said to be qDCCA secure if the following
two properties hold:

• Quantum unpredicability of F : For every QPT adversary A, it holds that

AdvqPredict
DPKE,A = Pr

F (pk, ct∗, ct) = 1 :

(pk, sk)← Gen(1λ)

(m, ct)← A|Dec(sk,·)⟩(pk)

ct∗ ← Enc(pk,m)

 ≤ negl .

• Quantum indistinguishability of encryptions: For every QPT adversary B we have

AdvqInd
DPKE,B =

∣∣∣∣∣∣∣∣Pr
b = b′ :

(pk, sk)← Gen(1λ); b← {0, 1}
(m0,m1, st)← B|Dec(sk,·)⟩(pk)

ct∗ ← Enc(pk,mb); b
′ ← B|O

F
ct∗ (sk,·)⟩(ct∗, st)

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl

29

where the function OF
ct∗(sk, ·) is defined as

OF
ct∗(sk, ct) =

{
⊥ if F (pk, ct∗, ct) = 1 or ct = ct∗,

Dec(sk, ct) otherwise.

In the definition above st is some arbitrary state information. We require the messages m0 and m1 to be of the
same length. We also encode ⊥ to be a bitstring outside the message space of DPKE in order to properly define
z ⊕⊥ in the output register of |OF

ct∗(sk, ·)⟩ described above.

The notion of DCCA security defined in [HLW12] differs from Definition 7.1 in that the adversary A (or B in case
of indistinguishability) above has classical access to its corresponding oracle(s).

7.1 qCCA-Secure PKE from qDCCA-Secure PKE
We show how to realize qCCA-secure PKE from qDCCA-secure detectable PKE. Specifically, we require the following
three building blocks: a well-spread 1-bounded CCA secure PKE1 PKE1−cca = (Gen1−cca,Enc1−cca,Dec1−cca),
a CPA-secure PKE PKEcpa = (Gencpa,Enccpa,Deccpa), and also a qDCCA-secure detectable PKE DPKE =
(Genqdcca,Encqdcca,Decqdcca, F) which are perfectly correct.2 Consider the following scheme PKE = (Gen,Enc,Dec):

Gen(1λ): Run (pkin, skin)← Genqdcca(1
λ), (pkA, skA)← Gen1−cca(1

λ) and (pkB , skB)← Gencpa(1
λ). Output

pk = (pkin, pkA, pkB), sk := (skin, skA, skB).

Enc(pk,m): Sample rin, rA, rB ← {0, 1}λ and output ct = (ctA, ctB) where

ctin = Encqdcca(pkin, (rA, rB ,m); rin), ctA = Enc1−cca(pkA, ctin; rA), ctB = Enccpa(pkB , ctin; rB).

Dec(sk, ct = (ctA, ctB)): Compute the following

ctin = Dec1−cca(skA, ctA), (rA, rB ,m) = Decqdcca(skin, ctin).

If ctA = Enc1−cca(pkA, ctin; rA) and ctB = Enccpa(pkB , ctin; rB), return m; otherwise, return ⊥.

Theorem 7.2. If PKE1−cca is 1-bounded CCA secure and well-spread, PKEcpa is CPA secure, and DPKE is qDCCA
secure, then PKE is qCCA secure.

Proof. As in the classical CCA security proof of [HLW12], we consider a variant of the qCCA security game (specific
to PKE) where the challenger either encrypts one of two challenge messages or encrypts a string of zeros only when
computing the “inner” ciphertext ct∗in. We describe this nested quantum indistinguishability game with respect to a
QPT adversary A as follows:

• Sample three pairs as (pkin, skin)← Genqdcca(1
λ), (pkA, skA)← Gen1−cca(1

λ), and (pkB , skB)← Gencpa(1
λ).

Set pk = (pkin, pkA, pkB), sk = (skin, skA, skB). Sample random bits b, z ← {0, 1}.

• Forward pk to A. Next, A has quantum access to the decryption oracle Dec(sk, ·). Afterwards, A forwards
(m0,m1).

• Sample rA, rB ← {0, 1}λ. If z = 0, compute ct∗in ← Encqdcca(pkin, (rA, rB ,mb)). Otherwise, let ct∗in ←
Encqdcca(pkin, 0

ℓ).3 Send ct∗ = (ct∗A, ct
∗
B) to A where

ct∗A = Enc1−cca(pkA, ct
∗
in; rA), ct∗B = Enccpa(pkB , ct

∗
in; rB).

11-bounded CCA-secure PKE can be built from any CPA-secure PKE [CHH+07]. As observed in [FO13], any CPA-secure PKE can be made
well-spread (Section 2) by appending independent random strings to the end of ciphertexts, and the CPA to 1-bounded CCA transformation of
[CHH+07] preserves well-spreadness.

2We make this assumption of perfect correctness for ease of exposition. One can extend our following qCCA security proof to the case when the
underlying PKE schemes are almost-all-keys-correct, similar to our qCCA security analysis in Section 4.

3ℓ denotes the bit-length of (rA, rB ,mb).

30

• A has “post-challenge” quantum access to the oracle Dec(sk, ·), which rejects ciphertexts equal to ct∗.

• Finally, A outputs a bit z′ and is said to win this game if z′ = z.

We define the advantage of adversary A with respect to the PKE construction as

AdvNest-qInd
(PKE1−cca,PKEcpa,DPKE),A = |Pr[z′ = z]− 1/2|,

and the construction is said to be Nest-qCCA secure if the quantity AdvNest-qInd
(PKE1−cca,PKEcpa,DPKE),A is negligible.

It is easy to see that if PKE is Nest-qCCA secure, then it is also qCCA-secure. Thus, towards proving the qCCA
security of PKE, we will instead be focusing on its Nest-qCCA security. Let A be any QPT adversary that breaks the
Nest-qCCA security of PKE while making at most q quantum decryption queries (with at most qpost queries in the
“post-challenge” phase). Also, let PKE1−cca be γ-spread. Consider the following sequence of games:

• Game 1: This is the nested quantum indistinguishability game for PKE.

• Game 2: In this game, we modify the decryption oracle post-challenge phase such that it additionally rejects
ciphertexts |ct⟩ = |(ctA, ctB)⟩ when ctA = ct∗A.

• Game 3: In this game, we modify the decryption oracle in the post-challenge phase such that it also rejects
ciphertexts |ct⟩ = |(ctA, ctB)⟩ for which we have F (pkin, ct

∗
in, ctin) = 1 where ctin = Dec1−cca(skA, ctA).

• Game 4: In this game, during the computation of ct∗, we compute ct∗B as ct∗B = Enccpa(pkB , 1
k; rB) where k is

the bit-length of ct∗in.

• Game 5: In this game, during the computation of ct∗, we compute ct∗A as ct∗A = Enc1−cca(pkA, 1
k; rA) where k

is the bit-length of ct∗in.

• Game 6: We revert the changes to the decryption oracle post-challenge phase in Game 3. Now the decryption
oracle additionally only rejects ciphertexts |ct⟩ = |(ctA, ctB)⟩ where ctA = ct∗A. Otherwise, the oracle
implements Dec(sk, ·).

Now we define W (j), for j ∈ [6], to be the event when A succeeds in guessing the bit z (i.e., z′ = z) in Game j. By
definition, we have

AdvNest-qInd
(PKE1−cca,PKEcpa,DPKE),A =

∣∣∣Pr[W (1)]− 1

2

∣∣∣.
Lemma 7.3. |Pr[W (1)]− Pr[W (2)]| ≤ 2−γ .

Proof. Observe that Games 1 and 2 proceed identically unless there exists a ct = (ctA, ctB) such that ctA = ct∗A, ctB ̸=
ct∗B , and Dec(sk, ct) ̸= ⊥. If z = 0, we have ct∗in ← Encqdcca(pkin, (rA, rB ,mb)), ct∗A = Enc1−cca(pkA, ct

∗
in; rA)

and ct∗B = Enccpa(pkB , ct
∗
in; rB). For any ciphertext ct with ctA = ct∗A and ctB ̸= ct∗B , we must have Dec(sk, ct) =

⊥. This is because, as can be seen from the description of Dec above, we have ct∗in ← Dec1−cca(skA, ct
∗
A)

and (rA, rB ,mb) ← Decqdcca(skin, ct
∗
in) based on PKE1−cca’s correctness. However, the re-encryption check

Enccpa(pkB , ct
∗
in; rB) ̸= ctB fails in the Dec algorithm which leads to Dec(sk, ct) = ⊥.

If z = 1, we have ct∗in ← Encqdcca(pkin, 0
ℓ) and ct∗A = Enc1−cca(pkA, ct

∗
in; rA). Consider any ct = (ctA, ctB)

with ctA = ct∗A and ctB ̸= ct∗B . When decrypting ct according to Dec(sk, ·), we have ct∗in ← Dec1−cca(skA, ct
∗
A)

and 0ℓ ← Decqdcca(skin, ct
∗
in) from PKE1−cca’s correctness. Observe that in order to have Dec(sk, ct) ̸= ⊥, the

re-encryption check Enc1−cca(pkA, ct
∗
in; 0

|rA|) = ct∗A must be satisfied. However, we know from the γ-spreadness of
PKE1−cca that ct∗A = Enc1−cca(pkA, ct

∗
in; rA) comes from an entropy source of γ-bits, for a uniform rA ← {0, 1}λ.

Hence, the check Enc1−cca(pkA, ct
∗
in; 0

|rA|) = ct∗A is satisfied with probability at most 2−λ. We hence obtain
|Pr[W (1)]− Pr[W (2)]| ≤ 2−γ .

Lemma 7.4. There exists a QPT adversary Bind such that |Pr[W (3)]− 1/2| = AdvqInd
DPKE,Bind

.

31

Proof. On input pkin, first Bind generates two pairs (pkA, skA) ← Gen1−cca(1
λ) and (pkB , skB) ← Gencpa(1

λ).
It then sets pk = (pkin, pkA, pkB) and forwards pk to A. Next, Bind proceeds to simulate quantum access to
the oracle |Dec(sk, ·)⟩ for A using the self-generated pairs (pkA, skA), (pkB , skB), and its own quantum oracle
|Decqdcca(skin, ·)⟩ in a straightforward manner. Upon receiving (m0,m1) from A, the adversary Bind samples
b ← {0, 1} and rA, rB ← {0, 1}λ. It then sends ((rA, rB ,mb), 0

ℓ), where ℓ is the bit-length of (rA, rB ,mb)), to its
own challenger. After receiving ct∗in, Bind computes ct∗A = Enc1−cca(pkA, ct

∗
in; rA), ct

∗
B = Enccpa(pkB , ct

∗
in; rB),

and returns the ciphertext ct∗ = (ct∗A, ct
∗
B) to A. Next, Bind proceeds to respond to the rest of A’s queries as in

the pre-challenge phase. Since Bind now has quantum access to a restricted decryption oracle |OF
ct∗in

(skin, ·)⟩ in the
post-challenge phase (Definition 7.1), it perfectly simulates the modified post-challenge decryption oracle |Dec(sk, ·)⟩
of Game 3 towards A. Specifically, for any |ct⟩ = |(ctA, ctB)⟩ in the computational basis, when Bind computes
ctin = Dec1−cca(skA, ctA) and forwards ctin to its quantum oracle |OF

ct∗in
(skin, ·)⟩, it gets ⊥ if either ctA = ct∗A or

F (pkin, ct
∗
in, ctin) = 1. Finally, when A outputs a bit z′, Bind outputs the same z′ as well. Note that Bind perfectly

simulates Game 3 towards A. Hence, Bind wins its game if and only if A wins Game 3, which complete the proof.

Now all that remains towards proving the Nest-qCCA security of PKE is to bound |Pr[W (2)]− Pr[W (3)]|. In the
context of Lemma 2.1, let G (respectively, H) be the post-challenge decryption oracle in Game 2 (respectively, Game
3). Note that the outputs of G and H differ with respect to ciphertexts ct = (ctA, ctB), where ctA ̸= ct∗A, such that
G(ct) ̸= ⊥ and H(ct) = ⊥, i.e., these ciphertexts ct = (ctA, ctB) must satisfy Dec(sk, ct) ̸= ⊥, ctA ̸= ct∗A, and
F (pkin, ct

∗
in, ctin) = 1 where ctin = Dec1−cca(skA, ctA). Ignoring the requirement of Dec(sk, ct) ̸= ⊥, we call any

ct that satisfies the remaining two conditions (i.e., ctA ̸= ct∗A and F (pkin, ct
∗
in,Dec1−cca(skA, ctA)) = 1) a bad-query

(borrowing from [HLW12]). The reason we ignore the Dec(sk, ct) ̸= ⊥ requirement will be made clear towards the
end of our qCCA security proof.

We now define M (j), for j ∈ [6], to be the event when the measurement of a random i-th quantum decryption query
made by A in the post-challenge phase of Game j (where i← [qpost]) results in a bad-query. Based on our usage of
Lemma 2.1 in the qCCA security proofs of previous sections (particularly when modifying a decryption oracle in the
post-challenge phase, e.g., in Lemma 3.6 and Lemma 6.3), it is not hard to see that we have |Pr[W (2)]− Pr[W (3)]| ≤
2qpost

√
Pr[M (3)].1

Towards bounding Pr[M (3)], we bound the probability conditioned on the hidden bit z of Game 3 being 0 or 1.
Here, we will be adopting a deferred analysis approach as in [HLW12, Section 4.1]. Namely, we show the following:

Lemma 7.5. There exists a QPT adversary Bcpa such that

|Pr[M (3)|z = 1]− Pr[M (4)|z = 1]| = 2 ·AdvCPA
PKEcpa,Bcpa

.

Proof. On input pkB , first Bcpa generates key pairs (pkA, skA) ← Gen1−cca(1
λ) and (pkin, skin) ← Genqdcca(1

λ).
It then sets pk = (pkin, pkA, pkB) and sends pk to A. Next, Bcpa proceeds to simulate quantum access to the oracle
|Dec(sk, ·)⟩ for A using skA and skin in the usual manner. Upon receiving (m0,m1) from A, the adversary Bcpa
chooses rA ← {0, 1}λ, and computes ct∗in ← Encqdcca(pkin, 0

ℓ) and ct∗A = Enc1−cca(pkA, ct
∗
in; rA). Afterwards,

Bcpa sends (ct∗in, 1
k) to its own challenger. After receiving ct∗B , the adversary Bcpa returns ct∗ = (ct∗A, ct

∗
B) to A.

Next, Bcpa samples i ← [qpost] and proceeds to respond to the rest of A’s queries according to the post-challenge
decryption oracle in Game 3 (and 4) until the i-th query. Specifically, before the i-th query, with respect to A’s queried
ciphertext |ct⟩ = |(ctA, ctB)⟩ in the computational basis, Bcpa returns ⊥ if either ctA = ct∗A or F (pkin, ct

∗
in, ctin) =

1 where ctin = Dec1−cca(skA, ctA); otherwise, Bcpa decrypts using Dec(sk, ·). When A makes the i-th query, Bcpa
measures it with the resulting state being ct = (ctA, ctB) and checks if ct is a bad-query as defined above. If ct is a
bad-query, Bcpa outputs 1; otherwise, it outputs 0.

Note that Bcpa simulates Game 3 towards A (conditioned on z = 1) if its challenger encrypted the “left” message
ct∗in. Similarly, Bcpa simulates Game 4 (conditioned on z = 1) if its challenger encrypted the “right” message 1k.
Hence, if we let b to be the hidden bit chosen by Bcpa’s challenger then we have

AdvCPA
PKEcpa,Bcpa

(λ) =
1

2
·
∣∣∣Pr[1← Bcpa|b = 0]− Pr[1← Bcpa|b = 1]

∣∣∣ = 1

2
·
∣∣∣Pr[M (3)|z = 1]− Pr[M (4)|z = 1]

∣∣∣.
1Technically, in the context of applying Lemma 2.1, the probability Pguess corresponds to the measured ciphertext also satisfying Dec(sk, ct) ̸= ⊥,

in addition to being a bad-query. But we have Pguess to be trivially upper-bounded by Pr[M(3)].

32

Lemma 7.6. There exists a QPT adversary B1−cca such that

|Pr[M (4)|z = 1]− Pr[M (5)|z = 1]| = 2 ·Adv1-CCA
PKE,B1−cca

.

Proof. On input pkA, first B1−cca generates key pairs (pkB , skB) ← Gencpa(1
λ) and (pkin, skin) ← Genqdcca(1

λ).
It sets pk = (pkin, pkA, pkB) and forwards pk to A. Afterwards, B1−cca responds to A’s quantum decryption
queries as follows: for a ciphertext |ct⟩ = |(ctA, ctB)⟩, first B1−cca computes ctin ← Deccpa(skB , ctB) and
(rA, rB ,m) ← Decqdcca(skin, ctin); B′cpa. It returns the message m if ctA = Enc1−cca(pkA, ctin; rA) and ctB =

Enccpa(pkB , ctin; rB), otherwise it returns ⊥. As observed in [HLW12], replacing ctin ← Dec1−cca(skA, ctA) in Dec
with ctin ← Deccpa(skB , ctB) does not make any difference. Namely, if Dec1−cca(skA, ctA) = Deccpa(skB , ctB),
then both decryption algorithms proceed identically. If Dec1−cca(skA, ctA) ̸= Deccpa(skB , ctB), then both algorithms
return ⊥ because the checks ctA = Enc1−cca(pkA, ctin; rA) and ctB = Enccpa(pkB , ctin; rB) for a common ctin
will not be simultaneously satisfied. Hence, even if B1−cca first decrypts ctB instead of ctA when responding to A’s
decryption query |ct⟩ = |(ctA, ctB)⟩, it still simulates the quantum oracle |Dec(sk, ·)⟩ for A.

Upon receiving (m0,m1) from A, B1−cca computes ct∗in ← Encqdcca(pkin, 0
ℓ) (we are conditioning on z = 1)

and ct∗B ← Enccpa(pkB , 1
k). Next, B1−cca sends (ct∗in, 1

k) to its challenger. After receiving the challenge ct∗A, the
adversary B1−cca returns the ciphertext ct∗ = (ct∗A, ct

∗
B) to A. Next, B1−cca samples i← [qpost] and responds to the

rest of A’s queries as follows: for any query |ct⟩ = |(ctA, ctB)⟩, the adversary B1−cca returns ⊥ if either ctA = ct∗A
or F (pkin, ct

∗
in, ctin) = 1 where ctin = Deccpa(skB , ctB); otherwise, it decrypts ct as in the pre-challenge phase

above. If Dec1−cca(skA, ctA) ̸= Deccpa(skB , ctB), then both post-challenge decryption algorithms return ⊥ since
Dec(sk, ct) = ⊥. Hence, B1−cca simulates the post-challenge decryption oracle in Game 4 (and 5) for A until the i-th
query. When A makes the i-th query, B1−cca measures it with the resulting state being ct = (ctA, ctB) and checks if ct
is a bad-query as follows: B1−cca first checks if ctA ̸= ct∗A; if so, it forwards ctA to its classical one-time decryption
oracle Dec1−cca(skA, ·) to obtain ctin and checks if F (pkin, ct

∗
in, ctin) = 1. If the checks pass (i.e., ct is a bad-query)

then B1−cca outputs 1 and otherwise outputs 0.
Observe that B1−cca simulates Game 4 (respectively, Game 5) towards A (conditioned on z = 1) if its challenger

encrypted the “left” (respectively, “right”) message, and hence

Adv1-CCA
PKE1−cca,B1−cca

=
1

2
·
∣∣∣Pr[M (4)|z = 1]− Pr[M (5)|z = 1]

∣∣∣.
Before bounding |Pr[M (5)|z = 1]− Pr[M (6)|z = 1]|, we show the following for Game 6.

Lemma 7.7. There exists a QPT adversary Bpred such that

Pr[M (6)|z = 1] ≤ AdvqPredict
DPKE,Bpred

.

Proof. On input pkin, first Bpred generates (pkA, skA) ← Gen1−cca(1
λ) and (pkB , skB) ← Gencpa(1

λ). It then
sets pk = (pkin, pkA, pkB) and forwards pk to A. In the pre-challenge phase, Bpred proceeds to simulate quantum
access to the oracle |Dec(sk, ·)⟩ towards A using (skA, skB) and its own quantum oracle |Decqdcca(skin, ·)⟩ in a
straightforward manner. Upon receiving (m0,m1) from A, the adversary Bpred computes ct∗A ← Enc1−cca(pkA, 1

k),
ct∗B ← Enccpa(pkB , 1

k), and returns ct∗ = (ct∗A, ct
∗
B). Next, Bpred samples i ← [qpost] and responds to A’s

queries as in the pre-challenge phase (while rejecting ciphertexts (ct∗A, ctB)) until the i-th query. When A makes
the i-th query, Bpred measures it with the resulting state being ct = (ctA, ctB). If ctA ̸= ct∗A, then Bpred computes
ctin = Dec1−cca(skA, ctA) and returns (0ℓ, ctin); otherwise, Bpred aborts. Note that Bpred simulates Game 6 until the
i-th query for A. Hence, conditioned on z = 1, if the event M (6) occurs, it means the measured ct = (ctA, ctB) is
a bad-query that satisfies F (pkin, ct

∗
in, ctin) = 1 where ct∗in ← Encqdcca(pkin, 0

ℓ). Since (0ℓ, ctin) would result in
breaking the quantum unpredictability of F , it follows that Pr[M (6)|z = 1] ≤ AdvqPredict

DPKE,Bpred
.

Lemma 7.8. There exists a QPT adversary B′pred such that∣∣∣Pr[M (5)|z = 1]− Pr[M (6)|z = 1]
∣∣∣ ≤ 2qpost

√
AdvqPredict

DPKE,B′
pred

.

33

Proof. The proof is quite similar to that of Lemma 7.7, but additionally involves a nested application of Lemma 2.1.
First, it helps to interpret the probability Pr[M (j)|z = 1], for j ∈ {5, 6}, corresponding to A winning a variant of
Game j (conditioned on z = 1) which we call Game j. The only difference between Game j and Game j is their
respective winning conditions. Recall that A is said to win Game j if it outputs the hidden bit z, and A wins Game j if
the measurement of a random i-th quantum decryption query made byA in the post-challenge phase (where i← [qpost])
results in a bad-query. Based on Lemma 2.1, one can construct an oracle algorithm A (which has access either to the
post-challenge decryption oracle of Game 5 or Game 6) such that it simulates either Game 5 or Game 6 (conditioned on
z = 1) for A. Here, another algorithm A′ first simulates the pre-challenge phase of Games 5 and 6 towards A, and
then forwards the appropriate input to A. Such an algorithm A would output 1 if and only if A wins the corresponding
Game j ∈ {5, 6}. Note that A can check if a measured ciphertext is a bad-query since A′ would forward the relevant
secret keys to A.

Let M
(j)

for j ∈ {5, 6} be the event when the measurement of a random i-th quantum decryption query made by
A in the post-challenge phase of Game j (where i← [qpost]) results in a bad-query. From a “nested” application of
Lemma 2.1 outlined above we get∣∣∣Pr[M (5)|z = 1]− Pr[M (6)|z = 1]

∣∣∣ ≤ 2qpost

√
Pr[M

(6)|z = 1].

To bound Pr[M
(6)|z = 1], we can construct a QPT adversary B′pred (similar to Bpred in the proof of Lemma 7.7) which

breaks the quantum unpredictability of F with respect to DPKE. Note that Bpred above perfectly simulated Game
6, until the i-th post-challenge decryption query for a random i ← [qpost] towards A. In this setting, B′pred would
perfectly simulate Game 6, until the i-th query for a random i← [qpost] towards A. The only difference between Bpred
and B′pred would be that the latter algorithm samples two query numbers i, i ← [qpost] in the post-challenge phase
of Game 6; the first query number i is what the challenger in Game 6 would have sampled for checking the winning
condition with respect to A, and the second query number i is what B′pred is aiming for with respect to measuring A’s
post-challenge query and breaking the quantum unpredictability of F via a nested application of Lemma 2.1. If i > i,
then B′pred would return ⊥; otherwise, it would measure the i-th post-challenge query to a state ct = (ctA, ctB) and
return (0ℓ,Dec1−cca(skA, ctA)) to its challenger if ctA ̸= ct∗A (similar to Bpred above).1

Observe that conditioned on z = 1, if the event M
(6)

occurs, then the result of B′pred’s measurement in the
post-challenge phase is a bad-query, which means breaking the quantum unpredictability of F as described above. It
follows that Pr[M

(6)|z = 1] ≤ AdvqPredict
DPKE,B′

pred
, as desired.

Based on the lemmas above, it follows that Pr[M (3)|z = 1] is bounded by a negligible quantity. To show that
Pr[M (3)] is also negligible, we bound Pr[M (3)|z = 0] by relying on the qDCCA security of DPKE as follows.

Lemma 7.9. There exists a QPT adversary B′ind such that

|Pr[M (3)|z = 0]− Pr[M (3)|z = 1]| = 2 ·AdvqInd
DPKE,B′

ind
.

Proof. The description of B′ind is quite similar to that of Bind in Lemma 7.4. Both algorithms proceed identically in
the pre-challenge and challenge phases. The only difference is in the post-challenge phase where, after forwarding
the challenge ciphertext ct∗ = (ct∗A, ct

∗
B) to A, the adversary B′ind samples i← [qpost] and responds to A’s quantum

decryption queries until the i-th query using the self-generated key-pairs (pkA, skA)← Gen1−cca(1
λ), (pkB , skB)←

Gencpa(1
λ), and its own post-challenge oracle |OF

ct∗in
(skin, ·)⟩ (Definition 7.1). Observe that B′ind perfectly simulates

the post-challenge decryption oracle of Game 3 towards A until the i-th query. When A makes the i-th query, B′ind
measures it with the resulting state being ct = (ctA, ctB) and checks if ct is a bad-query. If ct is a bad-query, B′ind
outputs 1; otherwise, it outputs 0.

1In the context of Lemma 2.1, note that the case i > i translates to the setting when the oracle algorithm A (simulating Game 6 towards A) makes
less than i queries to its quantum oracle, and hence is accounted for by the generalized OW2H lemma.

34

Note that B′ind simulates Game 3 towards A until its i-th post-challenge decryption query where the hidden bit z in
Game 3 can be interpreted as the same hidden bit sampled by B′ind’s challenger. Therefore, we have

AdvqInd
DPKE,B′

ind
=

1

2
·
∣∣∣Pr[1← B′ind|z = 0]− Pr[1← B′ind|z = 1]

∣∣∣ = 1

2
·
∣∣∣Pr[M (3)|z = 0]− Pr[M (3)|z = 1]

∣∣∣.
Remark 7.10. Note that if we included the requirement of Dec(sk, ct) ̸= ⊥ in our definition of bad-queries, there
would have been an issue in the reduction above. Specifically, for the post-measurement ciphertext ct, if we have
ctA ̸= ct∗A and F (pkin, ct

∗
in, ctin) = 1, then B′ind could not check Dec(sk, ct) ̸= ⊥ because its post-challenge oracle

|OF
ct∗in

(skin, ·)⟩ would have forbidden a query on ctin.

Since Pr[M (3)|z = 0] and Pr[M (3)|z = 1] are negligible, it follows that Pr[M (3)] is also negligible. By relying on
Lemma 7.3 and Lemma 7.4, and using the fact that |Pr[W (2)]− Pr[W (3)]| ≤ 2qpost

√
Pr[M (3)], it follows that

|Pr[W (1)]− 1/2| = AdvNest-qInd
(PKE1−cca,PKEcpa,DPKE),A ≤ negl,

which establishes the quantum CCA security of PKE and complete our proof of Theorem 7.2.

7.2 Multi-Bit Quantum DCCA Security from Single-Bit Quantum CCA Security
After showing that multi-bit qDCCA-secure detectable PKE implies multi-bit qCCA-secure PKE, we now describe
how to realize qDCCA-secure PKE from single-bit qCCA-secure PKE, proving the completeness of bit encryption
for qCCA security. Let PKE1−bit = (Gen1−bit,Enc1−bit,Dec1−bit) be a single-bit qCCA-secure PKE with perfect
correctness,1 and also let F ∗ be a detecting function that outputs 0 on all inputs except those of the form (·, ct, ct). In
the first step, we show that DPKE1−bit = (Gen1−bit,Enc1−bit,Dec1−bit, F

∗) is a single-bit detectable PKE scheme
with qDCCA security.

Lemma 7.11. If PKE1−bit is a (single-bit) qCCA-secure PKE scheme then DPKE1−bit satisfies qDCCA security.

Proof. Quantum indistinguishability of encryptions (Definition 7.1) can be shown by a straightforward reduction. To
show quantum unpredictability of F ∗, given a QPT adversary A which breaks the quantum unpredictability of F ∗

with advantage ε, we describe an adversary A′ which breaks the qCCA security of PKE1−bit with advantage ε/4. On
input pk, first A′ forwards pk to A. It simulates quantum access to the oracle |Dec1−bit(sk, ·)⟩ towards A as A′ has
access to the same oracle in the pre-challenge phase. When A outputs a pair (m, ct), the adversary A′ first queries ct
to its oracle |Dec1−bit(sk, ·)⟩ in the pre-challenge phase, and records the response as m′ = Dec1−bit(sk, ct). Then A′
forwards (m, 1 − m) to its challenger. Upon receiving ct∗, the adversary A′ first checks if m′ ∈ {1 − m,⊥}. If so,
A′ outputs a random bit b′. Otherwise, if m′ = m, then A′ further checks if ct = ct∗. If so, A′ guesses that the “left”
message m was encrypted (b′ = 0); otherwise, A′ outputs a random bit b′.

Since A breaks the quantum unpredictability of F ∗ with advantage ε, we have that F ∗(pk, ct∗, ct) = 1 with
probability ε, where ct∗ ← Enc1−bit(pk,m). Hence in the qCCA game, if the challenger encrypted the “left” message
m, then A′ outputs b′ = 0 with probability ε+ (1− ε)/2. If the qCCA challenger encrypted the “right” message 1−m
instead, then note that A′’s check ct = ct∗ above is never satisfied. Hence when b = 1, the adversary A′ outputs a
random bit b′. Therefore, we have

AdvqCCA
PKE1−bit,A′ =

1

2
·
∣∣∣Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]

∣∣∣
=

1

2
·
∣∣∣ε+ 1− ε

2
− 1

2

∣∣∣ = ε

4
.

Now starting with any single-bit qDCCA-secure detectable PKE scheme DPKE = (Gen,Enc,Dec, F) where F
can be arbitrary and need not be equal to F ∗ above, consider the following construction of a multi-bit detectable PKE
scheme DPKE = (Gen,Enc,Dec, F):2

1As noted previously, we make this assumption for the ease of exposition. One can extend our analysis to the case where PKE1−bit satisfies
almost-all-keys correctness.

2This is essentially the same construction as in [HLW12, Appendix B] (for classical CCA security).

35

Gen(1λ): Sample (pk, sk)← Gen(1λ) and output (pk, sk).

Enc(pk,m): Let n = |m|. For all i ∈ [n], compute cti ← Enc(pk,mi) where mi ∈ {0, 1}, and output ct = ct1 ∥
ct2 ∥ . . . ∥ ctn.

Dec(sk, ct): Parse ct→ ct1 ∥ . . . ∥ ctn. For each i ∈ [n], compute mi = Dec(sk, cti). If mi = ⊥ for some i ∈ [n],
return ⊥. Otherwise, output m = m1 ∥ m2 ∥ . . . ∥ mn.

F (pk, ct′, ct): Parse ct′ = ct′1 ∥ . . . ∥ ct′n and ct = ct1 ∥ . . . ∥ ctn. If there is a pair (i, j) ∈ [n]2 such that
F (pk, ct′i, ctj) = 1, return 1. Otherwise, return 0.

Theorem 7.12. If DPKE is a (single-bit) qDCCA-secure detectable PKE then DPKE is a (multi-bit) qDCCA-secure
detectable PKE.

Proof. The proof follows quite closely the proof of [HLW12, Appendix B]. We first show the quantum unpredictability
of F while relying on the quantum unpredictability of F . Given a QPT adversary A with advantage ε, we construct a
QPT adversary A′ as follows. On input pk, first A′ forwards pk to A. It then simulates quantum access to the oracle
|Dec(sk, ·)⟩ towards A using its own quantum oracle |Dec(sk, ·)⟩ as follows. For any queried ciphertext |ct⟩ in the
computational basis, A′ parses it as ct = ct1 ∥ . . . ∥ ctn in a reversible way. Then A′ queries each cti, for i ∈ [n], to
its oracle |Dec(sk, ·)⟩ in a sequence and then concatenates the resulting outputs as m = m1 ∥ m2 ∥ . . . ∥ mn, again in a
reversible way (while rejecting ciphertexts ct as appropriate). WhenA finally outputs (m, ct) with m = m1 ∥ . . . ∥ mm

and ct = ct1 ∥ . . . ∥ ctn, the adversary A′ samples i← [m], j ← [n], and outputs the pair (mi, ctj) to its challenger.
To analyze the advantage of A′, the corresponding analysis of F ’s classical unpredictability in [HLW12] extends to the
quantum setting in an identical fashion, and it follows that the advantage of A′ is at least ε/mn.

Now we show the quantum indistinguishability of encryptions of DPKE while relying on the same property of DPKE.
Given a QPT adversary B with advantage ε, we construct a QPT adversary B′ as follows. Let n be the length of messages
(m0,m1) output by B in the challenge phase. Let m0 = m0,1 ∥ m0,2 . . . ∥ m0,n and m1 = m1,1 ∥ m1,2 . . . ∥ m1,n.
We define Games 1 to n as follows, where each Game i is same as the quantum indistinguishability of encryptions
game with respect to DPKE (Definition 7.1) except for how the challenge ciphertext ct∗ is computed. In Game i, ct∗ is
computed as

ct∗j =

Enc(pk,m0,j) if 1 ≤ j < i,

Enc(pk,mb,j) if j = i,

Enc(pk,m1,j) if i < j ≤ n,

where b is the challenge bit. By a standard hybrid argument, observe that there exist an index i∗ where the advantage of
B in Game i∗ should be at least ε/n. We now construct a QPT adversary B′ as follows: on input pk, the adversary B′
forwards pk to B. It then simulates quantum access to the oracle |Dec(sk, ·)⟩ towards B in the pre-challenge phase using
its pre-challenge quantum oracle |Dec(sk, ·)⟩ in the same way as the adversary A. When B forwards (m0,m1) in the
challenge phase, B′ computes ct∗ as is done in Game i∗. Specifically, for 1 ≤ i < i∗, B′ computes ct∗i ← Enc(pk,m0,i),
and for i∗ < i ≤ n, it computes ct∗i ← Enc(pk,m1,i). Next, B′ forwards the pair (m0,i∗ ,m1,i∗) to its challenger
and gets back the ciphertext ct∗i∗ . It then returns ct∗ = ct∗1 ∥ . . . ∥ ct∗n to B. Finally, B′ proceeds to respond to B’s
remaining quantum decryption queries in the post-challenge phase as follows: for any queried ciphertext |ct⟩, first
B′ parses it as ct = ct1 ∥ . . . ∥ ctm and checks if F (pk, ct∗, ct) = 1 (using the description of F above). If so, B′
returns ⊥; otherwise, it decrypts ct in the same way as in the pre-challenge phase. When B terminates with a bit b′,
the adversary B′ outputs the same bit b′. Observe that B′ perfectly simulates Game i∗ towards B and hence breaks the
quantum indistinguishability of encryptions of DPKE with the same advantage that B has in Game i∗, as desired.

References
[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In

Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 553–572. Springer, Heidelberg,
May / June 2010. (Cited on page 2)

36

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of
LNCS, pages 595–618. Springer, Heidelberg, August 2009. (Cited on page 3)

[ADMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryptographic group actions and
applications. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume 12492 of
LNCS, pages 411–439. Springer, Heidelberg, December 2020. (Cited on page 2, 3, 10, 15)

[AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security proofs using semi-classical
oracles. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693
of LNCS, pages 269–295. Springer, Heidelberg, August 2019. (Cited on page 5, 6, 11)

[AQY22] Prabhanjan Ananth, Luowen Qian, and Henry Yuen. Cryptography from pseudorandom quantum states. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages
208–236. Springer, Heidelberg, August 2022. (Cited on page 2)

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and weaknesses of
quantum computing. SIAM Journal on Computing, 26(5):1510–1523, 1997. (Cited on page 6)

[BBC+21] Ritam Bhaumik, Xavier Bonnetain, André Chailloux, Gaëtan Leurent, Marı́a Naya-Plasencia, André
Schrottenloher, and Yannick Seurin. QCB: Efficient quantum-secure authenticated encryption. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages 668–698.
Springer, Heidelberg, December 2021. (Cited on page 6)

[BCHK07] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. SIAM J. Comput., 36(5):1301–1328, 2007. (Cited on page 2)

[BCKM21] James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma. On the round complexity of
secure quantum computation. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume
12825 of LNCS, pages 406–435, Virtual Event, August 2021. Springer, Heidelberg. (Cited on page 2)

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry.
Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011. (Cited on page 6)

[BGH+23] Khashayar Barooti, Alex B. Grilo, Loı̈s Huguenin-Dumittan, Giulio Malavolta, Or Sattath, Quoc-Huy
Vu, and Michael Walter. Public-key encryption with quantum keys. In Guy N. Rothblum and Hoeteck
Wee, editors, TCC 2023, Part IV, volume 14372 of Lecture Notes in Computer Science, pages 198–227.
Springer, 2023. (Cited on page 4)

[BJSW16] Anne Broadbent, Zhengfeng Ji, Fang Song, and John Watrous. Zero-knowledge proof systems for QMA.
In Irit Dinur, editor, 57th FOCS, pages 31–40. IEEE Computer Society Press, October 2016. (Cited on
page 2)

[BZ13a] Dan Boneh and Mark Zhandry. Quantum-secure message authentication codes. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 592–608. Springer,
Heidelberg, May 2013. (Cited on page 2)

[BZ13b] Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in a quantum computing
world. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages
361–379. Springer, Heidelberg, August 2013. (Cited on page 2, 4, 5, 7, 25)

[CEV22] Céline Chevalier, Ehsan Ebrahimi, and Quoc Huy Vu. On security notions for encryption in a quantum
world. In Takanori Isobe and Santanu Sarkar, editors, INDOCRYPT 2022, volume 13774 of LNCS, pages
592–613. Springer, 2022. (Cited on page 4)

37

[CHH+07] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael Pass, abhi shelat, and
Vinod Vaikuntanathan. Bounded CCA2-secure encryption. In Kaoru Kurosawa, editor, ASIACRYPT 2007,
volume 4833 of LNCS, pages 502–518. Springer, Heidelberg, December 2007. (Cited on page 30)

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: An effi-
cient post-quantum commutative group action. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part III, volume 11274 of LNCS, pages 395–427. Springer, Heidelberg, December 2018.
(Cited on page 2)

[Col23] Andrea Coladangelo. Quantum trapdoor functions from classical one-way functions. Cryptology ePrint
Archive, Report 2023/282, 2023. https://eprint.iacr.org/2023/282. (Cited on page 4)

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS,
pages 45–64. Springer, Heidelberg, April / May 2002. (Cited on page 2, 3, 10, 11, 15)

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003. (Cited on
page 3, 21)

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended abstract). In 23rd
ACM STOC, pages 542–552. ACM Press, May 1991. (Cited on page 2)

[DFMS22] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability in the quantum
random-oracle model. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part III,
volume 13277 of LNCS, pages 677–706. Springer, Heidelberg, May / June 2022. (Cited on page 6)

[FKS+13] Serge Fehr, Jonathan Katz, Fang Song, Hong-Sheng Zhou, and Vassilis Zikas. Feasibility and completeness
of cryptographic tasks in the quantum world. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS,
pages 281–296. Springer, Heidelberg, March 2013. (Cited on page 2)

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. Journal of Cryptology, 26(1):80–101, January 2013. (Cited on page 6, 30)

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In 21st ACM
STOC, pages 25–32. ACM Press, May 1989. (Cited on page 8, 25)

[HKW20] Susan Hohenberger, Venkata Koppula, and Brent Waters. Chosen ciphertext security from injective
trapdoor functions. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume
12170 of LNCS, pages 836–866. Springer, Heidelberg, August 2020. (Cited on page 2)

[HLLG19] Shuai Han, Shengli Liu, Lin Lyu, and Dawu Gu. Tight leakage-resilient CCA-security from quasi-adaptive
hash proof system. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II,
volume 11693 of LNCS, pages 417–447. Springer, Heidelberg, August 2019. (Cited on page 2)

[HLW12] Susan Hohenberger, Allison B. Lewko, and Brent Waters. Detecting dangerous queries: A new approach
for chosen ciphertext security. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 663–681. Springer, Heidelberg, April 2012. (Cited on page 4, 6, 25, 29, 30,
32, 33, 35, 36)

[KMO10] Eike Kiltz, Payman Mohassel, and Adam O’Neill. Adaptive trapdoor functions and chosen-ciphertext
security. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 673–692. Springer,
Heidelberg, May / June 2010. (Cited on page 2, 3, 4, 25, 28, 29)

[KMP14] Eike Kiltz, Daniel Masny, and Krzysztof Pietrzak. Simple chosen-ciphertext security from low-noise LPN.
In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 1–18. Springer, Heidelberg, March
2014. (Cited on page 2)

38

https://eprint.iacr.org/2023/282

[KMT19] Fuyuki Kitagawa, Takahiro Matsuda, and Keisuke Tanaka. CCA security and trapdoor functions via
key-dependent-message security. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 33–64. Springer, Heidelberg, August 2019. (Cited on page 2, 3, 15,
17, 18, 19, 20, 21)

[KNY21] Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Secure software leasing from standard
assumptions. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part I, volume 13042 of LNCS, pages
31–61. Springer, Heidelberg, November 2021. (Cited on page 2)

[KW19] Venkata Koppula and Brent Waters. Realizing chosen ciphertext security generically in attribute-based en-
cryption and predicate encryption. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 671–700. Springer, Heidelberg, August 2019. (Cited on page 2)

[LW21] Xu Liu and Mingqiang Wang. QCCA-secure generic key encapsulation mechanism with tighter security
in the quantum random oracle model. In Juan Garay, editor, PKC 2021, Part I, volume 12710 of LNCS,
pages 3–26. Springer, Heidelberg, May 2021. (Cited on page 2, 21)

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 21–39. Springer, Heidelberg,
August 2013. (Cited on page 3, 4, 29)

[Ms09] Steven Myers and abhi shelat. Bit encryption is complete. In 50th FOCS, pages 607–616. IEEE Computer
Society Press, October 2009. (Cited on page 2, 25, 29)

[MY22a] Tomoyuki Morimae and Takashi Yamakawa. One-wayness in quantum cryptography. Cryptology ePrint
Archive, Report 2022/1336, 2022. https://eprint.iacr.org/2022/1336. (Cited on page 4)

[MY22b] Tomoyuki Morimae and Takashi Yamakawa. Quantum commitments and signatures without one-way
functions. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of
LNCS, pages 269–295. Springer, Heidelberg, August 2022. (Cited on page 2)

[NC00] Michael Nielsen and Isaac Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2000. (Cited on page 6)

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In 22nd ACM STOC, pages 427–437. ACM Press, May 1990. (Cited on page 2)

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 187–196. ACM Press, May 2008. (Cited on page 2, 3, 4,
25, 29)

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd ACM STOC,
pages 387–394. ACM Press, May 1990. (Cited on page 10)

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 433–444. Springer,
Heidelberg, August 1992. (Cited on page 2)

[RS09] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. In Omer Reingold, editor,
TCC 2009, volume 5444 of LNCS, pages 419–436. Springer, Heidelberg, March 2009. (Cited on page 2, 3,
4, 5, 25, 28, 29)

[RZ21] Bhaskar Roberts and Mark Zhandry. Franchised quantum money. In Mehdi Tibouchi and Huaxiong
Wang, editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages 549–574. Springer, Heidelberg,
December 2021. (Cited on page 2)

39

https://eprint.iacr.org/2022/1336

[SGX23] Tianshu Shan, Jiangxia Ge, and Rui Xue. Qcca-secure generic transformations in the quantum random
oracle model. In Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023, Part I, volume 13940
of LNCS, pages 36–64. Springer, 2023. (Cited on page 2)

[Sho98] Victor Shoup. Why chosen ciphertext security matters, 1998. IBM TJ Watson Research Center. (Cited on
page 2)

[Unr14] Dominique Unruh. Revocable quantum timed-release encryption. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 129–146. Springer, Heidelberg, May
2014. (Cited on page 6)

[Unr20] Dominique Unruh. Post-quantum verification of Fujisaki-Okamoto. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 321–352. Springer, Heidelberg,
December 2020. (Cited on page 6)

[XY19] Keita Xagawa and Takashi Yamakawa. (Tightly) QCCA-secure key-encapsulation mechanism in the
quantum random oracle model. In Jintai Ding and Rainer Steinwandt, editors, Post-Quantum Cryptography
- 10th International Conference, PQCrypto 2019, pages 249–268. Springer, Heidelberg, 2019. (Cited on
page 2, 21)

[Zha12] Mark Zhandry. How to construct quantum random functions. In 53rd FOCS, pages 679–687. IEEE
Computer Society Press, October 2012. (Cited on page 2)

[Zha19] Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS,
pages 239–268. Springer, Heidelberg, August 2019. (Cited on page 6)

40

	Introduction
	Our Contributions
	Technical Overview

	Preliminaries
	Quantum CCA Security from Hash Proof Systems
	Quantum CCA Security from PKE and KDM-Secure SKE
	Quantum CCA-Secure KEM

	KEM-DEM Composition and Quantum CCA-Secure PKE
	Quantum Adaptive Trapdoor Functions
	Quantum CCA Security from Quantum ATDFs
	Quantum ATDFs from Correlated-Product TDFs

	Completeness of Bit Encryption for Quantum CCA Security
	qCCA-Secure PKE from qDCCA-Secure PKE
	Multi-Bit Quantum DCCA Security from Single-Bit Quantum CCA Security

