
Dual Polynomial Commitment Schemes and Applications to

Commit-and-Prove SNARKs

Chaya Ganesh1, Vineet Nair2, and Ashish Sharma2

1Indian Institute of Science
2Arithmic Labs

chaya@iisc.ac.in, vineet@arithmic.com, ashish@arithmic.com

June 12, 2024

Abstract

We introduce a primitive called a dual polynomial commitment scheme that allows linking together
a witness committed to using a univariate polynomial commitment scheme with a witness inside a
multilinear polynomial commitment scheme. This yields commit-and-prove (CP) SNARKs with the
flexibility of going back and forth between univariate and multilinear encodings of witnesses. This is in
contrast to existing CP frameworks that assume compatible polynomial commitment schemes between
different component proofs systems. In addition to application to CP, we also show that our notion yields
a version of Spartan with better proof size and verification complexity, at the cost of a more expensive
prover.

We achieve this via a combination of the following technical contributions: (i) we construct a new
univariate commitment scheme in the updatable SRS setting that has better prover complexity than KZG
(ii) we construct a new multilinear commitment scheme in the updatable setting that is compatible for
linking with our univariate scheme (iii) we construct an argument of knowledge to prove a given linear
relationship between two witnesses committed using a two-tiered commitment scheme (Pedersen+AFG)
using Dory as a black-box. These constructions are of independent interest.

We implement our commitment schemes and report on performance. We also implement the version
of Spartan with our dual polynomial commitment scheme and demonstrate that it outperforms Spartan
in proof size and verification complexity.

1 Introduction

Zero-knowledge proofs and argument systems (ZK) [GMR85] allow proving that a statement is valid without
revealing any additional information. Zero-knowledge Succinct Non-interactive ARguments of Knowledge
(zk-SNARKs), are non-interactive ZK arguments with the additional property that the size of the proof,
and verifier work to check the proof is sublinear in the size of the statement. zk-SNARKs are a fundamental
building block in modern cryptographic systems where it is crucial that the verification time does not scale
with the size of the computation.
Polynomial Commitment Scheme (PCS). At a high level, a PCS enables a prover to initially commit
to a polynomial f of bounded degree. Later, the prover can reveal evaluations of f at chosen points,
accompanied by proofs verifying that the disclosed values align with the original commitment. A PCS is a
central cryptographic tool used to obtain a SNARK in a modular way. A SNARK resulting from compiling
an information-theoretic protocol inherits the complexity of the PCS; that is, the proof size depends on the
commitment size and evaluation proof size of the PCS.
Commit-and-prove SNARKs (CP-SNARKs). An important family of SNARKs is one with a commit-
and-prove extension, called a commit-and-prove SNARKs (CP-SNARKs) [CFQ19] where the inputs are

1

separately committed to. A CP-SNARK allows verification of a proof through this commitment, that, cru-
cially, can be reused across proofs. The presence of these commitments allow to glue together different proof
systems that use parts of same witness. CP-SNARKs are useful in a variety of applications where one needs
to prove composite statements using the most efficient tool for each part of the statement. CP-SNARKs allow
modularity of proof systems thus providing interoperability with different protocols specialized for efficiently
proving certain class of relations. For instance, consider a “mixed” computation that naturally presents
different components, like Boolean/arithmetic circuit for a hash function, and algebraic representation for
group operations. Using a general-purpose zkSNARK for such a computation requires one homogeneous in-
termediate representation of this computation. This incurs a high cost in performance; for example, writing
a modular exponentiation as a circuit requires number of gates that grows with the size of the modulus. A
CP-SNARK takes advantage of the native representation of different parts of the computation and does a
mix-and-match of the best proof system for each component, e.g., SNARKs for an arithmetic circuit and a
Sigma-protocol for an algebraic relation.

Existing CP-SNARK frameworks assume compatibility of the cryptographic compilers used in the dif-
ferent proof components. If one information theoretic proof component is compiled using a PCS, then the
linking proofs are designed to be compatible with the representation of the polynomials (vectors of coef-
ficients/ vectors of evaluations) used by the polynomial commitment scheme. That is, the linking that is
essential for a CP-SNARK works as long as the PCS match up in how they interpret the polynomial (univari-
ate vs multivariate, vector of coefficients vs vector of evaluations etc.). What if we want a CP-SNARK where
one component uses a polynomial represented as a vector of coefficients and committed to using a univariate
PCS (like KZG [KZG10]), and another component represents its polynomials as a vector of evaluations and
are committed to using a multilinear scheme (like PST [PST13] or Hyrax [WTS+18]) and these polynomials
encode the same shared witness?

We put forth the notion of a dual polynomial commitment scheme, that links univariate and multilinear
PCS. Specifically, a dual polynomial commitment scheme can be used to prove evaluations of a univariate and
a multilinear polynomial derived from the same witness. Towards this, we construct an efficient linking proof
for connecting a witness committed to using a univariate polynomial commitment scheme with a witness
inside a multivariate polynomial commitment scheme. The dual polynomial commitment scheme allows one
to go back and forth between univariate and multilinear encodings of witnesses. To further motivate the
need for such flexibility, we now outline some example applications.

1.1 Applications

Commit-and-prove Lookup. There exist general compilers [CFF+21, ABC+22] that take an information-
theoretic proof, like an Algebraic Holographic Proof (AHP) or Polynomial Interactive Oracle Proof (PIOP)
and compile them into a CP-SNARK using a cryptographic compiler like a PCS. Concrete instantiations
of these compilers yield frameworks that can glue together general purpose SNARKS for an arithmetic
circuit/Rank 1 constraint system (R1CS),like Marlin/Sonic/Plonk with proof systems for algebraic state-
ments, like Sigma protocols. However, the above works do not directly handle lookup arguments. They can be
extended in a straightforward way to lookups, but they are not general since they are limited to lookup argu-
ments that use the same PCS as the compiler or a “compatible” one. For example, the Lasso [STW23] lookup
argument can be extended to give CP-lookup but can only be linked to Spartan [Set20]; and Plookup [GW20]
can be extended to be CP-lookup linked to Plonk [GWC19]. We briefly discuss why lookup arguments are
useful and it is desirable to have general CP-SNARKs that allow linking to lookups. A lookup argument, at a
high level, allows a prover to convince a verifier that vi = tui for all i given committed vectors t⃗, u⃗ and v⃗. Cir-
cuit based representations are inefficient in expressing certain relations, like bit-decomposition. Lookups are
used as custom gates in SNARKs (for instance plookup[GW20], Arya[BCG+18]) where “SNARK-unfriendly”
operations like bit-decomposition, range proof etc. are performed via a table lookup instead of a circuit rep-
resentation using addition/multiplication gates. This rich and growing body of work on lookup arguments
culminated in the notion of lookup singularity[Whi] where SNARK front ends produce circuit representa-
tions consisting of only lookups. Lasso [STW23] and Jolt [AST23] together achieve this lookup singularity:
(i) a circuit that executes an instruction at each step (SNARK-unfriendly gates like OR, XOR, AND etc)

2

is modeled as a single lookup into a large lookup table (ii) efficient lookup into large tables via table de-
composition. Jolt uses Lasso for step (ii) which uses sumcheck arguments and hence requires a multilinear
PCS. Thus, while Lasso naturally admits commit-and-prove, this is restricted to SNARKs that encode the
witness in a multivariate PCS to match the PCS used in the lookup argument of Lasso. In the spirit of
commit-and-prove, our goal is to include lookup as a gadget in the toolbox of CP-SNARKs and modularly
build complex schemes by mixing and matching lookup with other widely deployed circuit-based SNARKs.
Via our dual polynomial commitment scheme, we can construct a CP-SNARK that combines general purpose
SNARKs with lookup arguments, regardless of how the underlying PCS work (univariate/multilinear).

Let us consider the following scenario: The verifier would like to check that a1, . . . , am which are certain
intermediate values in a computation are all in a large range, like, in {0, 1, . . . , 232 − 1}. Checking m values
are in the range < 2N requires O(mN) R1CS constraints on an O(mN) length witness. Using STARK,
this incurs a cost of at least 3m FFTs of length O(N) resulting in a prover complexity of O(mN logN)
field operations. This cost stems from expensive operations involving bit-decomposition due to the range
checks inside the circuit. This cost is avoided by moving the range checks “outside” the SNARK circuit to
lookups. Now, there is a need to “tie” the a1, . . . , am that were used in the lookup to the intermediate values
of the computation. That is, given commitments to a1, . . . , am, the lookup argument proves each ai is in
the desired range, a general-purpose zkSNARK proves the computation, and this combination is sound only
if the verifier is convinced that the each ai used in the lookup argument is indeed the output of the sub-
computation up to the range check and the input to the sub-computation after the range check. This gluing
step is straightforward if the polynomial commitment scheme used in the lookup argument and the rest of
the SNARK is the same (like Lasso [STW23] and Spartan [Set20], or Caulk [ZBK+22] and Plonk [GWC19]).
This falls short of the goal of commit-and-prove which is generality: plug-and-play different gadgets for
different sub-computations. In particular, if one were to use a SNARK like Groth16 (based on KZG, a
univariate PCS) and a lookup argument like Lasso (based on multilinear PCS), then the approach described
above will not work as-is. Our constructions overcome the technical difficulty in establishing consistency of
witnesses used in the SNARK and the lookup argument encoded via a univariate PCS and a multilinear
PCS respectively.

No Of Constraints Eval Prover (sec) Eval Verifier (sec) Proof size (KB)
Spartan Spartan AIR Spartan Spartan AIR Spartan Spartan AIR

216 17.37 97.76 0.97 0.58 69.28 35.64
218 32.55 936.24 1.22 0.62 82.16 39.07

Table 1: Metrics comparing Spartan and Spartan-AIR. Spartan denotes Spartan with grand-product check
using [GKR08, Tha13], and Spartan AIR denotes spartan with grand-product check using the AoK from
Section 7. The ratio of sparsity to constraints in the R1CS matrices is maintained to one.

Grand Product and Efficient Spartan. We design a new special-purpose proof system for proving
grand product relations that could be of independent interest. One concrete benefit of our grand product
argument is that it yields an efficient version of Spartan obtained as a CP-SNARK using our dual polynomial
commitment scheme. The polynomials that encode the intermediate computation states of the grand product
computation are committed to using our univariate PCS KZG-FFT. This grand product argument can
be put together with the rest of the Spartan proof that uses a multilinear PCS relying on the linking
soundness guarantee of the dual PCS. The resulting SNARK, Spartan AIR, has concretely better proof
complexity and verifier complexity, albeit at the cost of worse prover complexity (Table 1). We believe
this is a worthwhile trade-off in some applications. One example is the use of a folding-based recursive
proof system like Nova [KST22] on the blockchain. Here, most of the time, the system does folding based
recursion, and a layer-1 verifier checks the final folded instances which are only infrequently proven after
many folding steps. When Nova’s folding scheme is applied to Spartan, the large proof-sizes and verifier
complexity requires wrapping the Spartan verifier of the relaxed instances inside a more verifier-friendly
SNARK like Groth16 [Gro16]. While Groth16 is verifier efficient, it’s SRS is circuit dependent and not
updatable. In contrast, using our approach, we can obtain better proof size and verifier complexity directly

3

for the Spartan proof while retaining transparent SRS.
zkRollups. Combining lookups with other SNARKs is also relevant in the context of rollups. Blockchain
rollups are a scaling solution that move expensive computation off-chain to layer two chains. Here, the
network participants only need to verify succinct proofs attesting to the correctness of the off-chain compu-
tation. This approach allows verifying the L2 state resulting from several rolled up transactions as part of
one transaction verified on the main chain. Commit-and-prove provides better rollup solutions by allowing
signature verification to be done using suitable SNARKs and checking validity of transactions using table
lookups. While this is an important general application of commit-and-prove lookup, we do not provide
details of an end-to-end rollup solution in this work.

1.2 Our Contributions

• We propose a univariate polynomial commitment scheme KZG-FFT where the prover need not per-
form expensive FFT operations. It is variant of the KZG scheme where we commit to the vector of
evaluations over the FFT domain instead of the coefficient vector. Interpolating the witness vector to
obtain evaluations is not done by the prover, instead the setup phase creates the SRS after applying
the corresponding linear transformation. We then show how to make the SRS universal and updatable.

• We propose a new multilinear polynomial commitment scheme KZG-FOURIER that is suited for linking
with our univariate scheme KZG-FFT.

• We define the notion of a dual polynomial commitment scheme that allows committing to a witness
both as a univariate and a multilinear polynomial. We provide two candidate instantiations of dual
polynomial commitment scheme, one in the transparent setting and another in the updatable SRS
setting. We implement our schemes in Rust and show setup/prover/verifier time for growing witness
sizes.

• We present an argument of knowledge to prove a given linear relationship between two witnesses
committed using a two-tiered commitment scheme (Pedersen+AFG) that uses Dory as a black-box.
We use this argument in our instantiation of a transparent dual polynomial commitment scheme. In
our instantiation, we preprocess an FFT matrix that determines the linear relationship we need for
our dual polynomial commitment.

• We construct a new argument of knowledge for proving grand product relations. This is an instantia-
tion of existing proof system using our KZG-FFT commitment scheme as the polynomial commitment
scheme. However, our dual polynomial commitment scheme enables us to use the grand product
argument with Spartan or Lasso yielding smaller proof sizes. We report implementation results of
performance of the version of Spartan using our grand product argument.

1.3 Technical Overview

Univariate scheme KZG-FFT. We begin by outlining the ideas behind the KZG PCS [KZG10] which is
our starting point. The KZG scheme works as follows: the commitment to a univariate polynomial f(X)
is the encoding of the evaluation of the polynomial at a secret point. The encoding used is exponentia-
tion in a bilinear group, which makes the commitment one group element: C := gf(τ) In order to enable
the prover to compute this, the setup produces a structured reference string (srs) consisting of encodings
of powers of the secret point τ . Now the prover can use the additive homomorphism of the encoding to
compute gf (τ) without knowing τ using the coefficient vector of f and {gτ i}. Now to provably open the
committed polynomial at a random point z, the prover produces a proof for the claim f(z) = v as follows.
It computes the quotient polynomial q(X) := (f(X)− v)/X − z and provides a commitment to q(X) as the
proof; π = gq(τ). The verifier now checks the polynomial division by checking the above equation at the
random point τ . The verifier uses the bilinear map to check e(C · g−v, g) = e(π, gτ · g−z). Now, the way
typical PIOPs (underlying SNARKs like Marlin/Plonk) encode the witness is by interpolating a polynomial

4

f such that the witness vector agrees with f on a nice domain. That is, let w ∈ Fn be the witness vector,
then the prover first constructs a witness-carrying polynomial f(X) =

∑
i∈[n] wiLi(X) where Li(X) are the

Lagrange bases, and the “nice domain” is typically the multiplicative subgroup generated by primitive root
of unity. The univariate polynomial f(X) is then committed to using a PCS like KZG. Therefore, the prover
is required to perform FFT operations in order to obtain f(X) in the required coefficient representation.
Our first idea is to move the costly FFT to the setup phase: instead of the setup string consisting of en-
coding of powers of τ , the setup now consists of powers of α such that α and τ are related via the FFT matrix.

The commitment is still evaluation of the polynomial at a secret point (just like in KZG), but the prover
need not perform expensive operations since this work has already been done apriori by setup. The prover
uses the witness vector w and commits to it as gf(τ) where f agrees with w without having to explicitly
obtain the coefficients of f , for τ = r2

n

, for a uniformly random r ∈ F, and n is the degree. The downside
now is that the srs is not universal since it depends on the degree of the polynomial being committed to.

In order to achieve universality, we let the commitment be gf(τ) for τ = r2
n−d

where n is the bound on the
universal srs and d is the degree bound claimed by the prover. The idea behind the evaluation protocol for
the PCS remains the same as in KZG: commit to the quotient polynomial and check polynomial division
at τ . We show that this scheme satisfies extractability in the AGM assuming N-DLOG. We note that the
scheme also satisfies the updatable srs property which is more desirable than a fully trusted setup.

Multilinear scheme KZG-FOURIER. Our new multilinear PCS relies on a new homomorphic map and
polynomial decomposition. First, we map the Fourier basis of a multilinear polynomial in n variables to
the FFT basis of a univariate polynomial of degree 2n. The commit algorithm interprets the witness vector
as evaluations of a multilinear polynomial f over the Fourier basis, and equivalently as the evaluations of
a univariate polynomial f ′ over the FFT domain of size 2n. Committing to f is done by committing to f ′

using KZG-FFT. The evaluation protocol relies on polynomial decomposition that has been used in prior
works as well [PST13]. For an n-variate polynomial f , and z ∈ Fn, there exist polynomials qi(x) such that,

f(x)−f(z) =
∑
i∈[n]

(xi−zi)qi(x). Ignoring the technical details that we explain in Section 4, in the evaluation

protocol, the verifier checks this polynomial identity but underneath the linear map, so it reduces to checking
this in the univariate case.

1.4 Related Work

CP-SNARKs. Recent works like Lunar [CFF+21] and Eclipse [ABC+22] present general compilers from
information-theoretic objects to CP-SNARKs with a universal and updatable SRS. While the underlying
information-theoretic objects can be compiled using any PCS, Eclipse assume Pedersen vector commitments
and Lunar assumes KZG commitments for the linking gadgets of the CP-SNARKs. Thus they are limited as
a framework to only those proof systems that use compatible commitment schemes. These compilers can be
extended to obtain commit-and-prove lookups, but will be limited to lookup arguments like Caulk [ZBK+22],
Baloo [ZGK+22], CQ [EFG22] that are KZG-based.

PCS. Our multilinear PCS is reminiscent of the techniques in [BCHO22] and [KT23] in that the central idea
is to leverage a linear homomorphism from the F-linear space of multilinear polynomials to the F-linear space
of univariate polynomials. The difference is the linear homomorphism itself: in [KT23], the Fourier basis of
the multilinear polynomial is mapped to the monomial basis of the univariate polynomial. In [BCHO22], the
monomial basis of the multilinear polynomial is mapped to the monomial basis of the univariate polynomial.
In our scheme, the Fourier basis of the multilinear is mapped to the Fourier basis of the univariate polynomial.
As a consequence, our multilinear PCS renders itself to be efficiently linked to our KZG-FFT scheme.

5

2 Preliminaries

Notations and Facts. Throughout F denotes a prime field of order p, and N denotes the set of natural
numbers. We denote by λ a security parameter, by negl a negligible function. For any integer c > 0,
there exists n ∈ N, such that ∀ x > n, negl(x) ≤ 1/nc, and if a function is not negligible then we call it
non-negligible.

We denote vectors by boldface letters, and inner product between a and b by ⟨a,b⟩. If a ∈ FN , then ai
denotes the i-th component of the vector for i ∈ [0, N−1]. We use r ∈R F to denote r sampled independently
and uniformly at random from F. Primitive root of unity of order N is denoted by ωN . We state a well-known
fact regarding primitive roots of unity next.

Fact 1. For N ∈ N, if N is divisible by 2 then ωN/2 = ω2
N . Further, ω2, is unique and is equal to −1.

The N × N Fast Fourier Transform (FFT) matrix whose (i, j)-th entry is ωi·jN for i, j ∈ [0, N − 1] is
denoted MωN . We note down a well-known fact regarding the FFT matrices.

Fact 2. For N ∈ N, MT
ωN =MωN , and further if N is a power of 2 then M−1

ωN = 1
NMω−1

N

We use HN to denote the set {ω0
N , ω

1
N , . . . , ω

N−1
N }. We refer to HN as the FFT domain of size N .

Similarly, let p′ ∈ F be such that p, p′ are coprime integers. Then we refer to the set {p′ · ω0
N , p

′ · ω1
N , . . . ,

p′ · ωN−1
N } as the offset of the FFT domain of size N . We have the following easy to see fact.

Fact 3. For z in the offset of the FFT domain of size N ,
∏
i∈[0,N−1](z − ωi2N) ̸= 0.

F<N [Y] denotes the F-linear space of univariate polynomials with degree at most N , and {Y 0, . . . , Y N−1}
is its standard basis. Let f ∈ F<N [Y]. Then f(HN) ∈ FN denotes the evaluation vector of f(Y) over HN ,
that is the i-th coordinate of f(HN), denotes f(HN)i = f(ωiN) for i ∈ [0, N − 1]. If N is clear from the
context then we drop N from the subscript and simply write f(H). If a ∈ FN and f ∈ F<N [Y] satisfies
a = f(H) then we say a agrees with f over the FFT domain of size N . Let Y = (Y 0, . . . , Y N−1) be an
N length vector constituting of the standard basis of F<N [Y], and U(n) = 1

N ·Mω−1
N
·Y, where n = logN .

Since Mw−1
N

is invertible, {U (n)
i }i∈[0,n−1] is an F-linear basis of F<N [Y], where Ui is the i-th component of

U(n). We refer to U(n) as the FFT basis of F<N [Y].
Similarly, F≤1[X0, . . . , Xn−1] denotes the F-linear space of multilinear polynomials in n variables, and

{L(n)
0 , . . . , L

(n)
2n−1} be the standard Fourier basis of F≤1[X0, . . . , Xn−1]. Specifically, if i ∈ [0, 2n − 1], and

ij ∈ {0, 1} for j ∈ [0, n− 1] is the j-th least significant bit of i (when i is viewed as an n bit number) then

L
(n)
i =

n−1∏
j=0

((1−Xj) · (1− ij) +Xj · ij)

Let f ∈ F≤1[X0, . . . , Xn−1], and f(X0, . . . , Xn−1) =
∑
i∈[0,2n−1] fL(n)

i
· L(n)

i (X0, . . . , Xn−1). Then {f
L

(n)
i
∈

F}i∈[0,2n−1] are referred to as the 2n Fourier coefficients of f . Let a ∈ F2n . Then ã ∈ F[X0, . . . , Xn−1] defined
as ã(X0, . . . , Xn−1) =

∑
i∈[0,2n−1] ai ·Li(X0, . . . , Xn−1) denotes the Multilinear Extension (MLE) of a. It is

easy to see that ã(i0, . . . , in−1) = ai, where again ij ∈ {0, 1} for j ∈ [0, n− 1] is the j-th least significant bit
of i. We note the following well-known fact regarding multilinear polynomials (see [PST13] for a proof).

Fact 4. Let f ∈ F≤1[X0, . . . , Xn−1]. Then f(x0, . . . , xn−1) = y if and only if there exists qk ∈ F≤1[X0, . . . , Xk−1]
for k ∈ [1, n− 1], and q0 ∈ F such that

f(X0, . . . , Xn−1)− f(x0, . . . , xn−1) =

n−1∑
k=0

(Xk − xk) · qk(X0, . . . , Xn−1)

6

Let G be a group of order p. For g = (g1, . . . , gn) ∈ Gn and x = (x1, . . . , xn) ∈ Znp , the multi-
exponentiation gx is defined by gx = gx1

1 · · · gxnn .

Bilinear Group. A bilinear group is denoted by the tuple (p,G1,G2,GT , e, g1, g2), where G1, G2 and GT
are groups of prime order p, g1 and g2 are generators of G1 and G2, and e : G1 ×G2 → GT is an efficiently
computable non-degenerate bilinear map. We denote by G a bilinear group generator that outputs these
parameters: (p,G1,G2,GT , e, g1, g2)←−R G(1λ) where p is superpolynomial in λ. Let h ∈ GN1 , q ∈ GN2 . Then
we use the ⟨h,q⟩ to denote the inner-pairing product

∏
i∈[0,N−1] e(hi, qi). We remark here that notation ⟨·, ·⟩

is overloaded to mean both inner products over fields, and inner-pairing products between vectors from G1

and G2, and is implicit from context.
Algebraic Group Model. The Algebraic Group Model (AGM) introduced in [FKL18] is an idealized
model. An adversary A is said to be algebraic if every group element output by A is accompanied by its
representation with respect to all the groups elements A has seen so far. Let y1, . . . , yk be all the group
elements previously input and output by A. Then, every group element y output by A, is accompanied by
its representation (x1, . . . , xk) such that y =

∏k
i=1 y

xi
i .

SRS model. We describe our constructions as public-coin interactive protocols in the structured reference
string (SRS) model where where both the parties have access to a SRS. The SRS is universal and updatable,
where the SRS can be used to prove statements about any computation, as opposed to a circuit-dependent
setup required in preprocessing based SNARKs. This universal SRS is, in addition, updatable, meaning
parties can continuously contribute to the randomness of the SRS, and an SRS is trusted as long as at least
one of the updates was honest.

2.1 Assumptions

Definition 1 (DDH Assumption). For a group G, the decisional Diffie-Hellman (DDH) assumption holds
for G if for all PPT A, the following probability is 1/2 + negl(λ):

Pr

 b′ = b
b′ = A(pp) :

x, y, z ←−R F, b←−R {0, 1}
z′ = xy if b = 0, z′ = z if b = 1

pp = (g, gx, gy, gz
′
)

Definition 2 (SXDH Assumption). For (q,G1,G2,GT , e,G,H)←−R G(1λ), the Symmetric External Diffie-
Hellman (SXDH) assumption states that the decisional Diffie-Hellman (DDH) assumption holds for both G1

and G2.

Definition 3 (N-DLOG Assumption). The N-DLOG assumption with respect to G holds if for all λ, for all
PPT A, the following probability is negl(λ):

Pr

 τ = τ ′

τ ′ ← A(pp,v) :

pp← G(1λ)
τ ←−R F

v := (gτ1 , g
τ2

1 , . . . , gτ
N

1 , gτ2 , g
τ2

2 , . . . , gτ
N

2)

2.2 Commitment Schemes

AFG Commitment Scheme [AFG+10] The pairing based commitment AFG is defined as follows:

• (G1,G2,GT , q, e, g1, g1) ← AFG.setup(1λ): Outputs G1,G2, and GT of order p with g1 and g2 being
generators for G1 and G2 and e is the bilinear map.

• ck = (wr, w0, w1, . . . , wN−1) ← AFG.KeyGen(G1, G2, GT , q, e, g1, g2, N) : Outputs the commitment
key ck. Here N is the number of group elements to be committed.

• c = AFG.comck(m, r) = e(wr, r)
∏N−1
i=0 e(wi,mi): Outputs the commitment of message m where

m = (m0, . . . ,mN−1).

The AFG commitment scheme is perfectly hiding and binding under the SXDH assumption (see Def. 2).

7

2.3 Interactive Arguments

We consider interactive arguments for relations, where a prover P convinces the verifier that it knows a
witness w such that for a public statement x, (x,w) ∈ R. Given a pair of PPT interactive algorithms P, V ,
we denote by ⟨P, V ⟩(x;w), the output of V on interaction with P . Here, w is P ’s private input and x is a
common input. Let R = {(x,w)}, be a relation and L be the corresponding NP language.

Definition 4 (Succinct Argument of knowledge). An interactive argument of knowledge (AoK) for a relation
R consists of a PPT algorithm Setup(1λ) that takes a security parameter λ and outputs public parameters
srs, and a pair of PPT interactive algorithms ⟨P, V ⟩. The triple (Setup, P, V) satisfy the following properties.

1. Completeness. For all λ ∈ N, (x,w) ∈ R,

Pr
(
⟨P, V ⟩(srs, x;w) = 1 : srs← Setup(1λ)

)
= 1.

2. Knowledge Soundness. An argument system (P, V) for a relation R is knowledge sound with error κ
if there exists an expected polynomial time extractor E such that for every efficient adversary P̃ , for

every x ∈ {0, 1}∗, whenever P̃ makes V accept with probability ϵ > κ, E P̃ (x) outputs w∗ such that
(x,w∗) ∈ R with probability at least ϵ−κ

q for some polynomial q.

3. Succinctness. An argument system is succinct if the communication complexity between prover and
verifier is sublinear in the size of the statement.

We do not focus on zero-knowledge in this work; we believe it is easily achievable via minor adaptations
applying standard techniques to our constructions.
Fiat-Shamir transform. The protocols in this work are public coin interactive arguments where the ver-
ifier’s messages are uniformly random strings. Public coin protocols can heuristically be compiled into
non-interactive arguments by applying the Fiat-Shamir [FS87] transform (FS) in the Random Oracle Model.

2.4 Polynomial Commitment Scheme

A polynomial commitment scheme (PCS) allows the prover to open evaluations of the committed polynomial
succinctly ([KZG10]). A PCS over F is a tuple PC = (setup, commit, open, eval) where:

• pp ← setup(1λ, n,N). On input security parameter λ, number of variables n, an upper bound N ∈ N
on the number of distinct monomials in n variables, setup generates public parameters pp.

• (C, c̃)← commit(pp, f,D). On input the public parameters pp, an n-variate polynomial f(X) ∈ F[X]
with total monomials at most D ≤ N , commit outputs a commitment to the polynomial C, and
additionally an opening hint c̃.

• b ← open(pp, f(X), d, C, c̃) On input the public parameters pp, the commitment C and the opening
hint c̃, a polynomial f(X) with number of monomials D ≤ N , open outputs a bit indicating accept or
reject.

• b ← eval(pp, C,D,x, y; f(X)). A public coin interactive protocol ⟨Peval, Veval⟩(pp, C, d,x, y; f(X)) be-
tween a PPT prover and a PPT verifier. The parties have as common input public parameters pp,
commitment C, monomial bound D, evaluation point x ∈ Fn, and claimed evaluation y. The prover
has, in addition, the opening f of C with number of monomials at most D. At the end of the protocol,
the verifier outputs 1 indicating accepting the proof that f(x) = y, or outputs 0 indicating rejecting
the proof.

A polynomial commitment scheme must satisfy completeness, binding and extractability.

8

Definition 5 (Completeness). For all polynomials f(X) ∈ F[X] with number of monomials at most D ≤ N ,
and for all x ∈ Fn,

Pr

b = 1 :

pp← setup(1λ, N)
(C, c̃)← commit(pp, f(X), D)

y ← f(x)
b← eval(pp, C,D,x, y; f(X))

 = 1.

Definition 6 (Binding). A polynomial commitment scheme PC is binding if for all PPT A, the following
probability is negligible in λ:

Pr

open(pp, f0, D,C, c̃0) = 1∧
open(pp, f1, D,C, c̃1) = 1∧

f0 ̸= f1

:
pp← setup(1λ, N)

(C, f0, f1, c̃0, c̃1, D)← A(pp)

 .

Definition 7 (Knowledge soundness). eval is an AoK for the relation Reval defined as follows:

Reval = {((pp, C,x←−R Fn, y ∈ F); (f(X), c̃)) :

(open(pp, f,D,C, c̃) = 1) ∧ y = f(x)}

Though in general, the eval protocol can be run on points x chosen by the verifier, in applications
to SNARKs, these are uniformly random. This is because when a PCS is used to compile a public-coin
argument, the verifier samples the evaluation points uniformly at random. Therefore, we define knowledge
soundness for random x.

Definition 8 (Succinctness). We require the commitments and the evaluation proofs to be of size poly(λ) ·
log(d) where π is the transcript obtained by applying FS to eval. Additionally, the scheme is verifier succinct
if eval runs in time poly(λ) · log(d) for the verifier. The prover is required to run in time Õ(d).

For our univariate scheme, we achieve a strong notion of succinctness: the commitment and evaluation
proofs are of size independent of the degree of the polynomial.

3 Univariate Polynomial Commitment Scheme

In this section, we introduce a variant of the KZG commitment scheme known as KZG-FFT. This variant
commits directly to the evaluations of a polynomial over the FFT domain of an appropriate size, as opposed
to using the coefficients of the corresponding polynomial. In many proof systems, the coefficients of the
underlying univariate polynomial are derived through interpolation from a witness vector, which serves as
the evaluations of the desired polynomial. By committing directly using these evaluations or witness values,
the prover can circumvent the costly FFT operation. Moreover, employing multi-scalar multi-exponentiation
(MSME) over the witness vector allows us to leverage the low bit representation of the witness values,
resulting in computational advantages. It’s worth noting that, in practice, witnesses typically possess low bit
complexity despite being represented as elements of large prime fields (see, for instance, [STW23], [AST23]).
In Section 3.1, we state the algorithm to generate the setup for KZG-FFT, and in Section 3.2 we state the
details of the polynomial commitment scheme.

3.1 Setup Generation

We state the algorithm to generate the structured reference string (srs) in this section. We assume N is
a power of 2, and logN = n. Let (p,G1,G2,GT , e, g1, g2) ←−R G(1λ) be a bilinear group. The srs has two
disjoint parts (srsP , srsV): srsP is used by the prover and srsV is used by the verifier. The setup algorithm,
stated in Algorithm 1 takes as input the security parameter λ and the degree bound N , and outputs srs
and a proof π. The proof π attests to the correctness of the generated srs. We show in Appendix A.3, how
the srs can be verified using π, and that the setup generated by KZG-FFT.Setup is updatable as defined in

9

Algorithm 1 KZG-FFT.Setup(1λ): Setup Generation for KZG-FFT

Input: {1λ, N}
Output: {srs = (srsP , srsV), π}

1: Sample r ∈R F, uniformly at random.
2: Let αi = N−1 ·

∏
j∈[0,n−1](1 + (ω−i

N · r)2
j

) for i ∈ [0, N − 1].

3: Compute srsP = {h(n)1,i = gαi1 ∈ G1 | i ∈ [0, N − 1]}, srsV = {h2,j = gr
2j

2 ∈ G2 | j ∈ [0, n]}.
4: Let π = (gr1, g

r
2).

5: Output {srs = (srsP , srsV), π}.

[MBKM19]. Let r be as sampled at Step 2, and αi be as defined at Step 3 of Algorithm 1. Let α, r ∈ FN be
vectors such that αi and r

i are the i-th component of α and r respectively for i ∈ [0, N − 1]. The following
claim shows that α is linearly related to r via the FFT matrix Mω−1

N
.

Claim 3.1. Let α, r ∈ FN be as defined above. Then α = 1
NMω−1

N
· r.

In Section 3.2, we present the commit algorithm for KZG-FFT, and as part of completeness in Lemma
4 argue the structure of the commitment in G1. The proof of the above claim would follow from proof of
Claim A.1 stated in the proof of Lemma 4.

3.2 Protocol

Protocol 1: KZG-FFT polynomial commitment scheme

1. {srs, π} ←−R KZG-FFT.setup(1λ, N).

2. Cf ← KZG-FFT.commit(srsP , D, f(HD)), where

Cf =
∏

i∈[0,D−1]

(h
(d)
1,i)

ai

and h(d) ∈ GD1 is as defined in Equation 1

3. accept/reject ← KZG-FFT.eval(srs, Cf , D, u, v; f(HD)), where D ≤ N is a one round public coin
interactive protocol ⟨Peval, Veval⟩(srs, Cf , D, u, v; f(HD)) between a PPT prover and a PPT verifier.

(a) Peval: The prover computes the evaluations of q(X) over the FFT domain of size D, where
q(X) satisfies f(X)− v = (X − u) · q(X). Commits to q(X) (denoted Cq) using srsP . Sends
Cq to Veval.

(b) Veval: Let d = logD. Computes Cf · g−v1 ∈ G1 and h2,n−d · g−u2 ∈ G2, and accepts if
e(Cf · g−v1 , g2) = e(Cq, h2,n−d · g−u2) and rejects otherwise.

The KZG-FFT polynomial commitment scheme is presented in Protocol 1. KZG-FFT.Setup is presented
in Algorithm 1, Section 3.1. Let D = 2d, and f ∈ F<D[Y], and a ∈ FD be such that a agrees with f(H) over
the FFT domain of size D. The KZG-FFT.commit algorithm takes as input srsP , the degree bound D, and
the evaluation vector a of the polynomial f(Y). To commit to polynomials of degree at most D = 2d for

d ∈ [0, n], the commit algorithm folds the public parameters srsP = {h(n)1,i }i∈[0,N−1] recursively as follows:

h
(k)
1,i = h

(k+1)
1,i · h(k+1)

1,i+2k
∀i ∈ [0, 2k − 1] (1)

and outputs Cf =
∏
i∈[0,D−1](h

(d)
1,i)

ai . We show in Lemma 4 that Cf = g
f(r2

n−d
)

1 .

10

Lemma 1. Let h
(d)
1,i for d ∈ [1, n] be as defined in Protocol 1, and Equation 1. Further, let f and a be as

defined above. Then Cf =
∏
i∈[0,D−1](h

(d)
1,i)

ai = g
f(r2

n−d
)

1 .

KZG-FFT.eval(srs, Cf , d, u, v; f(HD)) is an argument of knowledge for the following relation

{(srs, (Cf , D, u, v)); f(HD) | f ∈ F<D[Y], f(u) = v,

KZG-FFT.commit(srsP , D, f(HD)) = Cf}

The main idea behind the evaluation protocol, like in KZG, is to prove the following polynomial relation at

a random point r2
n−d

.1

f(Y)− f(u) = (Y − u)q(Y)

To begin with, an honest prover computes f(u) from a using Claim 3.2, the proof of which is similar to Claim
3.1, and Lemma 4. We note that to compute f(u), an honest prover has to spend O(D · d) field operations.

Claim 3.2. Let f ∈ F<D[Y], and a agree with f(HD) over the FFT domain of size D. Then for any u ∈ F,

f(u) =

∑
i∈[0,D−1]

∏
j∈[0,d−1](1 + (ω−i

D · u)2
j

)

D
.

In the evaluation protocol, the prover Peval computes the evaluations of q(Y) over the FFT domain of

size D as follows: for i ∈ [0, D − 1] q(ωiD) = ai−f(x)
ωiD−x . We note that similar to Cf , Cq can be computed

from the evaluations of q(Y) over the FFT domain of size D. The verifier Veval checks if e(Cf · g−v1 , g2) =

e(Cq, h2,n−d ·g−u2). We show in Theorem 1 that this check ensures either f(r2
n−d

)−v = (r2
n−d−u) ·q(r2n−d

)

or there exists k ∈ [1, n − d] and q′(Y) ∈ F<N [Y] such that f(r) − v = (r2
k − u) · q(rk). Since r is chosen

independently and uniformly at random, and is not known to the prover, under the N -DLOG assumption

the check passes with high probability if and only if either f(u) = v or Y 2k −u divides f(Y)− v. For a given
f ∈ F<N there exists at most N/2 such u’s, and hence if u is sampled uniformly at random from F, with
high probability u is such that (Y 2k − u) does not divide f(Y)− v, and hence f(u) = v.

On Updatability of the SRS. We remark that the proof of Theorem 1 shows updatable knowledge-
soundness for KZG-FFT in the AGM (as in Definition 3.3 [MBKM19], and [GKM+18]). The work of
[GKM+18] shows a negative result about SRS updatability. It roughly says that that for any updatable
pairing-based SNARK where the srs consists of encoded polynomials, the prover will also know encodings
of the monomials that make up the polynomial. This is negative results since for some SNARKs where the
polynomial encoded consist of secrets, soundness is broken if the prover learns the monomials. However, in
our construction, this is not a barrier. The prover cannot break soundness even if it learns the encodings of
the monomials. This is the reason we are able to show updatable knowledge-soundness even though the srs
in KZG-FFT does not consist of encodings of only monomials in r. We provide the update and verify-update
algorithms in Appendix A.3.

Theorem 1. (proof in Appendix A.2) Let (p,G1,G2,GT , e, g1, g2) ←−R G(1λ) be a bilinear group. The
protocol (KZG-FFT.Setup, KZG-FFT.commit, KZG-FFT. eval) is a PCS for F<N [Y] in the AGM assuming
N -DLOG holds with respect to G.

Prover and Verifier Complexity: The commit algorithm is cheaper than KZG as it does not have
to interpolate the evaluations to obtain the coefficient vector. The evaluation prover performs O(D) field
divisions to compute the evaluations of the quotient polynomial over the appropriate FFT domain, and an
MSME of size D to commit to q(X). We remark that computing the evaluations of the quotient polynomial
can be parallelized across the FFT domain unlike the computation of its coefficients which is inherently
serial. The verifier in the evaluation protocol performs 1 exponentiation and 1 group addition over G1, and
G2 respectively, and 1 pairing check, which is similar to the KZG verifier.

1In KZG the random point is r irrespective of the degree.

11

4 Multilinear Commitment Scheme

In this section, we introduce a novel multilinear commitment scheme denoted as KZG-FOURIER. Drawing
inspiration from [BCHO22] and [KT23], our approach leverages a linear homomorphism from the F -linear
space of multilinear polynomials to the F-linear space of univariate polynomials. However, our scheme,
Un, diverges by mapping the Fourier basis of F≤1[X0, . . . , Xn−1] to the FFT basis of F<N [Y] (see Section
2), where N = 2n. Combining the univariate polynomial commitment scheme outlined in Section 3 with
the multilinear commitment scheme presented here, we establish a dual commitment scheme, a concept
elucidated in Section 6.2 Section 4.1 is dedicated to defining and proving key properties of Un, while the
setup generation algorithm is elaborated in Section 4.2, and the multilinear polynomial commitment scheme
itself is delineated in Section 4.3. Throughout this exposition, we maintain the assumptions that N = 2n,
D = 2d, and K = 2k.

4.1 Technical Preliminaries

Readers are directed to Section 2 for pertinent notation. The proof of all the claims and lemmas in this
section is deferred to Appendix B.1. We commence by presenting the subsequent claim, akin to Claim 3.1.

Recall that U
(n)
i denotes the i-th component of the FFT basis of F<N [Y], and L

(n)
i denotes the i-th Fourier

basis of F≤1[X0, . . . , Xn−1].

Claim 4.1. U
(n)
i =

∏
j∈[0,n−1](1 + (ω−i

N · Y)2
j

) 1
N

The linear isomorphism Un between F≤1[X0, . . . , Xn−1] and F<N [Y] is defined as follows

Un(L(n)
i) = U

(n)
i for i ∈ [0, N − 1].

Below, we proceed to establish several properties of Un.

Claim 4.2. Un(1) = 1

Claim 4.3. Un(L(d)
i) = Un(L(d+1)

i) + Un(L(d+1)
i+D) for d ∈ [1, n− 1].3

Lemma 2. Un(L(d)
i) = U

(d)
i (Y 2n−d

), holds for d ∈ [1, n]. Moreover, for f ∈ F≤1[X0, . . . , Xd−1], {fL(d)
i
∈

F}i∈[0,D−1] represents the Fourier coefficients of f if and only if there exists a g ∈ F<D[Y] such that Un(f) =
g(Y 2n−d

) and g(ωiD) = f
L

(d)
i

.

Lemma 3. For d ∈ [1, n− 1], f ∈ F≤1[X0, . . . , Xd−1] if and only if there exists ψf ∈ F<D[Y] such that

Un(Xd · f) = ψf (Y
2n−d−1

) ·
∏

j∈[0,D−1]

(Y 2n−d−1

− ωj2D)

Un((1−Xd) · f) = ψf (−Y 2n−d−1

) ·
∏

j∈[0,D−1]

(Y 2n−d−1

+ ωj2D)

Claim 4.4. Let ψ ∈ F<D[Y]. Then there exists ψo, ψe ∈ F<2d−1 [Y] such that ψ(Y) = ψe(Y
2) + Y · ψo(Y 2),

and ψ(−Y) = ψe(Y
2)− Y · ψe(Y 2). Further,

ψe(ω
i
2d−1) =

ψ(ωiD) + ψ(−ωiD)
2

∀i ∈ [0, 2d−1 − 1]

ψo(ω
i
2k−1) =

ψ(ωiD) + ψ(−ωiD)
2ω2k

∀i ∈ [0, 2d−1 − 1]

2In [KT23], the Fourier basis of F≤ 1[X0, . . . , Xn−1] is mapped to the monomial basis of F<N [Y], whereas in [BCHO22],
the monomial basis of F≤ 1[X0, . . . , Xn−1] is mapped to the monomial basis of F<N [Y].

3It is important to note that Un(L
(d)
i) differs from Ud(L

(d)
i).

12

4.2 Setup Generation

Algorithm 2 KZG-FOURIER.Setup(1λ): Setup Generation for KZG-FOURIER

Input: {1λ, N}
Output: {srs = (srsP , srsV), π, }

1: ((srs′P , srs
′
V), π)← KZG-FFT.setup(1λ).

2: Let srsP = srs′P = {h(n)1,i }i∈[0,N−1].

3: For d ∈ [0, n − 1], let ϕd(Y) =
∏D−1
j=0 (Y − ωj2D), and compute the evaluations of ϕd over the FFT

domain of size 2D. Compute Cϕd = KZG-FFT.commit(srsP , 2D,ϕd(H2D)) as the commitment to ϕd for
d ∈ [0, n− 1].

4: Let srsV = (srs′V , {Cϕd}d∈[1,n−1])
5: Output {srs = (srsP , srsV), π}.

Let (p,G1,G2,GT , e, g1, g2) ←−R G(1λ) be a bilinear group. The algorithm for generating the setup for
KZG-FOURIER is outlined in Algorithm 2. It takes the security parameter λ and the bound on the number
of multilinear monomials N as input and produces srs along with a proof π. The srs, like in KZG-FFT,
has two disjoint parts (srsP , srsV): srsP is used by the prover and srsV is used by the verifier. In Step 1,
Algorithm 2 invokes KZG-FFT.setup, yielding srs′. It sets srsP identical to srs′P . For the evaluation protocol

of KZG-FOURIER, the verifier needs to evaluate ϕd(Y) =
∏D−1
j=0 (Y − ωj2D) at a randomly chosen point.

Hence, srsV includes commitments to ϕd(Y), for d ∈ [1, n−1], in addition to srs′V . Particularly in Step 3, the
algorithm computes evaluations of the polynomial ϕd(Y) over the FFT domain of size 2D, for d ∈ [1, n− 1],
and at Step 4, it commits to it using KZG-FFT.commit. It’s worth noting that despite the degree of ϕd
being at most D, Algorithm 2 commits to it as a polynomial of degree at most 2D. This is required in
batch evaluation check for all the univariate polynomials in KZG-FOURIER.eval. Additionally, even though
ϕd(H2D) is of size 2D, at least D of its components are 0 since ϕd(ω

2i
2D) = 0, for i ∈ [0, D − 1]. Thus for

d ∈ [1, n− 1], KZG-FFT.commit requires an MSME of length D (not 2D).

Updatability. The srs returned by KZG-FOURIER.Setup can be updated using KZG-FFT.update setup
(Algorithm 4) and KZG-FFT.verify setup (Algorithm 5) algorithms. The KZG-FOURIER. update setup al-
gorithm additionally computes new commitments to the public polynomials ϕd(Y) for d ∈ [1, n − 1] us-
ing the updated SRS returned by KZG-FFT.update setup. The KZG-FOURIER.verify setup algorithm uses
KZG-FFT.verify setup to verify the first part of the SRS. Additionally, it verifies the commitments to ϕd(Y)
for d ∈ [1, n − 1] by running the KZG-FFT.eval protocol: it evaluates ϕd(Y) at a random point u ∈R F,
computes a proof of ϕd(u) = z and checks that the proof verifies.

4.3 Protocol

The KZG-FOURIER commitment scheme is detailed in Protocol 2. During Step 1, the setup is generated
following Algorithm 2. Let f ∈ F≤1[X0, . . . , Xd−1] and f

L
(d)
i
∈ F represent its D Fourier coefficients.

Throughout this section, we associate fi with fL(d)
i

for i ∈ [0, D − 1]. Consider f ∈ FD such that the i-th

component of f is fi for i ∈ [0, D−1]. The KZG-FOURIER.commit algorithm, in Step 2, accepts srsP , f ∈ FD,
and D as input, and produces Cf = KZG-FFT.commit(srsP , D, f) as output. From Lemma 10, it follows that
there exists wf ∈ F<D[Y] such that Ud(f) = wf (Y), and wf (ω

i
D) = fi for i ∈ [0, D − 1]. When f is evident

from the context, we drop it from the subscript of wf . The commit algorithm treats f as the evaluations of
w over the FFT domain of size D and commits to it using KZG-FFT.commit. From Lemma 4,

Cf = Cwf = KZG-FFT.commit(srsP , D,wf (HD)) = g
w(r2

n−d
)

1 .

We interchangeably use Cf and Cwf , as they denote the same commitment.

13

We denote (X0, . . . , Xd−1) as X(d) , and (x0, . . . , xd−1) as x(d), where xi ∈ F for i ∈ [0, d − 1]. The
KZG-FOURIER.eval algorithm at Step 3 is a ten round public coin protocol ⟨Peval, Veval⟩(srs, Cf , D,x(d), y; f).
According to Fact 4, ensuring correctness of KZG-FOURIER.eval requires Veval to only check

f(X(d))− f(x(d)) =

d−1∑
k=0

(Xk − xk) · qk(X(k)). (2)

As Un is a linear isomorphism, it suffices for Veval to verify the aforementioned relation under Un. In
essence, the primary concept behind the evaluation protocol is to empower the verifier to verify the following
(univariate) polynomial relation evaluated at a random point z:

Ud(f)− Ud(y) =
(d−1∑
k=0

(
Ud(Xk · qk)− Ud(xk · qk)

))
(3)

At Step 3a, Peval calculates the Fourier coefficients of such qk(X
(k) for k ∈ [1, d− 1]. Let ψqk , ψqk,e and ψqk,o

correspond to qk(X
(k) as described in Lemma 11 and Claim B.4. As outlined in Claim B.5, at Step 3b, for

each k ∈ [1, d− 1], Peval can determine the evaluations of ψqk,e(Y) and ψqk,o(Y) over the FFT domain of size
D. Peval computes commitments to ψqk,e and ψqk,o, for k ∈ [1, d− 1] as follows:

Cψqk,e = KZG-FFT.commit(srsP , D, ψqk,e(HD)) (4)

Cψqk,o = KZG-FFT.commit(srsP , D, ψqk,o(HD)) (5)

We note that even though the degrees of ψqk,e and ψqk,o are at most K/2, Peval commits to them using their
evaluations over FFT domain of size D. This helps in batch evaluation of all the univariate polynomials,
and establishing degree bounds on them in the steps ahead.

At Step 3c, Peval computes w(z), ψqk,e(z
2d−k), and ψqk,o(z

2d−k) for k ∈ [1, d− 1], utilizing the evaluations

of the respective polynomials over the FFT domains of size D (refer to Claim 3.2), and ϕk(z
2d−k−1

) for

k ∈ [1, d−1] directly by evaluating the expression. At Step 3d, Veval calculates ψqk(z
2d−k−1

) and ψqk(−z2
d−k−1

)
using the following equations, derived from Claim B.4:

ψqk(z
2d−k−1

) = ψqk,e(z
2d−k) + z2

d−k−1

· ψqk,o(z2
d−k

) (6)

ψqk(−z2
d−k−1

) = ψqk,e(z
2d−k)− z2

d−k−1

· ψqk,o(z2
d−k

) (7)

Veval computes Ud(qk)(z) and Ud(Xkqk)(z) using the following equations, for k ∈ [1, d− 1]

Ud(qk)(z) = ψqk(z
2d−k−1

) · ϕk(z2
d−k−1

) (8)

+ ψqk(−z2
d−k−1

) · z
2D·2d−k−1 − 1

ϕk(z2
d−k−1)

Ud(Xkqk)(z) = ψqk(z
2d−k−1

) · ϕk(z2
d−k−1

) (9)

Equations 8 and 9 above are derived from Lemma 11, and the following fact concerning the primitive root
of unity ∏

j∈[0,D−1]

(Y 2d−k−1

− ωj2D) ·
∏

j∈[0,D−1]

(Y 2d−k−1

+ ωj2D) = (Y 2d−k−1

)2D − 1 .

Additionally, from Claim B.2, we have Un(x0q0) = x0q0. Moreover, according to Lemma 10,

Ud(X0q0) =
(1− Y 2d−1

)q0
2

, and hence, Ud(X0q0)(z) =
(1− z2d−1

)q0
2

.

14

Veval checks whether these values satisfy

Ud(f)(z)− y =

n−1∑
k=0

Ud(Xk · qk)(z)− xk · Ud(qk)(z) (10)

Conditioned on values sent by Peval corresponding to w(z), and ψqk,e(z
2d−k), ψqk,o(z

2d−k), ϕk(z
2d−k−1

) for
k ∈ [1, d− 1], are correct, the above check ensures Equation 3 holds with high probability over the random
choice of z (using Schwartz-Zippel). Hence, the protocol hereafter ensures the correctness of these vales sent
by Peval. To this end, for k ∈ [1, d− 1], define ζqk,e, ζqk,o ∈ F<D[Y] as follows:

ζqk,e(Y) = Y 2d−2k−1

· ψqk,e(Y), and ζqk,o(Y) = Y 2d−2k−1

· ψqk,o(Y)

The key concept in the upcoming steps involves defining the polynomial η(Y) ∈ F<D[Y] (refer to Equations
11 and 12 below) and verifying its evaluation at a random point. The accurate evaluation of η(Y) at the
specified random point confirms the correctness of the aforementioned values sent by Peval. We elaborate
upon these next steps below. At Step 3e, ψ(Y) ∈ F<D[Y] is defined as follows:

ψ(Y) = γw ·
w(Y)− w(z)

Y − z
+

∑
k∈[1,d−1]

(
δk · (

ϕk(Y
2d−k−1

)− ϕk(z2
d−k−1

))

Y 2d−k−1 − z
+

γk,e ·
(
ψqk,e(Y)− ψqk,e(z2

d−k
)
)
+ γ′k,e ·

(
ζqk,e(Y)− ζqk,e(z2

d−k
)
)

Y − z2d−k
+

γk,o ·
(
ψqk,o(Y)− ψqk,o(z2

d−k
)
)
+ γ′k,o ·

(
ζqk,o(Y)− ζqk,o(z2

d−k
)
)

Y − z2d−k
)

(11)

At Step 3i, η(Y) is defined as follows

η(Y) = ψ(Y) + βw · w(Y) +
∑

k∈[1,d−1]

(
βk,e · ψqk,e(Y) +

βk,o · ψqk,o(Y) + κk · ϕk(Y 2d−k−1

)

)
(12)

From Equation 12, and Lemma 4, it follows that Veval at the last can compute the commitment to η(Y) as
follows:

Cη = Cψ · Cβww · (
∏

k∈[1,d−1]

C
βk,e
ψqk,e

· Cβk,oψqk,o
· Cκkϕk) (13)

We show in Theorem 2 that (KZG-FOURIER.Setup, KZG-FOURIER. commit KZG-FOURIER.eval) specified in
Protocol 2 forms a multilinear polynomial commitment scheme. Additionally, like in Theorem 1, we prove
that the evaluation protocol KZG-FOURIER.eval is updatable knowledge sound. The proof is deferred to
Appendix B.2.

Theorem 2. The protocol (KZG-FOURIER.Setup, KZG-FOURIER. commit KZG-FOURIER.eval) forms a poly-
nomial commitment scheme for F≤1[X0, . . . , Xn−1] in the AGM under the N -DLOG assumption.

Prover and Verifier Complexity: Although the evaluation prover of KZG-FOURIER works in O(D logD)
time, concretely the prover spends a lot of time at Step 3a computing the evaluations of ψqk,o and ψqk,e.
This step alone requires 4 logD − 4 FFTs of appropriate sizes and O(D logD) field multiplications and
divisions. The evaluation verifier of KZG-FOURIER operates in O(logD) time. The check performed by
verifier at Step 3d requires O(logD) field operations. The computation of Cη at Step 3j requires 3 logD− 1
G1 exponentiations.

15

Protocol 2: KZG-FOURIER multilinear commitment scheme

1. {srs, π} ←−R KZG-FOURIER.setup(1λ, N), where λ is security parameter.

2. Cf ← KZG-FOURIER.commit(srsP , D, f), where

Cf = Cwf = KZG-FFT.commit(srsP , D,wf (HD))

and Ud(f) = wf (Y).

3. accept/reject ← KZG-FOURIER.eval(srs, Cf , D,x
(d), y; f) is a ten round public coin interactive

protocol ⟨Peval, Veval⟩(srs, Cf , D,x(d), y; f) between a PPT prover and a PPT verifier.

(a) Peval → Veval: For k ∈ [1, d − 1] - Compute the K Fourier coefficients of qk(X
(k)) for k ∈

[1, d− 1] and q0 ∈ F, satisfying Equation 2. Let ψqk correspond to qk(X
(k)) as described in

Lemma 11; Compute the evaluations of ψqk,e and ψqk,o (see Claim B.4) over the FFT domain
of size D, and commit to them as in Equations 4 and 5 respectively. Send these 2(d − 1)
commits and q0 ∈ F to Veval.

(b) Veval → Peval: Sample z ∈r F and send to Peval.

(c) Peval → Veval: Send wf (z), and ψqk,e(z
2d−k), ψqk,o(z

2d−k) and ϕk(z
2d−k−1

) for k ∈ [1, d − 1]
to Veval.

(d) Veval → Peval: For k ∈ [1, d− 1] - Compute ψqk(z
2d−k−1

) and ψqk(−z2
d−k−1

) using Equations
6 and 7, respectively. Then calculate Un(qk)(z) and Un(Xkqk)(z) using Equations 8 and 9,
respectively. Use these values to check and continue if Equation 10 holds, else output reject.
Sample γw ∈r F, and γk,e, γ′k,e, γk,o, γ′k,o, δk ∈r F for k ∈ [1, d− 1]. Send these values to Peval.

(e) Peval → Veval: ψ(Y) ∈ F<D[Y] is as defined in Equation 11. Compute the evaluations of ψ(Y)
over HD, and commit to it as follows: Cψ = KZG-FFT.commit(srsP , D, ψ(HD)). Send Cψ to
Veval.

(f) Veval → Peval: Sample s ∈r F and send it to Peval.

(g) Peval → Veval: Send w(s), ψk,e(s), ψk,o(s), ϕk(s) for all k ∈ [1, d− 1] to Veval.

(h) Veval → Peval: Sample βw ∈r F, and βk,e, βk,o, κk ∈r F for k ∈ [1, d − 1] independently and
uniformly at random from F for k ∈ [1, d− 1], and send it to Peval.

(i) Peval → Veval: Let η(Y) be as defined in Equation 12. Compute the evaluations of µ(Y) ∈
F<D[Y] over HD, where η(Y) − η(s) = (Y − s)µ(Y). Compute the commit to µ(Y): Cµ =
KZG-FFT.commit(srsP , D, µ(HD)), and send it to Veval.

(j) Veval → Peval: Compute Cη using Equation 13 and η(u) using Equations 11, and 12, and
check

e(Cη · g−η(s)1 , g2) = e(Cµ, h2,d · g−s2)

5 Argument of Knowledge to Establish Linear Relations

In this section, we present the the argument of knowledge that facilitates a prover to demonstrate a pre-
defined linear relationship between two AFG committed witnesses. This helps in designing a succinct dual
polynomial commitment scheme in Section 6.2 requiring only a transparent setup. Consider a bilinear group
(p,G1,G2,GT , e, g1, g2)←−R G(1λ). Let d, n,D,N ∈ N be such that 2d = D, 2n = N , and D ≤ N Within this
context, let τ (1,d) ∈ GD1 , and τ (2,d) ∈ GD2 be publicly known vectors (also refer to Section D.1). Furthermore,
let a, f ∈ FD represent two vectors, and denote the commitments to f and a as Cf and Ca respectively, defined

16

as follows:

Cf =

D−1∏
i=0

e(τ
(1,d)
i , gfi2) (14)

Ca =

D−1∏
i=0

e(τ
(1,d)
i , gai2) (15)

Here ai, and fi represent the i-th component of a, and f respectively. We note that Cf and Ca is the AFG
commitment to gf2 and ga2 (and therefore f and a) with respect to commitment key τ (1,d). The relation
corresponding to which we present the argument of knowledge is as defined below:

RL = {Cf , Ca, D |∃a, f ∈ FD such that MωD · f = a,

and Cf , Ca satisfy Eq. 14, 15} (16)

Recall, MωD is the FFT matrix of size D. We remark that, in the argument system, we can replace MωD

with any matrix, but for convenience we work with FFT matrices. The argument of knowledge presented
in this section requires a transparent setup, which we show how to generate in Section 5.1. We state the
protocol itself and its correctness in Section 5.2.

5.1 Transparent Setup for Linear Relation

The algorithm to generate the setup for the argument system is presented in Algorithm 3. The protocol
presented in Section 5.2, runs three instances of Dory [Lee21] (also see Appendix D). Hence, the protocol re-
quires the dory setup denoted ppdory. We refer the reader to Section D.1 for an exact description of ppdory. At
Steps 2-5, Algorithm 3 computes n commitments {CωD}d∈[1,n] to matrices {MωD}d∈[1,n] respectively, where

CωD ∈ GT and is computed as in Steps 3 and 4. Here, τ (2,d) is part of ppdory. Finally at Step 7, Algorithm 3,
outputs the public parameters pp = (ppP ,ppV), where ppP = ppdory,P , and ppV = {ppdory,V , {CMωD

}d∈[1,n]}.

Algorithm 3 Setup Generation for Linear Relation

Input: {1λ, n}
Output: pp = (ppP ,ppV)

1: ppdory ← dory.setup(1λ).
2: for d ∈ [1, n] do

3: Let mD,j =
∏
i∈[0,D−1](τ

(1,d)
i)ω

i·j
D

4: Compute CMωD
=

∏
j∈[0,D−1] e(md,j , τ

(2,d)
j)

5: end for
6: Let ppP = ppdory,P , and ppV = ppdory,V ∪ {CMωD

}d∈[1,n]

7: Output pp = (ppP ,ppV).

5.2 Proving Linear Relations

The argument system for RL from Equation 16 is presented in Protocol 3. The public parameters are as
generated by Algorithm 3. The central idea of the protocol is to enable the verifier to check

Ca =
∏

j∈[0,D−1]

e(mD,j , g
fj
2) =

∏
i∈[0,D−1]

e(τ
(1,d)
i , gai2) (17)

Here, mD,j is as defined in Step 4 of Algorithm 3. We argue as part of the completeness of the protocol that
MωD · f = a implies the above equality. Hence, the linear relation can be established if the verifier is able to
check the following two statements:

17

1. ∃a ∈ FD such that Ca =
∏D−1
i=0 e(τ

(1,d)
i , gai2).

2. ∃f ∈ FD such that Cf =
∏D−1
i=0 e(τ

(1,d)
i , gfi2), CMωD

=
∏
j∈[0,D−1] e(mD,j , τ

(2,d)
j), and Ca =

∏
j∈[0,D−1] e(mD,j , g

fj
2)

At Step 1, Statement 1 above is proved using one instance of Dory (Appendix D.2, Protocol 7): ⟨Pdory, Vdory⟩(pp,
Ca, Cτd , Ca, D;a) Here, Cτd = ⟨τ (1,d), τ (2,d)⟩, and is part of ppdory (see Section D.1). Also, we remark that
although as per Protocol 7 the private input to the prover at Step 1 ga2 respectively, we use a for clar-
ity as ga2 can be computed from a. At Step 2, Statement 2 above is proved using an instance of dory:
⟨Pdory, Vdory⟩(pp, Ca, CMωD

, Cf , D; f). Here, the private input to the prover are (mD,0, . . . ,mD,D−1) and g
f
2,

which can be computed from MωD and f . We argue the correctness of Protocol 3 in Theorem 3 (proof in
Appendix C).

Theorem 3. Assuming SXDH in the bilinear group (p,G1,G2,GT , e, g1, g2), Protocol 3 is an argument of
knowledge for relation RL stated in Equation 16.

Protocol 3: Argument System for Linear Relations

pp← Setup(1λ)
⟨Plin, Vlin⟩(pp, Cf , Ca, D;a):

1. Plin, Vlin execute ⟨Pdory, Vdory⟩(pp, Ca, Cτd , Ca, D;a). Here Cτd = ⟨τ (1,d), τ (2,d)⟩ is part of pp.

2. Plin, Vlin execute ⟨Pdory, Vdory⟩(pp, Ca, CMωD
, Cf , D;MωD , f). Here CMωD

is as explained in Section
5.1 and is part of pp.

3. Vlin accepts if and only if the verifier accepts in all the above steps.

6 Linking Univariate and Multilinear Polynomial Commitments

In this section we introduce the notion of dual polynomial commitment scheme, that links univariate and mul-
tilinear polynomial commitment schemes. Specifically, a dual polynomial commitment scheme can be used to
prove evaluations of a univariate and multilinear polynomial derived from the same witness. Formally, a dual
polynomial commitment scheme over F is a tuple PC = (setup, commit, open, prove link, eval mult, eval uni)
where:

• pp ← setup(1λ, D). On input security parameter λ, an upper bound N ∈ N on the degree of the uni-
variate polynomial (or alternatively on the size of the Fourier basis in case of multilinear polynomials),
setup generates public parameters pp.

• (Cf , Ca, aux) ← commit(pp,a). On input the public parameters pp, a vector a ∈ FD, where D ≤
N , commit outputs auxiliary information aux and commitments to two polynomials: a) Cf is the
commitment to the univariate polynomial f(Y) such that a agrees with f(HD) b) Ca is the commitment
to the MLE ã of a.

• b ← open(pp,a, D, (Cf , Cã), aux) On input the public parameters pp, the commitments (Cf , Cã) and
auxiliary information aux, a vector a ∈ FD, open outputs a bit indicating accept or reject.

• b← prove link. A public coin interactive protocol
⟨Plink, Vlink⟩(pp, Cf , Ca, D;a) between a PPT prover and a PPT verifier. The parties have as common
input public parameters pp, commitments Cf and Ca, degree D ≤ N . The prover has, in addition, the

18

witness vector a ∈ FD corresponding to Cf and Ca. At the end of the protocol, the verifier outputs 1
indicating accepting the proof or outputs 0 indicating rejecting the proof. The verifier accepts the proof
if there exists a ∈ FD and f ∈ F<D[Y] such that a) a agrees with f(HD), b) Ca is the commitment to
ã, and c) Cf is the commitment to f(Y).

• b← eval,mult(pp, Ca, d,x, y;a). A public coin interactive protocol ⟨Peval,mult, Veval,mult⟩(pp, Ca, d,x, y;a)
between a PPT prover and a PPT verifier. The parties have as common input public parameters pp,
commitment Ca, the bound on the number variables d, evaluation point x ∈ Fd, and claimed evaluation
y. The prover has, in addition, the opening a of Ca, where ã is the MLE of a ∈ FD. At the end of the
protocol, the verifier outputs 1 indicating accepting the proof that ã(x) = y, or outputs 0 indicating
rejecting the proof.

• b← eval, uni(pp, Cf , D, u, v; f(Y)). A public coin interactive protocol ⟨Peval,uni, Veval,uni⟩(pp, Cf , D, u, v; f(Y))
between a PPT prover and a PPT verifier. The parties have as common input public parameters pp,
commitment Cf , degree bound D, evaluation point u ∈ F, and claimed evaluation v. The prover has,
in addition, the polynomial f(Y) bound to Cf , with degree of f at most D. At the end of the protocol,
the verifier outputs 1 indicating accepting the proof that f(u) = v, or outputs 0 indicating rejecting
the proof.

A dual polynomial commitment scheme must satisfy completeness, binding, extractability, and linking
soundness.

Definition 9 (Completeness). For all a ∈ FD, D ≤ N , and for all x ∈ Fd, u ∈ F,

Pr

b = 1 :

pp← setup(1λ, N)
(Cf , Ca)← commit(pp,a)

v ← f(u),a agrees with f(HD)
y ← ã(x)

b← eval,mult(pp, Ca, d,x, y;a)
∧ eval, uni(pp, Cf , d, u, v; f(X))

 = 1.

Definition 10 (Binding). A dual polynomial commitment scheme PC is binding if for all PPT A, the
following probability is negligible in λ:

Pr

open(pp,a0, D,C, aux0) = 1∧
open(pp,a1, D,C, aux1) = 1∧

a0 ̸= a1

:
pp← setup(1λ, N)

(C,a0,a1, aux0, aux1, D)← A(pp)
where C = (Cf , Ca)

Definition 11 (Evaluation Knowledge soundness). eval,mult and eval, uni are succinct AoKs for the relations
Reval,mult and Reval,uni respectively defined as follows:

Reval,mult = {
(
(pp, Ca,x ∈ Fd, y ∈ F); a

)
:

(Cf , Ca)← commit(pp,a)) ∧ y = ã(x)}

Reval,uni = {((pp, Cf , u ∈ F, v ∈ F); a) :
(Cf , Ca)← commit(pp,a))

∧ v = f(u),where a agrees with f(HD)}

Definition 12 (Linking Soundness). prove link is a succinct argument for the relation Rlink defined as follows:

Rlink = {(pp, Cf , Ca; a) : (Cf , Ca)← commit(pp,a))}

19

We give two dual polynomial commitment schemes in this section. The first DualPCS, denoted KZG-FFT-FOURIER,
is given in Section 6.1. It requires an updatable setup and leverages the univariate and multilinear polyno-
mial commitment schemes presented in Sections 3 and 4 respectively. The second DualPCS, denoted dory-link
is given in Section 6.2. It requires a transparent setup and uses Dory to individually commit and prove eval-
uations of univariate and multilinear polynomials. Additionally, dory-link uses the argument system from
Section 5 to prove linking soundness.

6.1 Dual Polynomial Commitment Scheme with Updatable Setup

Protocol 4: KZG-FFT-FOURIER

1. {srs, π} ←−R KZG-FFT-FOURIER.setup (1λ, N), where λ is security parameter.

2. Cf , Ca ←−R KZG-FFT-FOURIER.commit(srsP , D,a). Here, Cf = Ca =
KZG-FFT.commit(srsP , D,a)

3. accept/reject ← KZG-FFT-FOURIER.prove link(Cf , Ca, D;a) is the trivial protocol
⟨Plink, Vlink⟩(Cf , Ca, D;a) between Plink and Vlink, where Vlink checks Cf = Ca.

4. KZG-FFT-FOURIER.eval mult = KZG-FOURIER.eval (srs, Ca, d,x
(d), y;a).

5. KZG-FFT-FOURIER.eval uni = KZG-FFT.eval(srs, Cf , D, u, v;a)

KZG-FFT-FOURIER is presented in Protocol 4. Let (p,G1,G2, GT , e, g1, g2) ←−R G(1λ) be a bilinear
group. KZG-FFT-FOURIER. setup takes as input the security parameter λ, and N the degree bound on
the set of univariate polynomials (or alternatively the bound on the number of multilinear monomials).
The function internally calls KZG-FOURIER.Setup(λ,N) and returns its output {srs, π} as its output. It is
important to note here that the srs returned by KZG-FOURIER.Setup(λ, n) is a subset of the srs returned
by KZG-FFT.Setup(λ,N). Let f ∈ F<D[Y] be such that a agrees with f(HD). KZG-FFT-FOURIER.commit
takes as input srsP , a ∈ FD, and commits to f(Y) as Cf = KZG-FFT. commit(srsP , D,a). It easily follows
from the definition of KZG-FOURIER.commit that

Ca = KZG-FOURIER.commit(srsP , D,a)

= KZG-FFT.commit(srsP , D,a),

where Ca is the commitment to the MLE ã of a. Hence, KZG-FFT- FOURIER.prove link(Cf , Ca, D;a) is
the trivial protocol where the verifier just checks Cf = Ca. KZG-FFT-FOURIER.eval mult is the evaluation
protocol employed by KZG-FOURIER, whereas KZG-FFT -FOURIER.eval uni is the evaluation protocol em-
ployed by KZG-FFT. It is evident from Theorems 1 and 2 that KZG-FFT-FOURIER is a dual polynomial
commitment scheme.

6.2 Dual Polynomial Commitment Scheme with a Transparent Setup

Protocol 5 states dory-link, a dual polynomial commitment scheme that leverages the argument system for
linear relations from Section 5.2 to prove linking soundness. The public parameters (pp) is as generated
by Algorithm 3 in Section 5.1, and the same notation is used below to refer to elements in pp. Here, we
note that the public parameters output by Algorithm 3 also contains the public parameters of the Dory
argument. The dory-link.commit algorithm computes Ca as defined in Step 2. To compute Cf , the algorithm
computes the coefficient representation of f such that a agrees with f(HD), and computes Cf as in Step
2. At Step 3, dory-link.prove link(Cf , Ca, D; a) runs the argument system for proving linear relations in
Section 5.2. Specifically, Plink and Vlink is the PPT prover and verifier respectively from Protocol 3. Here,

20

we remark that it is sufficient to run only Step 2 of Protocol 3, as Ca would already be opened as part of
dory-link.eval mult. At Steps 4 and 5, to prove multilinear (resp. univariate) evaluations, Protocol 8 from
Appendix D.3 is employed. In particular, Steps 4 and 5 are AoK’s for the following relations respectively:

(Ca, D,x, y;a | ∃a ∈ FD, Ca = ⟨τ (1,d), ga2 ⟩, ã(x) = y}

(Cf , D, u, v; f | ∃f ∈ F<D[Y], Cf = ⟨τ (1,d), gf2⟩, f(u) = v}

From Theorem 3, it follows that Protocol 5 is a dual polynomial commitment scheme.

Protocol 5: Linking Proof using Argument System

1. pp← dory-link.Setup(1λ, N), where λ is security parameter.

2. Cf , Ca ←−R dory-link.commit(pk,a, D), where

Ca =
∏

i∈[0,D−1]

e(τ
(1,d)
i , gai2), and Cf =

∏
i∈[0,D−1]

e(τ
(1,d)
i , gfi2)

3. dory-link.prove link(Cf , Ca, D;a) is defined as ⟨Plin, Vlin⟩ (pp, Cf , Ca, D;a).

4. dory-link.eval mult(Ca,x, y;a) is defined as ⟨Pdory eval, Vdory eval⟩(pp, Ca, D,x, y;a). Here ⟨Pdory eval,
Vdory eval⟩ is the Dory evaluation protocol restated in Protocol 8 in Appendix D.3.

5. dory-link.eval uni(Cf , u, v; f) is defined as ⟨Pdory eval, Vdory eval)⟩(pp, Ca, D, u, v;a).

7 AIR for Grand-Product

In this section, we present a simple argument of knowledge for the grand-product relation which checks if
the product of the elements in two distinct vectors are the same. The grand-product check is widely used
as sub-components in bigger SNARKS to ensure that two distinct vectors are permutations of each other
A prominent example of this is the offline memory checking procedure in Spartan [Set20], Lasso [STW23].
We present a dedicated algebraic intermediate representation (AIR) for the same and employ our KZG-FFT
commitment scheme to check the AIR at random point. While this approach is simple, our dual polynomial
commitment scheme KZG2-MPCS enables us to combine it with Spartan or Lasso, and obtain smaller proof
sizes and better verifier time while trading-off prover time. The grand-product relation is formally stated as
follows:

GPR = {(q ∈ F;a ∈ FN) | u =
∏

i∈[0,N−1]

ai)}

Our protocol for GPR is given in Protocol 6. We state the proof system using KZG-FFT commitment scheme
but any univariate commitment scheme can be used. At Steps 1-2, PGPR computes the vector a′ ∈ FD which
iteratively computes q. It is easily seen that for an honest prover a′D−1 = q =

∏
i∈[0,N−1] ai. The AIR enables

the verifier to check a′ is well-formed, and that the last value of a′, a′D−1 is indeed the claimed product. Let
fa, fa′ ∈ F<D[Y] such that a,a′ agrees with fa(HD), fa′(HD). Further, define the constraint polynomials
f1, f2, f3 as follows:

f1(Y) =
fa′(Y)− fa(Y)

Y − 1
, f2(Y) =

fa′(Y)− q
Y − ωD−1

D

f3(Y) =

(
fa′(Y) · fa(ωD · Y)− fa′(ωD · Y)

)
·
(
Y − ωD−1

D

)
Y D − 1

21

The polynomials f1(Y), f2(Y), and f3(Y) ensure that a′ is well-formed. Specifically, f1(Y), f2(Y), and f3(Y)
ensure that a′0 = a0, a

′
D−1 = q, and a′i+1 = ai+1 ·a′i for i ∈ [0, D−2] respectively. Protocol 6 requires PGPR at

Step 2 to commit to univariate polynomials fa, fa′ , and then at Step 4 to commit to f defined as a random
linear combination of f1(Y), f2(Y), and f3(Y) as follows:

f(Y) =
∑
i∈[1,3]

γi · fi(Y) (18)

Protocol 6: AoK for GPR

{srs, π} ←−R KZG-FFT.setup(1λ, N), where λ is security parameter.
⟨PGPR, VGPR⟩(q;a ∈ FD, D ≤ N)

1. PGPR: PGPR computes a vector a′ ∈ FD such that a′0 = a0, and a
′
i = ai−1 · ui for i ∈ [1, D − 1].

2. PGPR → VGPR: PGPR computes Ca = KZG-FFT.commit(srs, D,a), Ca′ =
KZG-FFT.commit(srs, D,a′), and sends it to VGPR

3. VGPR → PGPR: Samples three values γ1, γ2, γ3 ∈r F and sends it to PGPR.

4. PGPR → VGPR: Compute the evaluations of constraint polynomials f ∈ F<D[Y] (see Equation 18)
over the FFT domain of size D. Commits to f with Cf = KZG-FFT.commit(srs, D, f(HD)).

5. VGPR → PGPR: Samples u ∈R F.

6. PGPR → VGPR: Send f(u), fa(u), fa′(u), fa(ωD · u), fa′(ωD · u) to VGPR.

7. VGPR → PGPR: Checks f(u), fa(u), fa′(u), fa(ωD · u), fa′(ωD · u) satisfy Equation 19. If yes then
samples δ1, δ2, δ3 ∈R F, and sends it to PGPR.

8. Let h1 ∈ F<D[Y] be as defined in Equation 20. PGPR, VGPR run KZG-FFT.eval(srs, Ch, D, u, v1),
where v1 is claimed value of h1 at u.

9. Let h2 ∈ F<D[Y] be as defined in Equation 21. PGPR, VGPR run KZG-FFT.eval(srs, Ch, D, ωD ·u, v2),
where v2 is claimed value of h2 at ωD · u.

At the end of Step 4, it is easily seen that f(Y) ∈ F<D[Y] and f(Y) is as defined in Equation 18 if and
only if a′ is well-formed. We remark here that in order to commit to f , PGPR has to compute f(HD), which
is computationally intensive. This requires the prover to first compute fa(Y) and fa′(Y) at the offset FFT
domain of size D, and use it to compute f(Y) at the offset FFT domain, and then derive f(HD) from it.
The remaining steps of the protocol help VGPR to check with high probability that f(Y) ∈ F<D[Y] and f(Y)
is as defined in Equation 18. At Step 7, VGPR checks

f(u) = γ1 ·
fa′(u)− fa(u)

u− 1
+ γ2 ·

fa′(u)− q
u− ωD−1

D

+

γ3 ·
(
fa′(u) · fa(ωD · u)− fa′(ωD · u)

)
·
(
u− ωD−1

D

)
uD − 1

(19)

Using Schwartz-Zippel, the above check ensures f(Y) satisfies Equation 18 with high probability over the
random choice of u. At Steps 8-9 VGPR checks the claimed values sent by PGPR at Step 6. This is done
by batching checks corresponding to polynomials evaluated at the same point. To this end PGPR, VGPR run
KZG-FFT.eval corresponding to polynomials h1, and h2 defined as follows.

h1(Y) = δ1 · fa′(Y) + δ2 · fa(Y) + δ3 · f(Y) (20)

22

h2(Y) = δ1 · fa′(Y) + δ2 · fa(Y) (21)

VGPR can compute the commitments to h1, and h2, which follows from Lemma 4

Ch1
= Cδ1a · C

δ2
a′ · Cδ3f , Ch2

= Cδ1a · C
δ2
a′

VGPR can also compute the claimed values v1, and v2 as follows

v1 = h1(u) = δ1 · fa′(u) + δ2 · fa(u) + δ3 · f(u)

v2 = h2(ωD · u) = δ1 · fa′(ωD · u) + δ2 · fa(ωD · u)

Finally, from the proof of Theorem 1, we have that if VGPR accepts at Steps 8, and 9 then with high probability
fa, fa′ , f ∈ F<D[Y] and that their corresponding claimed values are correct.

8 Implementation

In this section, we discuss the concrete costs of our dual commitment schemes and present an application of
this notion using our AoK for grand-product check from Section 7. In Section 8.1, we present the relevant
metrics of KZG-FFT-FOURIER and dory-link, and also compare it with other relevant commitment schemes.
We provide a reference implementation of KZG-FFT-FOURIER, and dory-link in Rust. Our implementation is
based on the BLS12-381 curve. In Section 8.2, we discuss our implementation of the argument of knowledge
for the grand-product check we presented in Section 7, and compare it to the grand-product check using the
techniques in [GKR08, Tha13]. Finally, we integrate our grand-product check with our implementation of
Spartan for Extended-R1CS from [KST22] to obtain reduced proof complexity and verifier complexity for
the same. This is important for the actual deployment of its verifier using a smart contract on ethereum.
We remark here that since spartan requires a multilinear commitment scheme, and our grand-product check
requires a univariate commitment scheme, this integration requires a dual polynomial commitment scheme
like KZG-FFT-FOURIER.

All measurements are taken on QCT RACK Mount server with, 256GB RAM and 46 cores.
Throughout we report numbers for verifier on single core, and for prover on multiple cores. Our code is
available at the following link [git24]. We use the efficient bilinear group called BLS12-381 field. Specifically,
the proof systems are simulated over the BLS12-381 Scalar field which is a 255 bit prime field, and SXDH
is known to be at least 128 bits hard over this bilinear group.

8.1 Commitment Schemes

Witness size Commit(s) Eval Prover Eval Verifier Eval Proof size(KB)
Uni(s) Mult(s) Uni(ms) Mult(ms) Uni(KB) Mult(KB)

215 0.26 0.29 7.21 19.83 60.21 0.12 5.56
216 0.45 0.55 21.75 19.89 79.46 0.12 5.93
217 0.60 0.79 73.99 19.91 96.10 0.12 6.31
218 1.08 1.32 282.35 19.88 125.38 0.12 6.68
219 2.33 3.06 1096.54 19.86 244.70 0.12 7.06
220 3.74 5.04 4616.05 19.86 387.71 0.12 7.43

Table 2: Performance of KZG-FFT-FOURIER

Tables 2 and 3 give the commitment times, proof sizes, evaluation prover and verifier times corresponding
to KZG-FFT-FOURIER, and dory-link. Figure 4 states the prover and verifier times, and the proof complexity
for the AoK corresponding to linear relations from Section 7 which is used to prove linking soundness in

23

Witness size Commit Eval Prover Eval Verifier Eval Proof size(KB)
Uni(ms) Mult(ms) Uni(s) Mult(s) Uni(ms) Mult(ms) Uni Mult

29 43.78 41.59 3.76 3.79 756.69 737.45 35.75 35.75
210 52.12 53.95 5.68 5.93 816.74 812.71 39.68 39.68
211 67.19 62.22 10.49 10.47 909.61 887.17 43.62 43.62
212 88.92 79.18 19.57 19.70 967.61 854.22 47.56 47.56
213 125.80 116.66 37.84 38.19 1046.92 842.04 51.50 51.50
214 171.43 178.84 74.00 74.31 1120.45 878.97 55.43 55.43
215 298.69 279.46 147.22 147.37 1187.06 902.49 59.37 59.37

Table 3: Performance of dory-link

case of dory-link. We report the setup generation time and setup size for both KZG-FFT, KZG-FOURIER and
dory-link in Figures 1, 2 and 3. We note here that for KZG-FFT-FOURIER the commitment is the same for
both the univariate and multilinear polynomials (see Section 3 and Section 4. In particular, the total time
to commit the witness in this case is equal to generating one of them and not their addition as in the case
of dory-link.

Degree Setup time(s) Setup size(MB)
KZG-FFT KZG KZG-FFT KZG

215 0.74 0.62 6 3
216 1.42 1.19 12 6
217 2.60 2.36 24 12
218 4.83 4.38 48 24
219 9.47 8.51 96 48
220 18.94 16.80 192 96

Figure 1: Setup Generation of KZG and KZG-FFT

Degree Setup time(s) Setup size(MB)
KZG FOURIER KZG FOURIER

215 0.64 1.72 3 6
216 1.20 4.20 6 12
217 2.39 12.81 12 24
218 4.42 44.78 24 48
219 8.62 167.81 48 96
220 17.04 643.42 96 192

Figure 2: Setup Generation of multilinear KZG and
KZG-FOURIER

Degree Bound Setup time(sec) Setup size(MB)
29 3.06 0.24
210 6.81 0.48
211 17.95 0.95
212 53.68 1.89
213 175.98 3.76
214 618.40 7.51
215 2227.39 15.02

Figure 3: Linking Proof System Setup time and
Setup size

Witness size Prover time(s) Verifier time(sec) Proof size(KB)
29 4.55 1.05 46.12
210 7.26 1.18 51.18
211 12.52 1.27 56.25
212 23.54 1.38 61.31
213 45.59 1.48 66.37
214 89.29 1.59 71.43
215 177.43 1.68 76.50

Figure 4: Performance of the AoK for Linear Relations

We also compare the performance of KZG-FFT with KZG, and KZG-FOURIER with multilinear KZG in
Tables 4 and 5.
KZG-FFT vs KZG: For polynomials of degree 220, the commitment time of KZG-FFT is at least 1.5x better
while having remaining parameters almost same. The setup time KZG-FFT is mostly comparable to KZG
but setup size is 2x.
KZG-FOURIER vs multilinear KZG: Performance of KZG-FOURIER on all fronts is worse compared to multi-
linear KZG. Additionally, the evaluation prover, concretely has huge prover time and is one of the bottlenecks
in KZG-FFT-FOURIER dual polynomial commitment scheme.

24

Witness
size

Commitment time(s) Prover time(s) Verifier time(ms) Proof size(KB)

KZG-FFT KZG KZG-FFT KZG KZG-FFT KZG KZG-FFT KZG
215 0.26 0.29 0.31 0.25 19.83 19.51 0.12 0.12
216 0.45 0.55 0.51 0.37 19.89 19.66 0.12 0.12
217 0.60 0.79 0.87 0.71 19.91 19.71 0.12 0.12
218 1.08 1.32 1.35 1.30 19.88 19.69 0.12 0.12
219 2.33 3.06 2.97 2.86 19.86 19.59 0.12 0.12
220 3.74 5.04 5.15 4.61 19.86 19.67 0.12 0.12

Table 4: Comparison of KZG vs KZG-FFT

Witness size Commitment time(s) Prover time(s) Verifier time(ms) Proof size(KB)
kzg fourier kzg fourier kzg fourier kzg fourier

215 0.26 0.25 0.42 7.21 182.66 44.48 1.43 5.56
216 0.41 0.39 0.72 21.75 276.40 47.77 1.53 5.93
217 0.92 0.60 1.24 73.99 300.46 68.63 1.62 6.31
218 1.21 1.73 2.00 282.35 299.43 93.42 1.71 6.68
219 2.51 2.77 2.91 1096.54 308.66 152.23 1.81 7.06
220 4.23 4.65 4.23 4616.05 317.92 243.04 1.90 7.43

Table 5: Comparison of multilinear KZG vs KZG-FOURIER

8.2 Spartan using Grand-Product AIR

It is well-known how to perform grand-product checks using specialized GKR [GKR08, Tha13] for circuits
consisting of only multiplication gates. Additionally, [SL20] introduced a dedicated sum-check based ar-
gument system to perform grand-product checks. The argument system from both the above approaches
require the witness vector to be committed as multilinear polynomial, that is, the witness vector is viewed
as the evaluations of a multilinear polynomial over a boolean hypercube. Further, even though we employ
verifier efficient commitment schemes with these proof systems the proof sizes are poly-logarithmic in the
case of [GKR08, Tha13] and logarithmic in case of [SL20], owing to the proofs corresponding to the relevant
sum-checks. Our AoK for grand-product check presented in Section 7 requires only constant size proofs. We
concretely compare the performance of our AoK for grand-product check with the proof system for grand-
product check from [GKR08, Tha13] in Table 6. We employ multilinear KZG to commit to the witness in

Witness size Eval Prover(sec) Eval Verifier(ms) Eval Proof size(KB)
GKR AIR GKR AIR GKR AIR

215 1.59 2.83 262.84 155.19 15.59 0.94
216 2.64 5.03 275.49 158.72 17.62 0.94
217 3.70 6.80 285.88 164.91 19.78 0.94
218 6.33 14.29 301.04 198.31 22.06 0.94
219 12.47 32.59 306.60 285.91 24.46 0.94
220 22.22 48.68 320.98 428.31 27.00 0.94

Table 6: Metrics corresponding to Grand Product. GKR denotes Grand product using techniques from
[GKR08, Tha13],and AIR denotes grand-product check using AoK from Section 7.

25

No Of Constraints Eval Prover(sec) Eval Verifier(s) Eval Proof size(KB)
Spartan Spartan AIR Spartan Spartan AIR Spartan Spartan AIR

212 10.80 7.71 0.76 0.55 49.10 29.26
213 11.38 13.66 0.81 0.56 54.53 30.98
214 13.57 25.45 0.87 0.56 60.22 32.70
215 16.84 57.53 0.92 0.57 66.16 34.42
216 21.56 153.94 1.00 0.60 72.35 36.14
217 27.76 497.75 1.10 0.64 78.78 37.85

Table 7: Metrics comparing Spartan and Spartan-AIR. Spartan denotes spartan with grand-product check
using [GKR08, Tha13], and Spartan AIR denotes spartan with grand-product check using the AoK from
Section 7. The ratio of sparsity to constraints in the R1CS matrices is maintained to two.

latter. For vectors of length 220, the prover of GKR is 2.2x faster compared to our AoK, whereas the verifier of
our AoK is 1.32x faster compared to GKR. As noted before the proof size of GKR grows poly-logarithmically
and is 27 KB at vector lengths of 220, whereas the proof size of our AoK is a constant at 0.94 KB.

Grand-product checks as noted before are widely used in many argument systems to prove two vectors
are permutations of each other. A special instance of this is how the spartan proof system employs the
grand-product check as part of offline memory check in sparse multilinear polynomial evaluations. In Table
7, we compare the performance of spartan with grand-product check done using GKR, and spartan with
grand-product check done using the AoK from Section 7. The Extended R1CS instance for the simulation
is generated similar to [Set20]. The ratio of the sparsity of the matrices to the number of constraints is fixed
to 2. We remark that since the AoK from Section 7, requires univariate commitments to the witness, such
an integration is only possible with a dual polynomial commitment scheme like KZG-FFT-FOURIER. For
constraints equal to 217 Spartan-AIR trades off prover time to get 1.7x better verifier time and at least 2x
improvement in proof size.

References

[ABC+22] Diego F. Aranha, Emil Madsen Bennedsen, Matteo Campanelli, Chaya Ganesh, Claudio Or-
landi, and Akira Takahashi. ECLIPSE: Enhanced compiling method for pedersen-committed
zkSNARK engines. pages 584–614, 2022.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo.
Structure-preserving signatures and commitments to group elements. pages 209–236, 2010.

[AST23] Arasu Arun, Srinath Setty, and Justin Thaler. Jolt: Snarks for virtual machines via lookups.
Cryptology ePrint Archive, Paper 2023/1217, 2023. https://eprint.iacr.org/2023/1217.

[BCG+18] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller. Arya: Nearly
linear-time zero-knowledge proofs for correct program execution. pages 595–626, 2018.

[BCHO22] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. Gemini: Elastic SNARKs
for diverse environments. pages 427–457, 2022.

[CFF+21] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anäıs Querol, and Hadrián Rodŕıguez. Lu-
nar: A toolbox for more efficient universal and updatable zkSNARKs and commit-and-prove
extensions. pages 3–33, 2021.

[CFQ19] Matteo Campanelli, Dario Fiore, and Anäıs Querol. LegoSNARK: Modular design and compo-
sition of succinct zero-knowledge proofs. pages 2075–2092, 2019.

26

[EFG22] Liam Eagen, Dario Fiore, and Ariel Gabizon. cq: Cached quotients for fast lookups. Cryptology
ePrint Archive, Paper 2022/1763, 2022. https://eprint.iacr.org/2022/1763.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
pages 33–62, 2018.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. pages 186–194, 1987.

[git24] Dual PCS. https://github.com/arithmic/Dual_PCS.git, 2024.

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and
universal common reference strings with applications to zk-SNARKs. pages 698–728, 2018.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: inter-
active proofs for muggles. pages 113–122, 2008.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). pages 291–304, 1985.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. pages 305–326, 2016.

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial protocol for lookup
tables. Cryptology ePrint Archive, Paper 2020/315, 2020. https://eprint.iacr.org/2020/

315.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Paper
2019/953, 2019. https://eprint.iacr.org/2019/953.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge argu-
ments from folding schemes. pages 359–388, 2022.

[KT23] Tohru Kohrita and Patrick Towa. Zeromorph: Zero-knowledge multilinear-evaluation proofs
from homomorphic univariate commitments. Cryptology ePrint Archive, Paper 2023/917, 2023.
https://eprint.iacr.org/2023/917.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polyno-
mials and their applications. pages 177–194, 2010.

[Lee21] Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products and poly-
nomial commitments. pages 1–34, 2021.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. pages 2111–
2128, 2019.

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of correct computa-
tion. pages 222–242, 2013.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted setup. pages
704–737, 2020.

[SL20] Srinath Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent zksnarks. Cryptology
ePrint Archive, Paper 2020/1275, 2020. https://eprint.iacr.org/2020/1275.

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup singularity with lasso.
Cryptology ePrint Archive, Paper 2023/1216, 2023. https://eprint.iacr.org/2023/1216.

27

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. pages 71–89, 2013.

[Whi] Barry Whitehat. Lookup singularity.

[WTS+18] Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. Doubly-efficient
zksnarks without trusted setup. In 2018 IEEE Symposium on Security and Privacy (SP), pages
926–943. IEEE, 2018.

[ZBK+22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nitulescu, and
Mark Simkin. Caulk: Lookup arguments in sublinear time. Cryptology ePrint Archive, Pa-
per 2022/621, 2022. https://eprint.iacr.org/2022/621.

[ZGK+22] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and Carla Ràfols. Baloo:
Nearly optimal lookup arguments. Cryptology ePrint Archive, Paper 2022/1565, 2022. https:
//eprint.iacr.org/2022/1565.

28

A Univariate PCS KZG-FFT

A.1 Proof of Lemmas and Claims from Section 3

Lemma 4. Let h
(d)
1,i for d ∈ [1, n] be as defined in Protocol 1, and Equation 1. Further, let f and a be as

defined above. Then Cf =
∏
i∈[0,D−1](h

(d)
1,i)

ai = g
f(r2

n−d
)

1 .

Proof. Let D = 2d and fi be the coefficient of Y i in f , for i ∈ [0, D − 1], and f = (f0, . . . , fD−1). Then
MωD · f = f(HD) = a, and hence, from Fact 2

f =M−1
ωD · a = (

1

D
Mω−1

D
) · a (22)

Let α(d) be such that g
α

(d)
i

1 = h
(d)
1,i for i ∈ [0, D − 1], and r(d) ∈ FD be such that r

(d)
i = ri·2

n−d
for

i ∈ [0, D − 1]. To prove the lemma it is sufficient to show that f(r2
n−d

) = ⟨α(d),a⟩. We use the following
claim to complete the proof (proof below).

Claim A.1. (1
DMω−1

D
) · r(d) = α(d)

From the above claim, we have

f(r2
n−d

) = (r(d))T · f

= (r(d))T · (1
D
Mω−1

D
) · a from Equation 22

= (α(d))T · a from Fact 2

Proof of Claim A.1. For d = n, we have from the definition of α
(n)
i in Algorithm 1 (αi is identified with

α
(n)
i), for all i ∈ [0, N − 1]

α
(n)
i =

1

N

∏
j∈[0,n−1]

(1 + (ω−i
N r)2

j

) =
∑

j∈[0,N−1]

(ω−i
N r)j

Hence, we have α(n) = 1
NMω−1

N
· r(n) To prove this for any d ∈ [1, n − 1], we show α(d) = 1

DMω−1
D
· r(d)

assuming α(d+1) = 1
2d+1Mω−1

2D
· r(d+1). In particular, we show that for all i ∈ [0, D − 1],

α
(d)
i =

1

D

∏
j∈[0,d−1]

(1 + (ω−i
D r2

n−d
)2
j

)

assuming for all i ∈ [0, 2D − 1],

α
(d+1)
i =

1

2D

∏
j∈[0,d]

(1 + (ω−i
2Dr

2n−d−1

)2
j

)

29

By definition of h
(d)
i , we have for all i ∈ [0, D − 1],

α
(d)
i = α

(d+1)
i + α

(d+1)
i+D

=
1

2D

(
(
∏

j∈[0,d]

(1 + ω−i
2Dr

2n−d−1

)j) +

(
∏

j∈[0,d]

(1 + ω−i−2d

2D r2
n−d−1

)j)
)

=
1

2D

(
(
∏

j∈[0,d]

(1 + ω−i
2Dr

2n−d−1

)j) +

(
∏

j∈[0,d]

(1− ω−i
2Dr

2n−d−1

)j)
)

α
(d)
i =

1

2D
·
(∑
j=2ℓ,ℓ∈[0,D−1]

(ω−i
2D · r

2n−d−1

)j +

∑
j=2ℓ+1,ℓ∈[0,D−1]

−(ω−i
2D · r

2n−d−1

)j
)

=
1

D
·

∑
j∈[0,D−1]

(ω−2i
2D · r

2n−d
)j

=
1

D

∏
j∈[0,d−1]

(1 + ω−i
D r2

n−d
)j

The last equality in the above sequence of equations follows from Fact 1.

A.2 Proof of Theorem 1

Completeness follows from the discussion in Section 3.2. We first prove KZG-FFT.commit satisfies commit-
ment binding, and then prove knowledge soundness.

Commitment Binding: Suppose KZG-FFT.commit does not satisfy commitment binding in the bilinear
group (p,G1,G2,GT , e, g1, g2) ←−R G(1λ). Then there exists an adversary A that on input (srs} ←−R KZG-
FFT.Setup(λ), outputs (f0(HD0), f1(HD1)) with a probability non-negligible in λ, satisfying:

1. f0 ∈ F<D0
[Y], f1 ∈ F<D1

[Y] and f0(Y) ̸= f1(Y),

2. C = KZG-FFT.commit (srsP , D0, f0(HD0
)) = KZG-FFT.commit (srsP , D1, f1(HD1

)).

We show that in this case an adversaryA′ can be constructed that when given input a) (p,G1,G2,GT , e, g1, g2)
←−R G(1λ) and b) srs′ = {(srs′P , srsV)}, where srs′P = {gri1 }i∈[0,N−1] for some r ∈R F, and srsV = {gr2

j

2 }j∈[0,n].
A′ outputs the secret random value r with a probability non-negligible in λ, thereby breaking N -DLOG
assumption. Here, we remark that srs′P is different from srsP , and is as in the N -DLOG challenge. A′ first
computes srsP (where srsP is as defined in Algorithm 1). From Claim 3.1, we have that α = 1

NMω−1
N
· r.

Hence, the i-th element of srsP can be computed by taking MSME with group base elements being srs′P
and the scalars being the i-th row of 1

NMω−1
N

. In particular, srsP can be computed from srs′P using at most

N2 exponentiations and additions over the group G1. A′ lets srs = {(srsP , srsV)}, and calls A on input
{(p,G1,G2,GT , e, g1, g2), srs}. A outputs (f0(HD0

), f1(HD2
)) satisfying the two properties stated above.

30

Let D = max(D0, D1). By interpolating and evaluating the lower degree polynomial, A′ can compute
f0(HD), f1(HD). Let d = logD, and let a0 and a1 agree with f0(HD) and f1(HD). Since f0(Y) ̸= f1(Y),
we have a0 ̸= a1, and a0 − a1 ̸= 0, where 0 is the zero vector in FD. Let b = a0 − a1, f

′ = (1
DMω−1

D
) · b,

and f ′ ∈ F<D[Y] be the polynomial whose coefficient corresponding to Y i is f ′i for i ∈ [0, D − 1]. We show

in Lemma 5 below that r2
n−d

is a root of f ′(Y).

Lemma 5. Let f ′ ∈ F<D[Y] be as defined above, and r ∈ F be the random point used to generate srs′. Then

f ′(r2
n−d

) = 0.

Proof. From the definition of KZG-FFT.commit we have∏
i∈[0,D−1]

(h
(d)
1,i)

a0,i =
∏

i∈[0,D−1]

(h
(d)
1,i)

a1,i

Multiplying by the inverse (over G1) of the RHS in the above equation on both sides we have∏
i∈[0,D−1]

(h
(d)
1,i)

bi =
∏

i∈[0,dD−1]

(h
(d)
1,i)

0 (23)

Let α(d) be such that g
α

(d)
i

1 = h
(d)
1,i for i ∈ [0, D−1], and r(d) ∈ FD be such that r

(d)
i = ri·2

n−d
for i ∈ [0, D−1].

From Equation 23, ⟨α(d),b⟩ = 0. Further from Claim A.1, (r(d))T · (1
DMω−1

D
) = α(d). This implies

(r(d))T · (1
D
Mω−1

D
) · b = 0 (24)

From the definition of f ′, we have

f ′ = (
1

D
Mω−1

D
) · b

Since the coefficient of Y i in f ′(Y) is f ′i for i ∈ [0, D − 1], from Equation 24, it follows that r2
n−d

is a root
of f ′.

It is well-known how to efficiently compute r, given a polynomial f ′(Y) ∈ F<D[Y] such that r2
n−d

is a
root of f ′(Y). We note this as a claim below, as we reuse it in knowledge soundness argument.

Claim A.2. There is a DO(1) time algorithm that takes as input the coefficients of a polynomial f ′(Y) ∈
F<D[Y] such that r2

n−d
is a root of f ′(Y), and outputs r.

Proof. The algorithm employs root finding algorithm over F to find r2
n−d

, and then employs square-root
finding algorithm over F recursively to find r.

Knowledge Soundness: We show that KZG-FFT.eval(srs, Cf , D, u, v; f(HD)) is knowledge sound for
the relation

{(srs, (Cf , D, u, v)); f(HD) | f ∈ F<D[Y], f(u) = v,

KZG-FFT.commit(srsP , D, f(HD)) = Cf}

where the srs is updatable by the adversary. Let P̃eval be the algebraic adversary that has access to an
oracle as stated in Definition 3.3 [MBKM19]. Given input (p,G1,G2,GT , e, g1, g2)← Gen(1λ) and an initial
structured reference string ⊥ (corresponding to degree N polynomials), let P̃eval output (srs, Cf , D), and

an a ∈ FN satisfying a) Cf =
∏
i∈[0,N−1](h

(n)
1,i)

ai , b) In ⟨Peval, Veval⟩(srs, Cf , d, u, v;af), where u ∈R F, Veval
accepts with probability ϵ non-negligible in λ.

Here we note that ⊥ is the trivial string corresponding to r = 0, and P̃eval uses the oracle to update it to
srs, and Veval rejects if srs =⊥. The oracle ensures that srs is well-formed, that is, there is an r ∈ F such that

31

srsP = {gαi1 | αi = N−1 ·
∏
j∈[0,n−1](1 + (ω−i

N · r)2
j

) for i ∈ [0, N − 1]}, and srsV = {gr2
j

2 | j ∈ [0, n]}.

Let E be the extractor with oracle access to an algebraic prover P̃eval. E invokes P̃eval to receive
(srs, Cf , D, u, v), and a representation a ∈ FN satisfying the above two conditions, where u ∈R F. The

extractor E queries P̃eval at (srs, Cf , D, u, v) and with probability ϵ obtains Cq and a representation b ∈ FN

such that a) Cq =
∏
i∈[0,N−1](h

(n)
1,i)

bi , and b) e(Cf · g−v1 , g2) = e(Cq, h
(d)
2 · g

−u
2). We prove the following claim

which helps us in proving degree bound on f and q.

Claim A.3. Let a ∈ FN and C =
∏
i∈[0,N−1](h

(n)
1,i)

ai . There exists k ∈ [0, n] such that ai = ai+j·2k for

i ∈ [0, 2k − 1] and j ∈ [0, 2n−k − 1] if and only if there exists f ′<2k [Y] such that C = KZG-FFT.commit
(srsP , k, f(H2k)).

Proof. Its follows from the definition of KZG-FFT.commit, that

C =
∏

i∈[0,2k−1]

(
∏

j∈[0,2n−k−1]

(h1,i+j·2k))
ai =

∏
i∈[0,2k−1]

(h
(k)
1,i)

ai

In the above equality, we have used that h
(k)
1,i =

∏
j∈[0,2n−k−1] h1,i+j·2k . Let f(H2k) be such that f(H2k)i = ai

for i ∈ [0, 2k − 1]. It follows that f ′ ∈ F<2k [Y] is such that C = KZG-FFT.commit(srsP , k, f(H2k)).

From the above claim and Lemma 4, it follows that there exists k1, k2 ∈ [0, n] such that f ′ ∈ F<2k1 [Y],

q′ ∈ F<2k2 [Y] Cf = g
f ′(r2

n−k1
)

1 and Cq = g
q′(r2

n−k2
)

1 . Knowledge soundness of the protocol would follow
from the following lemma.

Lemma 6. Suppose k1, k2 ∈ [0, n] such that f ′ ∈ F<2k1 [Y], q′ ∈ F<2k2 [Y], Cf = g
f ′(r2

n−k1)

1 and Cq =

g
q′(r2

n−k2)

1 . Then only one of the following holds:

1. 2k1 ≤ D and there exists q′′ ∈ F<D[Y] such that f ′(Y 2d−k1)− v = (Y − u)q′′(Y)

2. N ≥ 2k1 > D and Y 2k1−d − u divides f ′(Y)− v.

Proof. We prove the lemma using a case analysis. In each of the case either f ′(Y) and q′(Y) satisfy the
statement of the lemma or r is a root of a polynomial known to P̃eval. From Claim A.2, it follows that if r is
a root of a polynomial known to P̃eval then P̃eval can compute r efficiently, and hence break the N -DLOG as-
sumption. Hence, in our analysis we assume r is not the root of the polynomial that arises in each of the cases.

Case a: 2k1 ≤ D, 2k2 ≤ D. This implies n−k1 ≥ n−d, and n−k2 ≥ n−d. Assume n−k1 ≥ n−k2; the
other case can be handled similarly. In this case it must be that either i) f ′(Y 2d−k1)−v = (Y −u) ·q′(Y 2d−k2)

or ii) r is a root of f ′(Y 2d−k1)−v−(Y −u)·q′(Y 2d−k2). Letting q′′(Y) = q′(Y 2d−k2), we have f ′(Y 2d−k1)−v =
(Y − u)q′′(Y).

Case b: 2k1 ≤ D, 2k2 > D. In this case it must be that either i) f ′(Y 2k2−k1
) − v = (Y 2k2−d − u) · q′(Y)

or ii) r is a root of f ′(Y 2k2−k1
)− v − (Y 2k2−d − u) · q′(Y). If

f ′(Y 2k2−k1
)− v = (Y 2k2−d

− u) · q′(Y) (25)

then we show that there exists q′′(Y) such that q′(Y) = q′′(Y 2k2−d
). Let γ = k2 − k1, and δ = k2 − d, and

note that γ − δ = d− k1 ≥ 0. Using polynomial division, we know there exists r ∈ F and q′ ∈ F<N [Y] such
that

f ′(Y 2γ−δ) = (Y − u)q′′(Y) + r (26)

32

Since r ∈ F, substituting Y as Y 2δ in the above equation, we have

f ′(Y 2γ) = (Y 2δ − u)q′′(Y 2δ) + r (27)

From Equations 25, and 27, we have (Y 2δ − u)q′(Y) = (Y 2δ − u)q′′(Y 2δ) + r. This implies Y 2δ − u divides

r, and as r = 0, q′(Y) = q′′(Y 2δ). Hence, Equation 25, can be rewritten as

f ′(Y 2γ−δ)− v = (Y − u) · q′′(Y)

f ′(Y 2d−k1)− v = (Y − u) · q′′(Y)

Case c: 2k1 > D, 2k1 ≥ 2k2 . In this case it must be that either i) f ′(Y)− v = (Y 2k1−d − u) · q′(Y 2k1−k2
)

or ii) r is a root of f ′(Y)− v = (Y 2k1−d − u) · q′(Y 2k1−k2
). This implies Y 2k1−d − u divides f ′(Y)− v.

Case d : 2k1 > D, 2k1 < 2k2 . In this case it must be that either i) f ′(Y 2k2−k1
)− v = (Y 2k2−d − u) · q′(Y)

or ii) r is a root of f ′(Y 2k2−k1
)− v − (Y 2k2−d − u) · q′(Y). If

f ′(Y 2k2−k1
)− v = (Y 2k2−d

− u) · q′(Y) (28)

then we show that there exists q′′(Y) such that q′(Y) = q′′(2k2−k1). Let γ = k2 − k1, and δ = k2 − d, and
note that, δ− γ = k1− d > 0. Using polynomial division, we know there exists r ∈ F<2δ−γ and q′′ ∈ F<N [Y]
such that

f ′(Y) = (Y 2δ−γ − u)q′′(Y) + r(Y)

Substituting Y as Y 2γ in the above equation, we have

f ′(Y 2γ) = (Y 2δ − u)q′′(Y 2γ) + r(Y 2γ) (29)

From Equations 28, and 29,

(Y 2δ − u) · q′(Y) = (Y 2δ − u)q′′(Y 2γ) + r(Y 2γ)

This implies Y 2δ − u divides r(Y 2γ). But r ∈ F<2δ−γ , and hence degree of r(Y 2γ) is less than 2δ. Hence,

r(Y 2γ) = 0 implying r(Y) = 0, and q′(Y) = q′′(Y 2k2−k1
). Hence, Equation 28, can be rewritten as

f ′(Y 2k2−k1
)− v = (Y 2k2−d

− u) · q′′(Y 2k2−k1
)

Hence, we have f ′(Y) = Y 2k1−d · q′′(Y). This implies Y 2k1−d − u divides f ′(Y)− v.

In Lemma 6, if (a) holds then let f(Y) = f ′(Y 2d−k1) ∈ F<D[Y]. This implies f(Y)− v = (Y − u) · q′(Y),
and hence f(u) = v. In this case from Claim A.3, it follows that ai = ai+j·2k1 for i ∈ [0, 2k1 − 1] and

j ∈ [0, 2n−k1 − 1]. Further a[:2k1] agrees with f
′(H2k1) over the FFT domain of size 2k1 . Here a[:2k1] denotes

the first 2k1 components of a. Hence, E computes the coefficient representation of f ′(Y) from f ′(H2k1)

using FFT. Since f(Y) = f ′(Y 2d−k1)

), E computes the coefficient representation of f from the coefficients
of f ′, from which it computes f(HD) again using FFT. Now we show that case (b) in Lemma 6 holds
with probability N

2|F| over the choice of u ∈R F. Let f ′ ∈ F<2k1 be as in Case (b) of Lemma 6, and

S = {(u′, v′)) | Y 2k1−d − u′ divides f ′(Y)− v′}. We argue in Lemma 7 (stated below) that |S| ≤ 2k1

2k1−d = 2d.

Hence, given Cf , such that Cf = KZG-FFT.commit(srsP , 2
k1 , f ′(H2k1)), and u is sampled uniformly and

independently at random from F then with probability at least 1− D
|F| case b does not hold. Hence, it follows

that E is able to compute a valid witness with probability ϵ(1− D
|F |).

Lemma 7. Let 2k1 > D, f ′ ∈ F<2k1 , and S = {(u′, v′)) | Y 2k1−d − u′ divides f ′(Y) − v′}. Then |S| ≤
2k1

2k1−d = 2d.

33

Proof. First, we argue that for each u′ ∈ F there exists at most one v′ ∈ F such that (u′, v′) ∈ S. Suppose
there exists (u′, v′1) ∈ S and (u′, v′2) ∈ S. This implies there exists q′1 ∈ F<D[Y] and q′2 ∈ F<D[Y] such that

(Y 2k1−d
− u′) · q′1(Y) + v′1 = (Y 2k1−d

− u′) · q′2(Y) + v′2

(Y 2k1−d
− u′) · q′1(Y) = (Y 2k1−d

− u′) · q′2(Y) + v′2 − v′1

We subtract v′1 from both sides to obtain the above equation. Since (Y 2k1−d − u′) divides LHS of the above
equation, we have v′1 = v′2. Next, we argue for every (u′1, v

′
1) ∈ S and (u′2, v

′
2) ∈ S, v′1 = v′2. If (u′1, v

′
1) ∈ S

and (u′2, v
′
2) ∈ S then there exists q′1 ∈ F<D[Y] and q′2 ∈ F<D[Y] such that

(Y 2k1−d
− u′1) · q′1(Y) + v′1 = (Y 2k1−d

− u′2) · q′2(Y) + v′2 (30)

If k1 − d > d then by observing the degree of the polynomials on LHS and RHS in the above equation
we have q′1(Y) = q′2(Y), u′1 = u′2 and v′1 = v′2. In fact in this case |S| = 1. Suppose k1 − d ≤ d. Then
from polynomial division there exists q′′2 (Y) ∈ F2d−(k1−d) [Y] and r(Y) ∈ F<2k1−d [Y] such that q′2(Y) =

(Y 2k1−d − u′1) · q′′2 (Y) + r(y). Substituting q′2(Y) in Equation 30

(Y 2k1−d
− u′1) · (q′1(Y)− (Y 2k1−d

− u′2) · q′′2 (Y)) + v′1 = (Y 2k1−d
− u′2) · r(Y) + v′2

Since degree r(Y) is less than 2k1−d, again observing the degree of the polynomials on LHS and RHS in the

above equation we have either a) r(Y) = 0, q′1(Y) = (Y 2k1−d − u′2) · q′′2 (Y), and v′1 = v′2, or b) r(Y) = 0,

q′1(Y) = (Y 2k1−d − u′2) · q′′2 (Y), u′1 = u′2 and v′1 = v′2. The argument above shows that all tuples in S have

the same second element. Let S = {(uj , v)}j∈|S|. Then for all j ∈ [1, |S|], Y 2d1−k − uj divides f ′(Y) − v.
Since degree of f ′(Y) is at most 2k1 , |S| ≤ 2k1

2k1−d = 2d.

A.3 Updatability of the SRS in KZG-FFT

In this section, we show that the setup of KZG-FFT is updatable as defined in Definition 3.3, [MBKM19].
To this end we state the update setup, and verify setup in Algorithms 4, and 5 respectively. KZG-FFT.update
setup in Algorithm 4, takes as input the bilinear group {(p,G1,G2, GT , e, g1, g2) and srs, {πi}i∈[0,ℓ]}, and
outputs a new structured reference string srs′, and appends a proof πℓ+1 to the list of existing proofs
{πi}i∈[0,ℓ]. KZG-FFT.verify setup in Algorithm 5, takes as input {(p,G1,G2, GT , e, g1, g2), srs, {πi}i∈[0,ℓ]} and
outputs either accept or reject depending on whether the srs is correctly formed. We prove the correctness
of the update setup, and verify setup algorithms in Lemmas 8, and 9 respectively.

Lemma 8. Let the inputs to update setup be as in Algorithm 4. Let srsP = {h(n)1,i }i∈[0,n−1], srsV =

{h2,j}j∈[0,n], and πi = (u1,i, u2,i) for i ∈ [0, ℓ]. Suppose there is an r ∈ F such that a) h
(n)
1,i = gαi1 , where

αi = N−1 ·
∏
j∈[0,n−1](1 + (ω−i

N · r)2
j

) for i ∈ [0, N − 1], b) h2,j = gr
2j

2 for j ∈ [0, n], and c) u2,ℓ = gr2. Then

Algorithm 4, outputs srs′ and πℓ+1 such that a) h′1,i = g
α′
i

1 , where α′
i = N−1 ·

∏
j∈[0,n−1](1+ (ω−i

N · r · rℓ+1)
2j)

for i ∈ [0, N − 1], b) h2,j = g
(r·rℓ+1)

2j

2 for j ∈ [0, n], and c) u2,ℓ = g
r·rℓ+1

2 .

Proof. At Step 3, the i-th component of ĥ1, denoted ĥ1,i, is equal to
∏
j=[0,N−1](h

(n)
1,i)

ωi·jN . From the suppo-

sition, Fact 2, and Claim 3.1, it follows that there exists r ∈ F such that h̃1,i = g
(r·rℓ+1)

i

1 for i ∈ [0, N − 1].

Hence, at Step 9, h′1,i = g
α′
i

1 , where α′
i = N−1 ·

∏
j∈[0,n−1](1 + (ω−i

N · r · rℓ+1)
2j) for i ∈ [0, N − 1]. Points (b)

and (c) follow easily from the construction.

We note that sinceMωN is the FFT matrix of size N , the recursive decomposition of the FFT matrix can

be exploited to compute ĥ1 using N logN group additions and N logN group exponentiations. Similarly h′
1

can be computed at Step 9 using N logN group additions and N logN +N group exponentiations.

34

Algorithm 4 KZG-FFT.update setup: Updating Setup for KZG-FFT

Input: {(p,G1,G2,GT , e, g1, g2)srs, {πi}i∈[0,r]}
Output: {srs′, {πi}i∈[0,ℓ+1]}

1: Read πi as (u1,i, u2,i) ∈ (G1,G2) for i ∈ [0, ℓ], srsP = {h(n)1,i | i ∈ [0, N −1]}, and srsV = {h2,j | j ∈ [0, n]}.
2: Let h1 ∈ GN1 be such that the i-th component of h1 is h

(n)
1,i .

3: Compute ĥ1 =MωN · h1.
4: Sample rℓ+1 ∈ F, uniformly at random.
5: for i ∈ [0, N − 1] do

6: Let h̃1,i = (ĥ1,i)
rℓ+1

7: end for
8: Let h̃1 ∈ GN1 be such that the i-th component of h̃1 is h̃1,i.

9: Let h′
1 = 1

NMω−1
N
· h̃1, and srs′P = {h′1,i | i ∈ [0, N − 1]}. Here h′1,i is the i-th component of h′

1.

10: Let srs′V = {hr
2j

ℓ+1

2,j ∈ G2 | j ∈ [0, n]}.
11: πℓ+1 = (g

rℓ+1

1 , u
rℓ+1

2,ℓ)
12: Output {srs′ = (srs′P , srs

′
V), {πi}i∈[0,ℓ+1]}

Algorithm 5 KZG-FFT.verify setup: Verify Setup for KZG-FFT

Input: {(p,G1,G2,GT , e, g1, g2), srs, {πi}i∈[0,r]}
Output: {accept/reject}

1: Read πi as (u1,i, u2,i) ∈ (G1,G2) for i ∈ [0, ℓ].
2: if e(u1,0, g2) ̸= e(g1, u2,0) then
3: Output reject
4: end if
5: for i ∈ [1, ℓ] do
6: if e(u1,i, u2,i−1) ̸= e(g1, u2,i) then
7: Output reject
8: end if
9: end for

10: Let h1 ∈ GN1 be such that the i-th component of h1 is h
(n)
1,i . Let h

′
1 =MωN · h1.

11: Check h′1,0 = g1.
12: for i ∈ [1, N − 1] do
13: if e(h′1,i, g2) ̸= e(h′1,i−1, u2,ℓ) then
14: Output reject
15: end if
16: end for
17: if h2,0 ̸= u2,ℓ then
18: Output reject
19: end if
20: for j ∈ [0, n− 1] do
21: if e(h′1,2j , h2,j) ̸= e(g1, h2,j+1) then
22: Output reject
23: end if
24: end for
25: Output accept

35

Lemma 9. Let the inputs to verify setup be as in Algorithm 5. Let srsP = {h(n)1,i }i∈[0,n−1], srsV = {h2,j}j∈[0,n],
and πi = (u1,i, u2,i) for i ∈ [0, ℓ]. Then if verify setup outputs accept then there is an r ∈ F such that a)

h
(n)
1,i = gαi1 , where αi = N−1 ·

∏
j∈[0,n−1](1 + (ω−i

N · r)2
j

) for i ∈ [0, N − 1], b) h2,j = gr
2j

2 for j ∈ [0, n], and

c) u2,ℓ = gr2.

Proof. At Step 3, if verify setup accepts there is an r0 ∈ Fp such that u1,0 = gr01 and u2,0 = gr02 . At Step 6, if

verify setup accepts there is an ri ∈ Fp such that u1,i = gri1 and u2,i = g
∏i
j=0 rj

2 , for i ∈ [1, ℓ]. In particular, if

verify setup accepts at Step 6 for all i ∈ [1, ℓ]. then u2,ℓ = g
∏ℓ
j=0 rj

2 . Let r =
∏ℓ
j=0 ri, u2 = gr2. At Step 13, if

verify setup accepts then for all i ∈ [0, N − 1], h′1,i = gr1. From Fact 2, and Claim 3.1, this implies h
(n)
1,i = gαi1 ,

where αi = N−1 ·
∏
j∈[0,n−1](1 + (ω−i

N · r)2
j

) for i ∈ [0, N − 1]. Similarly, if verify setup accepts at Step 21,

then h2,j = gr
2j

2 for j ∈ [0, n].

B Multilinear PCS KZG-FOURIER

B.1 Proofs of Claims and Lemma from Section 4.1

Claim B.1. U
(n)
i =

∏
j∈[0,n−1](1 + (ω−i

N · Y)2
j

) 1
N

Proof. The i-th component of 1
N ·Mω−1

N
· Y is equal to

N−1∑
ℓ=0

1

N
· (ω−i

N · Y)ℓ =
∏

j∈[0,n−1]

(1 + (ω−i
N · Y)2

j

)
1

N

Claim B.2. Un(1) = 1

Proof. Consider the summation
∑
i∈[0,N−1] Li(X0, . . . , Xn−1) = 1. Consequently, we have

Un(1) = Un(
∑

i∈[0,N−1]

Li(X0, . . . , Xn−1))

By leveraging linearity and the definition of Un, we establish Un(1) =
∑
i∈[0,N−1] Ui. Moving forward with

the definition of U(n), it ensues that: ∑
i∈[0,N−1]

U
(n)
i = 1T · (1

N
Mω−1

N
·Y)

Here, 1 denotes the vector of all ones. The claim is substantiated by observing:

1T · (1
N
Mω−1

N
) = (1, 0, . . . , 0)

Claim B.3. Un(L(d)
i) = Un(L(d+1)

i) + Un(L(d+1)
i+D) for d ∈ [1, n− 1].4

Proof. The proof relies on the linearity of Un, and the observation that L
(d)
i = L

(d+1)
i + L

(d+1)
i+D .

4It is important to note that Un(L
(d)
i) differs from Ud(L

(d)
i).

36

Lemma 10. Un(L(d)
i) = U

(d)
i (Y 2n−d

), holds for d ∈ [1, n]. Moreover, for f ∈ F≤1[X0, . . . , Xd−1], {fL(d)
i
∈

F}i∈[0,D−1] represents the Fourier coefficients of f if and only if there exists a g ∈ F<D[Y] such that Un(f) =
g(Y 2n−d

) and g(ωiD) = f
L

(d)
i

.

Proof. For d = n, , the relationship follows directly from the definition of Un. To establish Un(L(d)
i) =

U
(d)
i (Y 2n−d

) we proceed by assuming Un(L(d+1)
i) = U

(d+1)
i (Y 2n−d−1

), for d ∈ [1, n−1]. It follows from Claim

B.3 that Un(L(d)
i) = Un(L(d+1)

i) + Un(L(d+1)
i+D) for i ∈ [0, D − 1]. Moreover, the definition of U

(d+1)
i imply

Equations 31 and 32 for i ∈ [0, D − 1]

Un(L(d+1)
i) =

1

2D

(2D−1∑
j=0

ω−i
2D · Y

2n−d−1)
(31)

Un(L(d+1)
i+D) =

1

2D

(2D−1∑
j=0

ω−i−D
2D · Y 2n−d−1)

(32)

=
1

2D

(2D−1∑
j=0

−ω−i
2D · Y

2n−d−1)
=

1

2D

(∑
j=2k,k∈[0,D−1]

(ω−i
2D · Y

2n−d−1

) (33)

+
∑

j=2k+1,k∈[0,D−1]

−(ω−i
2D · Y

2n−d−1

)
)

In the above equality we have used ω−D
2D = −1. The equation below can be inferred by adding Equations 31,

and 33

Un(L(d+1)
i) + Un(L(d+1)

i+D)

=
1

D

∑
k∈[0,D−1]

(ω−2i
2D Y 2n−d

)k

=
1

D

∑
k∈[0,D−1]

(ω−i
D Y 2n−d

)k

This proves Un(L(d)
i) = U

(d)
i (Y 2n−d

), for d ∈ [1, n].

Suppose f(X0, . . . , Xd−1) =
∑
i∈[0,D−1] fL(d)

i
· L(d)

i . By the linearity of Un we can express Un(f) =∑
i∈[0,D−1] fL(d)

i
· U (d)

i (Y 2n−d
). Let g(Y) =

∑
i∈[0,D−1] fL(d)

i
· U (d)(Y). Then Un(f) = g(Y 2n−d

), where

g(Y) ∈ F<D[Y]. Additionally, considering Claim B.1, and recognizing that MωD and 1
D ·Mω−1

D
are matrix

inverses of each other, we deduce that g(ωiD) = f
L

(d)
i

for i ∈ [0, D − 1]. Conversely, given any g(Y) ∈
F<D[Y], we can define an f ∈ F[X0, . . . , Xd−1] such that its D Fourier coefficients are specified as follows:
f
L

(d)
i

= g(ωiD). Since g is uniquely determined by its evaluations g(ωiD)i∈[0,D−1], we conclude using similar

arguments as above that Un(f) = g(Y 2n−d
).

Lemma 11. For d ∈ [1, n− 1], f ∈ F≤1[X0, . . . , Xd−1] if and only if there exists ψf ∈ F<D[Y] such that

Un(Xd · f) = ψf (Y
2n−d−1

) ·
∏

j∈[0,D−1]

(Y 2n−d−1

− ωj2D)

37

Un((1−Xd) · f) = ψf (−Y 2n−d−1

) ·
∏

j∈[0,D−1]

(Y 2n−d−1

+ ωj2D)

Proof. Let f
L

(d)
i

, i ∈ [0, D − 1] represent the Fourier coefficients of f . Then the Fourier coefficient of Xd · f

corresponding to the basis L
(d+1)
i is 0 for i ∈ [0, D − 1], and f

L
(d)
i

for i ∈ [D, 2D − 1]. As established in

Lemma 10, there exists ψ1(Y) ∈ F<2D[Y] such that Un(Xd · f) = ψ1(Y
2n−d−1

). Moreover, ψ1(ω
i
2D) = 0 for

i ∈ [0, D− 1], and ψ1(ω
i
2D) = f

L
(d)
i

for i ∈ [D, 2D− 1]. This implies the existence of ψf ∈ F<D[Y] such that

ψ1(Y) = ψf (Y) ·
∏

j∈[0,D−1]

(Y 2n−d−1

− ωj2D)

Similarly, the Fourier coefficient of (1−Xd) ·f corresponding to the basis L
(d+1)
i is f

L
(d)
i

for i ∈ [0, D−1],

and 0 for i ∈ [D, 2D − 1]. Hence, again as established in Lemma 10, there exists ψ2(Y) ∈ F<2D[Y] such

that Un((1 − Xd) · f) = ψ2(Y
2n−d−1

). Further, ψ2(ω
i
2D) = f

L
(d)
i

for i ∈ [0, D − 1], and ψ2(ω
i
2D) = 0 for

i ∈ [D, 2D − 1]. This implies the existence of ψ′
f ∈ F<D[Y] such that

ψ2(Y) = ψ′
f (Y) ·

∏
j∈[0,D−1]

(Y 2n−d−1

− ωj2D)

Finally, we prove that ψ′
f (Y) = ψf (−Y), which will complete the proof. Observe that ψ1(ω

i+2k

2D) =

ψ1(−ωi2D) = ψ2(ω
i
2D), for i ∈ [D, 2D − 1]. Since d ≥ 1, we have ψ′

f (ω
i
2D) = ψf (−ωi2D) for i ∈ [D, 2D − 1].

As ψ′
f and ψf are degree at most D univariate polynomials, it follows that ψ′

f (Y) = ψf (−Y). The above
argument also shows that corresponding to any ψ ∈ F<D[Y], if f ∈ F≤1[X0, . . . , Xd−1] is defined such that

f
L

(d)
i

=
ψ(−ωi2D)∏

j∈[0,D−1](−ωi2D−ωj2D)
for i ∈ [0, D − 1] then

Un(Xd · f) = ψ(Y 2n−d−1

) ·
∏

j∈[0,2d−1]

(Y 2n−d−1

− ωj2D)

Un((1−Xd) · f) = ψ(−Y 2n−d−1

) ·
∏

j∈[0,D−1]

(Y 2n−d−1

+ ωj2D)

Claim B.4. Let ψ ∈ F<D[Y]. Then there exists ψo, ψe ∈ F<2d−1 [Y] such that ψ(Y) = ψe(Y
2) + Y ·ψo(Y 2),

and ψ(−Y) = ψe(Y
2)− Y · ψe(Y 2). Further,

ψe(ω
i
2d−1) =

ψ(ωiD) + ψ(−ωiD)
2

∀i ∈ [0, 2d−1 − 1]

ψo(ω
i
2k−1) =

ψ(ωiD) + ψ(−ωiD)
2ω2k

∀i ∈ [0, 2d−1 − 1]

Proof. It is easy to see that there exists ψo, ψe ∈ F<2d−1 [Y] such that ψ(Y) = ψe(Y
2) + Y · ψo(Y 2), and

ψ(−Y) = ψe(Y
2)− Y · ψe(Y 2). Hence, for i ∈ [0, 2d−1 − 1], we have

ψ(ωiD) = ψe(ω2d−1) + ωiD · ψo(ω2d−1)

ψ(−ωiD) = ψe(ω2d−1)− ωiD · ψo(ω2d−1)

In the above equations, we have used that ω2i
D = ωi2d−1 . Adding the above equations and dividing by 2, we

have the expression for ψe. Similarly, subtracting the second equation from the first equation and dividing
the expression by 2, we have the expression for ψo.

38

We make an additional claim here that notes down the computation required to compute the commits
at Step 3a of Protocol 2.

Claim B.5. Let f ∈ F≤1[X0, . . . , Xd−1], ψf (Y) corresponds to f as in Lemma 11, and ψf,e(Y) and ψf,o(Y)
correspond to ψf (Y) as in Claim B.4. There is an algorithm that takes as input the D Fourier coefficients
of f , and the evaluations of

∏
i∈[0,D−1](Y − ωi2D) over the offset FFT domain of size D, and outputs the

evaluations of ψf,e(Y) and ψf,o(Y) over the FFT domain of size D. The algorithm performs O(D) F-
divisions and additions and 6-FFT’s of the following domain sizes: 1 of 2D, 1 of D, 2 of D/2, and 2 of
N .

Proof. Recall, from the proof of Lemma 11, ψ1 ∈ F<D[Y] such that ψ1(ω
i
2D) = 0 for i ∈ [0, D − 1], and

ψ1(ω
i
2D) = f

L
(d)
i

for i ∈ [D, 2D−1]. Hence, the D Fourier coefficients of f give the evaluations ψ1 over H2D.

First, the algorithm computes the evaluations of ψ1 over the offset of FFT domain of size D. This can be
done using two FFTs: one over size 2D, and the other over size D. Next, the algorithm uses the evaluations
of

∏
i∈[0,D−1](Y − ωi2D) to compute the evaluations of ψf over the offset of FFT domain of size D. This

step requires D field divisions. Here, from Fact 3, it follows that all evaluations of
∏
i∈[0,D−1](Y −ωi2D) over

the offset of FFT domain of size K are non-zero. The evaluations of ψf are used to compute evaluations of
ψf,e and ψf,0 over the offset of FFT domain of size D/2. This can be done using ideas similar to Claim B.4.
This step requires O(D) field additions and divisions. Finally, the evaluations of ψf,e and ψf,0 are used to
compute their evaluations over HN . This step requires two FFTs over domain of size D/2, and two FFTs
over domain of size N .

B.2 Proof of Theorem 2

Completeness stems from the discussion outlined in Section 4.3. Moreover, commitment binding is guaranteed
by the proof of commitment binding presented in Theorem 1 (refer to Appendix A.2). Next, we proceed to
establish knowledge soundness. Let P̃eval denote the algebraic adversary with access to an oracle, as described
in Definition 3.3 of [MBKM19]. Given inputs (p,G1,G2,GT , e, g1, g2) ← Gen(1λ) and an initial structured
reference string ⊥ (corresponding to degree N polynomials), P̃eval outputs (srs, Cf , D,x

(d), y) and a vector
a ∈ FN satisfying the following conditions: b) In ⟨Peval, Veval⟩(srs, Cf , D, (x(d)), y;a), where Veval accepts with
probability ϵ, which is non-negligible in λ. Here, ⊥ denotes the trivial string corresponding to r = 0, and
P̃eval employs the oracle to update it to srs. Veval rejects if srs =⊥. The oracle ensures that srs is well-formed,
meaning there exists an r ∈ F such that srsP = {gαi1 | αi = N−1 ·

∏
j∈[0,n−1](1+(ω−i

N ·r)2
j

) for i ∈ [0, N−1]},

and srsV = {gr2
j

2 | j ∈ [0, n]}.

The extractor E rewinds and executes P̃eval, generating an acceptance transcript for KZG-FOURIER.eval
with probability ϵ. Below, we provide a brief description of such a transcript. Recall, we denote Ud(f) as
wf (Y), and

Cf = Cwf =
∏

i∈[0,N−1]

(h
(n)
1,i)

ai

is the claimed commitment to f . We omit f from the subscript of wf in the proof below.

1. At Steps 3a and 3b, let Cψqk,e , Cψqk,o ∈ G1 be the commitments claimed by P̃eval corresponding to

ψqk,e(Y), ψqk,o(Y) for k ∈ [1, d− 1]. P̃eval also returns q0 ∈ F, and b(k,e), b(k,o), ∈ FN , such that

Cψqk,e =
∏

i∈[0,N−1]

(h
(n)
1,i)

b
(k,e)
i ,

Cψqk,o =
∏

i∈[0,N−1]

(h
(n)
1,i)

b
(k,o)
i ,

39

2. E samples z ∈r F, corresponding to which P̃eval at Step (3d) returns claimed evaluations of w(Y) at z,

ψqk,e(Y) and ψqk,o(Y) at z2
d−k

, and ϕk(Y) at z2
d−k−1

for k ∈ [1, d− 1]. Let v be the claimed value of

w(Y) at z, vk,e and vk,o be the claimed values of ψqk,o(Y), ϕk(Y) at z2
d−k

respectively, and uk be the

claimed value of ψqk,e(Y) at zd−k−1 for k ∈ [1, d− 1]. Additionally, it satisfies the check made by Veval
at Step (3e) using Equation 34 below. In the following equations, the expressions for mk,1, mk,2, mk,
m′
k for k ∈ [1, d− 1] follow from Equations 8 and 9.

mk,1 = vk,e + z2
d−k−1

· vk,o

mk,2 = vk,e − z2
d−k−1

· vk,o
mk = mk,1 · uk

m′
k = mk,1 · uk +mk,2 ·

z2D·2d−k−1 − 1

uk

v − y =
(d−1∑
k=1

(mk − xk ·m′
k)
)
+ (z2

d−1

− x0) · q0) (34)

3. Corresponding to γw, γk,e, γ
′
k,e, γk,o, γ

′
k,o, δk sampled uniformly, and independently at random by the

extractor, P̃eval returns the claimed commitment Cψ ∈ G1 to ψ(Y), and bψ ∈ FN such that

Cψ =
∏

i∈[0,N−1]

(h
(n)
1,i)

bψ,i

4. Corresponding to s sampled uniformly, and independently at random from F by the extractor, P̃eval

returns claimed evaluations of w(Y), ψqk,e(Y), ψqk,o(Y), ϕk(Y) for k ∈ [1, d − 1] at s. Let v′ be the
claimed value of w(Y) at s, and v′k,e, v

′
k,o, u

′
k be the claimed values of ψqk,e(Y), ψqk,o(Y), ϕk(Y) at s

for k ∈ [1, d− 1]. E samples βw, βk,e, βk,o, κk for k ∈ [1, d− 1] uniformly, and independently at random
from F. Using these values the claimed value of η(Y) at s can be computed using Equations 11 and
12. Denote this computed claimed value as t. Finally, P̃eval returns Cµ the claimed commitment to
µ(Y), and bµ such that

Cµ =
∏

i∈[0,N−1]

(h
(n)
1,i)

bµ,i ,

and the following check made by Veval is satisfied at the last step

e(Cη · g−t1 , g2) = e(Cµ, h
(d)
2 · g

−t
2) (35)

where Cη satisfies Equation 13.

From the proof of Theorem 1, it follows that if Equation 35 is satisfied then the E can compute η ∈ F<D[Y]

such that η(s) = t, and Cη = g
η(r2

n−d
)

1 . Moreover, from Claim A.3, there exists ψ′ ∈ F
<2ℓψ

[Y], w′ ∈ F2ℓw [Y],
ψ′
qk,e
∈ F

<2ℓk,e
[Y], ψ′

qk,o
∈ F

<2ℓk,o
[Y], for k ∈ [1, d− 1] such that

Cψ = g
ψ′(r2

n−ℓψ
)

1 , Cw = g
w′(r2

n−ℓw
)

1 ,

Cψqk,e = g
ψ′
qk,e

(r2
n−ℓk,e

)

1 , Cψqk,o = g
ψ′
qk,o

(r2
n−ℓk,o

)

1

Note that the E can efficiently compute the evaluations of such polynomials over appropriate FFT domains
using a, bψ, bk,e, bk,o for k ∈ [1, d− 1] respectively. Also from construction of the setup in Section 4.2, we
have

Cϕk = g
ϕk(r

2n−k−1)

1

40

The construction of Cη, Claim A.2, and the N -DLOG assumption implies

η(Y 2n−d
) = ψ′(Y 2n−ℓψ

) + βw · w′(Y 2n−ℓw
)+∑

k∈[1,d−1]

(
βk,e · ψqk,e(Y 2n−ℓk,e

) + βk,o · ψqk,o(Y 2n−ℓk,o
)

κk · ϕk(Y 2n−k−1

)

)
(36)

In the following claim, we bound the degrees of ψ′, w′, ψ′
k,e, ψ

′
k,o for k ∈ [1, d− 1].

Claim B.6. Let η, ψ′, w′, ψ′
k,e, ψ

′
k,o for k ∈ [1, d − 1] be as defined above. Then the degree of all these

polynomials is at most D with probability at least 1− 1
|F | over the random choices of βw, and βk,e, βk,o, and

κk, for k ∈ [1, d− 1].

Proof. Since the degree of η(Y) is at mostD = 2d, the LHS of Equation 36 has monomials of the form Y i·2
n−d

for i ∈ [0, D − 1]. Hence, by Schwartz-Zippel with probability at least ϵ(1− 1
|F |), the monomials in each of

the polynomials ψ′(Y 2n−ℓψ
), w′(Y 2n−ℓw

), ψqk,e(Y
2n−ℓk,e

), ψqk,o(Y
2n−ℓk,o

), ϕk(Y
2n−k−1

) for k ∈ [1, d − 1] is

of the form Y i·2
n−d

for i ∈ [0, D − 1]. Now suppose 2ℓψ ≥ D. Then this implies there exists j ̸= j′ such
that j, j′ ∈ [0, 2ℓψ − 1] such that 2n−d · i = 2n−ℓψ · j, and 2n−d · i = 2n−ℓψ · j′. But this implies j = j′, a
contradiction. Hence, 2ℓψ < D. A similar argument can be used to bound the degrees of all the remaining
polynomials.

From Claim B.6, we conclude that ψ′(Y), w′(Y), ψ′
qk,e

, ψ′
qk,o

for k ∈ [1, d − 1] are at most degree
D polynomials. Hence, there exists ψ(Y), w′(Y) ∈ F<D[Y], ψ′

qk,e
, ψ′

qk,o
F<D[Y] for k ∈ [1, d − 1] such

that ψ(Y 2n−d
) = ψ′(Y 2n−ℓψ

), w(Y 2n−d
) = w′(Y 2n−ℓw

), ψqk,e(Y
2n−d

) = ψqk,e(Y
2
n−ℓqk,e), ψqk,o(Y

2n−d
) =

ψqk,o(Y
2
n−ℓqk,o). For example, if ℓw = d then let ψ(Y) = ψ′(Y), and if ℓw = d − 1 then let ψ(Y) = ψ(Y 2)

and so on. Hence, we may rewrite Equation 36 as follows

η(Y) = ψ(Y) + βw · w(Y)+∑
k∈[1,d−1]

(
βk,e · ψqk,e(Y) + βk,o · ψqk,o(Y)

κk · ϕk(Y 2d−k−1

)

)
(37)

Let E1 be the event that the above equation holds. Conditioned on that E1 holds, and since η(s) = t and
t is computed using Equations 11 and 12 from the claimed values of w(Y), ψqk,e, ψqk,o, and ϕk at s, we
have by Schwartz-Zippel with probability 1 − D+1

|F | over the random choices of s, βw, βk,e, βk,o, and κk for

k ∈ [1, d− 1],
w(s) = v′, ψqk,e(s) = v′k,e, and

ψqk,o(s) = v′k,o, ψk(s
2d−k−1

) = u′k

and, ψ(Y) satisfies Equation 11.
Let E2 be the event that Equation 11 holds. Conditioned on E2, with probability 1− 1

F , over the random
choices of γ, γk,e, γk,o, and δk for k ∈ [1, d− 1].

w(z) = v, ψqk,e(z
2d−k) = vk,e, ψqk,o(z

2d−k) = vk,o

ϕz
2d−k−1

k = uk, ζqk,e(z
2d−k) = z2

2d−k−2d · vk,e,

ζqk,o(z
2d−k) = z2

2d−k−2d · vk,o
Let E3 be the event that the above relations hold. Conditioned on E3, and since the check using Equation
34 passes, with probability 1− 2D

|F| the following hold:

41

1. ζqk,e(Y) = Y 2d−2k−1 · ψk,e(Y), and ζqk,o(Y) = Y 2d−2k−1 · ψk,o(Y).

2. Let Let ψqk(Y) = ψqk,e(Y
2) + Y · ψqk,o(Y 2). Then

w(Y)− v =
∑

k∈[1,d−1]

(
ψqk(Y

2d−k−1

) · ϕk(Y 2d−k−1

)

− xk ·
(
(ψqk(Y

2d−k−1

) · ϕk(Y 2d−k−1

)

+ ψqk(−Y 2d−k−1

) · Y
2d+1·2d−k−1

ϕk(Y 2d−k−1)
)
))

+ (Y 2d−1

− x0)q0 (38)

Since degree of ψ(Y) is at most D, from Equation 11 it follows that degrees of ζqk,e(Y) and ζqk,o(Y) are at
most D. This implies degree of ψk,e, and ψk,o is at most K/2, and hence degree of ψqk(Y) is at most K.
From Lemma 10 there exists f ∈ F≤1[X

(d)], and qk ∈ F≤1[X
(k)] for k ∈ [1, d − 1] such that Ud(f) = w(Y),

and
Ud(Xk · qk) = ψqk(Y

2d−k−1

) · ϕk(Y 2d−k−1

)

Ud(qk) = ψqk(Y
2d−k−1

) · ϕk(Y 2d−k−1

) + ψqk(−Y 2d−k−1

) · Y
2d+1·2d−k−1

ϕk(Y 2d−k−1)

Further, it is easy to construct f from w using the evaluations of w over HD. Hence, we have from Equation
38,

Ud(f)− v =
∑

k∈[0,d−1]

Ud(Xk · qk)− Ud(xk · qk)

Since Ud is a linear isomorphism, we have

f(X0, . . . , Xd−1)− v =
∑

k∈[0,d−1]

(Xk − xk) · qk(X0, . . . , Xk−1)

This implies if E can construct an compute an accepting transcript using P̃eval with probability ϵ, then it
can compute the D Fourier coefficients of an f ∈ F≤1[X0, . . . , Xd−1] such that f(x0, . . . , xd−1) = v with
probability at least ϵ(1− D

|F|)
4, which is non-negligible in λ assuming |F| ≫ λ.

C Proof of Theorem 3

Completeness: First we argue that if MωD · f = a then∏
i∈[0,D−1]

e(τ
(1,d)
i , gai2) =

∏
j∈[0,D−1]

e(mD,j , g
fj
2),

where mD,j is as computed in Step 4 of Algorithm 3. Since MωD · f = a, for all i ∈ [0, D − 1]

ai =
∑

j∈[0,D−1]

ωi·jD · fj (39)

42

Now we have the following sequence of equations.∏
j∈[0,D−1]

e(mD,j , g
fj
2) =

∏
j∈[0,D−1]

e(m
fj
D,j , g2) (40)

=
∏

j∈[0,D−1]

e(
∏

i∈[0,D−1]

((τ
(1,d)
i)ω

i·j
D)fj , g2)

=
∏

j∈[0,D−1]

e(
∏

i∈[0,D−1]

(τ
(1,d)
i)fj ·ω

i·j
D , g2)

=
∏

i∈[0,D−1]

∏
j∈[0,D−1]

e((τ
(1,d)
i)fj ·ω

i·j
D , g2)

=
∏

i∈[0,D−1]

e(
∏

j∈[0,D−1]

(τ
(1,d)
i)fj ·ω

i·j
D , g2)

=
∏

i∈[0,D−1]

e((τ
(1,d)
i)

∑
j∈[0,D−1] fj ·ω

i·j
D , g2)

=
∏

i∈[0,D−1]

e((τ
(1,d)
i)ai , g2) (41)

=
∏

i∈[0,D−1]

e((τ
(1,d)
i), gai2) (42)

Equations 40 and 42 above follows from bi-linearity of e, and Equation 41 follows from Equation 39. Hence,
it follows from the completeness of dory that in this case Vdory always accepts at Steps 2-4, and hence Vlin
accepts at Step 5.

Knowledge Soundness: Suppose P̃lin outputs Cf , Ca such that Vlin accepts with non-negligible proba-
bility in λ. This implies Vdory accepts at Steps 2-4. By knowledge soundness of Dory, there exists an extractor

that can rewind P̃lin and compute f ∈ FD, and a ∈ FD such that the following hold:

Cf =

D−1∏
i=0

e(τ
(1,d)
i , gfi2)

Ca =

n−1∏
i=0

e(τ
(1,d)
i), gai2)∏

j∈[0,D−1]

e(mD,j , g
fj
2) =

∏
i∈[0,D−1]

e(τ
(1,d)
i), gai2) (43)

Hence, it suffices to argue that MωD · f = a in this case. Suppose MωD · f ̸= a, and MωD · f = b. In the
above sequence of Equations (from Equation 40 to Equation 42) replacing a with b, it follows that∏

j∈[0,D−1]

e(mD,j , g
fj
2) =

∏
i∈[0,D−1]

e(τ
(1,d)
i), gbi2)

Hence, from Equation 43, we have∏
i∈[0,D−1]

e(τ
(1,d)
i), gai2) =

∏
i∈[0,D−1]

e(τ
(1,d)
i), gbi2)

Since a ̸= b, this implies E can efficiently compute two distinct vectors with the same AFG commitment
under commitment key τ (1,d). This contradicts SXDH with respect to bilinear group generator G .

43

D Succinct Argument of Knowledge for Inner-Pairing Products

In this section we revisit the Dory argument system from [Lee21] that allows the prover to give a succinct
proof corresponding to an inner pairing product. In particular, the prover proves there exists a vector
h ∈ GD1 , a vector s ∈ GD2 such that C =

∏
i∈[0,D−1] e(hi, si). The Dory proof system enables the prover to

iteratively prove the knowledge of h and s such that C =
∏
i∈[n] e(hi, si), Ch =

∏
i∈[0,D−1] e(hi, τ2,i), and

Cs =
∏
i∈[0,D−1] e(τ1,i, si), where τ1, and τ2 are publicly known elements. Additionally, as a special case

the Dory proof system can also be used to succinctly prove the knowledge of opening for an AFG commitment.

In Section D.1, we begin by specifying the required public parameters for the Dory proof system, and
in Section D.2, we state the Dory argument system. Finally, in Section D.3, we give state how to use Dory
argument to prove evaluations for an univariate or a multilinear polynomial.

D.1 Public Parameters

Let (p,G1,G2,GT , e, g1, g2), be a bilinear group. Let n = logN , and τ (1,j) ∈ GN/2
n−j

1 and τ (2,j) ∈ GN/2
n−j

2

for j ∈ [0, n] be publicly known vectors chosen independently and uniformly at random from G1, and G2. Let

Cτj = ⟨τ (1,j), τ (2,j)⟩, for j ∈ [0, n], and τ
(1,j)
L ∈ GN/2

n−(j+1)

1 , τ
(1,j)
R ∈ GN/2

n−(j+1)

1 denote the left and the right

halves of the vector τ (1,j), for j ∈ [0, n − 1]. Similarly, let τ
(2,j)
L ∈ GN/2

n−(j+1)

2 , τ
(2,j)
R ∈ GN/2

n−(j+1)

2 denote

the left and the right halves of the vector τ (2,j), for j ∈ [0, n − 1]. Further, let ∆
(1,j)
L = ⟨τ (1,j)L , τ (2,j+1)⟩,

∆
(1,j)
R = ⟨τ (1,j)R , τ (2,j+1)⟩, ∆(2,j)

L = ⟨τ (1,j+1), τ
(2,j)
L ⟩, ∆(1,j)

R = ⟨τ (1,j+1), τ
(2,j)
R ⟩. For j ∈ [0, n−1], the quantities

∆
(1,j)
L ,∆

(1,j)
R , ∆

(2,j)
L ,∆

(2,j)
R are pre-computed and are part of the public parameters.

Let pp←−R dory.Setup(1λ, N), where λ is security parameter, and N is the vector size-bound on h and s. Here

the public parameters pp = (ppP ,ppV), ppP = {τ (1,j), τ (2,j) | j ∈ [0, n])}, and ppV = {Cτj ,∆
(1,j)
L ,∆

(1,j)
R

∆
(2,j)
L , ∆

(2,j)
R | j ∈ [0, n− 1])}.

D.2 Dory Protocol

The Dory argument system is given in Protocol 7. pp is generated as described in Section D.1. It is an
argument of knowledge for the following relation

{C,Ch,Cs, D ≤ N | ∃h ∈ GD1 , s ∈ G2, such that

C =
∏

i∈[0,D−1]

e(hi, si), Ch =
∏

i∈[0,D−1]

e(hi, τ
(2,d)
i),

Cs =
∏

i∈[0,D−1]

e(τ
(1,d)
i , si)

The Dory protocol proceeds in d rounds (for loop at Step 2 corresponds to the d rounds), and at each round
the size of the instance is reduced by half. At the end of d rounds the size of instance is one and can be
checked trivially by the verifier (Steps 10-11). We describe one round of the argument system (that is Steps
2-9), where the instance size is reduced by half.

Round j: At the beginning of round j the verifier has knowledge of C
(j+1)
1 , C

(j+1)
2 , C

(j+1)
3 defined as

follows:
C

(j+1)
1 = ⟨h(j+1), s(j+1)⟩, C(j+1)

2 = ⟨h(j+1), τ (2,j+1)⟩,

C
(j+1)
3 = ⟨τ (1,j+1), s(2,j+1)⟩

Here, for j ∈ [0, d − 1], τ (1,j), τ (2,j) are as defined in Section D.1, and h(j) ∈ GD/2
d−j

1 , s(j) ∈ GD/2
d−j

2 .

Additionally, for round j = d − 1: h(d) = h, s(d) = s, and hence, C
(d)
1 = C,C

(d)
2 = Ch, C

(d)
3 = Cs.

44

In round j, the prover and verifier exchange messages to enable the verifier to compute C
(j)
1 , C

(j)
2 , C

(j)
3

corresponding to vectors h(j), s(j), τ (1,j), τ (2,j) using the received messages such that if the prover knows
h(j+1), s(j+1), τ (1,j+1), τ (2,j+1) then it can (efficiently) compute h(j), s(j) such that

C
(j)
1 = ⟨h(j), s(j)⟩, C(j)

2 = ⟨h(j), τ (2,j)⟩, C(j)
3 = ⟨τ (1,j), s(2,j)⟩

Ate Step 3, Pdory computes D1,L, D1,R, D2,L, D2,R as follows:

D1,L = ⟨h(j+1)
L , τ (2,j)⟩

D1,R = ⟨h(j+1)
R , τ (2,j)⟩

D2,L = ⟨τ (1,j), s(j+1)
L ⟩

D2,R = ⟨τ (1,j), s(j+1)
R ⟩ (44)

Let w1 = h(j+1)+αj · τ (1,j+1), w2 = s(j+1)+α−1
j · τ (2,j+1). At Step 5, Pdory computes sL, and sR as follows:

sL = ⟨w1,L,w2,R⟩
sR = ⟨w1,R,w2,L⟩ (45)

At Step 7, Pdory computes h(j) and s(j) as follows:

h(j) = w
βj
1,L ·w

β−1
j

1,R

s(j) = w
β−1
j

2,L ·w
βj
2,R (46)

To compute C
(j)
1 , C

(j)
2 , C

(j)
3 at Step 8, Vdory first computes ⟨w1,w2⟩

⟨w1,w2⟩ = C
(j+1)
1 · (C(j+1)

3)αj · (C(j+1)
2)α

−1
j · (⟨τ (1,j+1), τ (2,j+1)⟩)

Finally at Step 8, C
(j)
1 , C

(j)
2 , C

(j)
3 is computed as follows:

C
(j)
1 = (⟨w1,w2⟩) · s

β2
j

L · s
β−2
j

R

C
(j)
2 = D

βj
1,L · (∆

(j)
1,L)

βjαj ·Dβ−1
j

1,R · (∆
(j)
1,R)

β−1
j αj

C
(j)
3 = D

β−1
j

1,L · (∆
(j)
2,L)

β−1
j α−1

j ·Dβj
1,R · (∆

(j)
2,R)

βjα
−1
j (47)

It can be easily verified that h(j), and s(j) as defined at Step 5, and C
(j)
1 , C

(j)
2 , C

(j)
3 as defined at Step 6

satisfy

C
(j)
1 = ⟨h(j), s(j)⟩, C(j)

2 = ⟨h(j), τ (2,j)⟩, C(j)
3 = ⟨τ (1,j), s(2,j)⟩

Protocol 7: Dory Argument System

pp←−R dory.Setup(1λ, N)
accept/reject ← ⟨Pdory, Vdory⟩(pp, C, Ch, Cs, D;h, s)

1: Let C
(d)
1 = C, C

(d)
2 = Ch , C

(d)
3 = Cs, h

(d) = h, s(d) = s
2: for j = d− 1 to j = 0; j- - do
3: Pdory → Vdory: Compute D1,L, D1,R, D2,L, D2,R as given in Equation 44 and send it to Vdory.
4: Vdory → Pdory: Sample αj ∈ F and send to Pdory.

45

5: Pdory → Vdory: Compute sL, and sR as in Equation 45 and send it to Vdory
6: Vdory → Pdory: Sample βj ∈ Fp and send to Pdory.
7: Pdory: Compute h(j) and s(j) as given in Equation 46.

8: Vdory: Compute C
(j)
1 , C

(j)
2 , C

(j)
3 as given in Equation 47.

9: end for
10: Pdory → Vdory: h

(0) ∈ G1, s
(0) ∈ G2

11: Vdory: Accept if the following are true

C
(0)
1 = e(h(0), s(0)), C

(0)
2 = e(h(0), τ (2,0))

C
(0)
3 = e(τ (1,0), s(0))

D.3 Evaluation Proofs using Dory

For completeness, in this section, we also state how Dory can be used to evaluate univariate (or multilinear)
polynomial at a given point in Protocol 8. The (Fourier) coefficients of the (resp. multilinear) univariate
polynomial are committed to using the AFG commitment. In particular, Protocol 8 can be used to prove the
following relations for the univariate and multilinear evaluations respectively:

{Cf ∈ GT , D ≤ N,u ∈ F, v ∈ F | ∃f ∈ F<D[Y] such that

Cf =

D−1∏
i=0

e(τ
(1,d)
i , gfi2), and ⟨f(u) = v}

{Ca ∈ GT , d ≤ n,x ∈ Fd, y ∈ F | ∃a ∈ FD such that

Ca =

D−1∏
i=0

e(τ
(1,d)
i , gai2), and ⟨ã(x) = y}

We explain the protocol for univariate commitment scheme, and the same can be adapted for multilinear.

Protocol 8: Evaluation Proof using Dory

pp←−R dory.Setup(1λ, N)
accept/reject ← ⟨Pdory eval, Vdory eval⟩(pp, Cf , D, u, v; f)

1: Let C
(d)
1 = Cf , C

(d)
2 = ⟨τ1,d, τ2,d⟩ , C(d)

3 = ⟨τ1,d, τ2,d⟩, h(d) = τ (1,d), s(d) = gf2
2: Pdory: Compute z(d) = ⊗j∈[0,d−1](1, u

2j)

3: Vdory: Compute q(d) = gyT
4: for j = d− 1 to j = 0; j- - do
5: Pdory → Vdory: Compute θL, θR, δL, δR as given in Equations 48-49, and send it to Vdory.
6: Pdory → Vdory: Compute D1,L, D1,R, D2,L, D2,R as given in Equation 44 and send it to Vdory.
7: Vdory → Pdory: Sample αj ∈ F and send to Pdory.
8: Pdory → Vdory: Compute sL, and sR as in Equation 45 and send it to Vdory
9: Vdory → Pdory: Sample βj ∈ Fp and send to Pdory.

10: Pdory: Compute h(j) and s(j) as given in Equation 46.

11: Vdory: Compute C
(j)
1 , C

(j)
2 , C

(j)
3 as given in Equation 47.

12: Pdory: Compute z(j) = βj · z(j+1)
L + β−1

j · z
(j+1)
R

13: Vdory: Compute q(j) as in Equation 51.

46

14: end for
15: Pdory → Vdory: h

(0) ∈ G1, s
(0) ∈ G2

16: Vdory: Compute z(0) =
∏
i∈[0,d−1](βd−1−j + β−1

d−1−j · u2
j

)
17: Vdory: Accept if the following are true

C
(0)
1 = e(h(0), s(0)), C

(0)
2 = e(h(0), τ (2,0))

C
(0)
3 = e(τ (1,0), s(0))

e(gz
(0)

1 , s(0)) = q(0)

Protocol 8 is similar to Protocol 7, in the sense that it is internally running ⟨Pdory, Vdory⟩ for C = Cf ,

Ch = ⟨τ1,d, τ2,d⟩, Cs = Cf , where h = τ (1,d), s = gf2, to open the commitment to f . Hence, C
(0)
1 , C

(0)
2 ,

C
(0)
3 is set accordingly at Step 1. Most of the steps in Protocol 8 are similar to Protocol 7 and we refer to

Section D.2 for its description. The protocol involves additional steps to check f(u) = v, which is equivalent

to checking ⟨z(d), f⟩ = v, where z(d) = ⊗j∈[0,d−1](1, u
2j) and ⊗ denote the tensor product. We explain the

additional Steps 2-3, 5, 12-13, 16, and the final check at Step 17. At Step 5, Pdory computes θL, θR, δL, δR
as follows:

θL = ⟨gz
(i)
L

1 , s
(0)
R ⟩ (48)

θR = ⟨gz
(i)
R

1 , s
(0)
L ⟩ (49)

δL = ⟨gz
(i)
L

1 , τ
(2,d−j)
R ⟩ (50)

δR = ⟨gz
(i)
R

1 , τ
(2,d−j)
L ⟩ (51)

At Step 13, Vdory computes q(j) as follows

q(j) = q(j+1) · θβ
2
j

L · θ
β−2
j

R · δα
−1
j β−2

j

L · δα
−1
j β2

j

R (52)

It is easy to check that for θL, θR, δL, δR, and q(j) as defined for an honest prover we have ⟨gz(j)

1 , s(j)⟩ = q(j),
for j ∈ [0, d − 1]. Also, the tensor structure of the evaluation point is exploited by Vdory to succinctly com-

pute z(0) =
∏
i∈[0,d−1](βd−1−j + β−1

d−1−j · u2
j

) at Step 16. Hence, the verifier is succinctly able to check

e(gz
(0)

1 , s(0)) = q(0) at Step 17.

47

