
SmartZKCP: Towards Practical Data Exchange Marketplace Against
Active Attacks
Xuanming Liua,b, Jiawen Zhanga,b, Yinghao Wanga,b, Xinpeng Yanga and Xiaohu Yanga,b,∗

aZhejiang University, Hangzhou, Zhejiang, China
bThe State Key Laboratory of Blockchain and Data Security, Hangzhou, Zhejiang, China

A R T I C L E I N F O
Keywords:
Blockchain
Fair exchange
Data marketplace
Zero knowledge

A B S T R A C T
The trading of data is becoming increasingly important as it holds substantial value. A blockchain-
based data marketplace can provide a secure and transparent platform for data exchange. To facilitate
this, developing a fair data exchange protocol for digital goods has garnered considerable attention
in recent decades. The Zero Knowledge Contingent Payment (ZKCP) protocol enables trustless fair
exchanges with the aid of blockchain and zero-knowledge proofs. However, applying this protocol in
a practical data marketplace is not trivial.

In this paper, several potential attacks are identified when applying the ZKCP protocol in a practical
public data marketplace. To address these issues, we propose SmartZKCP, an enhanced solution that
offers improved security measures and increased performance. The protocol is formalized to ensure
fairness and secure against potential attacks. Moreover, SmartZKCP offers efficiency optimizations
and minimized communication costs. Evaluation results show that SmartZKCP is both practical and
efficient, making it applicable in a data exchange marketplace.

1. Introduction
The rapid increase in big data has led to the swift devel-

opment of data exchange marketplaces. Research on these
marketplaces has been extensive. A significant challenge
within the data marketplace is ensuring the fairness of data
exchanges. Consider a scenario where Alice has a Sudoku
puzzle solution 𝑠 to sell, and Bob wishes to purchase 𝑠 with
a payment 𝑣. The primary concern is how to ensure that
in an atomic exchange, Alice receives the payment from
Bob, and Bob receives the correct good 𝑠 from Alice. It has
been established that strong fairness is unattainable without
the assistance of a trusted third party (TTP) [18] until the
emergence of blockchain technology.

The Zero Knowledge Contingent Payment (ZKCP) pro-
tocol, proposed by Gregory Maxwell [15], is a blockchain-
based data exchange solution that ensures fairness in trans-
actions. In ZKCP, Alice first encrypts the digital good 𝑠 as
ciphertext 𝑧 and sends it to Bob along with the hash of the
encryption key ℎ𝑘 ∶= 𝖲𝖧𝖠𝟤𝟧𝟨(𝑘). Bob then establishes a
script called Hashed Time Lock Contract (HTLC) on the
blockchain, locking the payment 𝑣 and the hash ℎ𝑘 into
the script. The script is designed to release the payment
to Alice only if she reveals the key 𝑘 such that ℎ𝑘 =
𝖲𝖧𝖠𝟤𝟧𝟨(𝑘) within a specified time frame. Upon revealing
𝑘, Alice can claim the payment 𝑣 from the script, and Bob
can use the key to decrypt 𝑧 and obtain the good 𝑠. Here the
blockchain and the script serve as somewhat a decentralized
TTP, ensuring the fairness and atomicity of the exchange.
Furthermore, Alice must convince Bob, using an expensive
zero-knowledge (ZK) proof [19], that 𝑧 indeed contains the
desired digital good 𝑠 and that the preimage of ℎ𝑘 is the

∗The corresponding author.
hinsliu@zju.edu.cn (X. Liu); yangxh@zju.edu.cn (X. Yang)

ORCID(s):

correct encryption key, without revealing any information
about the good 𝑠. For a detailed illustration of the protocol,
refer to Figure 1.

It appears feasible to implement the ZKCP protocol
between the buyer and seller in a peer-to-peer data exchange.
However, several possible challenges emerge when applying
the protocol in a practical public data marketplace. In this
work, we identify three potential risks associated with ZKCP
in such environments:
• Risk of DoS attack. A malicious buyer might repeatedly

request goods from the seller and then cancel the trans-
action after the seller has expended significant effort in
producing the ZK proof. This behavior can deplete the
seller’s computational resources.

• Risk of data breach. In ZKCP, once the key 𝑘 is revealed,
it becomes completely public. Any eavesdropper monitor-
ing the communication channel between the buyer and the
seller could obtain the ciphertext and decrypt it with the
revealed key to access the confidential data.

• Risk of privately verified proof. In ZKCP, the proof is
verified privately by the buyer, which poses risks in a
data marketplace where reputation is crucial. A malicious
buyer may falsely claim that the seller provided incorrect
goods or proofs, potentially damaging the seller’s reputa-
tion.

Looking ahead, this work illustrated that these risks could
be exploited by malicious adversaries to disrupt the data
marketplace, adversely affecting the interests of honest par-
ticipants. Another potential optimizable point in data mar-
ketplaces is that multiple buyers may be interested in the
same digital good simultaneously. In ZKCP, this requires
the seller to generate separate proofs for different buyers,
even though the item is identical, which is inefficient. Fur-
thermore, the vanilla ZKCP uses SHA256 for hashing the

Liu et al.: Preprint submitted to Elsevier Page 1 of 11



SmartZKCP

File s
Enc   z

Φ

Key    h k

k

k

ZK
Proof

true

z h k π  zk

π  zk

HTLC

Key k

hk

or after timeout

Key k

Hash

Key k hkHash
?

π  zk

ZK Verify

z h k

z Dec  k File s

Seller Buyer

File s zEnc  k

Figure 1: An illustration of the ZKCP protocol. Here HTLC stands for Hashed Time Lock Contract, the functionality of which is
described in Fig. 3.

encryption key and employs a stream cipher derived from
SHA256 for symmetric encryption, making the generation
of ZK proofs costly.

In this work, we address both security and efficiency
concerns. For security, we analyze practical attacks on the
vanilla ZKCP protocol and propose modifications to rectify
these flaws. For efficiency, we enhance the protocol by
employing more efficient cryptographic primitives. Putting
these together, we introduce SmartZKCP, a novel fair data
exchange protocol that is particularly suited for blockchain-
based public data marketplaces. Our proposal extends the
data exchange to accommodate multi-buyer scenarios and
provides a comprehensive security analysis. We evaluate the
performance of SmartZKCP in a "Pay to Sudoku solution"
application, where it achieves an 11-65× improvement in
seller efficiency compared to the vanilla ZKCP. The per-
formance is also comparable to a seminal optimization of
ZKCP [14]. Additionally, our proposal significantly reduces
the verification overhead and communication costs relative
to [14]. The protocol is efficient, practical, and can be
implemented in any existing public blockchain.

We summarize our contributions as follows:
• We identify three potential attacks on the classical ZKCP

protocol in a practical data marketplace, provide an analy-
sis of these attacks, and address them with a new protocol.

• We introduce SmartZKCP, a secure and efficient fair data
exchange protocol that addresses the challenges identi-
fied. SmartZKCP is particularly well-suited for use in
blockchain-based public data marketplaces.

• We implement and evaluate the performance of our
proposal. Our evaluation demonstrates that the protocal
matches the efficiency of the state-of-the-art optimiza-
tions of ZKCP and is especially appropriate for data
exchanges facilitated by blockchain and smart contracts.

The rest of the paper is organized as follows. Section
2 provides the necessary background and preliminaries.
Section 3 delivers an overview of the general structure and
our security model. Section 4 details the potential attacks
on ZKCP and provides fixes for these flaws. Section 5
introduces SmartZKCP and discusses several optimizations.
Section 6 describes the implementation of SmartZKCP and
evaluates its performance. The final section concludes the
paper.
1.1. Related Works

It is well recognized that without additional assumptions,
such as a Trusted Third Party (TTP), fair exchange is un-
achievable [18]. However, the advent of blockchain technol-
ogy and smart contracts has made fair exchange feasible.
Blockchain-based fair exchanges can be classified into two
types: optimistic solutions and zero-knowledge proof based
solutions. Optimistic solutions, such as FairSwap [8, 1] and
OptiSwap [9], assume that most participants are honest and
misbehavior is infrequent. These protocols offer lightweight
fair exchange mechanisms and allow participants to submit
a “Proof of Misbehavior” to the arbiter in case of a dispute.
However, these methods may lead to delays in resolving dis-
putes if misbehavior increases, which can be unacceptable
in fast-paced exchanges. Moreover, recording these proofs
on the blockchain incurs significant storage and gas costs,
presenting a substantial burden and expense. Clearly, these
methods offer weaker fairness and higher risk compared to
zero-knowledge proof based solutions.

Zero-knowledge proof based solutions provide a higher
level of security and fairness. The pioneering solution,
ZKCP, was proposed by Maxwell [15] and employs the
Bitcoin script along with a Pinocchio [19] zero-knowledge
proof system to enable fair exchanges. Campanelli et al. [4]
revisited this proposal and identified some potential attacks

Liu et al.: Preprint submitted to Elsevier Page 2 of 11



SmartZKCP

on ZKCP. Further security analyses on ZKCP were con-
ducted in [10, 17], primarily focusing on the zero-knowledge
proof system it employs. The attacks identified in this work
have not yet been studied. A recent optimization of ZKCP,
known as ZKCPlus [14], enhances both the protocol and
the underlying zero-knowledge proof system. However, the
potential attacks identified in this work are also applicable
to ZKCPlus. Other works, such as those extending the
application of ZKCP [24], can be viewed as complementary
to our proposal.

There are other proposals [23, 5] focusing on fair data
exchange in blockchain-based marketplaces. However, these
proposals either require stronger assumptions or depend on
the support of trusted hardware, which is not necessary in
this work.

2. Preliminaries
2.1. Notation

Let 𝜆 be the security parameter. Let 𝗇𝖾𝗀𝗅(⋅) denote a
negligible function. Let 𝔾 be a cyclic group of prime order,
and a public generator of the group is defined as 𝑔. Let 𝔽 be
a finite field of prime order. “PPT” stands for probabilistic
polynomial time.
2.2. Blockchain and Smart Contract

A blockchain [16] is a distributed protocol wherein a
group of nodes collaboratively maintains a ledger, compris-
ing an ordered sequence of blocks. Each user possesses an
address, a public key and a private key. Users can initiate
transactions by signing them with their private key. Trans-
actions are grouped into blocks, which are then appended to
the ledger.

Beyond achieving consensus, many blockchains such as
[22] facilitate expressive, user-defined programs known as
smart contracts. These are stateful programs whose state
is preserved on the blockchain. In essence, the state of a
smart contract can be conceptualized as a key-value store.
Users initiate transactions to interact with a smart contract,
thereby potentially altering its state. Platforms like [22]
typically impose a fee (commonly referred to as gas) for
each computation and storage step performed. The costs are
notably high. for example, storing 1 KB of data on [22]
incurs a cost of approximately 0.008 ETH, equivalent to
around $25 at the time of this writing. Thus, minimizing on-
chain computation and storage costs remains a paramount
objective.
2.3. Succinct Non-interactive Arguments of

Knowledge
In the original ZKCP protocol, the seller utilizes Zero-

Knowledge Succinct Non-interactive Arguments of Knowl-
edge (zk-SNARKs) [12] to assure the buyer that the good in
question meets a specified property without disclosing any
details about the item itself. We provide a formal definition
of zk-SNARKs as follows:
Definition 1 (zk-SNARKs). Let  be an efficiently decid-
able binary relation, which defines the NP language  ∶=

{𝑥|∃𝑤 ∶ (𝑥,𝑤) ∈ }. Here 𝑥 is called the (public) state-
ment and 𝑤 is called the (private) witness. A zk-SNARK
consists of a triple of algorithms Π𝖹𝖪 = (𝖲𝖾𝗍𝗎𝗉, 𝖯𝗋𝗈𝗏𝖾,𝖵𝖾𝗋𝗂),
where:
• 𝖲𝖾𝗍𝗎𝗉(1𝜆,). It is the common reference string (CRS)

generation algorithm that takes input as the security pa-
rameter 𝜆 and the relation . It outputs the CRS 𝖼𝗋𝗌.

• 𝖯𝗋𝗈𝗏𝖾(𝖼𝗋𝗌, 𝑥, 𝑤). It is the proof generation algorithm that
takes input as 𝖼𝗋𝗌, the public input 𝑥, and the witness 𝑤.
It generates a proof 𝜋.

• 𝖵𝖾𝗋𝗂(𝖼𝗋𝗌, 𝑥, 𝜋). It is the verification algorithm that takes
input as 𝖼𝗋𝗌, the public input 𝑥, and the proof 𝜋. It outputs
a bit 𝑏 ∈ 0∕1 to indicate whether the proof is accepted or
not.

We say the triple of algorithms Π𝖹𝖪 = (𝖲𝖾𝗍𝗎𝗉, 𝖯𝗋𝗈𝗏𝖾,𝖵𝖾𝗋𝗂)
is a zk-SNARK if it satisfies the following properties:
• Perfect completeness. For every 𝖼𝗋𝗌 output by 𝖲𝖾𝗍𝗎𝗉, a

valid statement-witness pair (𝑥,𝑤) ∈ , the following
relation holds:

Pr

[

𝖼𝗋𝗌 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆,),
𝜋 ← 𝖯𝗋𝗈𝗏𝖾(𝖼𝗋𝗌, 𝑥, 𝑤)

∶ 𝖵𝖾𝗋𝗂(𝖼𝗋𝗌, 𝑥, 𝜋) = 1

]

= 1

• Computational knowledge soundness. For any PPT ad-
versary , there exists a PPT extractor  such that the
following probability is negligible:

Pr

[

𝖼𝗋𝗌 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆,),

((𝑥, 𝜋);𝑤) ← (𝖼𝗋𝗌,)
∶
(𝑥,𝑤) ∉ ,
𝖵𝖾𝗋𝗂(𝖼𝗋𝗌, 𝑥, 𝜋) = 1

]

• Computational zero-knowledge. For all PPT adversary
, there exists a PPT simulator 𝖲𝗂𝗆 such that:

Pr

[

𝖼𝗋𝗌 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆,),
𝜋 ← 𝖯𝗋𝗈𝗏𝖾(𝖼𝗋𝗌, 𝑥, 𝑤)

∶ (𝖼𝗋𝗌,, 𝑥, 𝜋) = 1

]

≈ Pr

[

𝖼𝗋𝗌 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆,),
𝜋 ← 𝖲𝗂𝗆(𝖼𝗋𝗌, 𝑥)

∶ (𝖼𝗋𝗌,, 𝑥, 𝜋) = 1

]

Here ≈ is used to denote the two distributions are compu-
tationally indistinguishable.

• Succinctness. We say it is succinct if the proof size |𝜋| is
of 𝗉𝗈𝗅𝗒(𝜆, |𝑥|, log |𝑤|).
In practice, the relation  is represented in a circuit 

that takes as input 𝑥 and 𝑤, and outputs 1 if and only if
(𝑥,𝑤) ∈ .
2.4. Commitment Scheme

A commitment scheme enables a party to commit to a
value and subsequently reveal it. This scheme must exhibit
both binding and hiding properties. The binding property
ensures that once a commitment is made, it cannot be altered
to reveal different values. The hiding property guarantees
that the commitment does not disclose any information about
the committed value. In this work, we utilize two algorithms
of a commitment scheme:

Liu et al.: Preprint submitted to Elsevier Page 3 of 11



SmartZKCP

• 𝖲𝖾𝗍𝗎𝗉(1𝜆). It is the public parameter generation algorithm
that takes input as the security parameter 𝜆, and outputs
the public parameter 𝗉𝗉.

• 𝖢𝗈𝗆𝗆𝗂𝗍(𝗉𝗉, 𝑚, 𝑟). It is the commitment generation algo-
rithm that takes input as the public parameter 𝗉𝗉, the mes-
sage 𝑚, and the random coin 𝑟. It generates a commitment
𝖼𝗈𝗆𝑚. When the randomness 𝑟 is out of the scope, it may
be omitted.

3. Protocol Overview
We target on designing SmartZKCP, a blockchain-based

fair data exchange protocol, to facilitate a practical data mar-
ketplace. We capture three primary entities in the protocol.
• Sellers : A seller, as a data owner, wishes to sell data

to other buyers via the marketplace. We assume that each
seller possesses a digital good 𝑠 ∈ {0, 1}𝜆 that satisfies a
specified property 𝜙(𝑠) = 1, where 𝜙 ∶ {0, 1}𝜆 → {0, 1}
is a public predicate function used to evaluate this prop-
erty. For instance, if 𝑠 represents a Sudoku solution, then
𝜙 is a Sudoku checking algorithm and 𝜙(𝑠) = 1 indicates
that 𝑠 is a valid solution to the designated Sudoku puzzle.

• Buyers : A buyer is keen on purchasing goods from
sellers and is prepared to pay a specified amount 𝑣 in
exchange for a valid good. Furthermore, we assume that
in a public marketplace, there may be multiple buyers
interested in acquiring the same good.

• The smart contract  : In the blockchain-based data
marketplace, a smart contract is utilized to facilitate the
exchange of goods between sellers and buyers. We assume
that the smart contract is tamper-resistant and accessible
to all marketplace participants.

Threat model. In this study, we address a threat model
wherein a malicious adversary may attempt to disrupt the
data exchange process. We first identify two primary adver-
saries in the data marketplace:
• Seller. A malicious seller aims to secure payment from

the buyer without delivering the correct good.
• Buyer. A malicious buyer aims to extract information

about the good from the seller without paying the agreed-
upon amount.

Beyond these primary adversaries, we also consider addi-
tional potential active threats in a practical data marketplace:
• Eavesdropper. Operating within a public blockchain-

based marketplace does not always ensure secure commu-
nication between the seller and the buyer. Consequently,
an eavesdropper might intercept their communication,
aiming to acquire information about the good without
making a payment.

• DoS attack. A malicious third party could disrupt the
data exchange process by launching a Denial of Service
(DoS) attack. For example, the adversary might request
goods from the seller and then cancel the transaction after

the seller has provided much effort, thus depleting the
seller’s computational resources. Given that the ZKCP
protocol requires the seller to expend considerable effort
to compute a proof validating the good, this attack can be
particularly damaging.

• Reputation attack. Data marketplaces operate as reputa-
tion systems, where buyers are more inclined to engage
with sellers who have a good reputation. A malicious
third party could damage an honest seller’s reputation by
falsely claiming that the seller provided incorrect goods
or proofs. This type of attack poses a significant threat to
the seller’s interests.

Protocol goals. To counteract the aforementioned adver-
saries and establish a practical data marketplace, we aim to
design SmartZKCP, a fair data exchange protocol that fulfills
the following security properties:
• Fairness. The protocol guarantees a fair data exchange

between the seller and the buyer. For buyer fairness, if
the account balance of a malicious seller ∗ increases,
then the buyer acquires knowledge of the good 𝑠, such
that 𝜙(𝑠) = 1. Regarding seller fairness, if the balance of
 does not increase, then any malicious buyer ∗ learns
nothing about 𝑠.

• Practicality. We define practicality as the protocol’s ca-
pability to defend against the outlined adversaries in a
real-world data marketplace: (i) A malicious eavesdropper
cannot gain any knowledge about the good 𝑠 from the
communication between the seller and the buyer. (ii) The
protocol resists DoS attacks, ensuring that the seller’s
computational resources are not depleted by onerous com-
putation tasks. (iii) The protocol facilitates public veri-
fication of the exchange, thus safeguarding the seller’s
reputation from potential reputation attacks.

• Efficiency. The protocol’s computational and communi-
cation costs should be optimally minimized and efficient.
Both the seller and the buyer should be able to complete
the exchange process within a reasonable time frame and
at a reasonable onchain cost.

3.1. An Overview of Workings
In this section, we provide an overview of the fair ex-

change protocol and discuss the workings of SmartZKCP.
In a data exchange, the process begins with the seller

 and the buyer  negotiating to agree on a predicate
function 𝜙, which the good 𝑠 must satisfy. After reaching
an agreement,  exchanges the good 𝑠 with  in return
for a payment 𝑣. ZKCP [3] offers a solution to the “TTP
dilemma" [18] through the use of blockchain technology.
Informally speaking, within the protocol, the seller  ini-
tially proves to the buyer  that a specific ciphertext 𝑧
indeed represents the encryption of a good 𝑠 that satisfies
the conditions specified by the predicate 𝜙, through a zk-
SNARK proof. Subsequently, the data exchange is reduced
to an atomic swap involving the decryption key 𝑘 and the

Liu et al.: Preprint submitted to Elsevier Page 4 of 11



SmartZKCP

ZK
Proof

π  zk

PTLC (Sec. 4.3)

z Dec   k File s

File s

Seller Buyer

Φ true

File s Enc   k Hash h z

k

ZK Verify

π  zk

k ?
T/F

or after timeout

Key k

Enc   (z)k'

Enc   (z)k' Dec   k' zzEnc   k

h z

k
π  zk

Figure 2: An overview of SmartZKCP.

payment 𝑣. This transaction can be efficiently managed using
a Hash Time Locked Contract (HTLC) [2] (Fig. 3).

Although the protocol achieves the predefined fairness
property (discussed in detail in Section 4.1), it possesses
several limitations. In this work, we identify three primary
challenges when applying ZKCP in a practical data ex-
change marketplace: (i) The protocol lacks privacy pro-
tection against eavesdroppers; (ii) It is susceptible to DoS
attacks; and (iii) It does not facilitate public verification of
the exchange, which is vital for reputation management in a
public marketplace. Our contribution lies in analyzing these
challenges and giving solutions to these challenges. Detailed
discussions are provided in Section 4.

With the resolution of the aforementioned threats, we
introduce SmartZKCP, a novel secure and efficient fair data
exchange protocol. As illustrated in Figure 2, SmartZKCP
adheres to the foundational principles of ZKCP, thereby pre-
serving the essential fairness property. Crucially, SmartZKCP
enhances protection against the practical threats identified
earlier, making it well-suited for real-world data market-
places. Additionally, it can be easily extended to a multi-
buyer setting, enabling the seller to distribute the same good
to multiple buyers with minimal additional burden. A de-
tailed construction of SmartZKCP is provided in Section 5.

4. Practical Attacks on ZKCP
In this section, we provide an introduction to the original

ZKCP protocol and identify potential vulnerabilities. We
then discuss strategies to address these issues, which are
further elaborated in the design of SmartZKCP.
4.1. Review ZKCP

We formalize the ZKCP protocol as following:

1. Delivery. The seller  encrypts the good 𝑠 using a key
𝑘 to generate a ciphertext 𝑧 ← 𝖤𝗇𝖼𝑘(𝑠), where 𝖤𝗇𝖼 rep-
resents a symmetric encryption function.  also commits
to the encryption key 𝑘 by setting ℎ𝑘 ← 𝖢𝗈𝗆.𝖢𝗈𝗆𝗆𝗂𝗍(𝑘).
 sends the ciphertext 𝑧, the commitment ℎ𝑘 to the buyer
.

2. Validation. The seller  uses a zk-SNARK to produce
a proof 𝜋 demonstrating the knowledge of 𝑠 and 𝑘 about
the following relation:
{(𝑥,𝑤)|𝑥 = (𝑧, ℎ𝑘), 𝑤 = (𝑠, 𝑘), (1)

𝜙(𝑠) = 1 ∧ 𝑧 = 𝖤𝗇𝖼𝑘(𝑠) ∧ 𝖢𝗈𝗆.𝖢𝗈𝗆𝗆𝗂𝗍(𝑘) = ℎ𝑘}

 also sends the proof 𝜋 to .
3. Lock. Upon receipt from  ,  first verifies the proof 𝜋

with (𝑧, ℎ𝑘). If the proof is valid,  sends (𝖫𝗈𝖼𝗄, 𝑣, ℎ𝑘) to
the functionality 𝖧𝖳𝖫𝖢, as outlined in Fig. 3, to locks the
payment 𝑣.

4. Reveal. To receive the payment,  sends (𝖱𝖾𝗏𝖾𝖺𝗅, 𝑘) to
𝖧𝖳𝖫𝖢 to disclose the encryption key 𝑘. If 𝑘 matches the
committed message, the payment 𝑣 is released to  . If
 does not reveal 𝑘 within the predefined time 𝜏,  can
reclaim the payment 𝑣.
The protocol was first implemented in Bitcoin [15],

leveraging HTLC to implement the functionality 𝖧𝖳𝖫𝖢 via
a Bitcoin script. The commitment scheme 𝖢𝗈𝗆 is realized
using the SHA256 hash function. Importantly, this pro-
tocol ensures the aforementioned fairness: Intuitively, for
the buyer fairness, after the seller reveals the encryption
key 𝑘 and obtains the payment, the buyer can decrypt the
ciphertext 𝑧 to retrieve the legitimate good 𝑠. For the seller
fairness, the buyer cannot learn any information about the
good 𝑠 without first making the payment 𝑣. However, we
will show that the protocol is vulnerable to several practical
threats in a real-world data marketplace.

Liu et al.: Preprint submitted to Elsevier Page 5 of 11



SmartZKCP

The functionality is parameterized with a commitment
scheme 𝖢𝗈𝗆 and a time duration 𝜏.

• Initialize the buyer ’s account balance 𝑣 and the
seller ’s account balance 𝑣 .

• Upon receiving (𝖫𝗈𝖼𝗄, 𝑣, ℎ𝑘) from :

– Assert 𝑣 ≥ 𝑣;
– Store ℎ𝑘 and the current timestamp 𝑡0;

• Upon receiving (𝖱𝖾𝗏𝖾𝖺𝗅, 𝑘) from :

– Get current timestamp 𝑡1 and assert 𝑡1 ≤ 𝑡0 + 𝜏;
– Assert 𝖢𝗈𝗆.𝖢𝗈𝗆𝗆𝗂𝗍(𝑘) = ℎ𝑘;
– Set 𝑣 ∶= 𝑣 + 𝑣;
– Set 𝑣 ∶= 𝑣 − 𝑣;
– Send 𝑘 to ;

The functionality 𝖧𝖳𝖫𝖢

Figure 3: The functionality of HTLC 𝖧𝖳𝖫𝖢.

4.2. Attack ZKCP
Recall our threat model where an eavesdropper can ob-

serve all messages communicated between the buyer and the
seller, and a malicious third party may attempt to disrupt the
data marketplace by launching DoS and reputation attacks
for its own interests. In this section, we identify three attacks
that are not only possible in a real-world data marketplace
but also detrimental to the practicality of the data exchange
protocol.

Reputation attack. In the protocol, the proof 𝜋 is sent
to the buyer  who verifies it independently.  can then
decide whether to proceed with the exchange based on the
validity of the proof. In a reputation-aware data marketplace,
 also has the option to report a seller providing a false
proof or an invalid good, which could negatively impact the
seller’s reputation. However, a potential issue arises if an
adversarial buyer ′ consistently claims that the provided
proofs are invalid, even when they are correct, with the
intention of damaging the seller’s reputation. Since the proof
is only verified by ′, the seller  must undertake additional
efforts to affirm the correctness of the proof to other potential
buyers.

DoS attack. To sell a digital good, the seller  always
needs to initially generate a zk-SNARK proof to demonstrate
the validity of the good 𝑠 and prove the knowledge of a
unique key 𝑘, which is a computationally intensive task. In
contrast, the buyer  does not expend much effort to verify
the proof. This process is vulnerable to exploitation by an
adversary: an attacker could pose as different buyers and
repeatedly request proof of the good from the seller and
cancel the transaction after receiving the proof, significantly
draining the seller’s computational resources. This type of
attack, known as a DoS attack, is common in real-world sce-
narios and can be particularly effective in a data marketplace,
especially when the seller is a resource-constrained device.

Eavesdropper’s attack. In the ZKCP protocol, the en-
crypted good 𝑧 is initially delivered to the buyer  through
a private channel, and  can decrypt the ciphertext using
the revealed key 𝑘 after making the payment. However,
since the key 𝑘 is publicly revealed on a blockchain, any
adversary can also obtain this key. Thus, if an eavesdropper
controls the communication channel between and , it can
acquire the good 𝑠 without making any payment through the
following steps: The eavesdropper first silently intercepts the
ciphertext 𝑧, waits for  to reveal the key 𝑘, and then uses it
to decrypt the ciphertext 𝑧 and immediately obtain the good.
A similar attack is also noticed by [21].

The first and second attacks are particularly prevalent.
Regarding the third attack, it is important to note that in
real-world data marketplaces, peer-to-peer communication
is not always secure. Consequently, these attacks are tangible
and significantly impact the practicality of the data exchange
protocol. It is noticed that these attacks are also applicable
to the optimized version of ZKCP, such as [14].
4.3. Fix ZKCP

We now discuss how to address the aforementioned
flaws. For clarity, we will outline strategies to counter each
attack in this section and defer the detailed construction of
SmartZKCP to the next section.

To mitigate the reputation attack, we note that verifying
the proof 𝜋 through a smart contract, rather than by the buyer
 alone, can be an effective strategy. This method ensures
public verification of the proof, preventing an adversary
from falsely denying an accepted proof and thus protect-
ing the seller’s reputation. However, it introduces a new
challenge: verifying the proof related to Relation 1 onchain
requires the smart contract to read the entire ciphertext 𝑧.
Given that read operations are costly in terms of gas fees, this
approach could incur significant expenses and potentially
render the protocol impractical due to the high gas costs.

To minimize the gas cost, we suggest that the seller 
generate a proof for a new relation (instead of Relation 1):
{(𝑥,𝑤)|𝑥 = (ℎ𝑧, 𝑘), 𝑤 = 𝑠, (2)

𝜙(𝑠) = 1 ∧ 𝖢𝗈𝗆.𝖢𝗈𝗆𝗆𝗂𝗍(𝖤𝗇𝖼𝑘(𝑠)) = ℎ𝑧}

The distinction from Relation 1 lies in the fact that the
seller commits to the ciphertext 𝑧 = 𝖤𝗇𝖼𝑘(𝑠) rather than the
encryption key 𝑘. To verify a proof related to this relation,
the only information to publish to the smart contract is the
commitment ℎ𝑧 of the ciphertext 𝑧. This commitment can
be instantiated as a hash, which is significantly smaller than
the ciphertext itself, thereby making onchain verification
feasible. Subsequently, the fair exchange is simplified to
an atomic swap that involves exchanging the decryption
key 𝑘, and the valid proof 𝜋 for the payment 𝑣. To enable
this atomic swap, we introduce a novel primitive termed
Proof Time Lock Contract (PTLC) for the first time in the
literature, which is adapted from HTLC. The functionality
of the PTLC is illustrated in Fig. 4.

The following modifications are made to the original
ZKCP protocol (Sec. 4.1): We swap the order of Step 2 and

Liu et al.: Preprint submitted to Elsevier Page 6 of 11



SmartZKCP

The functionality is parameterized with a zk-SNARK
scheme Π𝖹𝖪 (along with the CRS 𝖼𝗋𝗌) and a time
duration 𝜏.

• Initialize the buyer ’s account balance 𝑣 and the
seller ’s account balance 𝑣 .

• Upon receiving (𝖫𝗈𝖼𝗄, 𝑣, ℎ𝑧) from :

– Assert 𝑣 ≥ 𝑣;
– Store ℎ𝑧 and the current timestamp 𝑡0;

• Upon receiving (𝖱𝖾𝗏𝖾𝖺𝗅, 𝑘, 𝜋) from :

– Get current timestamp 𝑡1 and assert 𝑡1 ≤ 𝑡0 + 𝜏;
– Assert Π𝖹𝖪.𝖵𝖾𝗋𝗂(𝖼𝗋𝗌, (ℎ𝑧, 𝑘), 𝜋) = 1;
– Set 𝑣 ∶= 𝑣 + 𝑣;
– Set 𝑣 ∶= 𝑣 − 𝑣;
– Send 𝑘 to ;

The functionality 𝖯𝖳𝖫𝖢

Figure 4: The functionality of PTLC 𝖯𝖳𝖫𝖢.

Step 3, such that the buyer locks the payment before the seller
generates the proof. During the Reveal phase (Step 4), 
sends (𝖱𝖾𝗏𝖾𝖺𝗅, 𝑘, 𝜋) to the PTLC, which verifies the proof
𝜋, instead of directly to , and then disburses the payment
to  .

We also notice that swapping the order of Step 2 and
Step 3 can effectively mitigate the DoS attack. Recall that
the DoS attack originates from the requirement for the seller
 to generate a computationally intensive zk-SNARK proof
at the beginning of each exchange, while the buyer  incurs
minimal costs until the payment is locked. By reversing
the order of Step 2 and Step 3,  must lock the payment
before  generates the proof. This modification necessitates
 to invest a significant amount of money to initiate a DoS
attack, thereby deterring the adversary. Furthermore, in our
modified protocol, once the  has locked the payment, an
honest  can generate the proof to redeem the payment,
thereby ensuring that the computational resources of the
seller are not wasted.

Finally, to counteract the eavesdropper’s attack, we pro-
pose to adopt a double encryption [13]. More specifically,
in the Delivery step, the seller  computes and delivers the
ciphertext 𝑐 ← 𝖤𝗇𝖼𝑘′ (𝖤𝗇𝖼𝑘(𝑠)). In this scheme, 𝑘 serves
its original purpose, and 𝑘′ is a new key, negotiated by 
and  through a classical STS key agreement protocol [6].
Intuitively, the second layer of encryption ensures that the
eavesdropper cannot decrypt the ciphertext without knowing
𝑘′. Given that the STS key agreement protocol is secure
against eavesdroppers, this strategy effectively mitigates the
eavesdropper’s attack. In the following section, we will
present a detailed construction of SmartZKCP, which in-
cludes a description of the key agreement protocol as well.

5. Construction of SmartZKCP
We now summarize our corrections and give the con-

struction of SmartZKCP, a novel blockchain-based fair data
exchange protocol suitable for practical data marketplaces.
In this protocol, the commitment scheme 𝖢𝗈𝗆 is imple-
mented using a hashing function 𝖧, and the functionality
𝖯𝖳𝖫𝖢 is realized through a smart contract  . A detailed
description of the protocol is provided in Figure 5. In the
protocol, the parties first execute an STS key agreement
protocol to generate a shared key 𝑘′, which is used in the
double encryption of the good 𝑠. It is important to note that
in this phase, both the seller and buyer require a public key
pair for digital signatures. Given that the protocol operates
on a public blockchain, users can directly utilize the key pairs
associated with their blockchain accounts. The core idea of
the remainder of the protocol is to place the validation on the
blockchain, where the proof is verified by the smart contract.
The security analysis of the protocol is deferred to Sec. 5.3.
5.1. Instantiation and Optimization

In the actual implementation, we employ the Groth16
zk-SNARK [12] to instantiate Π𝖹𝖪, owing to its concise
proof size and efficient verification process. Additionally,
the elliptic curve used in Groth16 is natively supported by
blockchains such as Ethereum [22]. However, we point out
that Π𝖹𝖪 can also be instantiated with other proof systems
with succinct proof size and efficient verification algorithm.

To instantiate the encryption and hashing schemes, an
important criterion is the efficiency of the cryptographic
primitives in the context of circuit representation. Tradi-
tional hashing functions, such as SHA256, are “unfriendly”
for circuit representation due to their extensive require-
ment for bitwise operations. In this work, we instantiate
the hashing function with POSEIDON [11], which is both
efficient and optimized for zk-SNARKs. To maintain the
hiding property of commitment scheme, a randomness is
added to the input of the hashing function as well. For
the symmetric encryption scheme, we use Ciminion [7], a
lightweight symmetric encryption scheme that minimizes
the number of multiplication gates required in a circuit.
By combining these two schemes, we achieve an efficient
instantiation of the encryption and hashing functions in our
protocol.
5.2. Dealing with Multiple Buyers

In this section, we explore extending SmartZKCP to a
“multiple buyer” scenario. In real-world data marketplaces,
it is common for multiple buyers to be interested in the same
item. A naive approach would involve the seller running the
SmartZKCP protocol individually with each buyer. How-
ever, this method is inefficient and time-consuming, as it
requires the seller to generate a separate proof for each buyer,
despite the item being identical.

An important observation is that the Relation 2 to be
proved consists of two parts: the predicate function 𝜙(𝑠) = 1
for the good 𝑠, and the commitment for the ciphertext 𝑧. Typ-
ically, proving the predicate function 𝜙(𝑠) = 1 consumes the

Liu et al.: Preprint submitted to Elsevier Page 7 of 11



SmartZKCP

Let 𝔽 be a finite field and 𝔾 be a cyclic group with a public generator 𝑔. Let 𝖧 be a hashing function, 𝖤𝗇𝖼 be a
symmetric encryption scheme, Π𝖹𝖪 be a zk-SNARK and  be a smart contract that realizes 𝖯𝖳𝖫𝖢. Before the
protocol, the parities run Π𝖹𝖪.𝖲𝖾𝗍𝗎𝗉 to generate the CRS 𝖼𝗋𝗌 according to Relation 2. The fair data exchange between
 and , consists of the following steps:

1. Key Generation.  and  run an STS key agreement protocol to generate a shared key 𝑘′.

•  randomly samples 𝑎
$
← 𝔽 and computes 𝑔𝑎 to send to .

•  randomly samples 𝑏
$
← 𝔽 and computes 𝑘′ = 𝑔𝑎𝑏.  responses with 𝑔𝑏 and a token 𝖤𝗇𝖼𝑘′ (𝖲(𝑔𝑎, 𝑔𝑏)) where

𝖲(𝑔𝑎, 𝑔𝑏) is the signature of 𝑔𝑎, 𝑔𝑏 signed by ’s private key.
•  computes 𝑘′ = 𝑔𝑎𝑏, decrypts the token and verifies ’s signature.  responses with a token 𝖤𝗇𝖼𝑘′ (𝖲 (𝑔𝑎, 𝑔𝑏))

where 𝖲𝑆 (𝑔𝑎, 𝑔𝑏) is the signature of 𝑔𝑎, 𝑔𝑏 signed by ’s private key.
•  similarly verifies ’s signature.

2. Delivery.

•  randomly samples a key 𝑘
$
← 𝔽 .  encrypts the good 𝑠 with the key 𝑘 and obtains the ciphertext 𝑧 ← 𝖤𝗇𝖼𝑘(𝑠).

 commits to 𝑧 as ℎ𝑧 ← 𝖧(𝑧).
•  double encrypts the ciphertext 𝑧 with the key 𝑘′ and obtains the ciphertext 𝑐 ← 𝖤𝗇𝖼𝑘′ (𝑧).
•  sends 𝑐, ℎ𝑧 to .

3. Lock.

•  uses the key 𝑘′ to decrypt the ciphertext 𝑐 and obtains 𝑧 ∶= 𝖤𝗇𝖼𝑘(𝑠).  computes 𝖧(𝑧) and checks if it
matches ℎ𝑧.

• If the check passes,  sends (𝖫𝗈𝖼𝗄, 𝑣, ℎ𝑧) to  to lock the payment 𝑣.

4. Validation & Reveal.

•  checks the consistency between the hash published by  and ℎ𝑧.
•  runs Π𝖹𝖪.𝖯𝗋𝗈𝗏𝖾(𝖼𝗋𝗌, (ℎ𝑧, 𝑘), 𝑠) to generate a proof 𝜋.
•  sends (𝖱𝖾𝗏𝖾𝖺𝗅, 𝑘, 𝜋) to  . If the proof is valid, the payment 𝑣 is released to . If  does not reveal 𝑘, 𝜋 within

the predefined time 𝜏,  can reclaim the payment 𝑣.

The Protocol of SmartZKCP

Figure 5: The SmartZKCP protocol.

most time. Thus, our proposal is to generate a single proof for
the predicate function 𝜙(𝑠) = 1 and use it for convincing all
buyers. In each individual transaction with a buyer, the seller
would only need to prove the correctness of the commitment
and encryption, which involves the knowledge of different
keys. These two phases are linked by the commitment ℎ𝑠 of
the good 𝑠.

Specifically, in transactions involving multiple buyers,
the seller  first generates a proof 𝜋𝜙 for the following
relation:

{(𝑥,𝑤)|𝑥 = ℎ𝑠, 𝑤 = 𝑠,
𝜙(𝑠) = 1 ∧ 𝖧(𝑠) = ℎ𝑠}

where ℎ𝑠 represents the commitment (e.g., a hashing digest)
of the good 𝑠.  can publish this proof to a specified
smart contract for validation. Thereafter, in each individual
transaction with a buyer 𝑖,  generates a proof 𝜋𝑖 for the
following relation:

{(𝑥,𝑤)|𝑥 = (ℎ𝑧𝑖 , ℎ𝑠, 𝑘𝑖), 𝑤 = 𝑠,

𝖧(𝖤𝗇𝖼𝑘𝑖 (𝑠)) = ℎ𝑧𝑖 ∧ 𝖧(𝑠) = ℎ𝑠}

where 𝑧𝑖, ℎ𝑧𝑖 represents the ciphertext (encrypted by a key
𝑘𝑖) and corresponding commitment for the buyer 𝑖. With
these two proofs linked by the commitment ℎ𝑠, a buyer
can be convinced of the good’s validity. In this approach,
the  only needs to expend effort to generate a proof for
the predicate function once, which significantly reduces
the computational overhead for the seller in a multi-buyer
scenario.
5.3. Security Analysis

In this section, we give a security analysis of SmartZKCP
against various adversaries in a practical data marketplace.
We will consider potential threats defined in Sec. 3.
5.3.1. Malicious Seller and Buyer

We first formalize the definition of fairness through the
following definition:
Definition 2 (Fairness). A data exchange protocol is fair if
it satisfies:
• Buyer fairness. For any malicious seller ∗, if its account

balance increases with non-negligible possibility, then the

Liu et al.: Preprint submitted to Elsevier Page 8 of 11



SmartZKCP

honest buyer learns 𝑠 such that𝜙(𝑠) = 1with possibility
1.

• Seller fairness. For any malicious buyer ∗, if the account
balance of the honest seller  does not increase, then ∗

learns no information about 𝑠.
The above definition has captured potential attacks from
malicious sellers and buyers. We now prove that the protocol
depicted in Fig. 5 satisfies the fairness property.
Theorem 1. If the underlying zk-SNARK Π𝖹𝖪 satisfies per-
fect completeness, computational knowledge soundness and
computational zero-knowledge, and the commitment scheme
𝖢𝗈𝗆 is hiding and biding, the SmartZKCP protocol satisfies
the fairness property.

For buyer fairness, if a malicious seller ∗ increases its
account balance, then it must be the case that in Step 4 the
contract  receives (𝑘, 𝜋) such that

Π𝖹𝖪.𝖵𝖾𝗋𝗂(𝖼𝗋𝗌, (ℎ𝑧, 𝑘), 𝜋) = 1

Due to the computational knowledge soundness of Π𝖹𝖪,
there exists an extractor  that can output 𝑠′ such that

𝜙(𝑠′) = 1 ∧ 𝖧(𝖤𝗇𝖼𝑘(𝑠′)) = ℎ𝑧
except for negligible probability. If the buyer  does not
learn 𝑠′, then it must be the case ∗ finds some (𝑠, 𝑘) such
that 𝑠 is different from 𝑠′ but 𝖧(𝖤𝗇𝖼𝑘(𝑠)) = ℎ𝑧. This breaks
the binding property of 𝖧 or the security of 𝖤𝗇𝖼.

For seller fairness, if an honest seller  does not increase
its account balance, then it must be the case that a malicious
buyer ∗ aborts after the delivery in Step 2. Due to the
zero-knowledge property of Π𝖹𝖪, ∗ learns nothing about
𝑠. Moreover, ∗ cannot learn anything from the ciphertext 𝑧
due to the hiding property of 𝖧 and the security of 𝖤𝗇𝖼.
5.3.2. Practical Attacks

We now analyze the security of SmartZKCP against
other practical attacks mentioned in Section 4.2.

In SmartZKCP, since the proof is verified by the smart
contract, a reputation attack is no longer feasible. After the
seller publishes a valid proof, the contract automatically
releases the payment to the seller, thereby protecting the
seller’s reputation.

The eavesdropper attack is also mitigated in SmartZKCP.
The STS key agreement protocol (Step 1 in Fig. 5) is secure
against eavesdroppers and ensures that the eavesdropper
cannot learn the shared key 𝑘′ between the seller and the
buyer. In SmartZKCP, an eavesdropper can only observe the
double encrypted ciphertext 𝑐, rather than 𝑧. Without 𝑘′, the
eavesdropper cannot decrypt 𝑐 to learn 𝑠.

Finally, the DoS attack is avoided in SmartZKCP. In
the protocol, the burdensome proof generation occurs in
Step 4, after the buyer locks the payment. Consequently, the
buyer must lock the payment as a prerequisite to requesting
the proof. Moreover, once the payment is locked, the buyer
cannot abort the process. An honest seller can then provide a
valid proof to claim the payment, thereby compensating for
the effort involved in generating the proof.

6. Evaluation
We implement our protocol and evaluate it in specified

data exchange scenarios. The circuits are implemented using
the Circom library1, and a proof is generated by a Groth16
zk-SNARK. To instantiate the circuit, we employ Ciminion
symmetric encryption and the POSEIDON hashing func-
tion, as detailed in Section 5.1. We implement and deploy the
smart contract on a private Ethereum blockchain. All exper-
iments are conducted on an Ubuntu 20.04 system equipped
with a 2.50 GHz AMD EPYC 7K83 64-Core Processor and
16 GB of RAM.

In the benchmark, we mainly focus on the efficiency of
generating a zk-SNARK proof, as this is the most burden-
some task in the protocol. The evaluations primarily focus
on the following research questions: Is our protocol efficient
for practical fair data exchange? To answer this question,
we conduct two groups of experiments: (i) Benchmark the
proof generation against the vanilla ZKCP protocol [20], and
(ii) Benchmark the whole protocol against ZKCPlus [14],
which represents a state-of-the-art optimization of ZKCP.
We select a “Pay to Sudoku” scenario where the good 𝑠 to
be exchanged is “a solution to a Sudoku puzzle” and 𝜙 is the
corresponding Sudoku verification algorithm.
6.1. Comparison with ZKCP

The initial comparison involves the proof generation
between SmartZKCP and the vanilla ZKCP protocol in the
context of “Pay to 16×16 Sudoku”. We analyze the overhead,
including the setup time, the proving time, the proof size,
and the verify time. For SmartZKCP, we benchmark in
both single-thread and multi-thread modes. The results are
displayed in Table 1.

Compared to ZKCP, our proposal demonstrates signif-
icant improvements in proving time, proof size, and veri-
fication time. This is due to (i) SmartZKCP’s use of the
more efficient Groth16 zk-SNARK, compared to ZKCP’s
Pinocchio zk-SNARK [19], and (ii) the adoption of more
efficient symmetric encryption and hashing functions in
SmartZKCP. In single-thread mode, SmartZKCP is 11-65×
more efficient than ZKCP during the proving phase, under-
scoring the efficiency and practicality of SmartZKCP.
6.2. Comparison with ZKCPlus

ZKCPlus [14] represents a state-of-the-art optimization
of ZKCP, enhancing both the protocol’s procedures and its
underlying proof system. It offers two versions: ordinary
and succinct. The ordinary version facilitates faster proof
generation but results in larger proof sizes, while the succinct
version yields smaller proofs albeit requiring more time for
proof generation. In the second experiment, we compare the
costs of the entire protocol from [14] and our proposal across
various scales of Sudoku puzzles, defined as data entries
ranging from 10 to 10,000. All the tests are conducted in
a single-thread setting. Our primary focus is on the seller’s

1https://github.com/iden3/circom

Liu et al.: Preprint submitted to Elsevier Page 9 of 11

https://github.com/iden3/circom


SmartZKCP

Table 1
Comparison with ZKCP in a scenario “Pay to 16 × 16 Sudoku solution”. The superscript 𝑠 denotes a single-thread benchmark,
and 𝑚 denotes a multi-thread benchmark.

Protocol Constraints CRS size (MB) Setup Time (s) Proving Time(s) Proof Size (KB) Verify Time (ms)

ZKCP 236522 69.75 39.18 15 0.29 27

SmartZKCP𝑠 46112 22 2.87 1.37 0.28 2

SmartZKCP𝑚 46112 22 0.7 0.48 0.28 2

(a) The seller’s proving cost. (b) The verification cost.
Figure 6: Comparison between SmartZKCP and ZKCPlus, varying the scale of Sudoku puzzle.

proving overhead, the verification overhead (in [14], verifi-
cation is conducted by the buyer, akin to the vanilla ZKCP),
and the total communication cost.

Computation overhead. Figure 6 provides a compari-
son between ZKCPlus and our proposal. The seller’s proving
cost of our proposal is comparable to that of ZKCPlus.
Regarding verification costs, the figure shows our protocol
maintains a stable rate at approximately 2ms, whereas ZKC-
Plus experiences a rapid increase as the data volume grows.
This disparity originates from the different zk-SNARKs
utilized by the two protocols, making the verification in
SmartZKCP feasible in a smart contract.

Communication overhead. We also compare the total
communication cost of the two protocols, primarily con-
sisting of the proof 𝜋 and the ciphertext. We present the
comparison between the two protocols involving a 36 ×
36 Sudoku puzzle in Table 2 and analyze the percentage
breakdown in Figure 7. The total communication cost for our
proposal is only 32.82 KB, with the proof size accounting for
only 0.8%, while ZKCPlus (Succinct) incurs a cost of 69 KB,
with the proof size constituting 46%. Notably, the proof size
for ZKCPlus increases dramatically, even surpassing the size
of the ciphertext, rendering it impractical for large-scale data
exchanges. The small communication cost of our proposal
makes it more suitable for deployment in a blockchain-based
data marketplace.

Figure 7: The percentage breakdown of the communication
cost in a scenario “Pay to 36 × 36 Sudoku solution”.

7. Conclusion
In this work, we identify three practical attacks on the

classic ZKCP protocol and propose SmartZKCP, a secure
and efficient fair data exchange protocol that addresses these
challenges. Our proposal is particularly well-suited for use
in a blockchain-based public data marketplace. Additionally,
we extend the data exchange to accommodate a multiple-
buyer setting and provide a security analysis of our proposal.
Our evaluations demonstrate that SmartZKCP is both effi-
cient and practical, making it suitable for implementation in
any existing public blockchain.

Liu et al.: Preprint submitted to Elsevier Page 10 of 11



SmartZKCP

Table 2
Comparison with ZKCPlus in a scenario “Pay to 36 × 36 Sudoku solution”. Here the size column represents the size of each item,
and the takes column indicates the percentage that each item contributes.

ZKCPlus(ordinary) ZKCPlus(succinct) SmartZKCP

size (KB) takes size (KB) takes size (KB) takes

Proof 170.66 82% 31.9 46% 0.28 0.8%

Ciphertext of data 33.34 16% 33.34 48% 32 97.5%

Others 4.12 4% 4.12 6% 0.54 1.7%

Total 208.12 69.36 32.82

References
[1] Avizheh, S., Haffey, P., Safavi-Naini, R., 2022. Privacy-preserving

FairSwap: Fairness and privacy interplay. PoPETs 2022, 417–439.
doi:10.2478/popets-2022-0021.

[2] Bitcoin Wiki, 2024a. Hash time locked contracts. URL: https:

//en.bitcoin.it/wiki/Hash_Time_Locked_Contracts.
[3] Bitcoin Wiki, 2024b. Zero knowledge contingent payment. URL:

https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment.
[4] Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L., 2017. Zero-

knowledge contingent payments revisited: Attacks and payments for
services, in: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D.
(Eds.), ACM CCS 2017, ACM Press. pp. 229–243. doi:10.1145/
3133956.3134060.

[5] Dai, W., Dai, C., Choo, K.K.R., Cui, C., Zou, D., Jin, H., 2019. Sdte: A
secure blockchain-based data trading ecosystem. IEEE Transactions
on Information Forensics and Security 15, 725–737.

[6] Diffie, W., 1988. The first ten years of public-key cryptography.
Proceedings of the IEEE 76, 560–577. doi:10.1109/5.4442.

[7] Dobraunig, C., Grassi, L., Guinet, A., Kuijsters, D., 2021. Ciminion:
Symmetric encryption based on Toffoli-gates over large finite fields,
in: Canteaut, A., Standaert, F.X. (Eds.), EUROCRYPT 2021, Part II,
Springer, Heidelberg. pp. 3–34. doi:10.1007/978-3-030-77886-6_1.

[8] Dziembowski, S., Eckey, L., Faust, S., 2018. FairSwap: How to fairly
exchange digital goods, in: Lie, D., Mannan, M., Backes, M., Wang,
X. (Eds.), ACM CCS 2018, ACM Press. pp. 967–984. doi:10.1145/
3243734.3243857.

[9] Eckey, L., Faust, S., Schlosser, B., 2020. OptiSwap: Fast optimistic
fair exchange, in: Sun, H.M., Shieh, S.P., Gu, G., Ateniese, G.
(Eds.), ASIACCS 20, ACM Press. pp. 543–557. doi:10.1145/3320269.
3384749.

[10] Fuchsbauer, G., 2019. WI is not enough: Zero-knowledge contingent
(service) payments revisited, in: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (Eds.), ACM CCS 2019, ACM Press. pp. 49–62. doi:10.1145/
3319535.3354234.

[11] Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger,
M., 2021. Poseidon: A new hash function for zero-knowledge proof
systems, in: Bailey, M., Greenstadt, R. (Eds.), USENIX Security
2021, USENIX Association. pp. 519–535.

[12] Groth, J., 2016. On the size of pairing-based non-
interactive arguments, in: Fischlin, M., Coron, J.S. (Eds.),
EUROCRYPT 2016, Part II, Springer, Heidelberg. pp. 305–326.
doi:10.1007/978-3-662-49896-5_11.

[13] Hoang, V.T., Tessaro, S., 2017. The multi-user security of
double encryption, in: Coron, J.S., Nielsen, J.B. (Eds.), EURO-
CRYPT 2017, Part II, Springer, Heidelberg. pp. 381–411. doi:10.
1007/978-3-319-56614-6_13.

[14] Li, Y., Ye, C., Hu, Y., Morpheus, I., Guo, Y., Zhang, C., Zhang, Y.,
Sun, Z., Lu, Y., Wang, H., 2021. ZKCPlus: Optimized fair-exchange
protocol supporting practical and flexible data exchange, in: Vigna,
G., Shi, E. (Eds.), ACM CCS 2021, ACM Press. pp. 3002–3021.
doi:10.1145/3460120.3484558.

[15] Maxwell, G., 2016. The first successful zero-knowledge con-
tingent payment. URL: https://bitcoincore.org/en/2016/02/26/

zero-knowledge-contingent-payments-announcement/.
[16] Nakamoto, S., 2008. Bitcoin: A peer-to-peer electronic cash system.

URL: https://bitcoin.org/bitcoin.pdf. accessed: 2015-07-01.
[17] Nguyen, K., Ambrona, M., Abe, M., 2020. WI is almost enough:

Contingent payment all over again, in: Ligatti, J., Ou, X., Katz, J.,
Vigna, G. (Eds.), ACM CCS 2020, ACM Press. pp. 641–656. doi:10.
1145/3372297.3417888.

[18] Pagnia, H., Gärtner, F.C., et al., 1999. On the impossibility of fair
exchange without a trusted third party. Technical Report. Citeseer.

[19] Parno, B., Howell, J., Gentry, C., Raykova, M., 2013. Pinocchio:
Nearly practical verifiable computation, in: 2013 IEEE Symposium
on Security and Privacy, IEEE Computer Society Press. pp. 238–252.
doi:10.1109/SP.2013.47.

[20] Sean Bowe, 2016. Implementation of pay-to-sudoku. URL: https:
//github.com/zcash-hackworks/pay-to-sudoku.

[21] Song, R., Gao, S., Song, Y., Xiao, B., 2022. Zkdet: A traceable
and privacy-preserving data exchange scheme based on non-fungible
token and zero-knowledge, in: Proceedings - 2022 IEEE 42nd In-
ternational Conference on Distributed Computing Systems, ICDCS
2022, Institute of Electrical and Electronics Engineers Inc.. pp. 224–
234. doi:10.1109/ICDCS54860.2022.00030. funding Information: AC-
KNOWLEDGEMENT This work was partially supported by the HK
RGC GRF PolyU No. 15216220 and 15217321. Publisher Copyright:
© 2022 IEEE.; 42nd IEEE International Conference on Distributed
Computing Systems, ICDCS 2022 ; Conference date: 10-07-2022
Through 13-07-2022.

[22] Wood, G., 2017. Ethereum: A secure decentralised generalised
transaction ledger eip-150 revision (759dccd - 2017-08-07). URL:
https://ethereum.github.io/yellowpaper/paper.pdf. accessed: 2018-
01-03.

[23] Zheng, X., 2020. Data trading with differential privacy in data market,
in: Proceedings of 2020 6th International Conference on Computing
and Data Engineering, pp. 112–115.

[24] Zhou, Z., Cao, X., Liu, J., Zhang, B., Ren, K., 2021. Zero knowledge
contingent payments for trained neural networks, in: Bertino, E.,
Shulman, H., Waidner, M. (Eds.), ESORICS 2021, Part II, Springer,
Heidelberg. pp. 628–648. doi:10.1007/978-3-030-88428-4_31.

Liu et al.: Preprint submitted to Elsevier Page 11 of 11

http://dx.doi.org/10.2478/popets-2022-0021
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
http://dx.doi.org/10.1145/3133956.3134060
http://dx.doi.org/10.1145/3133956.3134060
http://dx.doi.org/10.1109/5.4442
http://dx.doi.org/10.1007/978-3-030-77886-6_1
http://dx.doi.org/10.1145/3243734.3243857
http://dx.doi.org/10.1145/3243734.3243857
http://dx.doi.org/10.1145/3320269.3384749
http://dx.doi.org/10.1145/3320269.3384749
http://dx.doi.org/10.1145/3319535.3354234
http://dx.doi.org/10.1145/3319535.3354234
http://dx.doi.org/10.1007/978-3-662-49896-5_11
http://dx.doi.org/10.1007/978-3-319-56614-6_13
http://dx.doi.org/10.1007/978-3-319-56614-6_13
http://dx.doi.org/10.1145/3460120.3484558
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1145/3372297.3417888
http://dx.doi.org/10.1145/3372297.3417888
http://dx.doi.org/10.1109/SP.2013.47
https://github.com/zcash-hackworks/pay-to-sudoku
https://github.com/zcash-hackworks/pay-to-sudoku
http://dx.doi.org/10.1109/ICDCS54860.2022.00030
https://ethereum.github.io/yellowpaper/paper.pdf
http://dx.doi.org/10.1007/978-3-030-88428-4_31

