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Abstract

Collaborative zk-SNARK (USENIX’22) allows multiple parties to jointly create a zk-SNARK proof over dis-
tributed secrets (also known as the witness). It provides a promising approach to proof outsourcing, where a
client wishes to delegate the tedious task of proof generation to many servers from different locations, while en-
suring no corrupted server can learn its witness (USENIX’23). Unfortunately, existing work remains a significant
efficiency problem, as the protocols rely heavily on a particularly powerful server, and thus face challenges in
achieving scalability for complex applications.

In this work, we address this problem by extending the existing zk-SNARKs Libra (Crypto’19) and Hyper-
Plonk (Eurocrypt’23) into scalable collaborative zk-SNARKs. Crucially, our collaborative proof generation does
not require a powerful server, and all servers take up roughly the same proportion of the total workload. In this
way, we achieve privacy and scalability simultaneously for the first time in proof outsourcing. To achieve this, we
develop an efficient MPC toolbox for a number of useful multivariate polynomial primitives, including sumcheck,
productcheck, and multilinear polynomial commitment, which can also be applied to other applications as inde-
pendent interests. For proof outsourcing purposes, when using 128 servers to jointly generate a proof for a circuit
size of 224 gates, our benchmarks for these two collaborative proofs show a speedup of 21× and 24× compared
to a local prover, respectively. Furthermore, we are able to handle enormously large circuits, making it practical
for real-world applications.

*This work is an extensive update of a previous work, which can be found at https://eprint.iacr.org/2024/143. The update
includes semi-honest protocols for collaborative HyperPlonk, sub-protocol used by collaborative Libra, additional optimizations, and new
experimental results.

†The corresponding author: Xiaohu Yang, email: yangxh@zju.edu.cn.
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1 Introduction

Zero-Knowledge Succinct Non-interactive Argument of Knowledge (zk-SNARK) allows a prover to produce a short
proof convincing that his secret data (i.e., the witness) satisfies a complex relation. This technique has broad
applications, such as blockchain [24, 42], verifiable machine learning [25,44], and verifiable program execution [2,
40]. A major limitation of existing zk-SNARKs is that proof generation is cumbersome, taking a long time to
produce a proof while consuming a large amount of memory. Moreover, experiments show that even with a
prover-efficient zk-SNARK called HyperPlonk [7], it still takes several hours and over 300 GB of memory to
generate a proof for a circuit consisting of 227 gates. Handling proof generation for such large applications is
difficult even with a powerful server, let alone a lightweight client.

A natural solution is to allow the client outsourcing proof generation to a cluster of servers that are responsible
for generating the proof in a distributed manner in exchange for payment. Distributed proof generation has
been explored in several studies [24, 41, 42]. By distributing the workload across servers, these works achieve
impressive speedups, and can handle large circuits that neither a lightweight client nor a single powerful server
can handle. Their results are therefore scalable. However, these works assume that the servers are “harmless”,
directly exposing the client’s secret witness to the cluster. This assumption may not always hold, especially if the
witness is sensitive. For example, a client may wish to outsource the tedious proof for the correct execution of a
machine learning program [25], while being unwilling to reveal its input. Therefore, the goal of proof outsourcing
is twofold: let servers from different locations (i) efficiently generate the proof desired by the client, even for
enormously large circuits, while (ii) protecting the privacy of the client’s witness.

Recently, Garg et al. [16] have attempted to achieve this goal by proposing an innovative notion called zk-
SaaS, which extends the collaborative zk-SNARK framework introduced by Ozdemir and Boneh [28] into the proof
outsourcing scenario. In [16], a client is allowed to delegate its proof to many servers, each of which holds a
secret-shared witness from the client, and work together to generate a proof without knowing the witness. At its
core is a secure Multi-Party Computation (MPC) protocol that enables the participants to collaboratively compute
the proof of a zk-SNARK. As a result, they implement collaborative zk-SNARKs for Groth16 [22] and Plonk [15].
However, an important efficiency issue remains unresolved, which is listed below.
Problem: lack of scalability. The collaborative proof generation in [16] is not scalable. More precisely, in their
protocols there is still a leader server with O(TP) time and O(SP) space complexity, where TP and SP denote those
for a local zk-SNARK prover. This indicates that the leader server requires almost the same time and memory
as in the local case to dominate the collaborative proof. Furthermore, our experiments show that the efficiency
of zkSaaS mainly depends on the hardware advantages of the leader, such as high computational parallelism
and large memory capacity. While these advantages are possible for a powerful server, the efficiency achieved
is always limited. In contrast, collaborative proof generation is expected to distribute the total workload evenly
across servers, thereby efficiently handling larger circuits as proof outsourcing requires. Thus, in [16], the authors
leave this as a research question: In proof outsourcing, can we eliminate such a powerful leader server and achieve
collaborative zk-SNARKs with scalable proof generation?

We find that [16] fails to achieve this, mainly because of a sub-protocol that attempts to distribute the FFT
operation for univariate polynomials, which is a core of the zk-SNARKs they study. Specifically, they find it
difficult to distribute the workload of FFT evenly among the servers, so a leader is chosen to do most of the work,
and all servers must communicate with the leader, creating a bottleneck for the leader. In contrast, our goal is to
eliminate such a prominent leader and achieve scalable collaborative zk-SNARKs where each participant takes on
the same workload.
Our techniques. To achieve the efficiency goals, we turn to a category of multivariate polynomial-based zk-
SNARKs that avoid the use of FFT, such as the GKR-based ones [39,43,45], HyperPlonk [7], and Spartan [33]. The
provers of these zk-SNARKs are efficient, making them suitable to deal with proof outsourcing. Nevertheless,
they still face time and memory challenges when dealing with large circuits, which are common in real-world
applications, as the earlier example shows. Therefore, it still motivates us to improve the efficiency of proof
generation for these zk-SNARKs. For example, a previous work [42] also focuses on distributed proof generation
for a GKR-based zk-SNARK called Virgo [45], though in a different setting than ours.

We adopt the packed secret sharing [14] technique as the main weapon to improve the computation efficiency.
As a result, our protocols have been shown to be secure against a semi-honest adversary controlling at most N

2 −k
servers, where N is the number of servers and k is the packing factor of packed secret sharing. The packed secret
sharing weapon is common in existing MPC protocols, however, the main challenge is to use it throughout the
entire proof generation without the help of a single powerful server. It is difficult because there are many different
primitives throughout the process, while it remains unclear how to fully distribute many of them with packed
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Ref. Underlying zk-SNARK(s)
Time Space

Priv.
S1 Si S1 Si

[42] GKR-based O(TP
N

) O(SP
N

) ✗

[24] Plonk O(TP
N

) O(SP
N

) ✗

[16] Groth16, Plonk O(TP) O(TP
N

) O(SP) O(SP
N

) ✓

Ours GKR-based, HyperPlonk O(TP
N

) O(SP
N

) ✓

Table 1: Comparisons of schemes distributing different zk-SNARKs. TP, SP denote the time complexity and space
complexity of a local prover. S1,Si denote the leader server and other servers in a scheme if they have different
properties. Priv. denotes the privacy of witness.

secret sharing. This is exactly the difficulty that zkSaaS encounters.
Our main technical contribution is a novel toolbox for computing multivariate polynomial-related primitives

in a privacy-preserving yet efficient manner. These primitives, including sumcheck, productcheck, and multilin-
ear polynomial commitment, are widely used by zk-SNARKs we study. It was unknown how to get servers to
compute these primitives together using only secret-shared polynomials. Building on the secret-sharing technique
and many new ideas in this work, we design novel and efficient protocols for each of the primitives. Impressively,
all protocols ensure that the total workload of the corresponding primitive is evenly distributed. Furthermore,
we perform several optimizations to ensure that the communication complexity is also evenly distributed, and
that all protocols maintain a constant round complexity. This comes at the cost of assuming a peer-to-peer network
between servers. Considering the proof outsourcing scenario where the servers are separate and far apart, we
believe such a network topology is reasonable.

Finally, these tools can be combined, allowing us to replace the primitives in the original zk-SNARKs with the
collaborative tools to obtain collaborative zk-SNARKs with scalable proof generation for the first time.
Our results. We answer the previous research question by instantiating two scalable collaborative zk-SNARKs
from Libra [43] and HyperPlonk [7]. Both protocols remain the privacy of witness. Crucially, each server in the
protocols consumes similar amount of time and memory, proportional to the total workload. The total communi-
cation costs are also shared among the servers, allowing our protocols to achieve significant efficiency improve-
ments even on a limited network. Our protocols are applicable to different applications: collaborative Libra is
designed for data-parallel circuits and is concretely fast even when handling circuits with billions of gates, while
collaborative HyperPlonk is able to handle more expressive general circuits. Furthermore, due to the similar recipe,
other aforementioned zk-SNARKs such as Spartan [33] also have the potential to be extended to scalable collabo-
rative zk-SNARKs following the same path.

The collaborative zk-SNARKs and the collaborative primitive protocols are implemented in a modular fashion
and provided for further research. Evaluation results show that our protocols are efficient, scalable, and cost-
effective:

• When 128 servers are working in a good network, our collaborative proofs for Libra and HyperPlonk take 8
seconds and 4 minutes respectively to handle a proof outsourcing for a circuit of size 224, while a local prover
takes more than 2 minutes and 1.5 hours, indicating a 21× and 24× speedup for our proposals, respectively.
This efficiency improvement is even more significant when dealing with larger circuits. Moreover, with 128
servers, we can scale to circuits 32× larger than those a local prover can handle.

• Compared to zkSaaS [16] in the same setting, we observe significant memory and time savings for each
server with our proposals. However, the leader server in zkSaaS still exhibits high memory consumption
and achieves limited efficiency gains even with more servers involved. Moreover, when switching to a
network with limited capacity, the zkSaaS scheme does not achieve any efficiency improvement, while our
collaborative HyperPlonk still saves significant time. A complementary financial calculation also demon-
strates our low financial cost.

1.1 Related works

There is a nice line of work in the literature that focuses on enabling a group of N servers to jointly generate a
zk-SNARK proof. A comparison of some representative works is presented in Table 1. We observe that these
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works can be divided into two types, based on whether the servers are allowed to learn the client’s input (i.e. the
witness).
Witness is exposed. Many works [24,41,42] show how to propose multiple servers working in tandem to generate
a proof. For example, the recent works deVirgo [42] and Pianist [24] design distributed proofs for a GKR-based
zk-SNARK called Virgo [45] and Plonk [15] respectively. We stress that their work is orthogonal to ours: these
approaches distribute a prover’s workload evenly across the cluster, allowing zk-SNARKs to scale efficiently to
larger circuits. However, since they assume that the servers are honest and allow direct witness disclosure to
the servers, these protocols are not suitable for many proof outsourcing applications where the client’s inputs are
sensitive.
Witness is secret-shared. Recently, works such as [8, 12, 16, 28, 32] have discussed how to delegate proofs to
servers without revealing the witness. A representative approach relies on the notion of collaborative zk-SNARK
introduced by Ozdemir and Boneh [28]. This approach has two phases: First, each server receives a secret-shared
testimony, rather than the entire testimony. Then, the servers N execute an MPC protocol to complete the proof
generation and finally obtain the proof. [28] implements collaborative proof through generic MPC protocols in
both the honest majority setting [21] and the dishonest majority setting [10]. However, the protocols do not bring
any efficiency gains to proof generation. On the other hand, Garg et al. [16] extend this approach for the first time
to the proof outsourcing scenario, formalizing a framework called zkSaaS. Using packed Shamir’s secret sharing
scheme [14] to improve efficiency, they design specific MPC protocols for primitives such as FFT and MSM, and
combine the primitives to design collaborative proofs for Groth16 [22] and Plonk [15]. However, their protocol
relies heavily on a particularly powerful leader server, which limits scalability. In contrast, we aim to remove
such assumptions and build scalable collaborative proofs where each normally equipped server shares the same
workload of O(TP

N ) and O(SP

N ).
There are other works in the literature [8, 12] that try to distribute proof generation in a different setting: they

assume that there is a special party (in [8], it is called a delegator; while in [12], it is called an aggregator) that is
always honest and online, while the rest of the servers can be corrupted by an adversary. Note that this special
party is required to stay online and participate in the protocol throughout proof generation. In contrast, we do
not assume such a special server during proof generation.

2 Preliminaries

Notations. In this paper, we use λ to denote the security parameter, and negl(λ) to denote a negligible function in
λ. “PPT” stands for probabilistic polynomial time. We use bold letters, e.g., x, to denote vectors. For a positive
integer n > 1, we use [n] to denote the set {1, . . . , n}. For positive integers a, b such that a < b, we use [a, b] to
denote the set {a, . . . , b}. Let F be a large finite field with a prime order such that |F|−1 = negl(λ). Let (G,GT ) be
cyclic groups of prime order q with generator g ∈ G.
Multilinear extension. We say a polynomial f is multilinear if it is a multivariate polynomial whose degree in
each variable is at most one. A multilinear extension of a function V : {0, 1}ℓ → F can be defined as Ṽ : Fℓ → F
such that Ṽ (x) = V (x) for any x ∈ {0, 1}ℓ. More concretely, the multilinear polynomial Ṽ can be expressed as:

Ṽ (x) =
∑

b∈{0,1}ℓ
(

ℓ∏
i=1

βbi(xi)) · V (b) (1)

Here βbi(xi) = (1 − xi)(1 − bi) + xibi and bi is i-th bit of b. For any r ∈ Fℓ, Ṽ (r) can be computed in O(2ℓ) field
operations [38].

2.1 zk-SNARK

Definition 1. A tuple of three algorithms (G, P, V) is a zero-knowledge interactive argument of knowledge forR if it satisfies
the following properties:

• Completeness. For every pp output by G(1λ), a statement-witness pair (x,w) such thatR(x,w) = 1, we have

Pr [⟨P(w),V⟩(x, pp) = 1] = 1
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• Knowledge soundness. For any PPT prover P∗, there exists a PPT extractor E such that for every pp output by
G(1λ), any input x, and the extractor’s output w∗ ← EP∗

(pp, x), the following probability is negl(λ):

Pr [⟨P∗,V⟩(x, pp) = 1 ∧R(x,w∗) ̸= 1]

• Zero-knowledge. There exists a PPT simulator S that for any PPT V∗,R(x,w) = 1, pp output by G(1λ), we have

ViewV∗
(⟨P(w),V∗⟩(x, pp)) ≈ SV

∗
(x)

where ViewV∗
(⟨P(w),V∗⟩(x, pp)) is the view of V∗ in the real protocol, and SV∗

(x) is the view generated by S given
x and the transcript of V∗. ≈ denotes the two distributions are computationally indistinguishable.

A public-coin interactive argument can be made non-interactive by applying the Fiat-Shamir transforma-
tion [13]. We say the argument is succinct if the running time of the verifier and the total proof size are both
of poly(λ, |x|, log |w|). A zero-knowledge Succinct Non-interactive ARgument of Knowledge is called a zk-SNARK, con-
stituting a tuple of algorithms (Setup,Prove,Verify):

• Setup(1λ,R)→ pp: It takes security parameter λ and an NP relation R as inputs, outputs the public param-
eter pp.

• Prove(pp, x, w)→ π: It takes public parameter pp, a statement-witness pair x,w as inputs, outputs a proof π.

• Verify(pp, x, π) → {0, 1}: It takes public parameter pp, the statement x, and the proof π as inputs, outputs a
bit b indicating acceptance (b = 1) or rejection (b = 0).

2.2 Secure Multi-Party Computation

Let C : ({0, 1}λ)N → ({0, 1}λ)N be a circuit and let P1, . . . ,PN be the parties that will participate in a secure
Multi-Party Computation (MPC) protocol Π for C. During the execution of Π, we assume that each party Pi has
a private input xi ∈ {0, 1}λ, and Pi wants to receive yi ∈ {0, 1}λ as output, where (y1, . . . , yN ) := C(x1, . . . , xN ),
without revealing its private input.

We analyze the security of the MPC protocol Π in the real-world/ideal-world paradigm [5]. Here we provide
a high-level description for this paradigm, and more details and be found in [5]. In real-world execution, the
real parties P1, . . . ,PN communicate with each other to execute Π, and there is an adversary A who can choose
a set of parties to corrupt. The set of the corrupted parties is denoted by Corr. In this work, we consider a
semi-honest adversary as in [16], i.e., the corrupted parties will honestly follow the protocol instructions but are
curious about others’ private input. In ideal-world execution, there are dummy parties P̃1, . . . , P̃N , an ideal-world
adversary (a.k.a, the simulator) S who can corrupt the same set Corr, and a trusted entity called ideal functionality
F . The ideal functionality F receives inputs from the dummy parties and S, then computes C, and delivers the
corresponding output to the parties. We say the protocol Π securely realizes F , if the outputs of parties in real-
world execution is computationally indistinguishable from those in ideal-world execution. Notice that, we also
use the term “hybrid world”. More concretely, when we say a protocol is in the G-hybrid world, it means that the
parties can have an oracle access to an ideal functionality G.

Recall that, we aim to design an efficient MPC protocol for the prover algorithm Prove of a zk-SNARK scheme
(Setup,Prove,Verify). For the ease of presentation, when we say that Π is an MPC protocol that computes Prove,
we mean that Prove can be represented as a circuit, and Π securely realizes an ideal functionality which computes
this circuit. Similar treatments can be found in [16, 28].

2.3 Packed secret sharing

In this work, we utilize packed secret sharing (PSS) scheme introduced by Franklin and Yung [14], which is a
generalization of the well-known Shamir’s secret sharing scheme [36]. Suppose x = {x1, ..., xk} is a vector of k
secrets, where k is called the packing factor. The dealer picks a degree-d (d ≥ k− 1) polynomial f (d ≥ k− 1) such
that f(−i + 1) = xi for i ∈ [k]. Each share is then calculated as f(i) and sent to the i-th party Si for i ∈ [N ]. Any
d + 1 parties can reconstruct x by Lagrange interpolation. In this work, we use JxKd to denote a degree-d packed
secret sharing of x and may omit the subscript d if the context is clear. Accordingly, we use ⟨x⟩ to denote a regular
Shamir’s secret sharing. We recall two properties of PSS in the following. For any x, y ∈ Fk and d ≥ k − 1:

• Linear homomorphism: Jx + yKd = JxKd + JyKd.

4



• Multiplication: For all d1, d2 ≥ k − 1 subject to d1 + d2 < N , Jx ∗ yKd1+d2
= JxKd1

· JyKd2
, where ∗ represents

a coordinate-wise multiplication.

The first property implies that linear combination can be performed locally by parties. Recall that, if we denote
by t the number of corrupted parties, the PSS scheme is secure against t ≤ d − k + 1 corrupted parties. Jumping
ahead, we require 2d + 1 ≤ N to ensure that we can multiply two PSS in our protocols. When 2d = N − 1, it is
easy to see that t ≤ N

2 − k holds.

3 Scalable Collaborative zk-SNARKs

A client wants to outsource a proof to a group of dedicated participants from different locations without revealing
the witness. Besides ensuring privacy, the main task is to make collaborative proof generation scalable, which
implies two main goals: (i) speeding up proof generation, and (ii) reducing the memory consumption of each
server, so that we can handle complex applications.

3.1 Collaborative zk-SNARK

First, we talk about the privacy of the witness. Similar to previous work [16], we also work within the collaborative
zk-SNARK framework [28], where N servers collaborate together to generate a proof for a given statement. At its
core is an MPC protocol Π that allows servers to efficiently collaborate on executing the prover algorithm of an
existing zk-SNARK, without leaking the witness to any corrupted server. For reader’s convenience, we present
the formal definition of collaborative zk-SNARK, adapted from [28].

Definition 2. Let N represent the number of servers, and S1, . . . ,SN be the servers. Let (Setup,Prove,Verify) be a zk-
SNARK for some NP relationR. Let x be the public input and w be the witness. For each server Si, where i ∈ [N ], wi is the
packed secret shares of w received by Si. A collaborative zk-SNARK for an NP relation R consists of a tuple of algorithms
(Setup,Π,Verify), where:

• Setup(1λ,R)→ pp: This is the same as the setup algorithm Setup of the underlying zk-SNARK. It takes the security
parameter λ and the NP relationR as inputs and outputs the public parameter pp.

• Π(pp, x,w1, ...,wN ) → π: This is an MPC protocol among N servers, and it computes the prover algorithm Prove
of the underlying zk-SNARK. Given the public parameters pp, the public statement x and the packed secret shares
w1, ...,wN , the servers engage in Π and collaboratively generate a proof π.

• Verify(pp, x, π) → {0, 1}: This is the same as the verification algorithm Verify of the underlying zk-SNARK. It takes
the public parameter pp, the statement x, and the proof π as inputs and outputs a bit b indicating acceptance (b = 1)
or rejection (b = 0).

This framework is secure if it satisfies the following properties:

• Completeness: For all (x,w) ∈ R, the following relation holds:

Pr

[
pp← Setup(1λ,R),
π ← Π(pp, x,w1, ...,wN )

: Verify(pp, x, π) = 1

]
= 1

• Knowledge Soundness: For all x, and all sets of PPT algorithms S⃗ = {S∗1, ...,S∗N}, there exists a PPT extractor
E such that,

Pr


pp← Setup(1λ,R),

π∗ ← S⃗(pp, x),

w∗ ← E S⃗(pp, x)

:
Verify(pp, x, π∗) = 1,

(x,w∗) /∈ R

 ≤ negl(λ)

• t-zero-knowledge: For all PPT adversaryA controlling at most t servers denoted as Corr, pp← Setup(1λ,R),
there exists a simulator S such that for all x,w (where b← R(x,w) ∈ {0, 1}), the following relation holds:

ViewA
Π(x,w) ≈ S(pp, x, b, {wi}i s.t. Si∈Corr)

5



Here ViewA
Π(x,w) denotes the view ofA from the real-world execution of Π and S(pp, x, b, {wi}i∈Corr) is the

view generated by S given x and inputs from corrupted parties. We use ≈ to denote the two distributions
are computationally indistinguishable.

• Succinctness: The proof size and verification time are both of poly(λ, |x|, log |w|).

Previous work [28] proved that if there exists an MPC protocol Π that can compute the prover algorithm
Prove of the underlying zk-SNARK against up to t corruptions, then there exists a corresponding collaborative
zk-SNARK (Setup,Π,Verify). Due to this result, our main focus in this work is the design of such MPC protocols
Π.
Security model. Our security model is similar to existing framework in [16]. We assume an honest-majority
setting that is realistic in practice, i.e., the adversary can only corrupt a minority of the servers. Concretely, let k
be the packing factor of the packed secret sharing scheme we adopt, our framework can be proven to be secure
against at most t = N

2 − k corrupted servers. Aligning with [16], we mainly consider a semi-honest adversary in
this work. For malicious security, we put our discussion in Section 7.

3.2 Scalable proof outsourcing

Proof outsourcing is a direct application of the collaborative zk-SNARK framework. To outsource a proof, a client
first performs very cheap local computations to obtain the (extended) witness, and then distributes the witness
among the servers using packed secret sharing. As noted in [16, 28], this step is neither a central concern nor
an efficiency bottleneck, because computing and sharing the witness is less resource-intensive for the client itself
compared to proof generation. Therefore, we mainly focus on how to make proof generation scalable. We first
introduce two properties to represent the aforementioned scalability goals:
Efficiency goals. For a given NP relation R, let TP and SP be the time and space complexity of Prove for a local
zk-SNARK prover, respectively. We say that the proof generation of the collaborative zk-SNARK is time-efficient
if all servers in Π have the same time complexity O(TP

N ). Similarly, collaborative proof generation is space-efficient
if all servers in Π have the same space complexity O(SP

N ). These properties are important for proof outsourcing:
In terms of time complexity, proof generation can be made more efficient by increasing the number of servers. In
addition, memory usage is also averaged, so scalability is not limited by the capacity of a single server, allowing
larger circuits to be handled if more servers are available.

Here we discuss the complexity comparison between the above definition and previous work. The time and
space complexity of the leader server in [16] are O(TP) and O(SP), respectively. This has two limitations: (i) ef-
ficiency improvement cannot be achieved without assuming the hardware advantages of the leader server, since
the time complexity is the same as the local prover; (ii) there will still be a memory bottleneck for the leader
server when dealing with large circuits, since it does not improve memory usage. In contrast, time and space effi-
cient proof generation can theoretically scale to larger circuits with better efficiency if more servers with standard
equipment are available. This is especially useful for proof outsourcing, where large circuits are to be handled by
participants with normal machines.

Another bottleneck introduced by the “partially distributed” protocol from [16] is the large communication
overhead the leader has to take. Instead, we try to minimize the communication complexity that each server has
to bear. Assuming that the total communication complexity of proof generation is O(C), we expect that it can also
be distributed among the servers, namely that each server undertakes only O(CN ) communication. We note that
this leads to a peer-to-peer network among the servers, which is feasible in our proof outsourcing service. Finally,
the round complexity during proof generation should also be minimized.
Pre-processing. For protocols that require pre-processing to generate randomness and other aids needed by
servers during execution, we adopt the same model as in [16, 28]. Specifically, the required randomness can
be generated either by the client or by an MPC protocol between the servers in offline phase when the inputs are
unknown to the parties. This is acceptable in practice: (i) the randomness is unrelated to the outsourced relation,
so it can be prepared when the servers are idle, and (ii) the time cost of generating such randomness is small
compared to proof generation. Therefore, when designing the protocol Π in the pre-processing model, we only
evaluate its online complexity.
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4 Collaborative Multivariate Primitives

This difficulty of [16] stems primarily from the challenges of distributing the FFT operation, which is a core of their
primitives for univariate polynomials (e.g., polynomial division). To achieve scalable collaborative zk-SNARKs
and address the remaining research question, we turn to another class of zk-SNARKs based on multivariate poly-
nomials. As discussed earlier, even though these zk-SNARKs are already prover-efficient, it is still hard for a single
machine to handle complex applications that are often found in proof outsourcing. Therefore, it is meaningful to
design scalable collaborative zk-SNARKs for them. Our approach is to first develop collaborative protocols for
primitives used in these zk-SNARKs, and then combine them to instantiate scalable collaborative zk-SNARKs.
In the following, we provide an overview of the primitives that are commonly used in multivariate polynomial-
based zk-SNARKs.
Sumcheck. The zk-SNARKs studied in this work are built upon multivariate-based interactive proofs, where the
sumcheck protocol [26] is a fundamental building block. Given an ℓ-variate polynomial f and a claim H ∈ F, a
sumcheck enables a prover to convince a verifier that H =

∑
x∈{0,1}ℓ f(x). The protocol consists of ℓ rounds: during

the i-th round of the protocol, the prover sends a univariate polynomial fi(x) =
∑

bi+1,...,bℓ∈{0,1} f(r1, ..., ri−1, x,

bi+1, ..., bℓ) to the verifier. The verifier checks whether fi−1(ri−1) = fi(0) + fi(1) holds, where ri−1 is a challenge
sent by verifier in the previous round. At the end of the protocol, the verifier checks the consistency between {fi}
and the multivariate polynomial through a single query to f . We note that the authors in [16, 28] also studied
a collaborative “sumcheck”, but their target is a univariate polynomial, which is very different from ours. In
particular, the core of their approach is a polynomial division facilitated by FFTs, while our goal is essentially a
multi-round interactive proof without FFTs. Sumcheck on a secret-shared multivariate polynomial has never been
studied before.
Zerocheck. Spartan [33] and HyperPlonk [7] rely on a protocol to check that an ℓ-variate polynomial f evaluates to
zero on the hypercube {0, 1}ℓ. In the protocol, the prover first constructs a polynomial ẽq(r,x) =

∏ℓ
i=1(1−xi)(1−

ri) + xiri, where r ∈ Fℓ is a challenge from the verifier. Then, the prover and verifier run a sumcheck protocol to
verify that 0 =

∑
x∈{0,1}ℓ f(x) · ẽq(r,x) holds. This protocol is essentially a special case of the sumcheck protocol.

Productcheck. Productcheck is another important building block that is widely used in [7,34,35]. Similar to sum-
check, the productcheck protocol aims to convince that H =

∏
x∈{0,1}ℓ f(x) for a given multivariate polynomial f

and claim H . The core task is to compute an auxiliary polynomial v related to the evaluations of f on {0, 1}ℓ, which
will be elaborated in Section 4.2. The productcheck protocol can be used for constructing other useful primitives
like permutation-check and multiset-check [7, Section 3].
Multivariate polynomial commitment. In the recipe for the aforementioned zk-SNARKs, it is essential to combine
a multivariate polynomial commitment scheme with the interactive proofs to obtain a zk-SNARK. A multivariate
polynomial commitment scheme allows the prover to commit to an ℓ-variate polynomial f and later evaluate it
at some point x. In particular, in this work we focus on a multilinear polynomial commitment scheme (mvPC)
adapted from Papamenthous et al. [29]. It requires a trusted setup:

• mvPC.Setup(1λ,F)→ pp: It samples s $← Fℓ as a trapdoor and outputs parameters pp = {{g
∏

i∈W si}W∈Wℓ
},

whereWℓ is the collection of all subsets of {1, . . . , ℓ} and g is a generator of the group G.

The prover of mvPC consists of the following algorithms:

• mvPC.Commit(f, pp) → comf : It outputs comf = gf(s). Note that the evaluation on the power of g can be
computed with the aid of prepared parameters.

• mvPC.Open(f,u, pp) → (z, π): It evaluates the polynomial at a given point u as z = f(u). It also computes
polynomials {Qi}i∈[ℓ] that satisfy f(x) =

∑ℓ
i=1(xi−ui)·Qi(xi+1, . . . , xℓ)+z and outputs a proof π = {πi}i∈[ℓ],

where πi = gQi(si+1,...,sℓ).

4.1 Collaborative sumcheck

The first task is to distribute the prover of the sumcheck protocol with only a secret-shared polynomial. First, we
consider a case where the target polynomial f is multilinear, where the degree in each variable in f is at most one.
Prover for multilinear polynomial. Given a multilinear polynomial f : Fℓ → F, Thaler introduces an algorithm
to execute the prover algorithm in O(2ℓ) time [37]. Here we provide a concise overview of it: Given that fi(x) is
linear, it is sufficient for the prover to simply provide fi(0) and fi(1) in each round. To expedite the computation of
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fi(0) and fi(1), the core idea is to let the prover maintain a bookkeeping table. The first row of the table is initialized
with 2ℓ entries according to the evaluations of f on {0, 1}ℓ. In the i-th row, there are ni = 2ℓ−i+1 entries to be
stored. An important observation to note is the existence of a relationship for entries in successive rows of the
bookkeeping table. For b(i) ∈ {0, 1}ℓ−i+1 in the i-th row:

f(r1, . . . , ri−1, ri, b
(i)) = (1− ri) · f(r1, . . . , ri−1, 0, b

(i)) + ri · f(r1, . . . , ri−1, 1, b
(i)) (2)

Both f(r1, . . . , ri−1, 0, b
(i)) and f(r1, . . . , ri−1, 1, b

(i)) were computed in the previous round. Therefore, in the i-th
round (i ∈ [ℓ]) of the sumcheck protocol, given challenge ri, prover utilizes Equation 2 to compute 2ℓ−i entries in
row i + 1 of the values f(r1, . . . , ri, b) for all b ∈ {0, 1}ℓ−i. These entries are stored in the table for the next round
computation. To obtain the claims fi(0) and fi(1) in each round, prover sums up the first and second halves of
the entries in the table, respectively.

In our setting, the servers cooperate together and compute the bookkeeping table without knowing the poly-
nomial f . The start point is each server Si receive only packed secret shares of witness, which is the evaluations
of f on the hypercube {0, 1}ℓ. More precisely, the n1 = 2ℓ entries, denoted as x

(1)
1 , . . . , x

(1)
n1 , are divided into n1

k

groups {x(1)
j }j∈[

n1
k ], where k is the packing factor. And each vector is packed secret shared to the servers, denoted

as Jx(1)
j Kj∈[

n1
k ].

Local computation via PSS. We hope to distribute the workload evenly among the servers, thereby accelerating
the prover and reducing the memory cost. The key challenge is to design a protocol that allows each server
to perform computations separately and minimize the communication overhead. To achieve this, a important
observation is that Equation 2 exhibits a well-formed SIMD structure: in the i-th row, each pair of x(i)

j and x
(i)

j+
ni
2k

(j ∈ [ni

2k ]) are linearly combined to obtain an entry in the next row. This property is well captured by packed
secret sharing: given shares, the computation can be done locally by each server over corresponding share pairs.
Formally, in the i-th round, each server locally computes O(ni+1

k ) packed shares of entries needed in the next
round as

Jx(i+1)
j K = (1− ri) · Jx(i)

j K + ri · Jx(i)

j+
ni
2k

K, j ∈ [
ni+1

k
] (3)

Since the result of the above linear combination is still in the form of packed shares, the computation can be
repeated round by round. Moreover, each server can obtain the packed shares of claims needed in each round

as: Ja(i)
1 K =

∑ni
2k
j=1Jx

(i)
j K and Ja(i)

2 K =
∑ni

k

j=
ni
2k+1

Jx(i)
j K, where Ja(i)

1 K and Ja(i)
2 K are two shares, each packing k

elements.
Further computation. In the above phase, we eliminate the need for communication and evenly distribute the
workload. However, it is easy to see that the local computations will be stuck in the (ℓ − s + 1)-th round, where
s = log k. This is because each round the number of shares is halved, and when it comes to the end, each server
possesses only one share, making further computations unfeasible. To facilitate the remaining rounds of compu-
tation, we propose converting the last packed share into Shamir’s secret shares through one round of communi-
cation. Specifically, each server obtains the Shamir’s shares of the k elements in vector x(ℓ−s+1) as ⟨x1⟩, . . . , ⟨xk⟩.
Hereafter, the remaining work can be completed on the shares locally again, following the original sumcheck,
within only O(k) time. Note that, to facilitate this conversion, the servers need a standard procedure to convert
packed shares to Shamir’s shares, which is modeled as a functionality FPSSToSS. We put the detailed descriptions
of FPSSToSS and its protocol in Appendix A.3.
Our protocol. Putting the two phases together, we present a novel collaborative sumcheck protocol ΠdSumcheck

in Figure 1. We denote by Sumcheck.Prove the prover algorithm of the original sumcheck protocol for a given
ℓ-variate multilinear polynomial f(x). We have the following theorem:

Theorem 1. The protocol ΠdSumcheck depicted in Figure 1 is a secure MPC protocol that computes Sumcheck.Prove in the
FPSSToSS-hybrid world against a semi-honest adversary who corrupts at most t servers.

Proof sketch. In i-th round (i ∈ [1, l−s]), the sums of elements inside a
(i)
1 ,a

(i)
2 are actually fi(0), fi(1), respectively.

In i-th round (i ∈ [l − s + 1, l]), fi(0) = a
(i)
1 and fi(1) = a

(i)
2 holds. Therefore, the correctness of the protocol is

straightforward. Except for invoking FPSSToSS, the servers only perform local computation. Therefore, there is no
chance that the corrupted parties can learn others’ private input. This ensures the security of the protocol.

Efficiency. This protocol is both time-efficient and space-efficient. From round 1 to ℓ− s, each server individually
performs O(nk ) = O( n

N ) field operations. From round ℓ − s + 1 to ℓ, each server individually does O(k) = O(N)
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Let the packing factor k = 2s ≥ 2 for some positive integer s and ni = 2ℓ−i+1 for i ∈ [ℓ]. Let f be a ℓ-variate multi-
linear polynomial, and x ∈ Fn is the evaluations of f on the hypercube {0, 1}ℓ. Let N be the number of servers.

Inputs: Each server S1, ..., SN holds packed secret shares of vectors xj = x
(1)
j = {x(j−1)k+i}i∈[k], denoted as Jx(1)

j K,
for j ∈ [n1

k
],

Protocol:

1. In the i-th round, where 1 ≤ i ≤ ℓ− s,

(a) Each server locally computes and outputs Ja(i)
1 K =

∑ni
2k
j=1Jx

(i)
j K, Ja(i)

2 K =
∑ni

k

j=
ni
2k

+1
Jx(i)

j K.

(b) The servers receive a random challenge ri ∈ F from verifier, then locally compute {Jx(i+1)
j K}

j∈[
ni+1

k
]

by
Equation 3.

2. The servers take Jx(l−s+1)K as input and invoke FPSSToSS to get ⟨x(l−s+1)
1 ⟩, ..., ⟨x(l−s+1)

k ⟩.
3. In the i-th round, where ℓ− s+ 1 ≤ i < ℓ,

(a) Each server locally computes and outputs ⟨a(i)
1 ⟩ =

∑ni
2

j=1⟨x
(i)
j ⟩, ⟨a

(i)
2 ⟩ =

∑ni

j=
ni
2

+1
⟨x(i)

j ⟩.

(b) The servers receive a random challenge ri ∈ F from verifier, then locally compute {⟨x(i+1)
j ⟩}j∈[ni+1] by

⟨x(i+1)
j ⟩ = (1− ri) · ⟨x(i)

j ⟩+ ri · ⟨x(i)

j+
ni
2

⟩

4. The servers output {Ja(i)
1 K, Ja(i)

2 K}i∈[1,ℓ−s] and {⟨a(i)
1 ⟩, ⟨a

(i)
2 ⟩}i∈[ℓ−s+1,ℓ].

Protocol ΠdSumcheck

Figure 1: Collaborative sumcheck ΠdSumcheck in the FPSSToSS-hybrid world.

field operations. The cost of ΠPSSToSS is negligible. Therefore, the total proving work of N servers is O(n), and
the computational overhead for each server Si is O( n

N ). The space complexity of each server is consistently O( n
N ).

Due to one-round FPSSToSS, the round complexity is O(1) and the total communication complexity is O(N) field
elements.
Extending to high-degree case. The protocol can be extended for a product of two multilinear polynomials, say,
H =

∑
x∈{0,1}ℓ f(x), where f(x) = c1(x) · c2(x). To illustrate this, we show how to compute the share of fi(0) and

fi(1) in the i-th round as an example. The idea is that each server first computes the (packed) shares of the 2ℓ−i+1

entries in the i-th row of the bookkeeping table for c1 and c2 separately according to ΠdSumcheck. Subsequently,
the share of fi(0) and fi(1) can be computed by multiplying the corresponding shares in the same position of the
two tables and summing them up. The overall time complexity for each server remains O

(
n
N

)
. Finally, a share of

fi(2) will be computed by each server similarly using the dynamic programming technique introduced in [37,43].
These shares of the three points are sufficient for fixing a degree-2 polynomial fi(x). Note that in this case, since
the packed secret shares are multiplied, the degree of the resulting share will be doubled. Therefore, one round of
standard degree reduction is needed for recovering the degree.

In a similar vein, the above method can be extended to any degree-d polynomials that can be computed by
multilinear polynomials. This result is important, as in the proof generation of the collaborative zk-SNARKs, the
multivariate polynomials we encounter, e.g., the polynomial in zerocheck, are not necessarily multilinear. Looking
ahead, in scalable collaborative zk-SNARKs studied in this work, the degree d is at most 4, therefore the round
complexity remains constant throughout the proof generation.

4.2 Collaborative productcheck

Given an ℓ-variate polynomial f , Quark [34] provides a protocol for productcheck on f . A vital procedure involves
the prover constructing a (ℓ+1)-variate polynomial v such that v(0,x) = f(x) and v(1,x) = v(x, 0)·v(x, 1) for any
x ∈ {0, 1}ℓ. The prover then convinces the verifier about the correctness of v through zerocheck, and evaluates
v at (1, · · · , 1, 0) to show that v(1, · · · , 1, 0) = H with the aid of a multivariate polynomial commitment. The key
step is to compute the polynomial v, more precisely, the evaluations of v over {0, 1}ℓ+1.

In our collaborative setting, each server initially receives packed secret shares of f ’s evaluations on the hy-
percube {0, 1}ℓ, denoted by {JxjK}j∈[nk ], where n = 2ℓ and k is the packing factor. The above step translates to
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It interacts with a set of servers S1, . . . , SN and an adversary S. Let Corr be the set of corrupted servers.

Upon receiving (PRODUCT,m, Jx1K, . . . , JxmK) from S1, . . . , SN , where m = n
k

is the number of packed shares:

• For i ∈ [m], reconstruct (x(i−1)k+1, ..., xik) from JxiK.

• Set x := (x1, . . . , xm·k) and run PROD-TREE(x) to obtain v′ ∈ Fmk−1. Set v := (v′, 0) ∈ Fmk.

• For i ∈ [m]:

– set vi := (v(i−1)k+1, ..., vik)

– Receive a set of shares {ui,j}j∈Corr from S.

– Sample a random packed shares JviK of vi, such that the shares of the corrupted parties are identical to
those received from S, i.e., {ui,j}j∈Corr .

• Distribute the shares Jv1K, . . . , JvmK to all servers.

Functionality FProdTree

Figure 2: The ideal functionality FProdTree.

letting the servers compute the packed secret shares of v’s evaluations on {0, 1}ℓ+1. Since v(0,x) = f(x) for all
x ∈ {0, 1}ℓ, it can be noticed that these shares at hand are already the first n

k packed secret shares of the evaluations
of v, i.e., the packed shares of v(0,x). Therefore, the remaining task is to compute the packed shares of v(1,x)
for all x ∈ {0, 1}ℓ. However, unlike the sumcheck protocol, this computation does not exhibit a well-formed
SIMD structure, and it remains unclear how to figure out these elements in a way that the overhead can be evenly
distributed.
A novel view for v’s evaluations. Our important observation is that the formulation of polynomial v can be
seen as building a depth-ℓ perfect binary tree, where the n = 2ℓ leaves are actually the evaluations of f over
the hypercube {0, 1}ℓ and the value in each node is the product of its two children. Therefore, the evaluations
of v(1,x) equal the n − 1 internal nodes inside the tree, arranged in a level-order manner. The only exception
is the point (1, 1, . . . , 1), which equals 0 directly. Thus, the key step involves computing such an input-n product
tree, which can be completed according to Algorithm 1. This tree-like formulation provides a new perspective
to compute v in a distributed manner: we split the n leaves into N subtrees, and each server is responsible for
computing n

N −1 nodes inside one subtree; After that, a server S1 is selected to integrate the roots of the N subtrees
and do the remaining computation for the last N − 1 nodes, which is to compute another input-N product tree in
O(N) time. Considering N ≪ n, in this process, each server bears only O( n

N ) computation and memory overhead,
and the round complexity remains constant.

Algorithm 1 Computing an input-n Product Tree

// Assume n = 2ℓ for some positive integer ℓ.
function PROD-TREE(x0 := {x0,j}j∈[n] ∈ Fn)

for i = 1 to ℓ do
xi,j ← xi−1,2j−1 · xi−1,2j , ∀j ∈ [2ℓ−i]
xi := {xi,j}j∈[2ℓ−i] // xl := {r}, where r is the root.

end for
return z ← (x1, . . . ,xℓ) ∈ Fn−1

end function

Handling packed shares. Although the above idea seems promising, a challenge arises: in a (packed) secret
sharing context, the above process involves servers performing a series of O(ℓ) multiplications on the (packed)
shares, which leads to logarithmic rounds of degree reduction, which is not desirable in our setting. To address
this, we refer to the idea of computing unbounded multiplications within a constant-round protocol from [3].
Specifically, the servers first multiply the packed shares of the leaves by a group of carefully prepared masks,
and then reveal the i

N -th part of “masked” leaves to Si. As a result, each Si receives the leaves of its subtree.
This facilitates the servers to compute the “masked” product tree within constant-round communication. Finally,
each server distributes its results using packed secret sharing again, and the servers multiply the received packed
shares by another group of prepared elements to get the unmasked product tree.
Our protocol. For clarity, we provide the ideal functionality and protocol for computing the product tree in Figure
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Let N = 2s be the number of servers for some positive integer s and n = 2ℓ ≥ N2. Let f be an ℓ-variate polyno-
mial, and x ∈ Fn is the evaluations of f on the hypercube {0, 1}ℓ.

Inputs: Each server S1, ..., SN holds packed secret shares of vectors xj = {x(j−1)k+i}i∈[k], denoted as JxjK, for j ∈
[n
k
], where k is the packing factor.

Preprocessing of masks:

1. Each server Si receives packed secret shares of masks {JmjK}j∈[ n
N

] and {JujK}j∈[ n
N

] from FRand-ProdTree.

Protocol:

1. Each server Si computes JyjK := JxjK · JmjK for j ∈ [n
k
], and send the n

k
shares to S1.

2. S1 opens y, and send yi := (yn(i−1)
N

+1
, ..., y in

N
) to server Si, for i ∈ [N ].

3. Each server Si invokes PROD-TREE(yi) to get n
N
− 1 elements zi. Si sends the last k − 1 elements of zi to S1.

The last one element ri is the root of the subtree.

4. S1 collects the N(k − 1) elements as z0 and invokes PROD-TREE({ri}i∈[N ]) to get N − 1 elements. It expands
z0 with the (N − 1) elements and 0.

5. Each server Si packed secret shares zi to others, except for the elements sent to S1. S1 additionally shares z0.
As a result, each server holds JzjKj∈[n

k
].

6. The servers take JzjK and JujK as input and invoke FPSSMult to output JvjK := JzjK · JujK, for j ∈ [n
k
].

Protocol ΠdProdTree

Figure 3: Collaborative product tree ΠdProdTree.

2 and Figure 3, respectively. Note that here we assume a peer-to-peer network. To complete packed sharing
multiplication, we recall a standard functionality FPSSMult, which is described in Appendix A.2. The output of the
protocol, namely {JvjK}j∈[nk ], is exactly the packed secret shares of v(1,x)’s n evaluations on the hypercube. In
the protocol, the servers first receive masks in the pre-processing phase. The masks m are carefully designed to
ensure that no server can learn the original elements x, and u promises that the unmasked result is calculated
properly. These shares can be prepared by servers invoking the functionality FRand-ProdTree described in Appendix
A.4 offline when they are idle, or, in our setting, by a client’s delivery directly. Finally, we have the following
theorem:

Theorem 2. The protocol ΠdProdTree depicted in Figure 3 is a secure MPC protocol that computes FProdTree in the
{FPSSMult,FRand-ProdTree}-hybrid world against a semi-honest adversary who corrupts at most t servers.

Proof sketch. For xi ∈ x, the mask mi is prepared in the form rir
−1
i+1 where {ri} are uniform randomness to hide

{xi}. Taking the root of an input-n product tree as an example: the root zn−1 =
∏n

i mixi = r1r
−1
n+1

∏n
i xi. The

corresponding unmask un−1 is prepared as r−1
1 rn+1. This ensures the unmasked output vn−1 = zn−1un−1 =

∏n
i xi

is computed properly. Similarly, all unmasks {JujK} are designed to ensure that the randomness applied to {JzjK}
is removed. The correctness of the remaining parts follows directly from the calculation of the product tree. For
security, it is easy to conclude from the protocol that the servers only perform local computations, except for
invoking FRand-ProdTree, FPSSMult and distributing the shares to others; therefore, the corrupted servers cannot learn
others’ private input. This ensures the security.

Distributing communication. In the packed sharing multiplication FPSSMult and Step 1 of FProdTree, a specified
server S1 is responsible for receiving data from all other servers. When the circuit size or the number of servers
is big, S1 requires a large bandwidth to receive these elements, forming an efficiency bottleneck. To address this
issue, we decided to distribute S1’s job to more servers. Taking FPSSMult as an example, since there are O(nk )
different shares needing degree reduction and these jobs are independent of each other, we can assign different
shares to different servers, which amortizes the total O(n) communication cost by a factor of O(N). The step
in FProdTree can be optimized similarly. In practice, these jobs are assigned to those servers with better network
conditions. These optimizations are feasible as we have assumed a peer-to-peer network.
Efficiency. The protocol depicted in Figure 3 is both time-efficient and space-efficient. The total proving work
of N servers is O(n). Each server Si undertakes an input- n

N subtree, while S1 additionally undertakes an input-
N tree. Although we have a server S1 who undertakes more work than others, this job can be assigned to any
server since it is cheap and does not have a distinguished complexity. Therefore, the time complexity and space
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Let the packing factor k = 2s ≥ 2 for some positive integer s and ni = 2ℓ−i for i ∈ [0, ℓ]. Let f be ℓ-variate a multi-
linear polynomial, and x ∈ Fn is the evaluations of f on the hypercube {0, 1}ℓ. Let N be the number of servers.

Inputs: Each server S1, ..., SN holds packed secret shares of vectors x
(0)
j = {x(j−1)k+i}i∈[k], denoted as Jx(0)

j K, for
j ∈ [n0

k
].

Procedure dMVPC.Setup: This procedure is executed by a trusted setup:

1. Sample s
$← Fℓ as the trapdoor.

2. For i ∈ [0, ℓ], compute the evaluations of pi(bi+1, . . . , bℓ) = g
∏ℓ

j=i+1 βbj
(sj) on the hypercube {0, 1}ℓ−i, where

βbj (sj) = (1− sj)(1− bj) + sjbj . This results in ni group elements.

3. For i ∈ [0, ℓ− s], pack the ni group elements from the Step 2 into k-size vectors P
(i)
1 , ...,P

(i)
ni
k

. Each server

receives {JP(i)
j K}j∈[

ni
k

] as ppi.

4. For i ∈ [ℓ− s+ 1, ℓ], denote the ni group elements from the Step 2 as {P(i)
j }j∈[ni]. Each server receives

{⟨P(i)
j ⟩}j∈[ni] as ppi.

Procedure dMVPC.Commit:

1. Each server parse pp0 as {JP(0)
j K}j∈[

n0
k

], and the servers send (MULT, n0
k
, {Jx(0)

j K}j∈[
n0
k

], {JP
(0)
j K}j∈[

n0
k

]) to
FdMSM, which returns ⟨comf ⟩ to the servers.

Procedure dMVPC.Open: Let u be the evaluation point.

1. In the i-th round, where 1 ≤ i ≤ ℓ− s,

(a) Each server locally computes Jq(i)
j K = Jx(i−1)

j+
ni
k

K− Jx(i−1)
j K and Jx(i)

j K = (1− ui) · Jx(i−1)
j K + ui · Jx(i−1)

j+
ni
k

K,

for j ∈ [ni
k
].

(b) Each server parses ppi as {JP(i)
j K}j∈[

ni
k

], and the servers send (MULT, ni
k
, {Jq(i)

j K}j∈[
ni
k

], {JP
(i)
j K}j∈[

ni
k

])

to FdMSM, which returns ⟨πi⟩ to the servers.

2. The servers take Jx(l−s)K as input and invoke FPSSToSS to get ⟨x(l−s)
1 ⟩, ..., ⟨x(l−s)

k ⟩.
3. In the i-th round, where ℓ− s+ 1 ≤ i ≤ ℓ,

(a) Each server locally computes ⟨q(i)j ⟩ = ⟨x
(i−1)

j+
ni
k

⟩ − ⟨x(i−1)
j ⟩ and ⟨x(i)

j ⟩ = (1− ui) · ⟨x(i−1)
j ⟩+ ui · ⟨x(i−1)

j+
ni
k

⟩, for

j ∈ [ni].

(b) Each server parses ppi as {⟨P(i)
j ⟩}j∈[ni], and locally computes

∏
j∈[ni]

⟨P(i)
j ⟩

⟨q(i)j ⟩, which returns ⟨πi⟩ as a
result.

4. The servers output ⟨π⟩ = (⟨π1⟩, ..., ⟨πℓ⟩).

Protocol ΠdMVPC

Figure 4: Collaborative multilinear polynomial commitment in the {FdMSM,FPSSToSS}-hybrid world.

complexity for each server Si is consistently O( n
N ). The round complexity is O(1), and the total communication

complexity is O(n) field elements which can be shared among servers.
Finally, in a productcheck, the servers also need to obtain packed shares of v(x, 0) and v(x, 1). Since by Step 5

of the protocol the servers have computed the evaluations of the entire product tree, these shares can be acquired
by adjusting the pattern in which each server distributes its elements and unmasking the results accordingly.

4.3 Collaborative multilinear polynomial commitment

The zk-SNARKs we study often encode the witness as polynomials and commit to them with multivariate poly-
nomial commitments [29]. Suppose x is a vector of n = 2ℓ elements, corresponding to the witness to encode.
This vector can be effectively represented by a function V : {0, 1}ℓ → F. The prover uses mvPC to commit to an ℓ-
variate polynomial f , which is a multilinear extension of V . In our setting, we assume each server initially holds n

k
packed shares, represented as {JxjK}j∈[nk ], where each xj is a size-k vector and k is the packing factor we choose.
The primary challenge is two-fold: (i) generating commitment for f , and (ii) generating proof for evaluations.
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Generating commitment. Leveraging Equation 1, the commitment can be computed as

comf = gf(s) =
∏

b∈{0,1}ℓ

g
∏ℓ

i=1 βbi
(si)·V (b),

where βbi(si) = (1 − si)(1 − bi) + sibi, each V (b) ∈ F is a scalar in x and g
∏ℓ

i=1 βbi
(si) ∈ G is a group element.

This commitment can be computed by inputs x1, . . . , xn ∈ F and the corresponding group elements in an MSM
manner. However, in the collaborative setting, a problem is that each server possesses only the packed shares of
x, rather than the scalars. To tackle this, we recall the technique of distributed MSM introduced by [16], which
enables servers to compute MSM in a collaborative fashion. To facilitate this, we propose to prepare g

∏ℓ
i=1 βbi

(si)

for all possible b ∈ {0, 1}ℓ as parameters, also in a packed secret sharing form. With these parameters and the
packed shares of x, the servers can employ the technique of distributed MSM to collaboratively compute the
commitment. For clarity and completeness, we borrow the functionality FdMSM and protocol ΠdMSM from [16] and
put them in Appendix A.5 with minor modifications. This protocol is essentially time-efficient and space-efficient,
as each server averagely bears an overhead of O

(
n
k

)
group exponentiation and a space cost of O

(
n
k

)
.

Generating opening proof. During mvPC.Open, in order to generate a proof for the claim z = f(u), the prover
takes the following two steps:

• First, it undertakes ℓ polynomial divisions to obtain a sequence of quotient polynomials {Qi(xi+1, . . . , xℓ)}i∈[ℓ]

and remainder polynomials {Ri(xi+1, . . . , xℓ)}i∈[ℓ]. Let R0 := f denote the original polynomial. In the i-th
division, the operation is performed on the remainder polynomial of the last round, Ri−1, with respect to
the divisor (xi − ui). Formally, for i ∈ [ℓ],

Ri−1(xi, xi+1, . . . , xℓ) = Qi(xi+1, . . . , xℓ)(xi − ui) +Ri(xi+1, . . . , xℓ) (4)

• After obtaining these polynomials, it computes the proof as {gQi(s)}i∈[ℓ]. It is easy to see that, in the collab-
orative setting, given the packed shares of Qi’s evaluations on corresponding hypercubes, this computation
can be carried out by the servers in a manner similar to the commitment generation phase described earlier.

In [16], a similar difficulty is encountered when dealing with KZG polynomial commitment [23] for univariate
polynomials, where the polynomial divisions are done by the use of distributed FFT. However, a major drawback
of applying this technique is its reliance on a powerful server, which imposes increased communication costs
and potential memory bottleneck. This is contrary to our goal of establishing a scalable collaborative zk-SNARK
where time and space complexity is shared equally among all servers.

To tackle polynomial divisions, a new method leveraging the algebraic property of multilinear polynomials
is proposed. Note that in Equation 4, both the quotient and remainder polynomials Qi, Ri are multilinear. Let
(xi+1, . . . , xℓ) take values b ∈ {0, 1}ℓ−i, and xi take values 0 and 1 separately, we can derive that Ri−1(0, b) =

−ui ·Qi(b) +Ri(b) and Ri−1(1, b) = (1− ui) ·Qi(b) +Ri(b). Consequently,

Qi(b) = Ri−1(1, b)−Ri−1(0, b), Ri(b) = (1− ui) ·Ri−1(0, b) + ui ·Ri−1(1, b) (5)

Our observation is, similar to Equation 2, the above formula also has a SIMD property that can be exploited.
Initially, each server holds {JxjK}j∈[nk ]. After receiving a specific point u ∈ Fℓ, the packed shares of the first
quotient polynomial Q1’s evaluations on the hypercube {0, 1}ℓ−1 can be computed locally by each server. This
involves subtracting the first half of the shares {JxjK}j∈[nk ] from the second half. The packed shares of evaluations
for the first remainder polynomial R1 can also be determined by linear combinations of the packed shares within
{JxjK}j∈[nk ], analogous to Equation 3. This computation is recursively done for each of the quotient polynomials
similar to the collaborative sumcheck protocol. In the second step, after obtaining packed shares of the evaluations
of Qi on the hypercube {0, 1}ℓ−i, the servers collaborate to compute gQi(si+1,...,sℓ) using ΠdMSM protocol. Note that
the above computation can also get stuck in a given round. In this case, we allocate the remaining work, which
results in a small computational overhead, to each server by using the FPSSToSS technique again, similar to the
collaborative sumcheck protocol.
Our protocol. Combining the above discussions, we provide the protocol of our collaborative multilinear polyno-
mial commitment ΠdMVPC as detailed in Figure 4. Formally, we have the following theorem:

Theorem 3. The protocols dMVPC.Commit, dMVPC.Open depicted in Figure 4 are secure MPC protocols that compute
mvPC.Commit, mvPC.Open in the {FdMSM,FPSSToSS}-hybrid world against a semi-honest adversary who corrupts at most
t servers.
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Proof sketch. The correctness is straightforward. Except for invoking FdMSM and FPSSToSS, the servers only per-
form local computations during dMVPC.Commit and dMVPC.Open. In other words, no corrupted parties have the
chance to learn other parties’ private input. Therefore, the security is guaranteed.

Batching distributed MSMs. In the dMVPC.Open protocol, there are O(ℓ) = O(log n) invocations of FdMSM,
leading to non-constant round complexity. We provide an important optimization that reduces the complexity to
one round. We found that the distributed MSMs are independent of each other, so that they can be batch together.
More precisely, in Step 1 of protocol dMVPC.Open, each server computes only the entries needed for the MSM. At
the end of the protocol, O(ℓ) distributed MSMs are executed together: each server executes its own part of O(ℓ)
ΠdMSM and sends O(ℓ) elements to S1 of ΠdMSM in one go. Later, S1 may computes the remaining part of the O(ℓ)
ΠdMSM in parallel, further speeding up the computation. The reduced round complexity of dMVPC.Open is O(1).
Efficiency. The protocol depicted in Figure 4 is both time-efficient and space-efficient. In dMVPC.Commit, the
servers invoke ΠdMSM to compute the commitment where each server performs O( n

N ) group exponentiation, has
a space complexity of O( n

N ), and communicates O(N) group elements in total. In dMVPC.Open, the total proving
work of N servers is O(n). The computation overhead for each server Si is O( n

N ). The space complexity for
each server is consistently O( n

N ). The round complexity is O(1) because of one round FPSSToSS and the batched
FdMSM technique. The total communication complexity among servers is O(N log n) group elements due to the
distributed MSMs.

5 Instantiating Scalable Collaborative Proofs

We aim to instantiate scalable collaborative zk-SNARKs for Libra [43] and HyperPlonk [7] as concrete examples.
HyperPlonk. It is a novel zk-SNARK with O(n) prover time for general circuits of size n. Due to its expressive-
ness, HyperPlonk is applied for certain program executions with tremendously large circuits, like zkEVM [4]. The
prover of HyperPlonk mainly consists of zerocheck, productcheck, and several multilinear polynomial evalua-
tions.
Libra. It is a GKR-based zk-SNARK designed by combining the famous GKR [19] protocol with a multilinear
polynomial commitment. Libra has O(n) prover time, where n is the size of a depth-d layered circuit. For Libra,
we mainly care about data-parallel circuits, where a circuit consists of many identical copies of sub-circuit. This
is because GKR-based SNARKs have better concrete prover efficiency compared to HyperPlonk and are mainly
optimized for data-parallel circuits for real-world applications [31, 42, 43]. Libra’s prover mainly consists of O(d)
rounds of sumcheck and one-time multilinear polynomial evaluation.

For HyperPlonk, we can implement scalable collaborative proof for general circuits, while for Libra, we achieve
this for data-parallel circuits. This is done by replacing prover’s primitives with corresponding collaborative
primitives. Since the collaborative primitives have evenly distributed the time complexity and space complexity
among the servers, the proof generation of the corresponding collaborative zk-SNARKs inherits the same proper-
ties. Note that, both Libra and HyperPlonk are public-coin, so the verifier’s messages can be removed by applying
the Fiat-Shamir transformation [13]. In our collaborative setting, the transformation can be accomplished by hav-
ing each server reconstruct the proof transcript and use it to query a random oracle to obtain the same random
elements as the verifier’s messages. Formally, we have the following theorems:

Theorem 4. If (Setup,Prove,Verify) is the Libra zk-SNARK for a data-parallel circuit C. There exists a collaborative zk-
SNARK (Setup,ΠLibra,Verify) for C, where ΠLibra is a secure MPC protocol that computes Prove in the
{FPSSMult,FdMSM,FPSSToSS}-hybrid world against a semi-honest adversary who corrupts at most t servers.

Theorem 5. If (Setup,Prove,Verify) is the HyperPlonk zk-SNARK for a general circuit C. There exists a collabora-
tive zk-SNARK (Setup,ΠHyperPlonk,Verify) for C, where ΠHyperPlonk is a secure MPC protocol that computes Prove in the
{FPSSMult,FdMSM,FPSSToSS,FProdTree}-hybrid world against a semi-honest adversary who corrupts at most t servers.

Proof sketch. We defer the concrete construction of ΠLibra and ΠHyperPlonk to Appendix B and C, respectively. The
correctness follows the construction directly. Both ΠLibra and ΠHyperPlonk can be divided into two components: (i)
local computations and invoking of the sub-protocols for multivariate polynomials primitives, which are already
proven to be secure in the {FPSSMult,FdMSM,FPSSToSS,FProdTree}-hybrid world; (ii) accomplishing the Fiat-Shamir
transform collaboratively. In the latter component, the servers reconstruct the proof transcript and make queries
to the random oracle; by the zero-knowledge property of the underlying zk-SNARK, the corrupted servers can
learn nothing from the obtained proof transcript. This guarantees the security.
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Efficiency. Both ΠLibra and ΠHyperPlonk are time-efficient and space-efficient. As we discussed, the total proving
work of both zk-SNARKs is O(n). Due to the application of the collaborative primitives in Section 4, the time
complexity and space complexity for each server Si in ΠLibra and ΠHyperPlonk are both O

(
n
N

)
. The round complexity

of ΠLibra and ΠHyperPlonk is O(d) and O(1), respectively. For both protocols, the total communication complexity
among servers is O(n) field elements due to the necessary degree reductions, and O(N log n) group elements due
to the distributed MSMs. The communication complexity can be distributed among the servers.

6 Implementation and Evaluations

6.1 Evaluation setup

We build the codebase on top of the mpc-net library [27] for network communication and the arkworks li-
brary [1] for finite field and elliptic curve operations. Besides the implementation of our protocols, we also provide
a prototype of monolithic Libra and HyperPlonk for comparison purposes. Overall, our implementation involves
about 5000 lines of Rust code and other scripts. We provide our codebase anonymously, which is available at
https://github.com/LBruyne/Scalable-Collaborative-zkSNARK.
Experiment setup. One of the merits for our framework is that there is no need for a powerful server to dominate
the proof generation. To demonstrate this, our protocols are evaluated with up to 256 consumer-level machines of
instance type c7.large, each with only 4 GB of RAM. For the PSS scheme we rely on, the packing factor is set as
k = N

4 , and the protocols are secure against at most t = N
4 corrupted servers. This is the same setting as in [16].

As discussed in Section 3, pre-processing is not evaluated, which is similarly handled in [16, 28].
Experiment design. We design the following experiments to evaluate our scalable collaborative zk-SNARKs:

1. Performance comparison between our protocols and corresponding monolithic zk-SNARKs. The running
time of our protocols decreases linearly with the number of servers, while the maximum circuit that can be
handled scales linearly.

2. Performance and economic analysis of our results and collaborative Plonk from [16]. The result highlights
the benefits of eliminating the specified powerful server. It allows all servers to take only a proportional
share of the total workload, so that proof generation is not limited by a single server’s capability.

3. Performance under different network conditions. The efficiency maintains even under limited network
conditions. Moreover, with more normal-equipped servers, we can achieve better efficiency. Therefore,
our approaches are robust to apply in proof outsourcing where participants are diverse and from different
locations.

Looking ahead, the results demonstrate that our protocols are efficient, scalable, and cost-effective, making them
suitable for real-world proof outsourcing applications.

6.2 Comparison with local prover

We commence by comparing the performance of our implementation with the corresponding local prover of Libra
and HyperPlonk. Since collaborative proofs are needed when outsourcing large-scale circuits that are infeasible
for clients, we vary the total number of circuit gates from 220 to 228 to represent complex circuits in real-world
applications. For data-parallel circuits, which are the targets of collaborative Libra, we choose a 64-copy circuit,
each copy with a depth of 8, and alter the number of gates in each layer to simulate different circuit sizes. For local
provers, we use a c7.large machine with 4 GB of RAM to act as a low-specification PC machine. Servers in the
collaborative setup are linked through a 4 Gbps network.
Time-efficiency. In Figure 5, we present the performance evaluation of collaborative Libra and HyperPlonk with
different server counts ranging from 16 to 128. Our protocols are time-efficient, both achieving a linear improve-
ment with the number of servers. The efficiency gain is more significant for larger circuits. Specifically, for a circuit
with 224 gates and N = 128 servers, the running times of Libra and HyperPlonk are reduced by factors of 21×
and 24×, respectively. We note that this efficiency is lower than the theoretical k = 32 times improvement, mainly
due to the additional degree reductions and communication overhead, which are absent in the local prover.
Space-efficiency. It can be noted from the figure that a local prover encounters a memory bottleneck when the
circuit size is relatively large, while our protocols remain space-efficient. A collaborative proof with N servers can
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Figure 5: Performance comparison for collaborative proofs of our protocols and local provers. The slash lines
indicate estimated data due to memory limitations.

scale to k = N
4 times larger circuits. Specifically, for HyperPlonk and Libra with 128 servers, the largest circuit

they can handle is 32× larger than that of a local prover. Moreover, the servers we use are equipped with only 4
GB of RAM, which is much lower than a typical server for production use. Therefore, it is expected that if more
servers with higher memory capacity are available, the circuit size that can be handled will be further increased.

6.3 Comparison with [16]

We choose our collaborative HyperPlonk and the collaborative Plonk implementation [30] from [16] for compar-
ison, as they both adopts general arithmetic circuits as the computation model. We note that monolithic Hyper-
Plonk and Plonk essentially have different properties: the latter has more expensive prover time, while both proof
systems have similar space complexity. Therefore, for a fair comparison, we fix the circuit size at 220 and vary the
number of servers from 16 to 128, measuring the running time and memory usage savings factor with respect to a
local prover for both proposals. Collaborative Plonk is evaluated in a cluster comprising a powerful leader, which
is a g7.8xlarge instance with 128 GB RAM, and other workers, which are c7.large instances with 4 GB RAM.
We do not consider any multi-threading optimizations for both proposals. The evaluation results are summarized
in Figure 6.
Memory usage. It is noted that the memory usage of the leader server in collaborative Plonk remains high,
approximately equal to the overhead of a local prover, regardless of servers count. In contrast, the memory usage
of a single server in HyperPlonk decreases linearly with the number of servers. This confirms the statement that
the space complexity of the two proposals is O(SP) and O

(
SP

N

)
, respectively. Therefore, the memory usage of the

leader server will become the main bottleneck for collaborative Plonk to deal with larger circuits. In contrast, our
protocol can scale to larger-scale circuits by adding more servers, as the total memory usage is well distributed
among all servers.
Running time. We also analyze the running time with 100 Mbps network and 4 Gbps network separately. It is
noted that our protocol achieves better speedups. For collaborative Plonk, the speedup is limited without further
assumptions on better network conditions and multi-threading optimization for the leader server. Moreover, with
100 Mbps bandwidth, the efficiency gain of HyperPlonk is minimally influenced, while Plonk cannot achieve any
speedup. This is because the communication overhead of a server in our protocol is relatively small. Specifically,
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Figure 6: Performance comparison for our protocols and Plonk in [16]. The data are measured as S
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and T
TP

, where
S, T and SP, TP are the memory usage and running time of the protocols and a local prover, respectively. Neither
protocol consider multi-threading optimizations.

for a 128-server case, the communication costs are 39 MB and 22 GB for a single server of HyperPlonk and the
leader of Plonk, respectively.
Financial cost. We complement with a financial cost calculation for the two schemes, referencing Google Cloud’s
pricing for spot instances and network services1. Concretely, it takes 28 seconds and 277 seconds for 128-servers
HyperPlonk and Plonk to generate a proof, with overall communication costs of 128 servers being 2.43 GB and
22 GB, respectively. Considering the low-memory instances we use and the high-capacity server required by
Plonk, this translates to an overall cost of $0.21 and $2, respectively, where the network fee dominates. Besides
faster proof generation, the substantial savings are due to two factors: (i) our protocols only require lower-spec
machines, avoiding the expensive high-capacity server; (ii) The lower communication cost leads to less network
fees.

6.4 Performance under different networks

Finally, we fix the circuit size at 224 and consider three different network settings: (i) Local network with 10
Gbps bandwidth and 0.1 ms latency, (ii) LAN network with 1 Gbps bandwidth and 1 ms latency, and (iii) WAN
network with 100 Mbps bandwidth and 50 ms latency. We vary the number of servers from 32 to 256 and measure
the communication cost for a single server and the corresponding speedup with respect to a local prover. The
evaluation results are summarized in Table 2. A decrease in bandwidth leads to fewer efficiency gains, as the
communication overhead takes longer time. This efficiency loss is less obvious for HyperPlonk, and HyperPlonk
still achieves a 20× speedup with 128 servers in the WAN network. The reasons are: (i) the concrete computation
time of HyperPlonk is larger than that of Libra; (ii) collaborative HyperPlonk is constant-round, so its performance
is less affected when switching to a slower network. Moreover, it is observed that the efficiency loss can be
mitigated by adequately adding servers, as in our protocols the communication overhead will be better distributed
if more servers are available.

7 Discussion

Achieving malicious security. In this work, we only consider a semi-honest adversary. However, we note that
the zk-SNARK proofs output by our collaborative zk-SNARK framework is still sound even when all servers are
corrupted by a malicious adversary. Furthermore, we make a conjecture, which is similar to [16], that our semi-
honest protocols are secure against malicious corruptions up to linear attacks [18], that is, all the malicious parties
can do is to cause some additive errors into the output of the protocols. We conjecture that our semi-honest
protocols can be compiled to be malicious secure by augmenting with some lightweight verification protocols to
detect the potential malicious behaviors, as in [17, 18, 20].

1Pricing at $0.0042 per GB hour for RAM of custom N1 machines, and network costs at $0.08 per GB.
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Protocol #Servers Comm. (MB) Speedup (×)

Local LAN WAN

Libra

32 1440 5.6 4.5 1.5
64 747 10.4 8.5 2.9
128 393 15.6 12.7 4.4
256 250 18.6 13.7 3.7

HyperPlonk

32 994 6.9 6.8 6.3
64 760 13.0 12.8 11.4
128 397 22.9 22.6 20.3
256 251 39.8 39.3 35.0

Table 2: Performance comparison under different networks. Communication cost is measured for a single server.
Speedup is measured as TP

T , where T and TP are the running time of the protocols and a local prover, respectively.

Future works. We do not achieve scalable collaborative proof for Libra with general circuits, mainly because the
linear-time algorithm introduced by [43, Section 3.3] is difficult to distribute when the circuit has an arbitrary form.
It is interesting to explore how to evenly distribute the prover of Libra with respect to general circuits. Another
future work will be instantiating a scalable collaborative proof for zk-SNARKs where the relationR is represented
in rank-1 constraint systems (R1CS). A representative is Spartan and its variants [33,34], where the primitives they
used can also be replaced by collaborative tools studied in this work. Finally, it would be meaningful to explore
realizing malicious security for the protocols and applying them to real-world applications.
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It interacts with a set of the servers S1, . . . , SN and an adversary S.

Upon receiving DOUBLERAND from S1, . . . , SN , do::

• Receive shares {ui, vi}i∈Corr from S.

• Choose a random vector r ∈ Fk and sample random degree-d and 2d packed secret sharing JrKd and JrK2d
such that the shares of the corrupted parties are identical to those received from the S, i.e., {ui, vi}i∈Corr .

• Send the shares JrKd and JrK2d to all parties.

Functionality FDouble-Rand

Figure 7: The functionality FDouble-Rand.
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A Helper Functionalities

Here we provide some helper functionalities that are used in the main body of this paper.

A.1 Functionalities for double random shares

Here we provide the ideal functionality for generating double-packed shares of a batch of random vectors, which
is denoted as FDouble-Rand and is described in Figure 7. This functionality is commonly used in prior works,
e.g., [16]; therefore, we omit its protocol realization here.
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It interacts with a set of the servers S1, . . . , SN and an adversary S. Let Corr be the set of the corrupted servers.
Let H be the set of the honest servers.

Upon receiving (PSSMULT, JaK, JbK) from S1, . . . , SN , do:

• Receive a set of shares {ui}i∈Corr from the adversary S.

• Reconstruct a and b from JaK, JbK.

• Compute c := a ∗ b, i.e., ci = ai · bi for i ∈ [k].

• Sample random sharing JcK of c, such that the shares of the corrupted servers are identical to those received
from S, i.e., {ui}i, s.t. Si∈Corr .

• Distribute JcK to all servers.

Functionality FPSSMult

Figure 8: The functionality FPSSMult.

Let JaK, JbK be the packed secret shares that the servers hold. The protocol allows N servers to collaboratively com-
pute JcK, where c = a ∗ b.

Preprocessing of double randoms:

1. The servers invoke FDouble-Rand to obtain JrKd, JrK2d.

Protocol:

1. The servers locally compute JcK2d := JaKd · JbKd.

2. The servers locally compute JmK2d := JcK2d + JrK2d and send JmK2d to S1. S1 reconstructs m.

3. S1 computes and sends JmKd to all servers.

4. The servers locally compute JcKd := JmKd − JrKd.

Protocol ΠPSSMult

Figure 9: The protocol ΠPSSMult.

A.2 Functionality for PSS multiplication

Here we provide the ideal functionality fpssmult for PSS multiplication: given two PSS JaK, JbK, the goal is to
compute JcK such that c = a∗b. Formally, we present the detailed description of FPSSMult and its protocol ΠPSSMult

in Figures 8 and 9, respectively. The security is proven through Theorem 6. The communication complexity of the
online phase is O(N) field elements.

Theorem 6. The protocol ΠPSSMult securely realizes FPSSMult in the FDouble-Rand-hybrid world against a semi-honest adver-
sary corrupting up to t servers.

Proof. We refer readers to see the proof in [16].

A.3 Functionality for transforming PSS to SS

Here we provide the ideal functionality FPSSToSS for converting packed shares to regular shares. Formally, we
present the detailed description ofFPSSToSS and its protocol ΠPSSToSS in Figure 10 and 11, respectively. The security
is proven through Theorem 7. The communication complexity of the online phase is O(N) field elements.

Theorem 7. The protocol ΠPSSToSS depicted in Figure 11 securely realizes FPSSToSS depicted in Figure 10 against a semi-
honest adversary corrupting up to t servers.

Proof sketch. The correctness is straightforward. Here we focus on the security. By the randomness extraction
in [9], we conclude that for Jr(1)K and ⟨r(1)1 ⟩, . . . , ⟨r

(1)
k ⟩ generated in the preprocessing phase, r(1) is uniformly

random and no server knows r(1). Therefore, during the online phase, no server can learn anything about x from
y, since y = x− r(1). This completes the proof.
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It interacts with a set of the servers S1, . . . , SN and an adversary S.

Upon receiving (TOSS, JxK) from all servers, do:

• For each j ∈ [k], receive shares {uj,i}i∈Corr from S.

• Reconstruct x = (x1, ..., xk) from JxK.

• For each j ∈ [k], computes a random sharing of xj such that the shares of the corrupted servers are identical
to those received from S, i.e., {uj,i}i∈Corr .

• For each j ∈ [k], distribute ⟨xj⟩ to all servers.

Functionality FPSSToSS

Figure 10: The functionality FPSSToSS.

Let JxK be the PSS to be converted, where x ∈ Fk. Let V N,N−t be a public Vandermonde matrix with N rows and
N − t columns. The protocol allows N servers to collaboratively compute ⟨x1⟩, . . . , ⟨xk⟩.
Preprocessing of randoms:

1. Each server Si picks an uniformly random u(i) ∈ Fk and computes Ju(i)K,⟨u(i)
1 ⟩, . . . , ⟨u

(i)
k ⟩.

2. Each server Si sends the j-th shares Ju(i)Kj ,⟨u(i)
1 ⟩j , . . . , ⟨u

(i)
k ⟩j to Sj , for j ∈ [N ].

3. Each server Si locally computes (Jr(1)Ki, . . . , Jr(N−t)Ki) = V T
N,N−t · (Ju(1)Ki, . . . , Ju(N)Ki) and

(⟨r(1)j ⟩i, . . . , ⟨r
(N−t)
j ⟩i) = V T

N,N−t · (⟨u
(1)
j ⟩i, . . . , ⟨u

(N)
j ⟩i) for j ∈ [k].

Protocol:

1. Each server Si locally computes JyK := JxK− Jr(1)K and send JyK to S1.

2. S1 reconstructs y ∈ Fk and sends y to all servers.

3. The servers compute ⟨xj⟩ := yj + ⟨r(1)j ⟩ for j ∈ [k].

Protocol ΠPSSToSS

Figure 11: The protocol ΠPSSToSS.

A.4 Functionality for generating masks

Here we provide details for generating masks and unmasks used in the preprocessing phase of ΠdProdTree. The
functionality and protocol are presented in Figures 12 and 13. The security is proven through Theorem 8. The pro-
tocol needs O(logN) round complexity to complete the PSS multiplications, and the communication complexity
is O(n).

Theorem 8. The protocol ΠRand-ProdTree securely realizes FRand-ProdTree in the FPSSMult-hybrid world against a semi-honest
adversary corrupting up to t servers.

Proof sketch. The correctness is straightforward. Except for invoking FPSSMult and sharing some random values,
the servers only perform local computation, and the corrupted parties have no chance to learn mj ,uj for j ∈ [nk ].
Hence, the security is guaranteed.

A.5 Functionality for distributed MSM

In [16], the authors provide a functionality for distributing the computation of MSM, i.e., given A1, ..., An as n

group elements in G and b1, ..., bn as n field elements in F, the N servers collaborate to compute out =
∏

i∈[n] A
bi
i .

The functionality and protocol are presented in Figures 14 and 15. The security of the protocol ΠdMSM is proven
through Theorem 9. The protocol is both time-efficient and space-efficient, as each server only computes n

N group
elements, and the total communication cost is O(N).

2τ(·) and τ inv(·) are two functions, mapping [n] → [n+1]. Let n = 2ℓ. For each j ∈ [n−1], τ(j) and τ inv(j) can be computed by following
steps. First, let s = ⌊log (n− j)⌋. Then, set τ(j) = (j −

∑ℓ−s−1
t=1 2ℓ−t) · 2ℓ−s + 1 and τ inv(j) = (j −

∑ℓ−s−1
t=1 2ℓ−t − 1) · 2ℓ−s + 1. Finally,

set τ(n) = τ inv(n) = 0.
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It interacts with a set of the servers S1, . . . , SN and an adversary S. Let Corr be the set of the corrupted servers.
Let H be the set of the honest servers.

Upon receiving (RANDPRODTREE, n) from the servers, do:

• Sample {ri}i∈[n+1]
$← Fn+1 and construct r = (r1, r2 · · · , rn), rinv = (r−1

2 , · · · , r−1
n , r−1

n+1).

• Compute r̃ = {r̃j}j∈[n], ˜rinv = { ˜rinvj }j∈[n], where r̃j = rτ(j) and ˜rinvj = r−1

τ inv(j)
for j ∈ [n]2.

• Compute m := r ∗ rinv and u = r̃ ∗ ˜rinv.

• For i ∈ [n
k
] :

– Set mi := (m(i−1)k+1, ...,mik), ui := (u(i−1)k+1, ..., uik)

– Receive a set of shares {vi,j , wi,j}j∈Corr from S.

– Sample random PSS JmiK of mi and JuiK of ui s.t. the shares of the corrupted parties are identical to
those received from S, i.e., {vi,j , wi,j}j∈Corr .

• Distribute the shares {JmiK}, {JuiK} to all servers.

Functionality FRand-ProdTree

Figure 12: The functionality FRand-ProdTree.

The protocol allows N servers to collaboratively compute packed secret shares of masks and unmasks.

Protocol:

1. Each server Si samples {rj}j∈[n+1] and constructs r = (r1, r2 · · · , rn), rinv = (r−1
2 , · · · , r−1

n , r−1
n+1).

2. Each server Si computes r̃ = {r̃j}j∈[n], ˜rinv = { ˜rinvj }j∈[n], where r̃j = rτ(j) and ˜rinvj = r−1

τ inv(j)
.

3. Each server Si computes vi := r ∗ rinv, wi = r̃ ∗ ˜rinv, computes and sends Jvi,jK, Jwi,jK to others for j ∈ [n
k
].

4. Servers invoke FPSSMult to compute JmjK and JujK where mj =
⊙N

i=1 vi,j and uj =
⊙N

i=1 wi,j for j ∈ [n
k
].

Here
⊙

denotes a consecutive coordinate-wise product.

Protocol ΠRand-ProdTree

Figure 13: The protocol ΠRand-ProdTree.

The functionality FdMSM interacts with a set of servers S1, . . . , SN and an adversary S. Let Corr be the set of cor-
rupted servers. It does:

Upon receiving (MULT,m, JA1K, . . . , JAmK, Jb1K, . . . , JbmK) from the servers, where m is the number of pairs:

1. For i ∈ [m], reconstruct (A(i−1)k+1, ..., Aik) from JAiK and reconstruct (b(i−1)k+1, ..., bik) from JbiK.

2. Receive a set of shares {ui}i∈Corr from the adversary.

3. Compute out =
∏

i∈[m·k] A
bi
i .

4. Sample a random sharing ⟨out⟩ of out, such that the shares of the corrupted parties are identical to those
received from the adversary, i.e., {ui}i∈Corr .

5. Distribute the shares ⟨out⟩ to all servers.

Functionality FdMSM

Figure 14: The functionality FdMSM

Theorem 9. The protocol ΠdMSM securely realizes FdMSM in the {FDouble-Rand,FPSSToSS}-hybrid world against a semi-
honest adversary corrupting up to t servers.

Proof. We refer readers to see the proof in [16].
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Let A1, ..., An be n group elements in G and b1, ..., bn be n field elements in F. We assume k|n, where k is the pack-
ing factor, and we set m := n/k.

Inputs: Each server holds packed secret shares JAjK of vectors Aj = {A(j−1)k+i}i∈[k] and JbjK of vectors bj =
{b(j−1)k+i}i∈[k], for each j ∈ [m], respectively.

Preprocessing of double randoms:

1. The servers invoke FDouble-Rand to prepare a pair of random shares JrKd, JrK2d, where r ∈ Fk is a random vector
unknown to any server Si.

2. The servers send JrKd to FPSSToSS, which returns ⟨r1⟩, ..., ⟨rk⟩ to the servers.

Protocol:

1. Each server Si computes JCK2d =
∏

j∈[n
k
]JAjK

JbjKd
d .

2. Each server Si computes JDK2d = JCK2d · gJrK2d and send it to S1.

3. S1 reconstructs D = (D1, ..., Dk).

4. S1 computes E =
∏

j∈[k] Dj and send it to each server.

5. Each server computes ⟨out⟩ = E∏
j∈[k] g

⟨rj⟩
as output.

Protocol ΠdMSM

Figure 15: The ΠdMSM Protocol .

B Collaborative Libra

This section offers an overview of Libra [43] and how to implement a collaborative Libra for data-parallel cir-
cuits. We concentrate on a version without the zero-knowledge property, and it can be incorporated following the
methodologies outlined in prior works [43, 46].
GKR protocol. The Libra protocol is based on the well-known GKR protocol [19]: For a layered circuit, define
a function Vi : {0, 1}µ → F that takes a gate label b ∈ {0, 1}µ and returns the output of gate b in layer i. With
this definition, V0 corresponds to the output of the circuit and Vd corresponds to the input layer. We define two
additional functions addi, multi: {0, 1}3µ → {0, 1}, referred to as wiring predicates in the literature. addi (multi)
takes one gate label z ∈ {0, 1}µ in layer i− 1 and two gate labels x,y ∈ {0, 1}µ in layer i, and outputs 1 if and only
if the gate z is an addition (multiplication) gate that takes the output of gate x,y as input. With these definitions,
for any g ∈ Fµ, Ṽi can be written as the following GKR relation:

Ṽi(g) =
∑

x,y∈{0,1}µ

˜addi+1(g,x,y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(g,x,y)Ṽi+1(x)Ṽi+1(y) .

Consider a data-parallel circuit comprising B identical copies, where each sub-copy is a d-depth layered cir-
cuit. Assume there are in total n gates in each layer of the circuit, where n = 2µ. In the collaborative setting,
the critical step for achieving collaborative Libra for data-parallel circuits involves organizing the values at the
corresponding positions across different sub-copies of the circuit into the same vectors. These vectors are then
distributed among the servers using packed secret sharing. We assume that each server receives packed secret
shares of Ṽi’s evaluations on the hypercube. Specifically, the variables in the same position of each sub-copy are
packed together.
Setup. The setup of Libra involves invoking mvPC.Setup to the parameter of polynomial commitments. We
assume servers receive parameters from dMVPC.Setup.
Prove. The prover interacts with the verifier in O(d) rounds.

1. The prover commits to Ṽd. We assume servers invoke dMVPC.Commit to generate the commitment.

2. The prover sends the claimed output of the circuit to the verifier. The verifier defines the polynomial Ṽ0

and computes Ṽ0(g) for a randomly chosen g ∈ Fµ. The prover and verifier engage in a sumcheck about
Ṽ0(g) on the GKR relation. At the end of the sumcheck, the claim is reduced to Ṽ1(u

(1)), Ṽ1(v
(1)), where u,v
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are selected randomly in Fµ. We assume servers invoke a collaborative sumcheck protocol to support this
process. This is feasible if the circuit is data-parallel.

3. From layer i to d− 1, the two claims Ṽi(u
(i)), Ṽi(v

(i)) are combined using a random linear combination. The
prover and verifier conduct a new sumcheck about the newly formulated claim. At the end of the sumcheck,
the verifier receives two claims about ˜Vi+1, and this process is recursively continued until reaching the
input layer. We assume that, at each layer, servers invoke a collaborative sumcheck protocol to support this
process.

4. At the input layer, the prover evaluates the polynomial Ṽd at a random point to validate its claim. We assume
servers use dMVPC.Open to support this process.

C Collaborative HyperPlonk

This section provides an overview of HyperPlonk [7] and how to implement a collaborative HyperPlonk for
general circuits. We concentrate on a version without the zero-knowledge property, though it can be incorporated
following the methodologies outlined in [6, Appendix A]. We also omit the optimizations introduced in [7] for
batching protocols and supporting customized gates and lookup operations.
Arithmetization. Consider a general circuit n comprising n inputs and m gates, each with a fan-in of two, per-
forming either addition or multiplication. Let 2µ = m+ n+ 1. The arithmetization involves an input polynomial
I , selector polynomials S1, S2, and a permutation polynomial σ̂. The computation trace is captured by a set M̂ of
triples {(Li, Ri, Oi) ∈ F3}i=0,...,n+m, where each triple represents the wires of the i-th gate. The prover defines a
(µ+ 2)-variate polynomial M as the multilinear extension of M̂ , such that for all i ∈ {0, . . . , n+m},

M(0, 0, ⟨i⟩) = Li, M(0, 1, ⟨i⟩) = Ri, M(1, 0, ⟨i⟩) = Oi

Here ⟨i⟩ denotes the binary representation of an integer i. Given these, to prove the correctness of computation,
the prover needs to check

• Gate identity: ∀x ∈ {0, 1}µ,

F (x) = S1(x) · (M(0, 0,x) +M(0, 1,x))+

S2(x) ·M(0, 0,x) ·M(0, 1,x)−M(1, 0,x) + I(x) = 0

• Wire identity: ∀x ∈ {0, 1}µ+2, M(x) = M(σ̂(x)).

We assume servers receive packed secret shares of all the above multilinear polynomials’ evaluations on their
respective hypercubes.
Setup. The setup of HyperPlonk involves invoking mvPC.Setup to prepare parameters for the polynomial com-
mitment of each multilinear polynomial. We assume servers receive parameters according to dMVPC.Setup.
Prove. The prover interacts with verifier in constant rounds.

1. The prover commits to polynomials separately. We assume servers invoke dMVPC.Commit to generate com-
mitments.

2. The prover and verifier engage in a permutation-check concerning wire identity, which can be reduced to a
product check. We assume servers invoke a collaborative productcheck to support this process, involving
collaboratively computing the product tree, a collaborative zerocheck and dMVPC.Open.

3. The prover and verifier run a zerocheck protocol on F (x). We assume that, after performing field opera-
tions on the corresponding packed shares, servers invoke a collaborative zerocheck protocol to support this
process.

4. The prover evaluates multiple multilinear polynomials at random points to validate its claim. We assume
servers use dMVPC.Open to support this process.
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