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Abstract
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1 Introduction

The development of asymmetric cryptography, also known as public-key cryptography,
is the greatest and perhaps the only true revolution in the history of cryptography.A
significant portion of the theory behind public-key cryptosystems relies on number
theory [6]. RSA is a widely used public-key cryptosystem for secure data transmission.
It was first described publicly in 1977 by Ron Rivest, Adi Shamir, and Leonard Adle-
man. An equivalent system had been secretly developed in 1973 by Clifford Cocks at
the British signals intelligence agency, GCHQ.
In RSA, the encryption key is public, while the decryption key is private. To create a
public key, a user chooses two large prime numbers and an auxiliary value, and then
publishes this information. The prime numbers are kept secret. Anyone can use the
public key to encrypt messages, but only someone who knows the private key can
decrypt them. The security of RSA relies on the factoring problem, which is the prac-
tical difficulty of factoring the product of two large prime numbers. Breaking RSA
encryption is known as the RSA problem. RSA is a relatively slow algorithm, so it is
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not commonly used to directly encrypt user data. Instead, it is used to transmit shared
keys for symmetric-key cryptography. The author establishes a connection between
RSA and Halidon rings using Discrete Fourier Transform and Halidon group rings in
this article.

In 1940, the famous celebrated mathematician Graham Higman published a
theorem [2],[5] in group algebra which is valid only for a field or an integral domain
with some specific conditions. In 1999, the author noticed that this theorem can be
extended to a rich class of rings called halidon rings[7].

A primitive mth root of unity in a ring with unit element is completely different
from that of in a field, because of the presence of nonzero zero divisors. So we need
a separate definition for a primitive mth root of unity. An element ω in a ring R is
called a primitive mth root if m is the least positive integer such that ωm = 1 and

m−1∑
r=0

ωr(i−j) = m, i = j( mod m)

= 0, i ̸= j( mod m).

More explicitly,

1 + ωr + (ωr)2 + (ωr)3 + (ωr)4 + ......+ (ωr)m−1 = m, r = 0

= 0, 0 < r ≤ m− 1.

A ring R with unity is called a halidon ring with index m if there is a primitive mth

root of unity and m is invertible in R. The ring of integers is a halidon ring with index
m = 1 and ω = 1. The halidon ring with index 1 is usually called a trivial halidon
ring. The field of real numbers is a halidon ring with index m = 2 and ω = −1. The
field Q (i) = {a+ ib|a, b ∈ Q } is a halidon ring with ω = i and m = 4. Zp is a halidon
ring with index p− 1 for every prime p. Interestingly, Zpk is also a halidon ring with
same index for any integer k > 0 and it is not a field if k > 1. Note that if ω is a
primitive mth root of unity, then ω−1 is also a primitive mth root of unity.

2 Preliminary results

In this section, we state some new results and the results essential for constructing
the RSA-DFT and RSA-HGR Cryptosystems only. The readers who are interested in
the properties of halidon ring, can refer to [7], [8] and [9].
Let U(R) denote the unit group of R.The following theorem will give the necessary
and sufficient conditions for a ring to be a halidon ring. The author has used this
theorem to develop the computer programme-1 given below.
Theorem 1. (A. Telveenus [8]) A finite commutative ring R with unity is a halidon
ring with index m if and only if there is a primitive mth root of unity ω such that m,
ωd − 1 ∈ U(R); the unit group of R for all divisors d of m and d < m.
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Proposition 2. The homomorphic image of a commutative halidon ring with index
m and primitive mth of unity ω is also a halidon ring with index m.
Proposition 3. Let R be a commutative halidon ring with index m and let k > 1 be
a divisor of m. Then R is also a halidon ring with index k.

In the rest of the section, let R = Zn be a halidon ring with index m and primitive
mth root of unity ω.
Lemma 4. Let p be an odd prime number and k a positive integer. Then

1. U(Zp) =< ω > for some ω ∈ U(Zp) with order p− 1,
2. U(Zpk) =< ω > for the same ω treating as an element in U(Zpk) with order ϕ(pk).

Proof. 1. Since Zp is a field, the result follows.
2. ωp−1 = 1 mod p ⇒ ωp−1 = 1 + lp, where l is an integer and using the binomial

expansion, we get ωpk−1(p−1) = 1 mod pk . Let s be the order of ω in U(Zpk).
Therefore s ≤ pk−1(p− 1). If s < pk−1(p− 1), then s|pk−1(p− 1) and this implies
s|p− 1 which is not possible as the order of ω in U(Zp) is p− 1. Thus we have the
order of ω in U(Zpk) as pk−1(p− 1) = ϕ(pk).

Definition 1. Let R be a ring and α ∈ R. The element α is called a primitive element
or primitive root if α multiplicatively generates the unit group U(R) of the ring R.
Example 1. U(Z5) =< 2 > with order 4 and U(Z53) =< 2 > with order ϕ(125) =
100. Clearly, 2 ∈ Z53 is a primitive root but not a primitive root of unity in Z53 .
Proposition 5. Let p be an odd prime number. Then Zpk is a halidon ring with index

m = p− 1 and ω1 = ωpk−1

is a primitive mth root of unity for positive integers k ≥ 1.

Proof. Since Zp is a halidon ring with ω as a primitive mth root of unity, ωm =
ωp−1 = 1 and m, ωr − 1 ∈ U(Zp) for r = 1, 2, 3, ..,m − 1. Clearly ωm

1 = 1 and

ωr
1 − 1 = ωpk−1r − 1 ∈ U(Zp) for r = 1, 2, 3, ..m− 1. By lemma 4, Zpk is a halidon ring

with index m = p− 1.

The complete characterisation of the halidon property in Zn, where n is odd, is
given by the following theorem.
Theorem 6. The ring Zn, where n = pe11 p

e2
2 p

e3
3 .....p

ek
k with 2 < p1 < p2 < ..... < pk is

a halidon ring with index m and the primitive mth root of unity ω if and only if each
Zp

ei
i

is a halidon ring with index m and primitive mth root of unity ωi = ω mod peii
for each i = 1, 2, 3, ..., k.

Proof. We define a map f : Zn → Πk
i=1Zp

ei
i

by f(a) = Πk
i=1a mod p

ei
i . Clearly f is

an isomorphism and using the proposition 2, ω ∈ U(Zn) is a primitive mth root of
unity if and only if each ωi = ω mod peii ∈ U(Zp

ei
i
) is a primitive mth root of unity in

Zp
ei
i
. If ωi’s are known, then we can calculate ω ∈ U(Zn) using the Chinese remainder

theorem.
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Definition 2. Let p1, p2, p3, ...., pk be odd primes and let ϕ(x) be the Euler’s totient
function. We define the halidon function

ψ(n) =

{
gcd{ϕ(pe11 ), ϕ(pe22 ), ϕ(pe33 ), ...., ϕ(pekk )}, n = pe11 p

e2
2 p

e3
3 .....p

ek
k

1, n is even

Proposition 7. Let n be as in definition 2. Then the halidon function

ψ(n) = gcd{p1 − 1, p2 − 1, p3 − 1, ...., pk − 1},

which is independent of the exponents e1, e2, e3, ...., ek.
Now we can prove the following theorem, which was previously a conjecture(see

[9]):
Theorem 8. (A. Telveenus [9]) If R = Zn and n = pe11 p

e2
2 p

e3
3 .....p

ek
k with primes

p1 < p2 < p3 < .... < pk including 2, then R is a halidon ring with maximal index
mmax = ψ(n).

Proof. Suppose n is odd. Since the map f : Zn → Πk
i=1Zp

ei
i

by f(a) = Πk
i=1a mod p

ei
i

is an isomorphism, the order of ω, o(ω) = m ⇔ o(ωi) = m, for i = 1, 2, 3, .., k. Also,

ωi ∈ Zp
ei
i

⇒ ω
ϕ(p

ei
i )

i = 1 ⇒ m | ϕ(peii ) = pei−1
i (pi − 1). Since m is even, m ∤ pei−1

i ⇒
m | pi − 1 for i = 1, 2, 3, .., k ⇒ mmax = gcd(p1 − 1, p2 − 1, p3 − 1, ...., pk − 1) = ψ(n)
by definition 2. If n is even, then m = 1 = ψ(n) as m is invertible in R.

From proposition 5, we have Zpk is a halidon ring with index m = p − 1 and the

primitivemth root of unity ω1 = ωpk−1

for positive integer k ≥ 1 where ω is a primitive
mth root of unity in Zp.
Lemma 9. Let p be a prime number. Then the number of primitive kth roots of unity
in Zp is ϕ(k).

Proof. Since Zp is a field, it is a halidon ring with maximum index p − 1. It is clear
that every non zero element in Zp is a primitive kth root of unity for some positive
integer k|p− 1. It is well known that∑

d|p−1

ϕ(d) = p− 1.

∴ the number of kth root of unity in Zp is ϕ(k).

Theorem 10. Let n = pe11 p
e2
2 p

e3
3 .....p

ek
k such that ei > 0 are integers and pi = mti+1;

where m is the maximum index of the halidon ring Zn and ti’s are relatively prime for
all i = 1, 2, 3..., k. Then the number of primitive mth root of unity in Zn is [ϕ(m)]k.

Proof. The result follows from theorem 6, theorem 8 and lemma 9.

The following computer code based on theorem 1 computes primitive mth root of
unity in the halidon ring Zn and verifies theorem 10.
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Programme-1: To check whether Z(n) is a trivial or nontrivial halidon ring.

#include <iostream>

#include <cmath>

using namespace std;

int main() {

cout << "To check whether Z(n) is a trivial or nontrivial halidon ring." << endl;

unsigned long long int t = 0, n = 1, w = 1, hcf, hcf1,

d = 1, k = 1, q = 1, p = 1, b=0, c=0, temp = 1;

cout << "Enter an integer n >0: ";

cin >> n;

if (n % 2 == 0) {

cout << "Z(" << n << ") is a trivial halidon ring." << endl;

}

for (w = 1; w < n; ++w) {

for (int i = 1; i <= n; ++i) {

if (w % i == 0 && n % i == 0) {

hcf = i;

}

} if (hcf == 1) {

++t; // cout << " " << w << " ";

}

}

for (w = 1; w < n; ++w) {

for (int i = 1; i <= n; ++i) {

if (w % i == 0 && n % i == 0) {

hcf = i;

}

}

if (hcf == 1) {

for (int k = 1; k <= t; ++k) {

q = q * w; q = q % n;

if (q == 1) { if (temp <= k) { temp = k; } break; }

}

}

}

for (w = 2; w < n; ++w) {

for (int i = 1; i <= n; ++i) {

if (w % i == 0 && n % i == 0) {

hcf = i;

}

}

if (hcf == 1) {
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for (int k = 1; k <= temp; ++k) {

q = q * w; q = q % n; if (q == 1) {

for (int i = 1; i <= n; ++i) {

if (k % i == 0 && n % i == 0) {

hcf1 = i;

}

}

if (hcf1 == 1) {

for (int j = 1; j < k; ++j)

{

if (k%j == 0) {

d = j;

for (int l = 1; l <= d; ++l)

{

p = (p*w); p = p % n;

}

for (int i = 1; i <= n; ++i) {

if ((p - 1) % i == 0 && n % i == 0) {

hcf = i;

}

}

if (hcf == 1) {

p = 1; b = b + 1;

}

else p = 1;

c = c + 1;

}

}

if (c == b) { cout << " Z(" << n << ")" <<

" is a halidon ring with index m= " << k <<

" and w= " << w << "."<< endl; } {p = 1; c = 0; b = 0; }

break;

}

}

}

}

} return 0;

}
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3 Discrete Fourier Transforms

In this section, we deal with the ring of polynomials over a halidon ring which has
an application in Discrete Fourier Transforms [4]. Throughout this section, let R be a
finite commutative halidon ring with indexm and R[x] denotes the ring of polynomials
degree less than m over R. Also, refer to [9].
Definition 3. [4] Let ω ∈ R be a primitive mth root of unity in R and let f(x) =
m−1∑
j=0

fjx
j ∈ R[x] with its coefficients vector (f0, f1, f2, ...., fm−1) ∈ Rm. The Discrete

Fourier Transform (DFT) is a map

DFTω : R[x] → Rm

defined by
DFTω(f(x)) = (f0(1), f1(ω), f2(ω

2), ...., fm−1(ω
m−1)).

Remark 1. Clearly DFTω is a R-linear map as DFTω(af(x) + bg(x)) =
aDFTω(f(x)) + bDFTω(g(x)) for all a, b ∈ R. Also, if R = C, the field of complex
numbers, then ω = cos( 2πm ) + isin( 2πm ) = ei

2π
m and the Fourier series will become the

ordinary series of sin and cos functions.

Definition 4. [4] The convolution of f(x) =
m−1∑
j=0

fjx
j and g(x) =

m−1∑
k=0

gkx
k in R[x]

is defined by h(x) = f(x) ∗ g(x) =
m−1∑
l=0

hlx
l ∈ R[x] where hl =

∑
j+k=l mod m

fjgk =

m−1∑
j=0

fjgl−j for 0 ≤ l < m.

The notion of convolution is equivalent to polynomial multiples in the ring R[x]/ <
xm − 1 >. The lth coefficient of the product f(x)g(x) is

∑
j+k=l mod m

fjgk and hence

f(x) ∗ g(x) = f(x)g(x) mod(xm − 1).

Proposition 11. [4] For polynomials f(x), g(x) ∈ R[x], DFTω(f(x) ∗ g(x)) =
DFTω(f(x)).DFTω(g(x)), where . denotes the pointwise multiplication of vectors.

Proof. f(x) ∗ g(x) = f(x)g(x) + q(x)(xm − 1) for some q(x) ∈ R[x].
Replace x by ωj , we get

f(ωj) ∗ g(ωj) = f(ωj)g(ωj) + 0.

∴ DFTω(f(x) ∗ g(x)) = DFTω(f(x)).DFTω(g(x)).

Theorem 12. For a polynomial f(x) ∈ R[x], DFT−1
ω (f(x)) = 1

mDFTω−1(f(x)).
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Proof. The matrix of the transformation DFTω(f(x)) is

[DFTω(f(x))] = ϕ =



1 1 1 ..... 1
1 ω ω2 ..... ωm−1

1 ω2 (ω2)2 ..... (ω2)m−1

. . . ..... .

. . . ..... .

. . . ..... .
1 ωm−1 (ωm−1)2 ..... (ωm−1)m−1


The matrix ϕ is the well known Vandermonde matrix and its inverse is 1

mϕ
∗, where ϕ∗

is the matrix transpose conjugated [1]. Since ϕ is a square matrix and the conjugate
of ω is ω−1, we have DFT−1

ω (f(x)) = 1
mDFTω−1(f(x)).

Example 2. We know that R = Z49 is a halidon ring with index m = 6 and ω = 19.
Also, ω−1 = ω5 = 31. Let f(x) = 2 + x + 2x2 + 3x3 + 5x4 + 10x5 ∈ R[x]. Then
DFTω(f(x)) can be expressed as
F0

F1

F2

F3

F4

F5

 =


1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5

1 ω2 ω4 1 ω2 ω4

1 ω3 1 ω3 1 ω3

1 ω4 ω2 1 ω4 ω2

1 ω5 ω4 ω3 ω2 ω




f0
f1
f2
f3
f4
f5

 ⇒


F0

F1

F2

F3

F4

F5

 =


23
24
32
44
9
27




f0
f1
f2
f3
f4
f5

 =

6−1


1 1 1 1 1 1
1 ω5 ω4 ω3 ω2 ω
1 ω4 ω2 1 ω4 ω2

1 ω3 1 ω3 1 ω3

1 ω2 ω4 1 ω2 ω4

1 ω ω2 ω3 ω4 ω5




F0

F1

F2

F3

F4

F5



⇒


f0
f1
f2
f3
f4
f5

 = 41


1 1 1 1 1 1
1 31 30 48 18 19
1 30 18 1 30 18
1 48 1 48 1 48
1 18 30 1 18 30
1 19 18 48 30 31




F0

F1

F2

F3

F4

F5



If


F0

F1

F2

F3

F4

F5

 =


23
24
32
44
9
27

, then a direct calculation gives


f0
f1
f2
f3
f4
f5

 =


2
1
2
3
5
10


as expected.

Programmes 2 and 3 will enable us to calculate Discrete Fourier Transform and
its inverse. We can cross-check the programmes against example 2.

Programme-2: Discrete Fourier Transform
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#include <iostream>

#include<cmath>

using namespace std;

int main()

{

cout << "Discrete Fourier Transform" << endl;

unsigned long long int a[1000][1000], b[1000][1000],

mult[1000][1000],q=1,m=1, n=1, w2=1,w=1, r1, c1, r2,

c2, i, j, k, t=1;

cout << "Enter n,m,w: ";

cin >> n >> m >> w;

r1 = m; c1=m;

r2 = m; c2=1;

for (i = 0; i < r1; ++i)

for (j = 0; j < c1; ++j)

{

t = (i*j)%m;

if (t == 0) a[i][j] = 1;

else

for (q = 1; q < t + 1; ++q) { w2 = (w2 * w) % n; }

a[i][j] = w2; w2 = 1;

}

for (i = 0; i < r1; ++i)

for (j = 0; j < c1; ++j)

{

cout<<" a"<<i+1<<" "<<j+1<<"="<<a[i][j] ;

if (j == c1 - 1)

cout << endl;

}

cout << endl << "Enter coefficient vector of

the polynomial:" << endl;

for (i = 0; i < r2; ++i)

for (j = 0; j < c2; ++j)

{

cout << "Enter element f" << i << " = ";

cin >> b[i][j];

}

for (i = 0; i < r1; ++i)

for (j = 0; j < c2; ++j)

{

mult[i][j] = 0;

}

for (i = 0; i < r1; ++i)

for (j = 0; j < c2; ++j)
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for (k = 0; k < c1; ++k)

{

mult[i][j] += (a[i][k]) * (b[k][j]);

}

cout << endl << "DFT Output: " << endl;

for (i = 0; i < r1; ++i)

for (j = 0; j < c2; ++j)

{

cout << "F"<< i << "="<< mult[i][j]%n;

if (j == c2 - 1)

cout << endl;

}

return 0;

}

Programme-3: Inverse Discrete Fourier Transform

#include <iostream>

#include<cmath>

using namespace std;

int main()

{

cout << "Inverse Discrete Fourier Transform" << endl;

unsigned long long int a[1000][1000], b[1000][1000],

mult[1000][1000], p=1, q=1, l=1, m = 1, m1 = 1, w1 = 1,

w2=1, n = 1, w = 1, r1, c1, r2, c2, i, j, k,

c=1,t = 1;

cout << "Enter n,m, w: ";

cin >> n >> m >> w;

for (l = 1; l < n; ++l)

{

c = (l * m) % n;

if (c == 1)

{

m1 = l;

}

}

for (p = 1; p < m; ++p)

{

w1 = (w1 * w) % n;

}

r1 = m; c1 = m;

r2 = m; c2 = 1;

for (i = 0; i < r1; ++i)
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for (j = 0; j < c1; ++j)

{

t = (i * j) % m;

if (t == 0) a[i][j] = 1;

else

for (q = 1; q < t + 1; ++q) { w2 = (w2 * w1) % n; }

a[i][j] = w2; w2 = 1;

}

for (i = 0; i < r1; ++i)

for (j = 0; j < c1; ++j)

{

cout << " a" << i + 1 << j + 1 << "=" << a[i][j];

if (j == c1 - 1)

cout << endl;

}

cout << endl << "Enter DFT vector :" << endl;

for (i = 0; i < r2; ++i)

for (j = 0; j < c2; ++j)

{

cout << "Enter element F" << i << " = ";

cin >> b[i][j];

}

for (i = 0; i < r1; ++i)

for (j = 0; j < c2; ++j)

{

mult[i][j] = 0;

}

for (i = 0; i < r1; ++i)

for (j = 0; j < c2; ++j)

for (k = 0; k < c1; ++k)

{

mult[i][j] += (a[i][k]) * (m1 * b[k][j]);

}

cout << endl << "Polynomial vector: " << endl;

for (i = 0; i < r1; ++i)

for (j = 0; j < c2; ++j)

{

cout << "f" << i << "=" << mult[i][j] % n;

if (j == c2 - 1)

cout << endl;

}

return 0;

}
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If R = Z100001, m = 10, ω = 26364 and f(x) = 1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +

7x6 + 8x7 + 9x8 + x9 ∈ R[x], then



F0

F1

F2

F3

F4

F5

F6

F7

F8

F9


=



46
19019
3314
10082
48017
4

80347
18172
68413
52627


.

Also, we can verify the inverse DFT using the above data.
The following proposition from number theory is very useful in the next section.
Proposition 13. [3] Let n = pe1i p

e2
2 ....p

ek
k be the standard form of the integer n and

let d,e satisfy ed ≡ 1 mod ϕ(n). Then for all integer x,

xed ≡ x mod n.

Therefore, if c = xe mod n, we have x ≡ cd mod n.
Let

u =

m∑
i=1

αigi

be an element in the group algebra RG and let

λr =

m∑
i=1

αm−i+2(ω
(i−1))(r−1) (1)

where ω ∈ R is a primitive mth root of unity. Then u is said to be depending on
λ1, λ2, ......, λm.
Theorem 14. Let

u =

m∑
i=1

αigi ∈ U(RG)

be depending on λ1, λ2, ......, λm. Let

v =

m∑
i=1

βigi

be the multiplicative inverse of u in RG. Then

βi =
1

m

m∑
r=1

λ−1
r (ωi−1)r−1.

Computer programme-4
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#include<iostream>

#include<cmath>

using namespace std;

int main() {

cout << "To find the units in Z(n)G;" <<

"G is a cyclic group of order m through " <<

"lamda take units in R." << endl;

long long int a[1000], l[1000], w1[1000], m = 1, t = 0, x = 1, y = 1, s = 0,

s1 = 0, m1 = 1, n = 1, i = 1, p=1,k = 0, r = 1, w = 1;

cout << "Enter n =" << endl;

cin >> n;

cout << "Enter index m =" << endl;

cin >> m;

cout << "Enter m^(-1) =" << endl;

cin >> m1;

cout << "Enter primitive m th root w =" << endl;

cin >> w;

w1[0] = 1; cout << "w1[0]=" << w1[0] << endl;

for (i = 1; i < m; ++i) {

w1[i] = p * w % n; p = w1[i];

cout << "w1[" << i << "]=" << w1[i] << endl;

}

cout << "Enter lamda values which are units" << endl;

for (int i = 1; i < m + 1; ++i) {

cout << "l[" << i << "]=" << endl;

cin >> l[i];

}

for (int r = 1; r < m + 1; ++r) {

for (int j = 1; j < m + 1; ++j)

{

x = ((j - 1) * (r - 1)) % m;

k = k + (m1 * l[j] * w1[x]) % n; k = k % n;

// cout << "k=" << k << endl;

} a[r] = k; cout << "a[" << r << "]=" << a[r] << endl;

k = 0;

}

cout << "The unit in RG is u= ";

s = 1;

mylabel:

cout << a[s] << "g^(" << s - 1 << ") + ";

s++;

if (s < m + 1) goto mylabel; cout << endl;

cout << endl;
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cout << "Note: Please neglect the last + as it is unavoidable for a for loop.";

return 0;

}

Computer Programme-5

#include<iostream>

#include<cmath>

using namespace std;

int main() {

cout << "To check whether an element in Z(n)G;" <<

"G is a cyclic group of order m" <<"has a multiplicative inverse or not" << endl;

long long int a[1000], b[1000], c[1000], d[1000], e[1000], w1[1000], m = 1,

t = 0, x = 1, s = 0, s1 = 0, l = 0, m1 = 1, hcf = 1,

n = 1, i = 1, k = 0, q = 1, p = 1, r = 1, w = 1;

cout << "Enter n =" << endl;

cin >> n;

cout << "Enter index m =" << endl;

cin >> m;

cout << "Enter m^(-1) =" << endl;

cin >> m1;

cout << "Enter primitive m th root w =" << endl;

cin >> w;

w1[0] = 1;

for (i = 1; i < m; ++i)

{

w1[i] = p * w % n; p = w1[i];

cout << "w1[" << i << "]" << w1[i] << endl;

}

for (int i = 1; i < m + 1; ++i) {

cout << "Enter a[" << i << "]=" << endl;

cin >> a[i];

}

a[0] = a[m];

for (int r = 1; r < m + 1; ++r) {

for (int j = 1; j < m + 1; ++j)

{

l = (m - j + 2) % m;

x = ((j - 1) * (r - 1)) % m;

k = k + (a[l] * w1[x]) % n; k = k % n;

// cout << "k=" << k << endl;

} c[r] = k; cout << "lambda[" << r << "]=" << c[r] << endl;

k = 0;
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}

for (r = 1; r < m + 1; ++r) {

for (int i = 1; i <= n; ++i) {

if (c[r] % i == 0 && n % i == 0) {

hcf = i;

}

}

if (hcf == 1) {

cout << "lambda[" << r << "] is a unit" << endl;

}

else {

cout << "lambda[" << r <<

"] is a not unit. So there is no multiplicative inverse." <<

endl; t = 1;

}

}

for (r = 1; r < m + 1; ++r) {

for (int i = 1; i <= n; ++i) {

e[r] = (c[r] * i) % n;

if (e[r] == 1) {

b[r] = i;

cout << " The inverse of lambda[" << r << "] is " << b[r] << endl;

}

}

}

b[0] = b[m];

for (int r = 1; r < m + 1; ++r) {

for (int j = 1; j < m + 1; ++j)

{

l = (m - j + 2) % m;

x = (m * m - (j - 1) * (r - 1)) % m; //cout << "x= " << x << endl;

k = k + (m1 * b[l] * w1[x]) % n; k = k % n;

//cout << "k=" << k << endl;

}

d[r] = k; //cout << "d[" << r << "]=" << d[r] << endl;

k = 0;

}

if (t == 1) {

s = m;

mylabel2:

cout << a[m - s + 1] << "g^(" << m - s << ") + ";

s--;

if (s > 0) goto mylabel2; cout <<

"has no multiplicative inverse." << endl;

}
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else {

cout << "The inverse of ";

s = m;

mylabel:

cout << a[m - s + 1] << "g^(" << m - s << ") + ";

s--;

if (s > 0) goto mylabel; cout << "is" << endl;

s1 = m;

mylabel1:

cout << d[m - s1 + 1] << "g^(" << m - s1 << ") + ";

s1--;

if (s1 > 0) goto mylabel1; cout << "." << endl;

}

return 0;

}

The computer programme-3 can be used to test whether a given element u in RG is
a unit or not. If it is a unit, then the programme will give the multiplicative inverse
v in RG.

Theorem 15. Let

u =

m∑
i=1

αigi ∈ RG

be depending on λ1, λ2, ......, λm. Then

1. u ∈ U(RG) if and only if each λi ∈ U(R),
2. u ∈ E(RG) if and only if each λi ∈ E(R), where E(RG) is the set of idempotents

in RG.

More over, |U(RG)| = |U(R)||G| and |E(RG)| = |E(R)||G|.

4 RSA-DFT Cryptosystem

Let m be the length of the message including the blank spaces between the words.
If the message has a length more than m, we can split the message into blocks with
lengths less thanm. For a message of length less thanm, we can add blank spaces after
the period to make it a message with length m. Choose large prime numbers such that
pi = mt1 + 1 where i = 1, 2, 3, ...k and ti’s are relatively prime. Let ω be a primitive
mth root of unity in Zn, where n = pe11 p

e2
2 ....p

ek
k for some positive integers ei. We know

that Zn is a halidon ring with maximum index gcd(p1−1, p2−1, ...pk −1)(theorem 8)
and since m|p1−1, p2−1, ....pk−1, Zn is also a halidon ring with index m(proposition
3).

Here we are considering a cryptosystem based on modulo n. The following table
gives numbers and the corresponding symbols.
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Numbers assigned Symbols
0 to 9 0 to 9
10 to 35 A to Z

36 blank space
37 colon
38 period
39 hyphen

In this cryptosystem, there are two stages. In stage 1, we shall compute the value
of ω which Bob keeps secret and in stage 2, we shall decrypt the message sent by Bob.
Stage 1-RSA
Cryptosystem setup

1. Alice chooses large primes p1, p2, ...pk and positive integers e1, e2, ...ek, and cal-
culates n = pe11 p

e2
2 ...p

ek
k and ϕ(n) = pe1−1

1 pe2−1
2 ...pek−1

k (p1 − 1)(p2 − 1)...(pk −
1).

2. Alice chooses an e so that gcd(e, ϕ(n)) = 1.
3. Alice calculates d with property ed ≡ 1mod ϕ(n).
4. Alice makes n and e public and keeps the rest secret.

Cryptosystem Encryption(Programme-1)

1. Bob looks up Alice’s n and e .
2. Bob chooses an arbitrary ω mod n and kept secret.
3. Bob sends c ≡ ωe mod n to Alice.

Cryptosystem Decryption(Proposition 13)

1. Alice receives c from Bob.
2. Alice computes ω ≡ cdmod n.

Stage 2-Discrete Fourier Transform
Cryptosystem setup

1. Alice chooses Discrete Fourier Transform as the encryption key.
2. Alice chooses Inverse Discrete Fourier Transform as the decryption key.

Cryptosystem Encryption(Programme-2)

1. Bob looks up Alice’s encryption key.
2. Bob writes his message x.
3. Bob computes y = DFT x his chosen ω.
4. Bob sends y to Alice.

Cryptosystem Decryption(Programme-3)

1. Alice receives y from Bob.
2. Alice computes x = Inverse DFT y with ω calculated in stage 1.

The above cryptosystem is an asymmetric cryptosystem as Alice and Bob share
different information. For the practical application, we must choose very large prime
numbers (more than 300 digits) so that the calculation of ϕ(n) must be very difficult
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and the probability of choosing the primitive mthroot of unity ω should tends to zero.
We exhibit the working of the RSA-DFT cryptosystem using a simple choice of prime
numbers in which the probability of choosing the primitive mthroot of unity ω is

1

10000
= 0.0001 = 0.01% in the following example.

Example 3. Stage 1
The length of the message has been fixed as m = 202. Alice chooses two primes
p1 = 607and p2 = 809 and two positive integers e1 = 1 and e2 = 1, and calculates
n = 491063 and ϕ(n) = 489648.
Alice chooses an e = 361123 so that gcd(e, ϕ(n)) = 1.
Alice calculates d = 18523 with property ed ≡ 1 mod ϕ(n). Alice shared Bob
n = 491063 and e = 361123 and rest kept secret.
Bob looks up Alice’s n = 491063 and e = 361123.
Bob chooses an arbitrary 202th root of unity ω mod n(there are ϕ(202)2 = 10000 ω’s
possible and they can be found by running the programme 1 and it will take around 8
hours, and its probability is 1

10000 = 0.0001) kept secret.
Bob sends c ≡ ωe mod n ≡ 142638 mod 491063 to Alice. Alice receives c from Bob.
Alice computes ω ≡ cdmod n ≡ 239823 mod 491063.
Stage 2

Alice shared Bob the encryption key Discrete Fourier Transform and n = 491063.
Suppose Bob sends the following secret message to Alice.

MY BANK DETAILS: NAME: JACK CARD NUMBER: 4125678 SORT
CODE:20-30-41 ACCOUNT NUMBER:20164 BANK:OVERSEAS.

The length of the message is 101 and to make it 202 we need to add 101 blank spaces.
This can be translated into a 202 component vector

22 34 36 11 10 23 20 36 13 14 29 10 18 21 28 37
36 23 10 22 14 37 36 19 10 12 20 36 12 10 27 13

36 23 30 22 11 14 27 37 4 1 2 5 6 7 8
36 28 24 27 29 36 12 24 13 14 37 2 0 39 3 0 39 4 1

36 10 12 12 24 30 23 29 23 30 22 11 14 27 37 2 0 1 6 4
36 11 10 23 20 37 24 31 14 27 28 14 10 28 38

36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36
36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36

36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36


Bob chooses a primitive 202th roots of unity ω in stage 1 using programme 1 and kept
secret in the halidon ring Z491063 with index 202. Applying DFT (see programme 2)
to the plain text to get the following cipher text using the chosen value of ω:
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5640 28875 82477 377806 380572 399487 350120 214346
101686 277011 93173 220930 72573 42514 361289

476177 371780 243907 179047 292166 427665 243623 344397
155022 360049 312478 305875 392901 193460 440042

....................................................................
..................................................................
.....................................................................
..................................................................

216155 440701 157904 342869 348795 159340 140193 222089
326519 95581 431250 15009 166938 384271 452109


The readers can check the above results by copying the programmes and paste in

Visual Studio 2022 c++ projects.

Alice receives the above cipher text and she uses ω = 239823 from stage 1. Applying
the inverse DFT (see programme 3)Alice gets the original message back. Also, we can
assign letters and numbers in 40! ways which will also make the adversaries their job
difficult. For messages with length more than m, split the message into blocks with
length less than m.

The Security of RSA [6]

Five possible approaches to attacking the RSA algorithm are:

� Brute force: This involves trying all possible private keys. To defend against this
attack, use a large key space.

� Mathematical attacks: There are several approaches, all equivalent in effort to fac-
toring n into standard form. To overcome this threat take n as product of two large
primes with at least 300 digits.

� Timing attacks: These depend on the running time of the decryption algorithm.
They can be countered by constant exponentiation time, random delays and
blinding.

� Hardware fault-based attack: This involves inducing hardware faults in the processor
that is generating random digital signatures. This is not a serious threat as it requires
that the attacker have physical access to the target machine and that the attacker
is able to directly control the input power to the processor .

� Chosen ciphertext attacks: This type of attack exploits properties of the RSA algo-
rithm. To overcome this simple attack, practical RSA-based crptosystems randomly
pad the plaintext prior to encryption.

5 RSA-HGR Cryptosystem

Here we are considering a cryptosystem based on modulo n. The following table gives
numbers and the corresponding symbols.
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Symbols u values which are units
ϕ(n)!

(ϕ(n)−40)! assignments uniquely

0 to 9 u1 to u10
A to Z u11 to u36

blank space u37
colon u38
period u39
hyphen u40

Note: For n = 100, ϕ(n) = 40. So there are 40! =
815, 915, 283, 247, 897, 734, 345, 611, 269, 596, 115, 894, 272, 000, 000, 000 assignments
of units to symbols.
In this cryptosystem also, there are two stages. In stage 1, we shall compute the value
of ω which Bob keeps secret and in stage 2, Alice shall decrypt the message sent by
Bob.
In RSA, the challenge of adversaries is to find the value of ϕ(n). But here they have
an extra challenge of locating or calculating the value of ω.
Stage 1-RSA
Stage 1 is same as above.
Stage 2-Halidon Group Ring (HGR)
Cryptosystem setup

1. Alice chooses programme 4 as the encryption key.
2. Alice chooses programme 5 as the decryption key.

Cryptosystem Encryption(Equation 1)

1. Bob looks up Alice’s encryption key.
2. Bob writes his message x = x1x2x3 · · · xm.
3. Bob translates x into y = λ1λ2λ3 · · · λm using the table.
4. Bob calculates the coefficients of the corresponding unit using the programme 4

and the chosen value of ω in stage 1.
5. Bob sends coefficients to Alice.

Cryptosystem Decryption (Theorem 14)

1. Alice receives coefficients from Bob.
2. Alice computes λ1, λ2, λ3, · · ·, λm using programme 5 with ω calculated in stage 1.
3. Alice recovers the message using the table.

Example 4. Stage 1
Same as example 3.
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Stage 2
Public Key
Symbols Unit in Z491063 Symbols Unit in Z491063

assigned assigned
0 221373 K 80303
1 389086 L 52853
2 21415 M 80303
3 428230 N 52853
4 162920 O 114288
5 126345 P 473119
6 81308 Q 323343
7 490630 R 26857
8 22673 S 91043
9 4004 T 98057
A 162483 U 150255
B 2255 V 24495
C 183775 W 86867
D 4129 X 176089
E 221927 Y 206140
F 437699 Z 461772
G 275130 BLANK SPACE 348362
H 50473 COLON 90605
I 123651 PERIOD 5932
J 114773 HYPHEN 275062
Alice shared Bob the encryption key Discrete Fourier Transform and n = 491063.

Suppose Bob sends the following secret message to Alice.

AN IMMINENT ATTACK ON YOU WILL HAPPEN TOMORROW EVENING
AT 5:30 PM. BE ALERT AND TAKE PRECAUTIONS.

The length of the message is 97 and to make it 202 we need to add 105 blank spaces.
This can be translated into a 202 component vector.
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162483 52853 348362 123651 80303 80303 123651 52853 221927 52853
98057 348362 162483 98057 98057 162483 183775 80303 348362 114288
52853 348362 206140 114288 150255 348362 86867 123651 52853 52853
348362 50473 162483 473119 473119 221927 52853 348362 98057 114288
80303 114288 26857 26857 114288 86867 348362 221927 24495 221927
52853 123651 52853 275130 348362 162483 98057 348362 126345 90605
428230 221373 348362 473119 80303 5932 348362 2255 221927 348362
162483 52853 221927 26857 98057 348362 162483 52853 4129 348362

98057 162483 80303 221927 348362 473119 26857 221927 183775 162483
150255 98057 123651 114288 52853 91043 5932 348362 348362 348362

348362 348362 348362 348362 348362 348362 348362 348362 348362 348362
348362 348362 348362 348362 348362 348362 348362 348362 348362 348362
348362 348362 348362 348362 348362 348362 348362 348362 348362 348362
348362 348362 348362 348362 348362 348362 348362 348362 348362 348362
348362 348362 348362 348362 348362 348362 348362 348362 348362 348362
348362 348362 348362 348362 348362 348362 348362 348362 348362 348362
348362 348362 348362 348362 348362 348362 348362 348362 348362 348362
348362 348362 348362 348362 348362 348362 348362 348362 348362 348362
348362 348362 348362 348362 348362 348362 348362 348362 348362 348362
348362 348362 348362 348362 348362 348362 348362 348362 348362 348362

348362 348362


Bob chooses a primitive 202th roots of unity ω in stage 1 using programme 1 and kept
secret in the halidon ring Z491063 with index 202. Using programme 4, Bob converts
the plain text into the following cipher text in terms of coefficents.

252493 450589 460479 204758 233506 353306 421232 356924 301091 289893
288179 242097 326234 13515 346524 267905 60544 1589 224877 392891

393603 346149 126356 374713 42452 30660 444474 328107 278316 320329
215968 8062 69501 442389 463363 20437 184879 111644 215157 487962

182507 157039 200299 355976 90232 362884 407252 282817 324527 299628
83392 380613 274931 455342 28745 445319 430230 446985 347595 201469

91852 53863 48802 172649 95573 70434 71251 95329 257149 125640
436246 37716 452002 143402 221576 137122 379802 91038 217808 73515
245279 62765 16846 473375 284904 470346 392515 31311 386722 228015
471883 95686 284880 373228 282251 461945 347587 372751 243942 339087
441737 321411 205845 172853 450407 431493 72268 378074 403244 261526
363362 372773 193094 61896 76335 442360 12418 333213 349588 137997
465244 464347 453371 370624 414389 329819 99661 168143 270109 194801
460848 483049 98372 225436 184156 147000 137130 254978 435708 227589
126220 45283 312941 108458 176782 55396 134718 440134 367637 450466
32149 44665 445959 120765 447216 362999 402427 210408 171884 486885
280531 322673 116715 483483 398994 31300 134031 431195 434524 172474
198368 111628 469394 198059 11214 387413 93105 390274 263412 304750
333166 415475 31915 125737 36184 115899 390465 6472 173688 208819

168514 197636 136348 410545 200343 316617 47292 286043 112122 239726
361815 85601
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Alice receives the above cipher text and she uses ω = 239823 from stage 1. Applying
the programme 5 Alice gets the original message back.

6 Conclusion

These new cryptosystems have been developed using halidon rings, halidon group rings
and and Discrete Fourier Transforms. These systems provides high-level security for
communication between ordinary people or classified messages in government agencies.
The level of security can be increased by utilising advanced computer technology and
powerful codes to calculate the primitive mth root of unity for a very large value of n
where the calculation of ϕ(n) is difficult. There are scopes for the development of new
cryptosystems based on Cyclotomic polynomials..
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