
Certifying Private Probabilistic Mechanisms

Zoë Ruha Bell
UC Berkeley

Shafi Goldwasser
UC Berkeley

Michael P. Kim
Cornell University∗

Jean-Luc Watson
UC Berkeley†

June 11, 2024‡

Abstract

In past years, entire research communities have arisen to address concerns of privacy and
fairness in data analysis. At present, however, the public must trust that institutions will re-
implement algorithms voluntarily to account for these social concerns. Due to additional cost,
widespread adoption is unlikely without effective legal enforcement. A technical challenge for
enforcement is that the methods proposed are often probabilistic mechanisms, whose output must
be drawn according to precise, and sometimes secret, distributions. The Differential Privacy
(DP) case is illustrative: if a cheating curator answers queries according to an overly-accurate
mechanism, privacy violations could go undetected. The need for effective enforcement raises the
central question of our paper: Can we efficiently certify the output of a probabilistic mechanism
enacted by an untrusted party? To this end:

1. We introduce two new notions: Certified Probabilistic Mechanisms (CPM) and Random
Variable Commitment Schemes (RVCS). A CPM is an interactive protocol that forces
a prover to enact a given probabilistic mechanism or be caught; importantly, the inter-
action does not reveal secret parameters of the mechanism. An RVCS—a key primitive
for constructing CPMs—is a commitment scheme where the verifier is convinced that the
commitment is to an RV sampled according to an agreed-upon distribution, but learns
nothing else.

2. We instantiate the general notion of CPM for the special case of Certifying DP. We build a
lightweight, doubly-efficent interactive proof system to certify arbitrary-predicate counting
queries released via the DP Binomial mechanism. The construction relies on a commitment
scheme with perfect hiding and additive homomorphic properties that can be used to
release a broad class of queries about a committed database, which we construct on top
of Pedersen commitments.

3. Finally, we demonstrate the immediate feasibility of Certified DP via a highly-efficient
and scalable prototype implementation to answer counting queries of arbitrary predicates.
The mechanism is composed of an offline and online stage, where the online phase allows
for non-interactive certification of queries. For example, we show that CDP queries over
a US Census Public Use Microdata Sample (PUMS) [23] (n = 7000) can be completed in
only 1.6 ms and verified in just 38 µs. Our implementation is available in open source at
https://github.com/jlwatson/certified-dp.

∗Much of this work completed at the Miller Institute for Basic Research in Science and the Simons Institute for
the Theory of Computing at UC Berkeley.

†Completed at Sky Computing Lab, which is supported by gifts from Accenture, AMD, Anyscale, Google, IBM,
Intel, Microsoft, Mohamed Bin Zayed University of Artificial Intelligence, Samsung SDS, SAP, Uber, and VMware

‡© IACR 2024. This article is a minor revision of the version published by Springer-Verlag.

1

https://github.com/jlwatson/certified-dp

Contents

1 Introduction 3

1.1 Our contributions . 4

1.2 Technical Overview of Contributions . 7

1.3 Discussion and Related Works . 10

1.3.1 Comparing Our Construction to Secure Two-Party Computation 12

2 Preliminaries 13

3 Certified Probabilistic Mechanisms 16

3.1 Certified Differential Privacy . 18

3.2 Certified DP from Certified Probabilistic Mechanisms 20

4 Certified Additive Noise via Random Variable Commitments 23

4.1 Random Variable Commitments . 23

4.2 Random Bit Commitments Construction . 25

4.3 Certified Additive Noise Mechanisms Construction 29

4.4 Efficient Verification in the Public Registrar Model 32

4.5 Insecurity of Removing Interaction via Fiat-Shamir 33

5 Answering Counting Queries with Certified DP 35

6 Implementation of Certified DP with Pedersen Commitments 39

A The Dishonest Commitment Phase Case 51

A.1 Certified Probabilistic Mechanisms Definition with Dishonest Commitment Phase . . 51

A.2 Certified Differential Privacy Construction with Dishonest Commitment Phase . . . 52

B Σ-Protocols and XOR for Additively Homomorphic Commitments 54

2

1 Introduction

“Trust” in data-driven systems is emerging as a key concern within computer science research and
across society as a whole. While recent years have seen amazing progress of the functionality of
data-driven systems, they also provide ample reasons to be wary. As a pertinent example, general-
purpose generative language models [34, 68, 20, 70, 21] are demonstrating remarkable capabilities
across diverse tasks, but also raise serious concerns. These models infamously regurgitate misinfor-
mation and abusive content, and present threats to indivduals’ privacy and copyrighted material
[13, 83]. Whether we decide to use such models often boils down to the question: Can we trust the
sources, design, and output of the model?

At the same time, new research communities—studying topics like privacy [38], fairness [35, 53, 54],
and robustness [69, 31, 57]—have popped up to address the growing need for “trustworthy” systems
for data science and machine learning.1 The typical research program identifies flaws in the existing
systems, and then proposes a re-designed system using new algorithms that ensure (or at least steer
towards) “good” outputs, avoiding the “bad.” When employed correctly, these novel algorithms
can provide strong, formal guarantees along critical dimensions (much in the way that cryptography
provides guarantees of security).

And yet, despite the progress in proposing methods that will increase trustworthiness, it is far from
clear that platforms will voluntarily deploy these new methods. In any re-design, the new algorithms
incur a cost along various dimensions, including lower perceived accuracy or functionality, heavier
use of data, time, and memory, as well as the human efforts required to implement the changes
faithfully. While some companies have declared their intentions to employ privacy and fairness
practices, for-profit corporations are typically left in charge of determining when, how, and to what
degree to use these measures—measures that may go against their bottom line. For instance, Meta
has only recently agreed to re-implement part of their ad delivery platform to be more fair, as part
of a settlement of a major discrimination lawsuit [2].

Some in the community hope that, going forward, litigation and regulation will play a key role in
governing data-driven algorithms. Of course, legal regulations without effective technical solutions
to certify compliance will be impossible to enforce. The cryptographic paradigm for certifying com-
pliance is for institutions to prove to auditors that they are utilizing mechanisms for trustworthiness
at design-time. Indeed, the broad strategy of employing (sometimes zero-knowledge) cryptographic
proofs has been investigated in a variety of legal domains [8, 16]. While this methodology is ap-
pealing in its generality, it is unlikely to be adopted widely. General-purpose certification tools
such as MPC and zero-knowledge proofs for NP simply cost too much. A key challenge for broader
adoption is whether we can overcome this prohibitive cost in practical use cases.

Another challenge of a more fundamental nature is that many of the algorithms we’d like to certify
are probabilistic mechanisms. That is, not only do the algorithms rely on some internal randomness,
but their output must be random, drawn according to precise, sometimes private, distributions in
order for the claimed properties (of privacy, fairness, etc.) to hold. Consider, for instance, the
property of differential privacy [38]. Differential Privacy (DP) guarantees individual data privacy in
statistical analyses by adding carefully-constructed private randomness to the output of statistical

1We use the term “trustworthiness” colloquially to include a wide class of properties, including privacy, fairness,
and robustness.

3

queries. A mechanism that proves DP compliance by certifying the internal randomness of the
algorithm runs the risk of violating DP in the process. Similar issues of randomness as a first-
order property of the output show up in other areas of trustworthy ML, including sampling fair
classifications based on predicted probabilities [3, 81, 5] and in designing prediction strategies that
are robust to adversarial manipulation [31, 48].

The Case of Differential Privacy. No longer a purely-academic endeavor, differential privacy
(DP) is employed voluntarily across major organizations handling individual data, from tech giants
like Google [51] and Apple [1] to government agencies like the Census Bureau [22]. Employing
differential privacy, however, is not free. Given a fixed set of data, DP mechanisms are inherently
noisier and less accurate than their non-private counterparts. In settings where accuracy is deemed
paramount by clients, database curators may hold an incentive to deviate from the promised DP
mechanism.2 Rather than answering queries under an appropriate noise distribution, the curator
may choose to answer queries according to an overly-accurate mechanism that violates privacy.

In other settings, adding excessive noise to “ensure user privacy” may serve as a means to evade
effective scrutiny. For instance, the terms of Meta’s discrimination settlement stipulate that they
must report statistics about their platforms to third-party auditors [2]. A major outstanding
question in this case is how reporting will be handled, so that Meta can earnestly protect their
users’ privacy and auditors can be convinced of the veracity of the reporting.

In existing frameworks for DP, regulators have little recourse against data curators suspected of
bad behavior. Privacy auditing techniques have gained significant attention [76], but typically rely
on control of the curator’s algorithm. Pushing for guidance and accountability, some leaders in the
privacy community have called for an “Epsilon Registry,” where plaforms would voluntarily publish
their privacy parameters [37, 33]. In the current ecosystem, however, proper accounting of privacy
parameters requires painstaking scientific effort [77].

This Work. Across the growing landscape of algorithmic solutions for trustworthy computation,
the state of affairs begs for a new cryptographic primitive which is the central topic of this paper:
an efficient tool to certify the output of probabilistic mechanisms, based on a single draw
from the mechanism.

1.1 Our contributions

In this work, we initiate the study of Certified Probabilistic Mechanisms, which allow a prover
to convince a verifier of the validity of a random output from some agreed-upon, but private,
probabilistic mechanism. We will focus on constructing special-purpose efficient certified proba-
bilistic mechanisms, aiming at eventual adoption of certification as the method of choice to enforce
compliance. We detail our contributions next.

2Indeed, much of the pushback against the use of DP by the US Census Bureau came from social scientists who
questioned the utility of noisy synthetic data release [74].

4

Certified Probabilistic Mechanisms. A primary contribution is to articulate and define the
semantics of Certified Probabilistic Mechanisms (CPMs); indeed, even defining what it means to
certify that a single realization of a probabilistic mechanism looks “right” is a subtle task. We
start by considering a (non-certified) probabilistic mechanism M. Given input parameters θ (e.g.,
proprietary ML model parameters, or a database of individual records), M(θ) returns a random
output based on the internal randomness of M.

A Certified Probabilistic Mechanism (CPM) is an interactive protocol between a prover and
verifier satisfying three properties.

• Correctness: An honest verifier, after interacting with an honest prover, outputs a random
value drawn according to the intended mechanism M(θ).

• Cheating-Prover Soundness: When the Prover enacts a mechanism that deviates sig-
nificantly from M(θ), the honest Verifier detects, returning ⊥ with probability equal to this
deviation.

• Cheating-Verifier Soundness: Even if the Verifier deviates, the output of the protocol is
drawn according to M(θ) (or results in failure), and keeps the Prover’s input θ and internal
randomness hidden.

Our definition of CPMs is carefully designed to allow the verifier to be convinced of the integrity
of the outcome they observe, and learn nothing more. The ability to control what information
is and isn’t released through the certification procedure is critical for this notion to be used in
legally-mandated certification.

Certified DP. With the definition of general CPMs in place, we focus our attention on the
practically-relevant special case of certifying a database curator’s claimed use of a differentially
private mechanism. We work in the setting of a single untrusted data curator, and focus on
certifying the proper release of DP statistics, catching the curator when DP violations occur rather
than aiming to prevent DP violations (which is impossible in the single data curator case).

Prior Work. The question of certifying DP mechanisms has been considered in a few prior
works. Most relevant to our work, Biswas and Cormode [15] study “Interactive Proofs for DP”
in an MPC setup. First, they focus on a multi-curator model where curator clients secret-share
their input data to several different provers (at least one of which is assumed to be honest), who
wish to protect the privacy of the data from each other, in addition to guaranteeing DP answers
(or detection of a violation) to queries by a client/verifier on the aggregated data. In contrast,
our goal is to certify the trustworthiness of a single curator by guaranteeing the detection of DP
violations by this curator. Second, we remark that the definition of [15] when applied to the single
curator case is impossible to achieve: they require the verifier to detect DP deviations when the
curator output is not perfectly equal to the DP mechanism output. In contrast, we require the
statistical difference between the curator output and the the DP mechanism output to be equal
to the verifier’s detection probability. Essentially, they formally treat the mechanism output as
a deterministic function whereas we view it as a sample of a probabilistic process. Finally, an
important issue that we deal with (unlike [15]) is that the mere fact that a verifier learns that a

5

prover/curator is cheating and DP violations take place is in itself a DP violation. We take this
into account in our analysis (see Remark 3.3 and Theorem 3.5).

Certified DP Queries via Random Variable Commitments. Our main technical contri-
bution is to build a lightweight interactive proof system for certifying the DP release of predicate
counting queries. At its core, the CPM we design is simple to state: the curator, a.k.a., the prover,
commits to their database D in a way that allows them to open counting queries f(D) over the
database; additionally, the prover commits to the noise Z drawn according to an appropriate noise
distribution; finally, the prover homomorphically adds f(D)+Z and sends the result (and opening)
to the analyst, a.k.a., the verifier. This can be cast as a “commit-and-prove” approach [12]. But,
wait! What does it mean for the prover to “commit to the noise” that they’ll use to ensure DP?
Of course, if the prover samples the randomness on their own, it will be impossible to guarantee
soundess. On the other hand, having the verifier choose the randomness runs the risk of exposing
the randomness and thus, exposing more information about f(D) than intended by the original
probabilistic mechanism.

To solve this quandry, we introduce the idea of a random variable commitment. Generally, a
random variable commitment scheme (RVCS) allows a prover to convince a verifier that a random
variable was sampled according to some agreed-upon distribution Z, without learning anything
else about the value of the random variable. In more detail, in an RVCS, the prover and verifier
interact to produce a commitment C to a value Z; at the end of the interaction, both parties are
convinced that Z← Z, but only the prover knows the value of Z.

In particular, we provide a construction for random bit commitments which gives a new modality
of use for two-party coin-flipping. Coin flipping is a well-known primitive which was previously
designed either for both parties to immediately learn the result of the flip or for one party to know
the outcome and the other have delayed knowledge of the result (released later to show that the
first party adhered to the protocol) [49, 18]. In our case, we need coin flipping where only one
party ever learns the result and the other is immediately convinced of the unbiased nature of the
flip without ever learning the result (it will only later learn certain functions of the result, which
will not be used to verify the flip).

Efficient Protocol and Implementation of Certified DP. We complete the construction of
Certified DP via the Binomial mechanism [36] by building an RVCS for the Binomial distribution.
At a bird’s-eye view, we take advantage of the additive structure of the Binomial mechanism,
along with the additive structure of counting queries, to achieve an efficient CPM for differentially
private release with very low overhead. Intuitively, the additive structure allows us to get away
with a commitment scheme that supports additive homomorphism with perfectly hiding openings
(without requiring a fully-homomorphic scheme), for which Pedersen commitments suffice. The
resulting CPM allows us to streamline the implementation of our CPM into an interactive 3-round
offline stage independent of queries and an non-interactive online stage with very low overhead for
the analyst to certify queries.

We demonstrate the immediate feasibility of Certified DP in a prototype implementation of this
Certified Binomial Mechanism for arbitrary counting queries. Concretely, certifying differential
privacy only requires the analyst to open a single Pedersen commitment at query-time. In Section 5,

6

we show that after a one-time setup phase and sampling query-independent randomness, clients
using our prototype can complete each query by computing group operations that only scale linearly
in the given predicate’s sparsity s. Our support for arbitrary counting predicates yields expressive
queries (e.g. counting individuals earning over an income threshold). At the same time, our
prototype balances functionality with efficiency by allowing a limit to maximum predicate degree.
We experimentally demonstrate that query time remains constant with respect to database size n,
data dimension d, or privacy budget ϵ. For instance, we can efficiently query an n = 7000-record,
d = 37-bit Census dataset [23] of age, sex, income, and education in less than 2 ms.

Structure of Manuscript. The remainder of the manuscript is structured as follows. The
introduction continues with a technical overview of our contributions, followed by discussion of
related works. In Section 2, we include some helpful preliminaries. Then, in Section 3, we present
our new definitions for Certified Probabilistic Mechanisms and Certified DP and the connection
between them. Next, in Section 4, we show a general approach for constructing certified additive
noise probabilistic mechanisms using random variable commitments that can be cast within what we
call the public registrar model. Finally, in Section 5 we instantiate our approach to certifiably release
arbitrary-predicate counting queries via the DP Binomial mechanism, analyze the complexity of
this scheme, and evaluate the performance of its implementation.

1.2 Technical Overview of Contributions

Our main technical contribution is to instantiate the CPM framework described above, to build a
system for Certified Differential Privacy. We work in the setting of a single untrusted data curator,
who agrees to release predicate counting queries of the form

f(D) =
∑
x∈D

f(x)

for arbitrary predicate f : {0, 1}d → {0, 1}. As a first step, we formalize the goals of Certified DP.
Our focus is on certifying that a fixed output from the curator satisfies DP. A bit more formally,
we require three key properties.

• Correctness: An honest analyst, who (interactively) queries an honest curator, receives an
accurate and private release of the intended query.

• Honest-Curator DP: Every release of an honest curator satisfies DP.

• Dishonest-Curator DP: Whenever a curator cheats in a way that degrades the accuracy
or privacy of the release, an honest analyst catches their deviation and raises a failure flag ⊥
with probability proportional to this degradation.

Importantly, instead of attempting to check the accuracy and DP guarantees after the fact, the
Verifier will ensure that the Prover is releasing query answers based on an agreed-upon probabilistic
mechansism Mf , which is known to fulfill the given guarantees. Appealing to the more general
framework, we show that implementing a CPM for a DP mechanism achieves the above Certified
DP properties.

7

Theorem 1. If Mf is a Differentially Private mechanism for releasing query f , then a CPM for
Mf guarantees Certified DP.

Since our definitions and protocols enjoy perfect correctness, in theory even one instance of ⊥ is
enough to conclude that the curator has engaged in malicious behavior, although we note that in
practice, even if the curator is honest, some very small probability of ⊥ can be happen due to
computer error. One of the contributions of our work (Definition 3.1, Theorem 3.4) is to exactly
characterize the amount of privacy degradation that is made possible by giving an allowance for
unintentional error, so a ⊥ toleration threshold can be chosen with this in mind. Once the propor-
tion of ⊥’s gets above this threshold, all further interaction with a curator should be halted and the
curator should face some sort of censure, for either they have been negligent in their implementation
or they have been actively malicious.

To achieve Certified DP, we turn to a classic (but relatively-less-popular) DP mechanism: the
Binomial mechanism [36]. Originally studied in the context of distributed multi-party computation
under DP, the Binomial mechanism enables DP release of statistics by adding a (private) sequence
of random bits (and then finally subtracting the mean). In our setting, the central curator promises
to respond to predicate counting queries with noisy answers of the form f(D)+Z for Z, distributed
as a Binomial RV with mean subtracted.

As discussed, we construct a CPM for the Binomial mechanism by carefully designing a random
variable commitment scheme for the Binomial distribution, coupled homomorphically with an ap-
propriate “functional” commitment scheme for opening predicate counting queries. Formally, for
any additive noise mechanism, we can reduce the problem of constructing Certified DP to designing
an RVCS for the noise distribution, satisfying an appropriate homomorphism with the set of query
functions F .

Theorem 2. For a class of functions F , let CS denote a commitment scheme to open f(D) for
f ∈ F . Suppose there exists a Random Variable Commitment scheme for Z that supports additive
homomorphism with CS. Then for any f ∈ F , there exists a CPM for Mf (D) = f(D) + Z.

While our strategy can, in principle, be made to work for any additive noise mechanism, our
focus on the Binomial mechanism allows us to reduce the problem further to flipping a single bit
(since we already require additive homomorphism). A simple way to construct a random variable
commitment for a bit flip is to perform a variant of the classic “coin flipping in the well” protocol
[49, 18]. To get an RVCS, the prover commits to a coin flip, the verfier sends the prover their own
coin, and the parties homomorphically evaluate the XOR of the coins.

The verifier additionally needs to ensure that the prover actually commited to a bit (and not
another integer). Leveraging the Σ-protocols of [32, 64], the verifier can be convinced of this fact
through a 3-round, public-coin protocol that maintains hiding for the prover’s bit. Conveniently,
we can run the Σ-protocols in parallel for all the bits that we need to flip, so the entire CPM only
requires 3 rounds of interaction.

In order to support other common DP mechanisms, it is an interesting problem for future work to
build efficient RVCS constructions for distributions such as discrete Gaussian and Laplace so that
these can be slotted into our additive noise construction. With some care, existing discrete samplers
such as those in [24] may be able to be efficiently implemented by applying homomorphism and
Σ-protocols to our random bit commitments.

8

Stringing our components together, we obtain Certified DP via the Binomial mechanism for pred-
icate counting queries. We make no restrictions on the predicates f : {0, 1}d → {0, 1}, though the
cost of the protocols can be improved for structured predicates. We say a predicate f is s-sparse
if the number of non-zero coefficients when representing f as a polynomial is upper bounded by s.
With this in mind, we can state our main result.

Theorem 3. Consider releasing Q predicate counting queries over a database D with n elements in
{0, 1}d under differential privacy. There exists a 3-round, public-coin Certified DP implementation
of the Binomial Mechanism3 to release predicate counting queries with the following costs.

• In the offline preprocessing stage, the protocol requires the database curator and verifier
to perform n · 2d parallel Σ-protocols once and N = 8 log(2/δ)/ϵ2 single-bit RVCSs per query;
finally each party performs n · 2d +QN homomorphic additions.

• In the online query stage for an s-sparse query, the prover and verifier each non-interactively
perform s homomorphic additions and scalar multiplications; the verifier opens 1 commitment.

Note that the pre-processing work scales with 2d to write down and validate a commitment for
each different monomial over d-dimensional inputs. In other words, to support a restricted set
of predicate queries where the number of monomials we need to reason about is bounded (e.g.,
low-degree queries), we can reduce the complexity of prover and verifier’s up-front work. Naturally,
other optimizations can be performed, for instance using a Merkle tree to succinctly commit to
the sums of monomials, and then at query-time only revealing the monomial sums with non-zero
coefficients.

The careful reader may note that our construction is a constant-round, public-coin interactive proto-
col; thus, it is tempting to try to remove interaction completely via the Fiat-Shamir transformation.
While intuitively-appealing, we show that this strategy cannot be made to work: the Fiat-Shamir
transformation is inherently insecure for all (nontrivial) Certified Probabilistic Mechanisms. This
fact distinguishes our study of CPMs from traditional interactive proofs for formal languages and
promise problems, motivating our use of a new model, which we call the public registrar.

Removing Interaction with a Public Registrar. An intriguing aspect of our CPM construc-
tion described above is that the work of the prover and verifier can be split into online work per
query, preceeded by a more significant pre-processing that is used in all future queries. In our final
contribution, we show how to leverage this split to give an implementation of the Certified DP
mechanism that supports non-interactive queries. Specifically, we implement the CPM in a new
three-party interaction that we call the Public Registrar Model, satisfying the following properties:

• Input-hiding Registration: The prover and a third-party registrar interact to “register”
the CPM commitment. The prover’s input and internal randomness remain hidden from the
Registrar throughout the public-coin protocol.

• Non-interactive querying: After registration, the verifier issues queries to the prover and
registrar, and can open the query based on the responses.

3Here, we give a guarantee of (ϵ, δ)-DP per query. Based on the number of queries Q, one can use the appropriate
basic or advanced composition lemma to establish the necessary ϵ0 to guarantee (ϵ, δ)-DP over the entire release.

9

The public registrar performs all of the interactive work up front, so that at query time, the analyst
can issue queries non-interactively. Consequently, the prover and registrar can release queries to
multiple analysts in parallel, without redoing work to certify the initial commitments. Notice that
the input-hiding property protects the registrar from taking on liability by becoming a central point
of attack for information about the databases of various data curators: the registrar never sees any
data in the clear. In the context of the Binomial mechanism, the registrar never even learns the
DP query values.

In all, we establish concrete bounds on the cost needed to implement the Certified DP implemen-
tation of the Binomial Mechanism.

Corollary 1. There exists a Certified DP implementation of the Binomial Mechanism for counting
queries in the public register model with the following costs:

• Registration: the prover and registrar do the offline preprocessing work scaling as n·2d+QN .

• Opening an s-sparse query: the prover and registrar do s homomorphic additions and
scalar multiplications, while the verifier opens 1 commitment.

Implementation of Certified DP. We provide an implementation of this certified Binomial
mechanism for arbitary counting queries and investigate how the construction practically scales as
database size n, database dimension d, per-query privacy budget ϵ, and query polynomial sparsity
s vary.4 In Section 5, we show that after a comparatively large one-time setup phase and sampling
query-independent randomness, verifiers using our prototype can complete queries by computing
group exponentiations and multiplications that only scale linearly in s. We experimentally demon-
strate that query time remains constant with respect to n, d, or ϵ. Thus, with a strong query privacy
budget ϵ = 1, we can efficiently query a n = 7000-record, d = 37-bit Census PUMS dataset of age,
sex, income, and education to retrieve a differentially-private count of individuals with income over
$262, 144 = 218 with sparsity s = 63. Total client query time is 1.9 ms, while verifying the query re-
quires checking a single Pedersen commitment—38 µs. For efficiency, we support limiting the max-
imum degree of counting predicates. In this case, committing to all 237 possible monomials would
be intractable so we set a maximum degree of 6 (i.e. 2, 324, 784 predicates), balancing efficiency
and functionality. To support further scaling, these commitments can also be performed in parallel.
Our prototype is open-source and available at https://github.com/jlwatson/certified-dp.

1.3 Discussion and Related Works

Our study of Certified Probabilistic Mechanisms is in conversation with many ongoing areas of
research, in the study of “trustworthy” data analysis methods, as well as classic topics within the
field of cryptography. We conclude the introduction with discussion of related works and directions
for further inquiry.

Certifying Differential Privacy. Prior works have established that, in generality, certifying
that a given function satisfies DP is a challenging problem, both in a black-box and white-box

4We have implemented the protocol in the prover-verifier model, not the public registrar model.

10

https://github.com/jlwatson/certified-dp

analysis setting [47, 44]. To avoid these negative results, a number of papers provide DP certification
techniques for restricted classes of functions [72, 43, 42, 10, 82, 6, 9]. In [66], Narayan, Feldman,
Papadimitriou, and Haeberlen propose a system for “Verifiable DP” where the curator is trusted,
but the analyst is untrusted. They develop a query language VFuzz to verify the analysts’ behavior
for accuracy and DP. As discussed, the work of Biswas and Cormode [15] is most similar to ours.
For completeness, we include a direct comparison of the implementation of the systems, highlighting
especially our efficiency at query time. See Section 6 for further detailed comparison.

Public Verifiability. One hope for certification in the public registrar model would be public
verifiability. Towards this goal, we can imagine choosing the public coins used by the registrar
based on the NIST randomness beacon [60] (after the prover has performed their commitment).
Then any verifier can check for themselves that NIST’s timestamped public coins were used to
produce the private coins needed in the protocol. In particular, the verifier needn’t have had any
involvement in the original interaction. Thus we could get publicly verifiable private coins whose
trustworthiness is backed by the NIST public randomness beacon.

DP in Theory and Practice. A variety of trust settings have been considered to achieve DP,
including centralized [39], statistical local [59], computational local [71, 75], distributed DP [36],
and the shuffle model [29]. Certified DP allows us to achieve the strong statistical properties of
the centralized model, while removing blind trust in the curator. Additionally, we can certify the
accuracy of the DP release, akin to distributed DP, but without relying on an MPC setup.

In practice, DP is now implemented in a number of SQL “engines” including [80, 58] from Google
and Uber respectively, as well as [14] which is used by the IRS, Wikimedia Foundation, and US
Census Bureau. These engines operate in the trusted-curator model. Incorporating certified DP
into these engines could significantly strengthen their security and clients’ trust.

Verifiable ML. Our work fits into the broader research program for certifying statistical claims
made by a prover. Initiated by [30], a number of works now study interactive proofs for classic
distribution testing problems [56, 55]. This inquiry has been extended to testing properties of
machine learning algorithms [50, 65] and their training data [73, 27]. Another related line of work
has been developing techniques for executing ML algorithms on homomorphically encrypted data
[19, 46, 28, 61].

Functional Commitment Schemes for Low-Degree Polynomials. A key module of our
framework for building CPMs for additive noise mechanisms requires the prover to commit to a
collection of functional queries over the database. In spirit, this module is similar to the functional
commitment schemes (FCS) for low-degree polynomials developed by [62, 63, 7, 26]. Due to differ-
ences in the intended setting, we need some properties not typically considered for FCSs but can
also get away with weaker settings of certain parameters, such as succinctness.

11

1.3.1 Comparing Our Construction to Secure Two-Party Computation

Another alternative to our construction is to utilize secure multiparty computation (MPC) with
dishonest players, or more specifically, secure two-party computation (2PC). This approach would
capture Mf as a circuit with three inputs: the database D, the curator’s randomness RP , and the

analyst’s randomness RV , so that Mf (D,RP⊕RV)
d
= Mf (D) if at least one of RP and RV is drawn

honestly. In this case, we can ensure that the curator does not learn the analyst’s RV ahead of
time, so that they cannot bias the output via rejection sampling (as captured our cheating-prover
soundness definition for CPMs in Section 1.1). However, there are significant downsides to this
approach.

Since DP is currently used in practice without utilizing heavyweight cryptographic tools, we believe
any certification proposal that could be realistically adopted needs to be as lightweight as possible.
In particular, MPC would not efficiently support publicly verifiable queries. First, standard 2PC is
no longer public coin for the analyst and cannot be cast within the public registrar model in order
to make it publicly verifiable. Existing “publicly verifiable” MPC approaches provide certificates
of misbehavior but do not give the randomness guarantees we require [11], so publicly verifiable
DP as we define it is not achieved. Specifically, these approaches would publicly confirm that there
exists RV that gives the claimed output, but not that this value was chosen uniformly at random.

Thus in the case of 2PC, instead of the curator simply utilizing a trusted source of public coins to
provide public verifiability, an individual analyst must be involved in the interaction and only they
will be convinced of DP. This is a general roadblock because supporting public verifiability via a
public-coin verifier inherently reveals their randomness to the prover as well. Finally, losing public
verifiability has an additional effect in the case of DP, which is that the curator cannot reuse answers
to the same query for multiple analysts, so they are forced to use up additional privacy budget
to reanswer the query. Given the importance of public verifiability in the regulatory compliance
settings we envision for certified DP, we therefore opted for an alternative CPM approach within
the public registrar model.

12

2 Preliminaries

First, we will go through the notation and basic definitions we use for interactive protocols and
probability distributions. Next, we present basic terms to describe probabilistic mechanisms for
differential privacy. Finally, we recall the definition of a commitment scheme and the properties we
will require in this work.

Interactive Protocol Notation. We consider interactive protocols between a Prover P and Ver-
ifier V with common input and private inputP and inputV respectively. Given such an interaction,
we denote the output as Output ← (P(inputP),V(inputV))(input). Privately stored information
and a party’s view are denoted by OutputP and ViewP . We use typeface to distinguish between
different probabilistic objects. For example, let randomized algorithm A(x) = x + Z for random

variable Z ← Z with this probability distribution having support Z. We use ≲, ≳, ≈, and
d
≈ to

hide negl(λ) = o(1/poly(λ)) factors.

Distributional Closeness. We will use two notions of closeness between probability distribu-
tions. The first is based on standard statistical distance.

Definition 2.1 (Total Variation Distance). Probability distributions Z1 and Z2 have total varia-
tion distance TV (Z1,Z2) =

1
2

∑
z∈Z |PrZ1 [z]−PrZ2 [z]|. They are δ-statistically close if TV (Z1,Z2) ≲

δ, denoted Z1 ≈δ-TV Z2. Otherwise they are δ-statistically far, i.e. Z1 ̸≈δ-TV Z2.

The second notion of closeness is used to define differential privacy.

Definition 2.2 (Differential Closeness). Probability distributionsZ1 andZ2 are (ϵ, δ)-differentially
close if for any event E ⊆ Z,

PrZ1 [E] ≲ eϵ · PrZ2 [E] + δ and PrZ2 [E] ≲ eϵ · PrZ1 [E] + δ,

denoted Z1 ≈(ϵ,δ)-DP Z2. Otherwise they are (ϵ, δ)-differentially far, i.e. Z1 ̸≈(ϵ,δ)-DP Z2.

Probabilistic Mechanisms and Differential Privacy. A probabilistic mechanism is a ran-
domized algorithm for computing a function. We are interested in probabilistic mechanisms which
achieve certain definitions of accuracy and privacy.

Definition 2.3 (Accuracy). Let function class F ⊆ {f : X∗ → Y }. Then an (α, β)-accurate
probabilistic mechanism MF for F is a family of randomized algorithms {Mf}f∈F with the following
property: for all f ∈ F , D ∈ X∗, Pr[|f(D)−Mf (D)| > α] ≲ β.

Definition 2.4 (Differential Privacy). Two databases D,D′ ∈ X∗ are called neighboring if they
differ on a single data point. A probabilistic mechanism MF fulfills (ϵ, δ)-differential privacy (DP)

if for all f ∈ F and all neighboring databases D, D′ ∈ X∗, Mf (D)
d
≈(ϵ,δ)-DP Mf (D

′). On the other

hand, two neighboring databases D,D′ ∈ X∗ witness a violation of (ϵ, δ)-DP if Mf (D) ̸
d
≈(ϵ,δ)-DP

Mf (D
′).

13

Definition 2.5 (Binomial Mechanism, [36, 4]). Let BN = Binomial(N, 1/2). The Binomial additive
noise mechanism for F is given by Bf (D) = f(D) +BN −N/2.

Theorem 2.1 ([36, 4]). For functions f with sensitivity ∆(f) ≤ 1, if ϵ is sufficiently small and
N ≥ 8 log(2/δ)/ϵ2, then Bf fulfills (ϵ, δ)-DP. By Hoeffding, for a given α > 0 it achieves (α, β)-
accuracy for β = 2 exp(−2α2/N) = 2 exp(−α2ϵ2/4 log(2/δ)).

Commitment Schemes and Homomorphism. A commitment scheme for the set of values X
consists of three functions:

• Setup : security parameter 1λ → public parameters pp

• Commit : value x ∈ X → (commitment Cx, decommitment/proof Πx)

• Verify : (Cx,Πx, x)→ x or ⊥

We consider computationally-binding, perfectly-hiding commitment schemes (though a statistically-
hiding scheme would also suffice).

Definition 2.6 (Commitment Scheme). The functions (Setup,Commit,Verify) constitute a com-
mitment scheme for value set X if the following three properties hold when pp← Setup(1λ)5 and
(Cx,Πx)← Commit(x):

• Correctness: For any x ∈ X, Verify(Cx,Πx, x) = x.

• Computational Binding : For any probabilistic polynomial-time (PPT) algorithm A such that
(C,X,Π,X′,Π′)← A,

Pr
[
X ̸= X′ ∧ Verify(C,Π,X) = X ∧ Verify(C,Π′,X′) = X′] = negl(λ).

• Perfect Hiding : For any x, x′ ∈ X, Cx
d
= Cx′ .

Definition 2.7 (Perfectly-Hiding Additive Homomorphism). A commitment scheme supports ad-
ditive homomorphism if there exists deterministic operation ⊕ such that Cx1+x2 = Cx1 ⊕Cx2 and
Πx1+x2 = Πx1 ⊕ Πx2 fulfill correctness (for value x1 + x2) and hiding (note that binding auto-
matically applies). Finally, homomorphic operations must preserve perfectly hiding openings: if
x1 + x2 = x′1 + x′2,

(Cx1 ,Cx2 ,Cx1+x2 ,Πx1+x2)
d
= (Cx′

1
,Cx′

2
,Cx′

1+x′
2
,Πx1+x′

2
).

Fact 2.2 (Scalar Homomorphism). An additively homomorphic scheme automatically supports
scaling by a public value a ∈ X via repeated addition, denoted by Ca·x = a⊗Cx and Πa·x = a⊗Πx.

For instance, Pedersen commitments support additive homomorphism with perfectly hiding open-
ings [67]. For a commitment scheme to support other homomophic operations, analogous correct-
ness and hiding requirements must hold.

5Note that we assume that all functions have implicit access to the public parameters pp and all probabilistic
statements are also over the randomness used by Setup.

14

Σ-Protocols for Additively Homomorphic Commitments. We use a particularly structured
and efficient type of protocol which gives us what are called witness-indistinguishable proofs of
knowledge [32] for certain properties of additively homomorphic commitments. We will utilize
these in Section 4.2 to construct a random bit commitment scheme.

Definition 2.8 (See e.g. [78]). A Σ-protocol is a kind of 3-round public-coin protocol which can
be performed in parallel with other Σ-protocols and made non-interactive in the Random Oracle
Model by applying the Fiat-Shamir transformation.

Definition 2.9. A protocol is a proof of knowledge (PoK) for relation R if it consists of an honest
PPT Prover P and honest PPT Verifier V such that:

• Perfect Completeness: For any (h,w) ∈ R, Pr[1← (P(w),V)(h)] = 1.

• Knowledge Soundness: There exists a PPT knowledge extractor K such that for any PPT
adversary P̃ with Pr[1← (P̃ ,V)(h)] > negl(λ), upon rewindable black-box access6 to P̃ and
input h, K outputs witness w with Pr[(h,w) ∈ R] = 1− negl(λ).

Such a proof of knowledge is denoted by PoK {w | R(h,w)}.

Notice that knowledge soundness implies that for any PPT adversary P̃ , on a given input h either

• the honest V interacting with P̃ rejects with probability 1− negl(λ), or

• K can extract a valid witness w from P̃ with probability 1− negl(λ).

Definition 2.10 ([41]). An interactive protocol for relation R is perfect witness indistinguishable
(WI) if for any (h,w), (h,w′) ∈ R and adversary Ṽ , the distribution over transcripts generated by
(P(w), Ṽ)(h) is identical to that of (P(w′), Ṽ)(h).

Theorem 2.3 ([32]). Σ-protocols are perfect witness indistinguishable.

Theorem 2.4 ([32, 64]). For any additively homomorphic commitment scheme, there is a WI-
PoK {ΠDE | Verify(CDE ,ΠDE , 0) = 0 ∨ Verify(CDE ,ΠDE , 1) = 1}, which is specifically a Σ-protocol.

See Appendix B for the concrete construction of this protocol.

6This means that K can run P̃ repeatedly with the random string of its choice.

15

Pcom Vcom...

CθΠθ

θ

Popen Vopen...

Output =

{
Q Vopen accepts

⊥ Vopen rejects

q

Q

Figure 1: Schematic of the Certified Probabilistic Mechanism Setup. A CPM is executed in two
phases, the commitment and the query phase. The Commitment Phase is depicted in the top
diagram: the Prover Pcom receives a input θ, then interacts with the Verifier Vcom to produce a
commitment Cθ and proof Πθ. These outputs are passed to the bottom diagram depicting the
Query Phase: the Verifier Vopen sends a query q to the Prover Popen, then the two interact,
during which the Prover sends their proposed query answer Q. Based on the information they’ve
received in both phases, the Verifier either accepts or rejects Q to produce the final Output.

3 Certified Probabilistic Mechanisms

Interactive Setting. In this paper, we will operate in an interactive protocol setting which
allows the Verifier to hold the Prover to releasing queries q with respect to fixed, secret input θ.
Analogously to a commitment scheme, we will have two phases: a commitment phase where
the Prover commits to secret input θ of their choice, and a querying phase where the Prover
releases answers based on the query q. Because the interaction is split into these phases, we use
the following notation to disambiguate the roles of the Prover and Verifier in each phase, and in
particular to restrict in which phase the parties may deviate from the protocol. See also Fig. 1.

Notation 3.1. Fix a Prover P = (Pcom,Popen) and a Verifier V = (Vcom,Vopen) with inputs and
outputs as follows:

• Commitment Phase: On input of θ ∈ Θ, Pcom produces a commitment to D with Vcom,
privately storing the opening information: (Cθ, (Πθ)P)← (Pcom(θ),Vcom).

• Querying Phase: On input of query q ∈ Q from the Verifier and the saved outputs from the
previous phase, Popen proposes an answer Q and Vopen either accepts or rejects it: Output←
(Popen(Πθ),V

open)(Cθ, q) such that Output ∈ {Q,⊥}.

As in Definition 3.2, we will often denote the Output that results from running both phases in
condensed form by Output← (P(θ),V)(q) with the initial commitment phase being implicit.

In the definition to follow and the remainder of the main body of the paper, we will assume
that the commitment phase is performed honestly. In Appendix A, we extend the definition (and

16

our constructions) to handle a potentially dishonest commitment phase in a standard manner,
analogously to requiring a proof of knowledge of the database. Additionally, we evaluate our
implementation in the dishonest commitment setting in Section 5.

Definition of Certified Probabilistic Mechanisms. The goal of a “certified probabilistic
mechanism” is for the Prover to convince the Verifier that they have answered according to Mq(θ).
If both parties are honest, they should simply produce a draw from Mq(θ). If the Prover follows the
intended protocol honestly, the Verifier should not be able to trick them into revealing unnecessary
information about D or deviating from Mq(θ). Whenever the Prover’s release significantly deviates
from Mq(θ), the Verifier should catch them with correspondingly high probability.

Definition 3.1 (Certified Probabilistic Mechanism). Given mechanisms Mq : Θ → Y for query
class Q, a certified probabilistic mechanism for MQ consists of Setup, an honest Prover P =
(Pcom,Popen), and an honest Verifier V = (Vcom,Vopen) with the following properties for pub-
lic parameters pp← Setup(1λ), private database θ ∈ Θ, and public query q ∈ Q:

• Correctness: Let Output← (P(θ),V)(q). Then Output
d
= Mq(θ).

• Cheating-Verifier Soundness: For any adversary Ṽ , let Output ← (P(θ), Ṽ)(q) with pro-
posed answer Q. Then this is a perfectly hiding opening. Namely, for y ∈ Y let Viewy

Ṽ
(θ)

denote the view of Ṽ in (P(θ), Ṽ)(q) conditioned on Q = y. Then

Viewy

Ṽ
(θ)

d
= Viewy

Ṽ
(θ′).

Further, the distribution of the Prover’s answer isn’t distorted. Let Q̸=⊥ denoteQ conditioned
on the protocol not having terminated early. Then

Q ̸=⊥
d
= Mq(θ).

• Cheating-Prover Soundness: For any PPT adversary P̃ , let Output ← (P̃(θ),V)(q) and
γ⊥ = Pr[Output = ⊥]. Then

Output
d
≈γ⊥-TV Mq(θ).

Remark 3.1 (Statistical vs Computational). Now suppose that the secret input is a database D,
the query class is a function class F , and Mf is an (ϵ, δ)-DP mechanism. Notice that cheating-
Prover soundness implies that the Prover is bound to some equivalence class of databases underMF ,
namely those that give rise to the same outputs for all f ∈ F . If e.g. the mean of Mf (D), is slightly
different for each database, the Prover is computationally bound to release from a unique database,
while simultaneously maintaining statistical DP which hides neighboring databases. Depending on
one’s priorities, another version of a CPMs could be defined to require instead that any unbounded
Prover fulfills computational DP (or gets caught). This is analogous to computationally binding
and statistically hiding commitments vs vice versa.

On the face of it, cheating-Prover soundness only gives an inequality in the total variation distance
between the output and intended mechanism in terms of the failure probability of the protocol. In
fact, the property gives us a much stronger conclusion: all (but negligible) of the total variation
distance is moved to the probability of catching the cheating Prover and outputting ⊥.

17

Lemma 3.1. Let M ← Mq(θ) and Output ← (P̃(θ),V)(q). Then cheating-Prover soundness is
equivalent to

Pr[Output = ⊥] =
∑
y∈Y

(Pr[M = y]− Pr[Output = y]) (1)

and for any E ⊆ Y , Pr[M ∈ E] ≳ Pr[Output ∈ E]. (2)

Proof sketch. SinceMq never outputs⊥, forOutput to be distributed only TV-distance Pr[Output
= ⊥]+negl(λ) away, probabilities for all other outputs can only have decreased (modulo the negl(λ)
factor).

Since DP is defined in terms of events, we will also find a corollary which directly connects the
probability of rejection to deviation from the mechanism for events E useful.

Corollary 3.1.1. Let E ⊆ Y . Then

Pr[Output = ⊥] ≳ Pr[M ∈ E]− Pr[Output ∈ E], (3)

and ∆ ≳ Pr[M ∈ E]− Pr[Output ∈ E]. (4)

for ∆ = TV (Mq(θ), (P̃(θ),V)(q)).

3.1 Certified Differential Privacy

Here, we introduce Certified Differential Privacy. Our definition aims to capture the following
guarantee: whenever the Prover’s release violates differential privacy or the promised accuracy, the
honest Verifier will catch them and report the failure. On the other hand, when the Prover follows
the protocol honestly, no Verifier can trick them into violating DP,7 and if both parties are honest
the output of the interaction satisfies the stated accuracy and privacy guarantees.

Definition 3.2 (Certified Differential Privacy). A certified (α, β)-accurate (ϵ, δ)-DP scheme for
function class F ⊆ {f : X∗ → Y } consists of an honest Prover P and an honest Verifier V8 with
the following properties, for all databases D ∈ X∗ and functions f ∈ F :

• Correctness: The intended mechanism Mf (D) := (P(D),V)(f) is (α, β)-accurate and
(ϵ, δ)-DP with Pr[Mf (D) = ⊥] = 0.

• Honest-Curator DP: For any (unbounded) adversarial verifier Ṽ , M̃f (D) := (P(D), Ṽ)(f)
is an (ϵ, δ)-DP mechanism.

• Dishonest-Curator DP: For any PPT adversarial prover P̃ , let

M̃f (D
′) :=

{
(P̃(D′),V)(f) D′ = D

(P(D′),V)(f) otherwise.

For any γ ≥ 0, if the mechanism M̃f fails to satisfy (α, β+ γ)-accuracy or (ϵ, δ+ γ)-DP, then

Pr[M̃f (D) = ⊥] ≳ κ · γ, for some constant κ ∈ (0, 1].
7This protection against a malicious Verifier is analogous to ZK (as compared to honest-Verifier ZK).
8Recall that in the CDP setting, the curator is a Prover and the analyst is a Verifier.

18

Remark 3.2 (Equivalent Formulation of Dishonest-Curator DP). Dishonest-curator DP can be
stated in the contrapositive, which will be more useful for constructions: Let γ⊥ = Pr[M̃f (D) = ⊥].
Then, M̃f is an (α, β + c · γ⊥)-accurate and (ϵ, δ + c′ · γ⊥)-DP mechanism for f , for some c, c′ ≥ 1.

Remark 3.3 (Interpretation of Dishonest-Curator DP). In a setting with a single database curator,
the curator can always blatantly violate privacy (e.g., by outputting data in the clear). Dishonest-
curator DP soundness requires that, whenever the curator leaks information (or fails to achieve
the accuracy bound), the verifier will catch them (possibly with some constant factor degradation,
as κ moves away from 1). Notice that if the Verifier outputs ⊥ with probability γ⊥, the best
DP parameters we can hope for are (ϵ, δ + γ⊥). The increase in the DP failure probability is
unavoidable, as outputting ⊥ is itself disclosive, because the honest mechanism never outputs ⊥.
Similarly, outputting ⊥ inherently degrades the mechanism’s accuracy. Thus we require parameters
c, c′ ≥ 1.

A particularly delicate aspect of the soundness property is why we define M̃f to distinguish between
D′ = D and D′ ̸= D. While DP requires us to reason about behavior over all databases, in reality,
the interaction is run only on the true database. Imagine a malicious Prover P̃ who follows the
honest protocol on all but a single database D∗. On this special database, the Prover sends D∗

in the clear and V outputs ⊥. If D ̸= D∗, then the Verifier’s interaction with the Prover is as

expected. But if we define M̃′
f = (P̃(D′),V)(f) for all D′, then M̃′

f violates any DP guarantee,

even though the Prover did nothing wrong in the real world. In this sense, considering M̃f allows
us to localize our accuracy and DP guarantees based on deviations from the protocol—and privacy
violations—that specifically occur on database D.

Remark 3.4 (Impact of Neighboring Databases). Because DP is ultimately a local property,
if we consider an adversary who releases a set of databases instead of only one, our definition
automatically gives another guarantee due to either the worst-case behavior of the adversary on a
single database in this set or the combined worst-case behavior on two neighboring databases in
the set.

Lemma 3.2. For any PPT adversary P̃ and set of databases S ⊆ X∗, let N(S) = {D1, D2 ∈
S | D1, D2 are neighbors}. Define

M̃f (D
′) :=

{
(P̃(D′),V)(f) D′ ∈ S

(P(D′),V)(f) otherwise,

and

γmax
⊥ = max

D∈S
Pr[M̃f (D) = ⊥]

γN-max
⊥ = max

(D1,D2)∈N(S)
Pr[M̃f (D1) = ⊥] + Pr[M̃f (D2) = ⊥].

Then M̃f is an
(
ϵ, δ +O(max{γmax

⊥ , γN-max
⊥ })

)
-DP probabilistic mechanism for f .

Our later constructions actually achieve an even stronger DP guarantee than this general guarantee
for neighboring databases.

19

Remark 3.5 (Composition). A key selling point of DP is its graceful degradation under compo-
sition [38, 40], and Certified DP maintains this. Formally, we give the following analogue of Basic
Composition (as stated in [79]).

Lemma 3.3 (Composition of Certified DP). Consider any series of k adaptive queries f1, . . . , fk ∈
F . For honest prover P and any verifier Ṽ, the interactive mechanism is (kϵ, kδ)-DP. Further, let

γsum⊥ =
∑
i∈[k]

Pr[M̃fi(D) = ⊥].

For any PPT cheating-prover P̃, the mechanism is (kϵ, kδ +O(γsum⊥))-DP.

Proof sketch. Let γi⊥ = Pr[M̃fi(D) = ⊥]. Since each Mfi achieves (ϵ, δ +O(γi⊥))-DP by dishonest-
curator DP, we can apply the basic composition lemma (see e.g. [79]) to conclude the result.

3.2 Certified DP from Certified Probabilistic Mechanisms

Now we are ready to prove that a certified probabilistic mechanism for a DP mechanism MF attains
certified DP. Notice that our dishonest-curator DP laxness constant eϵ gets closer to 1 the smaller
ϵ is, i.e. we get a stronger certification guarantee for more stringent DP mechanisms. (As we will
see later, this constant arises from the disconnect between DP-closeness and TV-closeness.)

Theorem 3.4 (restated Theorem 1). Let Mf : X∗ → Y be an (α, β)-accurate, (ϵ, δ)-DP mechanism
for f ∈ F . Then a certified probabilistic mechanism CPM for MF achieves certified (α, β)-accurate
(ϵ, δ)-DP. Specifically, following the notation of Remark 3.2, CPM achieves (α, β + γ⊥)-accuracy
and (ϵ, δ + eϵ · γ⊥)-DP dishonest-curator soundness.

Proof. Correctness: The certified DP correctness guarantee follows directly from correctness of
a CPM applied to a (α, β)-accurate, (ϵ, δ)-DP mechanism.

Honest-Curator (ϵ, δ)-DP: We seek to establish that for any PPT adversary Ṽ = (Ṽ
com

, Ṽ
open

),
their view across both phases of a verifiably DP scheme for MF satisfies (ϵ, δ)-DP. We will consider
the world where the protocol is run on D in comparison to the world where the protocol is run on
D′, named World D and World D′ respectively. By cheating-Verifier soundness, for a fixed value
of Q = y = Q′, the view of Ṽ in World D is the same as that in World D′, so the probability Ṽ
accepts vs rejects is also the same in both cases. Further, this means that Ṽ had equal chance of
misbehaving so as to cause P to answer ⊥ in both worlds, so since

Q̸=⊥
d
= Mf (D)

d
≈(ϵ,δ)-DP Mf (D

′)
d
= Q′

̸=⊥

as well, the answers given by P maintain an (ϵ, δ)-DP mechanism overall. Thus(
ViewṼ (D),Q

)
d
≈(ϵ,δ)-DP

(
ViewṼ (D

′),Q′
)
,

and Ṽ ’s entire view is (ϵ, δ)-DP, as desired.

20

Dishonest-Curator (α, β + γ⊥)-Accuracy: Let Output ← (P̃(D),V)(f) and M ← Mf (D).
Let E = {y ∈ Y | |f(D)− y| > α}. Notice that (α, β + γ⊥)-accuracy is equivalent to

Pr[Output ∈ E] + Pr[Output = ⊥] ≤ β + γ⊥ + negl(λ).

In particular note that by convention we take ⊥ to always be inaccurate, namely for any y and α,
since we consider |y −⊥| > α. By definition, Pr[Output = ⊥] = γ⊥. By Lemma 3.1,

Pr[Output ∈ E] ≤ Pr[M ∈ E] + negl(λ) ≤ β + negl(λ)

since Mf is (α, β)-accurate.

Dishonest-Curator (ϵ, δ + eϵ · γ⊥)-DP: We establish this claim by Theorem 3.5. Further, this
theorem shows that for a potentially misbehaving Prover who releases neighbors D1, D2, CPM is
(ϵ, δ + eϵ · γmax

⊥)-DP.

This means that we get a stronger result than in Lemma 3.2. Namely, instead of the DP guarantee
also degrading by the maximum sum of the rejection probabilities for neighboring D1, D2 ∈ S, it
degrades only by the maximum rejection probability of a single database. This will be established
via the following theorem, which is strictly more general than dishonest-curator DP since P̃ may
simply follow P on one of the two databases.

Theorem 3.5. Let (Setup,P,V) be a CPM for the (ϵ, δ)-DP mechanism MF . For any PPT ad-
versary P̃, if neighboring databases D,D′ ∈ X∗ witness an (ϵ, δ+ δ′)-DP violation for (P̃(·),V)(f),
then either

Pr[(P̃(D),V)(f) = ⊥] ≳ e−ϵδ′ or Pr[(P̃(D′),V)(f) = ⊥] ≳ e−ϵδ′.

Proof. Let M ← Mf (D), M′ ← Mf (D
′), Output ← (P̃(D),V)(f), Output′ ← (P̃(D′),V)(f),

∆ = TV (Mf (D), (P̃(D),V)(f)), and ∆′ = TV (Mf (D
′), (P̃(D′),V)(f)). The (ϵ, δ + δ′)-DP viola-

tion means that for some event E ⊆ Y ∪ {⊥}, WLOG

Pr[Output ∈ E] > eϵ · Pr[Output′ ∈ E] + δ + δ′. (0)

(The roles of D and D′ could also be switched for this DP violation, in which case we would end
up lower bounding the probability of rejection for the opposite database.) Recall that by cheating-
Prover soundness, Pr[Output = ⊥] ≳ ∆ and Pr[Output′ = ⊥] ≳ ∆′, so it suffices to show that
at least one of the protocols is e−ϵδ′-statistically far from the correct mechanism. There are two
cases.

First, suppose that ⊥ ̸∈ E. We will show that ∆′ > e−ϵδ′. Overall, M′ and M are (ϵ, δ)-DP
close. For all events E such that ⊥ ̸∈ E, Pr[M ∈ E] ≥ Pr[Output ∈ E] − negl(λ) due to
Lemma 3.1. But by the assumed DP violation in (0), Pr[Output′ ∈ E] is significantly smaller than
Pr[Output ∈ E]. We can thereby conclude that M′ and Output′ are also significantly far apart
for this event. Specifically,

eϵ · Pr[M′ ∈ E] + δ ≥ Pr[M ∈ E] (1)

≥ Pr[Output ∈ E]− negl(λ) (2)

> eϵ · Pr[Output′ ∈ E] + δ + δ′ − negl(λ) (3)

21

(1) follows from M
d
≈(ϵ,δ)-DP M′. (2) is due to Lemma 3.1 Eq. (2). (3) follows from (O). Now

rearranging and applying Corollary 3.1.1 Eq. (4), we achieve

∆′ ≥ Pr[M′ ∈ E]− Pr[Output′ ∈ E]− negl(λ) > e−ϵδ′ − negl(λ).

Second, suppose that ⊥ ∈ E. We will show that Pr[Output = ⊥] > e−ϵδ′ − negl(λ) directly. In
this case, we show that Pr[Output ∈ E] must be significantly higher than Pr[M ∈ E]. But by
Lemma 3.1 ⊥ is the only element that can have higher probability for Output than M, so we must
have a high probability of M equalling ⊥. To reason about this setting, we split the event E into
E \ {⊥} and {⊥} so that we can apply Lemma 3.1 and Corollary 3.1.1.

Pr[Output ∈ E \ {⊥}] + Pr[Output = ⊥] ≤ Pr[M ∈ E \ {⊥}] + negl(λ) + Pr[Output = ⊥]

by Lemma 3.1 Eq. (2). Additionally, by rearranging Corollary 3.1.1 Eq. (3)

Pr[Output′ ∈ E \ {⊥}] + Pr[Output′ = ⊥] ≥ Pr[M′ ∈ E \ {⊥}]− negl(λ).

Substituting these inequalities for Pr[Output ∈ E] and Pr[Output′ ∈ E] respectively into the DP
violation (0),

Pr[M ∈ E \ {⊥}] + Pr[Output = ⊥] + negl(λ) > eϵ · (Pr[M′ ∈ E \ {⊥}]− negl(λ)) + δ + δ′

≥ Pr[M ∈ E \ {⊥}] + δ′ − negl(λ)

where the final inequality follows from the fact that M
d
≈(ϵ,δ)-DP M′. Cancelling terms one more

time, we conclude that Pr[Output = ⊥] > δ′ − negl(λ).

Recall that in the definition of CDP, we required that a cheating Prover who causes an (ϵ, δ+γ)-DP
violation results in Pr[Output = ⊥] ≳ κ · γ for some γ ∈ (0, 1]. Our result in Theorem 3.5 shows
that κ ≳ e−ϵ. We show that this analysis is actually tight. That is, due to the interplay between
TV-closeness and differential closeness, an e−ϵ loss is necessary. In particular, a small deviation
in TV distance can get amplified into a larger DP violation by getting multiplied by eϵ, namely
a ∆-deviation leading to δ′ = eϵ · ∆ getting added to the DP violation. Suppose that E is an
event which shows the tightness of the original (ϵ, δ)-DP guarantee with Pr[M ∈ E] > Pr[M′ ∈ E]
without loss of generality, i.e.

Pr[M ∈ E] = eϵ · Pr[M′ ∈ E] + δ.

Suppose the Prover deviates so that Pr[O′ ∈ E] = Pr[M′ ∈ E] −∆, making no other changes so
∆ = TV (M′,O′). Then

Pr[O ∈ E] = Pr[M ∈ E]

= eϵ · Pr[M′ ∈ E] + δ

= eϵ ·
(
Pr[O′ = ⊥] + ∆

)
+ δ

= eϵ · Pr[O′ = ⊥] + δ + eϵ ·∆.

Thus the resulting mechanism violates (ϵ, δ + δ′)-DP for anything less than δ′ = eϵ ·∆. Since the
probability of ⊥ is only necessarily as large as ∆ − negl(λ) for a CPM, the Verifier may only be
able to catch this violation with probability ∆− negl(λ) = e−ϵδ′ − negl(λ).

22

4 Certified Additive Noise via Random Variable Commitments

We are now ready to discuss a general recipe for certified “additive noise” probabilistic mechanisms
which leverages homomorphic commitments as well as a new primitive called an RVCS that we will
introduce shortly. Specifically, we consider additive noise mechanisms of the following form.

Definition 4.1. Let MF be an probabilistic mechanism that can be expressed as

Mf (D) = f(D) + Z

for noise Z ← Z, drawn independently of f ∈ F from a known distribution Z. Then MF is an
additive noise mechanism.

Conveniently for us, many DP mechanisms are of exactly this form. Our goal is for the Prover
to produce a commitment to the value Mf (D) so that the Prover can open it to release the
noisy value—without ever revealing the true value or added noise individually. Of course, this
commitment must be generated in a way which convinces the Verifier that Mf (D)← f(D) +Z.

Towards this end, we start with a commitment scheme which supports homomorphism for the
function class F .

Definition 4.2. Let CS = (Setup,Commit,Verifiy) be a commitment scheme for X. Let F ⊆
{f : (Xd)∗ → X}. CS supports F -homomorphism if there exists a randomized function which
generalizes from commitment to an element to a commitment to a database denoted as (CD,ΠD) =
Commit(D) and for each f ∈ F there exists a deterministic operation such that (Cf(D),Πf(D)) =
(f(CD), f(ΠD)) fulfill CS-correctness for opening value f(D). (Note that binding is automatically
inherited from CS.) Finally, homomorphic operations must preserve perfectly hiding openings: if
f(D) = f(D′), then

(CD,Cf(D),Πf(D))
d
= (CD′ ,Cf(D′),Πf(D′)).

With this ingredient, we have a way to verifiably produce Cf(D), but we still need a way to add on
the noise. This is where the new primitive that we call a “random variable commitment scheme”
comes in. This will allow the Prover to verifiably produce CZ so that the Verifier is convinced that
Z← Z. Once we have these two components, all we need is for CS to be additively homomorphic
so that these commitments can be added together to produce CMf (D) = Cf(D) ⊕CZ, as desired.

4.1 Random Variable Commitments

A new primitive we use for our scheme, which seems interesting in its own right, is a notion of
“committing to random variable Z.” A Dealer DE and a Player PL seek to produce a commitment
C to an element in Z together with the following properties. The Dealer can open C, and is bound
to open it to a single value Z. This value is hidden from the Player until C is opened. But the
Dealer and the Player are both convinced that C is a commitment to a value drawn from Z.

Recall that our definition of an interactive protocol means that in this case, at some point in the
interaction the Dealer will propose a commitment CQ which the Player will either accept or reject
to produce an output Cout = CQ or Cout = ⊥ respectively.

23

Definition 4.3 (Random Variable Commitment Scheme). A random variable commitment scheme
for distribution Z consists of a commitment scheme CS = (Setup,Commit,Verify), an honest
Dealer DE, and an honest Player PL with the following properties when pp← Setup(1λ):

• Correctness: For (Cout, (ΠQ,ZQ)DE)← (DE,PL) and Z← Z,

(Cout,ΠQ)
d
= Commit(Z).

• Cheating-Player Distributional Soundness: For any adversary P̃L , let (Cout, (ΠQ,ZQ)DE)←
(DE, P̃L), Zout

C ̸=⊥ ← Verify(Cout,ΠQ,ZQ) conditioned on Cout ̸= ⊥, and Z← Z. Then

Zout
C ̸=⊥

d
= Z.

• Cheating-Dealer Distributional Soundess: There exists a PPT algorithm RevealOpening that,
given the Dealer’s View and rewindable black-box access to the Dealer, returns ΠQ and ZQ

such that the following holds. For any PPT adversary D̃E , let (Cout,View
D̃E

) ← (D̃E ,PL)

and (ΠQ,ZQ) ← RevealOpening(View
D̃E

). Let Zout ← Verify(Cout,ΠQ,ZQ) and let γ⊥ =

Pr[Cout = ⊥]. Then for Z← Z,

Zout d
≈γ⊥-TV Z.

Cheating-Player distributional soundness ensures that the commitment is honestly openable to a
value drawn from Z when Cout ̸= ⊥ cases are ignored. Cheating-Dealer distributional soundess
ensures that if the Dealer draws from a distribution other than Z, including via producing an
unopenable commitment, the honest Player catches their deviation proportionally.

Remark 4.1 (Asymmetry Between the Player and Dealer). The asymmetry between cheating-
Player and cheating-Dealer distributional soundness is due to the asymmetry in information between
the two parties.

First, note that the Dealer must be able to compute Zout given their view so they can open the
commitment later. So, consider the most näıve strategy for altering the distribution that the Dealer
can implement: depending on the Zout that would be generated by an honest interaction, the Dealer
sends CQ = ⊥, so the Player is forced to output Cout = ⊥. In this way, they can decrease the
probability that Zout = z by whatever amount they want individually for each z ∈ Z—while paying
for this by increasing the probability of ⊥ by the same amount, of course. In particular, this allows
the Dealer to alter the distribution even conditioning on Cout ̸= ⊥. Cheating-Dealer distributional
soundness says that the Dealer cannot do more than negl(λ) better than this näıve strategy.

On the other hand, cheating-Player distributional soundness implies that the Player is not able to
behave differently depending on Zout, because then they could implement the same strategy as the
Dealer to alter the conditional distribution. Thus Zout must remain hidden to the Player.

In sum, the Dealer necessarily knows Zout when generating the commitment, while this value is
hidden from the Player. Thus a dishonest Player can only reject independently of the value of Zout,
preserving the overall distribution. On the other hand, the Dealer can target specific values of Zout.

Remark 4.2 (Additive Homomorphism). We will call an RVCS defined on top of a commitment
scheme CS a random variable CS-commitment scheme. Note that if CS is additively homomorphic,
then the RV CS-commitment scheme inherits this.

24

4.2 Random Bit Commitments Construction

The most simple instantiation of this primitive is to generate certified private random bits. Our
construction builds on classical “coin flip in the well” constructions for cryptographic coin flipping
[49, 18]. In these settings, two parties seek to generate a flipped coin that they can both trust was
tossed with 50-50 probability of getting either bit. However, instead of requiring the flipped coin
to be revealed later, we will use additive homomorphism to allow a commitment to the flipped coin
to be generated without ever revealing its value to the Player.

We will use a couple of ingredients for this construction: (1) the witness-indistinguishable proof
of knowledge that a commitment opens to either 0 or 1 from Theorem 2.4, and (2) a way to
homomorphically XOR a bit commitment with a plaintext bit. The constructions for (1) and (2)
are based on a standard Σ-protocol and CS’s additive (and thus also scalar) homomorphism, and
can be found in Appendix B.

Construction 4.1. Let CS = (Setup,Commit,Verify) be a commitment scheme for Z/qZ with
additive homomorphism. Then we will define a (DE1,PL1) protocol for B1 as follows:

1. DE1 flips a bit BDE ← B1, computes a commitment to this bit (CDE ,ΠDE) ← Commit
(BDE), and sends CDE .

2. DE1 and PL1 execute WI-PoK {ΠDE | Verify(CDE ,ΠDE , 0) = 0 ∨ Verify(CDE ,ΠDE , 1) = 1}.

3. PL1 flips a bit BPL ← B1 and sends it.

4. DE1 uses additive homomorphism to XOR CDE and ΠDE with BPL and sends the resulting
commitment CDE+PL .

5. PL1 uses additive homomorphism to XOR CDE with BPL and accepts iff the result matches
CDE+PL .

At the end of the protocol, the Dealer knows the random bit BDE+PL and the proof to open its
commitment ΠDE+PL . On the other hand, since the value BDE has been hidden throughout, the
Player only knows the commitment CDE+PL .

Remark 4.3 (Instantiation of Step #2). If the Player doesn’t confirm that BDE ∈ {0, 1}, then
the supposed “bit” commitment produced at the end could be to a much larger element of Z/qZ.
As highlighted in Section 2, additively homomorphic commitment schemes have efficient WI-PoKs
of this kind called Σ-protocols.9 While a näıve implementation of the above would result in a
protocol with 6 rounds of interaction, we can reduce this back to 3. Specifically, since each message
in the first round of the Σ-protocol is a perfectly hiding commitment, it can be implemented in
parallel to the main interaction rounds in Construction 4.1, as depicted in Fig. 2, so it remains a
3-round (public-coin) protocol. Indeed, if many random bit commitments are needed, each can be
performed in parallel.

9For commitment schemes with multiplicative homomorphism as well, or even just one-time multiplicative homo-
morphism (e.g. [45]), this additional homomorphism can be utilized to non-interactively check this instead.

25

DE PL
BPL, eΣ

CDE, aΣ

CDE+PL, zΣ

Cout =

CDE+PL CDE+PL = CDE + Commit(BPL) mod 2

& VerifyΣ(aΣ, eΣ, zΣ) = accept

⊥ otherwise

Figure 2: Diagram of the random bit commitment protocol, consisting of coin-flipping-in-the-well
between the Dealer and Player with homomorphic commitments and a parallel Σ-protocol consisting
of messages (aΣ, eΣ, zΣ).

Theorem 4.1. Let CS = (Setup,Commit,Verify) be a commitment scheme for Z/qZ with additive
homomorphism. Let (DE1,PL1) be from Construction 4.1 using CS. Then (Setup,DE1,PL1,
Verify) constitute a random variable commitment scheme for B1.

Further, we can easily use this as a building block to get a protocol for Binomial commitments.
Namely, we can simply execute Construction 4.1 multiple times in parallel and use additive homo-
morphism to add up the results.

Construction 4.2. Let CS = (Setup,Commit,Verify) be a commitment scheme for Z/qZ with
additive homomorphism. Then we will define a (DEN ,PLN) protocol for BN as follows:

1. (DEN ,PLN) execute the protocol from Construction 4.1 N times in parallel, so that for
i ∈ [N] PLN receives Ci and DEN generates Πi and the value Bi.

2. PLN homomorphically computesCBN
=

⊕
i∈[N]Ci. DEN homomorphically computesΠBN

=⊕
i∈[N]Πi and BN =

∑
i∈[N]Bi.

Theorem 4.2. Let CS = (Setup,Commit,Verify) be a commitment scheme for Z/qZ with additive
homomorphism. Let (DEN ,PLN) be from Construction 4.2 using CS. Then (Setup,DEN ,PLN ,
Verify) constitute a random variable commitment scheme for BN .

Proof. This follows directly from Theorem 4.1, the additive homomorphism of CS, and the perfectly
hiding nature of the messages sent in the first round.

This means that once we have random bit commitments in place, we will be prepared to release
the Binomial additive noise mechanism.

By the definition of a group, we get the following lemma which will prove useful in the proof of
Theorem 4.1.

Lemma 4.3. Let (G, ·) be a group and G denote the uniform distribution over elements in G. Then
for g ← G and any independently chosen g′ ∈ G, g · g′ (and g′ · g) will be distributed according to G
as well.

26

Proof of Theorem 4.1. Correctness: The construction achieves RVCS correctness because the

honest Dealer and Player conform to Lemma 4.3 for Z/2Z so CDE+PL
d
= Commit(B1) for B1 ← B1

and the Player accepts this result with probability 1. This is because correctness of CS’s addi-
tive homomorphism implies that the honest Player will accept the honestly produced commitment
CDE+PL with probability 1 and the Dealer will know the witnessing opening (ΠDE+PL ,BDE+PL),
and perfect completeness of the PoK implies that the honest Player will accept the honest Dealer’s
PoK with probability 1.

Cheating-Player Distributional Soundness: This follows from the honest Dealer’s choice of
BDE being hidden from the Player so that the Player’s choice of BPL is independent. Since the
honest Dealer chooses a uniformly random bit and can see whether the Player chose an element of
the group, i.e. BPL ∈ {0, 1}, we can apply Lemma 4.3. Since due to hiding and WI the Player never
learns BDE , their rejection probability is independent of BDE+PL and thus maintains distributional
equality when conditioned on acceptance.

Let P̃L be an PPT adversarial Player, B1 ← B1, (Cout, (ΠQ,BQ)) ← (DE1, P̃L), BC ̸=⊥ =
Verify(Cout,ΠQ,BQ) | Cout ̸=⊥. Let C

Q denote the answer proposed by DE (so that Cout = CQ or

Cout = ⊥ depending on whether P̃L accepts or rejects). This implies that Pr[Cout ̸= ⊥] > 0, and
we will restrict our attention to this case.

First, in this case certainly CQ ̸= ⊥, and Cout = CQ. If P̃L deviates from the structure of
Construction 4.1 or in step #3 sends B

P̃L
̸∈ {0, 1}, then in step #4, DE will set CQ = ⊥, a

contradiction. Thus BQ ∈ Z/2Z.

Next, we will establish independence between BDE and B
P̃L

. Let B0
P̃L

and B1
P̃L

indicate B
P̃L

conditioned on BDE = 0 and BDE = 1 respectively, i.e. in World 0 versus World 1, and likewise

with the other random variables in the protocol. In step #1, by perfect hiding C0
DE

d
= C1

DE . In step

#2, by perfect witness indistinguishability P̃L ’s transcripts from the PoK are distributed identically
in World 0 versus World 1. Thus P̃L ’s entire transcript through the first three steps is identically

distributed in Worlds 0 and 1, including B0
P̃L

d
= B1

P̃L
.

Therefore the requirements of Lemma 4.3 are fulfilled, so BQ d
= B1. By correctness of CS,

Verify(CQ,ΠQ,BQ) = BQ. Further, since CQ is also perfectly hiding, the probability of P̃L

rejecting remains the same in both Worlds 0 and 1. Thus BC ̸=⊥
d
= B1.

Cheating-Dealer Distributional Soundness: This follows from the Player’s choice of BPL

happening after the Dealer’s choice of BDE so the Dealer’s choice is independent. Since the honest
Player chooses a uniformly random bit and uses the WI-PoK to check that the Dealer chose an
element of the group, i.e. BDE ∈ {0, 1}, we can apply Lemma 4.3. Because the Dealer does learn
BPL , their probability of misbehaving so as to cause rejection (e.g. sending CQ = ⊥) may depend
on BDE+PL , which is why we are only able to ask for a weaker version of distributional soundness
compared to when there is a cheating Player.

Let (Cout,View
D̃E

)← (D̃E ,PL1) and CQ denote the answer proposed by D̃E (so that Cout = CQ

or Cout = ⊥ depending on whether PL accepts or rejects). Let K be the PPT knowledge extractor

27

from the PoK in step #2. Let RevealOpening compute (Π
D̃E

,B
D̃E

) ← K(View
D̃E

) and follow

step #4 to use these to compute ΠQ = Π
D̃E+PL

and BQ = B
D̃E+PL

, finally outputting (ΠQ,BQ).

Let Bout = Verify(Cout,ΠQ,BQ). Our goal is to prove that

Bout d
≈Pr[Cout=⊥]-TV B1

for B1 ← B1, or equivalently,

Pr[Cout = ⊥] ≥ TV (Bout,B1)− negl(λ)).

First, recall that by knowledge soundness of the PoK protocol as given by Definition 2.9, for this
particular adversarial Dealer, either PL rejects in step #2 with probability 1 − negl(λ) or K can
extract a valid witness with probability 1− negl(λ). In the first case,

Pr[Cout = ⊥] ≥ 1− negl(λ) ≥ TV (Bout,B1)− negl(λ),

as desired. So, will will turn our attention to the second case.

This means (Π
D̃E

,B
D̃E

) must be such that

Pr[Verify(C
D̃E

,Π
D̃E

,B
D̃E

) = B
D̃E
∧ B

D̃E
∈ {0, 1}] ≥ 1− negl(λ).

Thus D̃E can open C
D̃E

to at least one of the values 0 or 1 with high probability. Suppose for

contradiction that D̃E could also open C
D̃E

to a second value with non-negligible probability: then
a PPT algorithm would be able to produce two conflicting openings of C

D̃E
which are accepted by

Verify with nonnegligible probability, which would contradict computation binding of CS. Thus
there is only one value C

D̃E
can be opened to with nonnegligible probability of successful verifi-

cation, so for a given realization of C
D̃E

, B
D̃E

must be the same pseudodeterministic value for all

but a negligible fraction of the times K succeeds (even if different Π
D̃E

’s may be produced).

Next, in step #3 PL1 picks an independent BPL ← B1. Thus with probability ≥ 1 − negl(λ)

Lemma 4.3 can be applied, leading us to conclude that BQ d
≈negl(λ)-TV B1. Further, for a correctly

computed C
D̃E+PL

, Verify(C
D̃E+PL

, ΠQ,BQ)
d
≈negl(λ)-TV B1.

Now, of course D̃E may not send CQ = C
D̃E+PL

, and instead send an incorrect commitment or

even CQ = ⊥. Since PL1 deterministically checks whether CQ = C
D̃E+PL

and rejects if not,

this probability of deviation translates directly into a probability of rejection. Let p0
CQ=⊥ and

p1
CQ=⊥ indicate the probabilities that D̃E sends an incorrect CQ and that BQ = 0 versus BQ = 1

respectively. Note that Cout = ⊥ in either of these cases, and otherwise Cout = CQ = C
D̃E+PL

.

WLOG, let p = p1
CQ=⊥ − p0

CQ=⊥ ≥ 0. Then

Bout = Verify(Cout,ΠQ,BQ)
d
≈p-TV Verify(C

D̃E+PL
,ΠQ,BQ)

d
≈negl(λ)-TV B1.

Certainly, p ≤ Pr[Cout = ⊥], so we can conclude that

Bout d
≈Pr[Cout=⊥]-TV B1.

28

4.3 Certified Additive Noise Mechanisms Construction

Now supposing that we have an appropriate, additively homomorphic RV commitment scheme for
Z, we’ll see that this indeed gives us a certified probabilistic mechanism for Mf (D) = f(D) + Z.
The Prover will use a F -homomorphic commitment scheme to produce a commitment to f(D) and
build the RVCS for Z from this same CS. Choosing a CS with additive homomorphism will allow
the commitments to f(D) and Z to be combined, producing a commitment Mf (D) that can be
opened while hiding both the true answer and the noise.

Construction 4.3. Let CS = (Setup,Commit,Verify) be an F -homomorphic commitment scheme
for X with additive homomorphism. Let RV CS = (Setup,DE,PL) be a random variable CS-
commitment scheme for Z. Then we define P = (Pcom,Popen) and V = (Vcom,Vopen) as follows:

Commitment phase (Pcom(D),Vcom):

1. Pcom computes (CD,ΠD) = Commit(D) and sends CD to Vcom, privately storing ΠD.

Randomness Generation Phase:

1. RV CS is executed with P running DE and V running PL respectively, so that Popen saves
ΠZ and Z and Vopen receives CZ.

Querying Phase (Popen(ΠD),V
open)(CD, f):

1. Popen F -homomorphically computes Πf(D) = f(ΠD) and f(D). Popen additively homomor-
phically computes ΠMf (D) = Πf(D) ⊕ΠZ and Mf (D) = f(D) +Z and sends both to Vopen.

2. Vopen F -homomorphically computes computes Cf(D) = f(CD). Vopen additively homomor-
phically computes CMf (D) = Cf(D) ⊕CZ . V

open outputs Verify(CMf (D),ΠMf (D),Mf (D)).

Remark 4.4. Notice that the randomness generation phase must be run ahead time for each query
but is independent of the specific query f ∈ F , so the querying phase itself becomes completely
non-interactive. We will further explore the benefits of this in Section 4.4.

Theorem 4.4 (restated Theorem 2). Consider an additive noise mechanism Mf (D) = f(D) + Z
for class of functions F ⊆ {f : (Xd)∗ → X} and Z drawn from distribution Z. Let CS =
(Setup,Commit,Verify) be an F -homomorphic commitment scheme for X with additive homo-
morphism. Let RV CS = (Setup,DE,PL) be a random variable CS-commitment scheme for Z.
Then Construction 4.3 is a certified probabilistic mechanism for MF .

Proof. Correctness: The construction achieves CPM correctness because Mf (D)
d
= Mf (D) and

the Verifier accepts this result with probability 1. This is because correctness of RV CS implies that
the honest Verifier will accept the honestly produced CZ and the Prover will know the witnessing
opening (ΠZ,Z) with probability 1, and correctness of CS’s F - and additive homomorphism implies
that the honest Verifier will accept the honestly produced opening of CMf (D) with probability 1.

29

Cheating-Verifier Soundness: This property follows from the perfectly hiding commitments
and openings of CS (Definition 2.6, Definition 2.7) and cheating-Player distributional soundness for
RV CS (Definition 4.3) imply that that D remains hidden to the Verifier except through whatever
is revealed by the value Mf (D) and that the Verifier is not able to alter the distribution of Z.

In detail, let Ṽ be a PPT adversarial Verifier. Let D,D′ ∈ (Xd)∗ with xi and x′i denoting elements
of each respectively. We will consider the world where the protocol is run on D in comparison to
the world where the protocol is run on D′, named World D and World D′ respectively. We seek to
show that if the protocols in both worlds produce the same output Mf (D) = y = Mf (D

′), then
the views of the Verifier in both worlds are the same, namely

Viewy

Ṽ
(D)

d
= Viewy

Ṽ
(D′).

Notice that P does not take action based on anything sent by Ṽ except when RV CS is run. Thus
up to that point P simply executes as normal and is unaffected by Ṽ in either world. Notice then
that before RV CS, P has only sent Ṽ CD in World D vs each CD′ in World D′. By perfect hiding

of CS, CD
d
= CD′ . During the RVCS step, Ṽ ’s view remains perfectly hiding between World D

and World D′ since DE sends messages identically in both worlds. Namely, these joint distributions
are equal:

(CD,CZ)
d
= (CD′ ,CZ′) .

This entails that the probability of Ṽ outputting ⊥ during the RV CS step, i.e. that CZ = ⊥ or
C′

Z = ⊥ respectively, is also the same in both worlds. So, in the case that Ṽ has already rejected
in the RV CS step, we’re done.

Else if Ṽ has not rejected yet, the only other messages Ṽ receives are in the querying phase. One
of these is the purported output of the mechanism. Conditioning on both worlds producing same
output Mf (D) = y = Mf (D

′), by perfectly hiding openings of CS(
CD,Cf(D),CZ,ΠMf (D)

)
d
=

(
CD′ ,Cf(D′),CZ′ ,ΠMf (D′)

)
.

We have thereby shown that Construction 4.3 also has perfectly hiding openings. The second
ingredient of cheating-Verifier soundness requires that the honest Prover’s answer cannot be dis-
tributionally distorted by the Verifier, which is simple to show. Recall that by cheating-Player

distributional soundness, Zout
C ̸=⊥

d
= Z. Thus Mf (D) = f(D) + Zout

C ̸=⊥
d
= f(D) + Z = Mf (D), as

desired.

Cheating-Prover Soundness: This property follows from the binding properties of CS (Defi-
nition 2.6) and cheating-Dealer distributional soundness for RV CS (Definition 4.3) implying that
the Prover deviating from MF with some probability will cause the honest Verifier to reject with
that same probability, up to negl(λ) factors.

Let P̃ be a PPT adversarial Prover, Mout
f ← (P̃(ΠD),V

open)(CD, f), and MQ
f denote the answer

proposed by P̃ , so that Mout
f = MQ

f or Mout
f = ⊥ depending on whether V accepts or rejects,

respectively. Our goal is to prove that

Mout
f

d
≈Pr[Mout

f =⊥]-TV Mf (D)

30

or equivalently,
Pr[Mout

f = ⊥] ≥ TV (Mout
f ,Mf (D))− negl(λ).

To establish this, let’s trace the distributions of relevant RVs across the protocol. First, we need to
examine randomness generation. Let Zout = Verify(CZ, Π

Q
Z ,Z

Q) for (ΠQ
Z ,Z

Q)← RevealOpening
(ViewP̃). By cheating-Dealer distributional soundness,

Zout d
≈Pr[CZ=⊥]-TV Z (5)

for Z ∼ Z. Of course, if CZ = ⊥ then Vopen rejects and the protocol terminates. We will show that
if Zout = ⊥ with high probability, then by Eq. (5) CZ = ⊥ with high probability so we will trivially
achieve our goal. On the other hand, if Zout ̸= ⊥ with nonneglible probability, CZ is openable to
ZQ with nonneglible probability. Thus by binding, CZ (and by homomorphism CMf (D)) can be
opened to this single value only. We will show that by Eq. (5), the distributional closeness of this
unique value to the desired mechanism is bounded by the rejection probability, establishing the
result. Next we will consider these two cases in detail.

In the first case, Pr[Zout = ⊥] = 1 − negl(λ), so TV (Zout,Z) ≥ 1 − negl(λ). Since Eq. (5) gives
us an upper bound on this TV-distance, Pr[CZ = ⊥] ≥ 1− negl(λ) as well. Since CZ = ⊥ causes
immediate rejection, then

Pr[Mout
f = ⊥] ≥ Pr[CZ = ⊥] ≥ 1− negl(λ) ≥ TV (Mout

f ,Mf (D))− negl(λ)),

so we’re done.

The second option is that Pr[Zout ̸= ⊥] = Pr[Zout = ZQ] is nonnegligible. This means that P̃ can
open CZ to the value ZQ with nonnegligible probability of success (using RevealOpening). Now
let’s move forward to the querying phase. Notice that by F -homomorphism, it is possible for P̃ to
open Cf(D) to f(D) since this is a well-formed commitment computed by V from the honest CD.

Therefore P̃ can open both Cf(D) and CZ to their respective values with nonnegligible probability,

so by additive homomorphism P̃ can open CMf (D) to f(D) + ZQ with nonnegligible probability

of success as well, so binding applies. Let pbad denote the probability that P̃ gets to this step (i.e.
the V didn’t reject in the RVCS step i.e. CZ ̸= ⊥) and makes this attempt to open to a different
value than f(S) + ZQ. Then

Mout
f

d
≈pbad-TV f(D) + ZQ. (6)

At the same time, by binding of CS, any attempt to open to a different value will get rejected with
1− negl(λ) probability, so

Pr[Mout
f = ⊥] ≥ pbad − negl(λ) + Pr[CZ = ⊥], (7)

accounting as well for the case when V rejected earlier during the RVCS step. By Eq. (5), Pr[CZ =
⊥] tells us how close f(D) + ZQ is to the desired mechanism, namely

f(D) + ZQ d
≈Pr[CZ=⊥]-TV f(D) + Z = Mf (D). (8)

By the triangle inequality then, we can combine these three equations to get the desired result:

Mout
f

d
≈pbad-TV f(D) + ZQ d

≈Pr[CZ=⊥]-TV Mf (D) =⇒ Mout
f

d
≈Pr[Mout

f =⊥]-TV Mf (D).

31

Preg Rreg...θ

Pquery Rquery

Verify(f, ·, ·, ·)→ {Q,⊥}

q

InfoQΠ

Figure 3: Diagram of the Registration Phase run on the Prover’s secret input θ and Query
Phase run on the query function q ∈ Q where the Prover and Registrar non-interactively send
proof and answer (Π,Q) and auxiliary Info, respectively, and the verification algorithm either
accepts or rejects to produce the Output.

Namely, Eq. (6) and Eq. (8) imply that

TV (Mout
f ,Mf (D)) ≤ pbad + Pr[CZ = ⊥]− negl(λ) ≤ Pr[Mout

f = ⊥]

with this final inequality following from Eq. (7).

4.4 Efficient Verification in the Public Registrar Model

Notice that in Construction 4.3, not only is the querying phase non-interactive, but before this step,
everything is hidden in commitments so the database is completely indistinguishable for the Verifier.
Further, the RVCS constructions we utilize are public-coin. Thus any specific instantiation of our
CPM construction for additive noise mechanisms can operate within a specific interactive protocol
structure we will call the “public Registrar model.” Like CPMs, this model is more generally
applicable than to only CDP, so we will use the more general Notation 3.1 for which there is a
secret input θ ∈ Θ and queries q ∈ Q.

This will allow the Verifier to offload the interactive components of the protocol to a trusted
Registrar without the Registrar taking on liability by learning anything about the database D, or
generally speaking the secret input θ—not even the DP query answers that the Verifier receives.
Further, all of the interaction between the Prover and Registrar will occur during a registration
phase before the query phase, so it can be done ahead of time. For Construction 4.3, this consists of
the commitment and randomness generation phases. Thus the querying step becomes completely
non-interactive between all parties. See Fig. 3.

Definition 4.4. An interactive protocol in the public Registrar model consists of an honest Prover
P = (Preg,Pquery), an honest public-coin Registrar R = (Rreg,Rquery), and a verification algorithm
Verify with the following structure and properties for any input θ ∈ Θ and query q ∈ Q:

• Registration: For input θ, we let ((Πθ)P , (Infoθ)R)← (Preg(θ),Rreg).

• Non-interactive querying: The query phase is non-interactive such that (Πq(θ), Qq(θ)) ←
Pquery(Πθ, q), Infoq(θ) ← Rquery(Infoθ, q), and Verify : (q, Infoq(θ),Πq(θ),Qq(θ))→ {Qq(θ),⊥}.

32

• Input indistinguishability: For any adversary R̃ , let ViewR̃ (θ) be the view of R̃ from the

protocol (P(θ), R̃)(q). Then for any inputs θ, θ′,

ViewR̃ (θ)
d
= ViewR̃ (θ

′).

Claim 4.1. Construction 4.3 can be implemented in the public Registrar model.

4.5 Insecurity of Removing Interaction via Fiat-Shamir

Given that the Registrar is public-coin, one might hope to go further and completely remove
interaction in the Random Oracle Model using Fiat-Shamir. It turns out that this is not possible
for any construction of certifiable probablistic mechanisms or DP. This is due to the fact that for
these objects randomness is used not only for probabilistic verification of deterministic statements,
but to produce probabilistic outputs. In the ROM, a cheating Prover can simply use rejection
sampling on the honest protocol in order to distort the output distribution without getting caught.

Theorem 4.5. Let CPM = (Setup,P,V) be a public-coin certifed probabilistic mechanism. Then
the Fiat-Shamir of this protocol FS-CPM is insecure in the Random Oracle Model. Specifically,
let t(n) be the amount of time it take to run the honest protocol (P(D),V)(f). Then for any integer
C and polynomial p(n), there exists P̃ running in C · p(n) · t(n) time such that

Output ̸
d
≈(1−1/C)(1−1/p(n))-TV Mf (D),

but Pr[Output = ⊥] = 0, violating cheating-Prover soundness.

Now, once again consider the classic “coin flipping in the well” problem. We can reconceptualize
this as a certified probabilistic mechanism with no private database D and a single query which
should lead to a value distributed as B1 := Binomial(1, 1/2). Suppose that the Verifier’s random
bit in this protocol is provided by a Random Oracle queried by the Prover so that the protocol
becomes non-interactive. Now consider the following attack: the Prover will simply rerun the
non-interactive protocol until the bit output at the end is 0.

There is a very similar, rejection sampling-based attack when applying Fiat-Shamir to certified
probabilistic mechanisms in general, which we will utilize to establish Theorem 4.5 shortly. To get
us started, we need a lemma first.

Lemma 4.6. Let CPM be a public-coin certified probabilistic mechanism for MQ. Let V′ be a
Verifier who sends bits when required by the protocol where each of these bits may be deterministically
or randomly selected based on previous messages, and decides whether to accept at the end of
the protocol by running the last step of V on the transcript. Let M′

q(θ) := (P(θ),V′)(q). Then

M′
q(θ)

d
= Mq(θ).

Proof. This follows from correctness and cheating-Verifier querying soundness. By cheating-Verifier
querying soundness,

Answer ̸=⊥
d
= Mq(θ).

33

Since the Verifier V′ responds with a message that is equally likely to have been sent by the honest V
in each step of the protocol, from P’s view they are indistinguishable from V. Thus by correctness,
P never sends a ⊥ message to terminate the protocol early, so Answer ̸=⊥ = Answer. Then again
by correctness, when running V for the final step, V′ will let

Output = Answer = Answer ̸=⊥
d
= Mq(θ),

as desired.

Proof of Theorem 4.5. In short, by Lemma 4.6, the malicious Prover P̃ can simply rerun the honest
Prover P until they get an output from Mq they like. This distorts the distribution proportionally

to how many tries P̃ is willing to make.

Let Ep(n) ⊆ Y such that Pr[Mq(θ) ⊆ Ep(n)] =
1

p(n) . Consider the following adversarial strategy for

P̃ : (1) Run (P(D),R)(q) C · p(n) times, generating some Answeri each time. (2) If any of these
runs have Answeri ∈ Ep(n), send this transcript to the Verifier. Else send the first transcript.

By Lemma 4.6, even if the Random Oracle makes some of the Verifier’s coins deterministic (because

there is a repeated query from a previous run), Outputi
d
= Mq(θ). Thus Outputi = Answeri

with Pr[Output = ⊥] = 0 and Pr[Outputi ⊆ Ep(n)] =
1

p(n) for each run. Thus the expected

number of attempts T before success is E[T] = p(n), so by Markov, the probability of failure with
C · p(n) attempts is ≤ 1/C. So since Pr[∃i ∈ [C · p(n)] | Outputi ⊆ Ep(n)] ≥ 1 − 1/C in which
case the output is (1− 1/p(n))-TV far from Mq(θ) (and else the output is distributed the same as
Mq(θ)), we find that

Output ̸
d
≈(1−1/C)(1−1/p(n))-TV Mq(θ),

as desired.

Thus we cannot hope to use Fiat-Shamir to make any certified randomized mechanisms or certified
DP schemes non-interactive, even though we show in Section 4.4 that specific instances of each can
be achieved in the public Registrar model.

Remark 4.5 (Insecurity of Fiat-Shamir for CDP). Again quite similarly, there is an attack against
the Fiat-Shamir of any random variable commitment scheme or certified DP protocol (whether or
not the construction is based on a certified probabilistic mechanism).

Remark 4.6 (Minimal Interaction in Our Constructions). Since we have just shown that interac-
tion is necessary, and Construction 4.3 uses only 3 rounds of interaction, it can be considered mini-
mally interactive. Specifically, in our construction all Σ-protocols can be securely Fiat-Shamired via
standard methods (see Appendix B), but the coin-flipping components of the random bit commit-
ments cannot. As remarked upon in Section 1.3, this component can be made publicly verifiable by
utilizing a single random bit from the NIST public randomness beacon per random bit commitment.

34

5 Answering Counting Queries with Certified DP

Finally, we will instantiate Construction 4.3 in order to certifiably release DP answers for an
expressive query class using the Binomial additive noise mechanism. Recall from Section 2 that
the Binomial mechanism BF [36, 4] is given by

Bf (D) = f(D) +BN −N/2

forBN ← BN and achieves (ϵ, δ)-DP for functions f with sensitivity≤ 1 whenN is sufficiently large,
along with an associated (α, β)-accuracy. As shown by [4], the Binomial mechanism achieves nearly
the same accuracy-privacy tradeoff as the Gaussian mechanism while utilizing fewer representation
bits, making it a natural choice for interactive settings.

To warm up, suppose we have data domain X = {0, 1} so that our databases consist of 0-1 bits
and that we seek to release the function class FSum = {fS | fS(D) =

∑
i∈S xi mod q} for q a large

prime. Notice that the sensitivity ∆(fS) ≤ 1. It is straightforward to support releasing functions
from FSum as long as we have a commitment scheme with additive homomorphism.

Construction 5.1. Let CS = (Setup,Commit,Verify) be an additively homomorphic commit-
ment scheme. Then CS supports FSum-homomorphism as follows:

• Let CD and ΠD consist of a list of each (Cxi ,Πxi)← Commit(xi) for xi ∈ D respectively.

• Then for a given fS ∈ FSum, fS(CD) =
⊕

i∈S Cxi and fS(ΠD) =
⊕

i∈S Πxi .

Theorem 5.1. If CS is a commitment scheme for Z/qZ with additive homomorphism, then there
exists a certified probabilistic mechanism for BFSum

. In the CPM, at query time the Prover and
Verifier each make |S| homomorphic additions and the Verifier checks 1 commitment opening. By
Theorem 3.5, this is also a certified (α, β)-accurate (ϵ, δ)-DP scheme for FSum.

Proof sketch. This is achieved by instantiating Construction 4.3 for additive noise mechanisms with
Construction 5.1 for FSum and Construction 4.2 for BN and applying Theorem 4.4.

The function class FSum is somewhat artificial. More typically in DP settings, what are called
“counting queries” are the primary interest. Instead of having a single bit associated with each
individual and simply summing these, there is a vector associated with each individual which is
then fed into a predicate that assigns the individual to 0 or 1. Formally,

Definition 5.1. Let D ∈ (Xd)∗ be a database with data domain X = {0, 1} and xi ∈ Xd the ith
member of the DB. Let f : Xd → {0, 1} be a predicate on these xi. Then the counting query for f
is defined as

f(D) =

n∑
i=1

f(xi).

Then the class of counting queries with arbitrary predicates expressed as multilinear polynomials
is defined as follows.

35

Definition 5.2. Let xi,j denote the jth bit in xi ∈ Xd. Let S ⊆ [d] and define the monomial
mi,S = Πj∈Sxi,j . Then

FCount =

{
n∑

i=1

aS ·mi,S

∣∣∣ aS ∈ Z/qZ

}
.

For a given f ∈ FCount, let Mf denote the set of monomials with nonzero aS in f and sf = |Mf |
denote the sparsity of f .

Note that the sensitivity of these counting queries is 1, as before. As argued in [17], this kind
of query is a powerful primitive that captures a wide range of natural data analysis tasks in DP
settings.

We can extend our previous construction for certified DP to support this function class FCount

as long as 2d is not too large. As pointed out in [26], it is simple to homomorphically support
“linearizable” functions, i.e. functions which can be expressed as linear functions of a small set of
precomputed values. The immediate implementation of this is to commit to each monomial mi,S ,
but given the form of Definition 5.2, by linearity it suffices to only commit to each monomial sum
mS =

∑
i∈[n]mi,S since for a given predicate each term in the sum only needs to be multiplied by

the same public constant aS .

Construction 5.2. Let CS = (Setup,Commit,Verify) be an additively homomorphic commit-
ment scheme. Then CS supports FCount-homomorphism as follows:

• Let CD and similarly ΠD consist of each CmS =
⊕

i∈[n]Cmi,S and ΠmS =
⊕

i∈[n]Πmi,S

respectively for S ⊆ [d].

• Then for a given f ∈ FCount,

Cf(D) =
⊕
S∈Mf

(aS ⊗CmS) and Πf(D) =
⊕
S∈Mf

(aS ⊗ΠmS) .

Theorem 5.2 (restated Theorem 3). If CS is a commitment scheme for Z/qZ with additive
homomorphism, then there exists a certified probabilistic mechanism for BFCount

based on CS.
In the CPM, at query time the Prover and Verifier each make sparsity sf homomorphic additions
and multiplications and the Verifier checks 1 commitment opening. By Theorem 3.5, this is also a
certified (α, β)-accurate (ϵ, δ)-DP scheme for FCount.

Proof sketch. This is achieved by instantiating Construction 4.3 for additive noise mechanisms with
Construction 5.2 for FCount and Construction 4.2 for BN and applying Theorem 4.4.

See Appendix A for how to support a potentially dishonest commitment phase.10

10Also note that commitments can be concisely summarized using a vector commitment [25] to succinctly store
each monomial commitment CmS . Then when certain monomial sums are requested, the vector commitment can be
opened to just these in particular. For our purposes, we would need the typical requirements of position-binding,
succinctness, and efficient openings. Perhaps the most practical construction is to simply use a Merkle tree.

36

rounds P #Commit V #Verify P #⊕ & #⊗ V #⊕ & #⊗
Commitment 1 |M | ≤ 2d 0 0 0

Random Bit
Generation

3 3 per bit 2 per bit
2 per bit &
2 per bit

3 per bit &
3 per bit

Randomness
N -Addition

0 0 0 N − 1 & 0 N − 1 & 0

Querying 1 0 1 sf & sf sf & sf

Table 1: The number of rounds of interaction, commitments or verifications, and homomorphic
additions and multiplications the Prover and the Verifier will have to do in each phase to carry out
honest-commitment Certified DP for BFcount .

Complexity Analysis. In Table 1 above, we break down the number of rounds of interaction,
commitment creations or verifications, and homomorphic additions and multiplications the Prover
and the Verifier will have to do in each phase to carry out verifiable DP for BFcount . We let M
denote the number of distinct monomials utilized by any of query predicates f and let sf denote
the number of monomials in the predicate, i.e. the sparcity of f . As discussed in Appendix A, a
dishonest commitment phase ultimately involves n ·M ≤ n ·2d Σ-protocols which can be performed
in parallel to support all of Fcount. We expose the constants involved to make clear the practicality of
this scheme. Recall that N = 8 log(2/δ)/ϵ2 suffices. Typically ϵ is a constant ≤ 1 and δ is negligible
in the size of the database. For instance, if ϵ = 1 and δ = 1/nlog(n), then N = 8(log2(n) + 1).11

In the Public Registrar Model. Suppose that a Verifier wants to query a number of databases
managed by different Provers, and engages the services of a public Registrar to help manage these
interactions for them. To accomplish this, we will have the phases of the certified DP scheme
proceed as follows:

• Commitment Phase: The Prover sends the Registrar the |M | ⊆ 2d monomial sum commit-
ments so the Registrar can hold them for the Verifier(s). The Registrar can also take on
performing the n ·M parallel Σ-protocols needed to check potentially dishonest monomial
commitments. Utilization of the Registrar also means this only needs to be done once overall.

• Randomness Generation Phase: The Registrar produces the random bit commitments with
the Prover in parallel.

• Querying Phase: The Registrar computes Cf(D), adds on the Binomial commitment to pro-
duce Cf(D)+BN−N/2, and sends the Verifier the result. The Prover sends the Verifier the
opening value f(D) + BN − N/2 and proof Πf(D)+BN−N/2 as before. Then the Verifier
themselves only needs to run a single Verify on these values.

In Table 1, the Registrar has taken on all of the Verifier’s work except for a single Verify. For
Pedersen commitments, this consists of two group exponentiations and one group multiplication,
making the Verifier exceptionally lightweight.

11Note that this discussion is with respect to a per-query privacy budget of ϵ to make replicability and comparison
easier, since composition will depend on the exact number and style of queries.

37

From a Public Registrar To Public Verifiability. It is also possible to instantiate the Reg-
istrar so that their computations can be double-checked by any Verifier. In particular, the com-
mitment phase consists only of Σ-protocols which can be made non-interactive with Fiat-Shamir.
During randomness generation, the Σ-protocol component can also be Fiat-Shamired, but the Reg-
istrar’s coin-flipping-in-the-well bit must be interactively provided after the Prover’s first message
(as shown in Section 4.5). This single public coin for each random bit commitment could be selected
according to the NIST public randomness beacon [60], so that a Verifier who was not involved in the
interaction can be convinced that it was selected after the Prover’s commitment (using standard
security timestamping techniques). Of course, this requires that the Verifiers trust the NIST public
randomness beacon, or whichever alternate source of public random bits is utilized. At query-time,
a Verifier can compute the Registrar’s homomorphic operations using the commitments from the
first two phases.

In general, since a Registrar R = (Rreg,Rquery) is public-coin, a public source of trusted randomness
can always be utilized to make the registration phase publicly verifiable. Since the Registrar’s view
maintains perfect input indistinguishability, publicly publishing the messages from registration,
including the Registrar’s private output Infoθ, doesn’t leak any privacy. Then in order to process
a query q, a Verifier can run Rquery(Infoθ, q) for themselves.

38

6 Implementation of Certified DP with Pedersen Commitments

In order to ascertain the practically of this scheme and determine how our complexity analysis trans-
lates to concrete runtimes in practice, as well as directly compare to prior work, we implemented
our certified Binomial mechanism to answer the following evaluation questions.

Evaluation Questions.

1. How does our implementation compare with prior work?

2. How does the runtime of each phase scale as you vary database size n and data dimension d?

3. How do these runtimes scale as you vary the per-query privacy budget ϵ?

4. How does query polynomial sparsity sf impact query time?

5. How does our implementation perform in a Census-based real-world use case?

We implemented the certified Binomial mechanism in 1,479 lines of Rust, backed by curve25519-
dalek, which implements Pedersen commitments over the prime-order Ristretto group [52]. We im-
plemented Σ-protocols based on Appendix B. The Prover generates n random d-dimension database
entries, which the Verifer queries by generating sf random non-zero coefficients for some sf ≤ 2d,
the total number of possible monomials. We set δ = 1/nlog(n), although this can be overridden.
Maximum monomial degree k ≤ d can also be set for efficiency. We executed the parties as sepa-
rate processes on a 2.7 GHz Quad-core Intel Core i7 with 16 GB RAM, communicating by TCP
socket. We note that many of the protocols are easily parallelizable; as a result, we run each par-
ticipant in a single thread and report single core performance. Our implementation is available at
https://github.com/jlwatson/certified-dp.

Note that while the goal is to account for the total amount of work needed to carry out the
protocol, our use of a single core here is exceedingly pessimistic in terms of runtime, and any real-
world deployment should take advantage of parallelism. Since the Prover commits to monomials
independently for each entry in the database, processing database elements in parallel across many
cores would be straightforward and could significantly help end-to-end performance. Excepting
coordination to gather the results of each core’s computation and transmit them over the network,
each core could commit to entries of a subset of the database as fast as our single core does in the
evaluation. Further, each random bit commitment can also be performed in parallel.

Comparison to Prior Work. We compare to [15] in the case of performing single-dimension
“counting” queries12 over a large database (n = 106) of bits d = 1 with strict DP parameters
ϵ = 0.095, δ = 10−10. Table 2 compares the runtime for six different groups of operations: Verifier
dishonest commitment, Prover randomness generation, Verifer randomness generation, generating
and aggregating (⊕) n coin flips, Prover coin flip and query aggegation, and Verifier query verifica-
tion. [15]’s estimates are based on microbenchmarking individual operation counts (e.g. expected

12[15] only supports simple summation over a database of single bits, with no predicate.

39

https://github.com/jlwatson/certified-dp

V-Dishonest P-Rand. V-Rand. Rand. Rand. n-⊕ & Query
Comm. (s) Gen. (s) Gen. (s) n-⊕ (s) Querying-⊕ (ms) Verify (ms)

[15] 169 53 45 33 79 189

CDP 156 4.0 5.0 0.15 7.5 0.037

Table 2: Comparative benchmark for single-dimension counting queries over a database of size
n = 106, d = 1, and parameters ϵ = 0.095, δ = 10−10.

number of group exponentiations) rather than implementing the full protocol as we have done, but
we have matched the measured operation groups as closely as possible to provide a fair compari-
son. While the dishonest commitment runtime remains similar, as we also performs a Σ-protocol
for each bit in the database, both Prover and Verifier randomness generation is significantly faster
(13× and 9×, respectively). Similarly, performing and aggregating the n coin flips requires only
150 ms compared to 33 seconds previously on the Verifier, and coin flips and query aggregation on
the Prover take 7.5 ms compared to 79 ms previously. Most importantly, query verification in our
CDP prototype is orders of magnitude quicker, requiring only 37 µs.

Database Size and Dimension. We evaluate the impact of database size n and dimension
d on each phase’s runtime in Fig. 4(a) and (b), respectively. Commitment time scales linearly
with n and exponentially with d. In (a), holding d = 7 constant, the dishonest commitment
phase grows from 38 s when n = 1024 to 619 s when n = 16384 (i.e., a ∼ 16× increase in each
parameter). Our measured honest commitment time is essentially constant (appx. 6 ms) across
database sizes because the operations that scale linearly in n are in plaintext and overshadowed
by the 2d commitment operations. Through δ, the randomness generation runtime scales with
log2 n, from 320 ms to 680 ms from n = 1024 to 16384, remaining very efficient compared to
the commitment. In (b), we indeed see that both honest and dishonest commitment time scales
exponentially with dimension. With n = 1024, increasing the dimension from d = 7 to 14 bits
increases the runtime from 39 s to 5616 s. In practice, our prototype can reduce overall commitment
time by setting a maximum degree k to support only k-wise marginals of the data. Finally, no matter
n or d, the query phase remains constant, and runs exceptionally quickly (350 µs on average),
compared to the expensive one-time commitment phase.

Privacy Budget. In Fig. 4(c), we evaluate system performance as our per-query privacy budget
ϵ varies, measuring the runtime of each phase on a database of n = 1024 with d = 7 and sf = 7.
Regardless of the ϵ chosen, the honest and dishonest commitment phases remain constant, requiring
about 6 ms and 39 s, respectively; similarly, queries require only 300 µs across choices of privacy
parameters. The randomness generation phase scales as expected with 1/ϵ2: with an ϵ = 10 budget
similar to those used in practice, randomness generation requires 5 ms, while a more theoretically
stringent choice of ϵ = 1 requires 338 ms. Finally, a very strong ϵ = 0.1 incurs a 39 s runtime.

Query Polynomial Sparsity. Fig. 4(d) evaluates the impact of query sparsity on the Verifier’s
query time, tracking the runtime of homomorphic operations on commitments and commitment
verifications on a database of size n = 1024, d = 7, with ϵ = 1. As expected, homomorphic

40

Figure 4: Experimental performance for commitment, randomness generation, and query phases,
varying size n, dimension d, privacy budget ϵ, and sparsity sf . Note that (a), (b), and (c) utilize a
log scale so that the times for all phases are visible on the same axes.

computation scales linearly with query sparsity, while verification remains constant regardless of
query size (or any others except the security parameter, λ). Even with maximum sparsity of
27 − 1 = 127, the query phase requires only 3.3 ms, of which about 3.29 ms is homomorphic
computation. The Pedersen commitment verification requires only 61 µs for the Verifier to
compute; with a public Registrar, this is the only computation required of the Verifier, as the
Registrar performs the homomorphic computation in parallel to the Prover.

Querying a Census PUMS dataset. To evaluate our prototype on a real-world use case, we
downloaded a 7000-entry PUMS census dataset [23] containing anonymized age, sex, income, and
education data and compressed each field into a d = 37 bit database entry on which to perform
queries. The dimension value represents the bits of database entry information that we generate
monomials over, and thus allow the client to query. For this database, there can be many fields
per anonymized record (see [23]). Since we do not want to query all fields in this case, and thus
generating monomials for them would be wasted work, we select 37 bits representing the fields we
are interested in: ‘age’ (7 bits), ‘sex’ (1 bit), ‘income’ (23 bits), and ‘education’ (6 bits) and then
run queries across those. Note however that the choice of data encoding is quite flexible and the
data needn’t be put into this bitwise representation that we’ve used for concreteness. An interesting

41

area for future work would be considering a tailored data representation that targets a specific set
of expected queries.

We set a maximum predicate degree of 6, enough to operate over the high-order income bits of each
database entry, and generated a 63-sparse predicate query to count how many dataset individuals
reported income in excess of $262,144. We performed an honest commitment with the Prover,
requiring 136 s, completed a randomness generation phase in ∼494 ms for ϵ = 1, and queried
in 1.9 ms. Of that, 1.6 ms consisted of homomorphic computation while verification required
only 38 µs. As such, functionality (useful queries over higher-dimension data) can be balanced
with efficiency (pruning the scope of supported predicates). Our Census querying experiment is
implemented in a separate branch, accessible at https://github.com/jlwatson/certified-dp/
tree/census.

42

https://github.com/jlwatson/certified-dp/tree/census
https://github.com/jlwatson/certified-dp/tree/census

Acknowledgments

This material is based upon work supported by DARPA-ORACLEs Grant contract #HR001120C0015,
the Simons Collaboration on The Theory of Algorithmic Fairness, and the National Science Foun-
dation Graduate Research Fellowship Program under Grant No. DGE 2146752. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation The authors thank
Aleksandra Korolova and Raluca Ada Popa for helpful discussions, as well as several reviewers for
their feedback.

References

[1] Differential privacy. Tech. rep., Apple, Inc., https://www.apple.com/privacy/docs/

Differential_Privacy_Overview.pdf

[2] United states v. meta platforms, inc., f/k/a facebook, inc. (s.d.n.y.) (2023), https://www.
justice.gov/crt/case/united-states-v-meta-platforms-inc-fka-facebook-inc-sdny

[3] Agarwal, A., Beygelzimer, A., Dud́ık, M., Langford, J., Wallach, H.: A reductions approach to
fair classification. In: International conference on machine learning. pp. 60–69. PMLR (2018)

[4] Agarwal, N., Suresh, A.T., Yu, F., Kumar, S., McMahan, H.B.: Cpsgd: Communication-
efficient and differentially-private distributed sgd. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems. p. 7575–7586. NIPS’18, Curran Asso-
ciates Inc., Red Hook, NY, USA (2018)

[5] Agarwal, S., Deshpande, A.: On the power of randomization in fair classification and rep-
resentation. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and
Transparency. pp. 1542–1551 (2022)

[6] Albarghouthi, A., Hsu, J.: Synthesizing coupling proofs of differential privacy. Proc. ACM
Program. Lang. 2(POPL), 58:1–58:30 (2018). https://doi.org/10.1145/3158146, https://doi.
org/10.1145/3158146

[7] Albrecht, M.R., Cini, V., Lai, R.W.F., Malavolta, G., Thyagarajan, S.A.K.: Lattice-based
snarks: Publicly verifiable, preprocessing, and recursively composable - (extended abstract).
In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology - CRYPTO 2022 - 42nd An-
nual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, Au-
gust 15-18, 2022, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13508, pp.
102–132. Springer (2022). https://doi.org/10.1007/978-3-031-15979-4 4, https://doi.org/

10.1007/978-3-031-15979-4_4

[8] Bamberger, K.A., Canetti, R., Goldwasser, S., Wexler, R., Zimmerman, E.J.: Verification
dilemmas in law and the promise of zero-knowledge proofs. Berkeley Tech. LJ 37, 1 (2022)

[9] Barthe, G., Chadha, R., Krogmeier, P., Sistla, A.P., Viswanathan, M.: Deciding accu-
racy of differential privacy schemes. Proc. ACM Program. Lang. 5(POPL), 1–30 (2021).
https://doi.org/10.1145/3434289, https://doi.org/10.1145/3434289

43

https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://www.justice.gov/crt/case/united-states-v-meta-platforms-inc-fka-facebook-inc-sdny
https://www.justice.gov/crt/case/united-states-v-meta-platforms-inc-fka-facebook-inc-sdny
https://doi.org/10.1145/3158146
https://doi.org/10.1145/3158146
https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1145/3434289

[10] Barthe, G., Gaboardi, M., Arias, E.J.G., Hsu, J., Roth, A., Strub, P.: Higher-order ap-
proximate relational refinement types for mechanism design and differential privacy. In: Ra-
jamani, S.K., Walker, D. (eds.) Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, Jan-
uary 15-17, 2015. pp. 55–68. ACM (2015). https://doi.org/10.1145/2676726.2677000, https:
//doi.org/10.1145/2676726.2677000

[11] Baum, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient constant-round MPC with iden-
tifiable abort and public verifiability. In: Micciancio, D., Ristenpart, T. (eds.) Advances in
Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 12171, pp. 562–592. Springer (2020). https://doi.org/10.1007/978-3-
030-56880-1 20, https://doi.org/10.1007/978-3-030-56880-1_20

[12] Benarroch, D., Campanelli, M., Fiore, D., Kim, J., Lee, J., Oh, H., Querol, A.: Proposal:
commit-and-prove zero-knowledge proof systems and extensions. In: 4th ZKProof Workshop
(2021)

[13] Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the dangers of stochastic
parrots: Can language models be too big? In: Proceedings of the 2021 ACM conference on
fairness, accountability, and transparency. pp. 610–623 (2021)

[14] Berghel, S., Bohannon, P., Desfontaines, D., Estes, C., Haney, S., Hartman, L., Hay, M.,
Machanavajjhala, A., Magerlein, T., Miklau, G., Pai, A., Sexton, W., Shrestha, R.: Tumult
analytics: a robust, easy-to-use, scalable, and expressive framework for differential privacy.
CoRR abs/2212.04133 (2022). https://doi.org/10.48550/ARXIV.2212.04133, https://doi.
org/10.48550/arXiv.2212.04133

[15] Biswas, A., Cormode, G.: Interactive proofs for differentially private counting. In: Meng, W.,
Jensen, C.D., Cremers, C., Kirda, E. (eds.) Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2023, Copenhagen, Denmark, November
26-30, 2023. pp. 1919–1933. ACM (2023). https://doi.org/10.1145/3576915.3616681, https:
//doi.org/10.1145/3576915.3616681

[16] Bitan, D., Canetti, R., Goldwasser, S., Wexler, R.: Using zero-knowledge to reconcile law
enforcement secrecy and fair trial rights in criminal cases. Proceedings of the 2022 Symposium
on Computer Science and Law (CSLAW ’22), November 1–2, 2022, Washington, DC, USA
(2022)

[17] Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: The sulq framework. In:
Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems. p. 128–138. PODS ’05, Association for Computing Machinery,
New York, NY, USA (2005). https://doi.org/10.1145/1065167.1065184, https://doi.org/

10.1145/1065167.1065184

[18] Blum, M.: Coin flipping by telephone a protocol for solving impossible problems. SIGACT
News 15(1), 23–27 (jan 1983). https://doi.org/10.1145/1008908.1008911, https://doi.org/
10.1145/1008908.1008911

44

https://doi.org/10.1145/2676726.2677000
https://doi.org/10.1145/2676726.2677000
https://doi.org/10.1007/978-3-030-56880-1_20
https://doi.org/10.48550/arXiv.2212.04133
https://doi.org/10.48550/arXiv.2212.04133
https://doi.org/10.1145/3576915.3616681
https://doi.org/10.1145/3576915.3616681
https://doi.org/10.1145/1065167.1065184
https://doi.org/10.1145/1065167.1065184
https://doi.org/10.1145/1008908.1008911
https://doi.org/10.1145/1008908.1008911

[19] Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted
data. Cryptology ePrint Archive (2014)

[20] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. Advances in
neural information processing systems 33, 1877–1901 (2020)

[21] Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee,
Y.T., Li, Y., Lundberg, S., et al.: Sparks of artificial general intelligence: Early experiments
with gpt-4. arXiv preprint arXiv:2303.12712 (2023)

[22] Bureau, P.R., the U.S. Census Bureau’s 2020 Census Data Products, Team, D.: Why the
census bureau chose differential privacy. Tech. rep., US Census Bureau (2023), https://www.
census.gov/library/publications/2023/decennial/c2020br-03.html

[23] Bureau, U.: Public use microdata sample (pums). Suitland, MD: The United States Census
Bureau. Available online at: https://www. census. gov/programs-surveys/acs/microdata. html
(accessed June 24, 2021) (2021)

[24] Canonne, C.L., Kamath, G., Steinke, T.: Discrete gaussian for differential privacy. J.
Priv. Confidentiality 12(1) (2022). https://doi.org/10.29012/JPC.784, https://doi.org/10.
29012/jpc.784

[25] Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K.,
Hanaoka, G. (eds.) Public-Key Cryptography. vol. 7778. Springer (2013), https://doi.org/
10.1007/978-3-642-36362-7_5

[26] Catalano, D., Fiore, D., Tucker, I.: Additive-homomorphic functional commitments and
applications to homomorphic signatures. In: Agrawal, S., Lin, D. (eds.) Advances in
Cryptology - ASIACRYPT 2022 - 28th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Taipei, Taiwan, December 5-9, 2022,
Proceedings, Part IV. Lecture Notes in Computer Science, vol. 13794, pp. 159–188.
Springer (2022). https://doi.org/10.1007/978-3-031-22972-5 6, https://doi.org/10.1007/

978-3-031-22972-5_6

[27] Chang, I., Sotiraki, K., Chen, W., Kantarcioglu, M., Popa, R.: HOLMES: Efficient distribution
testing for secure collaborative learning. In: 32nd USENIX Security Symposium (USENIX
Security 23). pp. 4823–4840. USENIX Association, Anaheim, CA (Aug 2023), https://www.
usenix.org/conference/usenixsecurity23/presentation/chang

[28] Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approxi-
mate numbers. In: Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference
on the Theory and Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I 23. pp. 409–437. Springer (2017)

[29] Cheu, A.: Differential privacy in the shuffle model: A survey of separations. arXiv preprint
arXiv:2107.11839 (2021)

45

https://www.census.gov/library/publications/2023/decennial/c2020br-03.html
https://www.census.gov/library/publications/2023/decennial/c2020br-03.html
https://doi.org/10.29012/jpc.784
https://doi.org/10.29012/jpc.784
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-031-22972-5_6
https://doi.org/10.1007/978-3-031-22972-5_6
https://www.usenix.org/conference/usenixsecurity23/presentation/chang
https://www.usenix.org/conference/usenixsecurity23/presentation/chang

[30] Chiesa, A., Gur, T.: Proofs of proximity for distribution testing. In: 9th Innovations in The-
oretical Computer Science Conference (ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2018)

[31] Cohen, J., Rosenfeld, E., Kolter, Z.: Certified adversarial robustness via randomized smooth-
ing. In: international conference on machine learning. pp. 1310–1320. PMLR (2019)

[32] Cramer, R., Damgard, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design
of witness hiding protocols. In: Desmedt, Y.G. (ed.) Advances in Cryptology — CRYPTO ’94.
pp. 174–187. Springer Berlin Heidelberg, Berlin, Heidelberg (1994)

[33] Desfontaines, D.: A list of real-world uses of differential privacy. https://desfontain.es/
privacy/real-world-differential-privacy.html (10 2021), ted is writing things (personal
blog)

[34] Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

[35] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In:
Proceedings of the 3rd innovations in theoretical computer science conference. pp. 214–226
(2012)

[36] Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: Pri-
vacy via distributed noise generation. In: Vaudenay, S. (ed.) Advances in Cryptology - EU-
ROCRYPT 2006. pp. 486–503. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

[37] Dwork, C., Kohli, N., Mulligan, D.: Differential privacy in practice: Expose your epsilons!
Journal of Privacy and Confidentiality 9(2) (2019)

[38] Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private
data analysis. In: Theory of Cryptography: Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006. Proceedings 3. pp. 265–284. Springer (2006)

[39] Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private
data analysis. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography. pp. 265–284. Springer
Berlin Heidelberg, Berlin, Heidelberg (2006)

[40] Dwork, C., Rothblum, G.N., Vadhan, S.: Boosting and differential privacy. In: 2010 IEEE
51st Annual Symposium on Foundations of Computer Science. pp. 51–60. IEEE (2010)

[41] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: Pro-
ceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing. p.
416–426. STOC ’90, Association for Computing Machinery, New York, NY, USA (1990).
https://doi.org/10.1145/100216.100272, https://doi.org/10.1145/100216.100272

[42] Fredrikson, M., Jha, S.: Satisfiability modulo counting: a new approach for analyz-
ing privacy properties. In: Henzinger, T.A., Miller, D. (eds.) Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the
Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014. pp. 42:1–42:10. ACM (2014).
https://doi.org/10.1145/2603088.2603097, https://doi.org/10.1145/2603088.2603097

46

https://desfontain.es/privacy/real-world-differential-privacy.html
https://desfontain.es/privacy/real-world-differential-privacy.html
https://doi.org/10.1145/100216.100272
https://doi.org/10.1145/2603088.2603097

[43] Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent types for
differential privacy. In: Giacobazzi, R., Cousot, R. (eds.) The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy -
January 23 - 25, 2013. pp. 357–370. ACM (2013). https://doi.org/10.1145/2429069.2429113,
https://doi.org/10.1145/2429069.2429113

[44] Gaboardi, M., Nissim, K., Purser, D.: The complexity of verifying loop-free programs as differ-
entially private. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium
on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken,
Germany (Virtual Conference). LIPIcs, vol. 168, pp. 129:1–129:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020). https://doi.org/10.4230/LIPICS.ICALP.2020.129, https://
doi.org/10.4230/LIPIcs.ICALP.2020.129

[45] Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple bgn-type cryptosystem from lwe. In:
Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT 2010. pp. 506–522. Springer Berlin
Heidelberg, Berlin, Heidelberg (2010)

[46] Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Cryp-
tonets: Applying neural networks to encrypted data with high throughput and accuracy. In:
International conference on machine learning. pp. 201–210. PMLR (2016)

[47] Gilbert, A.C., McMillan, A.: Property testing for differential privacy. In: 56th
Annual Allerton Conference on Communication, Control, and Computing, Aller-
ton 2018, Monticello, IL, USA, October 2-5, 2018. pp. 249–258. IEEE (2018).
https://doi.org/10.1109/ALLERTON.2018.8636068, https://doi.org/10.1109/ALLERTON.

2018.8636068

[48] Goldwasser, S., Kim, M.P., Vaikuntanathan, V., Zamir, O.: Planting undetectable backdoors
in machine learning models. In: 2022 IEEE 63rd Annual Symposium on Foundations of Com-
puter Science (FOCS). pp. 931–942. IEEE (2022)

[49] Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping
secret all partial information. In: Proceedings of the Fourteenth Annual ACM Symposium
on Theory of Computing. p. 365–377. STOC ’82, Association for Computing Machinery, New
York, NY, USA (1982). https://doi.org/10.1145/800070.802212, https://doi.org/10.1145/
800070.802212

[50] Goldwasser, S., Rothblum, G.N., Shafer, J., Yehudayoff, A.: Interactive proofs for verifying
machine learning. In: 12th Innovations in Theoretical Computer Science Conference (ITCS
2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

[51] Google: Differential privacy, https://github.com/google/differential-privacy

[52] Hamburg, M., de Valence, H., Lovecruft, I., Arcieri, T.: The ristretto group. https:

//ristretto.group/ristretto.html

[53] Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. Advances in
neural information processing systems 29 (2016)

47

https://doi.org/10.1145/2429069.2429113
https://doi.org/10.4230/LIPIcs.ICALP.2020.129
https://doi.org/10.4230/LIPIcs.ICALP.2020.129
https://doi.org/10.1109/ALLERTON.2018.8636068
https://doi.org/10.1109/ALLERTON.2018.8636068
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/800070.802212
https://github.com/google/differential-privacy
https://ristretto.group/ristretto.html
https://ristretto.group/ristretto.html

[54] Hébert-Johnson, U., Kim, M., Reingold, O., Rothblum, G.: Multicalibration: Calibration for
the (computationally-identifiable) masses. In: International Conference on Machine Learning.
pp. 1939–1948. PMLR (2018)

[55] Herman, T., Rothblum, G.: Doubley-efficient interactive proofs for distribution properties.
In: 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS). pp.
743–751. IEEE (2023)

[56] Herman, T., Rothblum, G.N.: Verifying the unseen: interactive proofs for label-invariant
distribution properties. In: Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing. pp. 1208–1219 (2022)

[57] Impagliazzo, R., Lei, R., Pitassi, T., Sorrell, J.: Reproducibility in learning. In: Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing. pp. 818–831 (2022)

[58] Johnson, N.M., Near, J.P., Hellerstein, J.M., Song, D.: Chorus: a programming frame-
work for building scalable differential privacy mechanisms. In: IEEE European Symposium
on Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020. pp. 535–
551. IEEE (2020). https://doi.org/10.1109/EUROSP48549.2020.00041, https://doi.org/

10.1109/EuroSP48549.2020.00041

[59] Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we
learn privately? In: 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
pp. 531–540 (2008). https://doi.org/10.1109/FOCS.2008.27

[60] Kelsey, J.: The new randomness beacon format standard: An exercise in limiting the power of
a trusted third party. In: Cremers, C., Lehmann, A. (eds.) Security Standardisation Research.
pp. 164–184. Springer International Publishing, Cham (2018)

[61] Lee, J.W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E., Lee, J., Yoo, D., Kim,
Y.S., et al.: Privacy-preserving machine learning with fully homomorphic encryption for deep
neural network. IEEE Access 10, 30039–30054 (2022)

[62] Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: From polyno-
mial commitments to pairing-based accumulators from simple assumptions. In: Chatzi-
giannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) 43rd International Col-
loquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2016). https://doi.org/10.4230/LIPICS.ICALP.2016.30, https://doi.org/10.4230/
LIPIcs.ICALP.2016.30

[63] Lipmaa, H., Pavlyk, K.: Succinct functional commitment for a large class of arithmetic cir-
cuits. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology - ASIACRYPT 2020 - 26th
International Conference on the Theory and Application of Cryptology and Information Se-
curity, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part III. Lecture Notes in
Computer Science, vol. 12493, pp. 686–716. Springer (2020). https://doi.org/10.1007/978-3-
030-64840-4 23, https://doi.org/10.1007/978-3-030-64840-4_23

48

https://doi.org/10.1109/EuroSP48549.2020.00041
https://doi.org/10.1109/EuroSP48549.2020.00041
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.1007/978-3-030-64840-4_23

[64] Maurer, U.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.) Progress in
Cryptology – AFRICACRYPT 2009. pp. 272–286. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2009)

[65] Mutreja, S., Shafer, J.: Pac verification of statistical algorithms. In: Neu, G., Rosasco, L.
(eds.) Proceedings of Thirty Sixth Conference on Learning Theory. Proceedings of Machine
Learning Research, vol. 195, pp. 5021–5043. PMLR (12–15 Jul 2023), https://proceedings.
mlr.press/v195/mutreja23a.html

[66] Narayan, A., Feldman, A., Papadimitriou, A., Haeberlen, A.: Verifiable differential privacy.
In: Réveillère, L., Harris, T., Herlihy, M. (eds.) Proceedings of the Tenth European Confer-
ence on Computer Systems, EuroSys 2015, Bordeaux, France, April 21-24, 2015. pp. 28:1–
28:14. ACM (2015). https://doi.org/10.1145/2741948.2741978, https://doi.org/10.1145/
2741948.2741978

[67] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In:
Feigenbaum, J. (ed.) Advances in Cryptology — CRYPTO ’91. pp. 129–140. Springer Berlin
Heidelberg, Berlin, Heidelberg (1992)

[68] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models
are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

[69] Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses against adversarial examples.
In: International Conference on Learning Representations (2018)

[70] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., Sutskever, I.:
Zero-shot text-to-image generation. In: International Conference on Machine Learning. pp.
8821–8831. PMLR (2021)

[71] Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with trans-
formation and encryption. In: Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of Data. p. 735–746. SIGMOD ’10, Association for Computing
Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1807167.1807247, https:
//doi.org/10.1145/1807167.1807247

[72] Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differential
privacy. In: Hudak, P., Weirich, S. (eds.) Proceeding of the 15th ACM SIGPLAN international
conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA, September
27-29, 2010. pp. 157–168. ACM (2010). https://doi.org/10.1145/1863543.1863568, https://
doi.org/10.1145/1863543.1863568

[73] Rubinfeld, R., Vasilyan, A.: Testing distributional assumptions of learning algorithms. In:
Proceedings of the 55th Annual ACM Symposium on Theory of Computing. pp. 1643–1656
(2023)

[74] Ruggles, S., Fitch, C., Magnuson, D., Schroeder, J.: Differential privacy and census data:
Implications for social and economic research. In: AEA papers and proceedings. vol. 109,
pp. 403–408. American Economic Association 2014 Broadway, Suite 305, Nashville, TN 37203
(2019)

49

https://proceedings.mlr.press/v195/mutreja23a.html
https://proceedings.mlr.press/v195/mutreja23a.html
https://doi.org/10.1145/2741948.2741978
https://doi.org/10.1145/2741948.2741978
https://doi.org/10.1145/1807167.1807247
https://doi.org/10.1145/1807167.1807247
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568

[75] Shi, E., Chan, T.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggrega-
tion of time-series data. In: Proceedings of the Network and Distributed System Secu-
rity Symposium, NDSS 2011, San Diego, California, USA, 6th February - 9th Febru-
ary 2011. The Internet Society (2011), https://www.ndss-symposium.org/ndss2011/

privacy-preserving-aggregation-of-time-series-data

[76] Steinke, T., Nasr, M., Jagielski, M.: Privacy auditing with one (1) training run. NeurIPS
(2023)

[77] Tang, J., Korolova, A., Bai, X., Wang, X., Wang, X.: Privacy loss in apple’s implementation
of differential privacy on macos 10.12. arXiv:1709.02753 (2017)

[78] Thaler, J.: Proofs, arguments, and zero-knowledge. Found. Trends Priv. Secur. 4(2-4), 117–660
(2022). https://doi.org/10.1561/3300000030, https://doi.org/10.1561/3300000030

[79] Vadhan, S.P.: The complexity of differential privacy. In: Lindell, Y. (ed.) Tuto-
rials on the Foundations of Cryptography, pp. 347–450. Springer International Pub-
lishing (2017). https://doi.org/10.1007/978-3-319-57048-8 7, https://doi.org/10.1007/

978-3-319-57048-8_7

[80] Wilson, R.J., Zhang, C.Y., Lam, W., Desfontaines, D., Simmons-Marengo, D., Gipson, B.:
Differentially private SQL with bounded user contribution. Proc. Priv. Enhancing Technol.
2020(2), 230–250 (2020). https://doi.org/10.2478/POPETS-2020-0025, https://doi.org/

10.2478/popets-2020-0025

[81] Wu, J., Chen, Y., Liu, Y.: Metric-fair classifier derandomization. In: International Conference
on Machine Learning. pp. 23999–24016. PMLR (2022)

[82] Zhang, D., Kifer, D.: Lightdp: towards automating differential privacy proofs. In: Castagna,
G., Gordon, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017. pp. 888–
901. ACM (2017). https://doi.org/10.1145/3009837.3009884, https://doi.org/10.1145/

3009837.3009884

[83] Zou, A., Wang, Z., Kolter, J.Z., Fredrikson, M.: Universal and transferable adversarial attacks
on aligned language models. arXiv preprint arXiv:2307.15043 (2023)

50

https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data
https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data
https://doi.org/10.1561/3300000030
https://doi.org/10.1007/978-3-319-57048-8_7
https://doi.org/10.1007/978-3-319-57048-8_7
https://doi.org/10.2478/popets-2020-0025
https://doi.org/10.2478/popets-2020-0025
https://doi.org/10.1145/3009837.3009884
https://doi.org/10.1145/3009837.3009884

A The Dishonest Commitment Phase Case

A.1 Certified Probabilistic Mechanisms Definition with Dishonest Commit-
ment Phase

Before we get to the main definition, it will simplify the presentation to define a notion of “a valid
commitment to a known database.” This captures the idea that after the commitment phase, the
Prover should know a well-formed input θ that Cθ is a commitment to, so that we can define what
the output from the querying phase should be, namely Mq(θ).

Definition A.1 (Valid Commitment to Known Database). For a mechanism MQ and input θ ∈ Θ,
the pair (C,View) is a valid MQ-commitment to known input θ if there exists a PPT algorithm
RevealOpening that, given the Prover’s view View and rewindable black-box access to the Prover,
returns θ and Π such that the following holds.

For all q ∈ Q, letOutputq ← (Popen(Π),Vopen)(C, q) be the output of the querying phase according
to the honest Prover and Verifier. Then the random variable Outputq is distributed according to

the mechanism Outputq
d
= Mq(θ).

Note that for the honest Prover, RevealOpening is trivial: the honest Prover’s transcript includes
θ and Π, so they can simply output them. We will describe this by saying that (C,Π) is a valid
commitment, where RevealOpening is now implicitly the identity function. So, this condition is
only a non-trivial constraint when discussing adversarial Provers. Now we are ready to present the
formal definition.

Definition A.2 (Certified Probabilistic Mechanism). Given mechanisms Mq : Θ → Y for query
class Q, a certified probabilistic mechanism for MQ consists of Setup, an honest Prover P =
(Pcom,Popen), and an honest Verifier V = (Vcom,Vopen) with the following properties for pub-
lic parameters pp← Setup(1λ),13 input θ ∈ Θ, and query q ∈ Q:

• Correctness: Let (Cθ, (Πθ)Pcom)← (Pcom(θ),Vcom). Then (Cθ,Πθ) is a validMQ-commitment
to θ.

• Commitment Phase Soundness:

• Cheating-Verifier Commitment Soundness: For any adversary Ṽ
com

, let (Cθ, (Πθ)Pcom)

← (Pcom(θ), Ṽ
com

). Then Cθ = ⊥ or (Cθ,Πθ) is a valid MQ-commitment to θ.

• Cheating-Prover Commitment Soundness: For any PPT adversary P̃
com

, let (C,View
P̃

com)

← (P̃
com

,Vcom). Then either Pr[C = ⊥] = 1 − negl(λ) or (Cθ,View
P̃

com) is a valid

MQ-commitment to some D ∈ Θ. Denote P̃
com

such that the above openability property

holds for database D as P̃
com

(θ).14

13Note that we assume that all functions have implicit access to the public parameters pp and all probabilistic
statements are also over the randomness used by Setup.

14If C = ⊥ the protocol terminates and does not progress to the querying phase, so for the querying phase we will
only consider cheating Provers who have committed to a well-formed database in this sense.

51

• Querying Phase Soundness:

• Cheating-Verifier Querying Soundness: For any adversary Ṽ = (Ṽ
com

, Ṽ
open

), let

(Cθ,Πθ,View
Ṽ

com
(θ)

) ← (Pcom(θ), Ṽ
com

) and (Output, Q,ViewṼ (θ)
) ← (Popen(Πθ),

Ṽ
open

(View
Ṽ

com
(θ)

))(Cθ, q). Then for any θ, θ′ ∈ Θ and y = Y ∪ {⊥},

ViewṼ (θ)
|Q=y

d
= ViewṼ (θ′)

|Q=y.

Further, let Q̸=⊥ denote Q conditioned on it not equalling ⊥. Then

Q̸=⊥
d
= Mq(θ).

• Cheating-Prover Querying Soundness: For any PPT adversary P̃ = (P̃
com

(θ), P̃
open

),

let (Cθ,View
P̃

com) ← (P̃
com

(θ),Vcom) and Output ← (P̃
open

(View
P̃

com
(θ)

),Vopen)

(Cθ, q). Then

Output
d
≈(Pr[Output=⊥]+negl(λ))-TV Mq(θ).

Cheating-Verifier commitment soundness ensures that even with a cheating Verifier, an honest
Prover only produces valid commitments. Cheat-Prover commitment soundness ensures that after
the commitment phase, either the Prover has committed to a well-formed database or the honest
Verifier catches them with high probability.

A.2 Certified Differential Privacy Construction with Dishonest Commitment
Phase

To remove the honest commitment phase assumption from our constructions, we can use standard
WI-PoK Σ-protocols for additively homomorphic commitments schemes from Appendix B to ensure
that CD is well-formed.

Specifically for FSum, to ensure that each xi ∈ {0, 1}, we can execute the Σ-protocol for

WI-PoK {r | Commit(0, r) = Cxi ∨ Commit(1, r) = Cxi} .

These can be done in parallel for each xi, which constitutes the Σ-protocol for

WI-PoK

{
r1, . . . , rn

∣∣∣∣∣
n∧

i=1

(Commit(0, ri) = Cxi ∨ Commit(1, ri) = Cxi)

}
.

For FCount, we can start by doing the same for each xi,j and then build these up into all of the
monomials mi,S for i ∈ [n], S ⊆ [d]. This can be done with the Σ-protocol for OR, given in
Appendix B, as well as the following one for multiplication that is noted in [64]:

WI-PoK{x, x1, x2, r, r1, r2 | Commit(x, r) = c ∧ Commit(x1, r1) = c1

∧ Commit(x2, r2) = c2 ∧ x = x1 · x2}.

52

We specifically implement Section 12.3.2, Protocol 10 of [78]. Again, we can simply AND over all
of the statements we need to build a Σ-protocol for

WI-PoK

{
mi,S , ri,S

∣∣∣∣∣
n∧

i=1

 d∧
j=1

Commit(0, ri,j) = Cxi,j ∨ Commit(1, ri,j) = Cxi,j

∧
 ∧

S⊆[d]

(
Commit(x, ri,S) = Cmi,S ∧ x = mi,S

)}
.

Describing this systematically, for each i ∈ [n] we can start by checking xi,1 ∈ {0, 1} and then
proceed inductively to build up the monomials. Let M be the set of monomials that have been
checked so far. Then going forward, when checking monomials utilizing xi,j , we add the following
checks to the AND of our PoK:

• first,
WI-PoK

{
ri,j | Commit(0, ri,j) = Cxi,j ∨ Commit(1, ri,j) = Cxi,j

}
,

• and then for each mi,S ∈M ,

WI-PoK{mi,S∪{j}, ri,S∪{j} | Commit(mi,S∪{j}, ri,S∪{j}) = Cmi,S∪{j}

∧mi,S∪{j} = mi,S · xi,j}.

Thus the PoK statement can be written with n · 2d ANDs between base Σ-protocols (which don’t
scale with n or d), so the number of elements sent during each round of the Σ-protocol is O(n · 2d).
Note that these kinds of Σ-protocols can also be made non-interactive in the Random Oracle Model
via standard Fiat-Shamir.

Finally, the Verifier can use additive homomorphism to compute each CmS =
⊕

i∈[n]Cmi,S , which

also scales with O(n · 2d), and deterministically check if these commitment values give rise to
the correct Merkle root (or other kind of vector commitment) that has been used to succinctly
summarize them.

Remark A.1 (Retroactive Commitment Verification). Note that a Verifier can ask the Prover
to execute these PoKs at any point in order to order to establish that the original commitment
was to a well-formed database. In particular, this could be done by the Registrar or some sort of
Auditor with more computational resources than the typical Verifiers, or by particularly vigilant
Verifiers, either during the commitment phase as described in our formal definition or after the fact
if suspicious behavior has been detected during the querying phase.

Remark A.2 (Commitment Soundness Without Verification). Without this commitment-checking
process, the guarantee given by our construction is simply that on query f , the output will be
distributed as yf + BN for some fixed yf ∈ Y . In particular, there may or may not exist some
well-formed database D such that f(D) = yf for each f ∈ F . Note that this is the typical binding
guarantee for functional commitment schemes.

53

B Σ-Protocols and XOR for Additively Homomorphic Commit-
ments

To present the PoK and homomorphic XOR constructions utilized in Construction 4.1, it will
behoove us to slightly change our commitment scheme notation for this section. We will assume
that commitment scheme being used has additive homomorphism.

Notation B.1. The commitment function can be expressed deterministically with the Prover’s
random string as input, namely as Commit(x, r) for x ∈ X and r a random string, say r ∈ R.
Let the set of possible commitments output be C. For an additively homomorphic scheme, X is
a group with operation ·, R is a group with operation ⋆, and C is a group with operation ⊗ such
that Commit(x, r) is a homomorphism from X × R→ C. Going forward, we will slightly overload
notation and use · to denote the group operations of X, R, and X×R. When the operation is clear
from the context of the group, repeatedly applying an operation will be denoted by exponentiation
of the group element by the appropriate integer. Now we can let r act as the proof, so that
Verify(c, r, x) returns x if Commit(x, r) = c and rejects otherwise.

Construction B.1 ([32]). The following fulfills Theorem 2.4 by providing Σ-protocol for
PoK {r | Commit(x0, r) = c ∨ Commit(x1, r) = c} :

1. DE selects rBDE
∼ Z/qZ u.a.r. and computes cBDE

= Commit(xBDE
, rBDE

). DE also se-
lects e1−BDE

, z1−BDE
∼ Z/qZ u.a.e. and computes c1−BDE

= Commit((1 − BDE) · (1 +
e1−BDE

), z1−BDE
)⊖ (e1−BDE

⊗CDE). DE sends c0 and c1.

2. PL selects challenge e ∼ Z/qZ u.a.e. sends it.

3. DE computes a new challenge eBDE
= e − e1−BDE

. Next DE computes zBDE
= rBDE

· reBDE .
DE sends e0, e1, z0, z1.

4. PL checks whether

• e = e0 + e1,

• Commit(x0 · (1 + e0), z0) = c0 ⊕ (e0 ⊗CDE), and

• Commit(x1 · (1 + e1), z1) = c1 ⊕ (e1 ⊗CDE),

accepting only if all three checks pass.

Construction B.2. The following provides a construction for homomorphically XORing a bit
commitment (c1, π1) with a plaintext bit b2:

(c1+2, π1+2) =

{
(c1, π1) b2 = 0

(Commit(1, 0)⊕ (−1⊗ c1),−1⊗ π1) b2 = 1

Depending on the value of b2, this construction either lets the committed bit b1 stay the same
or flips it to 1 − b1. In the second case, the commitment to the public value of 1 needs to be
reproducible for the Player so we deterministically commit with fixed randomness equal to 0.

54

	Introduction
	Our contributions
	Technical Overview of Contributions
	Discussion and Related Works
	Comparing Our Construction to Secure Two-Party Computation

	Preliminaries
	Certified Probabilistic Mechanisms
	Certified Differential Privacy
	Certified DP from Certified Probabilistic Mechanisms

	Certified Additive Noise via Random Variable Commitments
	Random Variable Commitments
	Random Bit Commitments Construction
	Certified Additive Noise Mechanisms Construction
	Efficient Verification in the Public Registrar Model
	Insecurity of Removing Interaction via Fiat-Shamir

	Answering Counting Queries with Certified DP
	Implementation of Certified DP with Pedersen Commitments
	The Dishonest Commitment Phase Case
	Certified Probabilistic Mechanisms Definition with Dishonest Commitment Phase
	Certified Differential Privacy Construction with Dishonest Commitment Phase

	-Protocols and XOR for Additively Homomorphic Commitments

