
Willow: Secure Aggregation with One-Shot Clients

James Bell-Clark Adrià Gascón Baiyu Li Mariana Raykova
Phillipp Schoppmann

Google

June 11, 2024

Abstract

A common drawback of secure vector summation protocols in the single-server model is that they
impose at least one synchronization point between all clients contributing to the aggregation. This
results in clients waiting on each other to advance through the rounds of the protocol, leading to large
latency even if the protocol is computationally efficient. In this paper we propose protocols in the single-
server model where clients contributing data to the aggregation send a single message to the server in
an asynchronous fashion, i.e., without the need for synchronizing their reporting time with any other
clients. Our approach is based on a committee of parties, called decryptors, that aid in the computation.
Decryptors run a setup phase before data collection starts, and a decryption phase once it ends. Unlike
existing committee-based protocols such as Flamingo (S&P 2023), the cost for committee members can
be made sub-linear in the number of clients, and does not depend on the size of the input data. Our
experimental evaluation shows that our protocol, even while enabling asynchronous client contributions,
is competitive with the state of the art protocols that do not have that feature in both computation and
communication.

1 Introduction
Secure aggregation enables a server to learn an aggregate of the inputs of many users. It has wide application
to private analytics and federated learning and has been studied in numerous papers [1, 2, 3, 4, 5, 6, 7, 8, 9].
One of the main disadvantages of many of the solutions is the fact that they require multiple synchronization
points between clients. This is problematic when supporting large numbers of clients, or low client availability.

To see why, consider a setting where clients with appropriate data check in with the server at a rate
of 10 clients per second. Gathering 104 clients will take over 15 minutes. By the time the last few clients
appear, the first few ones might have dropped out. This is expected to happen with clients with unreliable
connection. Therefore, synchronization points among clients providing inputs is undesirable because (i) the
latency of the protocol is then dominated by the “client gathering” phase, and (ii) clients are expected to be
online for a long time.

One way to remove the need for synchronization among clients is to assume two non-colluding servers
that can process the clients’ contributions jointly. There are such constructions [10, 11, 12], which require
both servers to receive communication proportional to all inputs and then do work that is also linear in
the input size. Therefore, such solutions require finding parties that could both satisfy the non-collusion
assumption, and also have the resources.

In contrast, in the single-server setting there is no solution that can obtain security and privacy relying
only on the server. Even expensive primitives such as obfuscation and multi-input functional encryption
would not directly achieve this since they still allows mix-and-match attacks across multiple contributions
from different clients. Therefore, our protocols, similar to recent works [7, 9] relies on a small committee of
parties – so-called decryptors – that aid the server in the computation.

1

In this work, we present protocols that allow clients to contribute their inputs at any time with a single
message to the server. Moreover, unlike prior works, our committee can be instantiated such that each
committee member only does work sub-linear in the number of clients contributing inputs. The committee’s
work is independent of the length of the vectors being aggregated, which makes our protocols well suited for
large-scale applications. Our protocols also do not require (non-committee) clients to have fixed identities
from the beginning, but rather allow dynamic participation.

At a high level, our protocols work by having the server homomorphically aggregate client contributions,
without learning anything about the processed inputs. At the end of the protocol, it invokes the committee
to obtain the decryption key for the final result. When the server can be maliciously corrupted, we addition-
ally have the committee verify that each client is included in the aggregation at most once, thus ensuring
correctness (up to dropouts, which are unavoidable in the asynchronous / single-message setting without a
PKI). We show that this verification work can be distributed efficiently, with both the committee size and
the work of each committee member being sub-linear in the number of clients.

An important property of our protocols is the fact that both verification and decryption happen after all
clients have sent their inputs. An alternative instantiation of our protocols could therefore be to implement
these roles using a single second server. Unlike Prio and related two-server aggregation protocols [10, 11, 12],
the work performed by the second server in this variant of our protocols is independent of the vector length.

1.1 Contributions
We propose protocols for secure aggregation of n private vectors x1, . . . ,xn of length `, held by n clients
C1, . . . ,Cn, respectively. In each aggregation, clients send a single message to the server, and do O(` log n)
work. Our protocols also involve a decryptor role that can be implemented by a small committee D of parties
that we call decryptors. Decryptors do O(|D|+ log n) work independent of `.

Our protocols withstand an adversary actively corrupting a minority of the decryptors, and an arbitrary
number of clients. We provide protocol variants for both the case where the adversary additionally (a)
passively corrupts the server and (b) actively corrupts the server. For the case with active corruption of the
server we rely on a committee V of parties called verifiers (which could overlap with the set of decryptors).
Collectively, V’s cost is O(n), distributed within the committee so that each verifier does O(n log(n)/|V|)
work. We summarize our contributions below.

1. When instantiating the decryptor and verifier roles with a small commitee of parties, we get the first
protocol with fully asynchronous clients that is practical in the single-server model, with committee
members doing work independent of vector size. Moreover, in the maliciously secure variant, using a
committee of size O(n1/α), with α ≥ 2 results in all committe members doing work o(n).

2. We also propose a covertly secure variant of the verifier, i.e. where a misbehaving corrupted server gets
caught by the protocol with constant probability. This variant is suitable for settings where a misbehaving
server faces reputation loss risk, and is more concretely efficient.

3. Our technical contributions include:

(a) An efficient reduction from secure length-` vector summation to secure aggregation of n RLWE secrets
at the core of our protocol. To achieve this we leverage a recent result of hint-RLWE by Kim et al.
[13].

(b) Formalization of asynchronous summation in the real vs. ideal paradigm of secure computation. We
show that a natural ideal-world formulation of our target functionality is not realizable in the standard
model by protocols achieving our requirements (asynchronicity and committee work that is sublinear
in `) and also security with non-selective abort in the presence of a semihonest server. Therefore, our
protocols are proven secure in the Random Oracle model. We also present a protocol variant secure
in the standard model, but using a more technical functionality.

4. Experimental evaluation showing that the protocol is practical, i.e., constants in the asymptotics men-
tioned above are small after instantiating our cryptographic assumptions with standard parameters. More

2

concretely, our protocol matches and even improves on the communication overhead of the closest related
work, Flamingo [7]. At the same time, its computation costs remain practical. For example, for vectors
of length 105, our protocol requires under 500KB of client upload and 407ms of server computation per
client.

2 Setting and Threat Model
In our setting, a server S aims to compute the sum of n vectors xi ∈ F` held by a sample of a population
of clients. The communication pattern has the server at the center of a star network. In our model,
clients check-in with the server whenever some eligibility conditions are satisfied, e.g., when they have
data to contribute and are in an idle state. Then, they get instructed to engage in the aggregation protocol.
Therefore, we require that the clients that participate in a given aggregation are not determined up front, but
decided/chosen dynamically as the protocol goes along. We call this property dynamic client participation,
and in particular means that at the time a contribution is made, neither the client or server can be assumed
to know who the other clients are.

The pool of clients may include devices with limited connectivity and computational resources. Therefore,
our goal is one-shot clients, where a single message is enough for a client to contribute to an aggregation.
As discussed above, this property eliminates the latency observed in practice due to the long tail of client
response times. Note that our protocol still requires clients to obtain the public-key of the decryptor.
However, this is a one-time download that can be re-used and amortized across multiple aggregations, and
is needed even in Prio [10], or the insecure baseline with a single trusted server.

We also require asynchronicity of client contributions. This means that once the protocol setup has
finished, clients contributing data should not have to wait for other clients to submit their (encrypted)
input, i.e., the protocol does not impose synchronization points among clients. In Section 3 we review
existing protocols in terms of dynamic client participation, one-shot clients, and asynchronicity.

Applications. Applications include both federated analytics tasks and learning tasks. The former corre-
sponds to histogram computations, where we require protocols to handle n values of possibly in the billions,
and collected over a long period of time, e.g. a week. Learning tasks involve aggregation of model updates, as
required by federated learning. In that scenario the input length ` corresponds to size of the model update,
and the required sum size n can be expected to be in the thousands.

2.1 Roles & Assumptions
Our protocols offer different instantiations. While the main instantiation is an asynchronous aggregation in
the single-server setting,where some trust is placed on the clients to whom computation is outsourced, it can
also be realized in the two-server model. That is why we present our protocol in terms of different roles,
discussed next.

• Clients C1, . . . ,Cn: These are the providers of data to be aggregated. There will be many of them some
of whom may be corrupt. We would like them to do as little work as possible, including minimizing the
amount of time they need to be online. Our protocols ensure that client’s data remains private. We have
no assumptions on the honesty of clients, and therefore an adversary might corrupt up to n − 1 clients.
This allows active adversaries to mount sybil attacks, which we discuss later. We only require clients to
know the decryptor’s long-term public key, but do not require a PKI between clients.

• Server S: The entity orchestrating the protocol, in the non-secure setting this is the party that client data
is sent to. This party is capable of a significant amount of computation and communication. It is also the
output recipient but it should not learn anything else about the input data (within the threat model that
is considered).

3

• Decryptor D: The decryptor role can be instantiated as a committee of client-like parties, a small number
of servers, or a single second server. To guarantee privacy, the decryptor is not allowed to collude with
the server. When implemented by a committee of parties, this means that a majority of decryptors must
remain honest.

• Verifier V: This role exists in the version of the protocol secure against an actively corrupted server. This
party does not hold any state, and its purpose is to verify a public data structure generated by the Server.
It is also assumed to not collude with the server, and similar to the decryptor it can be instantiated by a
committee of clients, or a small set of trustworthy parties.

2.2 Failure & Threat Model
As discussed above, our security assumptions are that (i) the decryptor and the server do not collude and
(ii) the verifier and the server do not collude.

Distributed Decryptor/Verifier. In the case where the role of the decryptor is distributed across c > 1
parties, which we call decryptors, our protocol assumes that no more than a fraction γd < 1/2 of the
decryptors are corrupted. In the Flamingo work [7] the decryptor role is assigned by means of a trusted
source of randomness, such as the one offered by Cloudfare [14]. Our protocols do not pose any constraints
on how decryptors are selected, as long as the above assumption is satisfied. Moreover, there is no restriction
on the value of c (beside being positive), and therefore the decryptor role could be implemented in the 3
parties, honest majority setting. Nevertheless, in our experiments we assume c = 100, to highlight that the
(distributed) decryptor role is lightweight. In terms of robustness to dropouts, our protocols are robust to
as many as (1− γd)c+ 1 committee members dropping out. In terms of correctness, we ensure security with
abort, in the sense that corrupted committee member can cause the protocol to abort, but non-adaptively,
i.e., without learning the result. Therefore, our protocol does not have guaranteed output delivery. This
is also the case in other protocols such as the main protocols Flamingo [7], Bell et al. [3], and Acorn [8],
although both Flamingo and Acorn present more costly extensions to that property. We do not see a
fundamental limitation there, but in the present work we chose to focus on a lightweight decryptor and avoid
costly primitives like verifiable secret sharing. Such an extension is left for further work.

Regarding distributed verifier, as mentioned above, the task of the verifier(s) boils down to checking a
public data structure, in the same spirit of key transparency. Analogously to the decryptor role, our protocol
assumes that no more than a fraction γv < 1/2 of the verifiers are corrupted, and allow for a fraction of
dropouts. If decryptor and verifiers are the same set of parties, then γd + γv < 1/2.

Passive/Active Security. We consider two settings, and provide a protocol variant for each:

1. Passively corrupted server colluding with actively corrupted fraction of decryptors (recall that the verifier
role is not needed for passively-corrupted server), all corrupted by the same adversary. Moreover, the
adversary might also actively corrupt any number of clients.

2. Actively corrupted server colluding with actively corrupted fraction of decryptors and verifiers. In this
model the server is fully malicious, and also controls a minority of the verifiers and decryptors.

In both cases, we prove our protocols are secure in the simulation paradigm [15, 16], which we recall in
Appendix D.

Functionalities. Our protocols are secure with (non-selective) abort. This means that while an adversary
controlling some of the decryptors can force the server to abort an execution, it cannot do that adaptively
after observing the result. This is the same guarantee offered by the main protocols in previous works [7, 8].
Moreover, it is not hard to upgrade our protocols to guarantee output delivery to the server by using Verifiable
Secret Sharing (VSS), but this comes with significant (but realistic) communication overhead.

4

Aggregation Functionality Fagg

Setup: n clients identified by 1, 2, . . . , n holding private inputs x1, . . . ,xn ∈ F`. Adversary A controlling a
subset C ⊆ [n] of the clients, and possibly corrupting the server S.

1. Functionality Fagg receives all honest clients’ inputs.

2. If S is actively corrupted, A chooses a subset S ⊆ [n] \ C to drop. Otherwise S = [n] \ C.
3. A chooses inputs of corrupted clients IA := (yi)i∈C .

4. A sends (IA, d) to Fagg, with d ∈ {continue, abort}.
5. If d = continue then Fagg sends

∑
i∈C yi +

∑
i∈S xi to S, otherwise Fagg sends ⊥ to S.

Figure 1: The summation functionality implemented by our protocols. The adversary can abort the protocol
(security with abort) non-selectively, i.e. without seeing the result. A malicious server can exclude honest
clients from the sum.

The functionality achieved by our protocols is presented in Figure 1. Note that, as discussed above, the
adversary can decide to abort the protocol (Step 4), but this decision must happen before observing the
result (non-selective abort).

In the case of an adversary that passively corrupts the server and actively corrupts clients and decryptors,
we show in Section 6 and Appendix B that this functionality cannot be implemented in the standard model
by a protocol satisfying our performance constraints. We also present a functionality that can be realized,
while preserving non-selective abort.

Public Key Infrastructure. In the variant of our protocol secure against actively-corrupted server,
decryptors and verifiers need to establish secure channels among themselves, and apply cryptographic sig-
natures and therefore, as in previous works [1, 3, 7, 8], we rely on an external PKI, or a verifiable public key
directory. For the latter option, Flamingo suggests a construction such as CONIKS [17] and its successors.
An important difference with previous works, however, is that we only need a PKI among parties taking on
the decryptor or verifier role, not clients contributing data. This makes the PKI assumption much more
manageable in practice. In particular, in settings where the verifier is a single party (two-server model) or
consists of a small number of parties, this assumption is trivial.

3 Related Work
In this section we discuss previous work in secure aggregation in the single-server setting, giving particular
attention to protocols with one-shot clients and the requirement for synchronization across clients. For a
survey, see [18].

Solutions based on Pairwise Masking. An important family of protocols for single-server secure ag-
gregation follow a dining cryptographers based approach [19], enhanced with robustness to dropouts. These
include Bonawitz et al. [1] and subsequent improvements [3, 8]. The basic structure of these protocols is
that clients mask their input before they report it to the server with both (i) pairwise-masks, i.e., shares
of zero vectors computed with some of the other clients – their so-called neighbors – and (ii) self-masks,
i.e., a pseudorandom vector. Crucially, in a setup phase clients secret-share with each other key material to
recover such masks. The server aggregates all received masked inputs, which result in a masked sum. In
a subsequent recovery phase, the server request shares to recover self-masks of clients that reported their
masked input, and pairwise-marks of dropouts. There are two important assumptions in these works, which
we lift in Willow. First, for malicious security either the server is assumed to be semi-honest during key
distribution, or a PKI holding keys for all clients is in place. Moreover, these protocols involve several rounds

5

among clients, each of which constitutes a synchronization point. Remarkably, the setup phase where clients
share key material to be able to recover masks in the recovery phase constitutes a synchronization point that
is inherent to this family of protocols. We will come back to this point later.

A recent work operating in this paradigm worth discussing is Flamingo [7]. While the works mentioned
above tackle an aggregation task in isolation, Flamingo reduces the overall round trip complexity for se-
quences of T sums, which arise naturally in applications of secure aggregation to federated learning. To
achieve this, Flamingo relies on an honest majority committee, just like Willow. Moreover, clients contribut-
ing data to an aggregation send a single message in an asynchronous fashion. However, Flamingo makes two
important assumptions to achieve this, which are not required in Willow: (a) a PKI is available for all clients
participating in the aggregation, (b) the subset of clients participating in round i are set by the protocol
(possibly via a random beacon) and a significant fraction of them are expected to be online for aggregation
when round i takes place. While these assumptions might be acceptable in some cases, as discussed in Sec-
tion 2 they are not realistic in our setting. In fact, assumption (b) is highlighted by the authors of Flamingo
as a limitation, and exploring “the case of handling clients that dynamically join the training session” is left
as an open problem in their work.

Modifications to Flamingo to drop these assumptions are conceivable, but come at the expense of asyn-
chronicity, i.e., introducing a synchronization point between clients. The reason is that the protocol would
have to wait for sufficiently many clients to show up in a given round, to only then assign neighbors to
clients and start negotiating pairwise masks. This is related to the claim above that techniques based on
DC networks inherently require a synchronization point. In Figure 2 we provide an asymptotic comparison
of our protocols with Acorn [8] and Flamingo. Acorn is the state of the art pairwise masking based solution
as far as we know. There, the pairwise masking technique is implemented via an (almost) key homomorphic
PRF based on RLWE. Note that, while achieving one-shot clients, Willow’s asymptotic costs are better than
Flamingo and Acorn.

Solutions based on HE. A natural approach to achieve asynchronous client contribution is to employ
additively homomorphic encryption. However, the simple approach, where clients directly encrypt xi under a
threshold AHE and the server homomorphically aggregates, has two main drawbacks: ciphertext expansion,
and more importantly, decryptor communication. In our target applications, having the decryptors cost
grow as O(`) is impractical, as we want to keep that role as light-weight as possible. Moreover, HE-based
approaches in the presence of a malicious server must be enhanced with verifiability to prevent the server
from decrypting individual client’s contribution. Willow falls in this category, and our approach consists
of using RLWE-based key and message homomorphism combined with a threshold AHE scheme to address
the communication issues, and non-interactive Zero-Knowledge to achieve verifiability without giving up on
one-shot clients.

While we refer the reader to a recent survey [18] for details on HE-based protocols, there are two recent
works worth discussing: SASH [20] and LERNA [9]. Both these works share a core idea with Willow: By
employing (almost) key homomorphic PRFs (in both cases based on the Learning With Rounding assump-
tion) SASH and LERNA reduce the problem of aggregation of long vectors to aggregation of short keys. In
SASH, each client i sends encryptions of their input under a key ki, and then keys ki are aggregated by using
the protocol from Bell et al. [3] discussed above. Therefore SASH clients are not one-shot. LERNA uses a
similar idea in a setting with an honest majority committee analogous to the one of Willow and Flamingo,
but resulting in one-shot clients. As in SASH, client i sends key homomorphic encryptions of their input
under a key ki (and a session tag). Additionally, ki is shared with the committee. Note that clients can
do this in one round. As the server homomorphically aggregates contributions from a set S of clients, it
requests from the committee a sharing of the corresponding sum of keys (appropriately transformed so that
keys are reusable). The communication costs of LERNA in the sharing stage are quite significant: authors
report 2GB of communication per client, and 4.4GB per committee member. This cost can be amortized
across many aggregations involving the same clients, and therefore LERNA is well suited for such applica-
tions. However, this does not transfer to our setting with dynamic client participation. We are also aware
of concurrent work by Karthikeyan and Polychroniadou on "One-Shot Private Aggregation" [21], which we

6

Flamingo [7] Acorn [8] Ours

Client
Comp. c+ ` logn ` logn ` logn
Comm. c+ ` logn ` logn ` logn
One-Shot 3 7 3

Dynamic 7 7 3

Decryptor Comp. c2 + n N/A c+ logn
Comm. c2 + n logn c+ logn

Server Comp. c+ n` logn n` logn n` logn
Comm. n(c+ `+ logn) n` logn n` logn

Verifier Comp. N/A N/A n
Comm. n

Figure 2: Comparison with the committee-based Flamingo and RLWE-based Acorn protocols. We report
asymptotic costs with respect to n (number of clients), c (number of committee members), and ` (input
length), omitting dependencies on security parameters and input bit-width, and we drop the O(.) notation
for clarity. "One-shot" means that clients send a single message per aggregation, and "dynamic" means
client can join the protocol at any point without needing a PKI (see Section 2).

plan on looking into and discussing here in a future revision.

Solutions based on Secret-Sharing. Another line of work including FastSecAgg [22] and the work of So
et al. [4] relies mostly on secret sharing, i.e. robust coding techniques: clients secret share their input vector
with a committee of clients (or every other client) and shares are aggregated and returned to the server for
reconstruction. As discussed by Ma et al. [7], the main limitations with this approach is communication.
Both FastSecAgg and the protocol of So et al. assume both the clients and the server are semi-honest.

Input validation. Another line of work in Single-Server Secure Aggregation is concerned with enhancing
protocols with input validation [5, 6, 8]. We do not consider this aspect in this paper, but we believe that
the techniques shown in Acorn [8] are compatible with Willow, as the underlying KAHE scheme is the same.

Asynchronous FL. Since Willow allows dynamic client participation, it is compatible with Asynchronous
FL, where updates coming from clients are considered by the server to update the current model (at round
i) even if they were computed from the model at rounds j < i − 1 (see [2] for details). While Willow is
compatible with Asynchronous training, it does not preclude (cohort-less) synchronous FL.

4 Technical Overview
Our protocols revolve around the high-level idea of unbalanced MPC protocols. In generic MPC protocols, it is
often the case that all parties do amounts of work – either computation or communication – of the same order.
For example, in Yao’s garbled circuits, both parties do work proportional to the size of the computation. The
same observation applies to other protocols in the two-server model that rely on outsourcing the computation
to two non-colluding powerful servers, e.g. Prio [10], DPF-based aggregation [12]. In settings where a server
S aims to process large amounts of data, balanced protocols like the ones mentioned above might be hard
to instantiate in practice, as the non-colluding second party in the computation must have similar resources
as the first server.

The above observation is particularly useful in the single-server model. There, the parties aiding the
server are standard devices and, intuitively, they collectively play the role of the non-colluding server in
the two-server model discussed above. Though it may also apply to a root of trust in a trusted execution
environment or a server from a second company whose services may be more expensive than the in-house
solution.

7

Figure 3: Blueprint of our protocol. Let KAHE be a symmetric encryption scheme with both keys and
messages additive homomorphism. Let AHE be an asymmetric threshold AHE scheme. The decryptor
publishes a public key pk of AHE. Clients send a pair of ciphertexts: (a) an encryption of their input under
KAHE and (b) and encryption of the symmetric key used in (a), under AHE. The server adds ciphertexts of
each kind as they are received, resulting in ciphertexts a, b encrypting the intended sum, and the symmetric
key in the first ciphertext, respectively. In the actively secure variant, the server proves to the verifier that
b encrypts the sum of n distinct keys, all coming from different clients. The verifier signs a hash of b, which
the decryptor verifies before handing the decryption of b to the server.

4.1 Our Approach: High-level Overview
Figure 3 describes the blueprint of our solution. At a high-level, we reduce summation of length ` vectors to
summation of length O(λ) keys, where λ is the security parameter. The clients encrypt their inputs using
a key and message homomorphic symmetric encryption scheme KAHE. Similar to the secure aggregation
protocol of Bell et al. [8], our KAHE is based on Ring Learning With Errors (RLWE). In particular, each
client i encrypts their input xi as ai = KAHE.Encki(xi) under a fresh key ki with small Gaussian coefficients1.
The server homomorphically computes

∑
i ai ≡ KAHE.Enc∑

i ki
(
∑
i xi). For the server to obtain

∑
i ki, we

employ a second encryption scheme AHE that, in contrast to KAHE, is additively homomorphic only in the
message, and asymmetric. The decryptor outputs an AHE public key pk to let clients encrypt their respective
ki, and the server can homomorphically compute an encryption of

∑
i ki for the decryptor to decrypt.

While this is our high-level blueprint, significant challenges have to be overcome to make the entire
protocol concretely efficient (or even a secure protocol!). In terms of efficiency, we need a threshold AHE
scheme to implement the decryptor by an honest majority committee. Regarding security, it is unclear that
revealing

∑
i ki to the server still hides the keys ki from the server. Finally, actively corrupted clients could

try to choose their key ki in a way that deviates from the prescribed protocol. This is not an issue per
se, unless the adversary controlling those clients can also observe the server’s transcript. We discuss these
challenges and solutions in more detail next.

Threshold Additive Homomorphic Encryption (AHE). As we mentioned above, we require an AHE
scheme that can be efficiently distributed within an honest majority committee. While the Paillier scheme [23]
has the right homomorphic properties, it is hard to distribute. Conversely, the exponential ElGamal scheme
– where inputs are encrypted in the exponent of an appropriately chosen group element – is inconvenient
that decryption involves solving a discrete log. While this works for small inputs (see [6, 24] for examples),
the exponential ElGamal is expensive for us to homomorphically compute

∑n
i=1 ki, which is a polynomial

of 210 to 214 coefficients. We instead use a RLWE-based AHE scheme that can be regarded as an instance
of the proposal by Bendlin and Damgård [25].

1Note that ki in [8] are uniformly random over the quotient ring.

8

Our AHE instantiation has an efficient distributed key generation where each committee member generates
its own pair of private-public key shares (skj , pkj). The AHE public key is then pk =

∑
j pkj . Similarly, the

AHE secret is additively shared among sk =
∑
j skj . While this constitutes a c-out-of-c sharing, we employ

Shamir secret-sharing to get robustness to t + 1 decryptors dropping out. Decryption is efficient in AHE,
and it only takes one round: decryptors all receive the same ciphertext ct and compute the (polynomial)
product of skj and ct. To hide information about skj from the server, partial decryptions are in fact of
the form skj · ct + eflood, where eflood is a flooding noise with a variance that is exponentially large in the
statistical security parameter. This is a standard approach in lattice-based threshold encryption schemes
[26] and, while solutions with smaller flooding noise have been recently suggested [27], they do not apply to
RLWE. Note that the AHE key generation cost can be amortized across distinct aggregations facilitated by
the same set of decryptors.

Leakage of
∑
i ki. In order to hide individual ki and input from a corrupted server, the KAHE scheme

must be resilient to the leakage of k :=
∑
i ki, which is given to the server for decrypting the aggregated

KAHE ciphertext (Step (4) in Figure 3). Bell et al. [8] achieves such leakage-resilient security by relying on a
Hint-RLWE assumption and assuming uniform distribution for ki which results in increased parameters for
the overall protocol. Instead, in this work we show that the leakage resilience property holds even when keys
and errors both come from Gaussian distributions with small variance (only 2× larger than that required
for RLWE security in the standard setting, see Lemma 1). This result follows from an improved analysis
of Hint-RLWE by Kim et al. [13], and leads to up to 50% less communication compared to uniform KAHE
keys.

The “correlated ciphertext” attack. As mentioned above, subtle issues arise as soon as an adversary
controlling a few clients can also observe the view of the (passively corrupted) server. Consider an attacker
controlling a single client (say client n− 1), that gets to observe all ciphertexts b1, . . . , bn−2 sent by honest
clients 1, . . . , n− 2 to the server (recall that bi = AHE.Enc(ki, pk)). Then, assume that the corrupted client
sets bn−1 := −

∑n−2
i=1 bi. Then, when client n sends an honestly constructed bn and the protocol progresses

normally, the server reconstructs the KAHE key k =
∑
i6=n−1 ki + kn−1 =

∑
i 6=n−1 ki −

∑n−2
i=1 ki = kn.

Therefore k allows the server, and thus the adversary that observes its view, to recover client n’s input.
To address this issue clients are required to provide a Zero-Knowledge Proof of Knowledge (ZKPoK) of ki,
along with their AHE encryption bi. This ensures that each key is sampled independently of other client’s
keys.

While zero-knowledge can be expensive, three observations make it well suited for our protocol: first, the
encryption operation in AHE (i.e., the relation for which clients provide a proof) is a simple linear function
of the public key pk. This is because it corresponds to a “knowledge of (R)LWE secret”, and the required
polynomial multiplication can be written as matrix vector multiplication. Second, the witness ki is a secret
key of length that depends only on the security parameter, and not ` (let us anticipate that pk is a polynomial
of at most 212 coefficients modulo q2 < 280 in all the applications we consider). Finally, the required zero
knowledge proof is independent of xi and therefore can be computed before the input is available. As in
previous works [8, 28] we use Bulletproofs [29] in our evaluation, and rely on the approximate l∞ proofs
by Gentry et al. [28] for efficient proofs of knowledge of (R)LWE secret. For details on this, see Appendix A.3.

A similar issue happens with key generation when a corrupted decryptor can observe partial keys pkj
sent by honest decryptors as they are received by the server. For this reasons we require the analogous proofs
from decryptors as part of key generation and partial decryption. Also in this case we rely on DL-based
approaches from [8, 28].

Malicious Server, and the role of the Verifier. As described in Figure 3, the role of the verifier is
to ensure that an actively corrupted server cannot send a small subset of the clients’ inputs for decryption,
instead of the total sum. Moreover, the verifier prevents a malicious server to “copy/replay” contributions
from honest clients. In a nutshell, the verifier’s job is to check the ZKPoK associated with ciphertexts bi
before the server decrypts b. Moreover, the verifier checks that b is indeed the result of aggregating the bi’s.

9

To do this we devise a tree data structure T , akin to a Merkle tree, and similar to the aggregation tree
used in the Honeycrisp work [30]. Each leaf of the (binary) tree contains a (constant-size) commitment to
bi and the corresponding ZK proof. Internal nodes contain commitments such that the commitment in a
parent node commits to the sum of the committed value of its children. This is easy to achieve with additive
commitment schemes like (vector) Pedersen commitment. Therefore, the root of a valid tree commits to
b. An important observation is that nodes in T either constant (256-bit) commitments of proofs of size
O(log(N2)) (less than 2KB). Therefore while the whole tree has size O(n) the constant is very small, and
crucially ciphertexts bi (which are each hundreds of KB) do not need to be part of T (this is in contrast
with work [30]). Just like Merkle trees, our tree construction T is amenable to distributed verification: we
provide two ways to distribute the verifier’s role among many parties. The first one is based on committees
and is fully secure (gives a cheating server negligible advantage). The second one is fully distributed (no
need to form committes) and catches a cheating server with tunnable constant probability, e.g., 90%. This
is appropriate for settings where the server faces some reputation loss risk when caught cheating. Also, let
us remark that T does not contain private information, and can be made public for anyone to verify.

Differentially private summation. Note that the verifier ensures that every client that is included in
the sum, i.e., that is not ignored by a malicious server, is included just once, and also checks how many
clients are included. This does not prevent a malicious server from launching a Sybil attack, as we do not
place any assumptions on the identity of asynchronous contributors (as mentioned above we do not assume
a PKI for them). While our protocols allow messages to be authenticated, we propose a mitigation based
on Differential Privacy in Appendix C.1.

Simulation-based security. Our proofs are in the real vs. ideal paradigm with non-selective abort.
Detailed definitions are provided in Appendix D. The functionality achieved by our protocol is given in
Figure 1. We show the security of our constructions in the Random Oracle Model (ROM). Moreover, we show
an impossibility result stating that the functionality of Figure 1 cannot be achieved in the standard model
by a protocol with asynchronous clients and sublinear postprocessing of client messages, i.e., a decryptor
running sublinear in `. This is stated in Theorem 4. However, we show a modified functionality (Figure 11)
that retains security with non-selective abort in the standard model.

5 Main Cryptographic Primitives

Notation. For any distribution D, we denote using x← D the process of sampling from D. If X is a finite
set, then by x← X we mean sampling at uniformly random from X.
Primitives. In out constructions, we require (i) symmetric key and plaintext Additive Homomorphic
Encryption (KAHE) and (ii) threshold asymmetric Additive Homomorphic Encryption (AHE). Moreover, for
(ii) we require zero-knowledge proofs for (a) knowledge of plaintext, (b) knowledge of secret key, and (c)
partial decryptions.

Next, we define the functionality that we need from these primitives and provide more comprehensive
discussion of their properties and instantiations in Appendix A.

5.1 Key-Additive Homomorphic Encryption
We use a symmetric key encryption scheme KAHE = (Setup,KeyGen,Enc,Dec) with additive key- and
message-homomorphisms: Given any two ciphertexts c1 and c2 encrypting x1 and x2 under keys k1 and k2

respectively, we require that c1 + c2 is a valid encryption of x1 + x2 under the key k1 +k2. We further need
a leakage-resilient property presented in Definition 1, which guarantees that, given a number of ciphertexts
encrypted under different KAHE keys, revealing the aggregate key only reveal the sum of the encrypted
messages.

10

RLWE-based KAHE scheme. We instantiate KAHE based on RLWE assumption. Let N1 be a power
of two, and let Rq1 = Z[X]/(q1, X

N1 + 1) for integer q1 > 0. Let t1 > 0 be an integer coprime to q1; the
plaintext space in our KAHE scheme is Rt1 = Z[X]/(t1, X

N1 + 1) ≡ ZN1
t1 . For any σ > 0, let Dσ be the

distribution over degree-N1 − 1 polynomials such that the coefficients are independent discrete Gaussians
with parameter σ. Let σs, σe > 0 be Gaussian parameters for the secret and error distributions. Then

• KAHE.Setup() = a: Samples a← Rq1 as the public parameter which is implicit in the following algorithms.

• KAHE.KeyGen() = k: Samples and returns k← Dσs .

• KAHE.Enc(x,k) = a · k + t1 · e+ x ∈ Rq1 : Samples e← Dσe , and returns a ciphertext c = a · k + t · e+ x.

• KAHE.Dec(c,k) = (c − a · k) mod t1: The decryption algorithm computes c − a · k and then reduce
modulo t1.

We prove in Lemma 1 that this construction satisfies the desired leakage-resilience property.

5.2 Threshold Additive Homomorphic Encryption
We use a public key threshold additive homomorphic encryption scheme with additive distributed key genera-
tion and decryption procedures. Such scheme AHE = (Setup,KeyGen,KeyAgg,Enc,PartialDec,Recover) allows
each party to generate independently its private key share and the corresponding public key share (skj , pkj)←
KeyGen(rj). The final public key is obtained by aggregating the public key shares pk ← KeyAgg({pkj}j).
Each share holder of the secret key can partially decrypt a ciphertext pd← PartialDec(ct, skj) and the final
decryption can be reconstructed from all partial decryptions Recover(ct, {pdj}j).
Additive Homomorphism. We require AHE to be additive homomorphic over plaintext: Given any two
ciphertexts ct1 and ct2 encrypting m1 and m2 under pk, the sum ct = ct1 + ct2 is a valid ciphertext of
m = m1 +m2 under pk.
RLWE-based AHE scheme. We use the following RLWE-based AHE scheme. Let N2 be a power of
two, and let Rq2 = Z[X]/(q2, X

N2 + 1) be a quotient ring for an integer modulus q2 > 0. Let t2 > 0 be an
integer such that the plaintext space is Z[X]/(t2, X

N2 + 1) ≡ ZN2
t2 , and let ∆ = bq2/t2e be a scaling factor.

Let χs, χe, χflood be distributions over Rq2 . For any distribution χ, we denote using s ← χ(r) the process
of sampling from χ using randomness r. We sometimes omit the explicit the randomness parameter r to
indicate that it is uniformly sampled. Our AHE consists of the following algorithms:

• AHE.Setup() = u: Samples u← Rq2 as the public parameter which is implicit in the following algorithms.

• AHE.KeyGen((r1, r2)) = (skj , pkj): Samples skj ← χs(r1) and e← χe(r2), and sets pkj = −u · skj + e.

• AHE.KeyAgg({pkj}mj=1) = pk: Returns the aggregated public key pk =
∑m
j=1 pkj ∈ Rq2 .

• AHE.Enc(x, pk; r) = (ct0, ct1): Parses (r1, r2) = r, samples v ← χs(r1) and e0, e1 ← χe(r2), and computes
ct0 = pk · v + e0 + ∆ · x ∈ Rq2 and ct1 = u · v + e1 ∈ Rq2 .

• AHE.PartialDec(ct1, skj) = ct1 · skj + eflood: To mask a ciphertext component ct1, this algorithm samples
eflood ← χflood, and returns ct1 · skj + eflood.

• AHE.Recover(ct, {pdj}mj=1) = x: Parses (ct0, ct1) = ct, and returns
⌊
(ct0 +

∑m
j=1 pdj)/∆

⌉
.

Practical considerations. In KAHE we use small Gaussian secrets and errors that are secure according
to Lemma 1. As a result we can use small parameters to instantiate AHE for aggregating the KAHE secret
keys.

The native plaintexts in our KAHE scheme are polynomials of degree in the range of 210 to 214, with
a coefficient modulus t1 up to 400-bit. To achieve close to optimal ciphertext expansion, we pack multiple

11

entries of the input vectors x on a polynomial coefficient, i.e., encoding x ∈ [t]` as Gx ∈ [t1]L, where
G = I ⊗ (1, B,B2, . . .)T for B = nt and L = d `

dlogB t1−1e
e, to fit the sum of n input vectors. When L is

not a multiple of N1 and hence Gx does not fully occupy all coefficients of plaintext polynomials, we simply
drop the unused ciphertext coefficients. Note that such truncation still permits decryption as we only use
additive homomorphism. On the other hand, the public parameters in both schemes are uniformly random
polynomials and can be transmitted to the clients using PRG seeds.

5.3 Zero-Knowledge Proofs of Knowledge
In our constructions we use three types of ZKPoK:
Proof of plaintext knowledge: The goal of this proof is to guarantee that a particular ciphertext was
generated by a party who knows the encrypted message (not by homomorphic computation on other cipher-
texts). For the encryption scheme we described above, this boils down to giving a ZKPoK of the randomness
v used to generate the second half ct1 of a given ciphertext using AHE.Enc. The algorithms for the proof are:
ProveAHE.Enc(ct, x, pk, r, aux) returns a proof p. VerifyAHE.Enc(ct, pk, p, aux) return True with overwhelming
probability iff the prover knows x such that for some r, ct = AHE.Enc(x, pk; r, aux). Here, aux is an arbitrary
string that the proof is bound to using Fiat-Shamir. For efficiency, the particular ZKPoK we use can also be
verified given only a commitment cct1 to the ciphertext component ct1. By abuse of notation, we also call
this verification algorithm as VerifyAHE.Enc(cct1 , pk, p, aux).
Proof of key generation: This proof guarantees that the party who provides a public key share knows
the corresponding secret key share. As in the previous case, in our particular encryption scheme it is enough
to prove knowledge of the randomness used in AHE.KeyGen. We use the notation ProveAHE.KeyGen(pk, sk, r)
for the prover and VerifyAHE.KeyGen(pk, p) for the verifier.
Proof of partial decryption: This proof guarantees that the partial decryption is generated by knowing
a corresponding secret key. We give a ZKPoK of a secret sk used in partial decryption that generates
the output. Analogously to the previous case, we use notation ProveAHE.PartialDec(pd, sk) for the prover and
VerifyAHE.PartialDec(pd, p) for the verifier.

We present constructions for the above proofs in Appendix A.3. Our main observation is that for
our RLWE based instantiation of AHE, all of these proofs can be reduced to proving linear relations over
vector commitments. As in previous work [8, 28], we instantiate the proof using Bulletproofs [31] based on
curve25519, along with Pedersen vector commitments. Besides having very compact proofs with logarithmic
size in the number of constraints, Bulletproofs also allow batched verification to improve server performance
for a large number of clients. However, other choices of proof systems are possible here, and the right choice
will likely depend on the exact application. We leave a detailed analysis of suitable proof systems for future
work.

6 Our Protocol: Semi-honest Security
In this section we present the version of our protocol that is secure against a semi-honest server who may con-
trol a fraction of clients (respectively decryptors when we have distributed decryptors) and these clients could
be fully malicious. As a first step we present a protocol for the decryptor role, assuming it is implemented
distributed by a committee of m decryptors.

6.1 Decryptor role
Our protocol for the (distributed) decryptor role is given in Figure 4. We use the roles defined in Section 2.1.
For simplicity we describe the protocol assuming the decryptors have secure channels between them, as
the server can relay encrypted messages among decryptors. This is the same setup as in previous works,
e.g. [3, 7, 8].

12

Setup: A committee of m members, identified by indices in [m], with secure authenticated channels among
themselves, and a coordinator Coord. Each decryptor j ∈ D performs all steps below except those done by
Coord.

Parameters: Public parameters of AHE, and threshold t.

Key Generation Phase

Output: A set of decryptors D, and a public key pk.

1. Every committee member in j ∈ [m] generates:

(a) (skj , pkj)← AHE.KeyGen(rj) from randomness rj ;

(b) secret-shares {sharejk}k ← Share(rj , t) within D with threshold t.

(c) Sends
(
pkj , πj = ProveAHE,KeyGen(pkj , rj)

)
to Coord.

2. Coord collects messages up to a timeout T . Let C ⊆ [m] be decryptors with correct proofs πj . Coord aborts if
|C| < t, and otherwise Coord sets D := C and pk :=

∑
j∈D pkj .

Partial Decryption Phase

Output: A partial decryption of ciphertext.

Round 1

3. Coord sends ct1 to decryptors in D.

4. Every j ∈ D

(a) Secret-shares a key ksym,j for a symmetric encryption scheme Sym within D with threshold t.

(b) Sends ¯pdj ← Sym.Enc(mj ,ksym,j) to Coord, where mj = (pdj = AHE.PartialDec(c1, skj) and τj =
ProveAHE.PartialDec(pdj , skj)).

5. Coord collects messages up to a timeout T . Let P ⊆ D be the subset of decryptors j submitted messages ¯pdj .
If |P | < t, Coord aborts.

Round 2

6. Coord sends P to all decryptors in P .

7. Every j ∈ P

(a) Sends shares {sharekj }k∈D\P from all decryptors k not in P , i.e. dropouts, to Coord.

(b) Sends the key shares received in Step 4a from every decryptor in P to Coord.

8. Coord

(a) Reconstructs (rk, pkk, skk, pdk) of all dropout k ∈ D \ P . Aborts if pkk differs from the one in Step 1c.

(b) Recovers mk for all non-dropout k ∈ P from Step 4a. Aborts if there is an invalid proof of partial
decryption.

(c) Sends pd :=
∑
j∈D pdj to S.

Figure 4: Decryptor D by committee. In practice, Coord above is played by the same server playing S.

13

In the key generation phase the decryptors generate parameters for an AHE scheme with distributed
private key among all decryptors. The underlying RWLE encryption constructions enables efficient key
generation where each decryptor generates its own set of public and private key shares and the common
encryption key is obtained by combining up all individual public key shares, i.e. pk =

∑
j pkj . The AHE

scheme should have appropriately chosen parameters which guarantee ciphertext modulus that can accom-
modate error growth due to the aggregated noise in the public key. During decryption requests from the
server, all decryptors provide partial decryptions pdj of the ciphertext provided by the server.

Additionally during key generation, each decryptor threshold-secret shares its private key with the others
to support dropouts among the decryptors. During dropout recovery the decryptors provide to the server
shares of the decryption keys of parties who have dropped out and the server has not received their partial
decryptions (the semi-honest server correctly reports dropouts).

The only “non-standard” aspect of the decryptor protocols are the required ZK proofs in key generation
and decryption. To see why they are needed, let us present a viable attack in their absence. Consider an
adversary A observing the server, i.e., corrupting it passively, and controlling a decryptor d. A instructs d
to delay its message until all other decryptors have sent their message in Step 1. As A can observe such
message, it then instructs d to submit pkA−

∑
i 6=d pki as its public key pkd, where pkA is a key for which the

adversary know the private key. Note that the protocol will compute pk = pkA, and therefore the adversary
can decrypt any message. This is exactly why the proof of knowledge of secret key required by the protocol
addresses: even if A can see public keys of honest decryptors, it cannot cancel the underlying secret key
share.

The proof of partial decryption is required to prevent adaptive abort attacks where one of the decryptors
colluding with the server gets to see all other AHE partial decryptions, can therefore decrypt the aggregate
KAHE ciphertexts, and based on the output value decide to abort.

Our protocol provides security with a semi-honest coordinating server who may be controlling up to t−1
decryptors. We present a formal theorem and a simulation-based proof in Appendix B.

6.2 Server and Client roles
We present the protocols for server and clients in Figures 5 and 6, respectively. Each client encrypts its
input under a fresh KAHE key ki. It also encrypts ki itself using the public AHE key pk generated by the
decryptors, together with a proof of knowledge for the encrypted ki. The latter is necessary to prevent the
server from deriving correlated keys and using those to shift the aggregated KAHE key that will be decrypted
by the decryptors (this is very similar to the attack described in the decryptor section).

The server aggregates the AHE ciphertexts encrypting KAHE keys and submits the resulting AHE cipher-
text for decryption by the decryptor. It also aggregates the encrypted messages under the KAHE and uses
the decrypted key that it obtained from the decryptor, to decrypt the aggregated clients’ inputs.

Our results in the semi-honest model are given by the following theorem. An extended version is in
Appendix B.

Theorem 1 (Informal). The protocol formed by Figures 4 (distributed decryptor), 5 (Server), and 6 (client)
securely implements the functionality in Figure 1 in the presence of an adversary actively corrupting, simul-
taneously, at most t− 1 decryptors and n− 1 clients.

In the presence of an adversary that additionally passively corrupts the Server, the same protocol securely
implements the functionality in Figure 11 in the appendix.

The Client role runs in 1 round with cost O(` log n). Decryptors have a 1-round setup, and 2-round
decryption, running in O(m+ log n), where m is the number of decryptors. The server runs in O(n` log n).

We present a formal theorem and the security proofs for a semi-honest server colluding with a number of
malicious clients in Appendix B. Note that in case the server is honest, no honest party receives an output.
Therefore, the simulator in that case only needs to simulate the real view of malicious clients and decryptors
in the protocol. The view of malicious decryptors involves AHE public key shares from honest decryptors as
well as an honestly computed AHE ciphertext. The view of malicious clients only involves the aggregated
AHE public key and the fact that this is simulatable follows from the security of the decryptor protocol.

14

Parameters: Number of clients n, input domain
F`.

1. Receive key pk from D.

2. Initialize nclients,m, ct0, and ct1 to zero.

3. while nclients < n :

// Process ith client’s request

(a) Send pk to Ci

(b) Receive (mi, (ct
0
i , ct

1
i), pi) from Ci

(c) If VerifyAHE.Enc((ct
0
i , ct

1
i), pk, pi,⊥):

i. (ct0, ct1) += (ct0i , ct
1
i)

ii. m += mi

iii. nclients += 1

// Decrypt aggregated symmetric key

4. Send ct1 to D.

5. Receive pd from D.

6. k := AHE.Dec(ct0, pd).

7. Output KAHE.Dec(m,k).

Figure 5: Server S. The server processes n asyn-
chronous client contributions. Each clients that contacts
the server receives a key pk and submits a message, with-
out coordination with other clients. The server may pro-
cess client’s requests in parallel and in arbitrary order.

Input: xi ∈ F`.
1. Receive pk from S

2. Set ki := KAHE.KeyGen()

// mi is a symmetric key encryption of input xi

3. Set mi := KAHE.Enc(xi,ki)

4. Sample r uniformly at random

// (ct0i , ct
1
i) is an encryption of ki under pk with

randomness r

5. Set pi = ProveAHE.Enc((ct
0
i , ct

1
i),ki, pk, r,⊥)

6. Send (mi, (ct
0
i , ct

1
i), pi) to S

Figure 6: Client C. Note that all steps, except form-
ing ct0i and sending the result, (but including forming
ct1i and pi) can be done before the pk arrives from S.
Thus online time can be very small, and in particular
is independent of `.

15

7 Our Protocol: Active Security
For malicious security we need to remove some of the assumptions we made in the previous protocol. We
assume that (i) the Server behaves honestly relaying messages among decryptors and presents to clients
the correct public key, (ii) requests decryption of a correctly aggregated sum, and (iii) honestly reports the
drop-out clients. In the malicious setting an actively corrupted server could try to decrypt a message sent
by a target victim client in Step 5 (Figure 6), or a sum including a given client’s input more than once. In
the next few subsections we discuss how to drop the above assumptions. We present

• a proof of unique inclusion that the server can generate to convince a verifier that it has used each input
from a client at most once in the aggregation. This together with the property that the server cannot
generate any new input related to an existing client’s contribution, limits the influence of a single client
in the final sum, which is an important step in providing differential privacy, as we will discuss later
(Section 7.1).

We note that an actively corrupted server cannot be prevented from ignoring specific client contributions
(assuming we require asynchronous single-message clients). Therefore, the ideal functionality achieved by
our summation protocol must allow the adversary to exclude honest clients from the final sum, and is
presented in Figure 11.

• a distributed verifier construction which can be instantiated by the clients in a way that allows each client
to do work sub-linear in the number of contributions, and independent of the vector length (Section 7.2).

In Appendix C we describe additional changes to client, server and decryptors, as well as a full security proof
of our malicious protocol.

7.1 Proof of unique inclusion
As shown in the previous section, the proof of encryption in Figure 6 prevents the adversary from “copying”
a client contribution, and having a corrupted client deliver the same proof. However, an actively corrupted
server can run Steps (i-iii) in Figure 5 many times, to amplify the influence of a client in the result, by
adding their contribution more than once. To prevent this we introduce the role of the verifier, whose task
in to ensure that the ciphertext ct sent for decryption in Step 4 corresponds to the aggregation of n values
from distinct clients (Step 5 in Figure 3). The main properties of the verification stage are the following:

1. Public verifiability. The verification does not involve any private data, and can be executed publicly. If
the Server is caught misbehaving, the verification process outputs a public verifiable proof incriminating
the Server. This proof can’t be forged to falsely accuse the Server.

2. Efficiency. The Verifier requires no interaction, and costs are independent of input length `, and client,
server, and decryptor costs remain the same as in the previous section.

3. Distributed verification. The verifier’s work can be distributed among several parties, to amortize
costs.

An important component of our approach is the ability to bind a ZK proof to an integer identifier aux. This
can be easily done, in general, by having aux be concatenated onto the statement before it is hashed to
generate challenges. In practice we will use aux = i for the contribution of client i. The modification with
respect to the semi-honest version for the client is then simply that they submit ProveAHE.Enc(ct, x, pk, r, i)
instead of ProveAHE.Enc(ct, x, pk, r,⊥), The goal of the Server is then to convince the verifier(s) that the
ciphertext sent for decryption corresponds to the aggregation of a set of ciphertexts with unique identifiers.
If that is not the case, then the Server should be caught with very high probability. To do this, the server can
commit to the set

{(
mi, (ct

0
i , ct

1
i), pi

)}
i
with pi = ProveAHE.Enc(ct, xi, pk, ri, i), i.e. the data received from all

clients in Step 3b (Figure 5), and prove that the ciphertext sent for decryption indeed equals the sum of the
ct1i ’s, without repetitions.

16

We achieve this with very little communication overhead (independent of input length), in a way that can
be easily distributed (thus enabling a distributed decryptor implementation). Our data structure, described
next, is similar to the one proposed by Honeycrisp [30], but much more succinct.

Aggregation Tree. Let S =
{

(ct1i , pi)
}
i
with pi = ProveAHE.Enc(ct, xi, pk, ri, i) be the encrypted key and

proof of knowledge of randomness received by the server (excluding messages whose proof does not verify).
An important observation is that pi can be verified with respect to a commitment of cct1i

. This corresponds
to significant savings, as the size of ct1i is a few KBs in practice, while a Pedersen vector commitment is 16B.
Hence, let Commit be an additive homomophic binding commitment scheme, e.g. Pedersen commitments,
and let cct1i

= Commit(ct1i) S̃ = {cct1i
, pi}i be the set of commitments and corresponding proofs, indexed

by the client identifier i We define T (S̃) to be the binary tree with the pairs in S̃ as leaves, sorted by
identifier i, and internal nodes containing a single commitment corresponding to the (homomorphic) sum
of the commitments in the two children. Therefore, T (S̃) contains n proofs, and 2n commitments. As in
our implementation we use constant-size Pedersen commitments and logarithmic size proofs, the tree size is
O(n log n) and thus independent of input length `.

The Verifier Role. In order to now prove that all clients are aggregated into a ciphertext ct1 at most
once, it is enough to send (ct1, T (S̃)) to a verifier, who can then (i) verify all proofs in S̃, (ii) check that
all commitments in S̃ add up to a valid commitment to ct1, and (iii) check that ids i in the proofs of S̃ are
all distinct. Altogether, (i-iii) ensure that the sum was correctly computed without “replaying” any client
contribution. The important properties for the verifier are (i) that they don’t sign a ciphertext that hasn’t
passed all of the above checks, (2) they never sign more than one ciphertext and (3) that for any honest
client they know whether that client was included in the ciphertext they signed. The final condition is a
technical restriction that is required for the proof, however all the ideas for the verifiers below incidentally
provide it.

7.2 Implementing the Verifier
The verifier can be implemented in many ways: it could be a designated party, the set of clients themselves,
a committee of clients, or a Trusted Execution Environment (via remote attestation, as confidentiality is not
concern here). The only assumption for this role is non-collusion with the Server, and therefore it can also
be taken by the same party(s) implementing the decryptor.

We now present two variants of a distributed verifier, one with overwhelming deterrence for a cheating
server, and one with constant (tunable) deterrence. By deterrence we mean the probability of a cheating
server being caught. We assume that a pool of c clients, among which we trust γd ≥ 1/2 do not collude with
an adversary corrupting the server, are available to serve as a verifier.

Verifier via committee. In this approach the c clients in the pool are grouped in c/k committee of size
k = O(σ+log(c/k)), ensuring that each committee contains at least a threshold t of honest clients except with
negligible probability 2−σ, for statistical security σ. A randomness beacon could be used (as in Flamingo [7])
to make sure these committees are selected uniformly at random, and for the interval assignment that follows.

Then, the leaves of T (S̃) are split into c/k contiguous intervals and each committee signs the root tree
after verifying their interval. The decryptor requires at least t signatures from every subtree/interval to
decrypt. Each committee includes enough honest parties to verify valid intervals, but not enough corrupted
parties to verify an invalid interval. Moreover, but choosing a large enough threshold t we can offer robustness
to a fraction of verifiers dropping out. We offer an evaluation of this approach in Section 8.

Verifier via random checks. In situations where a constant deterrence is enough, e.g., because the risk
of reputational loss for the server is high, we can rely on the γdc honest clients to check random intervals
of leaves. Concretely, consider a verifier that selects, independently at random, s intervals of length w to
be checked. If the server cheats at a given leaf, the probability of a particular check catching the lie is

17

w/n. Therefore, the probability of the server cheating and getting away with it is p = (1 − w/n)s ≤ e
−ws
n .

By having each verifier check s/(γdc) random intervals, the honest majority assumption ensures a cheating
server will get caught with probability ε = 1− p.

The following theorem states the security for our malicious protocol. A more detailed version, together with
a proof, is presented in Appendix C.

Theorem 2 (Informal). The protocol formed by Figure 15 (Client), Figure 14 (Server), and Figure 13
(Decryptor) securely implements the aggregation functionality in Figure 1 in the random oracle model against
a malicious adversary controlling the server, any number of clients, at most t − 1 decryptors, and at most
t− 1 verifiers per committee.

The Client role runs in 1 round with cost O(` log n). Decryptors have a 2-round setup, and 3-round
decryption, running in O(d + log n), where d is the number of decryptors. The server runs in O(n` log n).
Each verifier committee member runs in O(nk/c+ log n).

8 Experiments
We implement our protocol in C++ and Rust. We use SHELL [32] for RLWE-based KAHE and AHE
schemes, and the Bulletproofs [31] implementation by de Valence et al. [29]. We extend the latter to support
approximate and exact range proofs over committed vectors. While our protocol can be instantiated with
any zero-knowledge proof system for linear relations, we chose Bulletproofs for two reasons: (1) They allow
for batched verification, allowing the server to efficiently verify large batches of client submissions as long
as all clients are honest, and (2) they have comparably small size, thereby minimizing the communication
overhead, in particular in our malicious protocol.

We use the lattice estimator [33] to estimate the hardness of RLWE problem used in KAHE and AHE,
and set parameters to have at least 128 bits of computational security. For KAHE, we set the Gaussian
parameters for the secret and error distributions to σs = 4.5 and σe = 6.36, respectively, and we cut off the
tail at 6 times the standard deviation. Our KAHE scheme achieves the desired leakage-resilient security by
Lemma 1. For AHE, we set χs to be the uniform ternary and χe to be the centered binomial distribution
with variance 8, which are standard choices for achieving semantic security in practice [34]. Furthermore,
we set our flooding noise parameters to have 40 bits of statistical security according to the analysis in [35,
Corollary 2], and we implement the constant-time discrete Gaussian sampler of Micciancio and Walter [36]
to sample the flooding noise.

To achieve optimal efficiency in our experiment settings, we estimated the error bound by numerically
computing the aggregated errors. In particular, this allows us to tightly bound the errors to be hidden by
the flooding noise eflood; in experiments we see that ‖eflood‖∞ is around 50 bits for up to 109 clients with
binary input of length up to 106. Although this is still large, thanks to using small secret keys in our KAHE
scheme, our AHE modulus q2 is only 58 to 78 bits. So we can set N2 = 212 and implement our AHE scheme
using up to two uint64_t RNS moduli. According to our benchmark, KAHE encryption takes at most 15ms,
AHE encryption takes at most 10ms, and partial decryption takes up to 258ms mostly due to sampling large
Gaussian flooding noises. For communication cost, a single AHE ciphertext is at most 323KB, and similar
to KAHE, we can discard unused coefficients in the component ct0. Figure 10 in the appendix lists the
parameters we used in our experiments.

8.1 Microbenchmarks
We present microbenchmarks for our protocol in Figure 7. Encryption, homomorphic aggregation, and
distributed decryption can all be done in the order of milliseconds. The largest per-client cost comes from
the zero-knowledge proof generation (1.8s on the client) and verification (407ms per client on the Server
and Verifier). We don’t see this hindering the practicality of our protocol for two reasons: First, since the
zero-knowledge proof from the client is with respect to a random secret, it could be both proven and verified
in an offline phase, before the data is even known to the client. Second, proof verification of each client

18

` Client Server Decryptor Verifier

ZKProve Encrypt Comm. Aggregate
(per client)

ZKverify
(per client)

ZKVerify
(setup)

ZKverify
(decryption)

ZKProve
(setup)

ZKProve
(decryption) Decrypt Comm. ZKverify

(per client)
Comm.

(per client)

103

<1.8s
2.7ms 53KB 0.0156ms

<407ms <407ms <765ms <1.7s <2.7ms <120ms 124KB <407ms <1.5KB105 8.5ms 494KB 0.0435ms
107 260ms 38MB 3.3419ms

Figure 7: Microbenchmarks of concrete computation and communication costs for several inputs lenghts `.
For the client, we measure encryption, proof generation, and communication cost. For the server, we measure
aggregation runtime (per client), and runtime of verification of (a) a client’s proof, (b) a decryptor’s public
key proof, and (c) a partial decryption proof. For the decryptor we measure the proof generation costs, at
setup and at decryption. Finally, for the verifier we report per-client runtime and communication, assuming
a single verifier. See Figure 9 for experiments with a distributed verifier.

can be performed independently and in parallel. This is because, unlike prior work (see next section), our
clients don’t have to block on each other. In practice, the wall-clock time of our protocol will therefore not
be dominated by the total computation cost.

We also note that our implementation largely builds on an existing implementation of Bulletproofs [29],
which lacks several optimizations. For example, it assumes that the relation being proven is represented as a
quadratic constraint, meaning that both sides of the final inner product remain private. However, our proofs
(see Appendix A.3) only require linear constraints. As observed by Gentry et al. [28], exploiting this can
save up to half of the Bulletproof prover time. A second optimization left for future work is batching the
proof verification, which as pointed out by [31, Section 6.3] greatly reduces the server cost.

8.2 Comparison with Prior Work
Before comparing against prior work, we emphasize that our protocol is the first to allow single-server
aggregation with asynchronous clients. As we argue in Section 4, this is a major qualitative difference for
large-scale deployments, as it allows scaling to millions of clients while tolerating large dropout rates, and
as such any quantitative comparison with prior work is inherently inaccurate.

The works closest to ours are LERNA (Li et al. [9]) and Flamingo (Ma et al. [7]). While they do not
support fully asynchronous clients, they also utilize a committee to help in the aggregation.

First, let us consider server computation. The Flamingo protocol requires about 2.5s for 1000 clients [7,
Figure 7], or 2.5ms per client. LERNA on the other hand aggregates 20000 client contributions in 5s, or
250µs per client of server time. In comparison, our protocol requires 407ms of computation time per client
(See Figure 7). While this is over two orders of magnitude more than the two related works, we believe
the scalability of our protocol outweighs its cost for most real-world applications. Moreover, as clients in
our protocol are completely independent, our per-client running times are representative of our protocol’s
throughput, which is not the case for Flamingo and LERNA, where clients have to wait for each other. In
terms of monetary cost our protocol is still practical: Using the Google Cloud spot price of 0.4 US cents per
vCPU-hour at the time of writing [37], an aggregation of a million clients with vectors of length 107 costs
less than 50 cents.

In Figure 8, we compare the client communication cost of our protocol against Flamingo. We exclude
LERNA here, since its client communication is at least 2GB [9, Table 3]. It can be seen that as the vector
length increases, the upload size of our protocol approaches that of Flamingo. Both protocols require about
10MB for contributing a vector of 107 16-bit numbers.

Finally, we compare the communication cost of committee members. Here our protocol allows some
flexibility as to how the verifier role is implemented (see Section 7.2). We consider both a fully malicious
server, which requires the verifiers to check all aggregated contributions, and a covert server with that will
get caught with a probability of 70% when cheating. In both settings, we either set the number of verifiers
to 100, or scale it with

√
n as the number of clients increases. We fix the number of decryptors to 100.

When the number of committee members is fixed, both our protocol and Flamingo require work from
each committee member that is linear in the number of clients n. This is to be expected, since in Flamingo

19

Figure 8: Client communication costs of our pro-
tocol and Flamingo for various vector lengths, in-
put range t = 216, statistical security parameter
σ = 40, and 10% dropouts.

Figure 9: Committee communication cost of differ-
ent variants of our protocol and Flamingo. This
includes both Decryptor and Verifier cost.

the committee has to decrypt all client contributions, while in our protocol it needs to verify them (or a
constant fraction of them in the covert case). However, a main advantage of our protocol is that it benefits
from scaling the committee up. With a committee size of

√
n, our protocol outperforms Flamingo even in

the malicious case as soon as n exceeds 105.

9 Conclusion
Our work greatly increases the practicality of secure aggregation, by removing synchronization points between
clients while at the same time only requiring lightweight computations and small communication overhead
from helper parties. By further avoiding the need for a PKI between clients, our work is well suited for
real-world deployments with dynamic client participation. Since the bottleneck of our construction is the
verification of zero-knowledge proofs on the server, we believe that progress in that area will directly translate
into improved efficiency for our protocol. Beyond the single-server setting, our protocol can be instantiated
with two non-colluding servers with asymmetric resource requirements. Given that this asymmetry is often
present when deploying protocols between real-world parties, we see other protocols with this property as
an interesting target for future research.

References
[1] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar

Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving
machine learning. In ACM SIGSAC Conf. on Comp. and Comm. Security, pages 1175–1191. ACM,
2017.

[2] Peter Kairouz, H. Brendan McMahan, et al. Advances and open problems in federated learning. CoRR,
abs/1912.04977, 2019. URL http://arxiv.org/abs/1912.04977.

[3] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana Raykova. Secure
single-server aggregation with (poly) logarithmic overhead. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pages 1253–1269, 2020.

[4] Jinhyun So, Corey J Nolet, Chien-Sheng Yang, Songze Li, Qian Yu, Ramy E Ali, Basak Guler, and
Salman Avestimehr. Lightsecagg: a lightweight and versatile design for secure aggregation in federated
learning. Proceedings of Machine Learning and Systems, 4:694–720, 2022.

20

http://arxiv.org/abs/1912.04977

[5] Amrita Roy Chowdhury, Chuan Guo, Somesh Jha, and Laurens van der Maaten. Eiffel: Ensuring
integrity for federated learning. In CCS, pages 2535–2549. ACM, 2022.

[6] Hidde Lycklama, Lukas Burkhalter, Alexander Viand, Nicolas Küchler, and Anwar Hithnawi. Rofl:
Robustness of secure federated learning. In SP, pages 453–476. IEEE, 2023.

[7] Yiping Ma, Jess Woods, Sebastian Angel, Antigoni Polychroniadou, and Tal Rabin. Flamingo: Multi-
round single-server secure aggregation with applications to private federated learning. In SP, pages
477–496. IEEE, 2023.

[8] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah Meiklejohn, Mariana Raykova, and Cathie
Yun. ACORN: input validation for secure aggregation. In USENIX Security Symposium, pages 4805–
4822. USENIX Association, 2023.

[9] Hanjun Li, Huijia Lin, Antigoni Polychroniadou, and Stefano Tessaro. LERNA: secure single-server
aggregation via key-homomorphic masking. In ASIACRYPT (1), volume 14438 of Lecture Notes in
Computer Science, pages 302–334. Springer, 2023.

[10] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of aggregate
statistics. In NSDI, pages 259–282. USENIX Association, 2017.

[11] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni Polychroniadou. Prio+: Privacy
preserving aggregate statistics via boolean shares. In SCN, volume 13409 of Lecture Notes in Computer
Science, pages 516–539. Springer, 2022.

[12] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Lightweight techniques
for private heavy hitters. In 2021 IEEE Symposium on Security and Privacy (SP), 2021.

[13] Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. Toward practical lattice-based proof
of knowledge from hint-mlwe. In CRYPTO (5), volume 14085 of Lecture Notes in Computer Science,
pages 549–580. Springer, 2023.

[14] Cloudflare. League of Entropy, 2024. URL https://www.cloudflare.com/leagueofentropy/.

[15] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique. In Tutorials on the
Foundations of Cryptography, pages 277–346. Springer International Publishing, 2017.

[16] Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic Applications. Cambridge Uni-
versity Press, 2004.

[17] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and Michael J. Freedman.
CONIKS: bringing key transparency to end users. In USENIX Security Symposium, pages 383–398.
USENIX Association, 2015.

[18] Mohamad Mansouri, Melek Önen, Wafa Ben Jaballah, and Mauro Conti. Sok: Secure aggregation based
on cryptographic schemes for federated learning. Proc. Priv. Enhancing Technol., 2023(1):140–157, 2023.

[19] David Chaum. The dining cryptographers problem: Unconditional sender and recipient untraceability.
J. Cryptol., 1(1):65–75, 1988.

[20] Zizhen Liu, Si Chen, Jing Ye, Junfeng Fan, Huawei Li, and Xiaowei Li. SASH: efficient secure aggregation
based on SHPRG for federated learning. In UAI, volume 180 of Proceedings of Machine Learning
Research, pages 1243–1252. PMLR, 2022.

[21] Harish Karthikeyan and Antigoni Polychroniadou. OPA: One-shot private aggregation with single client
interaction and its applications to federated learning. Cryptology ePrint Archive, Paper 2024/723, 2024.
URL https://eprint.iacr.org/2024/723. https://eprint.iacr.org/2024/723.

21

https://www.cloudflare.com/leagueofentropy/
https://eprint.iacr.org/2024/723
https://eprint.iacr.org/2024/723

[22] Swanand Kadhe, Nived Rajaraman, Onur Ozan Koyluoglu, and Kannan Ramchandran. Fastsecagg:
Scalable secure aggregation for privacy-preserving federated learning. CoRR, abs/2009.11248, 2020.

[23] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Jacques
Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture Notes in Computer
Science, pages 223–238, Prague, Czech Republic, May 2–6, 1999. Springer, Heidelberg, Germany. doi:
10.1007/3-540-48910-X_16.

[24] Leonid Reyzin, Adam D. Smith, and Sophia Yakoubov. Turning HATE into LOVE: compact homo-
morphic ad hoc threshold encryption for scalable MPC. In CSCML, volume 12716 of Lecture Notes in
Computer Science, pages 361–378. Springer, 2021.

[25] Rikke Bendlin and Ivan Damgård. Threshold decryption and zero-knowledge proofs for lattice-based
cryptosystems. In Daniele Micciancio, editor, TCC 2010: 7th Theory of Cryptography Conference,
volume 5978 of Lecture Notes in Computer Science, pages 201–218, Zurich, Switzerland, February 9–11,
2010. Springer, Heidelberg, Germany. doi: 10.1007/978-3-642-11799-2_13.

[26] Katharina Boudgoust and Peter Scholl. Simple threshold (fully homomorphic) encryption from LWE
with polynomial modulus. In ASIACRYPT (1), volume 14438 of Lecture Notes in Computer Science,
pages 371–404. Springer, 2023.

[27] Daniele Micciancio and Adam Suhl. Simulation-secure threshold PKE from LWE with polynomial
modulus. IACR Cryptol. ePrint Arch., page 1728, 2023. URL https://eprint.iacr.org/2023/1728.

[28] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-interactive publicly verifiable secret
sharing with thousands of parties. In EUROCRYPT (1), volume 13275 of Lecture Notes in Computer
Science, pages 458–487. Springer, 2022.

[29] Henry de Valence, Cathie Yun, and Oleg Andreev. Bulletproofs, 2018. URL https://github.com/
zkcrypto/bulletproofs.

[30] Edo Roth, Daniel Noble, Brett Hemenway Falk, and Andreas Haeberlen. Honeycrisp: large-scale differ-
entially private aggregation without a trusted core. In SOSP, pages 196–210. ACM, 2019.

[31] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Gregory Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In IEEE Symposium on Security and
Privacy, pages 315–334. IEEE Computer Society, 2018.

[32] SHELL authors. Simple homomorphic encryption library with lattices (SHELL), 2021. URL https:
//github.com/google/shell-encryption.

[33] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
J. Math. Cryptol., 9(3):169–203, 2015.

[34] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Shai
Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody,
Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan. Homomorphic encryption security standard.
Technical report, HomomorphicEncryption.org, Toronto, Canada, November 2018.

[35] Baiyu Li, Daniele Micciancio, Mark Schultz, and Jessica Sorrell. Securing approximate homomorphic
encryption using differential privacy. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances
in Cryptology – CRYPTO 2022, Part I, volume 13507 of Lecture Notes in Computer Science, pages
560–589, Santa Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg, Germany. doi: 10.1007/
978-3-031-15802-5_20.

22

https://eprint.iacr.org/2023/1728
https://github.com/zkcrypto/bulletproofs
https://github.com/zkcrypto/bulletproofs
https://github.com/google/shell-encryption
https://github.com/google/shell-encryption

n c ` N1 q1
Packing
factor N2 q2 KAHE comm. AHE comm. log(floodingNoise)

103 102 103 2048 39 1 4096 60 5.00 KB 46.08 KB 47
105 102 103 2048 49 1 4096 64 6.12 KB 49.15 KB 48
107 102 103 4096 98 2 4096 70 6.12 KB 71.68 KB 51
103 102 105 4096 91 3 4096 60 379.17 KB 61.44 KB 47
105 102 105 8192 212 6 4096 64 441.68 KB 131.07 KB 48
107 102 105 8192 216 5 4096 70 540.00 KB 143.36 KB 51
103 102 107 16384 429 16 4096 60 33.52 MB 245.76 KB 47
105 102 107 16384 408 12 4096 64 42.60 MB 262.14 KB 48
107 102 107 16384 412 10 4096 70 51.50 MB 286.72 KB 51

Figure 10: Concrete parameters used in our experiments for computational security λ ≥ 128. We instantiate
our KAHE using a ring Rq1 = Zq1 [X]/(XN1 + 1), and AHE using a ring Rq2 = Zq2 [X]/(XN2 + 1) and scaling
factor ∆.

[36] Daniele Micciancio and Michael Walter. Gaussian sampling over the integers: Efficient, generic,
constant-time. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017,
Part II, volume 10402 of Lecture Notes in Computer Science, pages 455–485, Santa Barbara, CA, USA,
August 20–24, 2017. Springer, Heidelberg, Germany. doi: 10.1007/978-3-319-63715-0_16.

[37] Google Cloud. Spot VMs pricing, 2024. URL https://cloud.google.com/spot-vms/pricing.

[38] Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. Toward practical lattice-based proof
of knowledge from hint-MLWE. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in
Cryptology – CRYPTO 2023, Part V, volume 14085 of Lecture Notes in Computer Science, pages 549–
580, Santa Barbara, CA, USA, August 20–24, 2023. Springer, Heidelberg, Germany. doi: 10.1007/
978-3-031-38554-4_18.

[39] Albert Cheu. Differential privacy in the shuffle model: A survey of separations. CoRR, abs/2107.11839,
2021. URL https://arxiv.org/abs/2107.11839.

[40] Slawomir Goryczka, Li Xiong, and Vaidy S. Sunderam. Secure multiparty aggregation with differential
privacy: a comparative study. In International Conference on Extending Database Technology, 2013.
URL https://api.semanticscholar.org/CorpusID:1863871.

[41] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In CCS, pages 62–73. ACM, 1993.

A Additional Details on Cryptographic Primitives
We present in this section the additional materials on the cryptographic primitives introduced in Section 5.
Figure 10 further presents concrete parameters for our RLWE-based instantiations.

A.1 Key-Additive Homomorphic Encryption (KAHE)
We will use a symmetric key KAHE scheme consisting of the following algorithms

• KAHE.Setup() which returns a public parameter. We assume this public parameter is implicit in all
the following algorithms.

• KAHE.KeyGen() which returns a key k.

23

https://cloud.google.com/spot-vms/pricing
https://arxiv.org/abs/2107.11839
https://api.semanticscholar.org/CorpusID:1863871

• KAHE.Enc(x,k) which encrypts a value x with key k, returning a ciphertext c.

• KAHE.Dec(c,k) which decrypts a ciphertext c under the key k and returns the underlying plaintext.

Key and Message Additive Homomorphism. Given any two ciphertexts c1 and c2 encrypting x1 and
x2 under keys k1 and k2 respectively, we require that c1 + c2 is a valid encryption of x1 + x2 under the key
k1 + k2.

Leakage-resilient security. Loooking ahead, each client will encrypt its input under its own KAHE secret
key, and the server will learn the sum of all clients’ secret keys to decrypt the aggregated KAHE ciphertexts.
In order to protect individual input under such leakage of the sum of secret keys, we require that the KAHE
scheme must satisfy the following leakage-resilient security.

Definition 1. For any n > 0, we say that a KAHE scheme E is n-semantic secure under leakage of sum
of secret keys if there exists an efficient simulator Sim such that, for any sequence of input x1, . . . , xn, the
following distribution

D0 =

(a,
n∑
i=1

ki, c1, . . . , cn)
∣∣∣ a← Setup(),
∀i ∈ [n].ki ← KeyGen(),

ci ← Enc(xi,ki)

 ,

is computationally indistinguishable from

D1 = {(a,Sim(a,
n∑
i=1

xi)) | a← Setup()}.

RLWE-based KAHE scheme. We instantiate a KAHE scheme based on RLWE assumption. Let N1 be
a power of two, and let Rq1 = Z[X]/(q1, X

N1 + 1) be a quotient ring for some modulus q1 > 0. Let t1 > 0 be
an integer coprime to q1; the plaintext space in our KAHE scheme is Rt1 = Z[X]/(t1, X

N1 + 1) ≡ ZN1
t1 . For

any σ > 0, let Dσ be the distribution over degree-N1 polynomials such that the coefficients are independent
discrete Gaussians with parameter σ. Let σs, σe > 0 be Gaussian parameters for the secret and error
distributions. Then

• KAHE.Setup() = a: Samples and returns a ← Rq1 as the public parameter which is implicit in all of
the following algorithms.

• KAHE.KeyGen() = k: Sample k← Dσs .

• KAHE.Enc(x,k) = a · k + t1 · e+ x ∈ Rq1 : The encryption algorithm samples an error term e ← Dσe ,
and returns a ciphertext c = a · k + t · e+ x.

• KAHE.Dec(c,k) = (c − a · k) mod t1: The decryption algorithm computes m − a · k and then reduce
modulo t1 to remove error.

Note that, to support long messages that span multiple polynomials in the plaintext space, we can naturally
extend this scheme using multiple public random polynomials a1, a2, . . .

The following lemma shows that, by using Gaussian secrets and errors whose widths are slightly larger
than those used in standalone schemes, our RLWE-based KAHE scheme satisfies the leakage resilient security
of Definition 1.

Lemma 1. For any n, σ > 0, assume RLWEN1,q1,Dσ,Dσ is κ-bit hard for up to n samples. Let σs =
√

2σ and
σe = 2σ, and let Dσs and Dσe be the secret and error distributions of the RLWE-based KAHE scheme. Then
the RLWE-based KAHE scheme is n-semantic secure under leakage of sum of secret keys as in Definition 1.

Our security proof relies on the following Hint-RLWE assumption, which is known to be equivalent to
standard RLWE assumption [38].

24

Definition 2 (HintRLWE). Let N be a power of two, and let m > 0 be an integer. Let R be a cyclotimic
ring of degree N , and let Rq be its residue ring modulo q > 0. The Hint-RLWE problem is to efficiently
distinguish the following two distributions:

{(a,a · s+ e, s+ r, e + f) : a← Rmq , s, r ← χs, e, f ← χme },

and
{(a,u, s+ r, e + f) : a← Rmq ,u← Rmq , s, r ← χs, e, f ← χme }

Lemma 2 (HintRLWE Hardness [38, Theorem 1]). For σ > 0, let σ1 = 2σ. If σ ≥
√

2 · ηε(ZN), then there
exists an efficient reduction from RLWE over Rq with noise distribution Dσ to HintRLWE over Rq with
χs = χe = Dσ1

.

Now we are ready to prove Lemma 1.

Proof of Lemma 1. Fix a sequence of input {xi}ni=1. Assume RLWEN1,q1,Dσ,Dσ is hard, and let σs = 2σ,
σe = 2

√
2σ. We build a simulator ∼ as follows.

Sim(a, z =

n∑
i=1

xi) = (

n∑
i=1

ki, u1, . . . , un−1, u
′
n)where

∀i ∈ [n].ki ← Dσs , ei ← Dσe ,

∀i ∈ [n− 1].ui ← Rq1 ,

u′n = −
n−1∑
i=1

ui + a ·
n∑
i=1

ki +

n∑
i=1

ei + t1 · z

Since σe =
√

2σs, sampling from the Gaussian distribution Dσe is equivalent to the sum of two indepen-
dent samples from Dσs . We can rewrite the real distribution as

D0 =

(a,
n∑
i=1

ki, c1, . . . , cn)
∣∣∣ a← Rq1 ,

∀i ∈ [n].ki, ei, fi ← Dσs ,
ci = a · ki + ei + fi + t1 · xi

 .

We prove that D0 is indistinguishable from the ideal distribution using the following hybrids. To simplify
notations, we assume ei, fi,ki are all independent samples of Dσs , and ui are all independent uniformly
random element of Rq1 .

• Hyb(0) = (a, z =
∑n
i=1 ki, y1 = a ·k1 +e1 +f1 + t1 ·x1, . . . , yn = a ·z+ t1 ·xn−

∑n−1
i=1 yi+

∑n
i=1(ei+fi)).

This is exactly D0.

• Hyb(j) = (a, u1, . . . , uj , yj+1 = a · kj+1 + ej+1 + fj+1 + t1 · xj+1, . . . , yn = a · z + t1 · (xn +
∑j
i=1 xi)−∑j

i=1 ui −
∑n−1
i=j+1 yi +

∑n
i=1(ei + fi)), for j = 1, . . . , n.

Assume A is a distinguisher of Hyb(j−1) and Hyb(j). We build a distinguisher B for the Hint-RLWE
problem.

B(a, b,k + r, e+ f):
let z =

∑j−1
i=1 ki + (k + r) +

∑n−1
i=j+1 ki),

yj = b+ fj + t1 · xj ,
yj+1 = a · kj+1 + ej+1 + fj+1 + t1 · xj+1,
. . .

yn = a · z + t1 · (xn +
∑j−1
i=1 xi)−

∑j−1
i=1 ui

− b−
∑n−1
i=j+1 yi +

∑j−1
i=1 (ei + fi) + (e+ f)

+
∑n−1
i=j+1(ei + fi) + en

run A(a, u1, . . . , uj−1, yj , . . . , yn)
return the output of A.

25

If b = a · k + e as in Hint-RLWE, then yj = a · k + e+ fj + t1 · xj , and

yn = a · z + t1 · (xn +

j−1∑
i=1

xi)−
j−1∑
i=1

ui −
n−1∑
i=j

yi

+

j−1∑
i=1

(ei + fi) + (e+ f) +

n−1∑
i=j+1

(ei + fi) + en + fj .

So A is given Hyb(j−1).

If b = u is uniform over Rq, then yj = u+ fj + t1 · xj = u′ is uniform over Rq, and

yn = a · z + t1 · (xn +

j−1∑
i=1

xi)−
j−1∑
i=1

ui − u−
n−1∑
i=j+1

yi

+

j−1∑
i=1

(ei + fi) + (e+ f) +

n−1∑
i=j+1

(ei + fi) + en

= a · z + t1 · (xn +

j∑
i=1

xi)−
j−1∑
i=1

ui − u′ −
n−1∑
i=j+1

yi

+

j−1∑
i=1

(ei + fi) + (e+ f) +

n−1∑
i=j+1

(ei + fi) + en + fj .

Thus A is given Hyb(j). Since RLWEN1,q1,Dσ,Dσ is hard, we see that Hyb(j−1) and Hyb(j) are indistin-
guishable.

Note that Hyb(n) is exactly D1. By the above hybrid argument, we conclude that D0 and D1 are
indistinguishable.

A.2 Additive Homomorphic Encryption (AHE) with Distributed Key Genera-
tion and Decryption

We use a public key additive homomorphic encryption scheme with additive distributed key generation and
decryption procedures. Let m > 0 be the number of parties or decryptors. Such cryptosystem is sometimes
called am-out-of-m additive threshold encryption scheme. Formally, an AHE scheme consists of the following
algorithms.

• AHE.Setup() generates a public parameter that is assumed to be implicit in all the following algorithms.

• AHE.KeyGen(r) takes randomness r and returns a pair (sk, pk) of secret and public key shares.

• AHE.KeyAgg({pkj}j) takes in a sequence of public key shares and returns a public key pk.

• AHE.Enc(x, pk, r) encrypts a message x using a public key pk and randomness r, returning a ciphertext
ct.

• AHE.PartialDec(ct, skj) takes a ciphertext ct and a secret key share skj and returns a partial decryption
pd.

• AHE.Recover(ct,
∑
j pdj) takes a ciphertext ct and the sum of partial decryptions {pdj}j , returning the

message encrypted in the ciphertext ct.

26

Note that in our RLWE-based instantiation, a ciphertext consists of two components ct = (ct0, ct1), and
only ct1 is needed by PartialDec whereas only ct0 is needed by Recover.
Additive Homomorphism. We require the AHE scheme to satisfy the following additive homomorphic
property: Given any two ciphertexts ct1 and ct2 encrypting m1 and m2 under pk, respectively, the sum
ct = ct1 + ct2 is a valid ciphertext encrypting m = m1 +m2 under pk.
Simulation Security. As a scheme with distributed decryption, we require partial decryptions to preserve
individual decryptors’ secret, while allowing a separate party (the server in our case) to recover the plaintext
message from partial decryptions. In the following security definition, we consider a semi-honest adversary
corrupting a subset of decryptors M ⊂ [m], where the adversary can ask honest decryptors to partially
decrypt a ciphertext encrypting a message chosen by the adversary. Note that our security formulation is
based on partial decryptions of a single ciphertext, which is sufficient for our use case.

Definition 3. For any m,n > 0, let E be a public key AHE scheme with additive distributed key generation
and decryption with m decryptors and with at most n homomorphic additions. Let κ and λ be computational
and statistical security parameters, respectively. The scheme E is secure if

• it is semantic secure when considering just KeyGen, KeyAgg, and Enc algorithms, and

• for any subset H ⊆ [m], there exists an efficient simulator Sim such that, for any 0 < k ≤ n and for
all plaintext messages x1, . . . , xk, the following distribution

({skj}mj=1, pk, ct, {pkj ,PartialDec(ct, skj)}j∈H) :
∀j ∈ [m].rj ← {0, 1}κ, (skj , pkj)← KeyGen(rj),

pk =
∑m
j=1 pkj ,

∀i ∈ [k].cti ← Enc(pk, xi), ct =
∑k
i=1 cti

 ,

is computationally indistinguishable from
({skj}mj=1, pk, ct,Sim(pk, {skj , pkj}j 6∈H,

∑k
i=1 xi) :

∀j ∈ [m].rj ← {0, 1}κ, (skj , pkj)← KeyGen(rj),
pk =

∑m
j=1 pkj ,

∀i ∈ [k].cti ← Enc(pk, xi), ct =
∑k
i=1 cti

 .

In the above definition, we consider an AHE scheme with a priori bounded number of homomorphic addi-
tion operations. This is mainly for simplicity such that we can use fixed parameters to implement PartialDec.
We can loss such restriction by parameterize PartialDec with the number of homomorphic additions used to
generate ct.
RLWE-based instantiation. We use the following RLWE-based AHE scheme.

Definition 4. Let N2 be a power of two, and let Rq2 = Z[X]/(q2, X
N2 + 1) be a quotient ring for an integer

modulus q2 > 0. Let t2 > 0 be an integer such that the plaintext space is Z[X]/(t2, X
N2 + 1) ≡ ZN2

t2 , and
let ∆ = bq2/t2e be a scaling factor. Let χs, χe, χflood be distributions over Rq2 . For any distribution χ, we
denote using s ← χ(r) the process of sampling from χ using randomness r. We use a uniformly random u
as the public parameter that is implicit in all algorithms. Our AHE consists of the following algorithms:

• AHE.KeyGen(r) = (sk, pk): Parses (r1, r2) = r, samples sk ← χs(r1) and e ← χe(r2), and sets
pk = −u · sk + e.

• AHE.KeyAgg({pkj}mj=1) = pk: The aggregated public key is pk =
∑m
j=1 pkj ∈ Rq2 .

• AHE.Enc(x, pk, r) = (ct0, ct1): Parses (r1, r2) = r, samples v ← χs(r1) and e0, e1 ← χe(r2), and
computes ct0 = pk · v + e0 + ∆ · x ∈ R2

q2 and ct1 = u · v + e1 ∈ R2
q2 .

• AHE.PartialDec(ct1, skj) = ct1 ·skj+eflood: To mask a ciphertext component ct1 using a secret key share
skj, this algorithm samples eflood ← χflood, and returns ct1 · skj + eflood.

27

• AHE.Recover(c, {pdj}mj=1) = x: Parses (ct0, ct1) = ct, and returns
⌊
(ct0 +

∑m
j=1 pdj)/∆

⌉
.

The above scheme is message-additive homomorphic: for any messages x and x′, if ct and ct′ are cipher-
texts encrypting x and x′ respectively, then ct+ ct′ encrypts x+x′. It is also easy to see that the public key
of this AHE scheme is additively homomorphic: for any two pairs of key shares (sk1, pk1) and (sk2, pk2), the
sum pk = pk1 + pk2 is a public key that corresponds to the sum of secret key shares sk1 + sk2. Furthermore,
if (sk3, pk3) is another pair of key shares, then pk + pk3 is a public key corresponding to the secret key
sk1 + sk2 + sk3. To decrypt a ciphertext ct encrypted under a public key pk, the holder of each secret key
share skj executes AHE.PartialDec(ct1, skj) and obtains pdj , and then one can recover (without knowledge of
any secret key share) the underlying plaintext by invoking AHE.Recover(ct0, {pdj}j). To ensure correctness
and leakage-resilient partial decryptions, we will need to do error analysis and set parameters with respect
to the error term in an aggregated public key.

The following lemma shows that our AHE scheme is secure with respect to Definition 3.

Lemma 3. Assume RLWEN2,q2,χs,χe is κ-bit hard. Let β be an upper bound on ‖e · s + f · v‖∞ for
e1, . . . , en, f ← χe, e =

∑n
i=1 ei, s, v1, . . . , vn ← χs, and v =

∑n
i=1 vi. Let sflood =

√
24N22λ/2 · β, and

let χflood be the discrete Gaussian distribution with parameter sflood. Then the AHE scheme is (κ, λ)-bit
secure with respect to Definition 3.

Proof. Assume the RLWE problem with the given secret and error distributions is hard. Then it is known
that the AHE scheme without PartialDec and Recover is semantic secure. So it remains to show that the
joint distribution with partial decryptions can be simulated.

Without loss of generality, assume H = {1, . . . , h}. We build a simulator Sim as follows.

Sim(pk, {skj}j 6∈H, z) = ({p̃kj , z̃j + e′′′j }j∈H) where

∀h < j < m.p̃kj , z̃j ← Rq2 ,

p̃km = pk−
∑
j∈H

pkj −
∑

h<j<m

p̃kj ,

z̃j = z − ct0 − u ·
∑
j∈H

skj −
∑

h<j<m

z̃j

Fix 0 < k ≤ n and a sequence of inputs {xi}ki=1. Let z =
∑k
i=1 xi. The real distribution is

D0 =

({skj}mj=1, pk, ct, {pkj , ct1 · skj + e′′′j }j∈H) :
∀j ∈ [m].rj ← {0, 1}κ, (skj , pkj)← KeyGen(rj),

pk =
∑m
j=1 pkj ,

∀i ∈ [k].cti ← Enc(pk, xi), ct =
∑k
i=1 cti,

∀j ∈ H.e′′′j ← χflood

 .

For simplicity, let us fix skj ← χs for all j ∈ [m]. The real distribution conditioned on these fixed secret
key shares is

Hyb(0) =

{
(ct0, ct1, {pkj , pdj = ct1 · skj + e′′′j }j∈H) :

∀i ∈ [k].cti ← Enc(pk, xi), ct =
∑k
i=1 cti

}
.

We can write ct = (ct0 = v · pk + e′ + ∆z, ct1 = v · u + e′′), where v =
∑k
i=1 vi for vi ∼ χs, e′ =

∑k
i=1 e

′
i

and e′′ =
∑k
i=1 e

′′
i for e′i, e′′i ∼ χe. Furthermore, for all j ∈ [m], we can write pkj = −u · skj + ej for ej ∼ χe.

Then, for all j ∈ H, the partial decryption pdj in Hyb(0) can be expressed as

pdj = v · (u · skj − ej) + v · ej + e′′ · skj + e′′′j

= −v · pkj + v · ej + e′′ · skj + e′′′j

28

By our assumption that β ≥ ‖v · ej + e′′ · skj‖∞ and χflood is discrete Gaussian with parameter sflood =√
24N22λ/2 ·β, it can be shown that (following an analysis as in [35, Corollary 2]) Hyb(0) is λ-bit statistically

indistinguishable from the following hybrid:

Hyb(1) =

(ct0, ct1, {pkj , dj = −v · pkj + e′′′j }j∈H) :
∀i ∈ [k].cti = (vi · pk + e′i + ∆xi, vi · u + e′′i),

ct =
∑k
i=1 cti, v =

∑k
i=1 vi

 .

Next, notice that for j ∈ H, pkj in Hyb(1) is pseudorandom conditioned on
∑m
j=1 pkj = pk. So Hyb(1) is

indistinguishable from

Hyb(2) =

(ct0, ct1, {p̃kj , dj = −v · p̃kj + e′′′j }j∈H) :
∀j ∈ [m].ej ← χe,

pk = u · sk +
∑m
j=1 ej ,

∀j ∈ [m− 1].p̃kj ← Rq2 ,

p̃km = pk−
∑
j<m p̃kj ,

∀i ∈ [k].cti = (vi · pk + e′i + ∆xi, vi · u + e′′i),

ct =
∑k
i=1 cti, v =

∑k
i=1 vi

.

Since all p̃kj for j < m are uniformly random, we see that Hyb(2) is equivalent to the simulator output.
Our proof is now complete.

A.3 Zero-Knowledge Proof of Knowledge (ZKPoK)
Next we discuss how we instantiate the three ZKPoK constructions that we defined in Section 5.3.

Succinct Proof of RLWE-based AHE via linear constraints. In the context of our RLWE-based
instantiation of AHE (Section 5.2), the three required ZKPoK boil down to proving inner product constraints
on vectors corresponding to polynomial coefficients. This approach has been used in previous works [8, 28]
to achieve concrete efficiency by combining lattice-base cryptography for encryption with DL-based zero-
knowledge for succintness. We also follow this approach.

Recall that we use a power-of-two cyclotomic ring R = Z[X]/(XN +1) in our RLWE-based AHE scheme.
For any polynomial a ∈ R with coefficient vector a = (a0, . . . , aN−1), the negacyclic matrix representation
of a is

ϕ(a) =

a0 −aN−1 · · · −a1
a1 a0 · · · −a2
...

... · · ·
...

aN−1 aN−2 · · · a0

 ∈ ZN×N .

For any a, b ∈ R with coefficient vectors a and b, ϕ(a) ·b is the coefficient vector of the polynomial product
a · b ∈ R. So, we can rewrite an RLWE sample (a, a · s+ e) ∈ R2

q as (A,As + e), where A = ϕ(a) ∈ ZN×Nq

and s, e ∈ ZNq are the coefficient vectors of s and e, respectively. This allows us to make claim about linear
relations over polynomials by simply proving arithmetic relations in ZNq .

In our RLWE-based AHE scheme, both Proof of plaintext knowledge and Proof of key generation boil
down to the following. Let (a, ar + e) ∈ R2

q be an RLWE sample. For public polynomials a, c, the prover
shows knowledge of a polynomial r and a small polynomial e such that the relation c = ar + e holds in Rq.
By small here we mean that ‖e‖∞ is bounded by a public parameter t. The following definition captures
the relation of interest formally, which we denote as RN,q,t,c,A, as it is parameterized by the public values
N, q, t, c and A. Let us remark that the statement in the relation is over the naturals, and that the wq term
allows to simulate reduction modulo q.

29

Definition 5 (Knowledge of secret). Let N, q, t > 0 be integers, and let A := ϕ(a) ∈ ZN×N and c ∈ ZN
be the randomness and ciphertext corresponding to an RLWE sample c := (a, ar + e) ∈ R2

q. We define the
knowledge of secret relation as RN,q,t,c,A :=

{
(r, e,w) ∈ Z3N | c = Ar + e−wq ∧ ||e||∞ < t

}
.

In the following, we will define proofs based on the Bulletproofs framework [31] for the above relation
that have size sub-linear in N . We stress, however, that there are many ways to prove the above relation in
zero-knowledge, and we leave the application-specific optimization of this step to future work.

As described in Section 5.3, we need three kinds of zero-knowledge proofs for AHE operations. Our
first observation is that all three share the same structure given in Definition 5. That is, we want to prove
knowledge of a secret r subject to the linear relation Ar + e −wq and the inequality ||e||∞ < t. However,
while Definition 5 is stated over the naturals, the proofs we use work over elliptic curve groups of a finite
order P . Instead of proving RN,q,t,c,A directly, we prove the following three constraints hold:

1. c = Ar + e−wq (mod P)

2. ||e||∞ < t (mod P)

3. ||(r|w)||∞ < P/6Nq (mod P)

Note that the third constraint ensures that the first and second one hold over the naturals even if we prove
them mod P , so long as t � P/3. The reason is that (i) entries in Ar are bounded by the sum of N
independent and uniformly random elements of Zq, and therefore upper bounded by 2Nq, and (ii) entries in
w are bounded by that same value.

In our security proof we require t to be equal to p/n, where p is a high-probability bound on the flooding
noise in threshold decryption (with a value of about 250 in our concrete parameters, see Section 8), and n is
the number of clients.

When e is large, we can, in the same way as Bell et al. [8], combine inner product Bulletproofs [31] and
the optimized range proofs of Gentry et al. [28]. This is what we use for ProveAHE.PartialDec, and we refer the
reader to [8, Section 5.3.2] for the details.

An improved construction for small error vectors. When e is small, we can do better than Bell
et al. [8] by using approximate range proofs.

Lemma 4 (Approximate proof of smallness ([28], Lemma 3.5)). Let x ∈ F` be a vector, and let b, γ ∈ N
such that ||x||∞ ≤ b/γ with γ > 2500

√
`. There is a ZK proof system to show ||x||∞ ≤ b where the prover

sends (a) a ZK proof π of an inner product constraint of the form 〈x|y,b〉 = c, for public b, c, of length
`+ 128 and (b) a vector z ∈ [b]128. The verifier (i) checks π and (ii) checks that ||z||∞ ≤ b/2.

Since e in AHE.KeyGen and AHE.Enc is sampled from a centered binomial distribution with variance 8,
it has support in [−16, 16]. Also, for all the applications we consider (with number of clients going up to a
billion, and vector lengths up to 10 million) N is bounded by 212, and q is bounded by 280 (see Table 10).
Finally, recall that r is a ternary vector.

We now observe that the bounds (2) and (3) that we need to prove are loose, in the sense that honest
clients will hold much smaller r, e,w and therefore we can employ efficient approximate proofs. Recall that
we need the multiplicative gap between these two quantities to be at least 2500

√
N , as per Lemma 4. This

is easy to verify for (3), given the concrete values of N, q and P discussed above. For (2), recall that t = p/n
in our application, where p is a high-probability bound on the flooding noise in threshold decryption and n
is the number of clients. An important observation is that p in fact grows with n since the flooding noise in
partial decryptions should be large enough to mask a term Xs, where X is a sum of n binomials and s is a
share of the decryption key(see Lemma 3) . Therefore, t > 220 � ||e||∞ ≤ 16, which implies the required
gap. The following lemma states this reduction to inner product constraints, which then can be offloaded to
Bulletproofs.

30

Relaxed Aggregation Functionality Fagg

Setup: n clients identified by indices 1, 2, . . . , n holding private inputs x1, . . . ,xn. Adversary A, controlling a
subset C ⊆ [n] of the clients, and possibly corrupting the server S.

1. Functionality Fagg receives all honest clients’ inputs.

2. If S is actively corrupted, A chooses a subset S ⊆ [n] \ C to drop. Otherwise S = [n] \ C.
3. Fagg generates k← KAHE.KeyGen() and sets m̃ := KAHE.Enc(

∑
i∈S xi,k).

4. if S is corrupted, Fagg sends m̃ to A.
5. A chooses inputs of corrupted clients IA := (yi)i∈C .

6. A sends (IA, d) to Fagg, with d ∈ {continue, abort}.
7. If d = continue then Fagg sends

∑
i∈C yi +

∑
i∈S xi to S, otherwise Fagg sends ⊥ to S.

8. If S is corrupted and d = continue, Fagg sends k to A.

Figure 11: The relaxed summation functionality with a possible malicious server.The adversary (i) observes
an encryption of the honest client’s input sum before sending its inputs, (ii) gets to abort the protocol after
observing the result, and (iii) gets to choose which honest clients to drop.

Lemma 5 (Proof of knowledge of secret). Let A := ϕ(a) ∈ ZN×Nq and r, e ∈ ZNq be the matrix and vectors
corresponding to an RLWE sample (a, ar + e) ∈ R2

q such that ||r||∞ ≤ 1 and ||e||∞ ≤ 16. Let N, q, t ∈ N be
such that P > 3 · 103qN5/2 and t > 4 · 103

√
N . Then, there is a proof system for RN,q,t,c,A with proof size

O(logN) and prover and verifier costs of O(N2). Moreover, verification of k proofs can be batched.

Proof. We first define an inner product constraint that holds iff (1) holds mod P , except for a small proba-
bility N/P . Note that (1) can be written as a conjunction of constraints

∧
i∈[N]〈r,Mi〉 + 〈e, 0i−110N−i〉 +

〈w, 0i−1(−q)0N−i〉 = 〈c, 0i−110N−i〉 which by taking random linear combinations as in Gentry et al. [28] can
be encoded as a single linear constraint 〈(r|e|w|c),b〉 = c, with public b, c. This reduction requires O(N2)
scalar products. Note that c appears on the left-hand side here, which allows the proof to be verified with
only a commitment to the ciphertext c. This allows us to significantly reduce the communication overhead
of the verifier role (see Section 7.1). Next, we show that constraints (2,3) can be reduced to an inner product
constraint. First not that (2) satisfies the constraints of Lemma 4, as 40000

√
N = 2500 · 16

√
N < t, and

therefore it is equivalent to a constraint 〈e|y|c,b′〉 = c′, with public b′, c′, along with a vector z with norm
bounded by t/2. Finally, note that again we can apply Lemma 4 to handle (3), given that 24000qN3 < P .
The reason, as mentioned above, is that ||r|w|| is bounded by N + 16/q. Let 〈r|w,b′′〉 = c′′, with public
b′′, c′′. be the resulting constraint. We can then apply another linear combination with random challenges
to merge all three constraints into a final inner product constraint of the form 〈(r|e|w|c), b̂〉 = ĉ, with public
b̂, ĉ. Then the proof consists on proving the validity of this one constraint of length 4N , along with the fact
that ||z|| < t/2 ||z′|| < P/12Nq, for vectors z, z′ in [t]128 and [P/6Nq]128, respectively. By offloading this
proof to Bulletproofs we get the costs in the statement of the Lemma.

B Details and Proofs of Security for Semi-Honest Protocol
In this section we provide the security theorems and proofs for the constructions from Section 6.

B.1 Decryptor
Recall that in this section we assume an adversary with access to the protocol transcript of a semi-honest
server and fully controlling no more than t−1 decryptors. This in particular means that malicious decryptors
might correlate their behaviour with the transcript of the server. This situation introduces some subtleties

31

Distributed Decryptor Functionality FD

Key Generation

1. FD samples key pairs (skj , pkj)← AHE.KeyGen for all j ∈ H, and sends pkH =
∑
j∈H pkj to A.

2. FD receives from A key pairs {(skk, pkk)}k∈C .

3. FD outputs pk = pkH +
∑
k∈C pkk to S.

Decryption

4. FD receives ct1 from S.

5. If FD receives abort from A, then aborts without output anything.

6. Otherwise, FD receives eA from A. If ‖eA‖∞ > ∆(m − h)/m for h = |H|, then FD aborts without output
anything.

7. FD outputs pd =
∑
j∈H AHE.PartialDec(ct1, skj) +

∑
k∈C AHE.PartialDec(ct1, skk) + eA to Coord.

Figure 12: The Decryptor ideal functionality, with H the set of honest decryptors and C the set of corrupted
decryptors.In the case where the adversary A does not corrupt any decryptors then the messages from A
are empty and therefore it does not have any influence.

that need to be reflected in the ideal functionality. Concretely, the ideal functionality allows an adversary
that controls at least one decryptor to modify an honestly sampled public key. This is captured in steps
3-4 of the ideal functionality. While this is a technical detail in the decryptor ideal functionality, this sort
of situation will lead to security considerations when discussing the server. Other than that, the ideal
functionality does what one would expect: generate public key and decrypt with the corresponding secret
key. The decryption is done with noise corresponding to a committee of m decryptors.

The ideal functionality implemented by the decryptor role is presented in Figure 12. This definition
captures the ideal-world notion of privacy with respect to which we prove security of our protocols, i.e., we
prove that our protocol leaks to the adversary no more that the ideal functionality.

Theorem 3. Assume Coord is semi-honest and no more than t− 1 decryptors are actively corrupted. Fur-
thermore, assume RLWEN2,q2,χs,χe is κ-bit hard, and let AHE be as in Section 5.2 instantiated over ring Rq2
with secret distribution χs, error distribution χe, and a flooding noise distribution χflood defined as

• Let β be an upper bound on ‖s ·
∑n
i=1 ei + f ·

∑n
i=1 vi‖∞ for e1, . . . , en, f ← χe and s, v1, . . . , vn ← χs.

• Let sflood =
√

24N22λ/2 · β, and let χflood be the discrete Gaussian distribution with parameter sflood.

Then, the Decryptor functionality (Figure 12) is implemented securely with abort by the protocol in Figure 4.
For efficiency, the Decryptor protocol have a 1-round setup, and 2-round decryption, running in O(m+

log n), where m is the number of decryptors.

Proof. Assume that the honest decryptors are the set H ⊆ [m], and the malicious decryptors are C ⊂ [m].
Let A be any adversary controlling the malicious decryptors and the server (semi-honestly).

For any real world adversary A, we build the following simulator Sim that plays the role of an adversary
with the ideal functionality (Figure 12). For this purpose, Sim has oracle access to A, and it simulates honest
decryptors and a semi-honest Coord in interaction with malicious decryptors controlled by A.

1. On input pkH received from FD, Sim samples random but correlated {p̃kj}j∈H such that
∑
i∈H p̃kj = pkH,

and for each j ∈ H, Sim invokes the ZK simulator to generate a proof π̃j . Then Sim sends {(p̃kj , π̃j)}j∈H
to the server.

32

2. Sim runs A and receives the malicious decryptors’ messages {(pkk, πk)}k∈C . Let Ĉ be the set of malicious
decryptors whose proof πk verifies. For all k ∈ Ĉ, Sim invokes the ZK extractor on πk to extract skk.
Then Sim sends {(skk, pkk)}k∈C to FD.

3. Sim receives pk from FD. This finishes the key generation phase.

4. At the beginning of the decryption phase, Sim samples symmetric encryption keys kj for all j ∈ H, and
for all j ∈ H and for all k ∈ C, it samples uniformly random sharejk and sends them to A. Sim then
receives the secret shares {sharekj }k∈C,j∈H of malicious decryptors’ symmetric encryption keys from A.
Since |H| ≥ t, Sim recovers kk from {sharekj }j∈H for all k ∈ C.

5. Sim receives ct1 from the server. For all j ∈ H, Sim simulates proofs of partial decryptions τj on the fake
partial decryption value 0, and sets ¯pdj ← Enc(kj , (0, τj)). Sim then sends { ¯pdj}j∈H to the server.

6. Sim receives malicious decryptors’ messages { ¯pdk}k∈C , and for all k ∈ C, Sim decrypts ¯pdk using kk
reconstructed in Step 4 and obtains (pdk, τk). If there exists k ∈ C such that τk does not verify, then Sim
sends abort to FD.

We now show that the real world is indistinguishable from the ideal world, using the following hybrids.

• Hyb(0): This is the real world execution, and the view consists of the AHE public parameter u, honest
decryptors’ public key shares {pkj}j∈H and proofs of correct public key shares {πj}j∈H, the public
key pk =

∑
j∈H pkj +

∑
k∈C pkk, the ciphertext ct, the symmetric encryptions { ¯pdj}j∈H where ¯pdj =

Enc(kj , (pdj , τj)), secret shares of the honest symmetric keys {sharejk}j∈H,k∈C , and the partial decryption
output pd =

∑
j∈H pdj +

∑
k∈C pdk. In particular, they satisfy

– For all j ∈ H, pkj = −u · skj +ej for some ej ∼ χe, where u is the public random polynomial of AHE;
– ct = (ct0, ct1) where ct0 = pk·v+e′+∆·x and ct1 = u·v+e′′, for plaintext x, encryption randomness
v, and error terms e′, e′′;

– For all j ∈ H, pdj = skj · ct1 + e′′′j for e′′′j ∼ χflood.

• Hyb(1): In this hybrid we set pdj = −v ·pkj+e′′′j for all j ∈ H. We now argue that this is indistinguishable
from Hyb(0). Note that in Hyb(0) we have

pdj = skj · (u · v + e′′) + e′′′j

= v · (skj · u− ej) + v · ej + skj · e′′ + e′′′j

= −v · pkj + v · ej + skj · e′′ + e′′′j .

By assumptions on the l∞ norm of v · ej + skj · e′′ and the flooding noise distribution, pdj in the above
expression is statistically close to pdj = −v · pkj + e′′′j as in Hyb(1).

• Hyb(2): In this hybrid we first compute skH =
∑
j∈H skj and pkH = −u · skH +

∑
j∈H ej for all ej ← χe;

then we sample random pkj for all j ∈ H conditioned on
∑
j∈H pkj = pkH. Furthermore, in this hybrid

we simulate proofs of correct public key shares πj . This hybrid is indistinguishable from Hyb(1) because
pkj in Hyb(1) are pseudorandom conditioned on the sum of pkj ’s included in pk, and because of the fact
that Hyb(1) does not depend on skj for j ∈ H, and simulated proofs are indistinguishable from real proofs
in Hyb(1).

• Hyb(3): In this hybrid we replace {sharejk}j∈H,k∈C with random and independent elements, which are
the secret shares of kj sent to the malicious decryptors. By assumption that |C| < t, the corresponding
secret shares in Hyb(2) are indistinguishable from random and independent elements. So this hybrid is
indistinguishable from Hyb(2).

33

• Hyb(4): In this hybrid we set for all j ∈ H that ¯pdj ← Enc(kj , (0, τj)) where τj is the simulated proof of
partial decryption, and we set pd =

∑
k∈C pdk + ct1 · skH +

∑
j∈H e

′′′
j . Note that, except for { ¯pdj}j∈H,

other components in Hyb(3) do not depend on the symmetric encryption keys kj . So, by the semantic
security of Enc, the encryptions ¯pdj in this hybrid are indistinguishable from those in Hyb(3). Note that
this is exactly the ideal world execution, where pkH is generated as in FD, ¯pdj for all j ∈ H are generated
as in Sim, and pd is computed in the same way as in FD.

For efficiency, since we aggregate n KAHE secret keys under AHE, the ciphertext modulus q2 must be
O(log n), and thus each decryptor takes O(log n) time for their AHE operations. Each decryptor in addition
secret shares their randomness for generating AHE secret keys with all m decryptors; hence the extra O(m)
running time.

B.2 Server and Clients
As in the previous section, we start by describing our ideal functionality. Intuitively, Functionality Fagg from
Figure 1 is what we would like to be able to implement. However, the following theorem shows that this is
impossible within the other constraints we are aiming for, namely cost for D that is sublinear in input length
`, and therefore cost for server after receiving inputs sublinear in `.

Theorem 4. There does not exist a protocol for vector aggregation (c.f. Functionality 1) in the standard
model with asynchronous client contributions and total communication after the client contributions sublinear
in vector length, that is secure against a semi-honest server colluding with one malicious client.

Proof. To formally prove this claim, we show that, for any protocol π, there exists a real-world adversary AR
that can’t be successfully simulated in the ideal world, i.e. for which a distinguisher D with non-negligible
advantage in distinguishing IDEALFSim

(
(xi)i, λ

)
and REALπAR

(
(xi)i, λ

)
for every simulator Sim, where

FSim denotes the functionality of Figure 1 with Sim playing the role of the adversary A. Recall (Definitions 7
and 8 in Section D) that for a semi-honest server IDEALFSim

(
(xi)i, λ

)
= (outputSI

, outputSim). i.e., the
joint distribution of server and adversary outputs when interacting with the ideal functionality FSim, and
REALπAR

(
(xi)i, λ

)
= (outputS, outputAR), i.e. the joint distribution of server and adversary outputs when

running protocol π.
Next, we defineAR. This attacker only needs to control one malicious client c, and semi-honestly/passively

corrupt the server. AR proceeds by observing the transcript/view VS of the server. Let us write VS as
VS,1||VS,2||outputS, where VS,1 denotes the view of the server until the last honest client submits their last
input message. Note that this is well defined for any asynchronous protocol π. Also, recall that VS,2 is sub-
linear in `. Concretely, AR instructs c to wait until all honest clients have reported, and runs the client code
of π with input xc := H(VS,1), where H is a collision-resistant hash function with output space matching
the space of inputs F`. AR outputs the server’s view, i.e., outputAR = VS. Note that the distinguisher D
can recover xc from any view VS it is given.

For the sake of reaching a contradiction, let Sim be a successful simulator, i.e. one such that IDEALFSim

(
(xi)i, λ

)
=

(outputSI
, outputSim) is indistinguishable REALπAR

(
(xi)i, λ

)
. Note that since outputS includes xc then

Sim must have provided xc to the functionality in step 6, otherwise outputS and outputSI
would differ.

By the collision-resistance property of H, x acts as a commitment to VS,1. Only after making that "com-
mitment" the functionality enables Sim to recover the output that the server receives to Sim, by revealing
k in the last step. Let outputSim denote that output, i.e. KAHE.Dec(s̃,k) + xc. Note that since AR out-
puts the view of the server, Sim should do that too, otherwise outputSim and outputAR) would differ. Let
VSim

S = VSim
S,1 ||VSim

S,2 ||outputSim
S be the view for the server that Sim hands to the distinguisher.

As mentioned above, outputSim must include xc = H(VS,1), but the set of possible values of outputSim

that include xc is bounded by 2|V
Sim
S,2 |. This is because xc is determined by the first portion of the view, i.e.

VSim
S,1 = VS,1. On the other hand, the set of possible values of xc is F` (as D could have chosen any element

of F` for the sum of the honest clients inputs). Since |VSim
S,2 | is sublinear in `, a distinguisher D that simply

34

checks whether xc is in the output must have non-negligible success probability. Therefore, Sim can’t be
successful: a contradition.

We will therefore instead consider the relaxation of the aggregation functionality shown in Figure 11. We
show security with respect to the relaxed aggregation functionality next. The proof is in the "decryptor"-
hybrid model, as it assumes a secure implementation of the decryptor.

Theorem 5. Given an honest D implementing Functionality 12 and an at least semi-honest server, the pro-
tocol formed by figures 5 and 6 securely implements the relaxed aggregation functionality (Functionality 11).

Furthermore, the Client role runs in 1 round with cost O(` log n), and the server runs in O(n` log n).

Proof of Theorem 5. Assume the decryptor protocol in Figure 4 securely implements the decryptor function-
ality FD of Figure 12. Then, for any decryptor adversary there exists a decryptor simulator. In particular,
consider a dummy adversary AD that simply passes through the messages from the distinguisher and de-
cryptors / coordinator; then there exists SimD that can simulate this dummy adversary.

Consider the protocol in Figures 5 and 6 that uses the decryptor protocol as a secure implementation of
D. Let A be an adversary to this protocol. Let C and H be the sets of corrupted and honest clients, and
assume w.l.o.g. 1 ∈ H. We build the following simulator Sim in the FD-hybrid model, which interacts with
Fagg and has oracle access to A and SimD.

1. Sim simulates server following the server protocol, and runs A such that any interactions with decryptors
and Coord are passed through SimD. At the end of the key generation phase, FD outputs pk to the
simulated server.

2. Sim receives m̃ from Fagg, which is an KAHE encryption of
∑
i∈H xi under key k. Note that k is private

to Fagg at this point.

3. Sim simulates all honest clients: Let Ctxt be the KAHE ciphertext space.

• for all i 6= 1, mi ← Ctxt, and m1 = m̃−
∑
i6=1mi;

• for all i ∈ H, ri ← {0, 1}λ, cti ← AHE.Enc(0, pk, ri);
• for all i ∈ H, pi ← ProveAHE.Enc(cti, 0, pk, ri,⊥).

In particular, the proofs pi are generated honestly.

4. Sim sends {(mi, cti, pi)}i∈H to A as honest clients messages to the server.

5. Sim then runs A to let it generate {(mi, cti, pi)}i∈C which are messages sent from the corrupted clients
to the server. Let Ĉ be the subset of C containing corrupted clients i whose messages are valid and pi
verifies.

6. Sim simulates the server and computes m =
∑
i∈Ĉ mi + m̃.

7. Sim simulates the server and computes ct1 =
∑
i∈Ĉ ct1i +

∑
i∈H ct1i , and sends ct1 to FD. Note that

ct = (ct0, ct1) should decrypt to the same value as
∑
i∈Ĉ cti.

8. Sim then runs A to interact with the decryptor protocol, where the messages between A and the malicious
decryptors are passed through SimD who interacts with FD. If SimD aborts, Sim sends abort to Fagg.

9. Sim receives pd as the message from FD to the server, and computes k′ = AHE.Recover(pd). Note that
this message pd received by Sim is not sent to the simulated server.

10. Sim decrypts
∑
i∈Ĉ mi using kA and gets xĈ , which is the sum of inputs of corrupted clients in Ĉ. Sim

then sends (xĈ , 0, . . . , 0) to Fagg, and receives k and s =
∑
i∈H xi + xĈ .

11. Sim then sets pd′ = pd −
∑
i∈H ki + k, and sends pd′ to the simulated server as the partial decryption

output from FD.

35

12. Sim then runs A and SimD to the end, and outputs the output of A.

We now prove that the real world (consisting of clients, server, decryptors, and A) is indistinguishable
from the ideal world (consisting of Sim, Fagg, FD, and SimD).

• Hyb(0): This is the real world execution consisting of the clients, server, decryptors, and A. A tran-
script contains the KAHE public parameter a, AHE public key pk, honest clients’ encoded input {mi =
KAHE.Enc(xi,ki)}i∈H and AHE ciphertexts {cti = AHE.Enc(ki, pk), and partial decryptions from honest
decryptors {pdj}j≤h.

• Hyb(1): In this hybrid we add a dummy adversary AD who simply passes through messages from and to
A intending to the decryptors. This is exactly the same as Hyb(0).

• Hyb(2): In this hybrid we replace the decryptors with FD, and AD with SimD. By the assumption that the
decryptors securely implement FD, this hybrid is indistinguishable from Hyb(0). Note that the transcript
of this hybrid is the same as in Hyb(0) and Hyb(1) except that partial decryptions {pdj}j≤h are generated
from SimD on input pd, which is given to SimD by FD; that is, {pdj}j≤h in Hyb(2) are independent of
honest decryptors’ AHE secret keys.

• Hyb(3): In this hybrid we replace honest clients’ KAHE ciphertexts using random but correlated values.
Specifically, we set mi = ui for all i ∈ H \ {1} and m1 = −

∑
i∈H\{1} ui +

∑
i∈H xi, where ui are

independently and uniformly sampled elements from the KAHE’s ciphertext space. Note that A learns
the sum of honest clients’ KAHE secret keys k =

∑
i∈H ki. By the special leakage property of KAHE

as described in Lemma 1, we have that the joint distribution of a, {mi}i∈H, and k =
∑
i∈H ki in Hyb(2)

(which are KAHE ciphertexts) is indistinguishable from that in Hyb(3) (which are random but correlated
elements) due to the HintRLWE assumption.

• Hyb(4): In this hybrid we replace honest clients’ AHE ciphertexts using independent AHE ciphertexts
encrypting 0. Specifically, we cti ← AHE.Enc(0, pk) for all i ∈ H, and we generate the proofs pi accordingly.
This hybrid is indistinguishable with Hyb(3) due to the semantic security of AHE: the AHE secret key sk =
skH + skC is hidden from the adversary and thus the distinguisher, where H is the set of honest decryptors.
Note that the partial decryption pd is the same as in Hyb(3), which reconstructs to kA +

∑
i∈H ki. Note

that Hyb(4) is exactly the transcript of the ideal world.

For efficiency, the KAHE ciphertext modulus must be at least O(log n) large to support sum of n input
values, and since each input xi ∈ F`, it takes O(` log n) time for each client to encrypt its input. The server
aggregates KAHE ciphertexts from all n clients, so its running time is O(n` log n).

C Details and Proofs of Security for Malicious Protocol
In this section we include details of the variant of our protocol that is secure against an actively corrupted
server.

Figure 13 presents the decryptor protocol, and we present the formal definitions of the Server and the
Client roles in Figure 14 and Figure 15.

C.1 Sybil attacks and Differential Privacy
To prevent revealing the sum of just one client’s data the verifier could check that many clients are included
in the sum. However, a malicious server could easily fake many malicious clients in a Sybil attack. If we have
no means of verifying the identity of clients this attack can’t be avoided. We could, however, change the
functionality to include noise for Differential Privacy (DP). It is easy to extend our protocol to add that in.
Using infinite divisibility of common distributions used for DP [39, 40] any group of entities we trust most

36

of to be honest can provide noise contributions (just like the client provide input) and the verifier can check
they are included. In particular the decryptors or verifiers themselves could provide it (though it would
require order ` communication from them).

C.2 Proof of Malicious Security
Recall that the properties we require of the verifier are:

1. They refuse to sign any ciphertext that isn’t a sum of honest contributions at most once and some
ciphertext of which the server knows the plaintext.

2. They refuse to sign more than one ciphertext.

3. Upon signing a ciphertext they can report which zero-knowledge proofs (from the clients) were used
in it.

Theorem 6. Assume KAHE is an KAHE scheme satisfying leakage-resilient security of Definition 1, and
assume AHE is an AHE scheme as in Section 5.2 instantiated over ring Rq2 with secret distribution χs, error
distribution χe, and a flooding noise distribution χflood defined as

• Let β be an upper bound on ‖s ·
∑n
i=1 ei + f ·

∑n
i=1 vi‖∞ for e1, . . . , en, f ← χe and s, v1, . . . , vn ← χs.

• Let sflood =
√

24N22λ/2 · β, and let χflood be the discrete Gaussian distribution with parameter sflood.

Furthermore, assume there exist an symmetric encryption scheme Sym and a zero-knowledge proof of
knowledge scheme, and assume there exist c clients grouped in c/k committees of size k = O(σ + log(c/k))
each, where σ is the statistical security parameter and each group is randomly selected to implement the
Verifier for the proof of unique inclusion of AHE ciphertexts as in Section 7.1.

Then, the protocol formed by Figure 15 (Client), Figure 14 (Server), and Figure 13 (Decryptor) securely
implements the aggregation functionality in Figure 1 in the random oracle model against a malicious adver-
sary controlling the server, any number of asynchronous clients, at most min(m− 1, 2t−m− 1) decryptors,
and at most t− 1 verifiers per committee.

The Client role runs in 1 round with cost O(` log n). Decryptors have a 2-round setup, and 2-round
decryption, running in O(m+ log n), where m is the number of decryptors. The server runs in O(n` log n).
Each verifier committee member runs in O(nk/c+ log n).

We now prove Theorem 6 in the (Verifier, RO)-hybrid model.

Proof of Theorem 6. Let H, C be the sets of honest and corrupted clients, and let HD and CD be the sets
of honest and corrupted decryptors. By assumption we have |H|, |HD| ≥ t. Without loss of generality, we
assume that 1 ∈ H. Assume A is any real world adversary to the protocol. We build the following simulator
in the (verifier,RO)-hybrid model with a programmable RO, i.e. the simulator provides an ideal verifier
oracle and a RO to the adversary.

1. For all j ∈ HD, Sim simulates honest decryptor j:

• (skj , pkj)← AHE.KeyGen(rj) for random rj ;

• sharej ← Share(rj);

• (skmask,j , pkmask,j)← AHE.KeyGen(rmask,j) for random rmask,j ;

• sharemask,j ← Share(rmask,j);

• sends hj = (pkj , {share
j
k}k∈CD , pkmask,j , {share

mask,j
k }k∈CD) and a signature sig(hj) on hj to A

2. For all k ∈ CD, Sim receives {sharekj }j∈HD and {sharemask,kj }j∈HD , as malicious decryptors’ shares on
their AHE key generation randomness, from A.

37

3. Sim receives {Sj}j∈HD from A, as the broadcast messages to all j ∈ HD, where Sj should contain
decryptors’ messages h` for all ` ∈ D.

• For all j ∈ HD, if |Sj | < t or there exists a proof in Sj that does not verify, Sim removes j from
HD (i.e. j aborts).

4. For all j ∈ HD, Sim sends sj = sig(
∑
`∈Sj pk`) and smask,j = sig(

∑
`∈Sj pkmask,`) to A as honest

decryptor j’s message. This finishes the key generation phase of the decryptor protocol.

5. For all i ∈ H, Sim receives signedpki from A as the AHE public key message to honest client i.
Note that all signedpki contains a set SD of signatures signatures sj and smask,j from decryptors j on∑
`∈S pk` and and

∑
`∈S pkmask,`, respectively.

• For each i ∈ H, parse (D, SD, pk, pkmask) = signedpki. If there are at least t many signatures
sj ∈ SD such that sj does not verify on pk, or if there are at least t invalid signatures smask,j ∈ SD,
then remove i from H (i.e. client i aborts).

6. For all i ∈ H, Sim simulates the honest client i:

• Samples a random seedi from RO’s domain;

• x̃i ← RO(seedi), which effectively sets the input of simulated client i to 0;

• ki ← KAHE.KeyGen;

• mi ← KAHE.Enc(x̃i,ki);

• cti ← AHE.Enc(ki, pk; ρ) for some randomness ρ;

• pi = ProveAHE.Enc(cti,ki, pk, ρ, i)

• s̃eedi ← AHE.Enc(seedi, pkmask);

• sends (mi, cti, pi, s̃eedi) to A.

7. Let A query the ideal verifier oracle, receive ct1 and S from A, and sends sct1 ← sig(ct1) to A.

8. Sim sends S to Fagg to drop the clients in S.

9. Sim then sends (0, . . . , 0) as malicious clients’ inputs to Fagg.

10. Sim receives the sum sH of inputs of all honest surviving clients and malicious clients from Fagg.

11. If S 6= ∅, let i∗ ∈ H \ S be some honest surviving client, and Sim programs the random oracle such
that RO(seedi∗) = sH − x̃i∗ . This finishes the client phase.

12. Sim receives signedctj = (ct1, sct1) from A as broadcast messages to j ∈ HD.

• For all j ∈ HD, if sct1 in signedctj contains any signature that does not pass verification, Sim
removes j from HD (i.e. j aborts).

13. For all j ∈ HD, Sim then simulates honest decryptor j:

• samples a symmetric encryption key ksym,j ;

• generates sharesym,j ← Share(ksym,j);

• pd← AHE.PartialDec(skj , ct
1);

• p̄dj ← Sym.Enc(pdj ,ksym,j);

• πj ← ProveAHE.PartialDec(pdj , skj);

• sends ({sharesym,j
k }k∈CD , {share

mask,h
j }h∈D, p̄dj , πj) to A.

38

14. Sim receives {sharesym,k
j }j∈HD from A as malicious decryptor k’s broadcast messages.

15. Each simulated honest decryptor j who receives a Pj from A will then:

• check |Pj | ≥ t aborting if this doesn’t hold;

• send {sharedropoutj } for all dropout ∈ HD \ Pj to A;

• send {sharesym,h
j } for all h ∈ Pj to A.

16. Sim then answers random oracle queries from A.

17. Sim runs A to the end, and outputs whatever A outputs.

We now show that the real world execution is indistinguishable from the ideal world.

• Hyb(0): This is the real world execution. In particular, the view contains the adversary’s output, the
public AHE random parameter u, and

– for all j ∈ HD, pkj = −u · skj + ej for some ej ∼ χe;
– ct = (ct0, ct1) where ct0 = pk · v + e′ + ∆ · x and ct1 = u · v + e′′, for plaintext x, encryption

randomness v, and error terms e′, e′′;

– for all j ∈ HD, honest decryptor j computes its partial decryption as pdj = skj · ct1 + e′′′j for
e′′′j ∼ χflood.

• Hyb(1): In this hybrid we compute honest decryptor j’s partial decryption pdj using pkj and the term
v used in ct1, and then we simulate proofs of partial decryptions. Specifically, for all j ∈ H we set
pdj = −v ·pkj + e′′′j and simulate a proof of partial decryption π̃j on the value pdj . We now argue that
this is indistinguishable from Hyb(0). Note that in Hyb(0) we have

pdj = skj · (u · v + e′′) + e′′′j

= v · (skj · u− ej) + v · ej + skj · e′′ + e′′′j

= −v · pkj + v · ej + skj · e′′ + e′′′j .

By assumptions on the l∞ norm of v · ej + skj · e′′ and the flooding noise distribution, pdj in the above
expression is statistically close to pdj = −v · pkj + e′′′j as in Hyb(1).

• Hyb(2): Note that in Hyb(1), for all honest decryptors j ∈ HD, only pkj depends on skj . So in Hyb(2),
for all j ∈ HD we replace pkj with truly random element conditioned on their sum

∑
j∈HD pkj being

unchanged, and we simulate the proof of jth public key share on pkj . That is, in this hybrid we compute
pkj = −u · skj + ej as in Hyb(1), but we do not include pkj in the view of the distinguisher. Instead we
then compute {p̃kj}j∈HD ← Share(

∑
j∈HD pkj), and include p̃kj in the view. By the pseudorandomness

of the public key shares pkj , this hybrid is indistinguishable from Hyb(1).

• Hyb(3): In this hybrid we replace honest partial decryptions pdj ’s with random values whose sum is∑
j∈HD pdj . Specifically, we first compute pdHD =

∑
j∈HD pdj , and then

– sample random p̂dj for all j ∈ HD conditioned on
∑
j∈HD p̂dj = pdHD ; and

– for all j ∈ HD, set p̄dj ← Sym.Enc(p̂dj ,ksym,j), and we simulate proofs π̃j on the fake partial
decryption value p̂dj .

39

Note that, for all honest j ∈ HD, in Hyb(2) their partial decryptions pdj are random conditioned
on
∑
j∈HD pdj = −v ·

∑
j∈HD pkj +

∑
j∈HD e

′′′
j , where all pkj are random. So {p̂dj}j∈HD has the

same distribution as {pdj}j∈HD in Hyb(2), and hence the symmetric encryptions p̄dj are identically
distributed in Hyb(2) and Hyb(3). So, this hybrid is identical to Hyb(2).

• Hyb(4): In this hybrid we sample a fresh AHE key pair (skHD , pkHD), and we compute p̂dj for honest
j using pkHD and v. Specifically,

– we sample (skHD , pkHD)← AHE.KeyGen;

– compute pdHD = −v · pkHD +
∑
j∈HD e

′′′
j for e′′′j ← χflood;

– for all j ∈ HD, sample random p̂dj conditioned on
∑
j∈HD p̂dj = pdHD ; and

– for all j ∈ HD, set p̄dj ← Sym.Enc(p̂dj ,ksym,j), and we simulate proofs π̃j on the fake partial
decryption value p̂dj .

The difference of this hybrid with Hyb(3) is that pkHD is now pseudorandom. Note that everything else
are computed exactly the same as in Hyb(3), and the only term depends on skHD in Hyb(4) is pkHD . In
addition, in this hybrid we no longer have skj for honest decryptors j. This hybrid is indistinguishable
from Hyb(3) under RLWE assumption that pkHD is pseudorandom.

• Hyb(5): In this hybrid we no longer run honest decryptors as oracles, and instead we generate shares
and handle decryptor aborts directly in the hybrid. In addition, we also handle client aborts in this
hybrid. Specifically, for all j ∈ HD:

– let {sharejk}k∈CD be a set of random values;

– generate (skmask,j , pkmask,j)← AHE.KeyGen(rmask,j) for random rmask,j ;

– let sharemask,j ← Share(rmask,j);

– let sharesym,j ← Share(ksym,j).

When A sends signedpki = (D, SD, pk, pkmask) to each honest client i ∈ H, we let client i abort if there
are at least t signatures sj in SD that are invalid.

Then, during the decryption phase, for all honest j ∈ HD:

– when A broadcasts Sj to j, we check in this hybrid that |Sj | ≥ t and the proofs in Sj verify. If
the verification does not pass, we remove j from HD, i.e. let j abort;

– when A broadcasts signedctj = (ct1, sct1) to j, if sct1 contains an invalid signature, we remove j
from HD, i.e. let j abort;

– if we do not abort in the previous step, then send {sharemask,jh }h∈HD to A along with encryptions
of honest partial decryptions { ¯pdj}j∈HD .

For each `, j ∈ HD, A is given either sharesym,`
j (if ` ∈ Pj) or share`j (if ` 6∈ Pj). However, in order to

avoid aborts, for each j it is only able to request share`j for m− t different `.

Comparing with Hyb(4), we see that this hybrid handles aborts in the same way as in Hyb(4):

– for all j ∈ HD, sharemask,j and sharesym,j are generated in the same way as in Hyb(4);

– honest decryptors abort under the same condition about proofs on pkj and pkmask,j ;

– honest clients abort under the same condition about signatures on pk;

40

– A receives at most |CD| ∗ (m−|CD|) values sharejk for k ∈ CD and at most (m−|CD|)∗ (m− t) such
values from honest clients. That is at most m − t + |CD| shares per honest client, by the bound
on |CD| that is at most t− 1 shares per honest client. Therefore, for each j ∈ HD, {sharejj}k∈CD
is uniformly random in both Hyb(4) and Hyb(5); and thus A cannot decrypt all of the additive
shares of the master secret key.

So Hyb(5) is identical to Hyb(4).

• Hyb(6): In this hybrid we compute pdHD using skHD :

– pdHD = AHE.PartialDec(ct1, skHD) +
∑|HD|−1
j=1 e′′′j for e′′′j ← χflood.

Note that in AHE.PartialDec we already have one instance of flooding noise sampled from χflood; so we
add |HD| − 1 many more to match Hyb(5). We can express pdHD in this hybrid as

pdHD = −v · pkHD + v · e+ skHD · e′′ +
∑
j∈HD

e′′′j .

where e is the error term in pkHD = −u · skHD + e, and e′′ is the error term in ct1. Note that in Hyb(5)

we have
pdHD = −v · pkHD +

∑
j∈HD

e′′′j .

Using the argument similar to Hyb(1), we see that pdHD in Hyb(5) and Hyb(6) are statistically close. So
Hyb(6) is indistinguishable from Hyb(5).

• Hyb(7): In this hybrid, we set all dropout clients’ input to 0, and we program the RO accordingly. For
all i ∈ S we set RO(seedi) = xi and x̃i = PRG.Expand(seedi). This effectively replaces input xi with
0 for these dropout clients i. Since all seedi are sampled at uniformly random from an exponentially
large domain, and since PRG is modeled as a random oracle such that its output is truely random, the
probability of collisions is negligible, and Hyb(1) is indistinguishable from Hyb(0).

• Hyb(8): In this hybrid, we pick any surviving honest client i∗ ∈ H \ S and replace its input with
s =

∑
i∈H\S xi, and we replace the input of other honest surviving clients i 6= i∗ with 0. Since all x̃i

remain pseudorandom and correlated in the same way, this hybrid is indistinguishable from Hyb(7).

• Hyb(9): In this hybrid we program the RO such that RO(seedi∗) = s =
∑
i∈H\S xi, and x̃i∗ =

PRG.Expand(seedi∗). This effectively replaces the input of i∗ with 0. Since seedi∗ is uniformly random
from an exponentially large domain, the collision probability with RO queries from A is negligible, and
thus Hyb(9) is indistinguishable from Hyb(8). Note that, this hybrid does not depend on the real honest
clients’ private information anymore.

• Hyb(10): In this hybrid we replace honest surviving clients’ KAHE ciphertexts mi to (i.e. i ∈ H \ S)

– for all i 6= i∗, let mi be a random element in KAHE’s ciphertext space;

– let mi∗ = −
∑
i∈Smi.

Note that the view to the distinguisher contains all mi and the sum of KAHE secret keys ki for all
honest surviving clients i ∈ H \ S; but nothing else depends on the KAHE secret keys of these clients
i. In Hyb(9), the view contains the sum of ki, and for all i ∈ H \ S, mi is a KAHE ciphertext under
ki. By the HintRLWE assumption and special leakage property of KAHE in Lemma 1, the real KAHE
ciphertexts mi in Hyb(9) are indistinguishable from the random but correlated values mi in Hyb(10).
So, this hybrid is indistinguishable from Hyb(9).

41

• Hyb(11): In this hybrid we replace p̃kj from random shares of pkHD to be honestly sampled from
AHE.KeyGen, we replace pdj be honestly computed j’th partial decryption, and we replace the proof of
partial decryption πj using a honest generated proof. Using arguments similar to Hyb(0) to Hyb(4) (in
reverse order), we see that this hybrid is indistinguishable from Hyb(10). Note that this hybrid depends
on only simulated honest decryptors, and it depends on honest clients as in the Sim.

For efficiency, note that the client’s running time is O(` log n), the same as in the semi-honest server
case. The server can compute the aggregation tree in time O(n` log n), and thus the asymptotic running
time remains the same as in the semi-honest server case. For the decryptors, we now require an extra round
in both the key generation and the decryption phases, but since we require the same AHE parameters as in
the semi-honest server case, the asymptotic running time remains the same at O(m+ log n).

C.3 Distributed KeyGen with Untrusted Proxy
Analogously to the work of Flamingo [7], we present a protocol for key generation that can support an
actively corrupted coordinator/proxy. Note that actively malicious behavior by decryptors (along with
collusion with a semi-honest server) is already supported by the protocol of the previous section. Here we
extend the protocol to handle the situation where a malicious server doesn’t honestly relay messages between
decryptors possibly inducing drop-outs, i.e., the role of the coordinator Coord in Figure 4. Let us remark
that instances of our protocol with a single decryptor (2-server model), or where decryptors have means to
communicate among themselves independently of the Server would have a significantly simpler protocol than
the one presented next.

For space reasons the protocol in full detail is presented in Appendix C but the main differences from
Figure 4 are as follows. Firstly, the decryptors must sign their key contribution and then check that the
overall key is constructed by contributions from enough of them, before signing the resulting key so that
clients know it is valid. At the end they must check that they have (mostly) been given the same view of
which of them dropped out without providing a partial decryption. This prevents the server from recovering
more shares than it should. Finally, the decryptors must generate two keys rather than one, the second is
used by the clients as explained in the next section.

C.4 Server and Client
Another challenge in the malicious server setting that we need to tackle, is coming from the fact that the server
can maliciously drop clients including after seeing their (encrypted) contributions. This creates difficulties
for the simulation proof, which needs to simulate the honest parties without knowing which of them will be
dropped by the adversary and which ciphertexts will be included in the final sum to be decrypted. While in
the semi-honest setting the set of drop-outs could be treated as an input for the ideal functionality and thus
the simulator could invoke the ideal functionality and obtain the sum of the inputs of the honest clients that
will be included in the sum, this is no longer the case in the malicious setting

To handle this we introduce a different type of encoding for the clients’ inputs: Each client additively
secret shares its input into a share generated from a PRG invocation, and the difference (line 3 in Figure 15).
All clients send their seeds used for the PRG-generated share individually encrypted with the new shared
key (line 8 in Figure 15). The remaining shares of the inputs are provided to the server via the aggregation
protocol (lines 4-7 in Figure 15).

The server recovers its final output by obtaining shares of the decryption key for the PRG shares from
the decryptors, decrypting the seeds and evaluating the PRG. The results of these are aggregated together
with the output of the aggregation protocol ran on the rest of the input shares (line 8-10 in Figure 14).

Looking ahead what the above constructions enable us to do in the proof is to instantiate the PRG as a
random oracle that the simulator can program to embed any value that it wants in a simulated input for an
honest client (see details in the proof in Appendix C.2).

42

D Security definitions
Our security proofs are in the ideal vs. real paradigm. We follow closely the definitions in Lindell’s tuto-
rial [15], but simplify some of them to match our setting, e.g., only the Server obtains an output, and only
clients have input.

As expected, we define the ideal world execution by means of a so-called functionality, denoted FAI ,
consisting of a computation between the honest and corrupted parties (operated by an ideal-world adversary
AI), mediated by a trusted party. The ideal world defines the standard for security achieved by the protocol.
By IDEALFAI

(
(xi)i, λ

)
we denote the joint distribution of (i) the output of (semi-)honest parties and (ii)

the output of the adversary AI running functionality FAI with inputs
(
xi

)
i
, while controlling the corrupted

parties. Finally, λ denotes the security parameter, which we might omit for simplicity. Note that in our
setting only the server has output.

In the ideal vs. real paradigm a concrete protocol π is secure if its leakage to an attacker AR corrupting
some of the parties in the protocol can be obtained by an attacker running in the ideal world AI . This proves
that whatever leakage can be obtained in the protocol, can also be obtained in an ideal world that is secure
by definition. We use πAR to denote an execution of protocol π in the context of AR. By REALπAR

(
(xi)i, λ

)
we denote the joint distribution of the output of (semi-)honest parties and the adversary AR after running
the protocol where AR corrupts some of the the parties.

Corruption model. We assume that the adversary corrupts parties statically, i.e. once before the protocol
starts. Moreover, we consider both passive/semi-honest and active/malicious corruption. In the former, the
adversary might observe the internal state of corrupted parties, but they must behave as prescribed by π.
In the latter they might behave arbitrarily. Concretely, we consider two corruption models, and provide
protocols for both. In both cases the adversary corrupts the server and other parties, i.e., decryptors, clients
and verifiers, simultaneously. In the first setting the server is corrupted passively, while the rest of the
parties are corrupted actively. This models the situation where the attacker can launch some parties fully
under their control, while being able to only observe the execution of the server (e.g., because malicious
modifications of Server code would be deemed suspicious). In the second case the adversary fully controls
also the server.

Definition 6. We say that a protocol π securely computes functionality F if, for every real-world adversary
AR, if there exists a probabilistic polynomial time Sim so that, for all inputs (xi)i,

IDEALFSim

(
(xi)i, λ

)
≡ REALπAR

(
(xi)i, λ

)
where ≡ denotes computational indistinguishability with respect to security parameter λ, over the randomness
of F and π.

Deterministic vs. probabilistic adversaries. In accordance to the previous definition, to prove that a
protocol π is secure, one exhibits a simulator Sim. The simulator has black-box access to AR, and can set its
randomness, input, and auxiliary input, so we can consider AR to have those fixed/hardcoded, and therefore
it is a deterministic algorithm with no input (see Remark 6.5 in Lindell’s tutorial for a discussion on this
point [15]). One concrete way of thinking about black-box access is that Sim can issue a next-action(event)
query on AR, and obtain the next action party each of the corrupted parties takes, given an event, e.g. an
incoming message from honest parties. Actions correspond to (i) aborting, (ii) sending a message to another
(possibly corrupted) party, and (ii) termination possibly producing an output. An important observation is
that for passively corrupted parties the next-action function is known to the simulator, and its outcome
can be predicted, as the corrupted party must follow the prescribed protocol. This is particularly important
in our protocol in the case of a semi-honest server, as it takes the role of the verifier in ZK proofs. This means
that in that corruption model we can rely on Honest-Verifier Zero knowledge. Finally, we should emphasize
that the randomness tape of a passively corrupted party is not observable to the adversary, and in particular,
an adversary passively corrupting the server can’t predict challenges that the Server will generate, which
prevents actively corrupted clients from forging proofs.

43

D.1 Definitions in the Single-Server setting
For clarity, we specialize the above definitions to our setting.

D.1.1 (Semi)Honest Server case

We first consider the case where the server is either honest, or passively corrupted, while the adversary also
actively corrupts a fraction of the clients and decryptors.

In this case, we define the ideal view as the joint distribution of output for the server, and output of
the real-world attacker, after an interaction with the ideal functionality. Including the output of the server
in the ideal world distribution is an important aspect of modelling security in the real vs. ideal model
that captures a correctness requirement: the real world adversary shouldn’t be able to cause the server to
receive an incorrect output. Here, by incorrect we mean an output different from the one prescribed by the
functionality. Note that in our setting only the server has output, and only clients have inputs.

Definition 7 ((Semi)honest Server, Ideal View). Consider a setting with n clients holding private inputs
(xi)i∈n, and a Server SI that is the intended recipient of the sum of all clients’ inputs. Let FAI

(
(xi)i∈n

)
be

a functionality that interacts with an ideal-world adversary AI , resulting in the server SI receiving output
outputSI

. Let outputAI be AI ’s output at the end of the interaction. We define the ideal world view of
functionality FA as

IDEALFAI
(
(xi)i, λ

)
= (outputSI

, outputAI).

That is, the joint distribution of server and adversary outputs when interacting with the ideal functionality
FAI , where λ denotes a security parameter.

We define a real execution accordingly, as the joint distribution of the output obtained by the server, and
the output of the adversary, after an execution of a protocol π.

Definition 8 ((Semi)honest server, Real View). Consider a setting with n clients holding private inputs
(xi)i∈n, a server SR, and c decryptors. Let AR be an static adversary either passively corrupting the server
and actively corrupting a fraction of the clients and decryptors, or only actively corrupting a fraction of the
clients and decryptors. Let π be a randomized protocol, resulting in the server S receiving output outputSR

.
Let outputAR be AR’s output at the end of the execution. We define the real-world execution of π interacting
with adversary AR, as

REALπAR
(
(xi)i, λ

)
= (outputS, outputAR).

That is, the joint distribution of server and adversary outputs when running protocol π, where λ denotes
a security parameter.

D.1.2 Malicious Server case

In the case where the server also actively corrupts the server, along with a fraction of the clients and
decryptors correctness can’t be expected, as the adversary can instruct the server to output a value of their
choice. Accordingly, we define the ideal world view of functionality FA as

IDEALFAI
(
(xi)i, λ

)
= outputAI .

and the real-world execution of π interacting with adversary AR, as

REALπAR
(
(xi)i, λ

)
= outputAR .

44

D.2 Random Oracle Model
Like previous works [1, 3], our maliciously secure protocol is proven secure in the Random Oracle Model
(RO) [41].

A random oracle can be regarded as a public randomize funcionality FRO that, on input (x, `) outputs
a random string of length ` such that

1. FRO(x, `) is a independently sampled uniformly random length ` string.

2. Repeated queries on the same point points, i.e. FRO(x, `) output the same value.

In our proofs for malicious security, we assume parties are equipped with access to a common random
oracle FRO. All parties can query the oracle during the execution. Moreover, calls to the the expanding
pseudorandom generator PRG.Expand(seed, `) in the protocols are replaced by calls to FRO(seed, `).

45

Setup: A committee C with members 1 . . . ,m, with secure authenticated channels among themselves, and a coordinator
Coord forwarding messages. A PKI holding public signing keys for committee members and verifier V.

Parameters: Public AHE parameters, timeout T , and threshold t.

Key Generation Phase

Output: A set of decryptors D ⊆ C, public keys pk, pkmask, and ≥ t signatures on pk, pkmask.

Round 1: Share partial keys

1. Every committee member j ∈ [m]:

(a) Computes (skj , pkj) := AHE.KeyGen(rj) from randomness rj ,

(b) Secret-shares rj within C with threshold t.

(c) Computes (skmask,j , pkmask,j) := AHE.KeyGen(rmask,j) from randomness rmask,j ,

(d) Secret-shares rmask,j within C with threshold t.

(e) Sends hj :=
(
pkj ,ProveAHE.KeyGen(rj), pkmask,j ,ProveAHE.KeyGen(rmask,j)

)
and sig(hj) to Coord.

2. Coord collects messages up to a timeout T . Let Cs ⊆ C be the committee members that provide correct proofs and
signatures. If |Cs| < t, Coord aborts, otherwise Coord sets D := Cs, pk :=

∑
j∈Cs pkj , and pkmask :=

∑
j∈Cs pkmask,j .

Round 2: Verify global keys pk, pkmask

3. Coord broadcasts S = {hj |j ∈ D} within D.

4. Every decryptor j ∈ D: // Decryptors independenly check the server’s work

(a) Checks |S| ≥ t and that it has received valid proofs from each member, aborting if any check fails.

(b) Sends sj := sig(
∑
i∈S pkj) and smask,j := sig(

∑
i∈S pkmask,j) to Coord

// The server collects signatures from decryptors
5. Coord collects messages up to a timeout T , and sets SD to be the resulting set of signatures. If the signed keys are not

all equal or if |SD| < t Coord aborts, otherwise it outputs (D, SD, pk, pkmask).

Decryption Phase

Input: Aggregated ciphertext component ct1 and signature(s) sct1 (from verifier).

Output: Aggregated partial decryption of ciphertext (ct0, ct1).

Round 1: Collect encrypted partial decryptions

6. Coord receives (ct1, sct1) and broadcasts it within D.

7. Every j ∈ D:

// Decryptors provide an encrypted partial decryption, only if the ciphertext has been verified by V, and secret
share the corresponding key.

(a) Checks that sct1 contains appropriate signature(s), otherwise aborts.

(b) Secret-shares a key ksym,j for a symmetric encryption scheme Sym within D with threshold t.

(c) Sends
(

¯pdj := Sym.Enc(pdj ,ksym,j), pj := ProveAHE.PartialDec(pdj , skj)
)
, where pdj = AHE.PartialDec(c1, skj) to

Coord.

(d) Send shares of mask keys received in step 1d to Coord to enable recovery of skmask.

8. Coord collects messages up to a timeout T . Let P be the set of decryptors that reply. If |P | < t, Coord aborts.

9. Coord reconstructs skmask.

Round 2: Recovery of partial decryptions

10. Coord sends P to every decryptor in P .

11. Every j ∈ P :

(a) Aborts if |P | < t.

(b) Sends shares received in step 1b from each decryptor not in P , i.e. dropouts, to Coord.

(c) Sends key shares received in step 7b from every decryptor in P to Coord.

12. Coord reconstructs (rk, pkk, skk, pdk) for every dropout k 6∈ P . If pkk doesn’t match the one received in step 1e Coord
aborts. Coord recovers ksym,j , pdj for every non-dropout j ∈ P (from step 7c). If some proof pj does not verify Coord
aborts.

13. Coord sends pd :=
∑
j∈D pdj and skmask to S.

Figure 13: Decryptor D by committee, with unreliable proxy Coord.
46

Parameters: Number of clients n, input domain
F`.

1. Receive key signedpk = (D, SD, pk, pkmask) from
D.

2. Initialize nclients,m, ct0, and ct1 to zero.

3. while nclients < n :

// Process ith client’s request

(a) Send signedpk to Ci

// s̃eedi is the encryption of a PRG seed seedi
under skmask

(b) Receive (mi, (ct
0
i , ct

1
i), pi, s̃eedi) from Ci

(c) If VerifyAHE.Enc((ct
0
i , ct

1
i), pk, pi, i):

i. (ct0, ct1) += (ct0i , ct
1
i)

ii. m += mi

iii. nclients += 1

// Decrypt aggregated symmetric key

4. Compute Aggregation tree T .

5. Send ct1, T to V.

6. Receive sct1 = sig(ct1) from V.

7. Send ct1, sct1 to D.

8. Receive k and AHE.skmask from D.

9. Recover mask =
∑
i PRG.Expand(seedi, `).

10. Output KAHE.Dec(m,k)− mask.

Figure 14: Server S. The server processes n asyn-
chronous client contributions.

Input: xi ∈ F`.
1. Receive signedpk = (D, SD, pk, pkmask) from S. If

there are at least t signature sj ∈ SD or at least t
signatures smask,j that fail to verify on pk, client C
aborts.

2. Set ki := KAHE.KeyGen() and seedi :=
PRG.KeyGen().

// Compute masked input xi, mask with seedi.

3. x̃i := PRG.Expand(seedi, `) + xi.

// mi is an symmetric key encryption of the masked
input.

4. Set mi := KAHE.Enc(x̃i,ki).

5. Sample r ← {0, 1}λ uniformly at random

// (ct0i , ct
1
i) is an encryption of ki under pk with

randomness r

6. Set (ct0i , ct
1
i) := AHE.Enc(ki, pk, r)

7. Set pi = ProveAHE.Enc((ct
0
i , ct

1
i),ki, pk, r, i)

8. Set s̃eedi = AHE.Enc(seedi, pkmask)

9. Send (mi, (ct
0
i , ct

1
i), pi, s̃eedi) to S

Figure 15: Client C. Note that all steps, except
forming ct0i and ˜seedi and sending the result, (but
including forming ct1i and pi) can be done before
the pk, pkmask arrive from S. Thus online time can
be very small, and in particular is independent of `.

47

	Introduction
	Contributions

	Setting and Threat Model
	Roles & Assumptions
	Failure & Threat Model

	Related Work
	Technical Overview
	Our Approach: High-level Overview

	Main Cryptographic Primitives
	Key-Additive Homomorphic Encryption
	Threshold Additive Homomorphic Encryption
	Zero-Knowledge Proofs of Knowledge

	Our Protocol: Semi-honest Security
	Decryptor role
	Server and Client roles

	Our Protocol: Active Security
	Proof of unique inclusion
	Implementing the Verifier

	Experiments
	Microbenchmarks
	Comparison with Prior Work

	Conclusion
	Additional Details on Cryptographic Primitives
	Key-Additive Homomorphic Encryption (KAHE)
	Additive Homomorphic Encryption (AHE) with Distributed Key Generation and Decryption
	Zero-Knowledge Proof of Knowledge (ZKPoK)

	Details and Proofs of Security for Semi-Honest Protocol
	Decryptor
	Server and Clients

	Details and Proofs of Security for Malicious Protocol
	Sybil attacks and Differential Privacy
	Proof of Malicious Security
	Distributed KeyGen with Untrusted Proxy
	Server and Client

	Security definitions
	Definitions in the Single-Server setting
	(Semi)Honest Server case
	Malicious Server case

	Random Oracle Model

