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Abstract—Software based cryptographic implementations pro-
vide flexibility but they face performance limitations. In contrast,
hardware based cryptographic accelerators utilize application-
specific customization to provide real-time security solutions.
Cryptographic instruction-set extensions (CISE) combine the
advantages of both hardware and software based solutions to
provide higher performance combined with the flexibility of
atomic-level cryptographic operations. While CISE is widely used
to develop security solutions, side-channel analysis of CISE-based
devices is in its infancy. Specifically, it is important to evaluate
whether the power usage and electromagnetic emissions of CISE-
based devices have any correlation with its internal operations,
which an adversary can exploit to deduce cryptographic secrets.
In this paper, we propose a test vector leakage assessment
framework to evaluate the pre-silicon prototypes at the early
stages of the design life-cycle. Specifically, we first identify func-
tional units with the potential for leaking information through
power side-channel signatures and then evaluate them on system
prototypes by generating the necessary firmware to maximize
the side-channel signature. Our experimental results on two
RISC-V based cryptographic extensions, RISCV-CRYPTO and
XCRYPTO, demonstrated that seven out of eight prototype AES-
and SHA-related functional units are vulnerable to leaking cryp-
tographic secrets through their power side-channel signature even
in full system mode with a statistical significance of α = 0.05.

I. INTRODUCTION

In the modern landscape of information technology, cryp-
tography, and its use cases have evolved into an essential
tool for safeguarding sensitive data and ensuring secure com-
munication. These requirements of cryptography extend far
beyond its traditional role of encoding and decoding messages;
they serve as a foundation for the confidentiality, integrity,
and authenticity of digital information. From securing online
transactions and protecting personal communications and dig-
ital privacy, cryptography plays a critical role in mitigating
the ever-growing spectrum of cyber threats. As technology
advances, there is an increasing demand for robust and fast
cryptographic techniques, making it an integral component of
our daily digital interactions.

Catering to these security demands, there are different
techniques to implement cryptographic functionalities. The
existing solutions can be mainly divided into three categories:
software implementations, hardware accelerators, and cryp-
tographic instruction set extensions. The distinction between
software cryptographic implementations, cryptographic accel-
erators, and cryptographic instruction set extensions revolves
around their specific approaches to managing cryptographic
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Fig. 1: Instead of using full cryptographic accelerators, a set
of functional units (e.g., CR1) corresponding to cryptographic
instruction set extensions are implemented in the arithmetic
logic unit (ALU) of the processor core. This lets instruc-
tions related to cryptographic functions to be executed much
faster and more efficiently compared to complete software
implementations and more configurable compared to hardware
cryptographic accelerators.

operations. Software cryptographic implementations, provided
by libraries like OpenSSL [1], WolfSSL [2], Libgcrypt [3]
and Crypto++ [4], utilize algorithms that are executed by
the CPU through general-purpose instructions. However, their
versatility may encounter performance limitations inherent in
the nature of general-purpose processors. In contrast, crypto-
graphic accelerators, such as Titan Security Key [5], IBM PCIe
Cryptographic Coprocessor [6] and Trusted Platform Mod-
ules (TPMs) [7], [8], employ dedicated hardware components
designed explicitly for cryptographic tasks, operating either
independently or in parallel with the CPU to significantly boost
processing power for cryptographic operations. Cryptographic
instruction set extensions, like Intel Advanced Encryption
Standard Instructions Set (AES-NI) [9], Intel SHA Exten-
sions [10] and ARMv8-A Cryptography Extensions [11], strike
a middle ground between software and hardware implemen-
tations using a hybrid approach by incorporating specialized
instructions directly into the CPU architecture. Figure 1 illus-
trates an abstract implementation concept of the Cryptographic
Instruction Set Extensions (CISE). This approach aims to
enhance performance without the need for separate hardware
components for each cryptographic algorithm. Instead, each
of the algorithm steps is divided into atomic cryptographic
operations and each of these unique steps is implemented
as a separate functional unit inside the processor. When it
is required to perform a cryptographic workload, the pre-
compiled software implementations consist of each of the
specific cryptographic instructions that will be executed as
atomic execution steps by the processor.
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Whether a cryptographic function is implemented purely
using software, hardware, or in a hybrid manner (CISE),
they are susceptible to power side-channel attacks. Figure 2
illustrates a generalized setup that can be utilized by an
adversary to mount an attack exploiting the power side-channel
vulnerability. The adversary can obtain a test device with the
same specification as the victim device and construct a model
by manipulating the inputs and observing the power profile
of the device. Then in the field, the adversary can mount the
attack to recover the internal secret values that were leaked
as a power side-channel signature from the victim device.
Although software implementations can be masked with new
software updates, the other two implementation techniques
(hardware and CISE) will be affected significantly if they
are detected as vulnerable to power side-channel attacks after
fabrication due to the inherent difficulty in modifying an
integrated circuit (hardware). This illustrates the requirement
of performing test vector leakage assessment of the hardware
prototypes during the pre-silicon stage to detect potential
power side-channel vulnerabilities in the early design life
cycle. Although software-based masking techniques can be
applied to the cryptographic instruction set extensions, such
masking can add huge performance penalty defeating the
purpose of having accelerated functional units to improve
the performance. Therefore, similar to performing pre-silicon
functional validation using simulation as well as formal verifi-
cation, security validation of the cryptographic instruction set
extensions using test vector leakage assessment is essential.
Although test vector leakage assessment (TVLA) of crypto-
graphic hardware has been explored in the literature [12]–
[14], there are no prior efforts for evaluating cryptographic
instruction set extensions that can perform TVLA of both the
hardware and firmware components. In this paper, we propose
an end-to-end pre-silicon test vector leakage assessment frame-
work for cryptographic instruction set extension prototypes.

To the best of our knowledge, our proposed approach is
the first attempt for evaluating cryptographic instruction
set extension prototypes for potential power side leakages
at the pre-silicon stage.
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Fig. 2: Simple illustration of the setup for launching a power
side-channel attack. An adversary can have a test setup that
creates a power model of the device. In the field, the adversary
can launch the attack on the victim device based on the model
created using the test setup.

The rest of the paper is structured as follows. First, we
explore the background and related works in Section II. Next,
we discuss the research contributions of the proposed approach
in Section III. We elaborate on the major steps of the proposed
information leakage assessment framework for cryptographic

instruction set extensions in Section IV and Section V. In
Section VI, we apply the proposed technique to ongoing
RISC-V cryptographic extension standardization work and
show its effectiveness. Finally, we discuss the applicability
and limitations of the proposed framework in Section VII and
conclude the paper in Section VIII.

II. BACKGROUND AND RELATED WORK

In this section, we first discuss existing commercial and
open-source implementations of cryptographic instruction-set
extensions. Then, we examine how power side-channel attacks
have been used for extracting cryptographic secrets from
these implementations. Finally, we survey work on pre-silicon
test vector leakage assessment (TVLA) and discuss issues
in using this technique to evaluate the implementations of
cryptographic instruction set extensions.

A. Cryptographic Instruction Set Extensions

Several commercial implementations of scalar crypto-
graphic extensions exist. An AES (Advanced Encryption Stan-
dard) extension, called AES-NI (”New Instructions”), was
developed by Intel for the x86 instruction set architecture [15].
The extension includes instructions for encryption (AESENC),
decryption (AESDEC), and key generation (AESKEYGE-
NASSIST), with support for key sizes of 128, 192, and 256
bits. The first implementation of AES-NI has been developed
by Intel for x86 architecture based processors and later similar
functionality was adopted by AMD on several versions of
their x86-based processors [16]. Another x86 extension, this
time for SHA (Secure Hash Algorithm), was also developed
by Intel [10]. It currently supports SHA-1 and SHA-256
and there are plans for supporting SHA-512 in the future.
Implementations of this extension have been developed by
both Intel (starting with the Westmere Sandy Bridge gener-
ation) and AMD (on their Zen and Puma processors). The
ARMv8 instruction set architecture also features cryptographic
extensions for both AES and SHA [17]. These extensions,
denoted by the +crypto tag, have instructions for accelerating
encryption and decryption (for AES), as well as for hashing
operations (for SHA) [17].

There have also been efforts to develop cryptographic
extensions for the open-source RISC-V instruction set archi-
tecture. According to a summary of RISC-V scalar crypto-
graphic instruction set extensions [18], RISCV-CRYPTO [19]
and XCRYPTO [20] are the two popular efforts [21]–[24].
Specifically, XCRYPTO [20] was developed considering the
potential architectural side-channels that can be used by
micro-architectural components [24]. Note that both RISCV-
CRYPTO and XCRYPTO implementations are formally veri-
fied using Sail and riscv-formal verification frameworks sep-
arately. Both RISCV-CRYPTO and XCRYPTO implementa-
tions are open source. While the XCRYPTO extension has the
complete prototype hardware implementations of the system
with different functional units, RISCV-CRYPTO has hardware
implementations of the functional units that can be used for
the power side-channel evaluation.
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B. Power Side-Channel and Cryptography

Power side-channel attacks present a considerable threat
to cryptographic implementations. They work by monitoring
variations in a device’s power consumption in order to infer
sensitive information. In the context of software implemen-
tations, these attacks target the power fluctuations caused by
the execution of individual general-purpose instructions of the
cryptographic algorithms. For instance, an adversary could
analyze power consumption patterns during the execution
of certain instructions, such as those involved in modular
exponentiation in public key encryption. Notably, software
libraries like OpenSSL have been shown vulnerable to power
side-channel attacks [25]. By monitoring power consumption
during cryptographic operations, attackers can potentially de-
duce secret keys, compromising the security of encrypted
communications.

A power side-channel attack on the AES-NI extension is
illustrated in [26]. Here, the authors were able to recover AES-
NI keys from both an SGX enclave and the Linux kernel within
a time frame of 26 hours. Variations in power consumption can
also affect the electromagnetic characteristics of a device. This
property was used to develop a side-channel attack against
the Apple iPhone 7 [27], a device featuring an ARM pro-
cessor with cryptographic instruction set extensions. Specifi-
cally, the authors were able to successfully launch an attack
on ARM/AES-CE implementation that utilizes the ARMv8-
A+crypto extension, and they launched the side-channel attack
focused on Apple’s implementation of the specific instruction
set on the Apple A10 Fusion System-on-Chip (SoC).

Cordwell et al. [28] performed a theoretical analysis of
launching potential power side-channel attacks to reveal the
initial seed input on SHA-2 family algorithms including
SHA-512 using the Hamming weight of the input messages.
The authors demonstrated the possibility of this attack using
entropy/information theory arguments. The success of this
attack is influenced by the word size used in the hash algo-
rithm’s operations; smaller word sizes make the side-channel
attack more likely to succeed. If the algorithm happens to
process input byte-by-byte, the attack is feasible. However,
an algorithm that processes information in 64-bit words, as
in SHA-512 and SHA-384, poses a much greater challenge
to the adversaries. The effectiveness of this side-channel
attack depends on the analyst’s ability to measure near-perfect
Hamming weights, which may be achieved through repeated
measurements of identical hash operations. The theoretical
possibility of extracting information from later rounds, given
80 rounds of processing and 20 independent input words,
adds extra complexity. Success in launching an attack using
the findings of this study depends on specific implementation
details and device characteristics. A similar attack that can be
launched on HMAC-SHA-2 and differential power analysis
was proposed in [29]. The authors have utilized the Hamming
distance leakage model on both pure hardware implementa-
tions on FPGA and software implementations to successfully
launch an attack with less than 30K power traces.

It is important to highlight that the above vulnerable im-
plementations were identified after the fabrication process of

the hardware. Therefore, mitigation to prevent the leakage of
the manufactured hardware adds huge performance penalties
(e.g., with firmware-based masking techniques such as adding
random instructions processing random data in between the
actual cryptographic operations). This highlights the need for
validation mechanisms at the early stages of the design life
cycle of the cryptographic instruction set extensions.

Simulation

Leakage Assessment

Test
Cases

Statistical Power
Analysis Power

Estimation

Cryptography
Module

Input
Generarion

Power
Trace

Fig. 3: An overview of pre-silicon test vector leakage assess-
ment methodology [30] that consists of four majors steps. The
first step is an input generation mechanism to maximize the
side-channel sensitivity. Next, the designs are simulated with
the generated inputs. Then, it generates a power consumption
model for the device. Finally, it performs statistical evaluations
to perform leakage assessment.

C. Related Work
Test Vector Leakage Assessment (TVLA) for hardware

implementations aims to provide the following statistical as-
surance [30], [31]: the execution of the implementation doesn’t
directly or indirectly expose sensitive information through
power side-channel signatures. There are promising TVLA
techniques for hardware implementations of cryptographic im-
plementations [12]–[14], [32]. Figure 3 illustrates the abstract
steps involved in the pre-silicon test vector leakage assessment
process for cryptographic implementations. The initial step
involves generating tests based on Hamming distance to induce
variations in power signatures [13], [14]. Subsequently, the
design undergoes simulation with the generated key pairs and
a constant plaintext. The power signature is then derived from
the change in values during the simulation. Following this,
the disparity between two power signatures is computed using
statistical techniques like t-test and KL-divergence [13], [14],
[32]. Ultimately, the implementation is classified as either safe
or susceptible to side-channel attacks based on a predeter-
mined threshold. The same concept is applicable for public key
cryptosystems with several modifications such as stage-wise
test vector leakage assessment on the vulnerable components
and performing leakage assessment on sequential operations
rather than block-wise operations involved in symmetric key
cryptosystems [12].

The main limitation of applying existing test vector leakage
assessment (TVLA) techniques on the cryptographic instruc-
tion set extension (CISE) prototypes is due to the hybrid
nature of the implementation which utilizes both hardware and
firmware. Unlike software- and hardware-based approaches,
CISE implementations are dependent on a special set of
instructions on the firmware and how the compiler optimizes
them. Moreover, each CISE instruction is executed using a
custom functional unit that will have a unique power signature
which needs to be evaluated.
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III. RESEARCH CONTRIBUTIONS

In order to analyze cryptographic instruction set extension
(CISE) prototypes, we propose a comprehensive framework,
referred to as CISELEAKS, consisting of two evaluation
rounds: 1) a functional unit evaluation round and 2) a full
system evaluation with leaky functional units at early (pre-
silicon) design stages. Each round will utilize a statistical test
vector leakage assessment (TVLA) framework that assesses
the potential power side-channel leakages. Figure 4 provides
an overview of our proposed information leakage assessment
framework. It accepts the hardware implementation and returns
whether the given implementation can leak information as a
power signature. Specifically, this paper makes the following
contributions,

Information Leakage
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Functional Unit
Implementation

Functional
Unit Model

SoC

Systems
Implementation

Fail

Pass

Mitigations

System
Model

Test Vector Leakage
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Fig. 4: Overall contribution of the proposed information leak-
age assessment framework. This consists of two main sections;
unified information leakage assessment framework and test
vector leakage assessment methodology.

• We propose an input generation algorithm that can max-
imize the side-channel sensitivity of functional units.

• We formulate a methodology to evaluate prototype func-
tional units for their power side-channel leakage.

• We propose a full system evaluation methodology to
evaluate side-channel vulnerable functional units with the
full system prototype.

• In support of system evaluation, we formulated an auto-
mated cryptographic workload generation mechanism to
be used as the firmware for the system.

• We propose an automated trace alignment technique to
detect the power consumption of the functional units from
the full system power consumption.

• Evaluations on two RISC-V cryptographic instruction set
extension (CISE) based designs, RISCV-CRYPTO [19]
and XCRYPTO [20], have demonstrated that AES pro-
totype implementations are vulnerable to leaking internal
secrets as power side-channel signature.

IV. INFORMATION LEAKAGE ASSESSMENT OF
CRYPTOGRAPHIC INSTRUCTION-SET EXTENSION (CISE)

PROTOTYPES

In this section, we discuss the proposed information leak-
age assessment framework for cryptographic instruction set
extension prototypes. Figure 5 illustrates the four major steps
involved in the process. The first step is to identify the
victim components of an implementation. This involves going
through different cryptographic implementations to identify

their vulnerable steps, such as collisions. Next, the functional
units that implement these vulnerable components are eval-
uated for their potential information leakage using the test
vector leakage assessment methodology. Then each of the
functional units that fail the leakdown test are evaluated with
the system again using the test vector leakage assessment
methodology. Finally, if the system implementation passes
the leakdown test for each of the functional units, then the
implementation is ready for manufacturing. Otherwise, hard-
ware mitigations should be applied to the system to mask the
internal computations. The following subsections describe this
process in detail with examples using evaluations on RISC-V
XCRYPTO instruction set extension.

A. Victim Algorithm Identification

Before performing information leakage analysis, we have
to identify whether a cryptographic algorithm is susceptible
to power side-channel attacks, specifically those arising from
cryptographic collisions. This process involves a literature
review and a theoretical analysis. In this work, we survey
the literature published by various international, national, and
industry-specific cryptographic standards regulatory bodies,
such as the National Institute of Standards and Technol-
ogy (NIST), European Telecommunications Standards Insti-
tute (ETSI), Internet Engineering Task Force (IETF), and
scientific research bodies, such as Office of Scientific and
Technical Information (OSTI). Next, we utilize the information
about research efforts on existing attacks on cryptographic
implementations. After identifying such vulnerable algorithms,
functional units corresponding to those algorithms should be
considered for the next step of functional unit evaluation.

Example 1 (Vulnerable Algorithms): In the case of the
XCRYPTO instruction set extension, it supports AES and
SHA cryptographic algorithms. There are theoretical as well
as practical power side-channel attacks on both AES and
SHA implementations on existing literature [9], [27]–[29],
[33] as we discussed in Section II-B. Therefore, functional
units corresponding to the parts of the implementations of
AES and SHA should be considered for the functional unit
evaluation. ■

B. Functional Unit Evaluation Round

Once potential components that can leak sensitive informa-
tion as power side channels are identified, the corresponding
functional units need to be evaluated using test vector leakage
assessment. Usually, all the functional units implemented in-
side the extension follow a certain standard of how they handle
inputs and outputs. In addition to the input data registers,
there are control flags that allow communication between the
functional unit and the system. Therefore, a generic testbench
can be used to evaluate all the functional units. For this,
we create a testbench template that handles the control flags
(such as valid and done) and sets them to necessary input
values. This testbench template is also responsible for feeding
the controlled input data into the functional unit to perform
the functional operations while dumping the simulation traces
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Fig. 5: Overview of information leakage evaluation framework for cryptographic instruction set extension prototypes. First,
we identify the victim functional units that can leak sensitive information as a power signature. Next, we have two main
evaluation rounds: individual functional unit evaluation and full system evaluation. Each round prepares a corresponding
hardware model and feeds that into the test vector leakage assessment methodology (Section V). All the victim functional
units are evaluated in the functional unit evaluation round and each of the failed functional units that is returned by the TVLA
methodology are evaluated with the system evaluation round. Functional units that fail during the system evaluation should be
mitigated with modifications to the prototype implementation. Once all the functional units pass the system evaluation round,
the implementation is statistically guaranteed against power side-channel leakage and ready for fabrication.

as a value change dump (VCD). Next, the hardware model
is constructed by combining the hardware description of the
functional unit (such as Verilog implementation) with the
testbench (such as Verilator CPP testbench) into one compiled
simulator application. This application can be sent to the
test vector leakage assessment methodology (which will be
discussed in Section V) that will evaluate the functional unit
for the information leakage via power side-channel signature.
This methodology will evaluate the hardware model and return
a “Pass” or “Fail” value for the side channel leakage. Here,
the “Pass” signifies that the hardware model of the functional
unit does not correlate with the input values indicating a
power side-channel resistant implementation, and the “Fail”
represents that the functional unit itself leaks input data as
the side-channel signature and needs to be evaluated with the
system.

Example 2 (Functional Unit Evaluation): In case of
XCRYPTO instruction set extension, we have evaluated
four functional units of: xc aesmix, xc aessub, xc sha256,
and xc sha512. All these functional units were classified by
the test vector leakage assessment methodology as “Fail”,
indicating that they need to be evaluated with the system. ■

C. System Evaluation Round

Once all the potential victim functional units are evaluated,
all the “Failed” functional units need to be evaluated with
the system. The reason behind the system evaluation is that,
if other computations of the system can mask the operations
of any functional unit, it will provide side-channel resistance
to attacks against the particular functional unit. Compared to
the functional unit evaluation, system evaluation is a complex
process since it requires complete firmware binaries that can
be simulated with the hardware implementation of the system.
Further, this step requires the continuous integration and con-
tinuous delivery/continuous deployment (CICD) version of the
GNU Compiler Collection (GCC) toolchain with the support
for the cryptographic instructions to compile the binary. Next,

we create a firmware template in assembly code that can
switch between cryptographic workloads based on the context
dynamically.

.text

.global _start
_start:

li x1 , 0
li x2 , 0
...
li x31, 0
j main

(a) System Initialization Function

.data
value_1: .word 0x827b6f
value_2: .word 0x1c42bff

main:
la a1, value_1
la a2, value_2
nop
j work

(b) Main Function
aes:
xc.aessub.enc a0,a1,a2
xc.aessub.encrot a0,a1,a2
xc.aessub.dec a0,a1,a2
xc.aessub.decrot a0,a1,a2
xc.aesmix.enc a0,a1,a2
xc.aesmix.dec a0,a1,a2

(c) AES Workload Template

sha:
xc.sha256.s0 a0, a1
xc.sha256.s1 a0, a1
xc.sha256.s2 a0, a1
xc.sha256.s3 a0, a1

(d) SHA Workload Template
Fig. 6: Cryptographic workload templates used for XCRYPTO
instruction set extension running on SCARV SOC system
implementation. Depending on the functional unit that is under
test, the assembly instruction ‘j work’ should be changed to
jump to the corresponding workload.

Figure 6 illustrates a firmware template that can be used for
this purpose where value_1 and value_2 are inputs to the
cryptographic functional unit that is under test. Next, in order
to simulate the system, we construct a testbench that can read
the compiled firmware as a hex file and feed it to the read-
only memory (ROM) of the SoC while dumping the simulation
trace as a value change dump (VCD). This firmware template
is capable of initializing the CPU of the SoC into the proper
state and writing the internal registers with the inputs to the
cryptographic functional unit. Once the input data is loaded,
the firmware makes a jump into the cryptographic workload.
During the simulation process of the hardware model in the
test vector leakage assessment methodology, the firmware will



6

Power Trace Analysis (Section V-C)Power Profiling (Section V-B)

Random Seed i
(0 ≤ i ≤ x) Fail

Pass

Leakdown
Test

(Section V-D)Simulate
Correlation

Power
Analysis

Change Period
Detection

Generator
(Algorithm)

Crypto FU
Power

Signature

Test Bench (tb.cpp)

Hardware Model

Design Under
Test

(dut.v)
Input

Generation
(Section V-A)Input Register

0 x

Power
Signature

Fig. 7: Overview of test vector leakage assessment that is used to evaluate individual functional units and full system of
cryptographic instruction set extensions. The input to this methodology is the hardware model that includes a testbench with
the implementation under test. This assessment consists of three major steps: input value generation, power profiling, and
power trace analysis. A test called the leakdown test is performed to classify the hardware model as ”Pass” (does not leak
sensitive information as power side-channel signature) or ”Fail” (leaks sensitive information as power side-channel).

get updated with the input values of value_1 and value_2.
Note that each functional unit that needs to be evaluated
with the system requires a separate workload with related
cryptographic instructions.

Example 3 (Workload Templates): Figure 6 illustrates the
abstract firmware template used for the evaluation of the
XCRYPTO instruction set extension prototypes. Here the boot-
loader code responsible for initializing the SoC properly is
illustrated by Listing 6a and main function that writes input
values to the internal registers is illustrated by Listing 6b.
In the case of the XCRYPTO, we need to evaluate both
AES and SHA. Therefore, we have created two cryptographic
workloads; the AES workload template illustrated in Listing 6c
for evaluating the AES functional unit with the system and
the SHA workload template illustrated in Listing 6d for the
evaluation of SHA implementations with the system. During
the compilation of the workload, the assembly instruction
‘j work’ in Listing 6b is changed to jump to the correspond-
ing workload that is under test. ■

Next, the system hardware model of the SoC with the
firmware and the test bench is provided for the test vector
leakage assessment methodology in Section V which will
return a “pass” or “fail” based on the statistical evaluations.
If for all the functional units the system implementation
“Passes” the evaluation, the instruction set extension prototype
implementation passes the test vector leakage assessment and
the SoC is ready for the manufacturing process. However, if at
least one of the functional units “Fails” the system evaluation,
modifications are needed to mitigate the power side-channel
leakage. After applying the mitigation, the same experiment
should be repeated until it does not leak information as a power
side-channel signature.

V. TEST VECTOR LEAKAGE ASSESSMENT

In the previous section, we have discussed the steps involved
in transforming a pre-silicon design for evaluation. In this
section, we discuss the specific steps involved in the test vector
leakage assessment. Figure 7 provides an overview of the
proposed test vector leakage assessment methodology. First,
we generate inputs to be fed into the cryptographic work-
loads. Next, we simulate the implementation and obtain the

power signature. Then, we perform trace analysis to evaluate
and quantify the amount of information leakage. Finally, we
perform a leakdown test to return a “Pass” or “Fail” result on
the evaluation.

A. Input Generation

The idea of this step is to manipulate the inputs to the
hardware implementation to maximize the side-channel sensi-
tivity. This facilitates the evaluation mechanism to observe the
power fluctuations and correlate the inputs with the observed
power fluctuations. Transistors, as fundamental building blocks
of hardware circuits, determine the power consumption of
the underlying implementation. The Hamming Weight Model
and Switching Activity Model are two approaches commonly
employed for estimating the power of the hardware design.
Therefore, in order to improve the side-channel sensitivity
of an implementation, the Hamming weight of the inputs
needs to be manipulated in a way that they follow a uniform
distribution. For this purpose, we utilize a modified version
of “Algorithm L” [34] which is used for Lexicographic Per-
mutation Generation. The steps of the modified algorithm
are illustrated in Algorithm 1. This algorithm generates a
random number of a given Hamming weight. In order to
generate sequences of random numbers for manipulating the
implementation, we randomly sample the Hamming weight for
each of the inputs from a uniform distribution. Let’s assume
the register architecture of the instruction set extension is X .
Then the input sequence that an implementation under test will
be simulated with can be represented as shown in Equation 1.

{hwGen(ri) | ri ∈ [0, X), i ∈ N} (1)

Algorithm 1 essentially generates random inputs with uni-
formly distributed Hamming weights that can be fed into
the functional unit of the implementation under test. This
effect cannot be obtained by directly using randomly sampled
inputs since random numbers do not have uniformly dis-
tributed randomness among their Hamming weights. Figure 8
illustrates the Hamming weight of the numbers generated
using the function hwGen() of Algorithm 1 (■ hw(hwGen))
compared with the Hamming weights of uniformly sampled
random numbers (■ hw(random)). It can be observed that
the Hamming weights of the inputs generated by the function
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Algorithm 1 Input Generation using hwGen() function

Input: Hamming weight hw, generator g, register width w
Output: random number R

1: function hwGen(hw, g, w)
2: R← 0
3: for i← 0 to hw− 1 do
4: bitPosition← U(0, w − 1− i)(g)
5: R← R | (1≪ bitPosition)
6: end for
7: return R
8: end function

hwGen() are evenly distributed in the input space compared
to the Hamming weights of the uniformly sampled random
numbers.
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Fig. 8: Comparison between the randomness of the Hamming
weights generated using the function hwGen of Algorithm 1
(■ hw(hwGen)) against the Hamming weights of uniformly
sampled random numbers (■ hw(random)).

B. Power Profiling

Once input patters are generated, the next step is to feed
the generated inputs into the hardware implementation and
simulate it. The steps involved in the testbench development
process for functional units and system evaluation were dis-
cussed in Section IV-B and Section IV-C, respectively. Note
that the hardware model that is provided as the input to this
step is a compiled simulator program that accepts sequences
of 1) register input values in the case of functional unit
evaluation and 2) compiled firmware in the case of full system
evaluation. Therefore, for the functional unit evaluation, the
input values generated in Section V-A are directly provided
as inputs while for the system evaluation, the firmware needs
to be updated with the input values generated in Section V-A
and compiled. Next, the implementation is simulated with the
corresponding inputs to obtain the relative power consumption
of the implementation. To accomplish this, we utilize simula-
tion value change dump (VCD) traces and compute the power
consumption using the Hamming weight power model and the
switching activity power model.

The Hamming Weight Model focuses on the dynamic power
consumption associated with the number of bit transitions in
a circuit during a specified time interval. It calculates power
consumption based on the Hamming weight, representing the
number of ‘1’ bits in the simulation trace. On the other

hand, the Switching Activity Model considers the frequency
of transitions in the circuit, accounting for the dynamic power
dissipation resulting from state changes. To effectively model
power, designers can combine these two approaches, incor-
porating both the Hamming Weight and Switching Activity
models in tandem. The estimation derived from these models
is proportionally related to the actual power consumption of
the underlying transistors when the device is manufactured.

C. Power Trace Analysis

Once the power signature of the implementation is ex-
tracted from the simulation, the specific region of the power
signature that is responsible for the cryptographic functional
unit needs to be isolated. We first perform a change period
detection. Once the power signature is isolated, correlation
power analysis can be performed, which will evaluate the
correlation between the power signature and input values to
the cryptographic functional units. In this section, we discuss
these two steps in detail.

1) Change Period Detection: In order to extract the power
signature corresponding to the functional unit from the entire
simulation, we first need to align the input sequences with the
power traces. This process is done based on the pipeline depth
of the design under test. For example, in case of combinational
functional unit that implements the dataflow behavior, the
power signature is the power values observed in the next cycle
right after feeding the inputs. On the other hand, in case of
sequential functional unit that consumes a fixed number of
cycles to complete the operations, the corresponding power
values are found in a region, which we refer as ”Change Period
(Cp)”. The change period can be visually identified in the
power trace by changing only the inputs of the functional unit
and keeping all other inputs in fixed values.
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Fig. 9: Change period (Cp) detection from the full system
(executing cryptographic workload AES firmware on SCARV-
SOC) power signature evaluation. By only changing the input
register values from X1 to X2 for the functional unit on
the particular firmware, the power consumption period of the
functional unit can be uniquely identified.

Example 4 (Change Period Detection): Figure 9 illustrates an
example where we have used the proposed change period de-
tection technique on an AES functional unit of the XCRYPTO
extension with the SCARV-SoC. In this instance, the firmware
is unchanged except for the fact that the input values to
the AES functional unit are changed from X1 to X2. This
drastically changes the power signature of the functional



8

unit, which makes it distinguishable from the power signature
created by other components of the SoC. ■

Once the Cp is identified, we map it to a single power
value (pm) by considering the maximum observed power point
within the range of Cp as illustrated in Equation 2. The reason
for this is that an adversary is interested in the peak power
points in the power signature since that is observable during
the actual device is in the field.

pm = max(Cp = {p1, . . . , pj}) (2)

Next, we need to determine the minimum number of exper-
iments (n) that need to be performed in order to achieve the
required statistical significance level of α. In order to calculate
this, we repeat the above process with 1000 experiments and
collect the peak power distribution that contains 1000 samples
as P 1000 = {pm1 , . . . , pm1000}. Next, we use Equation 3 to
compute the n value using the collected peak power distribu-
tion. Here, Zi is the point on the normal distribution to give
the required statistical power and significance. Additionally,
d represents the effect size, σ is the standard deviation,
while β and α represent the statistical power and significance
respectively. Next, the value of the n is obtained and the
change period detection experiment is repeated until it satisfies
the required n peak power samples.

n = 2 ·
(
Z(1−α

2 ) + Zβ

d

)2

· σ2 (3)

Once this process is repeated for the minimum number of
experiments (n) required for the required statistical signifi-
cance, we can obtain a distribution that consists of the peak
power of each experiment as Pm = {pm1 , . . . , pmn } which will
be used to perform the correlation power analysis in the next
step.

2) Correlation Power Analysis: At this stage, we have
two distributions of input value Hamming weights (V hw)
generated by Algorithm 1 and peak power (Pm) obtained
in Section V-C1 which contains n samples in each. Lets
represent these two distributions as V hw = {v1, . . . , vn} and
Pm = {pm1 , . . . , pmn }, respectively. For the correlation power
analysis, we will be conducting hypothesis testing. Therefore,
we construct the hypotheses

• H0 as there is no correlation between the power con-
sumption against the Hamming weights in the input
values to the functional unit

• H1 as there is a correlation between the power consump-
tion and the Hamming weights of the input values

Then we set the statistical significance to α which is
used to calculate the sample size (n). Next, we compute
the Chi-squared static for two distributions using Equation 4.
Here, pi corresponds to each element in the peak power
distribution Pm. The expected power value ei is calculated
using Equation 5 and the contingency table that is constructed
using both the distributions of V hw and Pm. In Equation 5,
γ, ν,Λ represent row sum, column sum, and the total sum of
the contingency table, respectively.

χ2 =

n∑
i=1

(pi − ei)
2

ei
(4) Ei =

γ(W (vi))× ν(pi)

Λ
(5)

A contingency table is constructed to organize and summa-
rize the joint distribution of two categorical variables of peak
power distribution and the input Hamming weights. To create
a contingency table, we assign each variable either a row or a
column, and the intersection cells represent the frequency of
corresponding observations falling into that category. In other
words, the contingency table can translate the input Hamming
weight into a corresponding peak power value.

Observed Peak Power Values
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

In
pu

t
H

W

v1 3 8 5 2 7 4 10 6 9 1
v2 7 1 9 6 3 8 2 10 4 5
v3 1 4 2 9 8 3 6 7 10 5
v4 5 6 8 3 1 10 7 9 2 4
v5 8 3 4 7 5 2 1 6 10 9
v6 2 7 1 10 9 5 4 8 3 6
v7 9 10 6 4 2 9 3 1 7 8

Fig. 11: Example contingency table constructed from input
value Hamming weights (input HW) to the functional units
with the observed peak power values.

Example 5 (Contingency Table): Figure 11 illustrates an ex-
ample contingency table constructed from two example peak
power and Hamming weight distributions. In this example,
we have observed ten unique power levels in the peak power
consumption distribution from p1 to p10 which is represented
as each column. On the input Hamming weight distribution,
we have observed seven different Hamming weight values from
v1 to v7 which are represented in each row. Then the internal
cell values are the frequencies of both occurrences at the same
time. For example, the entry corresponding to the first row (v1)
and the first column (p1) indicates that we have observed 3
samples with the Hamming distance of v1 and the power value
of p1. ■

df = (|γ| − 1).(|ν| − 1) (6)

p-value = 1− CDF (χ2, df) (7)

Next, we use Equation 6 to compute the degree of freedom
df , where |γ| represents the number of rows and |ν| represents
the number of columns in the contingency table. For the
contingency table in Figure 11, the degree of freedom is
df = (7 − 1) × (10 − 1) = 54. Finally, using the cu-
mulative distribution function (CDF) with the computed χ2

value from Equation 4 and df from Equation 6, the p-value
is computed using Equation 7. If p-value ≤ α, we reject
the null hypothesis (H0), which indicates that there is a
significant correlation between the peak power consumption
of the implementation with the inputs to the cryptographic
function units. Alternatively, if p-value > α, we fail to reject
the null hypothesis (H0).
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D. Leakdown Test

Leakdown test determines whether each functional unit leak
internal secret information as power side-channel signature
based on the correlation power analysis results and assign a
”Pass” or ”Fail” result. Here ”Fail” result happens when we
reject the null hypothesis (p-value ≤ α) which means that the
functional unit leaks the information about the cryptographic
secrets as power side-channel signature.

Since the proposed leakage assessment methodology com-
prised of two rounds of functional unit evaluation (discussed
in Section IV-B) and system evaluation (discussed in Sec-
tion IV-C), the leakdown test is carried out as follows. First,
each functional unit is evaluated with the test vector leakage
assessment methodology in the functional unit evaluation
round to obtain the leakdown test results. Next, all failed
functional units are sent to the system evaluation round. The
objective is that if other components in the system can mask
the power signature of the functional unit, then the implemen-
tation will not leak the information. The leakdown test results
for system evaluation round corresponding to each functional
unit will classify the testing prototype implementation as a
”Pass” or ”Fail” from the test vector leakage assessment.
Any functional units that ”Fails” the leakdown test should
incorporate register masking techniques to hide/obfuscate the
power signature and the modified implementation should be
again evaluated with our proposed approach until it passes the
system evaluation round.

VI. EXPERIMENTS

In this section, we evaluate two prototype implementations
of cryptographic instruction set extensions for the open-source
RISC-V architecture. We first briefly introduce these two
instruction set extensions. Next, we outline our experimental
setup. Finally, we present our experimental results.

A. Instruction Set Extensions Under Evaluation

In order to evaluate the effectiveness of proposed test vector
leakage assessment framework, we have selected two popular
cryptographic instruction set extensions, RISCV-CRYPTO and
XCRYPTO . In this section, we provide a brief overview of
these implementations.

RISCV-CRYPTO instruction set extension [19]: RISCV-
CRYPTO extension was proposed as a lightweight accelerator
solution for cryptographic workloads of embedded systems.
Modern cryptographic operations work with operands wider
than the individual elements in modern computer architecture,
which are typically limited to 64 bits. These wider operands,
often 128 or 256 bits, can consist of smaller elements that
are combined or may be a single value (e.g., 128-bit block or
round key in AES). RISCV-CRYPTO treat these operands as
vectors of one or more element groups based on the RISC-
V Vector Element Groups specification. Each vector crypto
instruction explicitly defines three parameters, Element Group
Width (EGW), Effective Element Width (EEW) and Element
Group Size (EGS), which represents total number of bits in an
element group, number of bits in each element, and the number

of elements in an element group, respectively. Table I presents
the specification details of different cryptographic algorithms
with the three parameters of EGW, EEW, and EGS.

XCRYPTO instruction set extension [20]: XCRYPTO aims
to facilitate efficient and secure software implementation of
cryptographic primitives, similar to standard floating-point
extensions. It explores a diverse design space for processor
cores and system architectures, allowing for hardware-only,
mixed, or firmware-only approaches. However, XCRYPTO
specifically focuses on supporting firmware-based crypto-
graphic implementations, with an emphasis on constrained
cores like microcontrollers. The specification does not assume
a specific value for architecture register widths (32, 64, or
128), but it commonly targets 32-bit microcontroller-class
cores. XCRYPTO requires interaction with a Random Number
Generator (RNG), leaving the instantiation unspecified but
assuming adherence to best practices for security. This ap-
proach balances flexibility in implementation with the critical
importance of selecting a secure RNG instance. Compared to
RISCV-CRYPTO, XCRYPTO is in a more mature stage in its
development. It consists of Verilog prototypes for each of the
required functional units for cryptographic algorithms of AES,
SHA256, and SHA512. In addition, it consists of a complete
SoC implementation in Verilog with a CPU that integrates
the prototype functional units enabling full pre-silicon system
simulation.

TABLE I: Specification details of different cryptographic
algorithms on RISCV-CRYPTO instruction set extension.

Algo. AES SHA256 SHA512 GCM SM4 SM3
Extn. Zvkned zvknh zvknhb Zvkg Zvksed Zvksh
EGW 128 128 265 128 128 256
EEW 32 32 64 32 32 32
EGS 4 4 4 4 4 8

B. Experimental Setup

We have used Verilog prototype implementations of both
RISCV-CRYPTO and XCRYPTO extension prototypes. For
the systems evaluation of the XCRYPTO extensions, we have
used SCARV-SOC with the SCARV-CPU that integrated the
prototype functional units. Verilator [35] simulator was used
to simulate the Verilog implementations and obtain the sim-
ulation traces as value change dumps (VCD). For compiling
the firmware for the system evaluation, the modified GNU
GCC toolchain with XCRYPTO extension was used. The
process of building the system model, automated compilation
of firmware and the power modeling was performed using C++
and C while statistical computations were performed using
Python scripts. The entire framework was implemented inside
a Docker environment and the experiments were performed on
a system with an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz
(64 bit) with system memory of 24GiB. According to the
analysis of the cryptographic algorithms and their associated
collisions that can reduce the effort of key/secret guessing,
we have selected the functional units corresponding to the
algorithms SHA and AES.
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Fig. 12: Visual similarity between the power consumption (■ power) of the functional unit and the Hamming weights of
the input values (■ hw(rs1)+hw(rs2)) on functional modules related to SHA computations on RISCV-CRYPTO and
XCRYPTO cryptographic instruction set extension prototypes. Here, rs1 and rs2 are the internal registers. The variations
trend in the input value Hamming distances are preserved in the power signature.

C. SHA Functional Unit Evaluation Results

In this section, we present the results for evaluating SHA
functional units that are implemented in Verilog from RISCV-
CRYPTO and XCRYPTO extensions. For this, we have sim-
ulated the prototype implementations according to the steps
outlined in Section IV-B. Table II presents the configuration
parameters and the results of the experiments for evaluating
SHA implementations. The statistical results in Leakdown test
column illustrate that there is a strong correlation between
the input Hamming weights and the power consumption of
individual functional units, which leaks the cryptographic
secrets as power side-channel signature.

TABLE II: Test vector leakage assessment results on
SHA functional unit prototypes from RISCV-CRYPTO and
XCRYPTO extensions. Here all the functional units fail the
leakdown test indicating a high correlation between the Ham-
ming weights of the input values against the power consump-
tion of the functional unit.

RISCV-CRYPTO XCRYPTO
Module SSHA256 SSHA512 SHA256 SHA512
Minimum n 4629 5091 4729 5018
Eval. Time (Sec) 6 5 5 6
p-value 3.425e-7 2.427e-7 5.925e-7 1.548e-7
Leakdown Test Fail Fail Fail Fail

In order to visually observe this correlation we have plotted
the power consumption against the input Hamming weight.
Figure 12 demonstrates the visual similarity between the
observed power values (■ power) of the functional units
against the Hamming weights of the input register(s) (■
hw(rs1)+hw(rs2)) that is used by the functional unit.
Here Figure 12a, Figure 12b, Figure 12c, and Figure 12d

represent the first 256 experiments out of all conducted
experiments of four instances of experiments on RISCV-
CRYPTO SHA256, RISCV-CRYPTO SHA512, XCRYPTO
SHA256, and XCRYPTO SHA512, respectively. It illustrates
that prototype implementations from both RISCV-CRYPTO
and XCRYPTO have a high correlation between the Ham-
ming weight of the inputs with the power signature of the
implementation.

D. AES Functional Unit Evaluation Results

In order to evaluate the AES implementations of both
RISCV-CRYPTO and XCRYPTO prototype extensions, we
have applied the steps outlined in Section IV-B on the cor-
responding Verilog functional units. Table III presents the
configuration parameters and the results of the experiments for
evaluating AES implementations. Similar to the SHA imple-
mentation results, the leakdown test results for AES functional
modules illustrate that there is a strong correlation between
the input Hamming weights and the power consumption of
individual functional units.

TABLE III: Test vector leakage assessment results on
AES functional unit prototypes from RISCV-CRYPTO and
XCRYPTO extensions. Here all the functional units fail the
leakdown test indicating a high correlation between the Ham-
ming weights of the input values against the power consump-
tion of the functional unit.

RISCV-CRYPTO XCRYPTO
Module SAES32 SAES64 AESMIX AESSUB
Minimum n 5002 4983 4945 4879
Eval. Time (Sec) 12 9 16 12
p-value 1.432e-7 4.892e-7 3.918e-7 3.291e-7
Leakdown Test Fail Fail Fail Fail
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(c) XCRYPTO AESMIX
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Fig. 13: Visual similarity between the power consumption (■ power) of the functional unit and the Hamming weights of
the input values (■ hw(rs1)+hw(rs2)) on functional modules related to AES computations on RISCV-CRYPTO and
XCRYPTO cryptographic instruction set extension prototypes. Here, rs1 and rs2 are the internal registers. The variations
trend in the input value Hamming distances are preserved in the power signature.

Figure 12 demonstrates the visual similarity between the
observed power values (■ power) of the functional units
against the Hamming weights of the input register(s) (■
hw(rs1)+hw(rs2)) that is used by the functional unit. Here
Figure 13a, Figure 13b, Figure 13c, and Figure 13d represent
the first 256 experiments out of all the conducted experi-
ments of four instances of experiments on RISCV-CRYPTO
AES32, RISCV-CRYPTO AES64, XCRYPTO AESMIX, and
XCRYPTO AESSUB, respectively. It illustrates that AES
prototype implementations from both RISCV-CRYPTO and
XCRYPTO have a high correlation between the Hamming
weight of the inputs with the power signature of the imple-
mentation.

E. System Evaluation Results

Since all the functional units related to the cryptographic
algorithms of AES and SHA failed the functional unit eval-
uations signifying that there is a considerable information
leakage, we have performed the system evaluation as discussed
in Section IV-C. However, since both RISCV-CRYPTO and
XCRYPTO are in the development phase, all the functional
units are not integrated into full system prototypes. The full
system prototype is available for only three functional units
of SHA256, AESSUB, and AESMIX from the XCRYPTO
instruction set extension. Table IV presents the configuration
parameters and the results of the experiments for evaluating
SHA256, AESSUB, and AESMIX implementations. The ‘Fail’
statistical results in Leakdown test column illustrate that there
is a strong correlation between the input Hamming weights and
the power consumption of the system on both AESSUB and
AESMIX prototypes, which leaks the cryptographic secrets as

power side-channel signature. On the other hand, the SHA256
implementation ‘Pass’ the leakdown test signifying that it does
not have a statistical correlation between the input Hamming
weights and the power consumption of the system model.

TABLE IV: Test vector leakage assessment results on full
system prototypes of XCRYPTO extensions. Here the two
functional units related to AES computations fail the leak-
down test indicating a high correlation between the Hamming
weights of the input values against the power consumption of
the system. However, SHA computation passes at the system
level, which indicates that other computations have masked
the unit level leakage (shown in Table II).

SoC (Extension) SCARV-SoC (XCRYPTO)
Module SHA256 AESMIX AESSUB
Minimum n 4892 4982 4790
Avg. Firmware Size (Bytes) 450 450 450
Avg. Compile Time (Sec) 6 5 8
Evaluation Time (Sec) 1964 2164 2459
p-value 0.9854 7.424e-7 9.532e-7
Leakdown Test Pass Fail Fail

Similar to the previous experiments, we have plotted the
visual relationship between the system power consumption
against the input Hamming weights from the firmware. Fig-
ure 14 demonstrates the visual similarity between the ob-
served power values (■ power) of the functional units
against the Hamming weights of the input registers (■
hw(rs1)+hw(rs2)) that is used by the functional unit. Here
Figure 14a, Figure 14b, and Figure 14c represent the maximum
power values observed in the first 256 experiments out of all
the experiments of each power trace analysis round for three
instances of XCRYPTO SHA256, XCRYPTO AESMIX, and
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Fig. 14: Visual (dis)similarity between the power consumption
(■ power) of the SoC and the Hamming weights of the
input values to the functional unit (■ hw(rs1)+hw(rs2))
on System evaluation with functional unit prototypes from
XCRYPTO cryptographic instruction set extensions. Here the
system consists of SCARV-SoC with SCARV-CPU that inte-
grates XCRYPTO functional units.

XCRYPTO AESSUB, respectively. As expected, there is no
visible correlation for SHA (Figure 14a) but strong correlation
for AES (Figure 14b and Figure 14c).

VII. APPLICABILITY AND LIMITATIONS

As discussed in Section I, there are two ways of designing
fast cryptographic implementations: hardware accelerators and
cryptographic instruction set extensions (CISE). This paper
focused on information leakage assessment of cryptographic
instruction set extensions (CISE) prototypes. However, our
proposed framework can be extended to support the evaluation
of hardware accelerators as well as cryptographic coprocessors
with minor modifications. For example, when we want to
evaluate an AES hardware accelerator which is connected
using a memory-mapped input/output (MMIO) interface, the
system evaluation round should be modified with necessary
firmware modifications.

Similar to existing TVLA methods, our approach assumes
the knowledge of potentially vulnerable cryptographic func-
tions (e.g., cryptographic collisions) as well as module (unit)

level boundaries. Although there are many industrial CISE pro-
totypes, we do not have access to the corresponding hardware
to apply our proposed framework. As a result, we applied only
on open-source CISE prototype implementations.

Cryptographic instruction set extensions (CISE) ecosystem
consists of many components and interactions between them,
including custom instructions, compilers, firmware templates,
hardware modules, and validation framework with the contin-
uous integration and continuous deployment (CICD) pipeline.
Currently, the validation framework uses an effective com-
bination of simulation-based validation and formal methods.
Going forward, our proposed information leakage assessment
framework will be included into the CICD pipeline.

VIII. CONCLUSION

Cryptographic instruction set extensions (CISE) is a promis-
ing avenue to design fast and flexible security implementation.
Unfortunately, there are many demonstrated attacks on CISE
implementations and it is hard to mitigate them without in-
troducing significant performance overhead. Clearly, there is a
need to develop an efficient solution for verifying the existence
of side-channel vulnerabilities in CISE prototypes. In this pa-
per, we proposed a test vector leakage assessment framework
that can be used to evaluate information leakage in hardware
implementations of CISE prototypes. Specifically, this paper
made three important contributions. First, we evaluate each
functional unit for potential power side-channel leakage of
internal secrets. Next, if the functional units are determined
to be leaky, we also evaluate the system model for potential
power side-channel leakage. Finally, we have demonstrated
the applicability and effectiveness of our proposed framework
using two CISE prototypes, RISCV-CRYPTO and XCRYPTO,
covering eight functional units of fu ssha256, fu ssha512,
xc sha256, xc sha512, fu saes32, fu saes64, xc aesmix and
xc aesmix. Experimental results revealed that, except for the
full system evaluation of xc sha256, all other functional
modules along with their systems evaluations failed the leak-
down test, signifying that there is a considerable amount of
information leakage during the computations of cryptographic
workloads. These results also highlight the need for pre-silicon
test vector leakage assessment during the development life-
cycle of cryptographic instruction set extensions.
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