
Combining Outputs of a Random Permutation:
New Constructions and Tight Security Bounds

by Fourier Analysis

Itai Dinur

Ben-Gurion University

Abstract. We consider constructions that combine outputs of a single
permutation π : {0, 1}n → {0, 1}n using a public function. These are
popular constructions for achieving security beyond the birthday bound
when implementing a pseudorandom function using a block cipher (i.e., a
pseudorandom permutation). One of the best-known constructions (de-
noted SXoP[2, n]) XORs the outputs of 2 domain-separated calls to π.
Modeling π as a uniformly chosen permutation, several previous works
proved a tight information-theoretic indistinguishability bound for SXoP[2, n]
of about q/2n, where q is the number of queries. On the other hand, tight
bounds are unknown for the generalized variant (denoted SXoP[r, n])
which XORs the outputs of r > 2 domain-separated calls to a uniform
permutation.
In this paper, we obtain two results. Our first result improves the known
bounds for SXoP[r, n] for all (constant) r ≥ 3 (assuming q ≤ O(2n/r) is
not too large) in both the single-user and multi-user settings. In particu-
lar, for q = 3, our bound is about

√
uqmax/2

2.5n (where u is the number
of users and qmax is the maximal number of queries per user), improving
the best-known previous result by a factor of at least 2n.
For odd r, our bounds are tight for q > 2n/2, as they match known
attacks. For even r, we prove that our single-user bounds are tight by
providing matching attacks.
Our second and main result is divided into two parts. First, we devise
a family of constructions that output n bits by efficiently combining
outputs of 2 calls to a permutation on {0, 1}n, and achieve multi-user se-
curity of about

√
uqmax/2

1.5n. Then, inspired by the CENC construction
of Iwata [FSE’06], we further extend this family to output 2n bits by
efficiently combining outputs of 3 calls to a permutation on {0, 1}n. The
extended construction has similar multi-user security of

√
uqmax/2

1.5n.
The new single-user (u = 1) bounds of q/21.5n for both families should
be contrasted with the previously best-known bounds of q/2n, obtained
by the comparable constructions of SXoP[2, n] and CENC.
All of our bounds are proved by Fourier analysis, extending the provable
security toolkit in this domain in multiple ways.

1 Introduction

Efficient implementations of pseudorandom functions today typically use block
ciphers, which are pseudorandom permutations that only achieve security up to



the birthday bound of q = 2n/2 queries (where n is the block length). Since the
security of many cryptosystems (such as encryption modes, MAC algorithms
and authenticated encryption schemes) is based on pseudorandom functions,
beyond-birthday bound security has become a popular research area, initiated
in papers by Bellare, Krovetz, and Rogaway [2], and by Hall, Wagner, Kelsey,
and Schneier [16].

1.1 XORing Permutation Outputs

One of the best-known constructions for achieving security beyond the birthday
bound XORs the outputs of 2 permutations calls. This constructions has two
main variants. The first variant, denoted XoP[2, n] (XOR of Permutations), uses
two permutations π1, π2 : {0, 1}n 7→ {0, 1}n to define XoP[2, n]π1,π2

: {0, 1}n 7→
{0, 1}n by XoP[2, n]π1,π2

(i) = π1(i) ⊕ π2(i). In practice, π1 and π2 are imple-
mented using a block cipher, instantiated with independent keys. The second
variant, denoted SXoP[2, n], uses 2 domain-separated calls to a single permu-
tation π : {0, 1}n 7→ {0, 1}n to define SXoP[2, n]π : {0, 1}n−1 7→ {0, 1}n by
SXoP[2, n]π(i) = π(0∥i) ⊕ π(1∥i) (where ∥ denotes concatenation). As in the
first variant, π is implemented using a block cipher. However, in information-
theoretic security proofs, the block ciphers in both variants are replaced by
idealized random permutations.

The second variant is more efficient in the sense that it only requires a single
key. Yet, the advantage of the first variant is that it achieves better concrete
security in idealized models.

Generalizations. Natural generalizations of the above variants XOR the out-
puts r ≥ 2 permutations calls. The aim of these generalizations is to obtain even
better security bounds.

In this paper, we are mainly interested in a generalization of the second
variant, denoted SXoP[r, n]. It uses r ≥ 2 domain-separated calls to a single
permutation π : {0, 1}n 7→ {0, 1}n to define SXoP[r, n]π : {0, 1}n−⌈log r⌉ 7→
{0, 1}n by SXoP[r, n]π(i) = π(0∥i)⊕ π(1∥i)⊕ . . .⊕ π(r − 1∥i).

Previous results. Both variants have been analyzed in the idealized model
by numerous papers in both the single-user and multi-user settings. The first
variant (XoP) that uses independent permutations (and its generalized version)
was analyzed in [7,6,8,9,10,12,20,21,23,25]. A tight security bound for XoP and
its generalization was derived in [11] (also see [13] for XoP[2, n]), and further
extended to the multi-user setting.

Works that analyzed the second variant SXoP (and its generalization) include
[1,4,8,10,12,17,23,25]. In particular, for SXoP[2, n] a security bound of about q

2n

was proved in [8,10,12]. This bound is tight as it is matched by a simple attack
that checks whether the element 0 is output. The bound was extended to a tight
bound in the multi-user setting (up to a logarithmic factor) in [17].
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For the more general scheme SXoP[r, n] with r ≥ 3, tight bounds are un-
known. The particular case of r = 3 was analyzed by Bhattacharya and Nandi

in [4], deriving a bound of about
√
uqmax

2n in the multi-user setting.

Remark 1. In practice, each permutation is instantiated with a keyed block ci-
pher. In such computational settings, one needs to add an additional term (or
terms) to the bounds derived above which take into account the optimal ad-
vantage in distinguishing the underlying block cipher (or block ciphers) from a
uniformly chosen permutation (or permutations).

1.2 Iwata’s PRF construction

At FSE 2006 [18], Iwata introduced CENC, which is a beyond-birthday bound
secure mode of operation, built from a PRF, F[w, n] : {0, 1}n−⌈log(w+1)⌉ 7→
{0, 1}wn using an underlying permutation π : {0, 1}n 7→ {0, 1}n and defined as

F[w, n]π(i) = (π(0∥i)⊕ π(1∥i))∥(π(0∥i)⊕ π(2∥i))∥ . . . ∥(π(0∥i)⊕ π(w∥i)).

Thus, F only makes w + 1 calls to π in order to generate wn bits of output,
whereas SXoP[2, n] makes 2w calls to π.

When modeling π as an ideal permutation, [3,8,19] proved that F [w,n] has

an indistinguishability advantage upper bound of about w2q
2n .

1.3 Our Results

In this paper, we obtain two results.

Result 1 - analysis of SXoP[r, n]. We improve known bounds for SXoP[r, n]
for all (constant) r ≥ 3 (assuming q ≤ O(2n/r) is not too large).

For odd r, we derive a bound of about q
2n(r−0.5) is the single-user setting and

√
uq

2n(r−0.5) in the multi-user setting. In particular, for q = 3, our bound
√
uqmax

22.5n

improves the best-known previous one of [4] by a factor of at least 2n. Our
bounds for odd r are tight up to a constant factor (for q ≥ 2n/2), as they match
attacks published by Patarin [24,26]. This includes the multi-user setting, where
our bounds are matched by the simple generalization of the attacks of Patarin,
which applies the single-user attack independently to each user and outputs a
majority vote over the answers.

For even r, we prove a bound of about q
2nr/2 in the single-user setting and an

additional (slightly more complicated) bound of about min
( √

uqmax

2n(r/2−1/2) ,
uqmax

2nr/2

)
in the multi-user setting. Furthermore, we prove that our single-user bounds are
tight by providing matching attacks, which improve the ones of [24,26].

Interestingly, our results show (for example) that SXoP[3, n] (with a tight
bound of q

22.5n ) is provably more secure than SXoP[4, n] (with a tight bound of
q

22n ). More generally, for odd r ≥ 3, SXoP[r, n] (with a bound of q
2n(r−0.5) ) is

provably more secure than SXoP[2r − 2, n] (with a bound of q
2n(r−1) ). Similar

results hold in the multi-user setting.
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Result 2 - definition and analysis of LXoP[L, n] and LXoP[L, 2, n].

LXoP[L,n]. We propose a family of constructions that output n bits by publicly
combining outputs of 2 calls to a single permutation on {0, 1}n, and achieve

multi-user security of about
√
uqmax

21.5n (as long as qmax ≤ O(2n) is not too large).
Hence, these constructions are provably secure up to u = o(2n) users for qmax ≥
Ω(2n). Our (single-user) bound of q

21.5n improves upon the best previous bound
of q

2n for a construction with similar parameters (obtained for SXoP[2, n]).
Our family of constructions is parameterized by a public linear orthomor-

phism, which is an invertible linear transformation L : {0, 1}n → {0, 1}n with
the property that L′(x) = x ⊕ L(x) is itself a permutation. The construction
is denoted by LXoP[L, n] and defined as LXoP[L, n]π(i) = π(0∥i) ⊕ L(π(1∥i)),
where i ∈ {0, 1}n−1.

It is easy to show that our bound
√
uqmax

21.5n is tight assuming q ≥ 2n/2 by
similar attacks to the ones of [24,26]. Note that the bound we obtain is of the
same order as the tight bound for XoP[2, n].

Importantly, there are many linear orthomorphisms L : {0, 1}n → {0, 1}n
with the desired properties which are very simple and easy to implement. One
example is L(x(1), x(2)) = (x(2), x(1)⊕x(2)), where x(1), x(2) ∈ {0, 1}n/2. Another
example that may be more efficient to implement in hardware is L(x) = (x >>>
1)⊕ (x1, 0, . . . , 0), i.e., cyclically rotate x by 1 bit to the right and XOR the first
bit of x (denoted x1) to the first bit of the result. Yet another example is doubling
in the field F2n . More details about linear orthomorphisms over Fn

2 can be found
in [15].

Intuitively, the main reason that such constructions have a high security level
is that (unlike SXoP[2, n]), every element generated by LXoP[L, n] is marginally
uniform in {0, 1}n. Indeed, let x ∈ {0, 1}n be such an element and write it as
x = y ⊕ L(z), where y, z ∈ {0, 1}n are drawn uniformly without replacement.
Then, fixing any a ∈ {0, 1}n, the equality x = a is equivalent to y⊕L(z) = a. If
y, z ∈ {0, 1}n were drawn uniformly and independently, then since L is invertible,
the equation y ⊕ L(z) = a would have exactly 2n solutions. However, since y, z
are drawn uniformly without replacement, we subtract the solutions that satisfy
y = z, and as L is an orthomorphism, the equation y ⊕ L(y) = a has exactly
one solution. Consequently, for any a ∈ {0, 1}n, the equation y ⊕ L(z) = a has
exactly 2n − 1 solutions, namely, x = y ⊕ L(z) is uniformly distributed.

We remark that the use of linear orthomorphisms in cryptography (and par-
ticularly in the design of block ciphers) is not new. See [5] and references therein
for examples. Hence, the main novelty of this work with respect to the LXoP[L, n]
family (and its generalization below) is in the security proof, rather than the ac-
tual design.

LXoP[L,2,n]. After analyzing LXoP[L, n], we extend the construction to obtain
better efficiency by outputting 2n bits via 3 calls to the underlying permutation.
Specifically, we define LXoP[L, 2, n] : {0, 1}n−2 7→ {0, 1}2n as

LXoP[L, 2, n]π(i) = (π(0∥i)⊕ L(π(1∥i))) ∥ (π(1∥i)⊕ L(π(2∥i))) .
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We prove that LXoP[L, 2, n] offers similar security to LXoP[L, n] in both the
single-user and multi-user settings, given that L is a linear orthomorphism. Com-
pared to Iwata’s PRF [18], F[2, n], the indistinguishability bound is improved
from about q

2n to q
23n/2 (in the single-user setting), while having comparable

parameters.

LXoP[L,w, n]. One can further extend LXoP to output wn bits via w + 1 per-
mutation calls, similarly to Iwata’s PRF. Specifically, define

LXoP[L,w, n]π(i) = (π(0∥i)⊕ L(π(1∥i))) ∥ . . . ∥ (π(w − 1∥i)⊕ L(π(w∥i))) ,

where i ∈ {0, 1}n−⌈log(w+1)⌉. To achieve high security, we require that the iter-
ated invertible linear function Lj has no short cycles of length up to w, namely
for every x ∈ {0, 1}n such that x ̸= 0 and 1 ≤ j ≤ w, x ⊕ Lj(x) ̸= 0. Such
efficient functions L are easy to build (e.g., from linear-feedback shift registers).

While it is not difficult (albeit somewhat technical) to extend our security
analysis of LXoP[L, 2, n] to LXoP[L,w, n] for very small values of w > 2, the
analysis for general w is more involved and we leave it to future work.

We remark that a different variant of LXoP[L,w, n]π(i) defines the j’s output
block (for j = 1, . . . , w) as Lj(π(0∥i)) ⊕ π(j∥i). However, this variant seems to
be inferior to the one above in terms of both security (for large w) and efficiency,
since the computations of Lj(π(0∥i)) for different values of j are more difficult
to parallelize.

1.4 Technical Overview

Similarly to the previous works [11,13,14], we prove our results by Fourier anal-
ysis. We start by elaborating on the techniques of [11,13] that are relevant to
this paper.

Previous techniques [11,13]. First, the distinguishing advantage of the ad-
versary is bounded by the statistical distance between the distribution generated
by the analyzed construction and the uniform distribution. Consider a sample
from a distribution generated by the analyzed construction, which is over Fq×n

2

(i.e., composed of q elements in {0, 1}n). The statistical distance of this distri-
bution from the uniform distribution can be bounded in the “Fourier domain”
by bounding the bias (i.e., Fourier coefficient) of each of the 2qn possible masks
(i.e., linear equations over F2) applied to the bits of the sample.

In [11,13], the task of bounding the Fourier coefficients for the distribution
function generated by the XoP construction was reduced to the task of bounding
the Fourier coefficients for the distribution generated by the underlying primi-
tive, namely, a random permutation. This reduction was based on the fact that
XORing together samples generated by independent random permutations cor-
responds to a convolution operation, which is simple multiplication in the Fourier
domain.
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Considering k elements (for any 1 ≤ k ≤ q) drawn uniformly without re-
placement, the proof of [11] used bounds on two quantities of Fourier coefficients
on masks that involve all of these k elements (called level-k coefficients).

1. The maximal level-k Fourier coefficient in absolute value.
2. The level-k Fourier weight, which is equal to the sum of squares of all level-k

Fourier coefficients.

Our techniques. We would like to use a similar approach to bound the dis-
tinguishing advantage of the adversary against the SXoP and LXoP construc-
tions. However, unlike the XoP construction, these do not involve XORing to-
gether independent permutations. Therefore, the step that reduces the analysis
to bounding the Fourier coefficients of a random permutation via convolution is
not applicable anymore.

Nevertheless, we prove that the Fourier coefficients of the distribution gen-
erated by the SXoP and LXoP constructions are, in fact, structured subsets of
the Fourier coefficients of a random permutation.

For example, denote by x ∈ {0, 1}n a single element of a sample generated
by SXoP[2, n]. Consider a mask involving a single element α ∈ {0, 1}n ̸= 0
(i.e., a mask of level 1), and assume we wish to analyze the bias of the linear
equation α1x1 ⊕ . . . ⊕ αnxn. Since x is generated by SXoP[2, n], we can write
x = y ⊕ z, where y, z ∈ {0, 1}n are generated by a random permutation. The
above linear equation can therefore be written as α1(y1⊕z1)⊕. . .⊕αn(yn⊕zn) =
(α1y1 ⊕ . . . ⊕ αnyn) ⊕ (α1z1 ⊕ . . . ⊕ αnzn). The bias of this equation is exactly
the Fourier coefficient of a random permutation on the level-2 symmetric mask
(α, α) ∈ {0, 1}2n.

In general, level-k Fourier coefficients of the distribution generated by SXoP[r, n]
correspond to symmetric level-(rk) Fourier coefficients of a random permutation.
One can similarly prove that level-k Fourier coefficients of the distribution gen-
erated by LXoP[L, n] correspond to level-2k Fourier coefficients of a random
permutation (with a certain structure that depends on L). A similar property
also holds for LXoP[L, 2, n]. Therefore, we can use the two bounds above on
the Fourier coefficients of a random permutation to analyze the distributions
generated by the SXoP and LXoP constructions.

Framework for bounding Fourier weight of sampling without replacement on
structured subsets of masks. Unfortunately, using the general level-k bounds
naively is not sufficient to obtain tight indistinguishability bounds for the con-
structions we analyze, particularly for LXoP. Essentially, the general level-k
bound on the weight (i.e., the second bound) is tight for dense subsets of masks
that contain (a large fraction of) all level-k masks. However, the subsets we need
to analyze are structured and very sparse.

As a result, in this paper we develop a framework that allows to bound the
Fourier weight of the sampling without replacement density function (normalized
distribution function) on structured subsets of masks. The framework takes into
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account the particular structure of the subset and significantly improves the
naive bounds for the constructions we analyze.

Technically, the framework uses a (known) recursive formula for calculating
the Fourier coefficient on any single mask α as a sum of Fourier coefficients on
lower-level masks, derived from α. We show how to manipulate the formula to
collectively analyze the Fourier weight of a subset of masks that have a common
structure, determined by the construction we analyze. Specifically, each recursive
call bounds the weight of an increasingly denser subset of masks, and we apply
the general bounds only at the leaves of the recursion tree, where they are closer
to being tight. The power and generality of this framework is demonstrated by
applying it to obtain tight indistinguishability bounds for all constructions we
analyze in this paper.

A notable exception to the above is the SXoP[r, n] construction with even r,
whose analysis requires an additional central technical contribution, summarized
below.

Mixed L1 and L2 bounds. For the SXoP[r, n] construction with even r the above
strategy is not sufficient to obtain tight indistinguishability bounds. Essentially,
this is because of a quadratic loss of the standard Cauchy-Schwarz inequality
that bounds the statistical distance (L1 distance) of the analyzed distribution
to the uniform distribution using the L2 distance. In order to overcome this loss,
we bound the statistical distance by a mixture of L1 and L2 bounds using the
Fourier decomposition of the distribution (density) function. While such mixed
bounds have been used before in a hybrid argument (e.g., in [10]), we stress that
our mixed bounds are purely analytical in the sense that the “hybrids” that we
use do not necessarily correspond to actual distributions, but rather to a Fourier
decomposition of the density function.

An additional advantage of this technique is that it allows to lower bound the
statistical distance, i.e., analyze the optimal attack in the Fourier domain using
the reverse triangle inequality. Indeed, the optimal attack against the SXoP[r, n]
construction reveals itself during the analysis of the level-1 Fourier coefficients,
and it simply corresponds to comparing the number of 0 elements in the sample
to a thereshold.

1.5 Paper Structure

The rest of this paper is organized as follows. Next, in Section 2, we describe
preliminaries. In Section 4 we prove our results regarding the SXoP construc-
tions, while in Section 5 and Section 6 we analyze the variants of the LXoP
construction.

2 Preliminaries

For a positive integer m (i.e., m ∈ Z≥1), denote [m] = {1, 2, . . . ,m}. For
m1,m2 ∈ Z such that m1 ≤ m2, denote [m1,m2] = {m1,m1 + 1, . . . ,m2}.
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For a set A, denote its size by |A|. For any integer k > 0 and a real number
t, define the falling factorial as (t)k = t(t − 1) . . . (t − (k − 1)). Further define
(t)0 = 1.

Let n,m ∈ Z≥1 such that n ≥ m. Then, ( n
m )m ≤

(
n
m

)
≤ ( e·nm )m.

Proposition 1. Let a, b, c, d, k ∈ R≥0. Define the functions B(k) = (ak+b)ck+d

and C(k) = 1
(b−ak)ck+d . Then

B(k + 1)

B(k)
≤ (a(k+ 1)+ b)ce

a(ck+d)
ak+b , and

C(k + 1)

C(k)
≤ 1

(b− a(k + 1))c
e

a(ck+d)
b−a(k+1) ,

where the last inequality assumes b > a(k + 1).

Proof. We have

B(k+1)
B(k) = (a(k+1)+b)c(k+1)+d

(ak+b)ck+d = (a(k+1)+b)c(k+1)+d

(a(k+1)+b)ck+d

(a(k+1)+b)ck+d

(ak+b)ck+d

=(a(k + 1) + b)c(1 + a
ak+b )

ck+d ≤ (a(k + 1) + b)ce
a(ck+d)
ak+b .

and

C(k+1)
C(k) = (b−a(k+1))−c(k+1)−d

(b−ak)−ck−d = (b−a(k+1))−c(k+1)−d

(b−a(k+1))−ck−d

(b−a(k+1))−ck−d

(b−ak)−ck−d

= 1
(b−a(k+1))c (1 +

a
b−a(k+1) )

ck+d ≤ 1
(b−a(k+1))c e

a(ck+d)
b−a(k+1) .

■
Let x be an element (from an arbitrary domain) and let m ∈ Z≥1. De-

fine x◦m = (x, . . . , x)︸ ︷︷ ︸
m times

to be the sequence of m repetitions of x. For a sequence

(x1, . . . , xk), define (x1, . . . , xk)
⊙m = ((x1)

◦m, . . . , (xk)
◦m).

Letm ∈ Z≥1. We denote the sequence of elements (x1, . . . , xm) by x1..m. Sim-
ilarly, the sequence of elements (x1, . . . , xm) is denoted by x1..m. Furthermore, for
m1,m2 ∈ Z≥1, denote the sequence ofm1m2 elements (x11, . . . , x

m2
1 , . . . , x1m1

, . . . , xm2
m1

)

by x1..m2
1..m1

.

Let F be a field and v ∈ Fk1×k2 a matrix of elements in F. We index the
elements of v in a natural way, namely, for i ∈ [k1], vi ∈ Fk2 is the i’th row of v
and for j ∈ [k2], vi,j ∈ F is its j’th entry.

For two (row) vectors v, u ∈ Fk, we denote by ⟨u, v⟩F = u · vT =
∑

i∈[k] uivi

their inner product (where vT is the transpose of v and addition and multi-
plication are over F). Similarly, for matrices v, u ∈ Fk1×k2 , define ⟨u, v⟩F =∑

i∈[k1]
ui · (vi)T =

∑
(i,j)∈[k1]×[k2]

ui,jvi,j .

In this paper, we typically deal with matrices x ∈ Fk×n
2 , where n is considered

a parameter and k may vary. We denote N = 2n.
Let L ∈ Fn×n

2 . Denote by LT the transpose of L. Further, let x ∈ Fk×n
2 . We

define L(x) ∈ Fk×n
2 by L(x)i = xi · L for i ∈ [k] (where we view xi as a row

vector in Fn
2 , multiplied with L).
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Asymptotic notation. While all of our results are fully explicit, we some-
times use standard asymptotic notation to give intuition about the bounds we
obtain. In particular, we use the notation Or(·) and Ωr(·) that suppress arbitrary
functions of r (as we mostly think of it as a small constant).

2.1 Probability

Definition 1 (Density function). A (probability) density function on Fq×n
2

is a nonnegative function φ : Fq×n
2 7→ R≥0 satisfying Ex∈Fq×n

2
[φ(x)] = 1, where

x ∈ Fq×n
2 is uniformly chosen.

We write x ∼ φ to denote that x is a sample drawn from the associated

probability distribution, defined by Prx∼φ[x = y] = φ(y)
2qn for every y ∈ Fq×n

2 . In

particular, the uniform probability density function over Fq×n
2 is the constant

function 1, and we denote it by 1qn.
Let A ⊆ Fq×n

2 . We write x ∼ A to denote that x is selected uniformly at
random from A.

Proposition 2 ([22], Fact 1.21). If φ : Fq×n
2 7→ R≥0 is a density function

and f : Fq×n
2 7→ R, then Ex∼φ[f(x)] = Ex∼Fq×n

2
[φ(x)f(x)].

Definition 2 (Statistical distance). The statistical distance between two prob-
ability density functions φ,ψ : Fq×n

2 7→ R≥0 is

SD(φ,ψ) =
1

2
E

x∼Fq×n
2

|φ(x)− ψ(x)|.

2.2 Fourier Analysis

We define the Fourier-Walsh expansion of functions on the Boolean cube, adapted
to our setting, and state the basic results that we will use. These results are
mostly taken from [22].

Definition 3 (Fourier expansion). Given α ∈ Fq×n
2 , define χα : Fq×n

2 7→
{−1, 1} by

χα(x) = (−1)⟨α,x⟩F2 =
∏
i∈[q]

(−1)⟨αi,xi⟩F2 =
∏

i∈[q],j∈[n]

(−1)αi,j ·xi,j .

The set {χα}α∈Fq×n
2

is an orthonormal basis for the set of functions {f | f :

Fq×n
2 7→ R}, with respect to the normalized inner product 1

|Fq×n
2 |
⟨f, g⟩R =

Ex∼Fq×n
2

[f(x)g(x)]. Hence each {f | f : Fq×n
2 7→ R} can be decomposed to

f =
∑

α∈Fq×n
2

f̂(α)χα,
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where f̂(α) = E[χαf ], and in particular, f̂(0) = E[f ].
Each element in {χα}α∈Fq×n

2
is called a character. We refer to α as a mask,

and to f̂(α) as the Fourier coefficient of f on α. To distinguish the domain

of characters from the input domain we write it as F̂q×n
2 , and thus f(x) =∑

α∈F̂q×n
2

f̂(α)χα(x). For a mask α ∈ F̂q×n
2 , we write

supp(α) = {i | αi ̸= 0} and #α = |supp(α)|.

We call #α the level of α, and f̂(α) is a Fourier coefficient of level #α. Through-
out the paper, we mostly use the shorter notation NZα = supp(α).

For integer parameters n ≥ 1 and 0 ≤ k0 ≤ k1, we define the sets of masks
Mn

=k0,k1
= {α ∈ F̂k1×n

2 | #α = k0}, andMn
≥k0,k1

= {α ∈ F̂k1×n
2 | #α ≥ k0}.

Definition 4 (Fourier weight and maximal magnitude). For a function
f : Fq×n

2 7→ R, we define the Fourier weight of f at level k to be

W=k[f ] =
∑

α∈F̂q×n
2

#α=k

f̂(α)2 =
∑

α∈Mn
=k,q

f̂(α)2.

The maximal magnitude of a level-k Fourier coefficient of f is

M=k[f ] = max
α∈F̂q×n

2
#α=k

{|f̂(α)|} = max
α∈Mn

=k,q

{|f̂(α)|}.

Proposition 3 ([22], Proposition 1.13 – variance). The variance of f :
Fq×n
2 7→ R is

Var[f ] = E[f2]− E[f ]2 =
∑

α∈F̂q×n
2

α ̸=0

f̂(α)2 =

q∑
k=1

W=k[f ].

Proposition 4 ([22], Exercise 1.23 – bound on statistical distance from
uniform by variance). Let φ : Fq×n

2 7→ R≥0 be a density function. Then

SD(φ,1qn) ≤
1

2

√
Var[φ].

We generalize this bound below to a combination of L1 and L2 distances in the
Fourier domain.

Proposition 5 (Bidirectional bounds on statistical distance from uni-
form by L1 and L2 distances). Let φ : Fq×n

2 7→ R≥0 be a density function.

Let S ⊂ F̂q×n
2 be any set of masks, which does not contain the zero mask. Let

S = F̂q×n
2 \{S ∪ {0}} be the complementary set of masks (not including the zero

mask). Then

−
√∑

α∈S

φ̂(α)2 ≤ 2 SD(φ,1qn)− E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x)| ≤
√∑

α∈S

φ̂(α)2.

10



Note that setting S = ∅ above gives Proposition 4, hence it is indeed a general-
ization (the lower bound on SD(φ,1qn) is this case is trivial). In general, Propo-
sition 5 can give better results than Proposition 4 in case

∑
α∈S φ̂(α)χα(x) has a

significant amount of cancelations due to opposite signs of the terms φ̂(α)χα(x)
(on average over x ∼ Fq×n

2 ).

Proof. We have

2 SD(φ,1qn) = E
x∼Fq×n

2

|φ(x)− 1| = E
x∼Fq×n

2

|
∑

α∈F̂q×n
2

α̸=0

φ̂(α)χα(x)|

= E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x) +
∑
α∈S

φ̂(α)χα(x)|

≤ E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x)|+ E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x)|

For the upper bound, it remains to prove that Ex∼Fq×n
2
|
∑

α∈S φ̂(α)χα(x)| ≤√∑
α∈S φ̂(α)

2. Applying the Cauchy-Schwarz inequality,

E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x)| ≤
√

E
x∼Fq×n

2

[
∑
α∈S

φ̂(α)χα(x)]2

=

√ ∑
(α,β)∈S×S

φ̂(α)φ̂(β) E
x∼Fq×n

2

[χα(x)χβ(x)] =

√∑
α∈S

φ̂(α)2,

where the final equality is by orthogonality of the characters.

For the lower bound, observe similarly that

2 SD(φ,1qn) = E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x) +
∑
α∈S

φ̂(α)χα(x)|

≥ E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x)| − E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x)|

≥ E
x∼Fq×n

2

|
∑
α∈S

φ̂(α)χα(x)| −
√∑

α∈S

φ̂(α)2.

■
We state an additional basic result regarding variance.

Proposition 6 ([11], Proposition 6 – Variance of independent sam-
ples). Let φ : Fq×n

2 7→ R≥0 be a density function. Let u ≥ 1 be an integer

and let φ×u : F(qu)×n
2 7→ R≥0 be the density function obtained by concatenating

u independent samples drawn from φ. Then,

Var[φ×u] ≤ 2uVar[φ], assuming uVar[φ] ≤ 1
2 .

11



2.3 Cryptographic Preliminaries

We use the standard notion of PRF security, as defined below. Let H : K ×
{0, 1}m1 7→ {0, 1}m2 be a family of functions and Func(m1,m2) be the set of all
functions g : {0, 1}m1 7→ {0, 1}m2 . Let A be an algorithm with oracle access to
a function f : {0, 1}m1 7→ {0, 1}m2 . The PRF advantage of A against H is

AdvprfH (A) =

∣∣∣∣ Pr
K∼K

[AHK(·) ⇒ 1]− Pr
f∼Func(m1,m2)

[Af(·) ⇒ 1]

∣∣∣∣ .
We further define the optimal advantage

OptprfH (q) = max{AdvprfH (A) | A makes q queries}.

In the multi-user setting we have u users, each with an independent instantiation
of the cryptosystem. The adversary can issue (up to) qmax queries to each user
with the goal of distinguishing the u instantiations of the cryptosystem from u
instantiations of a random function. We define the PRF advantage of A against
H in the multi-user setting as

Advmu-prf
H,u (A) =

∣∣ Pr
K1,...,Ku∼K

[AHK1
(·),...,HKu (·) ⇒ 1]

− Pr
f1,...,fu∼Func(m1,m2)

[Af1(·),...,fu(·) ⇒ 1]
∣∣

We further define the optimal advantage

Optmu-prf
H,u (qmax) = max{Advmu-prf

H,u (A) | A makes qmax queries to each user}.

Bounding the optimal advantage using Fourier analysis. In this paper
we will consider families of functions of the form H : K × {0, 1}m 7→ {0, 1}n
with the property that the output distribution is independent of the queries of
the adversary. Thus, we ignore these queries and focus on analyzing the output
distribution (density function) generated by H. Given that the adversary makes
q queries to H, we may denote the density function generated by H as φH(n,q) :

Fq×n
2 → R≥0.
By well-known properties of the statistical distance, the advantage of the

optimal distinguisher against H is equal to the statistical distance of φH from
uniform, namely,

OptprfH (q) = SD(φH(n,q),1qn). (1)

In the multi-user setting, an adversary againstH obtains a sample of (φH(n,q))
×u :

F(qmaxu)×n
2 7→ R≥0, where (φH(n,q))

×u is the density function obtained by con-
catenating u independent samples drawn from φH(n,q). Similarly to the single-
user setting,

Optmu-prf
H,u (qmax) = SD((φH(n,qmax))

×u,1uqmaxn). (2)

In this paper, we mostly bound the optimal advantage by bounding Var[φH(n,q)]
using the following basic result.

12



Proposition 7 (Bounds on advantage using variance). Assume that the
output distribution generated by H : K×{0, 1}m 7→ {0, 1}n is independent of the
queries of the adversary. Denote by φH(n,q) : Fq×n

2 → R≥0 the density function
generated by H. Then,

OptprfH (q) ≤ 1

2

√
Var[φH(n,q)], and Optmu-prf

H,u (qmax) ≤
1√
2

√
uVar[φH(n,qmax)],

assuming uVar[φH(n,qmax)] ≤ 1
2 , or equivalently, 1√

2

√
uVar[φH(n,qmax)] ≤ 1

2 .

Proof. First, by (1) and Proposition 4,

OptprfH (q) = SD(φH(n,q),1qn) ≤ 1
2

√
Var[φH(n,q)].

Second, by (2), Proposition 4 and Proposition 6,

Optmu-prf
H,u (qmax) = SD((φH(n,qmax))

×u,1uqmaxn)

≤ 1
2

√
Var[φH(n,qmax))

×u] ≤ 1√
2

√
uVar[φH(n,qmax)].

■

Symmetric properties. In addition to the output distribution being indepen-
dent of the queries of the adversary, all the functions H : K×{0, 1}m 7→ {0, 1}n
we analyze in this paper are symmetric in the following sense: if x ∼ φH(n,q),
then for every set of k distinct indices {i1, i2, . . . , ik} ⊆ [q], (xi1 , . . . , xik) are
k elements that are marginally sampled from φH(n,k), namely, (xi1 , . . . , xik) ∼
φH(n,k). Therefore, for 1 ≤ k ≤ q, we have M=k[φH(n,q)] = M=k[φH(n,k)] and

W=k[φH(n,q)] =
∑

α∈Mn
=k,q

φ̂H(n,q)(α)
2 =

∑
{i1,...,ik}⊆[q] distinct

∑
β∈F̂k×n

2

supp(β)={i1,...,ik}

φ̂H(n,k)(β)
2

=
∑

{i1,...,ik}⊆[q] distinct

W=k[φH(n,k)] =
(
q
k

)
W=k[φH(n,q)].

These symmetric properties are repeatedly used throughout the paper (often
without explicitly referring to them). Another result on symmetric functions
(which we do not explicitly use) is given in Appendix A.

Sampling without replacement. We define the density function of sampling
without replacement.

Definition 5 (Density function of sampling without replacement). For
positive integers n, q such that 1 ≤ q ≤ 2n, let µn,q : Fq×n

2 7→ R≥0 be the density
function associated with the process of uniformly sampling q elements from Fn

2

without replacement. Specifically, for x ∈ Fq×n
2 ,

µn,q(x) =

{
Nq

(N)q
if xi ̸= xj for all i, j ∈ [q] (i ̸= j),

0 otherwise.

Furthermore, define µn,0 to be the constant 1.
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The SXoP[r, n] construction. Let Perm(n) be the set of all permutations
on {0, 1}n (i.e., the set of all π : {0, 1}n 7→ {0, 1}n). For positive integers
r, n such that r ≥ 2, define the family of functions SXoP[r, n] : (Perm(n)) ×
{0, 1}n−⌈log r⌉ 7→ {0, 1}n by

SXoP[r, n]π(i) = π(0∥i)⊕ π(1∥i)⊕ . . .⊕ π(r − 1∥i),

where in π(j∥i), j ∈ {0, 1}⌈log r⌉ is encoded in binary for j = 0, . . . , r − 1, and

∥ denotes concatenation. We will be interested in bounding OptprfSXoP[r,n](q) as

a function of the parameters r, n, q (and deriving similar bounds in the multi-
user setting). By symmetry of the randomly chosen permutation π, an adversary
against SXoP[r, n] obtains the XOR of r samples, each containing q elements of
{0, 1}n, where all rq elements are chosen uniformly without replacement (re-
gardless of the actual queries).

Let ν
(r)
n,q : Fq×n

2 7→ R≥0 denote the density function of a sample generated by
the SXoP[r, n] construction.

The LXoP[L, n] and LXoP[L, 2, n] constructions. Let L ∈ Fn×n
2 be an

invertible matrix. Define the family of functions LXoP[L, n] : (Perm(n)) ×
{0, 1}n−1 7→ {0, 1}n by

LXoP[L, n]π(i) = π(0∥i)⊕ L(π(1∥i)).

Moreover, define the family of functions LXoP[L, 2, n] : (Perm(n))×{0, 1}n−2 7→
{0, 1}2n by

LXoP[L, 2, n]π(i) = (π(0∥i)⊕ L(π(1∥i))) ∥ (π(1∥i)⊕ L(π(2∥i))) .

We will be interested in bounding OptprfLXoP[L,n](q) and OptprfLXoP[L,2,n](q) as a

function of the parameters n, q (and deriving similar bounds in the multi-user
setting). As in the case of SXoP[r, n], the distributions generated by LXoP[L, n]

and LXoP[L, 2, n] are independent of the queries of the adversary. Let ξ
(L)
n,q :

Fq×n
2 7→ R≥0 and ξ

(L)
n,2,q : Fq×2n

2 7→ R≥0 denote the density functions of samples
generated by the LXoP[L, n] and LXoP[L, 2, n] constructions, respectively.

2.4 Fourier Properties of µn,k

We use several results about Fourier properties of µn,k, mostly taken from [11,13].

Proposition 8 ([11], Proposition 12 – Permuting elements preserves

Fourier coefficients). Let α ∈ F̂k×n
2 . Let π : [k] 7→ [k] be a permutation and

define the mask απ ∈ F̂k×n
2 by (απ)i = απ(i) for i ∈ [k]. Then, µ̂n,k(α

π) =
µ̂n,k(α).

Proposition 8 is repeatedly used throughout the paper (often without explicitly
referring to it).
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Proposition 9. For any α ∈ F̂k×n
2 such that ⊕i∈[k]αi ̸= 0 we have µ̂n,k(α) = 0.

Proof. Let y ∈ Fn
2 be arbitrary. Observe that for x ∈ Fk×n

2 , µn,k(x) = µn,k(x1⊕
y, . . . , xk ⊕ y). Therefore,

µ̂n,k(α) = E
x∼Fk×n

2

[µn,k(x)χα(x)] = E
x∼Fk×n

2

[µn,k(x1 ⊕ y, . . . , xk ⊕ y)χα(x1, . . . , xk)]

= E
x∼Fk×n

2

[µn,k(x1 ⊕ y, . . . , xk ⊕ y)χα(x1 ⊕ y, . . . , xk ⊕ y)]χ(⊕i∈[k]αi)(y)

= E
x∼Fk×n

2

[µn,k(x)χα(x)]χ(⊕i∈[k]αi)(y) = µ̂n,k(α)χ(⊕i∈[k]αi)(y).

If µ̂n,k(α) ̸= 0, we divide both sides by µ̂n,k(α). We deduce that for every y ∈ Fn
2 ,

χ(⊕i∈[k]αi)(y) = 1, implying that ⊕i∈[k]αi = 0. ■

The following is a recursive formula for µn,k(α).

Proposition 10 ([13], Section 4 – recursive formula for µn,k(α)). For

parameters k1 ≥ k0 ≥ 2, let α ∈ F̂k1×n
2 with #α = k0, and define NZα = {i ∈

[k1] | αi ̸= 0} (|NZα| = k0). Then for any j ∈ NZα,

µ̂n,k1
(α) = − 1

N − k0 + 1

∑
i∈NZα\{j}

µ̂n,k1
(α⊕(j,i)),

where α⊕(j,i) ∈ F̂k1×n
2 (for i ̸= j) is defined as

(α⊕(j,i))ℓ =


0 if ℓ = j,

αi ⊕ αj if ℓ = i,

αℓ if ℓ /∈ {i, j}.

Note that #α⊕(j,i) = k0 − 1 if αi ⊕ αj ̸= 0 and #α⊕(j,i) = k0 − 2 if αi ⊕ αj = 0
(i.e., αi = αj).

Proof. Denote k0 = k. We assume that NZα = [k0] = [k], which is possible
without loss of generality by Proposition 8.

We further assume that k1 = k, as adding or removing zero elements form α
does not change µ̂n,k(α). Finally, using Proposition 8 we assume without loss of
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generality that j = k. By Proposition 2,

µ̂n,k(α) = E
x∼µn,k

[χα(x)] = E
x∼µn,k−1

[ E
xk∼Fn

2 \{x1,...,xk−1}
[χα(x1..k−1, xk)]]

= N
N−k+1 E

x∼µn,k−1

[ E
xk∼Fn

2

[χα(x1..k−1, xk)]]

− k−1
N−k+1 E

x∼µn,k−1

[ E
xk∼{x1,...,xk−1}

[χα(x1..k−1, xk)]]

= N
N−k+1 E

x∼µn,k−1

[χα1..k−1
(x1..k−1)] E

xk∼Fn
2

[χαk
(xk)]

− 1
N−k+1

k−1∑
i=1

E
x∼µn,k−1

[χα(x1..k−1, xi)]

= 0− 1
N−k+1

k−1∑
i=1

E
x∼µn,k−1

[χ(α1..,i−1,αi⊕αk,αi+1..,k−1)(x1..k−1)]

= − 1
N−k+1

k−1∑
i=1

µn,k−1(α
⊕(k,i)) = − 1

N−k+1

k−1∑
i=1

µ̂n,k(α
⊕(k,i)),

where in the fifth equality we used Exk∼Fn
2
[χαk

(xk)] = E[χαk
χ0] = 0, which

holds by orthogonality of characters since αk ̸= 0. ■

Proposition 11 (Recursive bound for µ̂n,k1(α)
2). For parameters k1 ≥

k0 ≥ 2, let α ∈ F̂k1×n
2 with #α = k0, and define NZα = {i ∈ [k1] | αi ̸= 0}

(|NZα| = k0). Then for any j ∈ NZα,

µ̂n,k1
(α)2 ≤ k0 − 1

(N − k0 + 1)2

∑
i∈NZα\{j}

µ̂n,k1
(α⊕(j,i))2.

Proof. By Proposition 10 and the Cauchy–Schwarz inequality,

µ̂n,k1
(α)2 =(− 1

N−k0+1

∑
i∈NZα\{j}

µ̂n,k1
(α⊕(j,i)))2

≤ k0−1
(N−k0+1)2

∑
i∈NZα\{j}

µ̂n,k1
(α⊕(j,i))2.

■

Lemma 1 ([13], Lemma 4.1 – Bound on magnitude of level-k Fourier
coefficients). Let k1 ≥ k0 and 0 ≤ k0 ≤ N/2. Then, M=k0 [µn,k1

] ≤ 1√
(N
k0
)
.

A slightly stronger bound was also proved in Lemma 1 of [11], but we give the
simpler proof of [13].
Proof. We may assume that k0 = k1 = k, as adding and removing 0 elements
from α does not change µ̂n,k(α). The proof is by induction on k.

For k = 0, we have M=0[µn,k] = 1 = 1√(
N
0

) .
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Next, let α ∈ F̂k×n
2 have #α = k. For k = 1, by Proposition 9, |µ̂n,k(α)| =

0 < 1√(
N
1

) . For k ≥ 2, by Proposition 10 and the triangle inequality,

|µ̂n,k(α)| =

∣∣∣∣∣− 1
N−k+1

k−1∑
i=1

µ̂n,k(α
⊕(k,i))

∣∣∣∣∣ ≤ 1
N−k+1

k−1∑
i=1

|µ̂n,k(α
⊕(k,i))|.

We have #α⊕(k,i) ∈ {k − 1, k − 2}. Assume that for m values of i ∈ [k − 1],
#α⊕(k,i) = k− 2 holds. Then, by the induction hypothesis (assuming k ≤ N/2),

|µ̂n,k(α)| ≤ m
N−k+1M

=k−2[µn,k] +
k−1−m
N−k+1M

=k−1[µn,k]

≤ m
N−k+1

1√(
N

k−2

) + k−1−m
N−k+1

1√(
N

k−1

) ≤ k−1
N−k+1

1√(
N

k−2

)
= k−1

N−k+1

√
k−2
N

k−3
N−1 . . .

1
N−(k−3)

≤
√

k
N−k+2

k−1
N−k+1

√
k−2
N

k−3
N−1 . . .

1
N−(k−3) =

1√(
N
k

) .
■

Lemma 2 ([11], Lemma 2 – Bound on level-k Fourier weight).

For 1 ≤ k ≤ N

2
, W=k[µn,k] ≤

(
k

N − k

)k/2

.

Proposition 12. Let k1 ≥ k0 and 2 ≤ k0 < N/2 for k even. Let α ∈ F̂k1×n
2

have #α = k0. Assume that αi = αj for all i, j ∈ [k1] such that αi, αj ̸= 0 (i.e.,
i, j ∈ NZα). Then,

µ̂n,k1(α) = (−1)k0/2
k0 − 1

N − 1

k0 − 3

N − 3
. . .

1

N − (k0 − 1)
.

Moreover,
1√
k
(
N
k0

) ≤ |µ̂n,k1(α)| ≤
1√(
N
k0

) .
Proof. We assume without loss of generality that k0 = k1 = k. The proof is by
induction on k. By Proposition 10,

µ̂n,k(α) = − 1
N−k+1

k−1∑
i=1

µ̂n,k(α
⊕(k,i)).

For k = 2, this gives − 1
N−1 µ̂n,2(α

⊕(2,1)) = − 1
N−1 , as #(α⊕(2,1)) = 0 and hence

µ̂n,2(α
⊕(2,1)) = 1.

For k > 2, for all i ∈ [k−1], α⊕(k,i) is equal to α⊕(k,1) (up to a permutation of
the elements). Therefore, µ̂n,k(α) = − k−1

N−k+1 µ̂n,k(α
⊕(k,1)). Since #(α⊕(k,1)) =
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k−2, and α⊕(k,1) has all non-zero elements equal (as α), we apply the induction
hypothesis to α⊕(k,1) and deduce

µ̂n,k(α) = − k−1
N−k+1 (−1)

k/2−1 k−3
N−1 . . .

1
N−(k−3) = (−1)k/2 k−1

N−1
k−3
N−3 . . .

1
N−(k−1) .

Next, note that |µ̂n,k(α)| ≤ 1√(
N
k

) holds by Lemma 1. It remains to prove

that 1√
k
(
N
k

) ≤ |µ̂n,k(α)|. Indeed,

√
k|µ̂n,k(α)| =

√
k k−1
N−1

k−3
N−3 . . .

1
N−(k−1) ≥

√
k

N−(k−1)

√
k−1
N−1

k−2
N−2 . . .

1
N−(k−1)

≥
√

k
N

√
k−1
N−1

k−2
N−2 . . .

1
N−(k−1) =

1√(
N
k

) .
■

3 Framework for Bounding the Weight of µ̂n,k on
Structured Subsets

We begin with a motivating example for our framework.
Let r ≥ 2 and k ≥ 1 be parameters such that k is not too large compared to

N . Suppose we want to upper bound the expression∑
α∈F̂k×n

2
#α=k

µ̂n,rk(α
⊙r)2 =

∑
α∈Mn

=k,k

µ̂n,rk(α
⊙r)2,

where α⊙r = (α◦r
1 , . . . , α

◦r
k ). Since #α⊙r = r#α = rk, we apply Lemma 1 and

obtain ∑
α∈Mn

=k,k

µ̂n,rk(α
⊙r)2 ≤ NkM=(rk)[µn,rk] ≤ Nk 1(

N
rk

) .
(3)

Another option to bound the expression is to use Lemma 2 and deduce∑
α∈Mn

=k,k

µ̂n,rk(α
⊙r)2 ≤

∑
β∈Mn

=rk,rk

µ̂n,rk(β)
2 =W=(rk)[µn,rk] ≤ ( rk

N−rk )
rk/2.

(4)

The bounds obtained above are far from tight in general, as they make little
use of the structure of the subset of masks we sum over. In order to improve the
bound for r ≥ 3, for every α ∈ F̂k×n

2 with #α = k apply Proposition 11 to α⊙r

(with k1 = k0 = rk and j = rk), obtaining∑
α∈Mn

=k,k

µ̂n,rk(α
⊙r)2 ≤ rk−1

(N−rk+1)2

∑
α∈Mn

=k,k

rk−1∑
i=1

µ̂n,rk((α
⊙r)⊕(rk,i))2

= rk−1
(N−rk+1)2

rk−1∑
i=1

∑
α∈Mn

=k,k

µ̂n,rk((α
⊙r)⊕(rk,i))2.

(5)
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Fix i ∈ [rk − 1]. We now analyze the term
∑

α∈Mn
=k,k

µ̂n,rk((α
⊙r)⊕(rk,i))2. A

crucial observation in the analysis is that since r ≥ 3 and (α⊙r)⊕(rk,i) changes
only indices rk and i of α⊙r, then for any i ∈ [rk−1], (α⊙r)⊕(rk,i) fully determines
α (and α⊙r). Indeed, since r ≥ 3, for every ℓ ∈ [k], αℓ still appears in at least
one entry of (α⊙r)⊕(rk,i) (for every i ∈ [rk − 1]). This does not hold for r = 2
and i = 2k − 1 (as (α⊙2)⊕(2k,2k−1) is independent of αk).

In other words, given i ∈ [rk − 1] the i’th operation in Proposition 11
applied to α⊙r (whose outcome is (α⊙r)⊕(rk,i)) is invertible for r ≥ 3. Since
#(α⊙r)⊕(rk,i) ∈ {rk − 1, rk − 2},∑
α∈Mn

=k,k

µ̂n,rk((α
⊙r)⊕(rk,i))2 ≤

∑
β∈Mn

=rk−1,rk−1

µ̂n,rk−1(β)
2 +

∑
β∈Mn

=rk−2,rk−2

µ̂n,rk−2(β)
2

=W=rk−1[µn,rk−1] +W=rk−2[µn,rk−2],

where the inequality crucially uses the fact that for every i ∈ [rk − 1], in the

(multi) set {(α⊙r)⊕(rk,i) | α ∈ F̂k×n
2 ∧ #α = k} each mask appears only once.

This holds due to the invertibility of (α⊙r)⊕(rk,i). Combining with (5),

∑
α∈Mn

=k,k

µ̂n,rk(α
⊙r)2 ≤ rk−1

(N−rk+1)2

rk−1∑
i=1

∑
α∈Mn

=k,k

µ̂n,rk((α
⊙r)⊕(rk,i))2

≤ rk−1
(N−rk+1)2

rk−1∑
i=1

(W=rk−1[µn,rk−1] +W=rk−2[µn,rk−2])

= ( rk−1
N−rk+1 )

2(W=rk−1[µn,rk−1] +W=rk−2[µn,rk−2]).

We can now use Lemma 2 to bound W=rk−1[µn,rk−1]+W=rk−2[µn,rk−2], and ob-

tain a significant improvement over (4) due to the multiplication by
(

rk−1
N−rk+1

)2

.

In general, there is no reason to stop after one application Proposition 11.
We can obtain improved bounds be applying Proposition 11 recursively to each
mask in each set {(α⊙r)⊕(rk,i) | α ∈ F̂k×n

2 | #α = k} for i ∈ [rk − 1]. The
outcome is a recursion tree and we apply Lemma 2 only at the leaves.

We now describe our framework which allows to obtain bounds on the Fourier
weight of µn,k on structured subsets of masks, generalizing the above analysis.

3.1 General Framework

We consider the following initial setting.

Setting 1 Let k′ > 0 be an integer parameter. Let S be a set of strings. Let

T : S → F̂k′×n
2 be a mapping such that the following two restrictions hold:

(a1) T is injective on the elements of S, and
(a2) there is a non-zero index subset NZ ⊆ [k′] such that for every α ∈ S and
every ℓ ∈ [k′], T (α)ℓ ̸= 0 if and only if ℓ ∈ NZ.
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The second restriction implies that all masks in {T (α) | α ∈ S} have level
#T (α) = |NZ|.

Assume that our goal is to bound
∑

α∈S µ̂n,k′(T (α))2. Note that
∑

α∈Mn
=k,k

µ̂n,rk(α
⊙r)2

is a special case with k′ = rk, S =Mn
=k,k and T (α) = Tr,k(α) = α⊙r, where α

is duplicated r times (here NZ = [rk]).
We start from the initial set of masks {T (α) | α ∈ S}, and invoke recursive

calls of Proposition 11, where Lemma 2 is applied only at the leaves of the
recursion tree.

Let β ∈ F̂k′×n
2 be a mask. To formally define the recursion, consider the

operation β⊕(j,i) for j ∈ NZ = NZβ and i ∈ NZ\{j}. The formula of Propo-
sition 11 applied to β includes |NZ| − 1 such operations, where j is fixed and i
ranges over all NZ\{j}. Thus, we call index j the primary index, while we call
each i ∈ NZ\{j} a secondary index.

Each recursive node v at depth d ≥ 0 is labeled by a recursion stack, which
consists of the sequence of d secondary indices i1, . . . , id ∈ [k′] for the recursive
calls up to this node, and a sequence of bits b1, . . . , bd ∈ {0, 1}. For d′ ∈ [d], bit
bd′ specifies whether the outcome of the XOR operation at index id′ was zero or
not. The purpose of these bits is to keep track of the set NZ that evolves during
the recursion.

We will assume that there is a primary index selector, or PIS, which is an
application-dependent procedure that selects the next primary index (denoted
jd+1) for the invocation of Proposition 11. The input to the PIS includes the
recursion stack v = (i1, . . . , id, b1, . . . , bd). Initially, the recursion stack is empty,
and thus the first primary index should be fixed. For example, for T (α) = α⊙r

and we initially simply set j1 = rk. We remark that the PIS also depends on the
initial parameters of Setting 1, (S, T ). However, (S, T ) are assumed to be fixed
and hardcoded inside the PIS.

Fixing a PIS implementation pis, we define a recursive procedure up to depth
dmax (called calcWpis,dmax

) for upper bounding the weight
∑

α∈S µ̂n,k′(T (α))2.

Definition of calcW. The procedure calcWpis,dmax
obtains 5 parameters:

(1) (current) recursion depth d,
(2) stack trace v = (i1, . . . , id, b1, . . . , bd),
(3) set Sv,
(4) mapping Tv : Sv → F̂k′×n

2 , and
(5) set NZv ⊂ [k′] such that for all α ∈ Sv, Tv(α)i ̸= 0 if and only if i ∈ NZv.

Initially, S, T are defined by Setting 1, and thus d = 0, v = NULL, Sv = S,
Tv = T and NZv = NZ. In most (but not all) of our applications, NZv = [k′],
as the level of all masks T (α) for α ∈ S will be k′.

calcWpis,dmax(d, v = (i1, . . . , id, b1, . . . , bd),Sv, Tv,NZv)

1. k′v ← |NZv|.
2. If d = dmax, return (

k′
v

N−k′
v
)k

′
v/2.
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3. j ← pis(v).
4. W ← 0.
5. For all i ∈ NZv\{j}:

(a) vi,0 ← (i1, . . . , id, i, b1, . . . , bd, 0), vi,1 ← (i1, . . . , id, i, b1, . . . , bd, 1).
(b) Define Tvi(α) = Tv(α)

⊕(j,i) for every α ∈ Sv.
(c) Tvi,0 ← Tvi , Tvi,1 ← Tvi .
(d) Svi,0 ← {α ∈ Sv | Tvi(α)i = 0}, Svi,1 ← {α ∈ Sv | Tvi(α)i ̸= 0}.
(e) NZvi,0 ← NZv\{i, j}, NZvi,1 ← NZv\{j}.
(f) W ←W + calcWpis,dmax(d+ 1, vi,0,Svi,0 , Tvi,0 ,NZvi,0),

W ←W + calcWpis,dmax
(d+ 1, vi,1,Svi,1 , Tvi,1 ,NZvi,1).

6. Return
k′
v−1

(N−k′
v+1)2W .

Remark 2. Assume that S, T and pis are fixed. Since the output of pis only de-
pends on the recursion stack (but not on specific masks), the primary indices are
uniquely defined by the recursion stack v, even though v does not include them
explicitly. More generally, the 4 parameters d,Sv, Tv,NZv of calcW are uniquely
determined by v. The only reason we explicitly include them as parameters of
calcW is to simplify its description.

Applicability of calcW. The correctness of calcW will rely on the assumption
that the two restrictions of Setting 1 hold at all nodes, as they will be crucial for
applying Lemma 2 at the leaves. Since the variable NZv is updated correctly,
restriction (a2) indeed holds at all nodes. However, restriction (a1) may not
hold recursively, and it requires special treatment depending on the specific ap-
plication. We formalize the corresponding conditions in the following definition.

Definition 6 (Applicability of calcW). We say that calcW is applicable up
to depth dmax with parameters (S, T ) and a PIS pis, if the following conditions
hold:
(b1) the pair (S, T ) satisfies the restrictions of Setting 1, and
(b2) considering the recursion tree with root calcWpis,dmax

(0, (NULL),S, T,NZ)
(NZ is defined in Setting 1): for every node v at depth at most dmax such that
j = pis(v), for all i ∈ NZv\{j} and α ∈ Sv, Tv(α) can be (uniquely) recovered
from Tvi(α) = Tv(α)

⊕(j,i).

Before formally analyzing calcW, we simplify the second condition of Defini-
tion 6. This simplification will be useful in applications.

Proposition 13 (Sufficient condition for applicability of calcW). Given
(S, T ) and a PIS pis, assume that
(c1) the pair (S, T ) satisfies the restrictions of Setting 1, and
(c2) considering the recursion tree with root calcWpis,dmax

(0, (NULL),S, T,NZ):
for every node v at depth at most dmax such that j = pis(v), for all i ∈ NZv\{j}
and α ∈ Sv, Tv(α)j can be recovered from Tvi(α).
Then, calcWdmax

is applicable up to depth dmax with S, T and pis.
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Proof. Condition (b1) of Definition 6 holds by assumption. We prove condi-
tion (b2). Fix a node v of depth at most dmax and let α ∈ Sv. According to Defi-
nition 6, we need to prove that Tv(α) can be recovered from Tvi(α) = Tv(α)

⊕(j,i)

(for all i ∈ NZv\{j}). Since only indices j and i are modified in Tv(α) by
the mapping Tvi , it is sufficient to prove that both Tv(α)j and Tv(α)i can be
computed from Tvi(α). By assumption, Tv(α)j can be recovered from Tvi(α).
Moreover, since Tvi(α)i = (Tv(α)

⊕(j,i))i = Tv(α)i ⊕ Tv(α)j , then Tv(α)i =
Tvi(α)i ⊕ Tv(α)j can also be recovered from Tvi(α). Hence both conditions of
Definition 6 hold. ■

The following definition will be useful in applications.

Definition 7 (Unaltered index). An index ℓ′ ∈ [k′] is called unaltered at a
node v = (i1, . . . , id, b1, . . . , bd) if ℓ

′ has not been selected as primary of secondary
index. Namely, ℓ′ ̸= jd′ and ℓ′ ̸= id′ for all d′ ∈ [d].

The definition is motivated by the simple property that if ℓ′ is unaltered at node
v, then for any α ∈ Sv, Tv(α)ℓ′ = T (α)ℓ′ (where T is the initial mapping at the
root). This property holds since the mappings Tvi at any node v only modify
the entries of the primary index j and secondary index i.

Denote by Uv the set of all unaltered indices at node v. At the root node v,
Uv = [k′]. Since every child of any node v has one primary and one secondary
index, a node at depth d has |Uv| ≥ k′ − 2d.

Analysis of calcW. We now analyze calcW, assuming it is applicable up to a
certain depth according to Definition 6.

Proposition 14 (Recursive validity of Setting 1). Assume that calcW is
applicable up to depth dmax with parameters S, T and a PIS, pis. Then, for each
node v at depth at most dmax, (d1) Tv is injective on the elements of Sv, (d2)
for every α ∈ Sv and every ℓ ∈ [k′], Tv(α)ℓ ̸= 0 if and only if ℓ ∈ NZv.

Proof. The proof is by induction on the depth d ≤ dmax of v. The two restrictions
hold at the root (d = 0) by assumption. Assume correctness up to depth d and
let v be a node of depth d. Consider a child node vi,b for i ∈ NZv\{j} and
b ∈ {0, 1}. Recall that Tvi,b(α) = Tvi(α) = Tv(α)

⊕(j,i) only changes entries i, j
of Tv(α).

We prove (d1). Consider α, β ∈ Svi,b such that Tvi,b(α) = Tvi,b(β). We show
that α = β. Since calcW is applicable up to depth dmax, condition (b2) of
Definition 6 implies that Tv(α) = Tv(β). Indeed, if Tv(α) ̸= Tv(β) but Tvi,b(α) =
Tvi,b(β) then Tv(α) cannot be uniquely recovered from Tvi,b(α) = Tvi(α).

Since Tv(α) = Tv(β), the induction hypothesis implies that α = β (as Svi,b
⊆

Sv and Tv is injective of Sv). This proves (d1).
We prove (d2). Consider α ∈ Svi,b and let ℓ ∈ [k′]. If ℓ = j, then Tvi,b(α)ℓ = 0

and ℓ /∈ NZvi,b by definition of calcW.
Next, consider ℓ = i. Then Tv(α)ℓ ̸= 0 and ℓ ∈ NZv by the hypothesis.

Therefore, if Tvi,b(α)ℓ ̸= 0, then b = 1 and also i ∈ NZvi,1 , while if Tvi,b(α)ℓ = 0,
then b = 0 and also i /∈ NZvi,0 (by definition of calcW).
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Otherwise ℓ /∈ {i, j}. Then Tvi,b(α)ℓ = Tv(α)ℓ, so Tvi,b(α)ℓ ̸= 0 if and only
if Tv(α)ℓ ̸= 0. By the induction hypothesis, this holds if and only if ℓ ∈ NZv,
which holds if and only if ℓ ∈ NZvi,b (by definition of calcW). This completes
the proof. ■

Proposition 15 (Correctness of calcW). Assume that calcW is applicable
up to depth dmax ≥ 0 with parameters (S, T ) and a PIS, pis. Then, for every
node v with depth d ≤ dmax such that |NZv| ≤ N

2 ,∑
α∈Sv

µ̂n,k′(Tv(α))
2 ≤ calcWpis,dmax

(d, v,Sv, Tv,NZv).

Proof. We prove the result by induction on d ≤ dmax (starting with d = dmax,
down to d = 0). Let k′v = |NZv|. For d = dmax,∑

α∈Sv

µ̂n,k′(Tv(α))
2 ≤

∑
β∈F̂k′

v
2

µ̂n,k′
v
(β)2 = W=k′

v [µn,k′
v
] ≤ (

k′
v

N−k′
v
)k

′
v/2

=calcWpis,dmax(d, v,Sv, Tv,NZv),

where the first inequality relies on (d2) in Proposition 14, as we delete the
k′−|NZv| zero entries that are common to all Tv(α) for α ∈ Sv. It further relies
on (d1) in Proposition 14, as each α ∈ Sv is mapped to a single β ∈ F̂k′

v
2 after

removing the common zero entries. The second inequality is by Lemma 2.
For d < dmax, by reordering elements, we assume without loss of generality

that NZv = [k′v] and pis(v) = k′v. Then, by Proposition 11,

∑
α∈Sv

µ̂n,k′(Tv(α))
2 ≤ k′

v−1
(N−k′

v+1)2

∑
α∈Sv

k′
v−1∑
i=1

µ̂n,k′(Tv(α)
⊕(k′

v,i))2

=
k′
v−1

(N−k′
v+1)2

k′
v−1∑
i=1

(
∑

α∈Svi,0

µ̂n,k′(Tv(α)
⊕(k′

v,i))2 +
∑

α∈Svi,1

µ̂n,k′(Tv(α)
⊕(k′

v,i))2),

(6)

where we use the fact that Svi,0 ∪ Svi,1 = Sv for every i ∈ [k′v − 1]. We have∑
α∈Svi,0

µ̂n,k′(Tv(α)
⊕(k′

v,i))2 =
∑

α∈Svi,0

µ̂n,k′(Tvi,0(α))
2

≤ calcWpis,dmax(d+ 1, vi,0,Svi,0 , Tvi,0 ,NZvi,0),

where the inequality is by the induction hypothesis (relying on applicability up
to depth dmax).

Moreover, a similar inequality holds for the sum over Svi,1 . Plugging these
inequalities into (6), and comparing with the return value of calcW, we deduce∑

α∈Sv
µ̂n,k′(Tv(α))

2 ≤ calcWpis,dmax
(d, v,Sv, Tv,NZv), concluding the proof.

■
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Proposition 16. Let v be a node of depth d such that d ≤ dmax and k′v =
|NZv| ≤ N/8. Denote d′ = dmax − d. Then,

calcWpis,dmax(d, v,Sv, Tv,NZv) ≤ 2d
′ (k′v)

2d′
(k′v − 2d′)k

′
v/2−d′

(N − k′v)k
′
v/2+d′ .

Proof. To simplify notation, denote k = k′v. The recursion tree starting from v
is of depth d′ = dmax − d. Each leaf u contributes to the output at most

( k
(N−k)2 )

d′
(

k′
u

N−k′
u
)k

′
u/2, (7)

where we used the fact that for each internal node w, k′w ≤ k and thus
k′
w−1

(N−k′
w+1)2 ≤

k−1
(N−k+1)2 ≤

k
(N−k)2 .

Initially, |NZv| = k′v = k. For each internal node w, for each i ∈ NZw\{j},
|NZwi,0

| = |NZw| − 2 (there are k′w < k such children wi,0) and |NZwi,1
| =

|NZw| − 1 (there are k′w < k such children wi,1).
Therefore, for every leaf u, k′u ∈ [k − d′, k − 2d′]. More specifically for c ∈

{0, 1, . . . , d′}, the number of leaf nodes u with k′u = k−2d′+c is at most kd
′(d′

c

)
.

Hence, using (7), we bound

calcWpis,dmax
(d, v,Sv, Tv,NZv) ≤ ( k

(N−k)2 )
d′ ∑

u leaf

(
k′
u

N−k′
u
)k

′
u/2

≤ ( k
(N−k)2 )

d′
kd

′
d′∑
c=0

(
d′

c

)
( k−2d′+c
N−k+2d′−c )

(k−2d′+c)/2

≤ ( k
N−k )

2d′
2d

′
max

c∈{0,...,d′}
{( k−2d′+c

N−k+2d′−c )
(k−2d′+c)/2}.

(8)

Denote B(c) = ( k−2d′+c
N−k+2d′−c )

(k−2d′+c)/2. For c+ 1 ≤ d′, by Proposition 1,

B(c+1)
B(c) ≤ e

(k−2d′+c)/2
k−2d′+c +

(k−2d′+c)/2
N−k+2d′−c−1 ( k−2d′+c+1

N−k+2d′−c−1 )
1/2

≤ e
1
2+

k/2
N−k ( k

N−k )
1/2 ≤ e4/7( 17 )

1/2 ≤ 1,

where we have used the assumption that k ≤ N/8. Thus,

max
c∈{0,...,d′}

{( k−2d′+c
N−k+2d′−c )

(k−2d′+c)/2} = max
c∈{0,...,d′}

{B(c)} = B(0)

= ( k−2d′

N−k+2d′ )
(k−2d′)/2 ≤ (k−2d′

N−k )(k−2d′)/2.

Finally, plugging this back into (8) we deduce

calcWpis,dmax(d, v,Sv, Tv,NZv) ≤ ( k
N−k )

2d′
2d

′
max

c∈{0,...,d′}
{B(c)}

≤ 2d
′
( k
N−k )

2d′
(k−2d′

N−k )(k−2d′)/2 = 2d
′ k2d′ (k−2d′)(k−2d′)/2

(N−k)k/2+d′ .

■
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Lemma 3. Assume that calcW is applicable up to depth d = dmax ≥ 0 with
parameters (S, T ) and a PIS, pis. Assume further that initially #T (α) = k0 ≤
N/8 for all α ∈ S. Then,∑

α∈S
µ̂n,k0(T (α))

2 ≤ 2d
(k0)

2d(k0 − 2d)k0/2−d

(N − k0)k0/2+d
≤ 2d

(
k0

N − k0

)k0/2+d

.

Ignoring the (relatively minor) term 2d, the improvement over the naive appli-
cation of Lemma 2 is by a factor of ( k0

N−k0
)d. This emphasizes the importance

of defining a PIS that allows applying calcW up to a large depth d.
Proof. Let NZ be that set defined in Setting 1. By Proposition 15 and Propo-
sition 16,∑

α∈S
µ̂n,k′(T (α))2 ≤ calcWpis,d(0, (NULL),S, T,NZ) ≤ 2d (k′)2d(k′−2d)k

′/2−d

(N−k′)k′/2+d .

■

Remark 3. There are many possible variants of calcW that may give better
bounds in different settings, but are not used in this paper. We summarize a few
below.

1. Instead of fixing the maximal depth dmax in advance, we can continue recur-
sive calls from a node v as long as condition (c2) of Proposition 13 holds.

2. The purpose of condition (b2) of Definition 6 (or condition (c2) of Propo-
sition 13) is to assure that Tv remains injective on the elements of Sv at all
nodes v. This can be assured without this condition if we partition Sv into
more subsets that result in more recursive calls (with additional information
about the masks added to the recursion stack v to assure injectivity).

3. Instead of using the bound derived from Lemma 2, (
k′
v

N−k′
v
)k

′
v/2, at the leaves

with d = dmax, we can use a bound derived from Lemma 1 (or a minimum
of these bounds).

4 Indistinguishability Upper and Lower Bounds for
SXoP[r, n]

In this section, we analyze the SXoP[r, n] construction, proving the main theorem
below.

Theorem 1. Assume that rq ≤ N/8 and N ≥ 213r. The following bounds hold
depending on r.

Odd r ≥ 3.

OptprfSXoP[r,n](q) ≤ 2r−1rr
q

Nr−0.5
≤ Or

( q

Nr−0.5

)
, and

Optmu-prf
SXoP[r,n],u(qmax) ≤ 2r−0.5rr

√
uqmax

Nr−0.5
≤ Or

(√
uqmax

Nr−0.5

)
,

(9)

where the second inequality also requires 2r−0.5rr
√
uqmax

Nr−0.5 ≤ 1
2 .
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r = 2.

OptprfSXoP[2,n](q) ≤
5q

N
≤ O

( q
N

)
. (10)

Even r ≥ 4.

OptprfSXoP[r,n](q) ≤ 2rr/2
q

Nr/2
≤ Or

( q

Nr/2

)
, and

Optmu-prf
SXoP[r,n],u(qmax) ≤ min

(
rr/2

√
uqmax

Nr/2−1/2
, 2rr/2

uqmax

Nr/2

)
≤ min

(
Or

( √
uqmax

Nr/2−1/2

)
, Or

(uqmax

Nr/2

))
,

(11)

where the first part of the second inequality (the first term inside min) also

requires rr/2
√
uqmax

Nr/2−1/2 ≤ 1
2 .

Lower bound for even r ≥ 4.

OptprfSXoP[r,n](q) ≥ 2−1e−r/2r(r−1)/2 q

Nr/2
≥ Ωr

( q

Nr/2

)
. (12)

Note that for r ≥ 4, the theorem proves matching upper and lower single-user
bounds of Θr

(
q

Nr/2

)
. The bound for r = 2 and both bounds for odd r ≥ 3 are

known to be tight by previous works.
The proof relies on the following three lemmas regarding the density function

ν
(r)
n,k, generated by SXoP[r, n].

Lemma 4 (L1 bidirectional bounds on ν̂
(r)
n,k for even r). Assuming k ≤

N/4 and r is even,

3k

2
√
r
(
N
r

) ≤ E
x∼Fk×n

2

|
∑

α∈Mn
=1,k

ν̂
(r)
n,k(α)χα(x)| ≤

2k√(
N
r

) .
Lemma 5 (Variance and weight bounds for ν

(2)
n,q). Assume that N ≥ 100

and q ≤ N/16. Then,
q∑

k=2

W=k[ν(2)n,q] ≤
18q2

N2
, and Var[ν(2)n,q] ≤

4q

N
.

Lemma 6 (Variance and weight bounds for ν
(r)
n,q with r ≥ 3). Assume

that N ≥ 213r, rq ≤ N/8. Then, for odd r ≥ 3

Var[ν(r)n,q] ≤ 22rr2r
q2

N2r−1
.

For even r ≥ 4,

q∑
k=2

W=k[ν(r)n,q] ≤ 22r+1r2r
q2

N2r−2
, and Var[ν(r)n,q] ≤ 2rr

q

Nr−1
.

Proof (of Theorem 1). We prove the inequalities of the theorem.
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Proof of (9). For r odd, by Lemma 6, Var[ν
(r)
n,q] ≤ 22rr2r q2

N2r−1 . Both inequalities
then follow by Proposition 7.

Proof of inequalities for even r. For even r ≥ 4, we have Var[ν
(r)
n,q] ≤ 2rr q

Nr−1

by Lemma 6. Combined with Proposition 7, this proves the first multi-user in-
equality of (11).

This variance bound gives a bound ofOr

( √
q

N(r−1)/2

)
on the statistical distance

from uniform for r ≥ 4, and a similar bound for r = 2 is obtained by Lemma 5.
However, these bounds are not tight. For example, for r = 2, we obtain O

(√
q
N

)
,

where the tight bound is known to be O
(

q
N

)
.

In order to improve the bound we use Proposition 5 with

S =Mn
=1,q = {α ∈ F̂q×n

2 | #α = 1}.

Thus, combining (1) in Section 2 and Proposition 5 we obtain

2OptprfSXoP[r,n](q) ≤ 2 SD(ν(r)n,q,1qn)

≤ E
x∼Fq×n

2

|
∑

α∈Mn
=1,q

ν̂(r)n,q(α)χα(x)|+
√ ∑

α∈Mn
≥2,q

ν̂
(r)
n,q(α)2.

(13)

By Lemma 4, the first term in (13) is bounded by

E
x∼Fq×n

2

|
∑

α∈Mn
=1,q

ν̂(r)n,q(α)χα(x)| ≤ 2q√(
N
r

) ≤ 2rr/2 q
Nr/2 . (14)

Proof of (10). For r = 2, by Lemma 5, the second term in (13) is bounded by√ ∑
α∈Mn

≥2,q

ν̂
(2)
n,q(α)2 ≤

√
18q2

N2 =
√
18q
N .

Therefore, using (13) with (14) and the bound on the second term above,

OptprfSXoP[2,n](q) ≤
2q
N +

√
4.5q
N ≤ 5q

N .

Proof of (11). The first multi-user inequality of (11) was proved above. It remains
to prove the single-user and second multi-user inequalities.

For k ≥ 4, we apply Lemma 6 to bound the second term in (13) by√ ∑
α∈Mn

≥2,q

ν̂
(r)
n,q(α)2 ≤

√
22r+1r2r q2

N2r−2 = 2r+1/2rr q
Nr−1 = 2r+1/2rr 1

Nr/2−1

q
Nr/2

≤ 2r+1/2rr 1
(213r)r/2−1

q
Nr/2 = 2−5.5r+13.5rr/2+1 q

Nr/2 .

(15)

where we have used the fact that N ≥ 213r .
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Therefore, using (13) with (14) and the bound on the second term above,

OptprfSXoP[r,n](q) ≤ r
r/2 q

Nr/2 + 2−5.5r+12.5rr/2+1 q
Nr/2

= rr/2 q
Nr/2 (1 + 2−5.5r+12.5r) ≤ 2rr/2 q

Nr/2 ,

where we have used the fact that for r ≥ 4, 2−5.5r+12.5r ≤ 1. The second part
of the multi-user bound of (11) (the second term inside min) follows from the
single-user bound above by a straightforward triangle inequality.

Proof of (12). For the other direction, by Proposition 5,

2OptprfSXoP[r,n](q) ≥ |
∑

α∈Mn
=1,q

ν̂(r)n,q(α)χα(x)| −
√ ∑

α∈Mn
≥2,q

ν̂
(r)
n,q(α)2.

By Lemma 4, the first term is lower bounded as

|
∑

α∈Mn
=1,q

ν̂(r)n,q(α)χα(x)| ≥ 3q

2

√
r
(
N
r

) ≥ 3
2e

−r/2r(r−1)/2 q
Nr/2 .

Combining with the upper bound on the second term (15) we obtain

2OptprfSXoP[r,n](q) ≥
3
2e

−r/2r(r−1)/2 q
Nr/2 − 2−5.5r+13.5rr/2+1 q

Nr/2

≥ 3
2e

−r/2r(r−1)/2 q
Nr/2 (1− 2−5.5r+13.5er/2r3/2)

≥ 3
2e

−r/2r(r−1)/2 q
Nr/2 (1− 1

3 ) = e−r/2r(r−1)/2 q
Nr/2 ,

where the second inequality is based on the assumption r ≥ 4.
■

Next, we prove the three lemmas.

4.1 Relation between ν̂
(r)
n,k and µ̂n,rk

We start by proving an elementary result that establishes the connection between

the Fourier coefficients of ν
(r)
n,k and those of µn,rk.

Proposition 17 (Relation between ν̂
(r)
n,k and µ̂n,rk). For any α ∈ F̂k×n

2 ,

ν̂
(r)
n,k(α) = µ̂n,rk(α

◦r) = µ̂n,rk(α
⊙r).

Proof. By definition of SXoP[r, n] and Proposition 2, for any α ∈ F̂k×n
2

ν̂
(r)
n,k(α) = E

x∼ν
(r)
n,k

[χα(x)] = E
y1..r
1..k∼µn,rk

[χα(⊕r
ℓ=1y

ℓ
1, . . . ,⊕r

ℓ=1y
ℓ
k)]

= E
y1..r
1..k∼µn,rk

[χα◦r (y11..k, . . . , y
r
1..k)] = µ̂n,rk(α

◦r).

Finally, µ̂n,rk(α
◦r) = µ̂n,rk(α

⊙r) holds by Proposition 8.
■
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4.2 Proof of Lemma 4

Proof (of Lemma 4). Let β ∈ F̂k×n
2 be any fixed mask with #β = 1. Also, let

α ∈ F̂k×n
2 be a mask with #α = 1. Observe that α◦r has #(α◦r) = r and all its

r non-zero elements are equal. Since r is even, by Proposition 12, µ̂n,rk(α
◦r) =

µ̂n,rk(β
◦r) is independent of the actual non-zero element. Therefore, applying

Proposition 17 and Proposition 12,

E
x∼Fk×n

2

|
∑

α∈Mn
=1,k

ν̂
(r)
n,k(α)χα(x)| = E

x∼Fk×n
2

|
∑

α∈Mn
=1,k

µ̂n,rk(α
◦r)χα(x)|

= E
x∼Fk×n

2

|
∑

α∈Mn
=1,k

µ̂n,rk(β
◦r)χα(x)| = |µ̂n,rk(β

◦r)| E
x∼Fk×n

2

|
∑

α∈Mn
=1,k

χα(x)|.

By Proposition 12, 1√
r
(
N
r

) ≤ |µ̂n,rk(β
◦r)| ≤ 1√(

N
r

) .
It thus remains to prove that

3k
2 ≤ E

x∼Fk×n
2

|
∑

α∈Mn
=1,k

χα(x)| ≤ 2k. (16)

Note that the expression Ex∼Fk×n
2
|
∑

α∈Mn
=1,k

χα(x)| is not directly related to

the density functions ν
(r)
n,k and µn,rk.

For every α ∈ F̂k×n
2 with #α = 1, define in(α) to be the unique index i with

αi ̸= 0. Then,

E
x∼Fk×n

2

|
∑

α∈Mn
=1,k

χα(x)| = E
x∼Fk×n

2

|
∑

α∈Mn
=1,k

∏
i∈[k]

χαi(xi)|

= E
x∼Fk×n

2

|
∑

α∈Mn
=1,k

χαin(α)
(xin(α))| = E

x∼Fk×n
2

|
k∑

i=1

∑
γ∈F̂n

2
γ ̸=0

χγ(xi)|

= E
x∼Fk×n

2

|
k∑

i=1

(
∑
γ∈F̂n

2

χγ(xi)− χ0(xi))| = E
x∼Fk×n

2

|N
k∑

i=1

( E
γ∼F̂n

2

[χγ(xi)])− k|

= E
x∼Fk×n

2

|N
k∑

i=1

(1(xi = 0))− k| = E
x∼Fk×n

2

|N |{i ∈ [k] | xi = 0}| − k|,

where the penultimate equality is by orthogonality of the characters.
Therefore, denoting Zx = |{i ∈ [k] | xi = 0}|,

E
x∼Fk×n

2

|
∑

α∈Mn
=1,k

χα(x)| = E
x∼Fk×n

2

|N · Zx − k| = N E
x∼Fk×n

2

[|Zx − k
N |].

Observe that the random variable Zx follows a binomial distribution with num-
ber of experiments k and success probability 1

N , and thus satisfies E[Zx] =
k
N .
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Therefore, Ex[|Zx − k
N |] = Ex[|Zx − E[Zx]|]. So far, we have obtained

E
x∼Fk×n

2

|
∑

α∈Mn
=1,k

χα(x)| = N E
x
[|Zx − E[Zx]|],

and by (16) it remains to prove that 3k
2N ≤ Ex[|Zx − E[Zx]|] ≤ 2k

N .
We have

E
x
[|Zx − E[Zx]|] = Pr[Zx = 0] kN +

k∑
s=1

Pr[Zx = s](s− k
N )

= 2Pr[Zx = 0] kN +

k∑
s=0

Pr[Zx = s](s− k
N ) = 2Pr[Zx = 0] kN + E[Zx − E[Zx]]

= 2 k
N Pr[Zx = 0] + 0 = 2 k

N (1− 1
N )k.

Finally, (1− 1
N )k ≤ 1 and as k ≤ N

4 , (1−
1
N )k ≥ (1− 1

N )N/4 ≥ 3
4 . ■

4.3 Basic Results and Proof of Lemma 5

We prove simple bounds that are similar to (3) and (4), proved in the motivating
example of Section 3. We then use these results to prove Lemma 5.

Proposition 18 (Bound 1 on level-k Fourier weight of ν
(r)
n,q). Assume

that rq ≤ N/2. Then, for even r

W=k[ν(r)n,q] ≤
(
q

k

)
Nk 1(

N
rk

) ≤ (
q

k

)
(rk)k

(
rk

N

)(r−1)k

.

For odd r, W=1[ν
(r)
n,q] = 0 and

W=k[ν(r)n,q] ≤
(
q

k

)
Nk−1 1(

N
rk

) ≤ (
q

k

)
(rk)k−1

(
rk

N

)(r−1)k+1

.

Proof. Applying Proposition 17 and then Lemma 1,

W=k[ν(r)n,q] =
(
q
k

)
W=k[ν

(r)
n,k] =

(
q
k

) ∑
α∈Mn

=k,k

ν̂
(r)
n,k(α)

2

=
(
q
k

) ∑
α∈Mn

=k,k

µ̂n,rk(α
⊙r)2 ≤

(
q
k

)
NkM=rk[µn,rk] ≤

(
q
k

)
Nk 1(

N
rk

) . (17)

When r is odd, then by Proposition 9, α⊙r ̸= 0 only if 0 = ⊕i∈[rk](α
⊙r)i =

⊕i∈[k]αi, which holds only for at most Nk−1 of the masks in Mn
=k,k ⊂ F̂k×n

2 .
Hence for odd r the bound is improved by a factor of N .

For the particular case of k = 1, we have ⊕i∈[k]αi ̸= 0 when #α = 1, and

hence W=1[ν
(r)
n,q] = 0. ■
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Proposition 19 (Bound 2 on level-k Fourier weight of ν
(r)
n,q). Assume

that rq ≤ N/2. Then,

W=k[ν(r)n,q] ≤
(
q

k

)(
rk

N − rk

)rk/2

≤
(
q

k

)(
2rk

N

)rk/2

.

We remark that Proposition 18 gives a better bound than Proposition 19 for
small values of k, while Proposition 19 is better for large values of k. However,
both are very far from being tight in general.
Proof. Applying Proposition 17 (similarly to (17) above) and then Lemma 2,

W=k[ν(r)n,q] =
(
q
k

) ∑
α∈Mn

=k,k

µ̂n,rk(α
⊙r)2 ≤

(
q
k

) ∑
β∈Mn

=rk,rk

µ̂n,rk(β)
2

=
(
q
k

)
W=rk[µn,rk] ≤

(
q
k

)
( rk
N−rk )

rk/2.

■
Proof (of Lemma 5). By Proposition 19, for r = 2,

q∑
k=2

W=k[ν(2)n,q] ≤
q∑

k=2

(
q
k

)
( 2k
N−2k )

k =

q∑
k=2

(
q
k

)
2k( k

N−2k )
k.

Denote B(k) =
(
q
k

)
2k( k

N−2k )
k. Assuming k + 1 ≤ q, by Proposition 1,

B(k+1)
B(k) ≤ 2 q

k+1
k+1

N−2k−2e
k
k+

2k
N−2k−2 ≤ 2q

N−2q e
1+

2q
N−2q ≤ 1

7e
8/7 ≤ 1

2 ,

as q ≤ N/16. Therefore,
q∑

k=2

W=k[ν(r)n,q] ≤
q∑

k=2

B(k) ≤ 2B(2) = 2
(
q
2

)
22 22

(N−4)2 ≤ 18( q
N )2,

as N ≥ 100. Combining with Proposition 18 that asserts W=1[ν
(2)
n,q] ≤ qN 1(

N
2

) ≤
2 q
N , we deduce

Var[ν(2)n,q] =

q∑
k=1

W=k[ν(2)n,q] ≤ 2 q
N + 18 q2

N2 ≤ 2 q
N + 18

16
q
N ≤

4q
N ,

as q
N ≤

1
16 . ■

4.4 Application of Main Framework and Proof of Lemma 6

We apply our main framework and use it to prove Lemma 6.

Proposition 20. Assume that rq ≤ N/8 and k ≥ 2. Define crk = 0 if rk is
even and crk = 1

2 if rk is odd (i.e., crk = rk mod 2
2 ). Then, for any r ≥ 3

W=k[ν(r)n,q] ≤
(
q

k

)
2(r−2)k/2+crk

(
rk

N − rk

)(r−1)k+crk

.

31



Proof. Applying Proposition 17,

W=k[ν(r)n,q] =
(
q
k

)
W=k[ν

(r)
n,k] =

(
q
k

) ∑
α∈Mn

=k,k

ν̂
(r)
n,k(α)

2 =
(
q
k

) ∑
α∈Mn

=k,k

µ̂n,rk(α
⊙r)2.

(18)

We would like to bound
∑

α∈Mn
=k,k

µ̂n,rk(α
⊙r)2 using Lemma 3. We start by

introducing several definitions referring to Setting 1 and then define the PIS,
pis. First, define, S =Mn

=k,k = {α ∈ F̂k×n
2 | #α = k}, and T (α) = Tr,k(α) =

α⊙r = ((α1)
◦r, . . . , (αk)

◦r) (here k0 = k′ = rk).
Given an index ℓ ∈ [k], for all ℓ′ ∈ [(ℓ − 1)r + 1, ℓr], T (α)ℓ′ = (α⊙r)ℓ′ = αℓ.

Thus, for a recursion node v, if ℓ′ ∈ [(ℓ−1)r+1, ℓr] is unaltered by Definition 7,
then Tv(α)ℓ′ = T (α)ℓ′ = αℓ for every α ∈ Sv. We call an index ℓ ∈ [k] redundant
(for a node v) if at least 3 of the r indices in [(ℓ− 1)r + 1, ℓr] are unaltered.

Given a recursion node v, let ℓ ∈ [k] be the largest redundant index. The PIS
pis selects as primary index the largest unaltered index j ∈ [(ℓ− 1)r + 1, ℓr].

Let d = dmax = ⌈ (r−2)k
2 ⌉. We first prove that there is always a redundant

index for nodes up to depth d− 1 = ⌈ (r−2)k
2 ⌉ − 1.

The number of unaltered indices at depth d − 1 is at least k′ − 2(d − 1) =

rk−2⌈ (r−2)k
2 ⌉+2 ≥ rk− ((r−2)k+1)+2 = 2k+1. By an averaging argument,

there exists ℓ ∈ [k] such that [(ℓ − 1)r + 1, ℓr] contains at least ⌈ 2k+1
k ⌉ = 3

unaltered indices. Namely, ℓ is redundant. This proves that pis is well-defined

up to depth d = ⌈ (r−2)k
2 ⌉ (at the leaves of depth d we do not invoke pis).

In order to apply Lemma 3, it is sufficient to prove that the two conditions of
Proposition 13 hold. Clearly, the pair (S, T ) satisfies the restrictions of Setting 1,
and condition (c1) holds.

We now prove condition (c2). Specifically, we prove that for a node v such
that j = pis(v) and α ∈ Sv, Tv(α)j can be computed from Tvi(α) = Tv(α)

⊕(j,i)

(where i is a secondary index).
For a node v we select a primary index j ∈ [rk] such that Tv(α)j = αℓ and

since ℓ is redundant, Tv(α)ℓ′ = αℓ for at least 3 indices ℓ′ ∈ [(ℓ − 1)r + 1, ℓr].
As Tvi(α) = Tv(α)

⊕(j,i), and Tv(α)
⊕(j,i) modifies 2 entries of Tv(α), then αℓ =

Tv(α)j still appears at least 3−2 = 1 time in Tvi(α). This proves condition (c2)
as required.

Applying our framework of Lemma 3 (with d = ⌈ (r−2)k
2 ⌉ = (r−2)k

2 + crk,
k0 = k′ = rk), we obtain∑

α∈Mn
=k,k

µ̂n,r(α
⊙r)2 ≤ 2d( k′

N−k′ )
k′/2+d = 2(r−2)k/2+crk( rk

N−rk )
(r−1)k+crk .

Combining with (18) completes the proof. ■

The proof of Lemma 6 uses the bounds on W=k[ν
(r)
n,q] of Proposition 20 and

additional simple bounds to analyze several sums of weights. It essentially shows
that in all cases the lowest-level weight bound dominates the sum (except for r

odd, as for k = 1, W=1[ν
(r)
n,q] = 0).
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Proof (of Lemma 6). Consider any r ≥ 3. By Proposition 20,

W=k[ν(r)n,q] ≤
(
q
k

)
2(r−2)k/2+crk( rk

N−rk )
(r−1)k+crk .

Write N =Mr and define

Br(k) =
(
q
k

)
2(r−2)k/2+crk( rk

N−rk )
(r−1)k+crk =

(
q
k

)
2(r−2)k/2+crk( k

M−k )
(r−1)k+crk .

Then, for 2 ≤ k ≤ q − 2 (noting that crk = cr(k+2)), by Proposition 1,

Br(k+2)
Br(k)

≤ q2

(k+1)(k+2)2
r−2e

2((r−1)k+crk)
k +

2((r−1)k+crk)
M−k−2 ( k+2

M−k−2 )
2(r−1)

≤ 2r−2e
2(r−1)+

1
k+

2(r−1)q
M−q k+2

k+1
q2

(k+2)2 (
k+2
M−q )

2(r−1)

≤ 2r−2 k+2
k+1e

16(r−1)
7 +

1
k ( q

7q )
2(r−1) ≤ 4

3 (
2e16/7

49 )r−1 1
2e

1
2 ≤ ( 12 )

2 2
3e

1
2 ≤ 1

2 ,

where we have used the facts k ≥ 2, M = N
r ≥ 8q and r ≥ 3.

Therefore, using the fact that N ≥ 213r,

q∑
k=3

W=k[ν(r)n,q] ≤
q∑

k=3

Br(k) ≤ 2Br(3) + 2Br(4)

= 2
(
q
3

)
23(r−2)/2+c3r ( 3r

N−3r )
3(r−1)+c3r + 2

(
q
4

)
22(r−2)( 4r

N−4r )
4(r−1)

≤ 23r/2−4+c3rq3( 4rN )3(r−1)+c3r + 22r−7q4( 8rN )4(r−1)

=27.5r−10+3c3rr3r−3+c3r q3

N3r−3+c3r
+ 214r−19r4r−4 q4

N4r−4

=27.5r−10+3c3rr3r−3+c3r q3

N3r−3+c3r
(1 + 26.5r−9−3c3rrr−1−c3r q

Nr−1−c3r
).

We have

26.5r−9−3c3rrr−1−c3r q
Nr−1−c3r

= 26.5r−9−3c3r ( r
N )r−2−c3r rq

N

≤ 26.5r−9−3c3r2−13(r−2−c3r) 1
8 = 2−6.5r−9+26−3+10cr

≤ 2−6.5r+14+10cr ≤ 2−6.5r+19 ≤ 1,

where we have used the assumptions r ≥ 3, rq ≤ N/8 and N ≥ 213r. Plugging
this into the previous inequality, we deduce

q∑
k=3

W=k[ν(r)n,q] ≤ 27.5r−9+3c3rr3r−3+c3r q3

N3r−3+c3r
. (19)

Assume that r is odd. Then, by Proposition 18, W=1[ν
(r)
n,q] = 0. Moreover, by

Proposition 18 (which gives a better bound on W=2[ν
(r)
n,q] than Proposition 20)

W=2[ν(r)n,q] ≤
(
q
2

)
(2r)

(
2r
N

)2r−1 ≤ 22r−1r2r q2

N2r−1 .
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Hence by the above results and (19) (noting that c3r = 1
2 and recalling that

rq ≤ N/8),

Var[ν(r)n,q] =

q∑
k=2

W=k[ν(r)n,q] ≤ 22r−1r2r q2

N2r−1 + 27.5r−9+1.5r3r−3+0.5 q3

N3r−3+0.5

=22r−1r2r q2

N2r−1 (1 + 25.5r−6.5rr−2.5 q
Nr−1.5 ).

We have

25.5r−6.5rr−2.5 q
Nr−1.5 = 25.5r−6.5( r

N )r−2.5 q
N ≤ 25.5r−6.52−13(r−2.5) 1

8·3

≤ 2−7.5r−6.5+32.5−4 = 2−7.5r+22 ≤ 1,

where we have used the assumptions r ≥ 3, rq ≤ N/8 and N ≥ 213r. Plugging
this into the previous inequality, we deduce the claimed inequality

Var[ν(r)n,q] ≤ 22rr2r q2

N2r−1 .

For even r ≥ 4, by Proposition 18, W=2[ν
(r)
n,q] ≤

(
q
2

)
(2r)2

(
2r
N

)2r−2
= 22rr2r q2

N2r−2 .
Therefore, by the above inequality and (19) (with crk = 0),

q∑
k=2

W=k[ν(r)n,q] ≤ 22rr2r q2

N2r−2 + 27.5r−9r3r−3 q3

N3r−3

=22rr2r q2

N2r−2 (1 + 25.5r−9rr−3 q
Nr−1 ) = 22rr2r q2

N2r−2 (1 + 25.5r−9( r
N )r−3 q

N
1
N )

≤ 22rr2r q2

N2r−2 (1 + 25.5r−92−13(r−3) 1
8·42

−13) ≤ 22rr2r q2

N2r−2 (1 + 2−7.5r−9+39−5−13)

= 22rr2r q2

N2r−2 (1 + 2−7.5r+12) ≤ 22r+1r2r q2

N2r−2 ,

where we have used the assumptions r ≥ 4, rq ≤ N/8 and N ≥ 213r.
Finally, by Proposition 18 and the above inequality (again using the assump-

tions r ≥ 4, rq ≤ N/8 and N ≥ 213r),

Var[ν(r)n,q] =

q∑
k=1

W=k[ν(r)n,q] ≤ qrr 1
Nr−1 + 22r+1r2r q2

N2r−2

= rr q
Nr−1 (1 + 22r+1rr q

Nr−1 ) ≤ rr q
Nr−1 (1 + 22r+1r rqN ( r

N )r−2)

≤ rr q
Nr−1 (1 + 22r+1r 182

−13(r−2)) = rr q
Nr−1 (1 + 2−11r+1−3+26r)

= rr q
Nr−1 (1 + 2−11r+24r) ≤ 2rr q

Nr−1 .

■

5 Indistinguishability Bounds for LXoP[L, n]

In this section, we state and prove our main theorem regarding LXoP[L, n].
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Theorem 2. Assume that the function L′(x) = x ⊕ L(x) is a permutation on
Fn
2 . Given that N ≥ 210 and q ≤ N/16,

OptprfLXoP[L,n](q) ≤
4q

N1.5
,

and assuming 6
√
uqmax

N1.5 ≤ 1
2 ,

Optmu-prf
LXoP[L,n],u(qmax) ≤

6
√
uqmax

N1.5
.

The proof is based on the following lemma, proved in the remainder of this
section.

Lemma 7. Assume that the function L′(x) = x⊕L(x) is a permutation on Fn
2 .

Given that N ≥ 210 and q ≤ N/16, Var[ξ(L)
n,q ] ≤ 64q2

N3 .

Proof (of Theorem 2). The proof is immediate from Lemma 7 and Proposi-
tion 7. ■

5.1 Elementary results

We first establish the connection between the Fourier coefficients of ξ
(L)
n,k and

those of µn,2k.

Proposition 21 (Relation between ξ̂
(L)
n,k and µ̂n,rk). For any α ∈ F̂k×n

2 ,

ξ̂
(L)
n,k(α) = µ̂n,2k(α,L

T(α)) = µ̂n,2k(α1, L
T(α1), . . . , αk, L

T(αk)).

Proof. By definition of LXoP[L, n] and Proposition 2, for any α ∈ F̂k×n
2

ξ̂
(L)
n,k(α) = E

x∼ξ
(L)
n,k

[χα(x)] = E
y1,2
1..k∼µn,2k

[χα(y
1
1 ⊕ L(y21), . . . , y1k ⊕ L(y2k))]

= E
y1,2
1..k∼µn,2k

[χα,α(y
1
1..k, L(y

2
1..k))]

= E
y1,2
1..k∼µn,2k

[χα,LT(α)(y
1
1..k, y

2
1..k)] = µ̂n,2k(α,L

T(α)).

■

Proposition 22. Assume that the function L′(x) = x⊕ L(x) is a permutation

on Fn
2 . Then, W

=1[ξ
(L)
n,q ] = 0.

Proof. By Proposition 21,

W=1[ξ(L)
n,q ] =

(
q
1

) ∑
α∈Mn

=1,1

ξ̂
(L)
n,k(α)

2 = q
∑

α∈Mn
=1,1

µ̂n,2(α,L
T(α))2.

Let α ∈ F̂n
2 be non-zero. We have α⊕LT(α) = (L′)T(α). Since L is a permutation,

so is (L′)T. Since (L′)T(0) = 0, this implies that (L′)T(α) ̸= 0, hence α⊕LT(α) ̸=
0. By proposition 9, we deduce µ̂n,2(α,L

T(α)) = 0, implying W=1[ξ
(L)
n,q ] = 0. ■
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5.2 Application of Main Framework and Proof of Lemma 7

We use our main framework to prove Lemma 7.

Proposition 23. Assume that the function L′(x) = x⊕ L(x) is a permutation
on Fn

2 , and assume that k ≤ N/16. Define ck = 0 if k is even and ck = 1
2

otherwise (i.e. ck = k mod 2
2 ). Then,

W=k[ξ(L)
n,q ] ≤

(
q

k

)
23k/2+3ck

kk+2ck(k − 2ck)
k/2−ck

(N − 2k)3k/2+ck
.

Proof. Based on Proposition 21,

W=k[ξ(L)
n,q ] =

(
q
k

) ∑
α∈Mn

=k,k

ξ̂
(L)
n,k(α)

2 =
(
q
k

) ∑
α∈Mn

=k,k

µ̂n,2k(α,L
T(α))2

=
(
q
k

) ∑
α∈Mn

=k,k

µ̂n,2k(α1, L
T(α1), . . . , αk, L

T(αk))
2.

(20)

We now upper bound
∑

α∈Mn
=k,k

µ̂n,2k(α1, L
T(α1), . . . , αk, L

T(αk))
2 using Lemma 3.

We start by introducing some definitions referring to Setting 1 and then
define the PIS pis. Define, S = Mn

=k,k = {α ∈ F̂k×n
2 | #α = k}, and T (α) =

Tk(α) = (α1, L
T(α1), . . . , αk, L

T(αk)) (here k0 = k′ = 2k).
Given a node v, we say that an index ℓ ∈ [k] is redundant if both 2ℓ − 1

and 2ℓ are unaltered by Definition 7. Note that if ℓ is redundant, then for every
α ∈ Sv, Tv(α)2ℓ−1 = αℓ and Tv(α)2ℓ = LT(αℓ).

At a given recursion node v, the PIS pis will select as primary index the
largest index 2ℓ− 1 such that ℓ ∈ [k] is redundant.

Let d = dmax = ⌈k/2⌉. We first prove that there is always a redundant
index for nodes up to depth d− 1 = ⌈k/2⌉ − 1. Indeed, every recursive call can
remove at most 2 redundant indices, and thus at depth d − 1, we have at least
k − 2(d − 1) = k − 2⌈k/2⌉ + 2 ≥ 1 redundant indices. This proves that pis is
well-defined up to depth d = ⌈k/2⌉ (at the leaves of depth d we do not invoke
pis).

In order to apply Lemma 3, we prove that the two conditions of Proposi-
tion 13 hold. First, the pair (S, T ) satisfies the restrictions of Setting 1, and
condition (c1) holds.

We now prove condition (c2). Namely, for a node v such that j = pis(v) and
α ∈ Sv, we prove that Tv(α)j can be computed from Tvi(α) = Tv(α)

⊕(j,i) (where
i is a secondary index).

For a node v we select as primary index j = 2ℓ−1 for ℓ ∈ [k] redundant, and
we have Tv(α)j = Tv(α)2ℓ−1 = αℓ and Tv(α)2ℓ = LT(αℓ).

If i ̸= 2ℓ, then
Tvi(α)2ℓ = Tv(α)2ℓ = LT(αℓ),

and we can compute L−T(Tvi(α)2ℓ) = αℓ = Tv(α)j . Otherwise, i = 2ℓ, and

Tvi(α)2ℓ = Tv(α)2ℓ−1 ⊕ Tv(α)2ℓ = αℓ ⊕ LT(αℓ) = (L′)T(αℓ).
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Since (L′)T is an invertible linear transformation, we can compute (L′)−T(Tvi(α)2ℓ) =
αℓ = Tv(α)j . This proves condition (c2).

Applying our framework of Lemma 3 (with d = ⌈k/2⌉ = k/2 + ck, k0 = k′ =
2k), we obtain∑

α∈Mn
=k,k

µ̂n,2k(α1, L
T(α1), . . . , αk, L

T(αk))
2 ≤ 2d (k′)2d(k′−2d)k

′/2−d

(N−k′)k′/2+d

=2k/2+ck (2k)k+2ck (k−2ck)
k/2−ck

(N−2k)3k/2+ck
= 23k/2+3ck kk+2ck (k−2ck)

k/2−ck

(N−2k)3k/2+ck
.

Combining with (20) completes the proof. ■
The proof of Lemma 7 uses Proposition 23 and shows that the bound on

W=2[ξ
(L)
n,q ] dominates Var[ξ

(L)
n,q ].

Proof (of Lemma 7). By Proposition 22, W=1[ξ
(L)
n,q ] = 0. Hence, by Proposi-

tion 23,

Var[ξ(L)
n,q ] =

n∑
k=1

W=k[ξ(L)
n,q ] =

n∑
k=2

W=k[ξ(L)
n,q ] ≤

n∑
k=2

(
q
k

)
23k/2+3ck kk+2ck (k−2ck)

k/2−ck

(N−2k)3k/2+ck
.

Denote B(k) =
(
q
k

)
23k/2+3ck kk+2ck (k−2ck)

k/2−ck

(N−2k)3k/2+ck
. Noting that ck = ck+2 and as-

suming 2 ≤ k ≤ q − 2, by Proposition 1,

B(k+2)
B(k) ≤

q2

(k+1)(k+2)2
3e

2(k+2ck)
k +

2(k/2−ck)
k−2ck

+
22(3k/2+ck)
N−2k−4 (k+2)2(k+2−2ck)

(N−2k−4)3

≤ 8q2e
2+

4ck
k +1+

6k+2
N−2k−4 k+2

k+1
k+2−2ck

(N−2k−4)3 ≤ 8 4
3e

3+
2
3+

6q
14q q2 q

(14q)3 ≤ 8 4
3e

4.114−3 ≤ 1
3 ,

where we have used the facts k ≥ 2, 4ck
k ≤

2
3 and q ≤ N/16. Therefore,

n∑
k=2

W=k[ξ(L)
n,q ] ≤ 1

1− 1
3

(B(2) +B(3)) ≤ 3
2

(
q
2

)
23 23

(N−4)3 + 3
2

(
q
3

)
26 34·2

(N−6)5

≤ 48q2

(N−4)3 + 2534q3

(N−6)5 ≤ 60 q2

N3 + 2634 q
N

1
N

q2

N3 ≤ 60 q2

N3 + q2

N3 ≤ 26 q2

N3 ,

where we have used the assumptions that q ≤ N/16 and N ≥ 210. ■

6 Indistinguishability Bounds for LXoP[L, 2, n]

In this section, we state and prove our main theorem regarding LXoP[L, 2, n].

Theorem 3. Assume that the function L′(x) = x ⊕ L(x) is a permutation on
Fn
2 . Given that N ≥ 210 and q ≤ N/32,

OptprfLXoP[L,2,n](q) ≤
23q

N1.5
,

and assuming 32
√
uqmax

N1.5 ≤ 1
2 ,

Optmu-prf
LXoP[L,2,n],u(qmax) ≤

32
√
uqmax

N1.5
.
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Throughout this section, we assume that L′(x) = x⊕ L(x) is invertible.
The proof is based on the following two lemmas, proved in the remainder of

this section.

Lemma 8. W=1[ξ
(L)
n,2,q] =

4q
(N−1)(N−2)2 .

Lemma 9. Let q ≤ N/32 and N ≥ 210. Then
∑q

k=2 W
=k[ξ

(L)
n,2,q] ≤

210.5q2

N3 .

Proof (of Theorem 3). By Lemma 8 and Lemma 9,

Var[ξ
(L)
n,2,q] =

q∑
k=1

W=k[ξ
(L)
n,2,q] ≤

4q
(N−1)(N−2)2 + 210.5q2

N3 ≤ 211q2

N3 ,

as N ≥ 210. The result follows from Proposition 7. ■

6.1 Relation between ξ̂
(L)
n,2,k and µ̂n,3k

We first establish a connection between the Fourier coefficients of ξ
(L)
n,2,k and

those of µn,3k.

For α = (α1, . . . , αk) = (α1
1, α

2
1, . . . α

1
k, α

2
k) ∈ F̂k×2n

2 , denote

t(α) = (α1
1, L

T(α2
1), α

2
1 ⊕ LT(α1

1) . . . , α
1
k, L

T(α2
k), α

2
k ⊕ LT(α1

k)) ∈ F̂3k×n
2 .

Thus t(αi) = (α1
i , L

T(α2
i ), α

2
i ⊕ LT(α1

i )).

Proposition 24 (Relation between ξ̂
(L)
n,2,k and µ̂n,3k). For any α ∈ F̂k×2n

2 ,

ξ̂
(L)
n,2,k(α) = µ̂n,3k(t(α)).

Proof. By definition of LXoP[L, 2, n] and Proposition 2, for any α ∈ F̂k×2n
2

ξ̂
(L)
n,2,k(α) = E

x∼ξ
(L)
n,2,k

[χα(x)]

= E
y1,2,3
1..k ∼µn,3k

[χα1,2
1..k

(y11 ⊕ L(y21), y21 ⊕ L(y31), . . . , y1k ⊕ L(y2k), y2k ⊕ L(y3k))]

= E
y1,2,3
1..k ∼µn,3k

[χα1
1..k

(y11..k)χLT(α1
1..k)⊕α2

1..k
(y21..k)χLT(α2

1..k)
(y31..k)]

= µ̂n,3k(α
1
1..k, L

T(α1
1..k)⊕ α2

1..k, L
T(α2

1..k)) = µ̂n,3k(t(α)).

■

6.2 Basic Result and Proof of Lemma 8

We prove a basic result and use it to prove Lemma 8.
For α ∈ F̂k×2n

2 , recall that #α = |{i ∈ [k] | αi ̸= 0}| is the size of the support
of α (over elements of F̂2n

2 ). On the other hand, for t(α) ∈ F̂3k×n
2 , #t(α) = |{i ∈

[3k] | t(α)i ̸= 0}|. In addition, note that for i ∈ [k], #t(αi) ∈ {0, 1, 2, 3}. In fact,
as proved below, #t(αi) ∈ {0, 2, 3}.
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Proposition 25 (Basic properties of t(α)). For α = (α1, α2) ∈ F̂2n
2 with

#α = 1 (i.e., α ̸= 0), let t(α) = (α1, LT(α2), α2 ⊕ LT(α1)).
Then, #t(α) ∈ {2, 3}. Moreover, if #t(α) = 2, then

t(α) ∈ {(0, LT(α2), α2), (α1, 0, LT(α1)), (α1, (L2)T(α1), 0)}.

Proof. If α1 = 0, then t(α) = (0, LT(α2), α2), and we have α2 ̸= 0 and LT(α2) ̸=
0 (since t(α) ̸= 0 and (L)T is a permutation). Hence, #t(α) = 2. Similarly, if
LT(α2) = 0, then α2 = 0 and #t(α) = #(α1, 0, LT(α1)) = 2. Furthermore if
α2⊕LT(α1) = 0 then α2 = LT(α1) and #t(α) = #(α1, (L2)T(α1), 0) = 2 (since
t(α) ̸= 0 and ((L)2)T is a permutation). ■

We conclude that if #α = k, then #t(α) ∈ [2k, 3k]. Denote #2α = |{i ∈ [k] |
#t(αi) = 2}| and #3α = #α − #2α = |{i ∈ [k] | #t(αi) = 3}|. Therefore, if
#α = k and #3α = m then #t(α) = 2(k −m) + 3m = 2k +m.
Proof (of Lemma 8). By Proposition 24,

W=1[ξ
(L)
n,2,q] =

(
q
1

)
W=1[ξ

(L)
n,2,1] = q

∑
α∈F̂2n

2
#α=1

ξ̂
(L)
n,2,1(α)

2 = q
∑

α∈F̂2n
2

#α=1

µ̂n,3(t(α))
2.

Let α = (α1, α2) ∈ F̂2n
2 , hence t(α) = (α1, LT(α2), α2 ⊕ LT(α1)). By Proposi-

tion 9, we have µ̂n,3(t(α))
2 ̸= 0 only if α1⊕LT(α2)⊕α2⊕LT(α1) = 0. In this case,

α1 ⊕ LT(α1) = α2 ⊕ LT(α2) and thus (L′)T(α1) = (L′)T(α2). Hence, by invert-
ibility of (L′)T, α1 = α2, which implies that t(α) = (α1, LT(α1), α1 ⊕ LT(α1)).
In particular, since LT and (L′)T are invertible then #t(α) = 3.

By Proposition 10, for every α1 ̸= 0, |µ̂n,3(α
1, LT(α1), α1 ⊕ LT(α1))| =

2
N−2

1
N−1 . Since α

1 ∈ F̂n
2 can attain N − 1 non-zero values, we conclude that

W=1[ξ
(L)
n,2,q] = q

∑
α∈F̂2n

2
#α=1

µ̂n,3(t(α))
2 = q(N − 1) 4

(N−1)2(N−2)2 = 4q
(N−1)(N−2)2 .

■

6.3 Application of Main Framework and Proof of Lemma 9

We apply our main framework and use it to prove Lemma 9.

Proposition 26. Let 2 ≤ k ≤ q ≤ N/32, and define ck = 0 if k is even and
ck = 1

2 otherwise (i.e. ck = k mod 2
2 ). Then

W=k[ξ
(L)
n,2,q] ≤

(
q
k

)
27k/2+3ck( k

N−2k )
3k/2+ck .

Proof. By Proposition 24 and Proposition 25,

W=k[ξ
(L)
n,2,q] =

(
q
k

)
W=k[ξ

(L)
n,2,k] =

(
q
k

) ∑
α∈M2n

=k,k

ξ̂
(L)
n,2,1(α)

2 =
(
q
k

) ∑
α∈M2n

=k,k

µ̂n,3k(t(α))
2

=
(
q
k

) k∑
m=0

∑
α∈M2n

=k,k

#3α=m

µ̂n,3k(t(α))
2.
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For m ∈ {0, . . . , k}, denote S(k,m) = {α ∈ F̂k×2n
2 | #α = k ∧ #3α = m}. We

have shown that

W=k[ξ
(L)
n,2,q] =

(
q
k

) k∑
m=0

∑
α∈S(k,m)

µ̂n,3k(t(α))
2. (21)

Fix a pair (k,m). We would like to upper bound
∑

α∈S(k,m) µ̂n,3k(t(α))
2 using

Lemma 3. For this purpose, according to restriction (a2) of Setting 1, we first
need to partition the set S(k,m) into subsets such that the (transformed) masks

in each subset, t(α), share the same non-zero entries (over F̂n
2 ).

We now analyze this partition of S(k,m). By proposition 25, every i ∈ [k]
with #t(αi) = 2 has 3 possible structures which determine which 2 of its 3

entries are non-zero over F̂n
2 . For every α ∈ S(k,m), there are k−m such indices

i with #t(αi) = 2. Therefore, there are
(
k
m

)
3k−m possible non-zero index sets

(with non-zero values over F̂n
2 ). Note that every such index set has size equal to

#t(α) = 2k +m for α ∈ S(k,m).
Denote by Λk,m the collection of these

(
k
m

)
3k−m non-zero index sets, where

every λ ⊆ [k] × [3] is of size 2k + m. We thus partition S(k,m) into
(
k
m

)
3k−m

subsets, denoted {S(k,m)
λ }λ∈Λk,m

, each with common non-zero entries of t(α)

over F̂n
2 . Concretely, α ∈ S(k,m) satisfies α ∈ S(k,m)

λ if for every (i, j) ∈ [k]× [3],
t(αi)j ̸= 0 if and only if (i, j) ∈ λ. We have∑

α∈S(k,m)

µ̂n,3k(t(α))
2 =

∑
λ∈Λk,m

∑
α∈S(k,m)

λ

µ̂n,3k(t(α))
2. (22)

Applying Lemma 3. Fix any λ ∈ Λk,m. We now use Lemma 3 to bound∑
α∈S(k,m)

λ

µ̂n,3k(t(α))
2. For this purpose, let S = S(k,m)

λ and define T (α) =

Tk(α) = t(α) for every α ∈ S(k,m)
λ . In this case, k′ = 3k and k0 = 2k +m.

The PIS pis resembles the one defined in the proof of Proposition 23. Given
a node v, we say that an index ℓ ∈ [k] is redundant if all 3 indices 3ℓ− 2, 3ℓ− 1
and 3ℓ are unaltered by Definition 7.

At a given node v, let ℓ ∈ [k] be the largest redundant index. The PIS pis
will select as primary index the smallest index in the triplet {3ℓ− 2, 3ℓ− 1, 3ℓ}
that is in NZv.

The recursion is executed up to depth d = ⌈k/2⌉. As in the proof of Proposi-
tion 23, a redundant index is guaranteed to exist up to depth d− 1 = ⌈k/2⌉ − 1
and pis is well-defined.

In order to invoke Lemma 3, we prove that the two conditions of Proposi-

tion 13 hold. First, by our definition of S = S(k,m)
λ , the pair (S, T ) defined above

satisfies the restrictions of Setting 1, and condition (c1) holds.
It remains to prove condition (c2). Specifically, for a node v such that

j = pis(v) and α ∈ Sv, we prove that Tv(α)j can be computed from Tvi(α) =
Tv(α)

⊕(j,i) (where i is a secondary index).
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Note that if ℓ is redundant, then for every α ∈ Sv, the elements Tv(α)3ℓ−2, Tv(α)3ℓ−1, Tv(α)3ℓ
are equal to those of T (αℓ) = t(αℓ). Thus, depending on v, according to Proposi-
tion 25 we have 4 possibilities for the zero entries of Tv(α)3ℓ−2, Tv(α)3ℓ−1, Tv(α)3ℓ.

First, assume that #t(αℓ) = 3, namely t(αℓ) = (α1
ℓ , L

T(α2
ℓ ), α

2
ℓ ⊕ LT(α1

ℓ ))
with all 3 entries non-zero. Then the first index with value α1

ℓ is selected as
primary index (j = 3ℓ− 2). We need to verify that Tv(α)j = α1

ℓ can be uniquely
recovered from Tv(α)

⊕(j,i) regardless of the secondary index i, namely that it
can be recovered from the values of either

(1)LT(α2
ℓ ), α

2
ℓ ⊕ LT(α1

ℓ ), in case i /∈ {3ℓ− 1, 3ℓ},
(2)LT(α2

ℓ )⊕ α1
ℓ , α

2
ℓ ⊕ LT(α1

ℓ ), in case i = 3ℓ− 1, or

(3)LT(α2
ℓ ), α

2
ℓ ⊕ LT(α1

ℓ )⊕ α1
ℓ , in case i = 3ℓ.

In case (1), α1
ℓ can be recovered after computing α2

ℓ due to the invertibility of
LT. In case (2), we apply LT to the second value and XOR to the first to obtain
the value of

(L2)T(α1
ℓ )⊕ α1

ℓ =(L2)T(α1
ℓ )⊕ LT(α1

ℓ )⊕ LT(α1
ℓ )⊕ α1

ℓ

=LT((L′)T(α1
ℓ ))⊕ (L′)T(α1

ℓ ) = ((L′)2)T(α1
ℓ ).

Since ((L′)2)T is invertible, α1
ℓ can be uniquely recovered. In case (3), we deduce

α2
ℓ and then LT(α1

ℓ )⊕ α1
ℓ = (L′)T(α1

ℓ ), from which we recover α1
ℓ since (L′)T is

invertible.
Second, if #t(αℓ) = 2, then according to Proposition 25,

t(αℓ) ∈ {(0, LT(α2
ℓ ), α

2
ℓ ), (α

1
ℓ , 0, L

T(α1
ℓ )), (α

1
ℓ , (L

2)T(α1
ℓ ), 0)}.

By similar calculation to the case #t(αℓ) = 3, one can verify that in each of the
3 cases above the first non-zero entry (the value of the primary index) can be
recovered from Tv(α)

⊕(j,i) regardless of the secondary index.
We conclude that the two conditions of Proposition 13 hold. Applying our

framework of Lemma 3 (with d = ⌈k/2⌉ = k/2 + ck, k0 = 2k +m), we obtain∑
α∈S(k,m)

λ

µ̂n,3k(t(α))
2 ≤ 2d (k0)

2d(k0−2d)k0/2−d

(N−k0)k0/2+d = 2k/2+ck (2k+m)k+2ck (k+m−2ck)
k/2+m/2−ck

(N−2k−m)3k/2+m/2+ck
.

We recall that |Λk,m| =
(
k
m

)
3k−m and

∑k
m=0

(
k
m

)
3k−m = 4k. Using (21), (22)

and the inequality above we deduce

W=k[ξ
(L)
n,2,q] =

(
q
k

) k∑
m=0

∑
α∈S(k,m)

µ̂n,3k(t(α))
2 =

(
q
k

) k∑
m=0

∑
λ∈Λk,m

∑
α∈S(k,m)

λ

µ̂n,3k(t(α))
2

≤
(
q
k

) k∑
m=0

|Λk,m|2k/2+ck (2k+m)k+2ck (k+m−2ck)
k/2+m/2−ck

(N−2k−m)3k/2+m/2+ck

≤
(
q
k

)
4k max

m∈{0,1,...,k}
{2k/2+ck (2k+m)k+2ck (k+m)k/2+m/2−ck

(N−2k−m)3k/2+m/2+ck
}

=
(
q
k

)
25k/2+ck max

m∈{0,1,...,k}
{ (2k+m)k+2ck (k+m)k/2+m/2−ck

(N−2k−m)3k/2+m/2+ck
}.
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Denote B(m) = (2k+m)k+2ck (k+m)k/2+m/2−ck

(N−2k−m)3k/2+m/2+ck
. Then, assuming m + 1 ≤ k ≤ q ≤

N/32, by Proposition 1,

B(m+1)
B(m) ≤ e

k+2ck
2k+m+

k/2+m/2−ck
k+m +

3k/2+m/2+ck
N−2k−m−1 ( k+m+1

N−2k−m−1 )
1/2

≤ e1+ck(
2

2k+m− 1
k+m )+

2q
N−3q ( 2q

N−3q )
1/2 ≤ e1+

ck
k +

2
29 ( 2

29 )
1/2 ≤ e

7
6+

2
29 ( 2

29 )
1/2 ≤ 1,

where we also used the facts that k ≥ 2 and c2 = 0, hence ck
k ≤

1
6 . Therefore,

W=k[ξ
(L)
n,2,q] ≤

(
q
k

)
25k/2+ck max

m∈{0,1,...,k}
B(m) ≤

(
q
k

)
25k/2+ckB(0)

=
(
q
k

)
25k/2+ck (2k)k+2ck (k)k/2−ck

(N−2k)3k/2+ck
=

(
q
k

)
27k/2+3ck( k

N−2k )
3k/2+ck .

■
The proof of Lemma 9 uses Proposition 26 and shows that the bound on

W=k[ξ
(L)
n,2,q] dominates the sum

∑q
k=2 W

=k[ξ
(L)
n,2,q].

Proof (of Lemma 9). Applying Proposition 26,

q∑
k=2

W=k[ξ
(L)
n,2,q] ≤

q∑
k=2

(
q
k

)
27k/2+3+3ck( k

N−2k )
3k/2+ck .

Denote B(k) =
(
q
k

)
27k/2+3ck( k

N−2k )
3k/2+ck and note that ck+2 = ck. Then, as-

suming k+2 ≤ q ≤ N/32, and recalling that k ≥ 2 (and c2 = 0), by Proposition 1,

B(k+2)
B(k) ≤

q2

(k+1)(k+2)2
7e

3k+2ck
k +

2(3k+2ck)
N−2k−4 ( k+2

N−2k−4 )
3 ≤ 27e

3+
1
3+

6q
N−2q k+2

k+1
q2(k+2)
(N−2q)3

≤ 27 4
3e

3+
1
3+

6
30 q3

(30q)3 ≤ 27 4
3e

4(30)−3 ≤ 1
2 .

Therefore, using the facts that N ≥ 210 and q ≤ N/32,

q∑
k=2

W=k[ξ
(L)
n,2,q] ≤

q∑
k=2

B(k) ≤ 2B(2) + 2B(3) ≤ 2
(
q
2

)
27( 2

N−4 )
3 + 2

(
q
3

)
212( 3

N−6 )
5

≤ 210q2

(N−4)3 + 21234q3

(N−6)5 ≤
210.3q2

N3 + 220q2

N3
q
N

1
N ≤

210.3q2

N3 + 220q2

N3
1
32

1
210 ≤

210.5q2

N3 .

■
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A Bounds on advantage for symmetric functions

Proposition 27 (Bounds on advantage for symmetric functions). As-
sume that the output distribution generated by H : K × {0, 1}m 7→ {0, 1}n is
independent of the queries of the adversary. Denote by φH(n,q) : Fq×n

2 → R≥0

the density function generated by H. Moreover, assume that φH(n,q) is symmet-
ric in the sense that every element of the sample is marginally distributed as
φH(n,1). Then,

OptprfH (q) ≤ q SD(φH(n,1),1n) +
1

2

√√√√ q∑
k=2

W=k[φH(n,q)].

44

https://doi.org/10.1145/3372297.3417273
https://doi.org/10.1145/3372297.3417273
https://doi.org/10.1145/3372297.3417273
http://eprint.iacr.org/2016/1087
https://doi.org/10.1007/3-540-45539-6_34
https://doi.org/10.1007/978-3-319-28166-7_30
https://doi.org/10.1007/978-3-540-85093-9_22
https://doi.org/10.1007/978-3-540-85093-9_22
http://eprint.iacr.org/2008/009
http://eprint.iacr.org/2010/287
https://doi.org/10.1007/978-3-642-38980-1_10


Proof. Let S =Mn
=1,q = {α ∈ F̂q×n

2 | #α = 1}. By (1) and the upper bound of
Proposition 5,

2OptprfH (q) = 2 SD(φH(n,q),1qn)

≤ E
x∼Fq×n

2

|
∑

α∈Mn
=1,q

φ̂H(n,q)(α)χα(x)|+

√√√√ q∑
k=2

W=k[φH(n,q)].

It remain to prove that

E
x∼Fq×n

2

|
∑

α∈Mn
=1,q

φ̂H(n,q)(α)χα(x)| ≤ 2q SD(φH(n,1),1n).

For α ∈ F̂q×n
2 with #α = 1, define in(α) to be the unique index i with αi ̸= 0.

By symmetry of φH(n,q), we have φ̂H(n,q)(α) = φ̂H(n,1)(αin(α)). Therefore,

E
x∼Fq×n

2

|
∑

α∈Mn
=1,q

φ̂H(n,q)(α)χα(x)| = E
x∼Fq×n

2

|
∑

α∈Mn
=1,q

φ̂H(n,1)(αin(α))
∏
i∈[q]

χαi
(xi)|

= E
x∼Fq×n

2

|
∑

α∈Mn
=1,q

φ̂H(n,1)(αin(α))χαin(α)
(xin(α))|

= E
x∼Fq×n

2

|
q∑

i=1

∑
β∈F̂n

2
β ̸=0

φ̂H(n,1)(β)χβ(xi)| = E
x∼Fq×n

2

|
q∑

i=1

(φH(n,1)(xi)− φ̂H(n,1)(0)χ0(xi))|

≤
q∑

i=1

E
x∼Fq×n

2

|(φH(n,1)(xi)− 1)| = q E
y∼Fn

2

|φH(n,1)(y)− 1| = 2q SD(φH(n,1),1n).

■
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