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ABSTRACT

Abstract: The current cryptographic frameworks like RSA, ECC, and AES are potentially under
quantum threat. Quantum cryptographic and post-quantum cryptography are being extensively
researched for securing future information. The quantum computer and quantum algorithms are
still in the early developmental stage and thus lack scalability for practical application. As a result
of these challenges, most researched PQC methods are lattice-based, code-based, ECC isogeny,
hash-based, and multivariate crypto schemes. In this paper, we explore other mathematical topics
such as stereographic projection, Mobius transformation, change of basis, Apollonian circle, Binary
Quadratic form equivalence, Gauss composition law, and its conjunctions. It fulfills preliminary
conditions like bijection, primality, and np-hard problems, and the feasibility of one-way functions
along with its interconnection. Thus allowing the exploration of new realms of mathematics for the
development of secure protocols for future communication.
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1 Introduction

Cryptography is the method used for securing sensitive information using mathematical techniques and coding
algorithms in a way that only authenticated users can decipher the information for the use of data. It ensures the
information transmitted is secure, private, confidential, and accessible solely by intended recipients. The features of
cryptography include confidentiality, integrity, authentication, non-repudiation, and key management. Cryptography
should be efficient, flexible, resistant to attacks, and secure. Even though not mandatory, most modern cryptography
frameworks are based on a way to function with a trapdoor. Thus, facilitating easy encryption and decryption for the
user with knowledge of the trapdoor function and challenges in the absence of it.

2 Types of Cryptography

The three types of classification of cryptography are symmetric, asymmetric, and hash functions. Symmetric encryption
is when both sender and receiver share the same secret key, there are mainly two types of symmetric encryption such as
block ciphers and stream ciphers. The most used of these is AES, it is considered secure even against quantum attacks
as of current knowledge if the key size is large enough. However, the disadvantage here is the need to transmit the secret
key causing concerns of attacks. It is widely used for Bulk messages. Asymmetric encryption is one of the most used
and reliable cryptography. The most used of these are RSA and ECC. They are efficient but currently under quantum
threat. Hash functions are typically non-invertible conversions of data where the hashed functions are employed for
data integrity verification and authentication.
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3 Requirements of cryptography

The most used math in cryptography is modular arithmetic, number theory, and abstract algebra due to ease of solving,
and extensive research availability. The current focus is also being shifted toward algebraic geometry. The security
frameworks also encompass pre-image resistance, and collision resistance, maintain pseudo randomness, should be
computationally complex to withstand attacks, and mathematically hard to crack. The conditions for the framework
to be potentially sound for asymmetric encryption are it needs to be quantum attack resistant, mathematically hard,
one-way function which is easier in one direction but computationally complex the other way without trapdoor function,
bijective mapping, resistance against backdoor attacks, cryptanalysis resistant, efficient, secure and scalable.

4 Classical Cryptography

4.1 Advanced Encryption Standard

Advanced Encryption Standard [1] was published by NIST in 2001. It is a symmetric key algorithm that uses a block
cipher. AES currently has 3 key lengths being used: 128 bits with 10 rounds, 192 bits with 12 rounds, and 256 bits with
14 rounds. The message is divided into 128-bit blocks and the key is further used to create 10 subkeys each of 128 bits.
The four main steps involved are byte substitution where data is replaced by the data from the s-box, shift rows are left
shifting the rows of the matrix, mix columns are multiplied by a standard AES specified matrix, add round key is done
by XORing the array with 128-bit round key. All the operations are done in a finite field. As of current advancement
increasing the key length of AES would make it withstand the quantum threat.

4.2 RSA Encryption

RSA [2] is classical cryptographic framework which was published in 1977. It is based on the difficulty of factoring
large numbers. The mathematical formulation can be concisely given as:

n = p× q (1)

ϕ(n) = (p− 1)× (q − 1) (2)
Choose e such that 1 < e < ϕ(n) (3)

gcd(e, ϕ(n)) = 1 (4)
e× d ≡ 1 (mod ϕ(n)) (5)
Cipher = Messageen (6)
Message = Cipherdn (7)

RSA is the most widely used algorithm currently due to its performance efficiency and simplicity. The key size is
generally 1024 or 2048 bits. The process of period-finding using the Quantum Fourier Transform is used in Shor’s
algorithm. The Quantum Fourier transform takes some function f(x) and finds out the period of the function. This
method is believed to be able to factor large numbers efficiently compared to classical algorithms but currently is not
capable of scaling to potential due to qubit limitation.

4.3 Elliptic curve cryptography

ECC [5] is considered more secure along with the very short key size, the 256-bit ECC is said to be equivalent to the
strength of a 3072-bit RSA key size but not over AES key size. This is very similar to the Diffie-Hellman discrete
logarithm. ECC uses point addition of elliptic curve over finite field abelian group for encryption. It requires one-sixth
of the computational effort of RSA to provide the same security and is 15 times faster than the same. ECDH and
ECDSA are widely used in blockchain cryptography and others. The practical applicability of quantum algorithms is
currently limited to quantum system scaling difficulties but concern about the future advancement exists.

5 Quantum Cryptography

Quantum computers [3] are believed to offer certain advantages over classical such as being able to compute certain
specific classes of NP and NP-Hard problems in polynomial time due to their superposition, quantum parallelism,
quantum entanglement, and other physical properties. Assuming fundamental principles of physics like superposition
and entanglement are valid, it could be used efficiently in quantum cryptography for secure communication. QKD
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resists eavesdropping to an extent as it causes disturbance in the medium which could be detected, though it is not
completely immune to eavesdropping the risks could be mitigated. Its no-cloning theorem which does not allow
duplicate the unknown state to be copied perfectly is an added advantage. QKD [4] is considered very secure and
implemented, extensive deployment is under research and is considered currently a very promising avenue.

6 Post-Quantum Cryptography

Post-quantum cryptography is the term coined to represent the crypto schemes that are capable of being secure under
quantum and classical threats [6]. Numerous research is being done on exploring different possibilities to tackle the
problem of quantum threats. The most prominent asymmetric encryptions are as follows

6.1 Lattice-based cryptography

The lattice is based on the shortest or closest vector problem which is considered np hard [7]. The problem on the
lattice is considered np-hard but due to its periodic structure and Fourier transformation being the advantage of quantum
computers, various methods are being researched to break it. An extension of Shor’s algorithm is said to be capable of
breaking the hardness of a few lattice problems. Due to its richness lattice is the most widely researched PQC method.

6.2 Code-based cryptography

It is also known as error-correcting code cryptography, is based on the error-correcting principle and difficulty of
decoding random linear codes. For example, a 64-bit key is stored in 72-bit physical memory, it is designed in such a
way that it would be system would be able to detect single-bit or double-bit errors and rectify them.

6.3 Hash-based cryptography

hash-based signature relies on the fact that the pre-image detection from the given hashed function is difficult. The
conditions for using signatures are that it should not be repeated, the signer must know the function and thus the hashed
function could be verified by the receiver. It should be a time function. Grover’s algorithm does affect the hash-based
function due to its search time reduction.

6.4 Multivariate quadratic polynomial cryptography

In the given finite field, finding a set of polynomials of n variables even for smaller degrees is difficult [9]. But checking
if the function belongs to the set is easier but finding the solution of the function from the set is infeasible without the
private key.

6.5 Super-singular ECC isogeny cryptography

Elliptic curves are a very rich field with a vast amount of research done. Elliptic curves are defined over a finite field
with the ideal fractional class group that can act freely on them [10]. Using the relation between prime isogenies and
ideal the protocol is built which is considered safe against quantum threats. The security relies on the isogeny path
problem. Research in these areas to develop robust cryptographic schemes capable of withstanding quantum threats are
being explored.

7 Mathematical Cryptography Core Ideas

In the vastness of mathematics, there are many more promising avenues than the previously listed one, which could
be explored for utilization in post-quantum cryptography. A few of the topics which are listed below. Here, we try to
summarize the topics related to algebraic geometry, linear algebra, and algebraic number theory and the intersection of
the concepts along with the relation between them.

7.1 Change of Basis

Consider the transformation of matrix A from basis a1,a2 and matrix B in basis b1,b2. A transformation matrix can be
used to transform data from one basis to another. Analogously, Alice represents matrix A, speaking a language only she
understands, while Bob represents matrix B, speaking a different language that only he understands. The transformation
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matrix could be considered as the mathematical translator between Alice and Bob which could allow communication
from Alice’s basis to that of Bob. Similarly, its inverse allows communication from Bob back to Alice.

Definition 1: Let V be any vector space [11], and let A = {v1, v2, v3, ..., vn} be a set of vectors in V . A is called a
basis of V if A is linearly independent and V is the span of A. The vector a in V is represented as:

a = c1v1 + c2v2 + ...+ cnvn

Scalars c1, c2, ..., cn are called coordinates of V relative to basis A, denoted by [v]A = [c1, c2, ..cn].

Definition 2: If A = {v1, v2, . . . , vn} is a basis of vector space V , then A∗ = {φ1, φ2, . . . , φn} is a basis of V ∗. The
functional φi(c1v1 + . . .+ cnvn) is an element of the dual basis. A vector v belongs to V , where ci are elements of
F for i = 1, . . . , n. i.e., φi(vj) = δij , where δij is the Kronecker delta. Any functional φ can be written as a linear
combination of the dual basis vectors, i.e., φ = φ(v1)φ1 + φ(v2)φ2 + . . .+ φ(vn)φn.

Definition 3: Let V be any vector space of dimension n over any field F . Let A = (v1, v2, v3, . . . , vn) and B =
(w1, w2, w3, . . . , wn) be any two bases of V over F , and let A∗ = (Φ1,Φ2,Φ3, . . . ,Φn) and B∗ = (σ1, σ2, σ3, . . . , σn)
be their respective dual bases of V ∗ over F .

Let P be the change of basis matrix [12] from the basis A to the basis B, and set Q = P−1. Then
Q(Φ1,Φ2,Φ3, . . . ,Φn) = (σ1, σ2, σ3, . . . , σn).

QA∗ = B∗ (8)
A∗ = Q−1B∗ (9)
A∗ = PB∗ (10)

AA∗ = APB∗ (11)
B · C = (σ1(c), σ2(c), ..., σn(c)) (12)

u = AA∗ · u (13)
u = APA∗ · u (14)

Public key :B∗, where u is plaintext. (15)
σ∗ = (σ1(u), σ2(u), ..., σn(u)) (16)
Private key :APσ∗ · u = u (17)

This understanding of change of basis can be crucial in various cryptographic algorithms and mathematical frameworks
for future exploration. But Matrix multiplication is considered computationally intensive if the number of matrices
increases. Also, tensor which could be considered as n-dimensional matrices has many np-hard problems.

7.2 Stereographic Projection

Stereographic projection is a type of conformal linear transformation where circles from a sphere are mapped as circles
or as straight lines on a tangent plane. The angles and cross ratios are preserved locally under the transformation but
the distances are distorted [13]. Any point is its own harmonic conjugate concerning itself and any other point. The
projection and inverse projection here are bijective, thus preventing pre-image resistance and collision resistance. The
circle passing through the north pole is the only straight line in the plane. Stereographic projection of a complex plan
onto a sphere constructs Mobius transformation [14]. It can be represented by

M(z) =
az + b

cz + d
(18)

Inverse Mobius transformation:
M−1(z) =

dz − b

−cz + a
(19)

GivenM1(z) =
a1z + b1
c1z + d1

andM2(z) =
a2z + b2
c2z + d2

(20)

compositionM = M2 ◦M1 is : (21)
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M(z) = M2

(
a1z + b1
c1z + d1

)
=

a2(a1z + b1) + b2(c1z + d1)

c2(a1z + b1) + d2(c1z + d1)
(22)

Expanding the terms, we have:

M(z) =
(a2a1 + b2c1)z + (a2b1 + b2d1)

(c2a1 + d2c1)z + (c2b1 + d2d1)

(23) Thus, the composed transformation M(z) = M2(M1(z)) has the form:

M(z) = A1z +
B1

C1z +D1
(24)

where:
A1 = a2a1 + b2c1 (25)

B1 = a2b1 + b2d1 (26)

C1 = c2a1 + d2c1 (27)

D1 = c2b1 + d2d1 (28)

Set of non-singular Mobius transformation forms group under composition. Unique Mobius transformation of sending
3 points (q, r, s) to other 3 (q′, r′, s′) points is given as:

M(z) =
(w − q′)(r′ − s′)

(w − s′)(r′ − q′)
=

(z − q)(r − s)

(z − s)(r − q)
(29)

Where[w, q′, r′, s′] = [z, q, r, s] (30)

For a given hyperbolic Mobius transformation M , The multiplier associated with ξ+ is a real number m = ρ.

M ′(z′) = ρz′ (31)

If A′ and B′ are any origin-centered circles:

rB
rA

=
radius of B′

radius of A′ =
√
ρ (32)

M ′ = IB′ · IA′ (33)

where IA′ and IB′ are inversion transformations. From the symmetry principle:

M = IB · IA (34)

To pick a pair of circles C2 corresponding to the value of ρ, we use circles of Apollonius with limit points ξ+ and ξ−.
For a group of Apollonian circles limit points are symmetric with respect to each of its circles.

7.3 Apollonian Circle

A fractal-like recursive arrangement [18] of four mutually tangent circles with integer curvature which obeys Descartes
equation can be considered as integral Apollonius circle packing. If the given curvatures are (a, b, c, d) here a = ± 1

r
where r is the radius of the circle. The Descartes equation is given by:

a2 + b2 + c2 + d2 =
1

2
(a+ b+ c+ d)2 (35)
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Thus called as Descartes quadruple.Descartes quadruple v = (a, b, c, d) with L(v) = a + b + c + d > 0 is a root
quadruple if

(a ≤ 0 ≤ b ≤ c ≤ d) and (a+ b+ c ≥ d). (36)

The Apollonian root quadruples (±n, x, y, z) with ±n ≤ 0 ≤ x ≤ y ≤ z is in bijection with positive definite IBQF of
discriminant −4n2 having a non-negative middle coefficient. The reduced BQF [A,B,C] associated with it is given by:

[A,B,C] = [−n+ x,
1

2
(−n+ x+ y − z),−n+ y] (37)

Primitive root quadruples are equivalent to reduced BQF in the GL(2,Z) having a non-negative middle coefficient. A
positive definite form [A,B,C] is considered to be reduced if the following conditions are satisfied:

0 ≤ |2B| ≤ A ≤ C (38)
(−n, x, y, z) is a root quadruple (39)

Primitivity condition gcd(−n, x, y, z) = 1 transforms to gcd(A,B,C) = 1, vice versa

Reduced forms list form classes under GL(2,Z)-action when B ≥ 0. Circle packing is one of the NP-hard problems.
Few Diophantine equations are also considered hard to solve.

7.4 Binary Quadratic Form Equivalence

Binary quadratic forms are represented as ax2+bxy+cy2. Two binary quadratic forms f and g are said to be equivalent
if the following conditions are satisfied: if they can be transformed into each other and the discriminant of them is
similar [15]. IBQF is properly equivalent if g, which is a rational number, belongs to SL(2,Z), f2 = g · f , here f is the
positive definite form with disc < 0, a ≥ 0. It is reduced if any of these qualities are true: |B| ≤ A ≤ C or if b ≥ 0.
Both equivalences are equivalent to a single reduced form.

Gauss composition law: which states

f1(x1, y1) · f2(x2, y2) = f3(X,Y ), (40)

the group defined by Gauss can be obtained simply by considering the free group generated [16] by all primitive
quadratic forms of a given discriminant D, modulo the relation Qid,D = 0 and modulo all relations of the form

QA1 +QA2 +QA3 = 0, whereQA1, QA2, QA3 (41)

form a triplet of primitive quadratic forms arising from a cube A of discriminant D. Bhargava’s cube as an extension of
Gauss composition law:

A1, A2, A3, B1, B2, B3 (42)

are 2× 2 matrices of opposite pairs of vertices. Bhargava constructed three IBQFs as follows:

Q1 = −det(A1x+B1y), Q2 = −det(A2x+B2y), Q3 = −det(A3x+B3y). (43)

Bhargava established the following result connecting a Bhargava cube with the Gauss composition law: If a cube A
gives rise to three primitive BQF Q1, Q2, Q3, where Q1, Q2, Q3 with identical discriminant also the product of the
three forms is the identity within the Gauss composition group. Alternatively, if Q1, Q2, and Q3 are any three primitive
BQF of the identical discriminant whose product is the identity within the Gauss composition group then there exists a
cube A producing Q1, Q2, Q3.

The multiplicativity of invertible O-ideals induces a group structure on the equivalence classes of primitive integral
forms. The corresponding groups are called class groups. All the equivalent reduced forms can be found in each class
group and are unique. There are several existing proposals for digital signatures using quadratic forms like BR93, FS87,
etc. There are a few intractable problems using BQF along with Diffie Hellman and principle ideal classes mentioned in
[17]. Imaginary quadratic order and many other problems related to lattice [17] BQF are widely explored along with
the potential application in multivariate polynomial frameworks in the field of post-quantum cryptography.
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8 Methodology

To summarize the mutual relationship of the above-listed mathematical concepts concerning cryptography, consider an
Apollonian quadruple Q1 which is composed of 4 circles c1,c2,c3, and c4 with radius r1,r2,r3, and r4 with curvatures as
k1,k2,k3, and k4 respectively. They follow Descartes’s equation, are primitive, and they follow conditions mentioned in
eqn (35),(36),(37). When Mobius transformation with respect to a point is considered on the condition that Z must be
an integer value. Mobius transformation has special properties that map circles to circles, along with the preservation of
circles and angles, it also preserves tangency. Mobius transformation thus maps Q1 to Q2 in such a way that it is related
by transformation T(z) as in eqn(18), whose inverse can be as given in eqn(19). Thus we get 2 quadruples Q1 and Q2
which are similar, have BQF equivalency, and also are in reduced form as they meet the necessary condition in eqn(38).
Now if we were to use a simple change of basis shown in sec 7.1 where the change of basis on the transformation
matrix T(z) takes place. We get a secure framework, but the applicability, and security must be rigorously analyzed.
Thus combining the different concepts mentioned allows a variety of protocol options due to the richness of the topics
involved and interception of these concepts along with the availability of np-hard problems and scope for one-way
trapdoor function opens a realm of opportunities for further research, thus allowing us to also check the integration
of various concepts of math from algebraic geometry, number theory and abstract algebra along with lattices, elliptic
curves, and other conventional methods .

9 Conclusion

when the necessary conditions are satisfied, the primitive given reduced BQF is related to the stereographic projection
and the Mobius transformation, which has a subtype hyperbolic Mobius transformation related to the Apollonian circle.
Thus interlinking the mathematical concepts mentioned in the paper. The theoretically proposed protocol combines the
strength of the transformation from the different compositions of Mobius, BQF equivalence, and change of basis. The
vastness, and abundance of the insights and their interconnection allow us to explore the potential use of mathematical
insights from the above concepts. Another example is if the quadruples are plotted onto the sphere and the antipodal
points of the center of circles are considered where the centers to center form a cube shape, thus allowing us to apply
Bharghav’s cube law. The discriminant remains the same and therefore when plotted in 2d the other point is not visible.
Suppose this is the case when BQF equivalence is merged with a change of basis as mentioned. Is it possible to get
another cryptographic protocol? Is there any other possibility of utilizing the combinations of the above mathematical
topics? In-depth investigation and extensive study are required for further exploration and gaining more insights into
the potential of these concepts.
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