
Simple Logarithmic-size LSAG signature

Edsger Hughes∗

edsgerhughes@protonmail.com

June 8, 2024

Abstract

A number of existing cryptosystems use the well-known LSAG signature
and its extensions. This article presents a simple logarithmic-size signature
scheme LS-LSAG which, despite a radical reduction in size, retains the
basic code block of the LSAG signature. Therefore, substituting LS-LSAG
for LSAG requires minimal changes to almost any existing coded LSAG
extension, making it logarithmic instead of linear.

1 Introduction
The design of LSAG signature [6] is linear in the anonymity set size, and this
linearity persists in the solutions extending LSAG. A number of existing anonymous
blockchains are based upon the Cryptonote protocol [9] and thus inherit LSAG.
For example, the CLSAG signature [3] of the Monero blockchain [7] optimizes the
LSAG size while still remaining in the linear class. It also enhances LSAG so that
‘hinged equipment’, e.g, hidden wallet balance equations, can be ‘mounted’.

At the same time, there already exist logarithmic signatures based on the
same cryptographic assumptions as LSAG. Some of their concepts are presented
in [4, 8], [1], [10]. In addition to the logarithmic size, they open a possibility for
efficient batch verification which is not available in LSAG. However, if you have a
working software using LSAG/CLSAG, then moving to a logarithmic scheme rises
a question of compatibility. That is, how much of LSAG’s hinged equipment has
to be unmounted, reconsidered and, finally, how much code needs to be rewritten.

We propose LS-LSAG which allows for a smooth solution to this problem.
LS-LSAG is a logarithmic-size signature that retains the base code block of
LSAG/CLSAG, and thus does not require a major replacement of equipments.
However, due to the retained block, batch verification is not included. That’s
the compromise. The only prerequisite for LS-LSAG is a logarithmic-size inner-
product argument module, which is typically already installed in LSAG-based
systems with hidden balances.

2 LSAG code block
Assuming that the reader is aware of the LSAG, CLSAG, and Cryptonote design,
let’s go directly to what they have in common. For a ring of n public keys P and
a key image I, there are n systems of Schnorr-like equations{

Ti = r∗
i G + c∗

i Pi

Vi = r∗
i Hp(Pi) + c∗

i I
(1)

Here, {c∗
i }n−1

i=0 and {r∗
i }n−1

i=0 are some scalars that are either randomly sampled
or transmitted in the signature, divided respectively into the challenge and reply
parts. Specific methods for obtaining these scalars vary in different LSAG-based
schemes, we will sample and generate them in our own way.

∗c74c6036bc144cef4702e97648821d24b1abf804b53472694d9f41d33a0f3fc1,
bc1q9hke6xwf8jl4su0v35776dhey2ksxanvuj8xdt

1

In general, each equation in the systems (1) adhers to the Schnorr signature
pattern. That is, its left-hand side gets evaluated after the challenges and replies
are inserted in the right-hand side, and signer can successfully sign only knowing
the left-hand side ahead of time.

In the LSAG-based schemes, the scalars {c∗
i }n−1

i=0 ∪ {r∗
i }n−1

i=0 are chosen in such
a way as to allow accepting verification only if the left-hand side of at least one
of the systems (1), say at index i = s, is known to signer before querying the
random oracle. By the same reason as in the Schnorr scheme, this knowledge of
the left-hand side implies knowledge of a private key x such that Ps = xG and
I = xHp(Ps). Our LS-LSAG signature will follow the same principle.

As an extension, composite keys can be used. For instance, CLSAG operates
with keys represented as vectors. They move into our scheme unchanged, along
with the corresponding random weights. For simplicity, we denote them as Pi’s,
implying that instead of G, Pi, Hp(Pi), I in (1), for LS-LSAG, there will be some
expressions from the original scheme. Furthermore, there may be additional
equations in (1), e.g., related to walet balances. They come from the original
scheme to LS-LSAG in the same way as the considered ones. We omit explicitly
showing these composite keys and additional equations to avoid cluttering.

Taking all of the above into account, we define ‘LSAG code block’ as the
following set of equations, which corresponds to n systems (1).[

T = {rG + cPi}n−1
i=0

V = {rHp(Pi) + cI}n−1
i=0

(2)

In this block we instantly reflect the fact that, in LS-LSAG, there will be only
two scalars r and c such that {c∗

i }n−1
i=0 = {c}n−1

i=0 and {r∗
i }n−1

i=0 = {r}n−1
i=0 .

In all other respects the expressions in (2) are assumed the same as in the
source LSAG-based scheme. The omitted components implicitly move into (2).
If besides the set {r∗

i }n−1
i=0 another scalar set {r̃∗

i }n−1
i=0 is used in the additional

equations of the source scheme, then it can be replaced by a corresponding scalar
r̃. The replacement principle will be the same as for r.

3 Signature LS-LSAG
Setup procedure for LS-LSAG is simple. It creates a set of n+3 linearly independent
generators, one of which is the predefined group generator G. This set is used in
all instances of the signature.

Setup(G ∈ G, n ∈ N)
B ←$ Gn, D, H ←$ G

cgen = {B, D, H, G} ∈ Gn+3

return cgen

The LS-LSAG scheme is presented in the common prove-and-verify notation
on the next page. The random oracle is modeled by the hash function Hs. When
input to the random oracle is the entire transcript created up to the point of
querying, then the oracle output is denoted, as usual, as a challenge.

To obtain linearly independent group elements, the standard second-preimage
resistant hash-to-curve function Hp is used. It is assumed, as usual, that Hp

deterministically models a random oracle on the curve, and thus there is no
winning adversary in the DL assumption game for Hp image of any set.

2

At the final step, the zk-WIP1⃗n inner-product argument procedure from the
Bulletproofs-plus paper [2] is played, with λ = 1. However, any other zero-
knowledge inner-product argument implementation can be used instead.

The linking procedure is assumed to be the mere comparison of key images, it
is not shown.

Signature LS-LSAG(m ∈ {0, 1}∗, P ∈ Gn; x ∈ F, s ∈ [0, n − 1])
Prover P Verifier V

. Step 0: P,V validate the ring .

assert ∀i, j, i ̸= j : Pi ̸= 0, Pi ̸= Pj

. Step 1: P builds the key image I and commits to (T, V) at the index s

assert Ps = xG

I = xHp(Ps)
t, α←$ F
T = tG, V = tHp(Ps)
A = Hp(cgen∥m∥P ∥I∥T∥V) + αH

.Step 2: V receives I, A, makes a challenge c and gets a reply r

I, A

c c←$ F

r = t− cx r

. Step 3: P,V calculate the LSAG code block[
T = {rG + cPi}n−1

i=0

V = {rHp(Pi) + cI}n−1
i=0

. Step 4: P,V calculate hashes of all (Ti, Vi)

A = {Hp(cgen∥m∥P ∥I∥Ti∥Vi)}n−1
i=0

.Step 5: P,V build the commitment W using one more challenge

e e←$ F

W = A + e ⟨1n,B⟩+ eD

.Step 6: P builds one-hot vector a s.t. A is a commitment to a over A

a =
{

as = 1
∀i ∈ [0, n− 1], i ̸= s : ai = 0

. Step 7: P convinces V that ⟨a, e1n⟩ = e using Bulletproofs-plus

play zk-WIP1⃗n (A,B, D, H, W ; a, e1n, α)

Informally speaking, in this scheme the prover randomly generates the left-hand
side (T, V) of the system (1) under the signing index s. Then, the prover commits
to (T, V) by hashing it to a point on the curve. The resulting commitment A,

3

which is sent to verifier, is blinded with the randomn αH. The verifier makes a
challenge c, and the prover replies with r, so that now the left-hand sides of all n
systems (1) can be computed. Specifically, for the s-th system, its left-hand side
turns out to be the opening of the commitment A, that is, (Ts, Vs) = (T, V).

Now, both the prover and the verifier hash all the left-hand sides (Ti, Vi) into
a point vector A of length n. Clearly, A is a blinded version of As. Considering
A as a basis, the prover convinces the verifier that A is a linear combination of
the points from A and that A ̸= 0.

To accomplish this, the prover creates the one-hot vector a where s-th element
is hot, and using the inner-product argument shows that ⟨a,1n⟩ = 1 holds.
Concretely, the prover shows that the element W = A + e ⟨1n,B⟩ + eD is a
commitment to the vectors a and e1n over A ∪ B ∪ {D} such that ⟨a, e1n⟩ = e.
Here, D is a separate generator for inner-product, as required by the inner-product
argument, and e is an auxiliary randomness which prevents the prover from
cheating with A by adding to it some points not from A.

Theorem 1 (Completeness, linkability). LS-LSAG is complete and linkable.

Proof. Follows trivially from the scheme.

Theorem 2 (Anonymity). LS-LSAG is anonymous.

Proof. (Sketch) The transcripts of LS-LSAG and LSAG differ only in the com-
mitment A and sub-transcript of zk-WIP1⃗n . The scalar challenges and the replies
r, {r∗

i }n−1
i=0 are not counted, as they are independent and uniformly distributed.

As the commitment A is hiding, and as zk-WIP1⃗n is zero-knowledge, anonymity
of LS-LSAG reduces to the anonymity of LSAG.

To understand soundness of the scheme, let’s rewind it. At the end, verifier is
convinced that the commitment A is a known to the prover linear combination of
points from A with at least one non-zero coefficient. Rewind to the moment of
the challenge c and repeat with a different random value c′.

For the case, if at least one of n systems (1) has its left-hand side remaining
the same for c and c′, the private key can be recovered from it the way this is
usually done for Schnorr-like schemes.

Consider the opposite case, where none of the systems (1) has its left-hand
side for c equal to its left-hand side for c′. It’s easy to see that left-hand sides at
distinct indexes cannot match. Thus, there are no equal entries in the combined
set of 2n left-hand sides for c and c′.

Now consider the two respective sets A and A′ of Hp images of these left-hand
sides, for c and c′. The images are all different, otherwise a collision for Hp is found.
For each of the sets A and A′, the point A is a non-trivial linear combination
of its elements. Eliminating A, we get a non-trivial sum of hash-to-curve images
that equals to zero. This implies existence of a winning adversary for the DL
assumption game.

Thus, only the first case is possible, where for one of the systems (1) its
left-hand side is preserved, and the private signing key is recovered from it. The
key image is properly built in this case as well.

Theorem 3 (Unforgeability). LS-LSAG is unforgeable.

Proof. (Sketch) Following the definition and theorem for unforgeability in [3], we
only need to show that an adversary has only a negligible probability to successfully
sign with an alien key image.

4

Suppose that an adversarial signer knows a private key y such that yG /∈ P , and
produces an acceptable signature with the ring P and key image IA = yHp(yG).
We will show that this signer becomes a successful adversary for the DL game.

We assume that Hp models a random oracle on the curve and is second-
preimage resistant, e.g., follows the idea of [5]. It should be noted that, since yG
is also a signing key for another successful signature, it holds that y ≠ 0 due to
the validation at Step 0.

As zk-WIP1⃗n has witness-extended emulation, the signer has an non-negligible
probability of rewinding the forged signature to the challenge c and obtaining
another successful forgery for another independently and uniformly sampled value
c′, for the same P , IA, A.

Let F = {Ti, Vi}n−1
i=0 = {rG + cPi, rHp(Pi) + cIA}n−1

i=0 be a set of the left-hand
sides of n systems (1) for the transcript with c. The ring is validated for ∀i, j, i ̸= j :
Pi ≠ Pj , this implies Ti ≠ Tj , and hence ∀i, j, i ̸= j : F ∋ (Ti, Vi) ̸= (Tj , Vj) ∈ F.
That is, all elements in F are distinct. The same holds for the set F′ related to c′.

If ∃i, j ∈ [0, n − 1] : F ∋ (Ti, Vi) = (T ′
j , V ′

j) ∈ F′, then Vi = V ′
j implies that,

in the case of i = j, it holds that (r − r′)Hp(Pi) + (c − c′)IA = 0, and hence, as
IA = yHp(yG), y ̸= 0, yG ̸= Pi, the signer wins the DL game.

For the opposite case of i ≠ j, the equality rHp(Pi)−r′Hp(Pj)+(c− c′)IA = 0
follows from Vi = V ′

j . As Pi ̸= Pj , Pi ̸= yG, Pj ̸= yG, IA = yHp(yG), y ̸= 0, the
signer wins the DL game again. As a result, since the DL assumption still holds,
all elements of the set F ∪ F′ are distinct with overwhelming probability.

In both transcripts, for c and c′, at the Steps 5, 6, 7, the verifier is convinced
that the commitment A is a non-trivial linear combination of the Hp images of
F and F′, respectively. By equating these two linear combinations to each other
and thus eliminating A, the signer obtains a non-trivial linear combination of the
Hp images of the elements from F ∪ F′. Since, by the above, all the elements in
F ∪ F′ are different, their images are independently and uniformly sampled from
G. This means that, again, the signer wins the DL game.

Thus, if the signer successfully signs with IA, then it wins in the DL game, which
is what we meant to prove. Therefore, by the theorem about equivalence between
non-slanderability and unforgeability in [3], our signature is unforgeable.

4 Efficiency
Size of the zk-WIP1⃗n argument is 2 log2(n) + 5, therefore size of LS-LSAG is
2 log2(n) + 8. For instance, for a ring of 32 addresses, LS-LSAG takes 576 bytes.
For a ring of 512 addresses, its size is 832 bytes.

Let’s compare verification complexities of LS-LSAG and LSAG. Since there
is only one response r, LS-LSAG requires n fewer scalar-element multiplications.
However, zk-WIP1⃗n performs in a time approximately equal to 2n/ log2(n), and
also there is a time needed to hash n left parts.

For a ring of 32 addresses, these times should nearly compensate each other,
making the verification complexities roughly equal. Although we have not con-
ducted such tests. As n increases, verification of LS-LSAG is likely to become
comparatively faster.

5 Design summary and post-quantum notes
In a nutshell, the proposed scheme is made up of two parts. The first of them,
which follows the LSAG concept, is a set of n Schnorr-like systems (1) where the

5

left-hand side can be guessed ahead of time only by knowing the private key. The
second part contains hash images A of all n left-hand sides and a commitment A
to one of them, specifically the one for which the preimage is known in advance.
For its main role, the second part provides a zero-knowledge proof that an opening
of A belongs to A.

In this design, the second part can be varied by changing the hash function
and alternating the zero-knowledge proof. Beside this, the linearly independent
generators B, D, H can obviously be generated on the fly, in which case the scheme
does not require its own setup.

Another feature of this design is that the second part is connected with the
first one only through the hashes. This allows the parts to be implemented under
different cryptographic assumptions, stronger ones for the first and weaker for the
second part.

For example, imagine a setting where the DL problem on a curve is solvable by
a quantum computer in a time less than lifetime of a blockchain, e.g., in a decade.
Nevertheless, for each newly sampled point there is still a decent amount of time,
say a week, to believe that its logarithm is unknown.

In this setting, the first part for sure needs to be quantum-resistant. Let us
assume that it is implemented using some of the existing (or future) post-quantum
homomorhic (or partially homomorhic) commitment schemes, e.g., on a lattice.

The second part, on the other hand, can be left on the curve almost as is. The
only newly required thing will be a guarantee that, prior to submitting the proof
to the blockchain, the signer has not discovered any linear dependency between
points it uses in the proof. That is, between the 2n+2 sampled and one predefined
points of the set A ∪ B ∪ {D, H, G}.

Such a guarantee can be obtained by letting all of the sampled points expire
in a week. This can be done in the blockchain by concatenating their preimages
with the block height at the moment of sampling.

References
[1] Matteo Campanelli, Mathias Hall-Andersen, and Simon Holmgaard Kamp.

Curve Trees: Practical and Transparent Zero-Knowledge Accumulators. Cryp-
tology ePrint Archive, Paper 2022/756. https://eprint.iacr.org/2022/
756. 2022. url: https://eprint.iacr.org/2022/756.

[2] Heewon Chung et al. Bulletproofs+: Shorter Proofs for Privacy-Enhanced
Distributed Ledger. Cryptology ePrint Archive, Paper 2020/735. https:
//eprint.iacr.org/2020/735. 2020. url: https://eprint.iacr.org/
2020/735.

[3] Brandon Goodell, Sarang Noether, and Arthur Blue. Concise Linkable
Ring Signatures and Forgery Against Adversarial Keys. Cryptology ePrint
Archive, Paper 2019/654. https://eprint.iacr.org/2019/654. 2019.
url: https://eprint.iacr.org/2019/654.

[4] Jens Groth and Markulf Kohlweiss. One-out-of-Many Proofs: Or How to
Leak a Secret and Spend a Coin. Cryptology ePrint Archive, Paper 2014/764.
https://eprint.iacr.org/2014/764. 2014. url: https://eprint.iacr.
org/2014/764.

[5] Thomas Icart. How to Hash into Elliptic Curves. Cryptology ePrint Archive,
Paper 2009/226. https://eprint.iacr.org/2009/226. 2009. url: https:
//eprint.iacr.org/2009/226.

6

https://eprint.iacr.org/2022/756
https://eprint.iacr.org/2022/756
https://eprint.iacr.org/2022/756
https://eprint.iacr.org/2020/735
https://eprint.iacr.org/2020/735
https://eprint.iacr.org/2020/735
https://eprint.iacr.org/2020/735
https://eprint.iacr.org/2019/654
https://eprint.iacr.org/2019/654
https://eprint.iacr.org/2014/764
https://eprint.iacr.org/2014/764
https://eprint.iacr.org/2014/764
https://eprint.iacr.org/2009/226
https://eprint.iacr.org/2009/226
https://eprint.iacr.org/2009/226

[6] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. Linkable Spontaneous
Anonymous Group Signature for Ad Hoc Groups. Cryptology ePrint Archive,
Paper 2004/027. https://eprint.iacr.org/2004/027. 2004. url: https:
//eprint.iacr.org/2004/027.

[7] Monero. url: https://www.getmonero.org.
[8] Sarang Noether and Brandon Goodell. Triptych: logarithmic-sized linkable

ring signatures with applications. Cryptology ePrint Archive, Paper 2020/018.
https://eprint.iacr.org/2020/018. 2020. url: https://eprint.iacr.
org/2020/018.

[9] Nicolas van Saberhagen. CryptoNote v 2.0. Internet. 2013. url: https:
//bytecoin.org/old/whitepaper.pdf.

[10] Anton A. Sokolov. Efficient Linkable Ring Signature from Vector Com-
mitment inexplicably named Multratug. Cryptology ePrint Archive, Paper
2022/1322. https://eprint.iacr.org/2022/1322. 2022. url: https:
//eprint.iacr.org/2022/1322.

7

https://eprint.iacr.org/2004/027
https://eprint.iacr.org/2004/027
https://eprint.iacr.org/2004/027
https://www.getmonero.org
https://eprint.iacr.org/2020/018
https://eprint.iacr.org/2020/018
https://eprint.iacr.org/2020/018
https://bytecoin.org/old/whitepaper.pdf
https://bytecoin.org/old/whitepaper.pdf
https://eprint.iacr.org/2022/1322
https://eprint.iacr.org/2022/1322
https://eprint.iacr.org/2022/1322

	Introduction
	LSAG code block
	Signature LS-LSAG
	Efficiency
	Design summary and post-quantum notes

