
Leveraging Small Message Spaces for CCA1
Security in Additively Homomorphic and

BGN-type Encryption

Benoît Libert

Zama, France

Abstract. We show that the smallness of message spaces can be used
as a checksum allowing to hedge against CCA1 attacks in additively
homomorphic encryption schemes. We first show that the additively ho-
momorphic variant of Damgård’s Elgamal provides IND-CCA1 security
under the standard DDH assumption. Earlier proofs either required non-
standard assumptions or only applied to hybrid versions of Damgård’s El-
gamal, which are not additively homomorphic. Our security proof builds
on hash proof systems and exploits the fact that encrypted messages must
be contained in a polynomial-size interval in order to enable decryption.
With 3 group elements per ciphertext, this positions Damgård’s Elga-
mal as the most efficient/compact DDH-based additively homomorphic
CCA1 cryptosystem. Under the same assumption, the best candidate so
far was the lite Cramer-Shoup cryptosystem, where ciphertexts consist
of 4 group elements. We extend this observation to build an IND-CCA1
variant of the Boneh-Goh-Nissim encryption scheme, which allows evalu-
ating 2-DNF formulas on encrypted data. By computing tensor products
of Damgård’s Elgamal ciphertexts, we obtain product ciphertexts con-
sisting of 9 elements (instead of 16 elements if we were tensoring lite
Cramer-Shoup ciphertexts) in the target group of a bilinear map. Us-
ing similar ideas, we also obtain a CCA1 variant of the Elgamal-Paillier
cryptosystem by forcing λ plaintext bits to be zeroes, which yields CCA1
security almost for free. In particular, the message space remains expo-
nentially large and ciphertexts are as short as in the IND-CPA scheme.
We finally adapt the technique to the Castagnos-Laguillaumie system.

Keywords. Additively homomorphic encryption, BGN encryption, CCA1
security, standard assumptions.

1 Introduction

It is well known that homomorphic encryption schemes cannot withstand adap-
tive chosen-ciphertext attacks as they are inherently malleable. However, they
can still satisfy the notion of non-adaptive chosen-ciphertext (a.k.a. IND-CCA1)
security, where the adversary is only given access to a decryption oracle before
the challenge phase. While weaker, IND-CCA1 security is still a meaningful and
desirable security property. In particular, it guarantees security under chosen-
ciphertext key-recovery attacks, meaning that an adversary cannot reconstruct



the secret key by observing decryptions of maliciously generated ciphertexts.
In the context of fully homomorphic encryption, CCA1 security turns out

to be very difficult to achieve and even hardly compatible with bootstrapping
and its approach of revealing an encryption of the secret key. The best solutions
so far [8] either rely on non-standard knowledge assumptions, or they do not
achieve compactness in the number of input ciphertexts.

In contrast with FHE schemes, we do have practical realizations of lin-
early homomorphic encryption (LHE) that are proven CCA1-secure under stan-
dard assumptions like the Decision Diffie-Hellman or the Composite Residuos-
ity assumption. However, the most efficient candidates are obtained by down-
grading an IND-CCA2 scheme and removing the components that ensure non-
malleability. For example, the lite Cramer-Shoup cryptosystem [17] (dubbed
“lite-CS” in the following) and its natural Composite Residuosity analogue [18,7]
are obtained by eliminating the hash function that allows tying ciphertext com-
ponents together. As a consequence, the resulting CCA1 schemes are not sig-
nificantly more efficient than their CCA2 counterparts: The ciphertext size is
identical and the number of modular exponentiations is almost the same as well.
Yet, one would intuitively expect a larger efficiency gap between constructions
satisfying the two security notions. A natural question to ask is then the fol-
lowing: Can we achieve IND-CCA1 security in homomorphic schemes in a more
efficient way than we can get IND-CCA2 security under the same standard as-
sumption in the standard model? Recently, Schäge [47] showed the existence of
strong barriers to the provable IND-CCA1 security of Elgamal [26] and Paillier
[44]. The question nevertheless remains open for some other LHE schemes.

As previously alluded to, currently known CCA1 FHE constructions [8] ei-
ther rely on non-falsifiable assumptions or suffer from a lack of compactness
(i.e., the size of evaluated ciphertexts grows with the number of input cipher-
texts). Even for degree-2 functions, we are not aware of a CCA1 extension of the
Boneh-Goh-Nissim cryptosystem [5] in the literature. A related question is: How
efficiently and under which assumptions can we obtain CCA1 security beyond
linear homomorphic operations?

In this paper, we provide positive answers to the above questions and prove
the CCA1 security of several schemes where encrypted messages are - either
naturally for correctness reasons or for the sake of getting the proof to work -
restricted to live in a sparse subset of larger ambient space.

1.1 Our Contributions

Revisiting Damgård’s Elgamal. We first provide a new proof of CCA1 se-
curity for the additively homomorphic version of Damgård’s Elgamal encryption
scheme [20]. Our proof stands in the standard model under the standard DDH
assumption. Previous proofs under the same assumption were given for hybrid
variants of the scheme [22,36], which are not additively homomorphic.

So far and although the scheme has been around for 3 decades, its addi-
tively homomorphic variant was only known to be secure under the knowledge
of assumption [20] or under other interactive assumption [33,23,40,3] that are
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much stronger than DDH. A result of Lipmaa [40] further shows that proving
the CCA1 security of Damgård’s Elgamal under the sole DDH assumption is
impossible. However, the result of [40] only holds when messages are encoded
as group elements. Here, we bypass the impossibility result of [40] by leveraging
the fact that messages are encoded as integers in a polynomial-size interval.

Our security proof relies on hash proof systems [17,18] like earlier results un-
der DDH [22,36]. A crucial difference is that these rely on additional secret-key
components (like authenticated secret-key encryption and key derivation func-
tions) which help the security reduction reject invalid ciphertexts, but break the
linear homomorphism of the scheme. In contrast, we prove the CCA1 security
of the original homomorphic system without introducing any additional compo-
nent. To do this, we realize the ciphertext-integrity check by testing whether the
decrypted plaintext belongs to a sufficiently small interval. Using the properties
of hash proof systems [17,18], we show that malformed ciphertexts are very un-
likely to decrypt to a plaintext in the legitimate message space. In Elgamal-type
homomorphic schemes, the need to restrict the message space to a small interval
is usually viewed as a limitation. Here, we use it as a leverage for CCA1 security.

We thus prove (33 years after its invention) that Damgård’s Elgamal is ac-
tually the most efficient DDH-based CCA1 additively homomorphic candidate.
With only 3 group elements per ciphertext and 3 modular exponentiations, it
improves upon the lite-CS system [17] by 25% in terms of ciphertext size and
encryption cost. These improvements are amplified when the scheme is used as
a building block for the homomorphic evaluation of degree-2 functions.
A CCA1 BGN Cryptosystem. As a second contribution, we build a CCA1
variant of the Boneh-Goh-Nissim (BGN) cryptosystem [5], which allows evaluat-
ing 2-DNF formulas on encrypted data. Our construction is obtained by adapting
Freeman’s BGN [29] - which is itself an adaptation of [5] to prime-order groups -
and relies on the same Symmetric eXternal Diffie-Hellman (SXDH) assumption
in pairing-friendly groups. The main difference with [29] is that, while Freeman’s
multiplication algorithm uses a pairing to compute a tensor product of Elgamal
encryptions, we compute a tensor product of ciphertexts in Damgård’s Elgamal.

We note that an IND-CCA1 BGN-type encryption scheme could also be ob-
tained from the lite Cramer-Shoup scheme. The corresponding multiplication
algorithm would use the pairing in a similar way to compute a tensor product of
lite-CS ciphertexts. However, the multiplication algorithm would output depth-1
ciphertexts consisting of 16 elements of the target group GT . By using Damgård’s
Elgamal instead, we obtain depth-1 ciphertexts comprised of only 9 elements of
GT . Also, the multiplication algorithm only computes 9 pairings instead of 16.
We thus reduce the cost of moving from IND-CPA to IND-CCA1 security from a
factor 4 down to a factor 2.25. Indeed, under the SXDH assumption, Freeman’s
CPA-secure BGN [29] requires 4 elements of GT in depth-1 ciphertexts. In the
CCA1 setting, a lite-CS-based construction would cost 16 elements of GT (vs 9
elements of GT in our variant of BGN).

Extensions to Large Message Spaces. Our technique of exploiting re-
stricted message spaces is not limited to discrete-logarithm-based schemes where
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plaintexts live in a polynomial-size interval. The legitimate message space only
needs to be sufficiently sparse in a larger additive group over which the homo-
morphism is defined. Modulo slight adjustments, the technique carries over to
the Elgamal-Paillier combination suggested by Camenisch and Shoup [7]. By
modifying their scheme and artificially1 forcing λ message bits to be zeroes, we
obtain a CCA1 variant with shorter ciphertexts than in any previous variant
of the same scheme. In terms of bandwidth, we thus lose λ plaintext bits but
this still leaves room for exponentially large messages since the modulus N must
have a super-linear length in the security parameter λ anyway.

For this construction, our proof additionally relies on an assumption (intro-
duced by Hofheinz in [34]) saying that, on input of an RSA modulus N = pq,
it is infeasible to compute a Paillier encryption c = (1 + N)m · rN mod N2 of a
message m ∈ ZN that is not co-prime with N . While this assumption is less stan-
dard than the Composite Residuosity assumption (DCR), it has been standing
for a decade. To our knowledge, we thus provide the first proof of CCA1 security
under non-tautological assumptions for a variant of the additively homomorphic
Elgamal-Paillier where ciphertexts are as short as in the CPA case.

It is actually possible to avoid the non-standard assumption and only rely
on the standard DCR assumption at the expense of further reducing the size of
the message space [0, B] from B = ⌊2−λ · N⌋ down to B < ⌊2−λ · min(p, q)⌋.
Concretely, if N has the recommended 3072-bit size at the 128-bit security level,
the DCR assumption alone suffices to imply CCA1 security as long as legitimate
plaintexts are restricted to live in a 1408-bit interval.

We finally adapt the latter construction to the Castagnos-Laguillaumie (CL)
system [9], which relies on class groups of imaginary quadratic fields. The CL
scheme resembles Elgamal-Paillier (in particular, it involves a hidden-order group
that factors as a product of a DDH-hard subgroup and another subgroup where
computing discrete logarithms is easy) and similarly allows encrypting exponen-
tially large messages. One advantage over Elgamal-Paillier is that its message
space can have prime order, thus ensuring that all encrypted messages are in-
vertible. Even when messages are smaller than the plaintext modulus by only λ
bits, this allows us to only rely on a classical subgroup membership assumption.

While our adaptations of Elgamal-Paillier and Castagnos-Laguillaumie are
not quite identical to the original systems, they feature a similar efficiency. In-
deed, the ciphertext size is exactly the same as in the underlying IND-CPA
schemes and the message space remains exponentially large. CCA1 security is
achieved by the simple action of checking that the plaintext belongs to the proper
interval upon decryption (and restricting the number of homomorphic operations
since correctness is only guaranteed as long as the resulting plaintext dwells in
the legal range) rather than by introducing additional computations.

1 We say “artificially” because the restriction is not imposed by the functionality of
the scheme, but is rather an artifact of the proof of CCA1 security.
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1.2 Technical Overview

In Damgård’s Elgamal (called DEG for short in the next sections), ciphertexts
are of the form (c0, c1, c2) = (gm · hr, gr

1, gr
2), where the public key contains gen-

erators (g, g1, g2 = gx
1 , h = gy

1 ) ∈ G4 for a secret key (x, y) ∈ Z2
p, where p is the

order of a cyclic group G. Decryption proceeds by testing if c2 = cx
1 and, if so,

outputting the discrete logarithm m = logg(c0 · c−y
1 ). Intuitively, c2 = gr

2 serves
as a “proof” that the sender knows the encryption exponent r and ensures a
form of plaintext awareness [4]. Several works [22,36] consider a variant where
the public key is computed as h = g−x1

1 g−x2
2 , for a secret key (x1, x2) ∈ Z2

p, and
decryption proceeds by computing m = logg(c0 · cx1

1 cx2
2 ). We also consider this

variant but our security proof easily extends to the original variant.
Like [22,36], our proof builds on ideas from Cramer-Shoup [17]. A differ-

ence is that [22,36] rely on a symmetric authenticated encryption scheme to
ensure ciphertext integrity in the same way as in the Kurosawa-Desmedt cryp-
tosystem [37]. They encrypt m using an authenticated secret-key encryption
where the secret key K derived from h−r using a key derivation function. An in-
valid ciphertext (c0, c1, c2) = (EK(m), gr

1, gr′

2 ) (where r ̸= r′) is rejected because
c0 = EK(m) can only be valid if the adversary manages to forge a valid c0 for
a random secret key K = KDF(cx1

1 · c
x2
2 ) since cx1

1 · c
x2
2 = h−r · g(r′−r)·x2

2 is uni-
formly random in the adversary’s view (of which x2 is independent). Here, we do
not introduce any authenticated encryption scheme or key derivation function.
Instead, we use an integrity check based on the smallness of decrypted messages.
For an invalid ciphertext (c0, c1, c2) = (c0, gr

1, gr′

2 ), we still use the property that
c0 ·cx1

1 ·c
x2
2 = c0 ·h−r ·g(r′−r)·x2

2 is uniformly distributed in G conditionally on the
adversary’s view. However, we use the property that logg(c0 ·cx1

1 ·c
x2
2 ) lands in the

polynomial-size message spaceM = [0, B] with negligible probability (B +1)/p.
Our sanity check is just to verify that there exists an integer m ∈ [0, B] such
that c0 · cx1

1 · c
x2
2 = gm, which we prove sufficient to ensure CCA1 security.

In the challenge phase, we further exploit the entropy of x2 to encrypt the
challenge message mρ, where ρ ∈ {0, 1} is a random bit. To do this, we need the
conditional distribution of x2 to be uniform in order to use (r′ − r) · x2 as a one-
time pad. One issue is that each rejected decryption query allows the adversary
to eliminate one candidate x2, so that x2 is only uniform in a set of size p −Q
after Q queries. To preserve the uniformity of x2 until the challenge phase, we
use a sequence of games where we gradually replace the real decryption oracle
by an oracle that does not use x2, but only logg1(g2) and logg1(h) (which reveal
nothing about x2 since they are completely determined by the public key).

In order to obtain a BGN-type cryptosystem, we generate a DEG key pair
in each source group of a bilinear map e : G1 ×G2 → GT and we compute fresh
ciphertexts (at depth 0) by computing a DEG ciphertext in both G1 and G2.
In order to multiply two depth-0 ciphertexts, we follow Freeman’s approach [29]
which uses the pairing to compute a tensor product between the G1-component
of one input ciphertext and the G2-component of the second input ciphertext.
In the decryption algorithm, the only sanity check is to reject ciphertexts that
do not decrypt to a message in a pre-determined polynomial-size interval [0, B].
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The proof of CCA1 security follows the blueprint of our proof for DEG. It
first uses the SXDH assumption to tamper with the distribution of the challenge
ciphertext. Next, it gradually modifies the decryption oracle and reaches a game
where all decryption queries are answered using a secret key that is information-
theoretically determined by the public key. At this point, since the real secret
key is not used until the challenge phase, we can make the most of its entropy
to perfectly hide the encrypted message.

Our adaptation of Elgamal-Paillier is similar to the CPA-secure variant of
[7]. It has ciphertexts of the form (c0, c1) = (gr mod N2, (1 + N)m ·hr mod N2),
where N = pq is an RSA modulus, g generates the subgroup of 2N -th residues
in Z∗

N2 and h = g2x mod N2. The difference with [7] is that the decryptor rejects
all ciphertexts where c1 · c−2x

0 ̸= (1 + N)m mod N2 for any m ∈ [0, B].
The security proof has the same skeleton as its DEG analogue with the dif-

ference that it relies on an additional assumption to eliminate a corner case. It
first invokes the Composite Residuosity (DCR) assumption to replace c0 by a
random quadratic residue in the challenge phase. Then, it uses a sub-sequence
games where the decryption oracle is gradually modified to reveal nothing about
x mod N . To do this, we need to rely on an assumption introduced in [34] so as
to argue that the adversary cannot create a ciphertext (c0, c1) where c0 is of the
form c0 = (1 + N)α0 · rN

0 mod N2, for some r0 ∈ Z∗
N and α0 ∈ ZN such that

gcd(α0, N) ̸= 1. The reason is that, assuming that the first i− 1 queries did not
reveal anything about x mod N , we need to make sure that c1 · c−2x

0 mod N2

has a uniformly distributed component in the subgroup ⟨1 + N⟩ (which would
not be the case if gcd(α0, N) ̸= 1 at the i-th query).

In the case of the Castagnos-Laguillaumie cryptosystem [9,10], we do not need
any non-standard assumption since messages can be defined modulo a prime p,
so that there is no way to encrypt a non-invertible element.

1.3 Related Work

The first CCA1 LHE system can be traced back to the work of Damgård [20],
where its security was shown under the knowledge-of-exponent assumption. Bel-
lare and Palacio [4] proved it plaintext-aware (PA1) under a slightly different
knowledge assumption. Gjøsteen subsequently proved [33] its CCA1 security
under a more classical assumption stating that DDH remains hard when the
distinguisher is given access to a static2 DDH oracle before receiving its DDH
challenge. This assumption is nevertheless interactive and still non-standard.

Gjøsteen [33] gave a Composite Residuosity instantiation of his general gap
subgroup membership problem,3 but the resulting assumption is also interactive
(similar assumptions were considered in [3]). In contrast, our modification of
Elgamal-Paillier only requires non-interactive assumptions.

Lipmaa [40] showed that an interactive assumption, which is equivalent to the
CCA1 security of DEG, is provably not implied by DDH. As discussed before,
2 Here, “static” means that one input of the DDH oracle is a fixed group element, as

in the Strong Diffie-Hellman assumption of [1].
3 The corresponding DCR analogue of DEG is similar to the IND-CPA variant of [7].
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our proof of CCA1 security does not contradict his impossibility result because
the latter assumes4 that messages are group elements. The recent work of Schäge
[47] rules out the provable CCA1 security of Elgamal and Paillier/Damgård-Jurik
under standard assumptions via a wide class of reductions. Our proofs evade his
impossibility results, which apply to homomorphic schemes where valid cipher-
texts are publicly recognizable.

We note that the results of [40] imply the security of DEG and Elgamal in the
generic group model [48]. In the algebraic group model [30], Elgamal was shown
CCA1-secure under a q-type assumption when messages are group elements.

In the standard model, LHE constructions based on standard assumptions
(e.g., DDH, DCR, QR) were - sometimes implicitly - proposed in [17,18,7]. Un-
fortunately, their complexity is roughly the same as that of their CCA2 siblings.
For example, lite-CS ciphertexts are as long as Cramer-Shoup ciphertexts.

In the context of FHE, Loftus et al. [41] introduced a knowledge assumption
in lattices in order to build a CCA1 candidate by ensuring a form of plaintext
awareness (PA1). They also considered the notion of ciphertext-verification at-
tacks [35] (where the adversary has access to ciphertext-validity oracle after the
challenge phase) and showed that their scheme is vulnerable to such attacks.
They finally gave concrete CCA1 key-recovery attacks against earlier somewhat
homomorphic schemes. Several CCA1 attacks [41,51,14,19,28] were subsequently
reported against leveled FHE schemes.

Canetti et al. [8] described three constructions of FHE schemes with CCA1
security. Their leveled realizations based on identity-based multi-key FHE and
obfuscation only provide compactness with respect to the size of evaluated cir-
cuits, but not with respect to the number of input ciphertexts. Their third con-
struction applies the Naor-Yung paradigm [43] using composable zero-knowledge
SNARKs, which inherently rely on non-falsifiable assumptions. Similar construc-
tions based on multi-key FHE were concurrently proposed in [50].

Canetti et al. [8, Appendix A] also suggested a different approach (i.e., which
does not proceed by downgrading a CCA2 system so as to make it homomorphic)
of building CCA1 LHE schemes from a form of single-key functional encryption
for linear functions. They gave a concrete instantiation from DDH. Still, the
resulting LHE is less efficient than the lite Cramer-Shoup construction.

To our knowledge, all CCA1 homomorphic encryption schemes so far are ei-
ther limited to perform homomorphic additions, or they suffer from some lack of
compactness, or they rely on non-falsifiable assumptions. Even among schemes
that can only evaluate depth-one circuits, we are not aware of any prior mention
of a CCA1 variant of BGN [5].

Li and Micciancio [39] introduced a strengthened notion of IND-CPA security
(called IND-CPAD security) where the adversary is given access to a decryption
oracle that decrypts honestly generated ciphertexts. While their notion does not

4 More precisely, the second direction in the proof of equivalence of [40, Lemma 1]
does no longer work if DEG ciphertexts are of the form (gm · hr, gr

1 , gr
2), for a small

m ∈ [0, B], since the reduction cannot simulate the computational oracle of the
assumption using the decryption oracle for DEG.
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imply CCA1 security (as the decryption oracle cannot be queried on maliciously
generated ciphertexts), it is not achieved by approximate homomorphic encryp-
tion schemes like [16]. Recently, it was shown [13,15] that exact FHE schemes
may fail to provide IND-CPAD security as well when their correctness is not
guaranteed to hold with overwhelming probability. Viand et al. [49] considered
IND-CPAD security as an ingredient allowing to build verifiable FHE schemes
satisfying a form of IND-CCA1 security using SNARKs.

Several works [45,6,12,27,2,42] considered security notions that ensure a mean-
ingful form of non-malleable/CCA2 security in homomorphic encryption. Prab-
hakaran and Rosulek [45] and Chase et al. [12] considered notions of HCCA se-
curity and controlled malleability (CM-CCA), respectively, which are restricted
to enable unary transformations on encrypted data. Boneh et al. [6] suggested
a notion of targeted malleability and realized it using the Naor-Yung paradigm
and succinct arguments. While their constructions are also CCA1-secure, they
are not known to be instantiable in the standard model without knowledge as-
sumptions. Targeted malleability [6] and HCCA/CM-CCA security [45,12] both
require non-malleability [25] beyond a set of allowed transformations with the
difference that the former is applicable to FHE.

Emura et al. [27] introduced the concept of keyed-homomorphic encryption,
where homomorphic operations can only be performed using a dedicated eval-
uation key which, by itself, does not enable decryption. Their model requires
IND-CCA2 security when the evaluation key is secret and preserves IND-CCA1
security otherwise. They proposed keyed-homomorphic LHE realizations based
on various standard assumptions. Lai et al. [38] considered the design of keyed-
homomorphic FHE schemes using indistinguishability obfuscation. Sato et al.
[46] showed how to dispense with obfuscation, but their approach still requires
a CCA1 FHE scheme to begin with.

Akavia et al. [2] introduced the notion of functional re-encryption security
(funcCPA), which they proved strictly stronger than CPA security and yet achiev-
able by FHE schemes. In their model, the adversary has access to an oracle that
inputs a ciphertext C and a function f in some family, and returns a fresh en-
cryption of f(Decrypt(SK, C)). Their notion does not imply CCA1 security as
the adversary never obtains any decryption. Dodis et al. [24] showed that it
is closer to CPA and to CCA security by showing a black-box construction of
(non-homomorphic) funcCPA-secure encryption scheme from a CPA-secure one.

Recently, Manulis and Nguyen [42] suggested a notion of vCCA2 security
that strengthens CCA1 security by means of a verification mechanism allowing
to link an evaluated ciphertext to its input ciphertexts. In their notion, post-
challenge decryption queries are only allowed on ciphertexts that are verifiably
not derivatives of the challenge ciphertext. They showed that vCCA2 is achiev-
able by combining a simulation-extractable SNARK and a standard FHE.

2 Background
Notations. When S is a finite set, we sometimes denote by U(S) the uniform
distribution on S. We also denote by x R← S the action of sampling x from U(S).
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2.1 Hardness Assumptions

We first recall the definition of the Decision Diffie-Hellman problem.

Definition 2.1. In a cyclic group G of prime order p, the Decision Diffie-
Hellman Problem (DDH) is to distinguish the distributions (g, ga, gb, gab) and
(g, ga, gb, gc), with a, b, c R← Zp. The Decision Diffie-Hellman assumption is the
intractability of DDH for any PPT distinguisher.

In the case of Damgård’s Elgamal, we can rely on the DDH assumption in
standard groups without a bilinear map. Our BGN-type encryption scheme uses
asymmetric bilinear maps e : G1 × G2 → GT over groups of prime order p.
We will work in Type-3 asymmetric pairings, where we have G1 ̸= G2 so as to
allow the DDH assumption to hold in both G1 and G2. This assumption is called
Symmetric eXternal Diffie-Hellman (SXDH) assumption and it implies that no
isomorphism between G1 and G2 be efficiently computable.

In our Paillier-based construction, we need two assumptions. The first one is
the standard Composite Residuosity assumption, which is recalled below.

Definition 2.2 ([44]). Let N = pq for primes p, q. The Decision Composite
Residuosity (DCR) assumption states that the distributions {x = zN mod N2 |
z R← Z∗

N} and {x | x R← Z∗
N2} are computationally indistinguishable.

The second assumption,5 which was introduced by Hofheinz [34], is less standard
and posits the hardness of computing a Paillier encryption of a non-zero integer
that is not co-prime to N without knowing the factorization of N .

In Definition 2.3, K is a probabilistic algorithm that inputs a security param-
eter λ and outputs an RSA modulus N = pq for large primes p, q. In addition,
D(·) denotes the deterministic decryption algorithm of Paillier’s cryptosystem,
which takes as input an element c ∈ Z∗

N2 and outputs the unique α ∈ ZN such
c = (1 + N)α · βN mod N2 for some β ∈ Z∗

N .

Definition 2.3 ([34, Assumption 4.4]). The Composite Non-Invertibility
assumption says that, for any PPT algorithm A, we have

Advnoninv
A (λ) := Pr

[
N ← K(1λ), c← A(1λ, N) :

c ∈ Z∗
N2 ∧ 1 < gcd(D(c), N) < N

]
≤ negl(λ),

where K (resp. D(·)) denotes the key generation algorithm (resp. decryption func-
tion) of Paillier’s cryptosystem.

2.2 Additively Homomorphic and BGN-type Encryption

A depth-one (a.k.a. BGN-type) homomorphic cryptosystem [5] is a public-key
encryption scheme allowing to non-interactively compute 2-DNF formulas on
5 To our knowledge, this assumption was not given a name so far. We thus chose to

call it “Composite Non-Invertibility” assumption.
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encrypted data. For convenience, the syntax that we use allows the encryptor to
directly create depth-1 ciphertexts that are distributed as outputs of the multipli-
cation algorithm. Such a scheme is a tuple (Keygen, Encrypt0, Encrypt1, Decrypt0,
Decrypt1, Add0, Add1, Multiply) of efficient algorithms with the following syntax:

Keygen: is a randomized algorithm that inputs a security parameter 1λ and a
message length 1t. It outputs a key pair (PK, SK). The public key PK
contains the description of a plaintext space M and ciphertext spaces CT d

for each depth d ∈ {0, 1}.
Encryptd (d ∈ {0, 1}): is a randomized algorithm that takes as input a plaintext

m ∈ M and a public key PK. It outputs a fresh ciphertext C ∈ CT d at
depth d ∈ {0, 1}.

Decryptd (d ∈ {0, 1}): is a deterministic algorithm that inputs a secret key SK
and a depth-d ciphertext C ∈ CT d. It outputs either a plaintext m ∈ M or
a rejection symbol ⊥ indicating an invalid C.

Addd (d ∈ {0, 1}): is a (possibly randomized) algorithm that inputs a public key
PK and two depth-d ciphertexts C1, C2 ∈ CT d. It outputs a new depth-d
ciphertext C ∈ CT d.

Multiply: is a (possibly randomized) algorithm that takes as input a public key
PK and ciphertexts C1, C2 ∈ CT 0. It outputs a depth-1 ciphertext C ∈ CT 1.

We will consider schemes that are circuit-private in the sense that evaluated ci-
phertexts are statistically indistinguishable from fresh ciphertexts (at the same
depth) encrypting the same message. We recall the formal definitions of correct-
ness and circuit-privacy in Supplementary Material A.1.

3 Proof of CCA1 Security for Damgård’s Additively
Homomorphic Elgamal under the DDH assumption

We give a new proof of CCA1 security for the additively homomorphic variant
of Damgård’s Elgamal encryption scheme, which is recalled hereunder.

3.1 The DEG Scheme

Keygen(1λ, 1t): Given a security parameter λ ∈ N and a desired message length
t = O(log λ),
1. Choose a cyclic group G of prime order p > 2l(λ), for some polynomial

l : N→ N. Choose generators g, g1, g2
R← G.

2. Choose x1, x2
R← Zp and compute h = g−x1

1 g−x2
2 .

Return the key pair (PK, SK) consisting of SK := (x1, x2) ∈ Z2
p and

PK :=
(
G, g, g1, g2, h, B = 2t

)
,

where B defines the message space M = [0, B].
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Encrypt(PK, m): Given a public key PK and a message m consisting of an
integer in the interval M = [0, B], do the following:
1. Choose r R← Zp and compute

c0 = gm · hr c1 = gr
1 c2 = gr

2

2. Output the ciphertext C = (c0, c1, c2).

Decrypt(SK, C): Given SK = (x1, x2) ∈ Z2
p and C = (c0, c1, c2),

1. Compute M = c0 · cx1
1 · c

x2
2 .

2. If there exists an integer m ∈ [0, B] such that M = gm, return m.
Otherwise, return ⊥.

3.2 New Security Proof

Theorem 3.1. The scheme provides IND-CCA1 security in the standard model
under the DDH assumption. For any CCA1 adversary A making at most Q
decryption queries, there is a DDH distinguisher B such that

AdvCCA1
A (λ) ≤ AdvDDH

B (λ) + 1 + Q · (B + 1)
2λ

Proof. The proof considers a sequence of hybrid games. For each index i, we call
Wi the event that the adversary A wins in Gamei.

Game0: This is the real IND-CCA1 security game. In the challenge phase, A
chooses messages m0, m1 ∈ [0, B] and obtains a challenge ciphertext

c⋆
1 = gr

1, c⋆
2 = gr

2, c⋆
0 = gmρ · hr,

where ρ R← {0, 1} is a random bit chosen by the challenger. When the adver-
sary A halts, it outputs a bit ρ′ ∈ {0, 1} and wins if ρ′ = ρ. Its advantage is
AdvCCA1

A (λ) := |Pr[W0]− 1/2|.
Game1: We modify the generation of the challenge ciphertext. In the challenge

phase, A outputs m0, m1 ∈ [0, B]. The challenge is computed as

c⋆
1 = gr

1, c⋆
2 = gr

2, c⋆
0 = gmρ · c⋆

1
−x1 · c⋆

2
−x2 .

for a random r R← Zp. Clearly, Game1 is identical to Game0 from the adver-
sary’s view and we have Pr[W1] = Pr[W0].

Game2: We modify the distribution of the challenge, which is now computed as

c⋆
1 = gr

1, c⋆
2 = gr′

2 , c⋆
0 = gmρ · c⋆

1
−x1 · c⋆

2
−x2 .

for random r R← Zp, r′ R← Zp \ {r}. Under the DDH assumption, Game2 is
indistinguishable from Game1 and |Pr[W2]− Pr[W1]| ≤ AdvDDH(λ) + 1

p .
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We now consider a sub-sequence of games where we gradually modify the de-
cryption oracle. For convenience, Game2.0 is defined as being identical to Game2.

Game2.i (1 ≤ i ≤ Q): In these games, we modify the key generation phase where
the challenger computes g2 = gω

1 for a random ω R← Zp and defines an
alternative secret key SK ′ := (ω, z), where z = x1 + ω · x2 is such that
h = g−z

1 . In the first i decryption queries, the challenger uses the following
modified decryption algorithm:

Decrypt’(SK ′, C): On input of C = (c0, c1, c2), return ⊥ if c2 ̸= cω
1 . Oth-

erwise (i.e., if c2 = cω
1 ), compute M = c0 · cz

1. If there exists m ∈ [0, B]
such that M = gm, return m. Otherwise, return ⊥.

The last Q − i decryption queries are answered by running the original de-
cryption algorithm as in Game2.

In Lemma 3.2, we prove that |Pr[W2.i]−Pr[W2.(i−1)]| ≤ (B + 1)/2λ, so that the
two games are statistically close.

Game3: This game is identical to Game2.Q except that the challenge ciphertext
is computed by choosing r, u R← Zp, r′ R← Zp \ {r} and computing

c⋆
1 = gr

1, c⋆
2 = gr′

2 , c⋆
0 = gu · hr

To see that Game3 is perfectly indistinguishable from Game2.Q, we note that
Game2.Q computes (c⋆

1, c⋆
2) = (gr

1, gr′

2 ) and

c⋆
0 = gmρ · c−x1

1 · c−x2
2 = gmρ · hr · gx2·(r−r′)

2

where x2 perfectly hides mb. Indeed, the real secret key SK = (x1, x2) is
not used at all in Game2.Q since all decryption queries are answered using
SK ′ = (ω, z). So, the adversary’s view is the same as if the choice of x2
was postponed to the challenge phase at which point the challenger would
sample x2

R← Zp and define SK = (z−ω ·x2, x2). Hence, Pr[W3] = Pr[W2.Q].

In Game3, the challenge ciphertext is completely independent of mρ and we
have Pr[W3] = 1/2. By the triangle inequality, we obtain the stated upper bound
for AdvCCA1

A (λ) = |Pr[W0]− 1/2|. ⊓⊔

Lemma 3.2. For each i ∈ [0, Q], Game2.i is statistically indistinguishable from
Game2.(i−1). We have |Pr[W2.i]− Pr[W2.(i−1)]| ≤ (B + 1)/2λ.

Proof. For each i ∈ [Q], Game2.i only differ from Game2.(i−1) in the i-th decryp-
tion query, where Game2.i uses algorithm Decrypt′ whereas Game2.(i−1) uses the
original Decrypt algorithm. So, the two games are identical from the adversary’s
view unless the i-th decryption query involves a ciphertext that would not have
been rejected in Game2.(i−1) but gets rejected in Game2.i.

For any well-formed ciphertext C = (c0, c1, c2) (i.e., such that c2 = cω
1 ), both

decryption algorithms output the same result. On a ciphertext (c0, c1, c2) such
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that (c1, c2) = (gr1
1 , gr2

2 ) for distinct r1 ̸= r2, Decrypt′ always returns ⊥ and we
just have to assess the probability that Decrypt does not output ⊥ as well. For
such a ciphertext, Decrypt computes

M = c0 · cx1
1 · c

x2
2 = c0 · (gr1

1 )x1 · (gr2
2 )x2 (1)

= c0 · (gx1
1 · g

x2
2 )r1 · g(r2−r1)·x2

2 = c0 · h−r1 · g(r2−r1)·x2
2

In the right-hand-side member of (1), we note that c0 · h−r1 is completely de-
termined by the ciphertext. However, we claim that g

(r2−r1)·x2
2 is uniformly dis-

tributed in A’s view since the first i − 1 decryption queries are answered using
Decrypt′. In Game2.(i−1), A’s view is exactly the same as if the challenger was
postponing the choice of x2 until the moment where A has submitted its i-th
decryption query. In more details, the challenger could equivalently generate
g2 = gω

1 and h = g−z
1 in the key generation phase and answer the first i − 1

decryption queries using SK ′ = (ω, z). Only at the moment where A sends its
i-th decryption query C = (c0, c1, c2), the challenger would sample x2

R← Zp

uniformly and define the real secret key SK = (x1, x2) = (z − ω · x2, x2) to be
used in the last Q − i + 1 decryption queries. Therefore, if the i-th decryption
query C = (c0, c1, c2) involves a ciphertext such that r1 ̸= r2, the product in
the rightmost member of (1) is uniformly distributed in G since x2 is drawn
uniformly in Zp after the choice of c0, r1 = logg1(c1) and r2 = logg2(c2) by A.
The probability that logg(M) lands in the polynomial-size interval [0, B] is thus
at most (B +1)/p < (B +1)/2λ. Therefore, except with probability smaller than
(B + 1)/2λ, Decrypt returns ⊥ and agrees with Decrypt′. ⊓⊔

The proof of Theorem 3.1 can be adapted to the original variant of Damgård’s
Elgamal [20], where the modified decryption algorithm Decrypt′ (which answers
all decryption queries in Game2.Q) is used in the real scheme, and not just in the
security proof. The details are given in Supplementary Material B.

4 An IND-CCA1 BGN Cryptosystem

At a high level, the scheme is reminiscent of the LWE-based construction of
Gentry, Halevi and Vaikuntanathan [31]. However, the security proof is very
different and relies on the Cramer-Shoup techniques, which are not known to
provide chosen-ciphertext security under the LWE assumption. For this reason,
we are currently unable to obtain a CCA1 variant of [31].

4.1 Description

To simplify the presentation of our variant of BGN, we will use the implicit
representation of group elements. For a matrix M over Zp, we will use the
notations [M]1 = gM

1 , [M]2 = gM
2 and [M]T = e(g1, g2)M, where g1 ∈ G1

and g2 ∈ G2 are pre-determined generators. As in [29], we rely on the pairing
to compute matrix products in the exponent. For matrices A, B of compatible
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dimensions, the pairing operation between matrices of group elements gA
1 and

gB
2 is written [A ·B]T = [A]1 · [B]2 = e(gA

1 , gB
2 ).

Keygen(1λ, 1t): Given a security parameter λ ∈ N and a desired message length
t = O(log λ),
1. Choose asymmetric pairing-friendly cyclic groups (G1,G2,GT ) of prime

order p > 2l(λ), for some polynomial l : N → N. Choose generators
g1 ∈ G1 and g2 ∈ G2.

2. Choose vectors a = (a1, a2, a3)⊤ R← (Z∗
p)3, b = (b1, b2, b3)⊤ R← (Z∗

p)3 and
compute

[a]1 := ga
1 ∈ G3

1, [b]2 := gb
2 ∈ G3

2

3. Choose x1, x2, y1, y2
R← Zp uniformly conditionally on

⟨(x1, x2, 1), a⟩ = 0 and ⟨(y1, y2, 1), b⟩ = 0. (2)

Define x = (x1, x2, 1)⊤ and y = (y1, y2, 1)⊤.
Return the key pair (PK, SK) where

PK :=
(
(G1,G2,GT ), g1, g2, [a]1, [b]2, B = 2t

)
and SK := (x, y) ∈ Z3

p × Z3
p.

Encryptd(PK, m): To encrypt m ∈ M = [0, B] at depth d ∈ {0, 1}, do the
following:
1. If d = 0, choose r, s R← Zp and compute

[c]1 = r ·

a1
a2
a3


1

+ m ·

0
0
1


1

, [d]2 = s ·

b1
b2
b3


2

+ m ·

0
0
1


2

Then, return C =
(
[c]1, [d]2

)
∈ G3

1 ×G3
2.

2. If d = 1, choose r1, r2, r3
R← Zp, s1, s2, s3

R← Zp and compute

[c]T =

a1
a2
a3


1

·
[
r1 r2 r3

]
2 +

s1
s2
s3


1

·
[
b1 b2 b3

]
2 + m ·

0 0 0
0 0 0
0 0 1


T

(3)

and return C = [c]T ∈ G3×3
T .

Decryptd(SK, C): To decrypt a ciphertext C at level d ∈ {0, 1} using the secret
key SK = (x, y) =

(
(x1, x2, 1), (y1, y2, 1)

)⊤ ∈ Z3
p × Z3

p, do the following:

1. If d = 0, return ⊥ if C ̸∈ G3
1 × G3

2. Otherwise, let C =
(
[c]1, [d]2

)
and

compute

[M ]1 = x⊤ · [c]1 ∈ G1, [N ]2 = y⊤ · [d]1 ∈ G2

If there exists m ∈ [0, B] such that [M ]1 = m · [1]1 and [N ]2 = m · [1]2,
return m. Otherwise, return ⊥.
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2. If d = 1, return ⊥ if C ̸∈ G3×3
T . Otherwise (i.e., if C = [c]T ∈ G3×3

T ),
compute

[M ]T = x⊤ · [c]T · y =
[
x1 x2 1

]⊤ · [c]T ·

y1
y2
1


If there exists an integer m ∈ [0, B] such that [M ]T = m · [1]T , return
m. Otherwise, return ⊥.

Multiply(PK, C1, C2): Given two ciphertexts C1 =
(
[c1]1, [d1]2

)
∈ G3

1×G3
2 and

C2 =
(
[c2]1, [d2]2

)
∈ G3

1×G3
2 at depth 0, return ⊥ if C1 and C2 do not parse

properly. Otherwise, choose r1, r2, r3, s1, s2, s3
R← Zp, compute

[c]T = [c1]1 · [d⊤
2 ]2 +

a1
a2
a3


1

·
[
r1 r2 r3

]
2 +

s1
s2
s3


1

·
[
b1 b2 b3

]
2 (4)

and return [c]T ∈ G3×3
T .

Addd(PK, C1, C2): Given the public key PK and two ciphertexts C1 and C2,
do the following:
1. If d = 0, return ⊥ if C1 and C2 cannot be parsed as C1 =

(
[c1]1, [d1]2

)
∈

G3
1 ×G3

2 and C2 =
(
[c2]1, [d2]2

)
∈ G3

1 ×G3
2. Otherwise, choose r, s R← Zp

and compute

C ′ =
(
[c′]1, [d′]2

)
=

(
[c1]1 + [c2]1, [d1]2 + [d2]2

)
Then, return C =

(
[c]1, [d]2

)
∈ G3

1 ×G3
2 where

[c]1 = [c′]1 + r ·

a1
a2
a3


1

[d]2 = [d′]2 + s ·

b1
b2
b3


1

2. If d = 1, return ⊥ if C1 and C2 cannot be parsed as [c1]T ∈ G3×3
T and

[c2]T ∈ G3×3
T . Otherwise, choose r1, r2, r3, s1, s2, s3

R← Zp and compute

[c]T = [c1]1 + [c2]1 +

a1
a2
a3


1

·
[
r1 r2 r3

]
2 +

s1
s2
s3


1

·
[
b1 b2 b3

]
2 (5)

and return [c]T ∈ G3×3
T .

Correctness. The correctness of decryption algorithms is straightforward due
to orthogonality conditions (2). The correctness of addition and multiplication
algorithms is shown in Supplementary Material A.2.

Efficiency. The multiplication algorithm only requires 9 pairing evaluations
since the second and third terms of (4) are computable as exponentiations in GT

using the randomizers r1, r2, r3, s1, s2, s3 ∈ Zp. For the same reason, the second
and third terms of (5) are computable using exponentiations and encrypting a
ciphertext at depth 1 does not require any pairing evaluation in (3).
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4.2 Security

We now prove security under the SXDH assumption. In the proof of Theorem
4.1, we assume that the challenge ciphertext is always computed at depth 0
since one can always turn a depth-0 ciphertext into a depth-1 encryption of the
same message. This can be done by performing a multiplication with a depth-0
ciphertext encrypting 1 and re-randomizing the resulting depth-1 ciphertext so
as to have an element of G3×3

T that is distributed as a fresh depth-1 ciphertext.

Theorem 4.1. The scheme provides IND-CCA1 security in the standard model
under the SXDH assumption. For any CCA1 adversary A making at most Q
decryption queries, there exist distinguishers B1 and B2 against the DDH as-
sumption in G1 and G2 such that

AdvCCA1
A (λ) ≤ AdvDDH1

B1
(λ) + AdvDDH2

B2
(λ) + 1+Q·(B+1)

2λ−1

Proof. The proof considers a sequence of games. For each i, we call Wi the event
that the adversary wins and successfully guesses the challenger’s bit in Gamei.

Game0: This is the real IND-CCA1 game. In the challenge phase, A chooses
messages m0, m1 ∈ [0, B] and can choose to obtain a challenge ciphertext at
depth 0 or at depth 1. At depth 0, A obtains a ciphertext of the form

[c⋆]1 = r ·

a1
a2
a3


1

+ mρ ·

0
0
1


1

, [d⋆]2 = s ·

b1
b2
b3


2

+ mρ ·

0
0
1


2

for random r, s R← Z, where ρ R← {0, 1} is a random bit chosen by the
challenger. At depth 1, the challenge ciphertext is of the form

[c⋆]T =

a1
a2
a3


1

·
[
r1 r2 r3

]
2 +

s1
s2
s3


1

·
[
b1 b2 b3

]
2 + mρ ·

0 0 0
0 0 0
0 0 1


T

for random r1, r2, r3, s1, s2, s3
R← Zp. When A terminates, it outputs a bit

ρ′ ∈ {0, 1} and wins if ρ′ = ρ. Its advantage is AdvCCA1
A := |Pr[W0]− 1/2|.

Game1: We modify the generation of the challenge ciphertext. In the challenge
phase, the adversary outputs m0, m1 ∈ [0, B]. The challenger first computes[

c⋆
1

c⋆
2

]
1

= r ·
[
a1
a2

]
1

,

[
d⋆

1
d⋆

2

]
2

= s ·
[
b1
b2

]
2

(6)

where r, s R← Zp. A depth-0 challenge ciphertext is then computed by setting

[c⋆
3]1 = −x1 · [c⋆

1]1 − x2 · [c⋆
2]1 + mρ · [1]1, (7)

[d⋆
3]2 = −y1 · [d⋆

1]2 − y2 · [d⋆
2]2 + mρ · [1]2

and defining [c⋆]1 = [ c⋆
1 | c⋆

2 | c⋆
3 ]1, [d⋆]2 = [ d⋆

1 | d⋆
2 | d⋆

3 ]2. This change
is only conceptual since [c⋆]1 and [d⋆]2 have the same value as in Game0.
Clearly, Game1 is identical to Game0 from A’s view and Pr[W1] = Pr[W0].
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Game2: We modify the distribution of the challenge ciphertexts. Instead of com-
puting depth-0 ciphertexts as per (6), the challenger now computes[

c⋆
1

c⋆
2

]
1

=
[

r · a1
r′ · a2

]
1

,

[
d⋆

1
d⋆

2

]
2

=
[

s · b1
s′ · b2

]
2

(8)

where r, s R← Zp and r′ R← Zp \ {r}, s′ R← Zp \ {s}. Then, [c⋆
3]1 and [d⋆

3]2
are computed from [c⋆

1 | c⋆
2]1 and [d⋆

1 | d⋆
2]2 as in (7). Since the only change

is the distribution of [ c⋆
1 | c⋆

2 ]1 and [ d⋆
1 | d⋆

2 ]2, a simple reduction shows
that Game2 is indistinguishable from Game1 as long as the DDH assumption
holds in both G1 and G2. We have

|Pr[W2]− Pr[W1]| ≤ AdvDDH1(λ) + AdvDDH2(λ) + 2
p .

We now consider a sub-sequence of games where we gradually modify the de-
cryption oracle. For convenience, Game2.0 is defined as being identical to Game2.

Game2.i (1 ≤ i ≤ Q): In these games, we modify the key generation phase where
the challenger only chooses the vectors a = (a1, a2, a3), b = (b1, b2, b3) R← Z3

p.
The choice of x = (x1, x2, 1), y = (y1, y2, 1) such that ⟨x, a⟩ = 0, ⟨y, b⟩ = 0
is postponed until the i-th decryption query (note that we can afford to
explicitly use the discrete logarithms a, b since we are done with the SXDH
assumption at this point). At the outset of the game, the challenge defines
an alternative secret key SK ′ = (Z, W) ∈ (Z2×3

p )2 consisting of matrices

Z =
(

a3 0 −a1
0 a3 −a2

)
, W =

(
b3 0 −b1
0 b3 −b2

)
,

which form bases of the linear subspaces a⊥ = {c ∈ Z3
p | ⟨c, a⟩ = 0} and

b⊥ = {d ∈ Z3
p | ⟨d, b⟩ = 0}, respectively. In the first i decryption queries,

the challenger uses the following modified decryption algorithms:
Decrypt′

0(SK ′, C): Given a depth-0 C = ([c]1, [d]2) ∈ G3
1 ×G3

2, compute

[M]1 = Z · [c]1 ∈ G2
1, [M]2 = W · [d]2 ∈ G2

2

If there exists m ∈ [0, B] such that

[M]1 = −m ·
[
a1
a2

]
1

, [M]2 = −m ·
[
b1
b2

]
2

(9)

return m. Otherwise, return ⊥.
Decrypt′

1(SK ′, C): On input of a depth-1 C = [c]T ∈ G3×3
T , compute

[M]T = Z · [c]T ·W⊤ ∈ G2×2
T .

If there exists m ∈ [0, B] such that

[M]T = m ·
[

a1 · b1 a1 · b2
a2 · b1 a2 · b2

]
T

(10)

return m. Otherwise, return ⊥.
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At the (i+1)-th query, the challenger samples x = (x1, x2, 1), y = (y1, y2, 1)
for random x1, x2, y1, y2

R← Zp satisfying the constraint ⟨x, a⟩ = ⟨y, a⟩ = 0.
The last Q− i decryption queries are then answered by running the original
decryption algorithm as in Game2.

Lemma 4.2 shows that |Pr[W2.i]−Pr[W2.(i−1)]| ≤ 2(B +1)/2λ, thus proving the
statistical indistinguishability of the two games.

Game3: This game is identical to Game2.Q except that the challenge ciphertext
is now generated without using the plaintext mρ at all. A depth-0 ciphertext
is simulated by computing[

c⋆
1

c⋆
2

]
1

=
[

r · a1
r′ · a2

]
1

,

[
d⋆

1
d⋆

2

]
2

=
[

s · b1
s′ · b2

]
2

(11)

for random r, s R← Zp and r′ R← Zp \ {r}, s′ R← Zp \ {s}, and then

[c⋆
3]1 = r · [a3]1 + u · [1]1, [d⋆

3]2 = s · [b3]2 + v · [1]2 (12)

with u, v R← Zp. We claim that Game3 is perfectly indistinguishable from
Game2.Q. Indeed, the real secret key SK =

(
(x1, x2, 1) | (y1, y2, 1)

)⊤ is not
used at all until the challenge phase in Game2.Q since all decryption queries
are answered using SK ′ = (Z, W). The choice of x2 and y2 is thus postponed
until the challenge phase when the challenger samples x2, y2

R← Zp, defines

x1 = (−a2 · x2 − a3)/a1, y1 = (−b2 · y2 − b3)/b1

and uses SK =
(
(x1, x2, 1) | (y1, y2, 1)

)⊤ to compute a depth-0 challenge
ciphertext as per (11)-(12). In this case, Game2.Q computes a challenge ci-
phertext whose G1 and G2 components are of the form

[c⋆
1]1 = r · [a1]1

[c⋆
2]1 = r · [a2]1 + (r′ − r) · [a2]1 (13)

[c⋆
3]1 = −x1 · [c⋆

1]1 − x2 · [c⋆
2]1 + mρ · [1]1

= r · [a3]1 + x2 · (r − r′) · [a2]1 + mρ · [1]1

and

[d⋆
1]2 = s · [b1]2

[d⋆
2]2 = s · [b2]2 + (s′ − s) · [b2]2 (14)

[d⋆
3]2 = −y1 · [d⋆

1]2 − y2 · [d⋆
2]2 + mρ · [1]1

= s · [b3]2 + y2 · (s− s′) · [b2]2 + mρ · [1]2,

respectively. Since r′ ̸= r, s′ ̸= s and x2, y2 ∼ U(Zp) are independent of A’s
view until the challenge phase, the ciphertext distributions (13) and (14) are
identical to the challenge ciphertext distribution (11)-(12), which is used in
Game3. This implies Pr[W3] = Pr[W2.Q].
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In Game3, the challenge ciphertext is totally independent of mρ and we have
Pr[W3] = 1/2. By combining all inequalities, we obtain the stated upper bound
for AdvCCA1

A (λ) = |Pr[W0]− 1/2|. ⊓⊔

Lemma 4.2. For each i ∈ [0, Q], Game2.i is statistically indistinguishable from
Game2.(i−1). We have |Pr[W2.i]− Pr[W2.(i−1)]| ≤ 2(B + 1)/2λ.

Proof. For each i ∈ [Q], Game2.i only differ from Game2.(i−1) in the i-th decryp-
tion query, where Game2.i uses algorithm Decrypt′

0 and Decrypt′
1 while Game2.(i−1)

uses the original decryption algorithm. The two games are thus identical fromA’s
view unless the i-th decryption query involves a ciphertext that would be rejected
in one of the two games and not in the other one. We first remark that any cipher-
text that is not rejected by Game2.i is not rejected by Game2.(i−1) either. Indeed,
the real secret key SK =

(
(x1, x2, 1), (y1, y2, 1)

)
is obtained by taking linear

combination of the rows of Z and W for random coefficients α1, α2, β1, β2 ∈ Zp

such that α1 · a1 + α2 · a2 = −1 and β1 · b1 + β2 · b2 = −1. Namely,

(x1, x2, 1) = (α1, α2) ·
(

a3 0 −a1
0 a3 −a2

)
, (y1, y2, 1) = (β1, β2) ·

(
b3 0 −b1
0 b3 −b2

)
This implies that any depth-1 ciphertext that is accepted by Decrypt′

1 in Game2.i

is also accepted by Decrypt in Game2.(i−1). We are left with assessing the prob-
ability that, in Game2.i, Decrypt′

1 rejects a ciphertext that would not have been
rejected in Game2.(i−1).

If the i-th query is a depth-1 ciphertext [c]T ∈ G3×3, let [M]T ∈ G2×2 the
matrix obtained by Decrypt′

1 in (10). We note that Game2.i rejects if there exists
no m ∈ [0, B] such that

[M]T := Z · [c]T ·W⊤ = m ·
[

a1 · b1 a1 · b2
a2 · b1 a2 · b2

]
T

(15)

while Game2.(i−1) only rejects if there exists no m ∈ [0, B] such that

[M ]T := (α1, α2)⊤ ·
(

Z · [c]T ·W⊤
)

︸ ︷︷ ︸
= [M]T

·
(

β1
β2

)
= m · [1]T (16)

For the matrix [M]T ∈ G2×2
T obtained by Decrypt′

1 at the i-th decryption query
in Game2.i, we assess the probability of the event bad that there exists m ∈ [0, B]
satisfying (16) given that no such m satisfies (15). Let us parse [M]T as

[M]T :=
[

m1 m2
m3 m4

]
T

Let badm the event bad occurs for a fixed m ∈ [0, B]. Then, from (16), we see
that badm implies

α1 · (m1 · β1 + m2 · β2) + α2 · (m3 · β1 + m4 · β2) = m (17)
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However, (α1, α2) ∈ Z2
p is only chosen after A has submitted its i-th decryption

query (which determines [M]T ) and it is sampled uniformly in the affine subspace

{(α1, α2) ∈ Z2
p | α1 · a1 + α2 · a2 = −1}.

Therefore the probability that (17) holds is at most 1/p if the vector

mβ ≜ (m1 · β1 + m2 · β2, m3 · β1 + m4 · β2)

is linearly independent of (a1, a2) since, in this case, there is only one pair (ᾱ1, ᾱ2)
satisfying both (17) and ᾱ1 · a1 + ᾱ2 · a2 = −1. If we now assume that mβ is
co-linear with (a1, a2), then badm implies

(m1 · β1 + m2 · β2, m3 · β1 + m4 · β2) = −m · (a1, a2) (18)

If we call badm,β the event that the equalities (18) hold, we have shown that
Pr[badm | ¬badm,β ] = 1/p since ¬badm,β implies that mβ is linearly independent
of (a1, a2). We now claim that Pr[badm,β ] ≤ 1/p unless(

m1 m2
m3 m4

)
= m ·

(
a1 · b1 a1 · b2
a2 · b1 a2 · b2

)
, (19)

which would contradict the hypothesis that (15) does not hold.
To see this, we first note that, if M ∈ Z2×2

p has full rank, this is straightfor-
ward since there is only one pair (β̄1, β̄2) satisfying (18) and a random pair of the
affine subspace {(β1, β2) ∈ Z2

p | β1 · b1 + β2 · b2 = −1} satisfies (β1, β2) = (β̄1, β̄2)
with probability 1/p (recall that (β1, β2) is only sampled after A has submitted
its i-th decryption query, which defines M). If M has rank 1 but (m1, m2) and
(m3, m4) are linearly independent of (b1, b2), there is similarly at most one pair
(β̄1, β̄2) satisfying (18) and b1 · β1 + b2 · β2 = −1 and this pair is sampled with
probability 1/p. Finally, if M has rank 1 but (m1, m2) and (m3, m4) are co-linear
with (b1, b2), we can only have (18) and b1 · β1 + b2 · β2 = −1 if (19) holds.

Consequently, if the i-th decryption query is a depth-1 ciphertext, we have
Pr[badm] ≤ Pr[badm | ¬badm,β ] + Pr[badm,β ] ≤ 2/p.

We obtain a similar bound in the simpler case of depth-0 ciphertexts. Such a
ciphertext creates a discrepancy between the two games at the i-th decryption
query if there exists no m ∈ [0, B] satisfying (9) but there exists m ∈ [0, B] such
that (x1, x2, 1) · [c]1 = m · [1]1 and (y1, y2, 1) · [d]2 = m · [1]2. We only look at the
decryption operations in G1 since the treatment of ciphertext components in G2
is similar. Let us parse [M]1 = Z · [c]1 as [M]1 = [ m1

m2 ]1. If (m1, m2) is linearly
independent of (a1, a2), for any fixed m ∈ [0, B], there is a unique pair (α1, α2)
satisfying α1m1 + α2m2 = m and α1a1 + α2a2 = −1 and this pair is sampled
with probability 1/p. If (m1, m2) and (a1, a2) are colinear, we can only have the
equalities α1m1 + α2m2 = m and α1a1 + α2a2 = −1 if (m1, m2) = −m · (a1, a2),
which would contradict the hypothesis that no m ∈ [0, B] satisfies (9). For depth-
0 ciphertexts, we thus find Pr[badm] ≤ 1/p.

We finally obtain Pr[bad] ≤
∑

m∈[0,B] Pr[badm] ≤ 2(B + 1)/p by taking a
union bound over all possible plaintexts m ∈ [0, B]. ⊓⊔
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5 A CCA1 Variant of Elgamal-Paillier

We now show that a slight variant of the Elgamal-Paillier cryptosystem of [7]
can also be proven IND-CCA1 while preserving its additive homomorphism.

Besides the Composite Residuosity assumption, the security proof relies on
the Composite Non-Invertibility assumption [34] when the message space [0, B]
is as large as B = ⌊N ·2−λ⌋. As of today, we do not know if the Composite Non-
Invertibility assumption is strictly necessary or if it is an artifact of the proof.
Clearly, an adversary that would be able to break this assumption would also
break the CCA1 security of Paillier’s original scheme [44]. However, the same
implication does not appear to hold in general for the present variant of Elgamal-
Paillier. For example, we just need the DCR assumption when B ≈ N1/2 · 2−λ.

5.1 Description

As in [7, Section 3], we assume that N is a safe-prime product. The main differ-
ence with [7] is that the actual message space is required to be smaller than N
by λ bits. Since we usually need a 3072-bit modulus N at the 128-bit security
level, we only lose 128 out of 3072 bits (or less than 5%) when we set λ = 128.
Asymptotically, the size of the messsage space remains super-exponential in λ
since RSA moduli have to be of size λ3/polylog(λ) to resist factorization attacks.

Keygen(1λ, 1t): On input of a security parameter λ ∈ N and a message length
t ∈ poly(λ),
1. Choose a safe-prime product N = pq for large primes p = 2p′ + 1 and

q = 2q′ + 1 such that p, q > 2l(λ), for some polynomial l : N → N
satisfying t + λ < 2(l + 1) < log N , and where p′, q′ are also prime.

2. Choose g R← Z∗
N2 and x R← [0, N ·(N−1)/4]. Compute h = g4N ·x mod N2.

Return the key pair (PK, SK) where SK := x ∈ Z and

PK := (N, g, h, B) ,

where B = 2t < ⌊N · 2−λ⌋ is an integer defining M = [0, B].
Encrypt(PK, m): Given a public key PK and a message m ∈M,

1. Choose r R← [0, (N − 1)/4] and compute

c0 = g2N ·r mod N2 c1 = (1 + N)m · hr mod N2

2. Output the ciphertext C = (c0, c1).

Decrypt(SK, C): Given SK = x ∈ Z and C = (c0, c1), return ⊥ if c0 ̸∈ Z∗
N2 or

c1 ̸∈ Z∗
N2 . Otherwise, conduct the following steps:

1. Compute M = c1 · c−2x
0 mod N2.

2. If there exists an integer m ∈ [0, B] such that M = (1 + N)m mod N2,
return m. Otherwise, return ⊥.
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Recall that, in the subgroup of Z∗
N2 generated by 1 + N , computing m from

M = (1 + N)m mod N2 is straightforward since (1 + N)m = 1 + mN mod N2.
In terms of computation, the scheme is as efficient as the CPA-secure variant

of [7] since the sanity check at step 2 of Decrypt has a negligible impact on the
decryption time. This means that CCA1 security comes essentially for free.

5.2 Security

We now prove CCA1 security under the DCR and Composite Non-Invertibility
assumptions. The proof relies on the following lemma, of which the proof is
standard and omitted.

Lemma 5.1. Let integers ℓ, L > 0 such that L > ℓ. The statistical distance
between the distributions D1 = {x mod ℓ | x R← ZL} and D2 = {x R← Zℓ}
is bounded by ∆

(
D1, D2

)
≤ min(ℓ,2(L mod ℓ))

L . In particular, for L ≥ ℓ · 2λ, the
statistical distance is at most 2−λ.

Theorem 5.2. The scheme provides IND-CCA1 security in the standard model
under the DCR assumption and the Composite Non-Invertibility assumption. For
any CCA1 adversary A making at most Q decryption queries, there exist a DCR
distinguisher B1 and a Composite Non-Invertibility algorithm B2 such that

AdvCCA1
A (λ) ≤ AdvDCR

B1
(λ) + Q ·Advnoninv

B2
(λ) + (Q + 1) · 2−λ+1 (20)

Proof. The proof considers a sequence of hybrid games where Wi denotes the
event that the adversary wins and outputs ρ′ = ρ in Gamei.

Game0: This is the real IND-CCA1 security game. In the challenge phase, the
adversary chooses messages m0, m1 ∈ [0, B] and obtains a challenge

c⋆
0 = g2N ·r mod N2 c⋆

1 = (1 + N)mρ · hr mod N2,

where ρ R← {0, 1} is a random bit chosen by the challenger. When the adver-
sary A halts, it outputs a bit ρ′ ∈ {0, 1} and wins if ρ′ = ρ. Its advantage is
AdvCCA1

A (λ) := |Pr[W0]− 1/2|.
Game1: We modify the generation of the challenge ciphertext. In the challenge

phase, the adversary outputs m0, m1 ∈ [0, B]. The challenge ciphertext is

c⋆
0 = g2N ·r mod N2 c⋆

1 = (1 + N)mρ · c⋆
0

2x mod N2,

for a random r R← [0, (N − 1)/4]. Game1 is identical to Game0 from A’s view
since c⋆

1 has the same value either way. We have Pr[W1] = Pr[W0].
Game2: We change again the generation of the challenge ciphertext. The chal-

lenger now samples a random N -th residue z = zN
0 mod N2, for some

z0
R← Z∗

N , and computes

c⋆
0 = z2 mod N2 c⋆

1 = (1 + N)mρ · c⋆
0

2x mod N2,
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We claim that Game2 is statistically indistinguishable from Game1 since the
distributions of c⋆

0 in the two games are statistically close. This follows from
the fact that the subgroup of 2N -th residues in Z∗

N2 is a cyclic group of order
p′q′, of which g2N mod N2 is a generator with overwhelming probability. In
Game2, c⋆

0 is thus a sample from the distribution {g2N ·r mod N2 | r R← Zp′q′},
which is within distance 2−λ from {g2N ·r mod N2 | r R← [0, (N − 1)/4]} by
Lemma 5.1. Therefore, we have |Pr[W2]− Pr[W1]| ≤ 2−λ.

Game3: We modify the distribution of the challenge ciphertext, which is now
computed by choosing z R← Z∗

N2 and computing

c⋆
0 = z2 mod N2 c⋆

1 = (1 + N)mρ · c⋆
0

2x mod N2, (21)

The only change w.r.t. Game2 is the distribution of z, which is no longer an
N -th residue. Under the DCR assumption, Game3 is indistinguishable from
Game2 and we have |Pr[W3]− Pr[W2]| ≤ AdvDCR(λ).

Game4: This game is like Game3 except that the challenger makes use of the
factorization of N = pq and rejects all queries (c0, c1) ∈ (Z∗

N2)2 such that
c0 is a Paillier encryption of an element α such that 1 < gcd(α, N) < N .
We define bad as the event that A queries such a ciphertext for decryption.
From A’s view, Game4 is identical to Game3 until bad happens: i.e., we have
W3∧¬bad⇔W4∧¬bad. Lemma 5.3 shows that, under the Composite Non-
Invertibility assumption, Pr[bad] is negligible and the challenger does not
reject a ciphertext that would not have been rejected in Game3. Concretely,
Lemma 5.3 implies |Pr[W4]− Pr[W3]| ≤ Pr[bad] ≤ Q ·Advnoninv

A (λ).
Game5: This game is identical to Game4 except that the secret key x is initially

sampled as x R← ZNp′q′ . We claim that Game5 is statistically indistinguish-
able from Game4. In Game4, the challenge ciphertext (21) is of the form

c⋆
0 = (1 + N)α · g2N ·β mod N2

c⋆
1 = (1 + N)mρ+2α·(x mod N) · g4N ·β·(x mod p′q′) mod N2, (22)

for some α ∈ ZN , β ∈ Zp′q′ . By the Chinese Remainder Theorem, A’s view of
the secret key x in (22) is completely determined by x mod Np′q′. The same
holds for possibly malformed ciphertexts (c0, c1) sent by A in its decryption
queries since the order of c0 ∈ Z∗

N2 is at most λ(N2) = 2Np′q′ and the
decryption oracle computes M = c1 · c−2·x

0 mod N2, where c−2·x
0 mod N2 is

completely determined by x mod Np′q′ and c0. The distinguishing advantage
of A between Game4 and Game5 can then be bounded by the statistical
distance between the distributions {x mod Np′q′ | x R← [0, N · (N − 1)/4]}
and {x R← ZNp′q′}, which is smaller than (p′ + q′)/p′q′ < 2−λ by Lemma 5.1.
Hence, we have |Pr[W5]− Pr[W4]| ≤ 2−λ.

We now consider a sub-sequence of games where we gradually modify the de-
cryption oracle. For convenience, Game5.0 is defined as being identical to Game5.

Game5.i (1 ≤ i ≤ Q): In these games, we modify the key generation phase where
the challenger initially computes h = g4N ·βx , for a random βx

R← Zp′q′ , and
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defines an alternative secret key SK ′ := (βx, p, q). In the first i decryption
queries, the challenger uses the following modified decryption algorithm:

Decrypt’(SK ′, C): On input of C = (c0, c1), return ⊥ if c2p′q′

0 ̸= 1 mod N2.
Otherwise, compute M = c1 · c−2βx

0 mod N2. If there exists m ∈ [0, B]
such that M = (1 + N)m mod N2, return m. Otherwise, return ⊥.

At the (i + 1)-th decryption query, the challenger samples αx
R← ZN and

defines x ∈ ZNp′q′ such that αx = x mod N and βx = x mod p′q′. Then, it
uses SK = x to answer the last Q − i decryption queries via the original
decryption algorithm as in Game5.

In Lemma 5.4, we prove that |Pr[W5.i]−Pr[W5.(i−1)]| ≤ 1/2λ−1, so that the two
games are statistically close.

Game6: This game is identical to Game5.Q except that the challenge ciphertext
is computed by sampling α R← ZN , β R← Zp′q′ and computing

c⋆
0 = (1 + N)α · g2N ·β mod N2 (23)

c⋆
1 = (1 + N)u · g4N ·β·(x mod p′q′) mod N2,

for a random u R← ZN . We claim that Game6 is statistically indistinguishable
from Game5.Q. To see this, we note that all decryption queries are answered
using SK ′ = x mod p′q′ in Game5.Q. This implies that x mod N is perfectly
independent of A’s view until the challenge phase since it is only chosen
when A has declared its challenge messages m0, m1 ∈ [0, B]. Now, recall
that the challenge ciphertext of Game5.Q is of the form

c⋆
0 = (1 + N)α · g2N ·β mod Nζ+1

c⋆
1 = (1 + N)mρ+2α·(x mod N) · g4N ·β·(x mod p′q′) mod N2. (24)

for random α R← ZN , β R← Zp′q′ . With overwhelming probability φ(N)/N ≥
1 − 2−λ, we have gcd(α, N) = 1. Since gcd(2, N) = 1 and given that the
distribution of x mod N conditionally on x mod p′q′ is uniform over ZN , so
is the term mρ +2α ·x mod N in the expression of c⋆

1 in (24). This shows that
the ciphertext distributions and (23) and (24) are perfectly indistinguishable
unless gcd(α, N) ̸= 1. Therefore, we have |Pr[W6]− Pr[W5.Q]| ≤ 2−λ.

In Game6, the challenge ciphertext is perfectly independent of mρ, so that
Pr[W6] = 1/2. By combining the above, we obtain the claimed upper bound on
the adversary’s advantage AdvCCA1

A (λ) = |Pr[W0]− 1/2|. ⊓⊔

Lemma 5.3. Under the Composite Non-Invertibility assumption, Game4 is in-
distinguishable from Game3 and we have |Pr[W4]− Pr[W3]| ≤ Q ·Advnoninv

A (λ)

Proof. From A’s view, Game4 is identical to Game3 until the event bad that A
makes a decryption query (c0, c1) for which c0 ∈ Z∗

N2 is a Paillier ciphertext
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c0 = (1 + N)γ · δN mod N2 such that 1 < gcd(γ, N) < N (note that this
implies γ ̸= 0, so that c2p′q′

0 ̸= 1 mod N2). However, this would contradict the
Composite Non-Invertibility assumption. Assuming that bad occurs with non-
negligible probability in Game3, we can build a simple reduction B that breaks
the assumption with probability Pr[bad]/Q.

Initially, B receives N = pq from its Composite Non-Invertibility challenger
and uses N to generate the key pair (PK, SK) as specified by Game3 (this can
be done without knowing the factorization of N). At the outset of the game,
B draws a random index i⋆ R← [Q] as a guess for the first occurrence of event
bad. Then, B starts interacting with A as in Game3. The first i⋆ − 1 decryption
queries are answered exactly as in Game3. At the i⋆-th query (c0, c1), B halts
and sends c0 to its Composite Non-Invertibility challenger.

By construction, if c0 is a Paillier encryption of a non-invertible γ ∈ ZN , then
B succeeds against its challenger. Since the index i⋆ ∈ [Q] is chosen independently
of A’s view, it happens to be the index of the first occurrence of bad with
probability Pr[bad]/Q. Since |Pr[W4]−Pr[W3]| ≤ Pr[bad], we obtain the stated
inequality of the lemma. ⊓⊔

Lemma 5.4. For each i ∈ [0, Q], Game5.i is statistically indistinguishable from
Game5.(i−1). We have |Pr[W5.i]− Pr[W5.(i−1)]| ≤ 1/2λ−1.

Proof. The two games are identical from A’s view unless the i-th decryption
query involves a ciphertext that gets rejected in Game5.i, but not in Game5.(i−1).

For any ciphertext C = (c0, c1) such that c2p′q′

0 = 1 mod N2, both decryption
algorithms output the same result since the action of x ∈ ZNp′q′ on c2

0 mod N2

only depends on x mod p′q′. On a ciphertext (c0, c1) such that c2p′q′

0 ̸= 1 mod N2,
Decrypt′ always returns ⊥ and we need to assess the probability that Decrypt
does not output ⊥ as well. If such a malformed ciphertext C = (c0, c1) is involved
in the i-th decryption query, we can write c0 as c0 = ζ0 ·(1+N)α0 ·g2N ·β0 mod N2

and c1 as c1 = ζ1 · (1+N)α1 ·g2N ·β1 mod N2, for some elements ζ0, ζ1 of order at
most 2 in Z∗

N2 and some arbitrary α1 ∈ ZN , α0 ∈ ZN \ {0}, β0, β1 ∈ Zp′q′ . Due
to the change introduced in Game4, we can assume that gcd(α0, N) = 1 since,
otherwise, C would already be rejected in Game5.(i−1) and the two games would
proceed identically. Then, in Game5.(i−1), Decrypt computes

M = c1 · c−2·x
0 mod N2

= c1 · (1 + N)−α0·(2x mod N) · g−2N ·β0·(x mod p′q′), (25)

= ζ1 · (1 + N)α1−α0·(2x mod N) · g−2N ·(−β1+2β0·(x mod p′q′))

and we can assume that ζ1 = 1 and β1 = 2β0 · x (mod p′q′) since both de-
cryption algorithms return ⊥ if M is not in the subgroup ⟨1 + N⟩. In (25), we
note that αx ≜ x mod N is sampled uniformly in ZN after A has submitted its
i-th decryption query (c0, c1) and thus after α0 and α1 have been fixed. Conse-
quently, in the right-hand-side member of (25), (1+N)−α0·(2x mod N) mod N2 is
independent of A’s view and ensures that (1 + N)α1−α0·(2x mod N) is uniformly
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distributed in the subgroup ⟨1 + N⟩ since gcd(2α0, N) = 1 and x mod N is in-
dependent of x mod p′q′ by the CRT. Therefore, if the i-th decryption query
C = (c0, c1) involves a ciphertext such that c2p′q′

0 ̸= 1 mod N2, the product (25)
has a uniformly distributed component (1 + N)α1−α0·(2x mod N) mod N2 in the
subgroup ⟨1 + N⟩. The probability that α1 − α0 · (2x mod N) mod N falls into
the interval [0, B] = [0, 2t] is then at most (B + 1)/N < 1/2λ + 1/N . Except
with probability smaller than 1/2λ + 1/N < 1/2λ−1, Decrypt thus also returns
⊥ at the i-th decryption query. ⊓⊔

5.3 Avoiding the Composite Non-Invertibility Assumption

Interestingly, if we further restrict the message space [0, B] in such a way that
B < 2−λ ·min(p, q), it is possible to prove security under the sole DCR assump-
tion. This requires to adapt the proof of Lemma 5.4 in the following way.

If the adversary makes its i-th decryption query on a ciphertext (c0, c1) such
that c0 = ζ0 · (1 + N)α0 · g2N ·β0 mod N2 with α0 = k · p, for some k ∈ Zq, the
product α0 · 2x mod N still has a uniformly distributed component 2xα0 mod q
in Z∗

q (note that gcd(α0, q) = 1 if α0 = k·p for non-zero k). Then, the distribution
of α1−α0 ·2x mod q is also uniform in Zq since x is chosen after α0 and α1. The
real Decrypt algorithm only accepts (c0, c1) when (α1 − α0 · 2x mod N) ∈ [0, B],
which implies (α1 − α0 · 2x mod q) ∈ [0, B] since q|N and B < q. Since the
distribution of α1−α0 · 2x mod q is uniform over Zq, it falls into the forbidden
interval [0, B] with probability (B + 1)/q < 2−λ+1, as required.

The rest of the proof remains unchanged, except that we can remove Game4
from the sequence of games in the proof of Theorem 5.2.

We then have to choose p, q > 2l(λ) so that l > t + λ, which reduces the size
of the message space by a factor ≈ 2. Concretely, for a 3072-bit modulus N and
with λ = 128, we can CCA1-encrypt 1408-bit messages without relying on any
other assumption than DCR.

5.4 Open Question

An interesting open problem is to extend the proof to a variant of the scheme
based on the Damgård-Jurik technique [21].

The larger message space would be [0, B], where B < ⌊2−λ · Ns⌋ for some
s > 1, while ciphertexts would live in (Z∗

Ns+1)2. Unfortunately, we do not know
how to adapt the proof to this case since the adversary can always encrypt a
multiple of N and we can no longer adapt the proof of Lemma 5.4.

6 Extension to Castagnos-Laguillaumie

We now adapt our variant of Elgamal-Paillier to the framework of Castagnos and
Laguillaumie [9]. It allows a message space of large prime order and removes the
need for the non-standard composite non-invertibility assumption used in Section
5, even when messages are as large as possible. We also obtain a tighter security
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reduction by avoiding the linear security loss (20) of Theorem 5.2 in the number
Q of decryption queries.

We actually present a CCA1 variant of the scheme suggested in [10, Section
3.2], which was itself obtained from [9] by adapting ideas from the Elgamal-
Paillier scheme of [7].

We first recall the CL framework, as described in [10,11], which abstracts
away the specific number theoretic instantiation introduced in [9]. In the chosen-
ciphertext setting, we need to use the variant of [11] that extends [10] so as to
work in a larger ambient group Ĝ whose elements are efficiently recognizable.
Definition 6.1 (Generator of a DDH group with an easy DL group).
Let GenGroup = (Gen, Solve) a pair of efficient algorithms where Gen is a group
generator algorithm taking as inputs parameters λ and µ and outputting a tuple
(p, ŝmax, g, f, gp, Ĝ, F, Ĝp), where

- (Ĝ, ·) is a group of order p·ŝ, for some integer ŝ, and where p is a µ-bit prime
such that gcd(p, ŝ) = 1. Moreover, elements of Ĝ are efficiently recognizable
and Gen only outputs an upper bound ŝmax on ŝ.

- Ĝp = {xp | x ∈ Ĝ} and F are the subgroups of order ŝ and p, respectively,
in Ĝ (so that Ĝ ≃ F × Ĝp).

- Ĝ contains a cyclic subgroup G of order p·s, for some s|ŝ. Since gcd(p, s) = 1,
G ≃ F ×Gp, where Gp = {xp | x ∈ G}.

- f and gp are generators of F and Gp, respectively, so that their product
g ≜ gp · f generates G.

- Solve is a deterministic polynomial time algorithm that solves the discrete
logarithm problem in F .
As in [10,11], we rely on a subgroup membership assumption that can be

seen as a special case of the general subgroup assumption defined in [32] and
captures that the uniform distribution on G is computationally indistinguishable
from the uniform distribution on Gp.
Definition 6.2 (HSM assumption). Let GenGroup = (Gen, Solve) the algo-
rithms of Definition 6.1. The Hard Subgroup Membership (HSM) assump-
tion says that no PPT adversary can distinguish the distributions

D0 =
{

(p, ŝmax, g, f, gp, Ĝ, F, Ĝp, Z) |
(p, ŝmax, g, f, gp, G, F, Gp)← Gen(1λ, 1µ); x←↩ D; Z = gx

}
,

and

D1 =
{

(p, ŝmax, g, f, gp, Ĝ, F, Ĝp, Z) |
(p, ŝmax, g, f, gp, G, F, Gp)← Gen(1λ, 1µ); x←↩ Dp; Z = gx

p

}
,

where D (resp. Dp) denotes a distribution over Z such that {gx | x ←↩ D} and
{gx

p | x ←↩ Dp} is within statistical distance 2−λ from the uniform distribution
over G (resp. Gp).
Using class groups of imaginary quadratic fields, Castagnos et al. [11] provide
an efficient instantiation where the HSM assumption is believed to hold.
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6.1 Description

Based on the above framework, we can build an IND-CCA1 variant of the scheme
in [10, Figure 2.a] as follows.

Besides the interval check in the decryption algorithm, the main difference
is that the secret key and the encryption exponent are sampled from a uniform
distribution over a sufficiently large interval (which simplifies the security proof)
while [10] obtains shorter keys sampled from a discrete Gaussian distribution.

Keygen(1λ, 1t): Given a security parameter λ ∈ N and a message length t ∈
poly(λ), set µ ≥ t + λ and conduct the following steps.
1. Generate (p, ŝmax, g, f, gp, Ĝ, F, Ĝp)← Gen(1λ, 1µ).
2. Choose x R← [0, 2λ · ŝmax · p] and compute h = gx

p .
Return the key pair (PK, SK) where SK := x and

PK :=
(
p, ŝmax, g, f, gp, G, F, Gp, B

)
,

where B = 2t defines the message space M = [0, B].
Encrypt(PK, m): Given a public key PK and a message m ∈M,

1. Choose r R← [0, 2λ · ŝmax] and compute

c0 = gr
p c1 = fm · hr

2. Output the ciphertext C = (c0, c1).
Decrypt(SK, C): Given SK = x ∈ Z and C = (c0, c1), return ⊥ if c0 ̸∈ Ĝ or

c1 ̸∈ Ĝ. Otherwise, conduct the following steps:
1. Compute M = c1 · c−x

0 .
2. Return ⊥ if Mp ̸= 1. Otherwise, compute m = Solve(f, M) and return
⊥ if m ̸∈ [0, B]. Otherwise, return m.

6.2 Security

Theorem 6.3. The scheme provides IND-CCA1 security in the standard model
under the HSM assumption. For any CCA1 adversary A making at most Q
decryption queries, there exist an HSM distinguisher B such that

AdvCCA1
A (λ) ≤ AdvHSM

B (λ) + (Q + 2) · 2−λ+1

Proof. The proof considers a sequence of hybrid games where Wi denotes the
event that the adversary wins and outputs ρ′ = ρ in Gamei.

Game0: This is the real IND-CCA1 security game. When the adversary chooses
messages m0, m1 ∈ [0, B] in the challenge phase, it obtains a ciphertext

c⋆
0 = gr

p c⋆
1 = fmρ · hr,

where ρ R← {0, 1} is the challenger’s random bit. When A terminates, it
outputs a bit ρ′ ∈ {0, 1} and wins if ρ′ = ρ. Its advantage is defined as
AdvCCA1

A (λ) := |Pr[W0]− 1/2|.
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Game1: We change the generation of the challenge ciphertext. When A outputs
messages m0, m1 ∈ [0, B], the challenge ciphertext is computed as

c⋆
0 = gr

p c⋆
1 = fmρ · c⋆

0
x,

for a random r R← [0, 2λ · ŝmax]. Game1 is identical to Game0 from A’s view
and we have Pr[W1] = Pr[W0]. Also, by Lemma 5.1, the distribution of c⋆

0 is
at most 2−λ apart from the uniform distribution over Gp.

Game2: We change the distribution of the challenge ciphertext. In the challenge
phase, the challenger now picks r R← [0, 2λ · ŝmax · p] and computes

c⋆
0 = (gp · f)r c⋆

1 = fmρ · c⋆
0

x,

Under the HSM assumption, Game2 is indistinguishable from Game1 and a
straightforward reduction shows that |Pr[W2]−Pr[W1]| ≤ AdvHSM(λ). We
note that, by Lemma 5.1, the distribution of c⋆

0 is within distance 2−λ from
the uniform distribution over G.

Game3: We change the generation of the challenge ciphertext while keeping
its distribution statistically unchanged. The challenger now samples r R←
[0, 2λ · ŝmax], u R← Zp, and computes

c⋆
0 = fu · gr

p c⋆
1 = fmρ · c⋆

0
x,

Lemma 6.4 shows the distribution of c⋆
0 is statistically the same as in Game2,

so that the two games are statistically indistinguishable.

At this point, we are done with reductions from computational assumptions. We
can thus afford to use a challenger that runs in super-polynomial time without
affecting the efficiency of the reduction considered in earlier game transitions.

Game4: This game is like Game3 except that, at the outset of the game, the
challenger explicitly computes the orders ŝ and ŝ · p of the groups Ĝp and Ĝ
(which it can do in sub-exponential time). Also, the secret key x is sampled
as x R← Zŝ·p, which makes h perfectly uniform over Gp since s divides ŝ. We
claim that Game4 is statistically indistinguishable from Game3. In Game3,
the challenge ciphertext is of the form

c⋆
0 = fu · gr

p, c⋆
1 = fmρ+x·u · hr, (26)

with u ∼ U(Zp), r ∼ U([0, 2λ · ŝmax]). The information that (26) reveals
about x is completely determined by x mod s · p (and thus by x mod ŝ · p
since s divides ŝ). The information revealed by decryptions of malformed
ciphertexts (c0, c1) only depends on x mod ŝ · p since the order of c0 is at
most ŝ · p and the decryption oracle computes M = c1 · c−x

0 , where c−x
0 is

completely determined by x mod ŝ · p and c0. The distinguishing advantage
between Game4 and Game3 is at most the statistical distance between the
distributions {x mod ŝ · p | x R← [0, 2λ · ŝmax · p]} and {x R← Zŝ·p}, which
is smaller than ŝ · p/(2λ · ŝmax · p) < 2−λ by Lemma 5.1. Hence, we have
|Pr[W3]− Pr[W2]| ≤ 2−λ.
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We now use a sub-sequence of games where we gradually modify the decryption
oracle. The sub-sequence starts with Game4.0, which is identical to Game4.

Game4.i (1 ≤ i ≤ Q): In these games, we modify the key generation phase where
the challenger initially computes h = gβx

p , for a random βx
R← Zŝ, and defines

an alternative secret key SK ′ := (βx, p, ŝ). The first i decryption queries are
answered using the following modified decryption algorithm:
Decrypt’(SK ′, C): On input of C = (c0, c1), return ⊥ if cŝ

0 ̸= 1. Otherwise,
compute M = c1 · c−βx

0 and return ⊥ if Mp ̸= 1. If Mp = 1, compute
m = Solve(f, M) and return m if m ∈ [0, B]. Otherwise, return ⊥.

At the (i + 1)-th decryption query, the challenger samples αx
R← Zp and

defines x ∈ Zŝ·p such that αx = x mod p and βx = x mod ŝ. Then, SK = x
is used to answer the last Q − i decryption queries using the decryption
algorithm of Game4.

In Lemma 6.5, we prove that |Pr[W4.i]−Pr[W4.(i−1)]| ≤ 1/2λ−1, so that the two
games are statistically close.

Game5: This game is identical to Game5.Q except that the challenge ciphertext
is computed by sampling u, v R← Zp, r R← [0, 2λ · ŝmax] and computing

c⋆
0 = fu · gr

p c⋆
1 = fv · hr, (27)

instead of

c⋆
0 = fu · gr

p c⋆
1 = fmρ+x·u · hr, (28)

as in Game4.Q. We claim that Game5 is perfectly indistinguishable from
Game4.Q. The reason is that all decryption queries are answered using the
alternative secret key SK ′ = (x mod ŝ, p, ŝ) in Game4.Q. This implies that
x mod p is perfectly independent of A’s view until the challenge phase since
its choice is postponed until the moment where A has declared the chal-
lenge messages m0, m1 ∈ [0, B]. Since gcd(u, p) = 1 and given that x mod p
is uniformly distributed over Zp conditionally on x mod ŝ, the conditional
distribution of mρ + x · u mod p is also uniform over Zp in the expression
of c⋆

1 in (28). This shows that the ciphertext distributions (28) and (27) are
perfectly indistinguishable and we have Pr[W5] = Pr[W4.Q].

In Game5, the challenge ciphertext is totally independent of mρ and we have
Pr[W5] = 1/2. We then obtain the stated upper bound on the adversary’s ad-
vantage AdvCCA1

A (λ) = |Pr[W0]− 1/2|. ⊓⊔

The proof of the following lemmas are available in Supplementary Material C.

Lemma 6.4. Game2 is statistically indistinguishable from Game3. Concretely,
we have |Pr[W3]− Pr[W2]| ≤ 2−λ+1.

Lemma 6.5. For each i ∈ [0, Q], Game4.i is statistically indistinguishable from
Game4.(i−1). We have |Pr[W4.i]− Pr[W4.(i−1)]| ≤ 2−λ+1.
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Supplementary Material

A Deferred Material for the Scheme in Section 4

A.1 Correctness and Circuit Privacy Definitions

Algorithms Add0, Add1 and Multiply are used to define an evaluation algorithm
Eval that takes as input a public key PK, a set of ciphertexts (Ci)i∈[ℓ] at depth 0
or 1 and a function f of degree at most 2, and performs a sequence of additions/or
multiplications to output an evaluated ciphertext C ← Eval(PK, (Ci)i∈[ℓ], f).

We first recall the definition of circuit privacy since it will simplify the defi-
nition of correctness.

Circuit privacy. A depth-one homomorphic encryption scheme is circuit-
private if, for any ℓ ∈ N, any messages m1, . . . , mℓ ∈ M, and any function
f : Mℓ →M of degree ≤ 2 such that f(m1 . . . , mℓ) ∈ M, there exists a simu-
lator Sim such that the following distributions are statistically close:

D0 := {(PK, SK, (mi, Ci)i∈[ℓ], C) | (PK, SK)← Keygen(1λ, 1t),
∀i ∈ [ℓ] : Ci ← Encrypt0(PK, mi), C ← Eval(PK, (Ci)i∈[ℓ], f)}

D1 := {(PK, SK, (mi, Ci)i∈[ℓ], C) | (PK, SK)← Keygen(1λ, 1t),
∀i ∈ [ℓ] : Ci ← Encrypt0(PK, mi), C ← Sim(PK, f(m1, . . . , mℓ))}

Correctness. A depth-one homomorphic encryption scheme is correct if, for
any ℓ ∈ N, any messages m1, . . . , mℓ ∈ M, and any function f : Mℓ → M of
degree ≤ 2 such that f(m1 . . . , mℓ) ∈M, there exists d ∈ {0, 1} such that

Pr
[
f(m1, . . . , mℓ) ̸= Decryptd(SK, C) | (PK, PK)← Keygen(1λ, 1t),
∀i ∈ [ℓ] : Ci ← Encrypt0(PK, mi), C ← Eval(PK, (Ci)i∈[ℓ], f)

]
≤ negl(λ)

In the definition of correctness, we assume that all input ciphertexts (Ci)i∈[ℓ]
are encrypted at depth 0 since, by the circuit privacy requirement, a depth-1
ciphertext C1 that encrypts m ∈ M is statistically indistinguishable from the
product two depth-0 ciphertexts C0

1 , C0
2 which encrypt m and 1, respectively.

33



A.2 Correctness of Homomorphic Operations in Section 4

It is easy to see that outputs of the multiplication algorithm are distributed as
fresh depth-1 encryptions of product messages. Namely, let two depth-0 cipher-
texts C1 = ([c1]1, [d1]2) and C2 = ([c2]1, [d2]2) of the form

[c1]1 = r1 ·

a1
a2
a3


1

+ m1 ·

0
0
1


1

, [d1]2 = s1 ·

b1
b2
b3


2

+ m1 ·

0
0
1


2

[c2]1 = r2 ·

a1
a2
a3


1

+ m2 ·

0
0
1


1

, [d2]2 = s2 ·

b1
b2
b3


2

+ m2 ·

0
0
1


2

for some plaintexts m1, m2 ∈ [0, B] such that m1 ·m2 ∈ [0, B]. Then,

[c1]1 · [d⊤
2 ]2 = r1 · s2 ·

a1
a2
a3


1

·
[
b1 b2 b3

]
2 + r1 ·m2 ·

a1
a2
a3


1

·
[
0 0 1

]
2

+ s2 ·m1 ·

0
0
1


1

·
[
b1 b2 b3

]
2 + m1 ·m2 ·

0 0 0
0 0 0
0 0 1


T

so that [c1]1 · [d⊤
2 ]2 decrypts to m1 ·m2. Moreover, the second and third terms

of (4) perfectly re-randomize [c1]1 · [d⊤
2 ]2 so as to obtain a product ciphertext

that has the same distribution as a fresh encryption of m1 ·m2 at depth 1.

B The Case of the Original Homomorphic DEG

The scheme described in Section 3.1 is not quite identical to the original system
described by Damgård [20], where the decryptor computes two exponentiations
instead of a multi-exponentiation. We show that our proof carries over to the
original scheme (with the message in the exponent), which is recalled hereunder.

Keygen(1λ, 1t): Given a security parameter λ ∈ N and a desired message length
t = O(log λ),
1. Choose a cyclic group G of prime order p > 2l(λ), for some polynomial

l : N→ N. Choose generators g, g1
R← G.

2. Choose ω, z R← Zp and compute g2 = gω
1 and h = g−z

1 .

Return the key pair (PK, SK) consisting of SK := (ω, z) ∈ Z2
p and

PK :=
(
G, g, g1, g2, h, B = 2t

)
,

where B defines the message space M = [0, B].
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Encrypt(PK, m): Given a public key PK and a message m consisting of an
integer in the interval M = [0, B], do the following:
1. Choose r R← Zp and compute

c0 = gm · hr c1 = gr
1 c2 = gr

2

2. Output the ciphertext C = (c0, c1, c2).
Decrypt(SK, C): Given SK = (ω, z) ∈ Z2

p and C = (c0, c1, c2),
1. On input of C = (c0, c1, c2), return ⊥ if c2 ̸= cω

1 . Otherwise, compute
M = c0 · cz

1.
2. If there exists an integer m ∈ [0, B] such that M = gm, return m.

Otherwise, return ⊥.

The main difference with the proof of Theorem 3.1 is that, between Game0
and Game1, we need to introduce a sub-sequence of games {Game0.i}Q

i=1 where
we gradually modify the decryption oracle to use the Decrypt algorithm of the
scheme in Section 3.1 instead of the above one.

Theorem B.1. The scheme provides IND-CCA1 security in the standard model
under the DDH assumption. For any CCA1 adversary A making at most Q
decryption queries, there is a DDH distinguisher B such that

AdvCCA1
A (λ) ≤ AdvDDH

B (λ) + 1 + 2 ·Q · (B + 1)
2λ

Proof. We only outline the changes compared to the proof of Theorem 3.1.

Game0: This is the real IND-CCA1 security game.

We now consider a sub-sequence of hybrid games where Game0.0 is Game0.

Game0.i (1 ≤ i ≤ Q): In these games, we modify the key generation phase where
the challenger computes g2 = gω

1 and h = g−z
1 for random ω, z R← Zp. In

addition, it initially chooses x2
R← Zp and sets x1 = z − ω · x2. It defines the

alternative secret key SK ′ := (x1, x2). In the first Q− i decryption queries,
the challenger runs the real decryption algorithm. In the last i decryption
queries, it uses modified decryption algorithm below:
Decrypt’(SK ′, C): Given C = (c0, c1, c2), compute M = c0 ·cx1

1 ·c
x2
2 . If there

exists m ∈ [0, B] such that M = gm, return m. Otherwise, return ⊥.
The same argument as in the proof of Lemma 3.2 shows that, for each
i ∈ [0, Q], we have |Pr[W0.i]− Pr[W0.(i−1)]| ≤ (B + 1)/2λ. Namely, Game0.i

only differs from Game0.(i−1) in the (Q − i + 1)-th decryption query, where
Game0.i starts answering decryption queries using Decrypt′ but Game0.(i−1)
still uses Decrypt. The probability that Game0.i fails to reject a ciphertext
that Game0.(i−1) would reject is (B +1)/2λ since neither of these games uses
x2 before the (Q− i + 1)-th query.

We next define Game1 as being identical to Game0.Q. Then, from Game1 onwards,
the sequence of games is identical to the one of Theorem 3.1. ⊓⊔
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C Deferred Proofs for the Scheme in Section 6

C.1 Proof of Lemma 6.4

Proof. In both games, the distribution of c⋆
0 is within distance 2−λ from the

uniform distribution over G.
In Game2, we have c⋆

0 = (gp · f)r where r R← [0, 2λ · ŝmax · p] and the product
gp · f has order s · p. So, we can apply Lemma 5.1 with L = 2λ · ŝmax · p and
ℓ = s · p to argue that the distribution of c⋆

0 is within statistical distance 2−λ

from {c⋆
0 = (gp · f)r | r R← [0, s · p]}. By the CRT, the latter distribution is the

same as
{c⋆

0 = gr
p · fu | r R← Zs, u R← Zp}.

By applying Lemma 5.1 again with L = 2λ·ŝmax and ℓ = s, the above distribution
of c⋆

0 is within distance 2−λ from that in Game3. ⊓⊔

C.2 Proof of Lemma 6.5

Proof. The two games are identical from A’s standpoint unless its i-th decryp-
tion query involves a ciphertext that gets rejected in Game4.i, but would not
have been rejected in Game4.(i−1).

For any ciphertext C = (c0, c1) such that c0 ∈ Ĝp (i.e., cŝ
0 = 1), both decryp-

tion oracles output the same result since the action of x ∈ Zŝ·p on (c0, c1) is com-
pletely determined by x mod ŝ. On a ciphertext (c0, c1) such that cŝ

0 ̸= 1, Decrypt′

always returns ⊥ and we just need to assess the probability that Decrypt returns
something else. If the i-th query involves a ciphertext C = (c0, c1) where c0 has
a non-trivial component in F , we can write (c0, c1) = (µ0 ·fα0 ·gβ0

p , µ1 ·fα1 ·gβ1
p )

for some arbitrary α0, α1 ∈ Zp and β0, β1 ∈ Zs and µ0, µ1 ∈ Ĝp/Gp. Then, in
Game4.(i−1), the i-th query is answered using Decrypt which computes

M = c1 · c−x
0 = µ1 · µ−(x mod ŝ)

0 · f (α1−α0·x mod p) · g(β1−β·x mod s)
p , (29)

where αx ≜ x mod p is sampled uniformly in Zp after the choice of (c0, c1) by A
and thus after (α0, α1) have been fixed. Therefore, in the right-hand-side member
of (29), fα1−α0·(x mod p) is completely independent of A’s view and uniformly
distributed in the subgroup F since gcd(α0, p) = 1 and x mod p is independent
of x mod ŝ by the CRT. Hence, if cŝ

0 ̸= 1 at the i-th query, M = c1 · c−x
0 has a

uniformly distributed component in the subgroup F .
If Mp ̸= 1, both decryption algorithms output ⊥ and we only need to consider

the case Mp = 1. Then, the probability that Solve(f, M) ∈ [0, B] = [0, 2t] is
bounded by (B + 1)/p < 1/2λ + 1/p < 1/2λ−1. Except with probability at
most 1/2λ−1, Decrypt thus agrees with Decrypt′ and also returns ⊥ at the i-th
decryption query. ⊓⊔
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