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Abstract. In this work, we propose a construction forMulti-Input Inner
Product Encryption (MIPFE) that can handle vectors of variable length
in different encryption slots. This construction is the first of its kind, as
all existing MIPFE schemes allow only equal length vectors. The scheme
is constructed in the private key setting, providing privacy for both mes-
sage as well as the function, thereby achieving the so-called full-hiding
security. Our MIPFE scheme uses bilinear groups of prime order and
achieves security under well studied cryptographic assumptions, namely,
the symmetric external Diffie-Hellman assumption.

Keywords: Functional encryption (FE) · inner-product FE · multi-
input FE · unbounded vectors

1 Introduction

Functional encryption (FE) [1,2,3,4,5] is a modern cryptographic primitive that
generalizes public key encryption (PKE). Compared to traditional cryptographic
approaches, FE offers more flexibility in sharing and dispersing information. As
the name suggests, FE allows users to retrieve some function of the message,
where an owner of a master secret key can generate a secret key skf for any
function f , which can be used to recover f(m) from the ciphertext ctm of the
message m.

In a multi-input functional encryption (MIFE) [6,7,8,9], there are multiple
encryption slots to encrypt messages in different slots independently. The de-
cryption key of MIFE decrypts n ciphertexts simultaneously to evaluate the
joint functionality of the n messages. MIFE system is useful in scenarios when
information to be processed together is supplied at different points of time or by
multiple parties. Applications of MIFE include data mining over encrypted data
coming from multiple sources, the multi-client delegation of computations to ex-
ternal servers, processing encrypted streaming data, non-interactive differentially
private data releases, etc. The research on MIFE can be broadly characterized
into two categories. The first category mainly emphasizes on the construction of
MIFE for general multi-input functionalities such as Turing machines or arbi-
trary polynomial-size circuits. However, such construction relies on very strong
cryptographic primitives like indistinguishability obfuscation, single-input FE
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for general circuits, etc. On the other hand, the second approach focuses on the
construction of efficient MIFE based on standard cryptographic primitives like
comparison or multi-input inner product.

The inner product version of MIFE is called multi-input inner product func-
tional encryption (MIPFE) [10,11,12,13,14]. In MIPFE, there are several en-
cryption slots to encrypt vectors {x⃗ι}ι∈S in different slots independently. The
decryption key sk{yι}ι∈S

of MIPFE can reveal
∑

ι∈S⟨x⃗ι,yι⟩ from the ciphertext
ctι for all ι ∈ S. The FE schemes can be broadly categorized into two types. The
first type specifically provides message confidentiality. On the other hand, the
second type defines a unified notion called full-hiding security where function
privacy in addition to message privacy is guaranteed. To motivate the utility of
function privacy, we cite an example from [14]: Consider a scenario when a hos-
pital subscribes to an external cloud server to store its patient’s medical records.
To ensure the confidentiality of the medical record while performing various com-
putations on the outsourced data remotely from time to time, a promising option
for the hospital is to use a FE scheme where data can be encrypted locally before
uploading to the cloud server. Now, when the hospital wants the information of
all patients suffering from a certain disease, it must provide a functional decryp-
tion key to the cloud server to retrieve all the required information. However, if
function privacy is not ensured, it may leak certain confidential information of
some public figures (if someone is on the hospital record). It may damage their
publicity resulting in financial loss. This situation is clearly undesirable from a
privacy perspective.

To address this issue, many recent works have been initiated both in the
single-input and multi-input settings. However, it has been observed that the
function privacy in private key settings provides better security in comparison
to the public key settings. In order to achieve it in a public key setting, the
function must be chosen from certain high-entropy distribution. Instead, the
extent of function privacy is much stronger in the private key setting. Even
though it is a potential tool for function privacy, only a handful number of
research works exist in the literature.

The work of Lin [15] computes the inner products of arbitrary polynomial
degrees, where the standard inner product is a degree 2 function. But, it is a
multilinear map-based construction. However, the work of Datta et al. [14] is
much more practical. They proposed two constructions of MIPFE. The first
design is a MIPFE function private scheme supporting a polynomial number
of encryption slots. And, the second design is capable of handling an apriori
unbounded number of encryption slots and multi-input inner product functions
with arbitrary slot index sets of any polynomial size. Both the constructions
obtained security under standard k-LIN assumptions.

In all existing MIPFE construction, the size of vectors at different slots is
pre-determined and all public parameters of the system are chosen based on that.
This makes them incapable of handling variable-length vectors at different slots.
A layman approach to overcome this problem is to fix the size m to be arbitrarily
large. This, however, would lead to large parameters whose size typically grows



Multi-Input Functional Encryption for Unbounded Inner Products 3

linearly in m. A natural question is whether there exists an MIPFE scheme with
the parameters being completely unconstrained by the lengths of the vectors
in keys and ciphertexts. In fact, MIPFE with variable-length vectors has many
real-life applications. onsider n hospitals holding already shared private keys
and each of these hospitals uses the FE system to store patient records on a
cloud server. Suppose organization Z is curious about the weighted average of
a specific medical outcome for all of the patients at these facilities. In that
case, it can obtain a decryption key to bring up the needed outcome. But the
existing constructions cannot handle this scenario, as it is not possible for these
n hospitals to have the same number of patients. A solution to this problem is
to use an MIPFE scheme that can handle variable length vectors at each slot.

Our Contributions In this work, we solve the above mentioned problem in
the private key setting. Our construction of private-key MIPFE scheme is based
on bilinear groups of prime order and achieves a unified notion of security called
full-hiding security. We closely follow techniques from [16]. Security relies on
the standard SXDH assumption. We consider two standard indexing methods
from [16], namely consecutive and separate. Each vector element gets indexed
automatically according to its position in consecutive settings. For instance, in
(a, b, c), a is indexed to 1, b to 2 and c to 3. On the other hand, in separate
indexing, each vector is specified with an index set. Let’s assume (a, b, c) is
indexed according to set {2, 6, 7}, that means a is indexed at 2, b at 6 and c at
7. For decryption, we use a form, namely ct-dominant. In a ct-dominant scheme,
the decryption process works only if the index set of the decryption vector is
a subset of the index set of the encryption vector. That is, if Dsk is the index
set for secret key sk and Dct is the index set for ciphertext ct, then we have
Dsk ⊆ Dct for each encryption slot ι.

We now provide a brief overview of the construction. Let e : G1 ×G2 → GT

be an asymmetric bilinear map of prime order p. The master secret key is
a pair of dual orthogonal bases (Bι,B

∗
ι ) for the vector spaces Gn

1 and Gn
2

along with scalars {sι} for each slot ι. For each slot ι, the ciphertext and
secret key corresponding to vectors xι and yι respectively are of the form
(πι,i(i, 1), sι, xι,i, zι, 0, 0)Bι and (ρι,i(−1, i), uι, yι,i, rι,i, 0, 0)B

∗
ι , respectively. The

indexing technique from [4] is used in the first two prefixes. These two prefix di-
mensions specify the vector’s index, and only if the indices of both the ciphertext
and secret key are equal, correct decryption is possible. The last two dimen-
sions are not used in the real scheme but reserved for defining semi-functional
spaces in the proof of security. In [12], a secret key component of the form
kT = e(P1, P2)

∑
ι zιr is used to prevent partial leak of information. We follow

the similar steps to avoid any partial leak, we use kT = e(P1, P2)
−

∑
ι∈[n]

∣∣Dι

∣∣sιuι ,
where

∣∣Dι

∣∣ is the cardinality of vectors in slot ι, sι is part of master secret and
uι is the random scalar used for key generation.

The key and ciphertext are designed as shown above considering four main
aspects. First, the slot matching is done through the dual orthogonal bases
(Bι,B

∗
ι ). Next, index matching is done through the indexing technique in the
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first two prefixes. The fifth component is used to prevent the re-composition
of ciphertext. Suppose, the slot size is 2 with encryption vectors x⃗1 and x⃗2 for
slots 1 and 2, respectively. And decryption vectors y1 and y2. In the multi-input
settings, the decryption algorithm should reveal ⟨x1,y1⟩ + ⟨x2,y2⟩ but not the
individual inner products ⟨x1,y1⟩ and ⟨x2,y2⟩. To prevent this partial leak of
information, we add sι for each slot in the master secret key. And, there is a
target GT -component kT in the secret key as mentioned above, which cancels
the other factors to reveal the desired result. More importantly, to obtain the
joint evaluation over x⃗ι’s and yι’s, we need ciphertext for each slot ι ∈ [n].

Our indexing technique is inspired by the public key IPFE construction
of [16]. On the other hand, the private key construction in [16] is more efficient.
For each index, a dual orthonormal bases is generated using a pseudo-random
function keyed by the master secret key k. It is natural to ask whether an ex-
tension of the same leads to a more efficient MIPFE scheme. Though we do not
rule this out, observe that we need different dimensions in the dual orthonormal
bases in order to match both slots and indices of vectors in each slot. We use n
different dual orthonormal bases corresponding to the n slots in our construc-
tion, which are generated and stored as part of the master secret key in the setup
phase.

2 Preliminaries

2.1 Notation

We write x1, . . . , xk
R←− X to indicate that x1, . . . , xk are sampled independently

from a set X according to some distribution R (U denotes uniform distribution).
For a (probabilicstic) algorithm A, y ←− A(x) means that y is chosen according
to the output distribution of A on input x. A function f : N → R is called
negligible in m(∈ N) if for every constant c > 0, ∃m0 ∈ N such that f(m) < 1/mc

for all m ≥ m0. We write a negligible function in m as negl(m). For a natural
number n, denote the set {1, 2, . . . , n} by [n]. For a prime p, we denote by Zp

the field of order p. Vectors over Zp will be represented by bold face lower case
letters (e.g. v). Zn×n

p denotes the set of all n×n matrices over Zp and GLn(Zp),
the general linear group of degree n over Zp consisting of all invertible n × n
matrices over Zp. We denote matrices over Zp by bold-face upper case letters
(e.g. A). AT denotes the transpose of matrix A and A∗ = (A−1)T denotes the
orthonormal dual basis of A. In denotes the identity matrix of dimension n. For
vectors u = (u1, . . . , un) and v = (v1, . . . , vn), ⟨u,v⟩ denotes their inner product∑n

i=1 uivi.

Inner Products of Unbounded Vectors An unbounded vector is written as x =
(xi)i∈D where D, a finite subset of N∗ is called the domain of x. In this paper,
xi ∈ Zp for all i ∈ D, where p is defined by the bilinear map used in the
construction of our encryption scheme. Given two vectors x = (xi)i∈D and y =
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(yi)i∈D′ , the inner product ⟨x,y⟩ is a function defined as:

⟨x,y⟩ =
∑

i∈D∩D′

xiyi

where the domains D and D′ are non-empty finite subsets of N∗. In the ct-
dominant setting D′ would be a subset of D. For simplicity we assume that
D = [m] for some m ∈ N and D′ ⊆ [m].

2.2 Bilinear Groups and Related Assumptions

A bilinear map G = (G1,G2,GT , P1, P2, e, p) consists of cyclic groups G1,G2,GT

of prime order p with the first two groups given by generators P1, P2 respectively
and an efficiently computable map e : G1 × G2 → GT , with the following two
properties:

Bilinearity: e(aQ1, bQ2) = e(Q1, Q2)
ab, for all Q1 ∈ G1, Q2 ∈ G2 and a, b ∈ Zp.

Non-degeneracy: e(P1, P2) is a generator for GT unless P1 = 0 or P2 = 0 where
P1 ∈ G1, P2 ∈ G2.

The bilinear group generator GroupGen(ϑ) takes a security parameter ϑ as input
and returns a bilinear map G over a ϑ-bit prime p.

We represent an element aPτ ∈ Gτ for τ ∈ {1, 2} as [a]τ and an element
e(P1, P2)

a ∈ GT as [a]T , where Pτ is a generator of Gτ . Given [a]τ it is generally
hard to obtain a. Observe that for a, b ∈ Zp, given [a]τ , [b]τ , one can compute
[a + b]τ as [a]τ + [b]τ . Furthermore, given [a]1, [b]2, one can compute [ab]T as
e([a]1, [b]2). For A = (ai,j)i,j∈[n] ∈ Zn×n

p , [A]τ is defined as ([ai,j ]τ )i,j∈[n]. Simi-

larly, for a vector x = (x1, . . . , xn) ∈ Zn
p , [x]τ is defined as ([x1]τ , . . . , [xn]τ ).

Dual Pairing Vector Spaces. Let n ∈ N and let (B,B∗) be dual orthonormal
bases for Zn

p . Then [B]1 and [B∗]2 are dual orthonormal bases of vector spaces
Gn

1 and Gn
2 respectively. The following two properties hold:

– For vectors x,y ∈ Zn
p , e([x]1, [y]2) = e(P1, P2)

⟨x,y⟩.
– Suppose that B is chosen at random from GLn(Zp). Then for arbitrary vec-

tors x1, . . . ,xk,y1, . . . ,yl ∈ Zn
p and any matrix M ∈ GLn(Zp), the dis-

tributions
(
{xiB}i∈[k], {yiB

∗}i∈[l]

)
and

(
{xiMB}i∈[k], {yiM

∗B∗}i∈[l]

)
are

identical.

Diffie-Hellman Assumption. Let τ ∈ {1, 2}. Given an asymmetric bilinear
map G ← GroupGen(ϑ), along with

[a]τ , [e]τ , [tβ ]τ = [ae+ βf ]τ

where a, e, f
U←− Zp, the DDHτ problem asks to determine whether β = 0 or

β = 1.
For a probabilistic polynnomial time adversary A , define

AdvGA (DDHτ)(ϑ) =

∣∣∣∣Pr[A (G, [a]τ , [e]τ , [t0]τ ) = 1]− Pr[A (G, [a]τ , [e]τ , [t1]τ ) = 1]

∣∣∣∣.
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The decisional Diffie-Hellman assumption in groupGτ (DDHτ) assumption holds
if for all PPT adversaries A , AdvGA (DDHτ)(ϑ) ≤ negl(ϑ).

The symmtric external Diffie-Hellman (SXDH) assumption is said to hold if
both DDH1 and DDH2 hold.

2.3 Multi-Input IPFE with Variable Vector Size

Multi-Input Inner Product Functionality. A bounded-arity multi-input in-
ner product function family FB

ϑ = {FB
n } for some B ∈ N, where each sub-families

FB
n consists of bounded-arity multi-input inner product functions f{yι}ι∈[n]

. Each
function f{yι}ι∈[n]

: Zm1 × Zm2 × ... × Zmn → Z, with the associated vectors

{yι}ι∈[n] each belonging to Zm′
i , is defined as

f{yι}ι∈[n](x1, . . . ,xn) =
∑
ι∈[n]

⟨xι,yι⟩

for all sets of vectors {xι}ι∈[n] of variable length over Z and the value of the
inner product ⟨xι,yι⟩ ≤ B. Since we work on the ct-dominant setting, we define
the inner product ⟨xι,yι⟩ =

∑
i∈m′

ι
xι,i.yι,i assuming [m′

ι] ⊆ [mι].

Private Key MIPFE over Variable-Length Vectors. A private key bounded-
arity multi-input inner product function encryption scheme over variable-length
vectors associated with function family FB

n is specified by the following polynomial-
time algorithms.

Setup(1ϑ, n,B): Takes the security parameter 1ϑ, the arity n ∈ N for the multi-
input inner product functionality, and the upper bound B on the values of
inner products. It generates and outputs the master secret key msk and the
public parameters pp.

KeyGen(pp,msk, {yι}ι∈[n]): It takes as input pp, msk and the set of vectors

{yι}ι∈[n] of variable lengths such that yι ∈ Zm′
ι for all ι ∈ [n]. Finally, it

outputs the decryption key sk corresponding to the given set of vectors.
Encrypt(pp,msk, ι,xι): Takes as input pp, the master secretmsk, an index ι ∈ [n]

and a vector xι ∈ Zmι for slot ι. It outputs the ciphertext ctι.
Decrypt(pp, sk, {ctι}ι∈[n]): Takes as input pp, a decryption key sk and set of

n ciphertexts {ctι}ι∈[n]. It outputs d ∈ Z or special symbol ⊥ to indicate
failure.

Correctness. The above scheme is said to be correct if for all security parameters
1ϑ, for all n polynomial in ϑ, for all sets of n vectors {xι}ι∈[n], {yι}ι∈[n] with
⟨xι,yι⟩ ≤ B, we have

Pr

d =
∑
ι∈[n]

⟨xι,yι⟩

∣∣∣∣∣∣∣∣
(pp,msk)← Setup(1ϑ, n,B)
sk← KeyGen(pp,msk, {yι}ι∈[n])
{ctι ← Encrypt(pp,msk, ι,xι)}ι∈[n]

d← Decrypt(pp, sk, {ctι}ι∈[n])

 ≥ 1− negl(ϑ)

for some negligible function negl.
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Full-Hiding Security. The notion of full-hiding security for private key MIPFE

arity n can be formalized through the following experiment ExptA (β), for β
U←−

{0, 1}, where A is the adversary and C is the challenger.

Setup: C generates (pp,msk)← Setup(1ϑ, n,B) and passes the public parame-

ter pp to A . C generates β
U←− {0, 1}.

Key Query Phase: A adaptively makes (polynomially many in ϑ) key extrac-
tion queries: for the jth secret key query the A provides pair of vector sets
({yj,ι,0}ι∈[n], {yj,ι,1}ι∈[n]) such that yj,ι,0,yj,ι,1 ∈ Zm′

j,ι ; C then responds
with the secret key sk∗j ← KeyGen(pp,msk, {yj,ι,β)}.

Ciphertext Query Phase: A makes adaptively makes a polynomial number
of ciphertext queries. Each query consists of a pair of vectors (xµι,ι,0,xµι,ι,1) ∈
(Zmµι,ι)2 for slot ι. In response to µι ciphertext query numbered µι, C re-
turns ct∗µι,ι ← Encrypt(pp,msk,xµι,ι,β). We assume that the total number of
decryption key queries made by A is qsk and the total number of ciphertext
queries for index ι is qct,ι with the restriction that the number of queries for
each index be atleast one i.e., qct,ι ≥ 1 for all ι ∈ [n]. Also, For all j ∈ [qsk]
and for all (µ1, ..., µn) ∈ [qct,1]× ...× [qct,n], we must have∑

ι∈[n]

⟨xµι,ι,0,yj,ι,0⟩ =
∑
ι∈[n]

⟨xµι,ι,1,yj,ι,1⟩

Guess: A concludes the game with a guess β′ ∈ {0, 1}.

The MIPFE scheme is said to achieve fully hiding if for any PPT adversary A
the advantage is,

AdvMIPFE
A (ϑ) = |Pr[ExptMIPFE

A (0) = 1]− Pr[ExptMIPFE
A (1) = 1]| ≤ negl(ϑ)

for some negligible function negl.

3 Our Variable Vector Length MIPFE Scheme

3.1 Construction

Setup(1ϑ): Takes a security parameter 1ϑ, generates bilinear group

(G = (G1,G2,GT , P1, P2, e, p)) ← GroupGen(1ϑ), chooses sι
U←− Zp,Bι

U←−
GL7(Zp) ∀ι ∈ [n]. And it sets,

pp = G,msk = {sι,Bι,B
∗
ι }ι∈[n]

Encrypt(pp,msk, ι,xι = (xι,i)i∈[mι]): The size of vector xι ismι. Choose πι,i, zι
U←−

Zp, ∀i ∈ [mι]. Compute

cι,i = (πι,i(i, 1), sι, xι,i, zι, 0, 0)Bι, ∀i ∈ [mι]

Output the ciphertext ctι = (ι, {[cι,i]1}i∈mι
).



8 Bishnu Charan Behera and Somindu C. Ramanna

KeyGen(pp,msk, {Dι, yι = (yι,i)i∈Dι
}ι∈[n]): On input a set of vectors yι defined

over index set Dι for ι ∈ [n], choose uι, ρι,i, rι,i
U←− Zp, ∀ι ∈ [n], i ∈ Dι such

that
∑

i∈Dι
rι,i = 0. It sets

kι,i = (ρι,i(−1, i), uι, yι,i, rι,i, 0, 0)B
∗
ι , ∀ι ∈ [n], i ∈ Dι

k̂ = e(P1, P2)
−

∑
ι∈[n]|Dι|uιsι

where |Dι| represents the cardinality of the domain Dι. Output the secret

key sk = (k̂, {Dι, {[kι,i]2}i∈Dι
}ι∈[n]).

Decrypt(pp, sk, {ctι}ι∈[n]): If Dι ⊆ [mι],∀ι ∈ [n], then compute

h = k̂
∏
ι∈[n]

∏
i∈Dι

e([cι,i]1, [kι,i]2)

Then compute and output the discrete logarithm of h to base e(P1, P2).

Correctness. For any set of n ciphertexts {ctι = (ι, {[cι,i]1}i∈mι
)}ι∈[n], and de-

cryption key sk = (k̂, {Dι, {[kι,i]2}i∈Dι
}ι∈[n]) , if Dι ⊆ [mι] for all ι ∈ [n], we

have

h = k̂
∏
ι∈[n]

∏
i∈Dι

e([cι,i]1, [kι,i]2)

= k̂
∏
ι∈[n]

e(P1, P2)
∑

i∈Dι
⟨cι,i,kι,i⟩

= k̂
∏
ι∈[n]

e(P1, P2)
∑

i∈Dι
xι,iyι,i+uιsι+rι,izι

= k̂
∏
ι∈[n]

e(P1, P2)
∑

i∈Dι
xι,iyι,i+uιsι

= k̂ · e(P1, P2)
∑

ι∈[n]⟨xι,yι⟩+|Dι|uιsι

= e(P1, P2)
−

∑
ι∈[n]

∣∣Dι

∣∣uιsιe(P1, P2)
∑

ι∈[n]⟨xι,yι⟩+
∣∣Dι

∣∣uιsι

= e(P1, P2)
∑

ι∈[n]⟨xι,yι⟩

Computing dicrete logarithm produces the desired result which is
∑

ι∈[n]⟨xι,yι⟩.
Given that

∑
ι∈[n]⟨xι,yι⟩ ≤ nB which is polynomial in ϑ, it is feasible to compute

discete logarithm of h to base e(P1, P2).

3.2 Proof of Security

Theorem 1. Our MIPFE scheme is fully hiding under the restriction that the
adversary makes atleast one ciphertext query for each slot provided the SXDH
assumption holds in the underlying pairing groups. More formally, for any PPT



Multi-Input Functional Encryption for Unbounded Inner Products 9

adversary A against our MIPFE scheme, there exist a PPT adversary B for
SXDH such that

AdvMIPFE
A (ϑ) ≤

2qsk + 3
∑
ι∈[n]

qct,ι

AdvSXDH
B (ϑ) + 2−Ω(ϑ)

Proof. The proof starts with ExptMIPFE
A (0) which is game 0 and ends with

ExptMIPFE
A (1). In the intermediate games, we change the ciphertext and secret

key from β = 0 to β = 1 using both computational and information theoretic
arguments. We assume that the adversary A makes atleast one ciphertext query
for each slot ι. The sequence of games is as follows.

Game 0: This game is same as the real security game when β = 0. For all
ι ∈ [n], µι ∈ [qct,ι], in response to µth

ι ciphertext query for the slot ι with a
pair of vectors (xµι,ι,0,xµι,ι,1) of same length mµι,ι, the challenger returns the
ciphertext ctµι,ι = (ι,

{
[cµι,ι,i]1

}
i∈[mµι,ι]

) where

cµι,ι,i = (πµι,ι,i(i, 1), sι, xµι,ι,0,i, zµι,ι, 0, 0)Bι, ∀i ∈ [mµι,ι]

and for all j ∈ [qsk], the jth secret key query with two sets of n vectors each,
(
{
yj,ι,0

}
ι∈[n]

,
{
yj,ι,1

}
ι∈[n]

) with vectors for slot ι defined over domain Dj,ι, the

adversary is provided skj = (k̂j ,
(
Dj,ι, {[kj,ι,i]2}i∈Dj,ι

)
ι∈[n]

), where

kj,ι,i = (ρj,ι,i(−1, i), uj,ι, yj,ι,0,i, rj,ι,i, 0, 0)B
∗
ι ,∀ι ∈ [n], i ∈ Dj,ι

k̂j = e(P1, P2)
−

∑
ι∈[n]

∣∣Dj,ι

∣∣sιuj,ι

where
∑

i∈Dj,ι
rj,ι,i = 0.

Game 1-v-1, v ∈ [qsk]: Game 1-0-2 is same as Game 0. This game is same as
Game 1-(v − 1)-2, except that the v-th secret key query is responded as

kv,ι,i = (ρv,ι,i(−1, i), uv,ι, yv,ι,0,i, rv,ι,i, 0, r̄v,ι,i )B
∗
ι ,∀ι ∈ [n], i ∈ Dv,ι

k̂v = e(P1, P2)
−

∑
ι∈[n]

∣∣Dv,ι

∣∣sιuv,ι

where
∑

i∈Dv,ι
r̄v,ι,i = 0.

Game 1-v-2, v ∈ [qsk]: This game is same as Game 1-v-1 except that the v-th
secret key query is responded as

kv,ι,i = (ρv,ι,i(−1, i), uv,ι, yv,ι,0,i, rv,ι,i, yv,ι,1,i , r̄v,ι,i)B
∗
ι ,∀ι ∈ [n], i ∈ Dv,ι

k̂v = e(P1, P2)
−

∑
ι∈[n]

∣∣Dv,ι

∣∣sιuv,ι
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Game 2-ι-µι-1, ι ∈ [n], µι ∈ [qct,ι]: Game 2-0-qct,0-3 is same as Game 1-qsk-2.
This game is same as Game 2-(ι − 1)-qct,ι−1-3 if µι = 1 or Game 2-ι-(µι − 1)-3
if µι > 1 except that the µι-th ciphertext query for ι-th slot corresponding to
pair of vectors (xµι,ι,0,xµι,ι,1) with same length mµι,ι is responded with ctµι,ι =
(ι, {[cµι,ι,i]1}i∈mµι,ι

), where

cµι,ι,i = (πµι,ι,i(i, 1), sι, xµι,ι,0,i, zµι,ι, 0, z′µι,ι )Bι, ∀i ∈ [mµι,ι]

Here, the random scalars are chosen as in Game 2-(ι − 1)-qct,ι−1-3 or Game
2-ι-(µι − 1)-3 according as µι = 1 or µι > 1.

Game 2-ι-µι-2, ι ∈ [n], µι ∈ [qct,ι]: This game is same as Game 2-ι-µι-1 except
that

cµι,ι,i = (πµι,ι,i(i, 1), sι, 0 , zµι,ι, xµι,ι,1,i , z
′
µι,ι)Bι, ∀i ∈ [mµι,ι]

Game 2-ι-µι-3, ι ∈ [n], µι ∈ [qct,ι]: This game is same as Game 2-ι-µι-2 except
that

cµι,ι,i = (πµι,ι,i(i, 1), sι, 0, zµι,ι, xµι,ι,1,i, 0 )Bι, ∀i ∈ [mµι,ι]

Game 3: This game is same as Game 2-n-qct,n-3 except that all the ciphertext
and secret key are responded as

cµι,ι,i = (πµι,ι,i(i, 1), sι, xµι,ι,1,i , zµι,ι, 0 , 0)Bι, ∀i ∈ [mµι,ι]

kj,ι,i = (ρv,ι,i(−1, i), uj,ι, yj,ι,1,i , rj,ι,i, yj,ι,0,i , r̄j,ι,i)B
∗
ι , ∀ι ∈ [n], i ∈ Dj,ι

k̂j = e(P1, P2)
−

∑
ι∈[n]

∣∣Dj,ι

∣∣sιuj,ι

Game 4: This game is same as the real security game when β = 1. For all
ι ∈ [n], µι ∈ [qct,ι], in response to µth

ι ciphertext query for the slot ι with a
pair of vectors (xµι,0,ι,xµι,ι,1) of same length mµι,ι, it returns the ciphertext
ctµι,ι = (ι,

{
[cµι,ι,i]1

}
i∈mµι,ι

) where

cµι,ι,i = (πtι,ι,i(i, 1), sι, xµι,ι,1,i, zµι,ι, 0, 0)Bι, ∀i ∈ [mµι,ι]

and for all j ∈ [qsk], the jth secret key query on two sets of n vectors each(
{yj,ι,0}ι∈[n] , {yj,ι,1}ι∈[n]

)
defined over domain Dj,ι for slot ι, is responded with

skj = (k̂j ,
(
Dj,ι, {[kj,ι,i]2}i∈Dj,ι

)
ι∈[n]

), where

kj,ι,i = (ρj,ι,i(−1, i), uj,ι, yj,ι,1,i, rj,ι,i, 0, 0 )B∗
ι , ∀ι ∈ [n], i ∈ Dj,ι

k̂j = e(P1, P2)
−

∑
ι∈[n]

∣∣Dj,ι

∣∣sιuj,ι

where
∑

i∈Dj,ι
rj,ι,i = 0.

Let EX denote the probability that the adversary A wins in game X.
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Lemma 1. There exists a PPT algorithm B for DDH2 such that∣∣Pr[E1-(v−1)-2]− Pr[E1-v-1]
∣∣ ≤ AdvDDH2

B (ϑ) + 2−Ω(ϑ)

Proof. Adversary B receives an instance of DDH i.e., (G, [a]2, [e]2, [tβ ]2), and it

sets pp = G. It samples Wι
U←− GL7(Zp), ∀ι ∈ [n]. It sets,

Bι =


I4

0 0 1
0 1 0
1 0 −a

Wι, B∗
ι =


I4

a 0 1
0 1 0
1 0 0

W∗
ι ,∀ι ∈ [n]

Then B simulates the ciphertext and secret key query in the following manner.
All the ciphertext query is respond as follows:

[cµι,ι,i]1 = [(πµι,ι,i(i, 1), sι, xµι,ι,0,i, zµι,ι, 0, 0)Bι]1, ∀i ∈ [mµι,ι]

And the secret key query is responded with k̂j = e(P1, P2)
−

∑
ι∈[n]

∣∣Dj,ι

∣∣sιuj,ι for
all j ∈ [qsk], and

[kj,ι,i]2 =

{
[(ρj,ι,i(−1, i), uj,ι, yj,ι,0,i, rj,ι,i, yj,ι,1,i, r̄j,ι,i)B

∗
ι ]2, ∀ ∈ Dj,ι, (j < v)

[(ρj,ι,i(−1, i), uj,ι, yj,ι,0,i, rj,ι,i, 0, 0)B
∗
ι ]2, ∀ ∈ Dj,ι, (j > v)

Now, for the v-th secret key query, B responds as follows:

r′v,ι,i
U←− Zp such that

∑
i∈Dv,ι

r′v,ι,i = 0

[kv,ι,i]2 = [(ρv,ι,i(−1, i), uv,ι, yv,ι,0,i, 0, 0, 0)B
∗
ι + r′v,ι,i(0, 0, 0, 0, tβ , 0, e)W

∗
ι ]2

= [(ρv,ι,i(−1, i), uv,ι, yv,ι,0,i, er
′
v,ι,i, 0, βfr

′
v,ι,i)B

∗
ι ]2

implicitly setting rv,ι,i = er′v,ι,i. Now, A ’s view is same as Game 1-(v − 1)-2 if
β = 0, otherwise it is Game 1-v-1 with r̄v,ι,i = fr′v,ι,i.

Lemma 2. |Pr[E1-v-1]− Pr[E1-v-2]| ≤ 2−Ω(ϑ).

Proof. We choose Bι
U←− GL7(Zp),∀ι ∈ [n]. Now, all the ciphertext query are

responded as:

[cµι,ι,i]1 = [(πµι,ι,i(i, 1), sι, xµι,ι,0,i, zµι,ι, 0, 0)Bι]1, ∀i ∈ [mµι,ι]

And the secret key query is responded with k̂j = e(P1, P2)
−

∑
ι∈[n]

∣∣Dj,ι

∣∣sιuj,ι for
all j ∈ [qsk], and

[kj,ι,i]2 =

{
[(ρj,ι,i(−1, i), uj,ι, yj,ι,0,i, rj,ι,i, yj,ι,1,i, r̄j,ι,i)B

∗
ι ]2, ∀ ∈ Dj,ι, (j < v)

[(ρj,ι,i(−1, i), uj,ι, yj,ι,0,i, rj,ι,i, 0, 0)B
∗
ι ]2, ∀ ∈ Dj,ι, (j > v)

Now, for the v-th secret key query, we sample w
U←− {0, 1}, and set

[kv,ι,i]2 = [(ρv,ι,i(−1, i), uv,ι, yv,ι,0,i, rj,ι,i, wyv,ι,1,i, r̄j,ι,i)B
∗
ι ]2

A ’s view is same as Game 1-v-1 if w = 0, otherwise it is Game 1-v-2.
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Lemma 3. There exist a PPT adversary B for DDH1 such that ∀ι ∈ [n],

∣∣Pr[E2-ι-µι-1]− Pr[E2-(ι−1)-qct,ι−1-3]
∣∣ ≤ AdvDDH1

B (ϑ) + 2−Ω(ϑ), if µι = 1∣∣Pr[E2-ι-µι-1]− Pr[E2-ι-(µι−1)-3]
∣∣ ≤ AdvDDH1

B (ϑ) + 2−Ω(ϑ), if µι > 1

Proof. Adversary B receives an instance of DDH1 (G, [a]1, [e]1, [tβ ]1) and it sets

pp = G. It samples Wι
U←− GL7(Zp),∀ι ∈ [n] and defines

Bι =


I4

a 0 1
0 1 0
1 0 0

Wι, B∗
ι =


I4

0 0 1
0 1 0
1 0 −a

W∗
ι ,∀ι ∈ [n].

All the secret key query are responded as,

r′j,ι,i, r
′′
j,ι,i

U←− Zp, such that
∑

i∈Dj,ι

r′j,ι,i =
∑

i∈Dj,ι

r′′j,ι,i = 0

[kj,ι,i]2 = [(ρj,ι,i(−1, i), uj,ι, yj,ι,0,i, r
′
j,ι,i, yj,ι,1,i, 0)B

∗
ι + (0, 0, 0, 0, r′′j,ι,i, 0, 0)W

∗
ι ]2

= [(ρj,ι,i(−1, i), uj,ι, yj,ι,0,i, r
′
j,ι,i + ar′′j,ι,i, yj,ι,1,i, r

′′
j,ι,i)B

∗
ι ]2

And sets k̂j = e(P1, P2)
−

∑
ι∈[n]

∣∣Dj,ι

∣∣sιuj,ι . We can implicitly set rj,ι,i = r′j,ι,i +
ar′′j,ι,i and r̄j,ι,i = r′′j,ι,i.

Now, all the ciphertext queries are responded as follows,

(i) If (ι′, qι) < (ι, uι), then the ciphertext is returned as,

[cqι,ι′,i]1 = [(πqι,ι′,i(i, 1), sι, 0, zqι,ι′ , xqι,ι′,1,i, 0)Bι′ ]1, ∀i ∈ [mqι,ι′ ]

(ii) If (ι′, qι) = (ι, uι), then ∀i ∈ [muι,ι] the ciphertext is returned as,

[cuι,ι,i]1 = [(πuι,ι,i(i, 1), sι, xuι,ι,0,i , 0, 0, 0)Bι + z′uι,ι(0, 0, 0, 0, tβ , 0, e)Wι]1

= [(πuι,ι,i(i, 1), sι, xuι,ι,0,i
, ez′uι,ι, 0, βfz

′
uι,ι)Bι]1

(iii) If (ι′, qι) > (ι, uι), the ciphertext is returned as,

[cqι,ι′,i]1 = [(πqι,ι′,i(i, 1), sι, xqι,ι′,0,i, zqι,ι′ , 0, 0)Bι′ ]1, ∀i ∈ [mqι,ι′ ]

Adversary B perfectly simulated the secret key and ciphertext queries. View
of adversary A is equally distributed between Game 2-ι-µι-1 and Game 2-(ι −
1)-qct,ι−1-3 or Game 2-ι-(µι − 1)-3, depending on µι = 1 or µι > 1 according as
β = 0 or β = 1.

Lemma 4.
∣∣Pr[E2-ι-µι-1]− Pr[E2-ι-µι-2]

∣∣ ≤ 2−Ω(ϑ).
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Proof. We choose Bι
U←− GL7(Zp),∀ι ∈ [n]. Now the j-th secret key is responded

as,

kj,ι,i = (ρj,ι,i(−1, i), uj,ι, yj,ι,0,i, rj,ι,i, yj,ι,1,i, r̄j,ι,i)B
∗
ι , ∀ι ∈ [n], i ∈ Dj,ι

k̂j = e(P1, P2)
−

∑
ι∈[n]

∣∣Dj,ι

∣∣sιuj,ι

And for the µι-th ciphertext query, we sample ŵ
U←− {0, 1} and set

[cµι,ι,i]1 = [(πµι,ι,i(i, 1), sι, (1− ŵ)xµι,ι,0,i, zµι,ι, ŵxµι,ι,1,i, z
′
µι,ι)Bι]1, ∀i ∈ [mµι,ι]

A ’s view is same as Game 2-ι-µι-1 if ŵ = 0, otherwise it is Game 2-ι-µι-2.

Lemma 5. There exists a PPT adversary B for DDH1 s.t.∣∣Pr[E2-ι-µι-2]− Pr[E2-ι-µι-3]
∣∣ ≤ AdvSXDH

B (ϑ) + 2−Ω(ϑ)

Proof. B receives an instance of DDH1 (G, [a]1, [e]1, [tβ ]1) and it sets pp = G. It
samples Wι

U←− GL7(Zp),∀ι ∈ [n] and defines

Bι =


I4

a 0 1
0 1 0
1 0 0

Wι, B∗
ι =


I4

0 0 1
0 1 0
1 0 −a

W∗
ι ,∀ι ∈ [n]

All the secret key query are responded as,

r′j,ι,i, r
′′
j,ι,i ← Zp, such that

∑
i∈Dj,ι

r′j,ι,i =
∑

i∈Dj,ι

r′′j,ι,i = 0

[kj,ι,i]2 = [(ρj,ι,i(−1, i), uj,ι, yj,ι,0,i, r
′
j,ι,i, yj,ι,1,i, 0)B

∗
ι + (0, 0, 0, 0, r′′j,ι,i, 0, 0)W

∗
ι ]2

= [(ρj,ι,i(−1, i), uj,ι, yj,ι,0,i, r
′
j,ι,i + ar′′j,ι,i, yj,ι,1,i, r

′′
j,ι,i)B

∗
ι ]2

And sets k̂j = e(P1, P2)
−

∑
ι∈[n]

∣∣Dj,ι

∣∣sιuj,ι . We can implicitly set rj,ι,i = r′j,ι,i +
ar′′j,ι,i and r̄j,ι,i = r′′j,ι,i.
Now, all the ciphertext queries are responded as follows,

[cuι,ι,i]1 = [(πuι,ι,i(i, 1), sι, 0, 0, xuι,ι,1,i , 0)Bι + z̄uι,ι(0, 0, 0, 0, tβ , 0, e)Wι]1

= [(πuι,ι,i(i, 1), sι, 0, ez̄uι,ι, xuι,ι,1,i , βf z̄uι,ι)Bι]1

implicitly setting zµι,ι = ez̄uι,ι. Now A ′s view is same as Game 2-ι-µι-2 if β = 1
implicitly setting z′uι,ι = βfz̄uι,ι; otherwise it is Game 2-ι-µι-3.

Lemma 6. Pr[E2-n-qct,n-3] = Pr[E3].

Proof. We choose Bι
U←− GL7(Zp),∀ι ∈ [n]. And define,

Wι =


I3

1
1

1
1

Bι, W∗
ι =


I3

1
1

1
1

B∗
ι ,∀ι ∈ [n]



14 Bishnu Charan Behera and Somindu C. Ramanna

Then all the ciphertext and secret key query are responded as,

cµι,ι,i = (πµι,ι,i(i, 1), sι, 0, zµι,ι, xµι,ι,1,i, 0)Bι

= (πµι,ι,i(i, 1), sι, xµι,ι,1,i, zµι,ι, 0, 0)Wι

kj,ι,i = (ρj,ι,i(−1, i), uj,ι, yj,ι,0,i, rj,ι,i, yj,ι,1,i, r̄j,ι,i)B
∗
ι

= (ρj,ι,i(−1, i), uj,ι, yj,ι,1,i, rj,ι,i, yj,ι,0,i, r̄j,ι,i)W
∗
ι

So, A ’s view is identical to both the games.

Lemma 7. For any PPT adversary A , there exists a PPT adversary B for
SXDH s.t. ∣∣Pr[E3]− Pr[E4]

∣∣ ≤ qskAdvSXDH
B + 2−Ω(ϑ)

Proof. The proof is done the same way as Game 0 to Game 1-qsk-2 but in the
reverse order.

4 Conclusion

In this work, we have proposed a construction of private-key MIPFE with an
apriori bounded slot size that can handle variable-length vectors at each slot.
We proved security under the SXDH assumption. It would be interesting to
further explore whether there exist constructions of MIPFE that can withstand
an arbitrary number of encryption slots with variable-length vectors at each slot.
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