
Cryptographic Analysis of Delta Chat∗

Yuanming Song
ETH Zurich

Lenka Mareková
ETH Zurich

Kenneth G. Paterson
ETH Zurich

Abstract
We analyse the cryptographic protocols underlying Delta
Chat, a decentralised messaging application which uses e-
mail infrastructure for message delivery. It provides end-to-
end encryption by implementing the Autocrypt standard and
the SecureJoin protocols, both making use of the OpenPGP
standard. Delta Chat’s adoption by categories of high-risk
users such as journalists and activists, but also more generally
users in regions affected by Internet censorship, makes it a tar-
get for powerful adversaries. Yet, the security of its protocols
has not been studied to date. We describe five new attacks on
Delta Chat in its own threat model, exploiting cross-protocol
interactions between its implementation of SecureJoin and
Autocrypt, as well as bugs in rPGP, its OpenPGP library. The
findings have been disclosed to the Delta Chat team, who
implemented fixes.

1 Introduction

Delta Chat1 is an open-source decentralised messaging ap-
plication based on e-mail infrastructure. It can be seen as
a custom-built e-mail client: users log into Delta Chat with
their existing e-mail accounts, and messages in Delta Chat are
specially formatted e-mails. It does not have a central server,
since users can choose different e-mail providers or even host
their own e-mail servers. It provides end-to-end encryption by
implementing the Autocrypt standard [58] and the SecureJoin
protocols [23], both based on a subset of the OpenPGP stan-
dard [35]. It functions in two modes, with different security:
verified chats guarantee end-to-end encryption, while unveri-
fied chats are not intended to be secure against active network
attackers, i.e. they are vulnerable to machine-in-the-middle
(MITM) attacks, and may not even be encrypted.

While Delta Chat does not explicitly advertise itself as
suitable for high-risk users, these users likely make up a no-
ticeable part of Delta Chat’s user base. For example, Delta

∗This is the full version of a work to appear at USENIX 2024.
1https://delta.chat/

Chat’s website lists feedback from people in regions with
strict Internet governance [22]. Delta Chat works with activist
groupings and researchers to improve the usability and secu-
rity of the application for high-risk users, and has produced
several need-finding reports by engaging with journalists and
activists in Ukraine [33, 34] and elsewhere [32].

Delta Chat has been supported or recommended by several
organisations in the human rights context. Among other fund-
ing sources, Delta Chat has received support from the U.S. Bu-
reau of Democracy, Human Rights and Labor to make Delta
Chat “more resilient and secure in places often affected by
internet censorship and shutdowns” [20]. Front Line Defend-
ers, a human rights organisation, recommended Delta Chat
for secure communication during COVID-19 [27]; eQualitie,
a digital security organisation, recommends Delta Chat to
Ukrainian users in the ongoing Russia-Ukraine war [53].

Despite being perceived as secure and engaging with high-
risk users, the security of Delta Chat is still largely unclear,
especially for its cryptographic components and protocol im-
plementations. Further, while its position as both an instant
messenger and an e-mail client ensures easier adoption, it also
brings more complexity to its protocols, thereby enlarging its
attack surface. The Autocrypt and SecureJoin protocols have
received considerable input from academia [49], but have
never been formally analysed. This is especially concerning
since these protocols use OpenPGP in non-standard ways,
and the Delta Chat team has made substantial changes to
the SecureJoin protocols. Further, the OpenPGP library used
by Delta Chat, rPGP, has received relatively little attention
compared to other OpenPGP libraries.

Recent works have uncovered serious security flaws in sev-
eral messaging applications deploying custom cryptographic
protocols such as Bridgefy [3,6], Matrix [4] and Threema [51].
In the last two, flaws were found after the application in ques-
tion was “vetted” via security audits, showing that audits
alone cannot establish a protocol as secure and trustworthy.
Indeed, Delta Chat too has undergone two audits that covered
its use of cryptography [56, 57]; as we will see, this was not
sufficient to prevent attacks.

1

https://delta.chat/

1.1 Contributions
We have analysed the core cryptographic protocols used by
Delta Chat, discovering five new attacks:

1. Gossip key injection. An attacker can send an e-mail
to the target such that the target will replace the public
key of a given contact of the target with an attacker-
controlled key and mark it as verified.

2. Group member removal. An attacker can remove ar-
bitrary members from a verified group as if they were
removed by other members by adding a carefully con-
structed plaintext e-mail header to a normal group mes-
sage.

3. Synchronisation forgery. An attacker capable of spoof-
ing self-addressed e-mails for the target can trivially
forge synchronisation messages. This allows the attacker
to verify themselves to the target or change chat statuses.

4. InsecureJoin observer. An attacker can exploit the fact
that clients observe self-sent SecureJoin protocol mes-
sages from other devices to trick the target into marking
an attacker-controlled key as verified.

5. Autocrypt Setup forgery. An attacker can forge an Au-
tocrypt Setup Message, which is used to transfer a user’s
secret key between different e-mail clients. This enables
the attacker to make the target use a key known by the
attacker.

Overall, our analysis demonstrates that Delta Chat users
were vulnerable to: a MITM attacker reading and modify-
ing their messages even in verified chats, being impersonated
to other Delta Chat users (or vice versa), their chat statuses
and setup being modified, being deceived to use an attacker-
controlled OpenPGP key and consequently losing most secu-
rity guarantees, and denial-of-service attacks.

1.2 Related Work
No prior works to date provide an in-depth security analysis
of Delta Chat or its specialised protocols. ClaimChain [44], a
part of the CounterMITM [50] specification which served as
the basis for SecureJoin, is a solution for privacy-preserving
key distribution for Autocrypt, but it was never implemented
in Delta Chat. A recent work [29] proposed to extend the
OpenPGP library used by Delta Chat with post-quantum prim-
itives, but did not include a security analysis.

OpenPGP itself has a long history in the literature as evi-
denced by EFAIL [52], attacks on signatures [48] and ElGa-
mal implementations [26], format oracle attacks [41] and key
overwriting attacks [17]. It has also been criticised for its lack
of usability [55, 61] and wider standardisation and deploy-
ment issues [37]. Yet, efforts are underway for updating the
cryptographic building blocks of OpenPGP [62].

Delta Chat has undergone four independent security au-
dits [20], and is planning a fifth audit in 2024 [39]. Two of the
audits covered the cryptographic components of Delta Chat,
including one in 2019 on its OpenPGP and RSA libraries [56],
and another in 2020 on its core Rust libraries [57], both con-
ducted by Include Security.

Our work fits within the larger area of cryptographic study
of secure messaging protocols. A number of works show
attacks on messaging apps [3, 4, 6, 7, 51], while other works
provide security proofs, largely focusing on Signal-based
protocols [9,15,24], though attacks may still be possible [25].
From a wider perspective, analysis of TLS 1.2 has provided
both security proofs [43, 47] and practical attacks [1, 8, 13].

In Signal, verification of user keys is more invisible than
in Delta Chat, relegated to an optional feature of verify-
ing “safety numbers”. Recent works have focused on both
its usability aspects [59] and enhancing its security guaran-
tees [30, 31]. For group communication, Messaging Layer
Security (MLS) [14] could provide an alternative, provably
secure design [10, 11, 18]; however, implementing it in a de-
centralised fashion remains an open problem [12].

Notably, Delta Chat’s need-finding reports [32–34] uncov-
ered many of the information security practices of higher-risk
users that were later replicated in a different context [2].

1.3 Methodology
We conducted a security analysis on the cryptography used in
Delta Chat, covering Delta Chat’s cryptographic components
as well as Delta Chat’s implementation of the Autocrypt and
SecureJoin protocols. We manually analysed Delta Chat’s
core Rust implementation2 as well as the relevant parts of
rPGP,3 Delta Chat’s OpenPGP library: we analysed version
1.132.0 of the Delta Chat core library,4 released on 6 Decem-
ber 2023, and version 0.10.2 of the rPGP library,5 released on
24 July 2023. We studied the specifications of OpenPGP [35],
Autocrypt [58], and SecureJoin [23] and compared them with
their implementations in Delta Chat and rPGP.

We implemented our attacks using the Python bindings
for the Delta Chat core library.6 We instantiated eavesdrop-
pers and network attackers as malicious SMTP proxies, and
we used a local testing e-mail server for attack simulation.
We verified our proof-of-concept attacks on Delta Chat core
versions 1.132.0 and 1.133.27 and Delta Chat Desktop 1.42.2.

However, we did not specifically analyse how Delta Chat
applications in different platforms use the core library, and
we did not analyse the security of experimental features such
as location streaming. Since Delta Chat and its dependencies

2https://github.com/deltachat/deltachat-core-rust
3https://github.com/rpgp/rpgp
4https://github.com/deltachat/deltachat-core-rust/

releases/tag/v1.132.0
5https://crates.io/crates/pgp/0.10.2
6https://pypi.org/project/deltachat/
7The latest core version available to us at the time.

2

https://github.com/deltachat/deltachat-core-rust
https://github.com/rpgp/rpgp
https://github.com/deltachat/deltachat-core-rust/releases/tag/v1.132.0
https://github.com/deltachat/deltachat-core-rust/releases/tag/v1.132.0
https://crates.io/crates/pgp/0.10.2
https://pypi.org/project/deltachat/

are open-source, we did not perform any reverse engineering
for our analysis. Our analysis and tests did not involve any
real Delta Chat users or target the Delta Chat infrastructure
such as Delta Chat bots8 and chatmail services.9

1.4 Responsible Disclosure

We disclosed our findings to the Delta Chat development team
on 2 February 2024, suggesting a 90-day disclosure period.
They acknowledged receipt and agreed to a coordinated dis-
closure on 7 February 2024. The team implemented fixes for
all of the main attacks as well as for a number of additional
issues identified during our analysis. Some of the fixes were
implemented in rPGP. The fixes were released to end users as
part of Delta Chat application versions 1.44 on 12-16 March
2024, with a public disclosure describing the issues on 25
March 2024 in order to allow time for users to update [21].

1.5 Overview of the Paper

We describe Delta Chat’s threat model in Section 2 and its
architecture in Section 3. We describe our attacks in Section 4
and discuss the implications of our findings in Section 5.

2 Threat Model

Delta Chat provides different levels of security for different
types of chats. Verified chats provide guaranteed end-to-end
encryption with the SecureJoin protocols, protecting against
network attackers that can actively modify messages, such
as malicious e-mail servers. Unverified chats are opportunis-
tically end-to-end encrypted via Autocrypt, protected only
against passive eavesdropping attackers. Hence, for unveri-
fied chats, MITM attacks are outside of the threat model [39];
it is also possible to use them to send unencrypted messages.
We define our threat model such that the attacker targeting
different types of chats has different capabilities and goals.

Delta Chat does not offer advanced properties such as for-
ward secrecy and post-compromise security, and verified chats
do not aim to protect against insider attacks. Our threat model
follows Delta Chat’s security claims and assumptions, thus
only capturing a subset of the attackers typically considered
for other end-to-end encrypted messaging applications.

Capabilities. We consider attackers with one or more of
the following capabilities, ordered roughly by their strength.
Note that different capabilities may overlap with each other.

Sending e-mails. The attacker knows the target’s e-mail
address and is able to send e-mails to the target without being
flagged by the spam detector or blocked by the target. In Delta

8https://bots.delta.chat/
9https://delta.chat/en/2023-12-13-chatmail

Chat, it is possible to receive e-mails from non-contacts, in
which case the e-mails appear as “message requests” [20].

Knowledge of public keys. The attacker knows the target’s
public key. This capability is trivial for eavesdropping attack-
ers since they can observe the Autocrypt headers attached
to all of the target’s outgoing e-mails. The attacker may also
learn the target’s public key by tricking the target into sending
an e-mail to an attacker-controlled e-mail address, or through
the Autocrypt key gossip mechanism (Section 3.1.3).

Eavesdropping. The attacker is able to observe messages
on the network, including the target’s incoming and outgoing
e-mails; this is assumed in the Autocrypt standard [58].

E-mail spoofing. The attacker is able to create and send
e-mails to the target with the From header arbitrarily chosen
by the attacker, e.g. through an insecure SMTP server [45].
A special case is spoofing an e-mail as if it were sent from
the target to themselves, where both the From and To headers
represent the target’s e-mail address.

Control of network messages. The attacker can read, create,
modify, and delete messages. The SecureJoin protocols [23,
Section 1.1] as well as Delta Chat [20] consider such a net-
work attacker in their threat model.

Limiting assumptions. Attackers targeting unverified chats
are assumed to not spoof e-mails or modify network messages.

We assume that users can share their QR invite codes via a
secure out-of-band channel that cannot be observed or modi-
fied by the attacker [23, Section 1.1].

All verified contacts of the target are honest, and no infil-
trators colluding with the attacker are present in the verified
groups where the target is a member [23, Section 2.2.3]. Note
that this assumption does not exclude the attacker from com-
municating with the target through unverified chats, or estab-
lishing themselves as a verified contact or a group member
by exploiting vulnerabilities in Delta Chat.

Goals. The Autocrypt standard does not specify the at-
tacker’s goals, but it can be inferred that Autocrypt intends to
protect the content of encrypted messages. The SecureJoin
protocols specify the attacker’s goals as “i) read the content
of messages, and to ii) impersonate peer devices” [23, Sec-
tion 1.1]. Finally, Delta Chat states that messages in verified
chats “can not be read or altered by compromised e-mail
servers or Internet providers” [20]. Thus, the attacker’s goal is
to break the confidentiality or integrity of encrypted messages,
break authenticity by forging messages in verified chats, and
break verification guarantees in Delta Chat. The latter in-
cludes the attacker getting themselves or some honest peer to
be verified by the target under a key controlled by the attacker,
and changing the setup of verified chats.10

10Having the target verify a key controlled by the attacker allows the
attacker to perform a “Bob in the middle” attack [23, Section 2.2.3] to
the target as a malicious insider and break all previous security properties.
Changing the verified chat setup qualifies as breaking integrity or authenticity.

3

https://bots.delta.chat/
https://delta.chat/en/2023-12-13-chatmail

We do not consider removing, duplicating, or reordering
messages as among the goals of the attacker, even though they
are trivial for network attackers and can become real threats.

3 Delta Chat

In this section, we introduce Autocrypt (Section 3.1) as well
as the SecureJoin protocols (Section 3.2), which together form
the cryptographic core of Delta Chat.

Delta Chat relies on a subset of the OpenPGP standard for
end-to-end encryption that Delta Chat claims to be secure [20],
implemented in the rPGP library. We summarise the parts of
OpenPGP relevant to our analysis in Appendix A.

User’s perspective. Upon installation, Delta Chat prompts
the user to log into their e-mail account or import an existing
Delta Chat account from another device. The user can add a
contact by scanning a QR code of another user, inputting an
e-mail address or being part of the same group chat. When
the user sends an encrypted message, it is shown with a small
padlock. If the encryption material for a contact is considered
verified, chats with that contact are shown with a green check-
mark. Verification needs little effort from the user: a contact is
verified when added using their invite code or from a verified
chat, and a chat is verified if all members are verified.

Public keys. Delta Chat associates each contact or peer
with several OpenPGP keys. In the context of Autocrypt,
these will be referred to as the peer’s Autocrypt (public) key
and the peer’s gossip key. In the context of SecureJoin, we
will also define verified keys. The functions of these keys will
be explained in later subsections.

AEAP. Automatic E-mail Address Porting (AEAP) [38]
allows a user to switch to a new e-mail in Delta Chat and
optionally set up forwarding from their old e-mail. When the
user sends a message to an existing verified contact from the
new address, the contact automatically changes the address
for the user with minimal interruption to their chats.

3.1 Autocrypt
Autocrypt [58] is a set of guidelines for e-mail clients to
provide low-effort end-to-end e-mail encryption to users by
automating key management. The current version, Autocrypt
Level 1 (release 1.1.0), provides opportunistic encryption
with OpenPGP. It is based on the trust on first use (TOFU)
principle and does not support key verification, only aiming to
defend against passive data collection attacks. In Autocrypt,
an “encrypted” e-mail is always signed and encrypted.

Autocrypt e-mail clients attach their public keys in
the Autocrypt e-mail header. They may also include
Autocrypt-Gossip MIME headers in e-mail messages to

distribute the public keys of their peers. Autocrypt e-mail
clients maintain states for communication peers in a table
based on the Autocrypt-related headers in incoming e-mails,
and use this to check whether encryption is possible or recom-
mended for a particular e-mail message. The specification also
defines the Autocrypt Setup Message to enable key transfer
between different e-mail clients.

Delta Chat implements all functionalities in the Autocrypt
standard. Other e-mail clients have, if any, only limited sup-
port for Autocrypt headers. Where relevant, we describe
Delta Chat’s additions to the standard Autocrypt features.

3.1.1 OpenPGP Keys

We cover a subset of OpenPGP keys that have the same struc-
ture as the OpenPGP transferable public key in the Autocrypt
standard, which we call Autocrypt-compliant. An Autocrypt-
compliant OpenPGP key consists of five parts: (i) a primary
key for signing, (ii) a User ID, (iii) a self-signature that cer-
tifies the User ID and the primary key, (iv) an encryption
subkey, and (v) a signature that binds the subkey using the
primary key [58, Section 3.1.1]. While Delta Chat only gener-
ates Autocrypt-compliant OpenPGP keys, it actually supports
the usage of most valid OpenPGP keys.

The OpenPGP key fingerprint is a 20-byte SHA-1 digest
derived from the the public part of the primary key. Other
parts of the OpenPGP key do not contribute to the fingerprint.

3.1.2 Autocrypt Header

The Autocrypt header is an e-mail header that contains the
sender’s address addr and public key data keydata, as well
as an optional prefer-encrypt attribute that indicates the
agreement to perform encryption with peers having the same
preference. Autocrypt e-mail clients should include these
headers in every message for peers that also use Autocrypt.
For this reason, Autocrypt traffic is easily recognisable.

The keydata attribute represents an OpenPGP transfer-
able public key (Section 3.1.1). The content of the User ID
packet is decorative. The default signing and public-key en-
cryption algorithms in Autocrypt are Ed25519 and ECDH
over Curve25519 respectively, and RSA PKCS#1 v1.5 should
also be supported. Delta Chat additionally supports NIST
P-256 and P-384 curves. See [58, Section 7.2] for an example
e-mail with an Autocrypt header.

In Autocrypt, the party receiving a message with an
Autocrypt header should check whether the addr attribute
matches the From header in the e-mail, rejecting the header
but keeping the message if not. Then, it should place the peer’s
public key in the peer state table (Section 3.1.4) unless there
is already an entry for the peer’s Autocrypt public key, and the
effective date (sending time of the message, capped to now)
of the message is less recent than that of the existing entry.

4

3.1.3 Autocrypt Key Gossip

Autocrypt specifies the key gossip mechanism to allow users
to send encrypted replies to a group of recipients without hav-
ing to communicate with each of them in advance. Autocrypt
e-mail clients may include Autocrypt-gossip headers in
the outbound message, one for each of the intended recipients
(excluding Bcc). They must be placed in the root MIME part
of the encrypted message payload. Each Autocrypt-gossip
header contains the address and the public key of a recipi-
ent. The public key is taken from the peer state table (Sec-
tion 3.1.4), and for this purpose, Autocrypt prefers the peer’s
public key (updated with the Autocrypt header) over the
gossip key in the peer state table. The Autocrypt-gossip
header has the same format as the Autocrypt header, except
that the prefer-encrypt attribute should not be included.
Delta Chat includes the prefer-encrypt attribute nonethe-
less.

Gossip keys in the peer state table are updated in a sim-
ilar way to Autocrypt keys. Namely, the receiver checks if
the address in an Autocrypt-gossip header matches some
address in the e-mail’s To, Cc, or Reply-To header, ignoring
the header if not, and updates the peer’s gossip key in the peer
state table accordingly unless the peer’s current gossip key in
the table has a more recent effective date.

3.1.4 Peer State Table

Autocrypt e-mail clients maintain a state for each peer in a
peer state table. A peer state records the encryption informa-
tion of the peer, such as keys and the encryption preference,
as well as metadata that can be used by the client to decide
on whether to update the state. The client updates the peer
states automatically based on the incoming e-mails, relieving
the user from OpenPGP key management. When sending a
message, the e-mail client uses the peer state table to check
whether encryption is possible or preferred, and the client au-
tomatically selects the appropriate keys for encryption based
on the recipients’ states in the peer state table.

Figure 1: Simplified overview of a peer state in Delta Chat.

... peers[addr] ...

Autocrypt public_key public_key_timestamp
gossip_key gossip_key_timestamp

SecureJoin verified_key
secondary_verified_key

Other prefer_encrypt, ...

Figure 1 gives an overview of a peer state in Delta Chat,
which is augmented with fields for verified keys for the Se-
cureJoin protocols (Section 3.2). Unlike Autocrypt keys, a

network attacker should not be able to change verified keys in
the peer state table to attacker-controlled keys by modifying
network messages. Verified chats in Delta Chat, implemented
as verified groups (Section 3.2.3), use exclusively verified
keys for chat messages.

Delta Chat also adds a secondary verified key column to the
peer state table. This seems to be in place to enable a faster
recovery from key changes.11 When marking a gossip key as
verified, if there is already a verified key for the peer and the
gossip key is different from the verified key, then Delta Chat
sets the peer’s secondary verified key to be the gossip key.
When receiving an encrypted message from the peer signed
with the verified key, Delta Chat removes the secondary veri-
fied key for the peer; otherwise, if the message is signed with
the secondary verified key, Delta Chat replaces the verified
key with the secondary verified key. That is, depending on
which key part is actually used by the peer, the two verified
keys in the peer state table “resolve” into one.

3.1.5 Autocrypt Setup Message

The Autocrypt specification defines a mechanism to transfer
a user’s secret key between different Autocrypt e-mail clients
via the Autocrypt Setup Message.

The Autocrypt Setup Message is a self-addressed e-mail
that contains the user’s OpenPGP transferable secret key,
ASCII-armored and encrypted with a machine-generated ran-
dom passphrase called the Setup Code. The user first gen-
erates the Autocrypt Setup Message on the old Autocrypt-
enabled e-mail client and writes down the Setup Code dis-
played on screen. Then, the user logs into the new e-mail
client with the same e-mail address. The new client finds the
Autocrypt Setup Message in the inbox and checks it is well-
formed. Then, the new client should ask the user for their
approval of the import.12 If the user agrees, the new client
prompts the user to enter the Setup Code for decryption. The
new client tries to decrypt the message with the entered Setup
Code, and if successful it imports the decrypted secret key.

The Autocrypt Setup Message contains an
Autocrypt-Setup-Message: v1 header but not an
Autocrypt header. The e-mail body contains instructions in
plaintext, and an HTML attachment that contains the user’s
ASCII-armored and symmetrically-encrypted secret key.
Decryption with the correct Setup Code yields the user’s
ASCII-armored OpenPGP transferable secret key. The Setup
Code is used to both decrypt and authenticate the Autocrypt
Setup Message. It contains 36 random digits, separated by
dashes into blocks of four digits. An example Setup Code is
9503-1923-2307-1980-7833-0983-1998-7562-1111 [58,
Section 5.4.2]. The Autocrypt Setup Message may reveal

11https://github.com/deltachat/deltachat-core-rust/
issues/4541

12In Delta Chat, users are not alerted directly but must click on the dis-
played Setup Message.

5

https://github.com/deltachat/deltachat-core-rust/issues/4541
https://github.com/deltachat/deltachat-core-rust/issues/4541

the first two digits of the Setup Code. The e-mail client may
show these two digits in the prompt as a weak confirmation
that the user is entering the correct Setup Code.

3.2 SecureJoin
The SecureJoin protocols [23], namely the Setup Contact
protocol and the Verified Group protocol, protect Autocrypt
from active network attackers through key verification. They
were originally developed as part of the CounterMITM proto-
cols [50], but Delta Chat’s implementation has diverged from
the original specification in non-trivial ways.13

3.2.1 Verification in Delta Chat

A chat being verified indicates that it is a verified group (Sec-
tion 3.2.3), while a contact being verified indicates that the
one-on-one chat with the contact is verified, and the user can
add the contact to verified groups. In Delta Chat, key verifi-
cation is invisible to the user, but it is an important building
block for both chat and contact verification.

A contact can become verified by performing the Setup
Contact protocol (Section 3.2.2) with the user, or being intro-
duced to a verified group in which the user is a member. Delta
Chat marks a contact as verified if (i) it obtains a verified
key of the contact, and (ii) it is convinced that the contact is
currently using the verified key. For the latter, the contact’s
verified key should have the same fingerprint as the contact’s
Autocrypt key in the peer state table, or the gossip key if the
Autocrypt key is unavailable. A chat is marked verified upon
creation if all chat members are verified. Note that from ver-
sion 1.133.0, Delta Chat separates contact verification into
forward and backward verification (see Appendix B).

3.2.2 Setup Contact Protocol

The Setup Contact protocol allows two peers to exchange
e-mail addresses and public keys in a verified manner.

A peer (Alice) first shows her invite code to the other peer
(Bob) through a second, out-of-band channel. In Delta Chat,
the invite code is usually a QR code, but it can also be a string
that the QR code represents. Alice’s invite code contains
her fingerprint, address, nickname, and two random tokens,
INVITE and AUTH, taken from her token database. These
tokens do not expire unless Alice manually revokes the corre-
sponding QR code.

After scanning Alice’s QR code, Bob’s device displays the
name and address contained in the QR code, and asks Bob
to manually accept the new contact. The rest of the protocol
does not require further user interaction, and messages are
automatically exchanged using Autocrypt through the chan-
nel potentially controlled by the attacker. At the end of the

13Note that at the time of writing, the new specification for SecureJoin [23]
was not complete with respect to the implementation in Delta Chat.

protocol, both participants will have learned and validated the
contact information and the public key of their peer. Delta
Chat will mark the peer as verified.

A detailed overview of the protocol flow can be found in
Fig. 4 in Appendix C, however it is not necessary for the
understanding of our attacks.

The SecureJoin document gives an informal argument
why the Setup Contact protocol is resistant to impersonation
from active attackers that can modify, create and delete mes-
sages [23, Section 2.1.2]. However, it acknowledges that an
attacker could replay Bob’s messages in the protocol to Alice,
which could potentially be used to make Alice switch to a
compromised key of Bob [23, Section 2.1.3].

3.2.3 Verified Group Protocol

The verified group in Delta Chat is a type of group chat that is
secure against network attacks. Members in a verified group
are verified to each other, and all messages in a verified group
are signed and encrypted using verified keys.

Initialisation. The SecureJoin document does not specify
how to create a verified group. In Delta Chat, a user first
creates the group locally with a random group identifier. If
all members are verified to the creator, the group is auto-
matically marked as verified. The group is invisible to other
members until the creator sends the first message in the group.
When a group member receives this message, Delta Chat
creates the group locally for that member. The group mem-
ber’s client builds the group member list with the From and
To headers, and the group name and identifier can be found
in the Chat-Group-Name and Chat-Group-ID headers. If
a Chat-Verified: 1 header is also present in the signed
and encrypted payload, and the message is signed with the
sender’s verified key, then the group member’s client marks
all other members of the group as verified, using the gossip
keys in the message as verified keys.

Preparing for joining a verified group. Suppose Alice is
a member in some verified group, while Bob is not. For Alice
to add Bob to the verified group, Alice should have verified
Bob’s key, e.g. by performing the Setup Contact protocol with
Bob, or by being in another verified group with Bob. If this
is not the case, Alice can perform a process very similar to
the Setup Contact protocol to prepare for adding Bob to the
group, which we summarise below.

First, Alice shares the QR code of the verified group with
Bob. The QR code contains Alice’s fingerprint and address,
the group name and identifier, and two random tokens associ-
ated with the group, INVITEg and AUTHg, taken from Alice’s
token database. Tokens are associated with their groups, so
different groups use separate tokens.

Bob scans the QR code shared by Alice and manually con-
firms joining the verified group specified in the QR code.

6

No further user interaction is required for the rest of the pro-
cess. After that, the peers’ clients perform a variant of the
Setup Contact protocol. After verifying Bob’s key, Alice’s
client adds Bob to the verified group similar to the process
we describe below.

Joining a verified group. Suppose Alice and Bob are veri-
fied to each other. For Alice to add Bob to a verified group,
Alice’s client first adds Bob to the group locally, and then
sends a Chat-Group-Member-Added message to all mem-
bers, including Bob. The message contains the verified keys
of all members except Alice herself as Autocrypt-Gossip
headers in the signed and encrypted payload.

On receiving the message, Bob’s client creates the group
locally and marks peers as verified using the gossip keys.
Other group members’ clients check that Alice and they are
both members of the group (while Bob may or may not be
in the group in their views), mark the gossip keys as verified,
and add Bob as a group member.

4 Attacks

In this section, we describe our attacks within the Delta Chat
threat model outlined in Section 2. Further attacks outside of
their threat model can be found in Appendix E.

4.1 Gossip Key Injection

Delta Chat’s implementation of the Verified Group protocol
allows an attacker to trick the target into marking an attacker-
controlled gossip key as verified. This attack does not require
a network attacker: the attacker only needs to know the tar-
get’s public key and send a future-dated e-mail to the target.

Vulnerability. In a verified group, some messages contain
one or more Autocrypt-Gossip headers in the protected
payload. When adding a member to the group, the intro-
ducer sends a Chat-Group-Member-Added group message
that contains the verified keys of all members, including the
new member. In addition, Delta Chat periodically attaches
the gossips of other members’ verified keys to verified group
messages, to allow for a faster recovery from key changes.
The recipient’s client marks the gossiped keys as verified in
the peer state table as described in Section 3.2.3.

Since Autocrypt-Gossip headers should only be present
in the signed and encrypted payload, the attacker cannot add
or modify Autocrypt-Gossip headers in verified group mes-
sages. However, it is possible for the attacker to trick the
target’s client into marking a different gossip key than that in
the message as verified.

When marking a gossip key as verified, Delta Chat iterates
over the intersection of addresses in the gossip headers and

addresses in the To header.14 For each address, Delta Chat sets
its verified key to be the gossip key in the peer state table, or
sets a secondary verified key to be the gossip key if a different
verified key is already present in the table. The problem is
that there is no guarantee that the peer’s gossip key in the
peer state table actually corresponds to the gossip key in the
message, and it is possible that the peer’s gossip key does not
get updated by the message.

Delta Chat only updates the peer’s gossip key in the table if
the gossip key in the message is more recent.15 When compar-
ing the two timestamps, Delta Chat does not cap the send time
of the e-mail as required by the Autocrypt standard [58, Sec-
tion 3.3, 3.6]. Therefore, if the gossip key for some contact
in the peer state table has a more recent timestamp than the
verified group message with a gossip for the contact, then
Delta Chat marks the gossip key in the table as verified. This
is potentially different from the contact’s real key.

Attack. Suppose Alice is a member of a verified group,
while Bob is either a member in the verified group or is about
to be added to the verified group by another member Carol
with a Chat-Group-Member-Added message. Alice and Bob
have not communicated in Delta Chat before. Mallory is an
attacker outside the group that can send messages to Alice
and knows Alice’s public key. Mallory does not need to be
able to eavesdrop on, spoof or modify network messages, but
these capabilities would be helpful in making use of the attack.
Figure 2 illustrates the following attack.

First, Mallory sends an e-mail message to Alice, with Bob
also in the To header of the e-mail. The message includes a
malicious gossip key for Bob in its protected payload. The e-
mail is dated from the future, which is not expected behaviour
but often occurs in practice since client time misconfiguration
issues are common. Alice’s client parses the message and up-
dates Bob’s gossip key in the peer state table accordingly. The
malicious gossip key remains in Alice’s peer state table, even
if Alice deletes the message or blocks Mallory afterwards.

After a short while, suppose Alice receives a message in
the verified group with a gossip key for Bob. Because the
malicious gossip key for Bob has a more recent timestamp,
the verified group message does not update Bob’s gossip key
in Alice’s peer state table. Alice’s client then tries to mark
the gossip key for Bob as verified, which has the effect of
marking the malicious gossip key as verified instead.

If Bob is a new member to be added to the group, then
Mallory already controls Bob’s verified key in Alice’s view.
Otherwise, Mallory controls a secondary verified key for Bob,
and in order to promote the malicious key to a verified key,

14https://github.com/deltachat/deltachat-core-rust/blob/
1edd7045bec1f8fa0761e26a975cb9f07596feb8/src/receive_imf.
rs#L2479

15https://github.com/deltachat/deltachat-core-rust/blob/
1edd7045bec1f8fa0761e26a975cb9f07596feb8/src/peerstate.rs#
L332

7

https://github.com/deltachat/deltachat-core-rust/blob/1edd7045bec1f8fa0761e26a975cb9f07596feb8/src/receive_imf.rs#L2479
https://github.com/deltachat/deltachat-core-rust/blob/1edd7045bec1f8fa0761e26a975cb9f07596feb8/src/receive_imf.rs#L2479
https://github.com/deltachat/deltachat-core-rust/blob/1edd7045bec1f8fa0761e26a975cb9f07596feb8/src/receive_imf.rs#L2479
https://github.com/deltachat/deltachat-core-rust/blob/1edd7045bec1f8fa0761e26a975cb9f07596feb8/src/peerstate.rs#L332
https://github.com/deltachat/deltachat-core-rust/blob/1edd7045bec1f8fa0761e26a975cb9f07596feb8/src/peerstate.rs#L332
https://github.com/deltachat/deltachat-core-rust/blob/1edd7045bec1f8fa0761e26a975cb9f07596feb8/src/peerstate.rs#L332

Mallory Alice Carol Bob

pkAlice Members of a verified group

Mutually verified
(Dated from future)
Bob’s key: pkevil

peers[Bob].gossip_key← pkevil
peers[Bob].gossip_key_timestamp← future

Add Bob to the group;
Bob’s key: pkBob

Add Bob to the group;
Bob’s key: pkBob

Ignore pkBob for lower timestamp;
peers[Bob].verified_key←
peers[Bob].gossip_key= pkevil

Bob verified under pkevil

Figure 2: The message sequence for the example gossip key injection attack. Note that the initial message from Mallory to Alice
may or may not be actually sent to Bob.

Mallory would need to spoof a message from Bob to Alice
that is signed with the malicious gossip key.

Mallory as a network attacker could also perform the attack
without sending a future-dated e-mail to Alice. Mallory could
intercept a verified group message to Alice that contains gos-
sips, which is easily recognisable from the payload size or
from new recipients in the To header, and, after sending an
e-mail with the malicious gossip key, modify the Date header
to an earlier time before forwarding the message to Alice.

For Alice to mark Bob as verified, Alice’s client also needs
to be convinced that Bob is actually using the verified key. If
Alice already had Bob’s real public key in her peer state table,
then Alice’s client would not mark Bob as verified, since Bob
is potentially using a different key. In that case, to complete
the attack, Mallory just needs to also spoof a message from
Bob to Alice with the malicious key in the Autocrypt header.

Consequences. By tricking Alice’s client to verify a mali-
cious key for Bob, Mallory can eavesdrop on messages from
Alice to Bob or in any verified group where Bob is a mem-
ber. Mallory can also perform a machine-in-the-middle at-
tack between Alice and Bob, despite Alice believing that her
communications with Bob are protected with guaranteed end-
to-end encryption. Furthermore, Mallory can cause Alice to
mark any contact or key as verified by spoofing a message
from Bob to Alice which adds Alice to a non-existent verified
group with malicious gossips in the message.

Using Delta Chat’s AEAP feature (Section 3), Mallory

could change Bob’s address in Alice’s view by sending an
e-mail to Alice from the new address. Indeed, Mallory could
also use AEAP to make herself verified to Alice, avoiding the
need for spoofing e-mails from Bob. However, AEAP would
leave a visible user notification to Alice, which could alert
her about the attack.

Finally, Alice could unknowingly disseminate the mali-
cious key further in verified groups where Alice is a member,
causing more users to verify the malicious key for Bob.

Mitigation. When marking gossiped keys as verified, Delta
Chat should not rely on the untrusted gossip key entry in
the peer state table. Instead, Delta Chat should directly mark
the gossip keys contained in the protected e-mail payload
as verified. Further, Delta Chat should use the effective date
defined in the Autocrypt standard and cap the message date
before updating the peer state table.

4.2 Group Member Removal
By manipulating message headers, it is possible for a network
attacker to change a normal group message into the special
message for group member removal. As a result, the attacker
can remove arbitrary members from a verified group, as if
they were removed by some other member in the group.

Vulnerability. Despite the signing and encryption of mes-
sages, message headers are surprisingly malleable. By adding

8

or modifying unprotected e-mail headers of an encrypted mes-
sage, the attacker can drastically change the meaning and
effect of that message. Table 1 lists the manipulatable headers
relevant to our attacks. A header in Delta Chat may appear as
an IMF header in the unprotected part of the e-mail, or as a
MIME header in the possibly signed and encrypted payload.
Delta Chat internally categorises headers into four types.

Unprotected: these headers must appear as IMF head-
ers, e.g. Date and Chat-Version. Hidden: these head-
ers can be large and therefore must not appear as IMF
headers, e.g. Chat-User-Avatar. Protected: these head-
ers are encrypted whenever the message is encrypted,
e.g. Chat-Group-Name. Secured: these headers should
only be present in the signed and encrypted payload. The
Chat-Verified and Secure-Join-Fingerprint headers
are explicitly marked as secured. In addition, Delta Chat treats
the Autocrypt-Gossip header as secured.

The e-mail parser removes or ignores secured headers that
appear in the unencrypted part. However, perhaps counterin-
tuitively, a protected header can appear as an unencrypted
IMF header even if the e-mail is signed and encrypted.
This design choice is necessary for headers like Subject
and From, which are generally required for well-formed e-
mails, but is incorrect for other protected headers, such as
Chat-Group-Member-Removed, which should only appear
in the possibly encrypted e-mail body.

The situation is more complicated when the same pro-
tected header appears in both encrypted and unencrypted
parts. Delta Chat parses the unencrypted headers before the
encrypted headers, preferring a new header over an already
parsed one if the header is considered as “known” or starts
with Chat-. Therefore, the encrypted header generally takes
precedence over the unencrypted header. For example, the
encrypted Subject header is preferred over its unencrypted
counterpart, which reflects a common practice in OpenPGP
e-mail clients to hide e-mail subjects.

However, because of several oversights in Delta Chat’s
e-mail parser implementation, there are cases where
the unencrypted header could overwrite the encrypted
header, including Secure-Join, Secure-Join-Auth and
Secure-Join-Group, which are not included in the list of
known headers. Moreover, Secure-Join-Auth should have
been treated as secured instead of protected, as it never ap-
pears unencrypted in honest executions.

In addition, the Message-ID header and the From
header are in effect susceptible to overwriting. The
Message-ID header, while not susceptible to overwrit-
ing per se, can be overwritten by the unprotected
X-Microsoft-Original-Message-ID header, which was
used in older versions of Delta Chat and remains for com-
patibility. For the From header, Delta Chat decided not to
reject an e-mail whose encrypted From header is different
from its unencrypted From header; however, Delta Chat con-
siders such an e-mail as having an unsigned From, meaning

that it cannot be used to initiate the AEAP mechanism.

Attack. Suppose Alice and Bob are in the same verified
group. If Alice wished to remove Bob from the group, Alice
would send a message with a Chat-Group-Member-Removed
header containing Bob’s e-mail address to the members of
the verified group. Upon seeing the message, all members’
clients, including Bob’s, would remove Bob from the verified
group, and display a notification saying that Bob has been
removed from the group by Alice.

Suppose Mallory is an eavesdropping attacker outside the
group that is also capable of spoofing messages to Alice; Mal-
lory can also be a network attacker. First, Mallory captures
a non-administrative message that Alice has sent to the veri-
fied group at some point in the past. Mallory should be able
to capture such a message with reasonable probability, and
she can use some characteristics of the message, such as size
and the To header, to help distinguish it from administrative
messages. Mallory can easily distinguish messages in dif-
ferent groups, since the group ID is a part of the plaintext
Message-ID header.

Then, Mallory modifies the captured message by adding
a Chat-Group-Member-Removed header with Bob’s address
to the unprotected IMF header section of the message. Mal-
lory also modifies the unprotected Message-ID header so
that the message will not be treated as a duplicate by Alice.
Newer versions of Delta Chat place a copy of the Message-ID
header in the protected payload, but the attacker can instead
set the unprotected X-Microsoft-Original-Message-ID
header, which takes precedence over Message-ID. (If Mal-
lory could intercept and modify a non-administrative mes-
sage from Alice to the verified group before it is de-
livered to the group, she could instead directly add the
Chat-Group-Member-Removed header with Bob’s address
to its IMF headers.)

After that, Mallory sends the modified message to all mem-
bers of the verified group. The members’ clients incorrectly
interpret the modified message as a group member removal
message initiated by Alice. Mallory may choose to send this
message to Alice too; her client would also remove Bob upon
receiving the message.

Consequences. While the attacker cannot read messages in
the verified group, they are able to arbitrarily remove members
of the group, which could create confusion about the group’s
membership state or dissolve the group.

There could be other potential attacks that leverage header
manipulation. For example, it is possible to add or remove the
avatar of a verified group by adding a Chat-Group-Avatar
header to a normal group message. It is also possible to change
the group name for two peers in a verified group by reusing
another message from their one-on-one chat, where other
members could not see the change.

9

Table 1: The types and susceptibility to overwriting of the manipulatable headers
in Delta Chat that are relevant to our attacks.

Header Type Overwriting Reference
Chat-Group-Avatar hidden no Section 4.2
Chat-Group-Member-Removed protected no Section 4.2
From protected yes Appendix E
Message-ID protected yes Section 4.2
Secure-Join protected yes Section 4.4
Secure-Join-Auth protected yes Appendix E

Mitigation. An immediate fix to the attack would disallow
headers starting with Chat- to appear in the unencrypted part
if the message is encrypted. However, it takes more careful
checks to completely eliminate such attacks. In general, if a
protected header appears in the plaintext part of an encrypted
message, then Delta Chat should regard the message as invalid.
There are a few exceptions for headers generally required for
a well-formed e-mail message, such as Subject and From,
in which case Delta Chat should prefer the encrypted header,
and only reject the message if the encrypted header is meant
to match the unencrypted header but does not.

4.3 Synchronisation Forgery

Delta Chat verifies self-addressed messages with the user’s
own Autocrypt public key in the peer state table. Conse-
quently, an attacker capable of spoofing self-addressed e-mails
could trivially forge self-addressed messages for the target,
including synchronisation messages.

Vulnerability. Delta Chat synchronises certain changes in
the account across devices. These include the addition or
deletion of QR invite code tokens for the SecureJoin protocols,
changes to chat statuses like blocking contacts or archiving
chats, and changes to a limited set of account configurations
like display names. Synchronisation is enabled by default,
even if the user only uses Delta Chat on one device.

Delta Chat synchronises these changes by sending a syn-
chronisation message, which is a self-addressed e-mail with
a multi-device-sync.json file attached. The attachment
contains the synchronisation items represented in JSON. Like
other messages, the synchronisation message should be signed
and encrypted. While Delta Chat encrypts the message cor-
rectly with the user’s real public key, the verification of a
self-addressed e-mail message uses the user’s Autocrypt pub-
lic key as it appears in the peer state table, similarly as for
other opportunistically protected one-on-one chats. As with
other contacts, Delta Chat updates the user’s own Autocrypt
key in the peer state table using the Autocrypt headers from
the received self-addressed messages.

Attack. An attacker in the possession of the target’s pub-
lic key and capable of spoofing self-addressed e-mails for
the target could make the target’s client execute malicious
synchronisation items crafted by the attacker.

To mount this attack, the attacker creates a message con-
taining the malicious synchronisation items, signed with a
key known by the attacker and encrypted with the target’s
public key. This message contains an Autocrypt header that
corresponds to the public part of the signing key. The attacker
then sends the message to the target, spoofed to appear as if
it was sent by the target.

On receiving the message, the target’s Delta Chat client
first updates the target’s own Autocrypt key entry in the peer
state table to the public key in the Autocrypt header, then
decrypts the message with the target’s own private key, and
finally verifies the message with the target’s own Autocrypt
key in the peer state table, which succeeds since the message
is indeed signed with the private counterpart of the Autocrypt
key; see Fig. 3. The target’s client now processes the message
as a valid synchronisation message and proceeds to execute
the malicious synchronisation items in the message.

Consequences. By planting AUTH and INVITE tokens in
the synchronisation items to the target, the attacker could ver-
ify themselves to the target, or impersonate other contacts to
the target in the Setup Contact protocol or the Verified Group
protocol. The recent Delta Chat updates on synchronisation16

equip the attacker with more capabilities. The attacker could
now change chat statuses on the target’s device, such as block-
ing contacts or muting chats, and force the target to change
several configurations, such as the display name. Note that in
most cases, executing synchronisation items does not result
in a notification to the user.

More generally, the attacker can forge self-addressed mes-
sages with similar techniques, which appear to be encrypted in
the “Saved Messages” chat on the victim’s client. While this
chat does not bear a green checkmark, the target (e.g. a Delta
Chat bot17) may still perceive it as verified and incorrectly

16See e.g. https://github.com/deltachat/deltachat-core-rust/
pull/4843 and https://github.com/deltachat/
deltachat-core-rust/pull/5023.

17https://bots.delta.chat/

10

https://github.com/deltachat/deltachat-core-rust/pull/4843
https://github.com/deltachat/deltachat-core-rust/pull/4843
https://github.com/deltachat/deltachat-core-rust/pull/5023
https://github.com/deltachat/deltachat-core-rust/pull/5023
https://bots.delta.chat/

Autocrypt: pkevil

Synchronisation message

Parse

Decrypt

Verify

Execute

peers[self]

Encrypt

(pkreal,skreal)

Sign

Sync. items (pkevil,skevil) Attacker

Target
pkevil

pkevil

skreal

pkreal

skevil pkevil

pkreal

Figure 3: Keys involved in the synchronisation forgery attack,
where (pkreal,skreal) is the target’s key pair, and (pkevil,skevil)
is a key pair known by the attacker. Ideally, Delta Chat should
use pkreal to verify the synchronisation message (dashed line).

regard the forged message as self-addressed.

Mitigation. Delta Chat should handle self-addressed mes-
sages separately from other messages, and in particular only
use the user’s own key to verify self-addressed messages.

Device synchronisation could be made more secure by
notifying the user about the changes that were executed, and
using timestamps to prevent synchronisation replays.

4.4 InsecureJoin Observer
We describe another attack that leverages header manipulation
(Section 4.2) to trick Delta Chat into marking an attacker-
controlled key as verified. The attack relies on a mechanism
in Delta Chat that observes the SecureJoin protocol instance
on other devices.

Vulnerability. When Delta Chat sees a self-sent SecureJoin
message not originating from the current device to a peer,
it interprets it as the user establishing contact with the peer
on another device. If the message is correctly signed and
encrypted, then Delta Chat tries to use the SecureJoin message
in order to achieve some form of synchronisation between
devices. Further, if the message indicates the final stages of
the protocol, i.e. it can be deduced that the other device has
verified or will shortly be able to verify the peer, then Delta
Chat also marks the gossip key for the peer as verified on this
device.

Similar to the group member removal attack (Section 4.2),
the vulnerability we exploit in this attack is the lack of pro-
tection for headers in Delta Chat, and more specifically, the
flexibility of the Secure-Join header. Delta Chat uses the
Secure-Join header to indicate a SecureJoin message and
denote its type (e.g. vc-request). The Secure-Join header
is treated as protected, meaning that it should be encrypted
whenever the message is encrypted. However, this header is
incorrectly allowed to appear unencrypted even when the mes-
sage is encrypted. Moreover, an unencrypted Secure-Join
header overwrites an encrypted Secure-Join header in the
same message.

In addition to the attack we describe here, a variant of the
gossip key injection attack (Section 4.1) still seems applicable
in this context, because when marking a peer’s gossip key
as verified based on the observed SecureJoin message, Delta
Chat would look for the gossip key in the peer state table rather
than in the protected message payload. Our attack does not
exploit this vulnerability. An attacker cannot use the technique
in the synchronisation forgery attack (Section 4.3) to forge
a self-sent SecureJoin message, because Delta Chat would
check that the message is signed with the user’s real key.

Attack. Suppose the attacker is able to spoof messages sent
from the target. In addition, we assume the attacker is able to
eavesdrop on the communications of the target; alternatively,
we could instead assume that the target replies to messages
sent from the attacker. To make the target verify an attacker-
controlled key, the attacker crafts a message perceived by the
target’s Delta Chat client as a valid SecureJoin message from
the target to the attacker or to an address of the attacker’s
choice, which actually contains an attacker-controlled key as
a gossip header.

The general idea of crafting such a message is to first trick
the target into signing a message that contains the attacker-
controlled key as a gossip key, and then add a Secure-Join
header indicating a SecureJoin message in a final protocol
stage (e.g. vc-contact-confirm) to the unprotected IMF
headers of the message.

There are several possible ways of making the target sign
the attacker-controlled gossip key. For example, the attacker
could send messages to the target in unverified one-on-one
chats or groups, hoping the target would reply. The first reply
would carry a gossip of the attacker’s public key, and gos-
sips would also occur in replies periodically. The attacker
could also send a vc-request message to the target. The
vc-request message is a cleartext message in the Setup
Contact protocol that carries an INVITE token in the target’s
QR invite code; the attacker can eavesdrop on past Setup Con-
tact protocol instances to learn a valid INVITE for the target.
The target replies with a vc-auth-required message, which
contains a gossip of the attacker’s public key in the protected
payload. Because the unprotected Secure-Join header takes
precedence, adding an unprotected Secure-Join header to

11

the target’s reply can change the SecureJoin message to a
desired type.

The attacker then sends the crafted message to the target via
Bcc as if the target sent it from another device. The target’s
Delta Chat client would recognize the message as a valid
SecureJoin message on another device that indicates final
stages of the protocol, and mark the attacker’s gossip key in
the message as verified.

The changes to Delta Chat core that introduce forward and
backward verification would only impact the attack slightly
– the attacker would need to send one more message to the
target (see Appendix B).

Consequences. The consequences for this attack largely
overlap with the gossip key injection attack (Section 4.1).
However, this attack is harder to mount, as it requires stronger
capabilities for the attacker.

Mitigation. As this attack stems from header flexibility,
fixing the header manipulation vulnerability, and in particular,
disallowing the Secure-Join header to appear unencrypted
whenever the message is encrypted, would prevent the attack.

4.5 Autocrypt Setup Forgery
The Autocrypt Setup Message transfers the user’s encrypted
secret key over an insecure channel, which could make it
vulnerable to key overwriting attacks [17]. However, the Au-
tocrypt Setup Message includes the user’s public key, which
prevents classical attacks of this type. Despite this, because
the rPGP library has a bug that allows decryption using the
“plaintext” algorithm, it is easy to forge a valid Autocrypt
Setup Message under an unknown Setup Code.

Vulnerability. The Setup Code plays an important role in
guaranteeing the security of the Autocrypt Setup Message. To
quote the Autocrypt specification: “The Code serves both for
decryption as well as authenticating the message. Extra care
needs to be taken with some PGP implementations that the
Setup Code is actually used for decryption. For example, this
is difficult to do correctly with GnuPG.” [58, Section 5.4.4]

While RFC 4880 specifies “plaintext” as a symmetric-
key algorithm with ID 0, the specification also stresses that
the plaintext algorithm “may only be used to denote secret
keys that are stored in the clear”, and that “Implementations
MUST NOT use plaintext in Symmetrically Encrypted Data
packets” [35, Section 13.4]. However, it is possible in rPGP
to use the plaintext algorithm to “decrypt” session keys or
data. In rPGP, the plaintext algorithm has a “key size” and a
“block size” of 0. There are no checks on the key size for the
plaintext algorithm. The algorithm simply strips the first two
bytes of the data, which it perceives as the random block and
“quick check” bytes, and returns the rest.

Attack. The attack idea is straightforward: a network at-
tacker can substitute the encrypted data in the target’s Au-
tocrypt Setup Message with a secret key controlled by the
attacker, encrypted under the plaintext algorithm. The mali-
cious message “decrypts” correctly to the attacker-controlled
key under the original Setup Code. This breaks the expecta-
tion of the Autocrypt standard which claims that Setup Codes
always authenticate the message. In the end, the target’s client
imports and uses a key controlled by the attacker.

Alternatively, if the attacker was only able to spoof self-
addressed messages for the target, the attacker could still send
the malicious message along with the honest one, hoping
the target would click on the malicious message. As a last
resort, since Delta Chat allows Setup Messages that are not
self-addressed, the attacker could simply send the malicious
message to the target in an unverified chat, possibly changing
the avatar and name to resemble the chat “Saved Messages”
so as to confuse the target. Details of how to construct the
OpenPGP packets required to exploit the plaintext algorithm
can be found in Appendix D.

Consequences. The attacker can make the target accept a
malicious Autocrypt Setup Message and start to use a key
controlled by the attacker. The attacker is then able to read all
of the target’s future communications as well as impersonate
the target to others after the target verifies the malicious key to
them. However, since the malicious key does not contain the
secret key materials of the real key, if the target did not stop
using their old Autocrypt e-mail client or Delta Chat client,
they would soon notice a discrepancy in the messages seen
on different devices.

Mitigation. The rPGP library should disable the plaintext al-
gorithm, and Delta Chat should update to the patched version
of rPGP. In addition, Delta Chat should not allow Autocrypt
Setup Messages that are not self-addressed, and should con-
sider warning users about possible phishing attacks related to
such messages.

A Delta Chat user could also manually export and import
the secret key or the whole backup, both unencrypted, or
use an experimental Delta Chat feature to transfer encrypted
account data between two devices within the same network.

4.6 Compression Quine
We describe a known attack on OpenPGP libraries that we
found applicable to rPGP. The rPGP library does not have a
maximum recursion depth for OpenPGP messages, so it is
possible to perform a denial-of-service attack on rPGP, and
consequently Delta Chat.

Vulnerability. First publicly identified by Campbell [19],
it is known that some OpenPGP implementations could be

12

vulnerable to a denial-of-service attack that leverages an
OpenPGP compression quine, which is an OpenPGP Com-
pressed packet that decompresses to itself. Trying to decom-
press the compression quine may cause the program to ex-
haust memory and crash, and, in the worst case, dump secret
information upon crashing. This appears as an inherent is-
sue in the OpenPGP standard that was not considered by
Delta Chat. The draft on OpenPGP “crypto refresh” lists this
attack as a security consideration for OpenPGP implemen-
tors [62, Section 13.14].

Attack. The attack is straightforward: an attacker with the
knowledge of the target’s address and public key simply sends
an OpenPGP compression quine to the target, encrypted un-
der the target’s public key; there is no need for the target to
recognize or manually accept the contact.

Consequences. Delta Chat crashes almost immediately
upon receiving the message, and the issue persists as long as
Delta Chat is connected to the e-mail server. To recover from
the attack, the target must manually delete the message from
the server, switch to different keys or accounts while offline,
or reinstall Delta Chat.

Mitigation. The rPGP library should set a maximum recur-
sion depth for OpenPGP messages. It is also a good idea for
rPGP to check against some of the tests in the OpenPGP in-
teroperability test suite.18 However, without further defenses,
the attacker would still able to send a compressed message
with an exorbitant compression ratio, also known as a “ZIP
bomb”, to achieve a similar effect as a compression quine.
Therefore, rPGP could consider treating Compressed packets
that exceed a maximum compression ratio or contain data that
is too large as invalid.

5 Discussion

While it is difficult to estimate the size of Delta Chat’s user
base, its promotion to users in high-risk contexts makes it a
potential target for powerful real-life adversaries. We have
shown that attacks are possible under the threat model envi-
sioned by Delta Chat’s developers, raising several questions.

Cause of the attacks. Most of the attacks we found lever-
age deviations from the OpenPGP, Autocrypt, or SecureJoin
specifications, rather than attack the protocols or standards
themselves. However, the specifications can be unclear or
even misleading in some cases, and attacks stemming from
cross-protocol interactions can be notoriously difficult to pre-
vent without a comprehensive understanding of the entire
system. We believe that some of the attacks could have been

18https://tests.sequoia-pgp.org/

found earlier if an attempt to prove the security of the Secure-
Join protocols had been made.

The SecureJoin protocols “consider usability, crypto-
graphic and implementation aspects simultaneously, because
they constrain and complement each other” [23]. However,
balancing security and usability is a hard problem; for users
in high-risk contexts, prioritising feature development may
increase harm. For example, we found several vulnerabilities
related to Delta Chat’s multi-device support. Other decen-
tralised messaging applications used in high-risk contexts like
Briar19 do not support multiple devices, thereby limiting their
attack surface. Yet, without certain features, users may switch
to other applications; indeed, multi-device support was iden-
tified as a necessary feature in Delta Chat’s interviews with
high-risk users [32].

Appropriateness of Delta Chat’s threat model. While our
attacks fall within the threat model outlined by Delta Chat,
it is also important to assess whether this threat model is ap-
propriate in the first place. Prior work [37] has questioned
whether opportunistic encryption in the form of Autocrypt
should be promoted to users who may not have a full un-
derstanding of the implications of its use; on the other hand,
Delta Chat has repeatedly incorporated feedback from groups
of high-risk users into its development process [32–34], an un-
dertaking that is uncommon but vital for a secure messaging
application. It is also useful to contrast Delta Chat’s explicit
approach to verification with that of Signal, in which users
who do not choose the option of verifying safety numbers are
participating in de facto unverified chats.

The threat model of verified chats, however, omits several
categories of attacks such as attacks on privacy, insider attacks,
but also attacks that are prevented by other messaging appli-
cations as a matter of course. We give a detailed overview of
attacks outside of Delta Chat’s threat model in Appendix E.

Securing decentralised communications. What could be
done to make Delta Chat, or decentralised messaging services
more widely, more secure for the future? We argue that more
analysis is necessary on multiple levels.

Commercial security audits can increase trust in a partic-
ular product by helping to eliminate implementation flaws
and insecure configurations. Delta Chat’s two cryptographic
audits showed overall positive results, having found only two
“high-risk” issues. However, the scope of such audits is, by
definition, limited. Our results demonstrate that passing a
security audit cannot be seen as a security end-goal in itself.

However, neither can analysis such as ours be seen as a
definitive stamp of approval. Beyond immediate mitigation,
questions arise about the future of open specifications such as
Autocrypt and SecureJoin. Formal cryptographic proofs such
as [5] can help in gaining a better understanding of the security

19https://briarproject.org/

13

https://tests.sequoia-pgp.org/
https://briarproject.org/

guarantees given by a particular design; yet, in cases such as
Delta Chat, it can be challenging to make formal statements
about a design that lacks a protocol specification and whose
cryptographic implementation changes frequently. The work
on ClaimChain [44] in particular shows that even if a design
with stronger security properties exists, circumstances may
prevent it being adopted in practice.

We do not intend to contribute to the already abundant
discussion on whether OpenPGP should be considered inse-
cure by modern standards. However, our attacks show that
one should take great caution when using OpenPGP in non-
standard scenarios as well as when validating OpenPGP
messages. We believe Delta Chat should limit its usage of
OpenPGP to a more secure subset, and consider upgrading to
crypto-refresh [62] in the near future.

Instead of further customising the SecureJoin protocols,
pushing for and contributing to a specification of Autocrypt
Level 2 could provide a way forward for Delta Chat. This
was alluded to in the current Autocrypt specification [58] as
providing protection against active attackers but work on it
never began. However, such an undertaking would require
participation from the wider community. In the meantime,
the lack of viable alternative tools for secure decentralised
messaging makes it a pressing problem for developers and
researchers alike.

References

[1] David Adrian, Karthikeyan Bhargavan, Zakir Du-
rumeric, Pierrick Gaudry, Matthew Green, J. Alex Hal-
derman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wus-
trow, Santiago Zanella-Béguelin, and Paul Zimmermann.
Imperfect forward secrecy: How Diffie-Hellman fails in
practice. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel, editors, ACM CCS 2015, pages 5–17. ACM
Press, October 2015.

[2] Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen,
and Lenka Mareková. Collective information security
in large-scale urban protests: the case of Hong Kong. In
30th USENIX Security Symposium (USENIX Security
21), pages 3363–3380. USENIX Association, August
2021.

[3] Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen,
and Lenka Mareková. Mesh messaging in large-scale
protests: Breaking Bridgefy. In Kenneth G. Paterson,
editor, CT-RSA 2021, volume 12704 of LNCS, pages
375–398. Springer, Heidelberg, May 2021.

[4] Martin R. Albrecht, Sofía Celi, Benjamin Dowling, and
Daniel Jones. Practically-exploitable cryptographic vul-
nerabilities in Matrix. In 2023 IEEE Symposium on
Security and Privacy (S&P), pages 164–181, 2023.

[5] Martin R. Albrecht, Benjamin Dowling, and Daniel
Jones. Device-oriented group messaging: A formal
cryptographic analysis of Matrix’ core. 2023. https:
//eprint.iacr.org/2023/1300.

[6] Martin R. Albrecht, Raphael Eikenberg, and Kenneth G.
Paterson. Breaking Bridgefy, again: Adopting libsignal
is not enough. In 31st USENIX Security Symposium
(USENIX Security 22), pages 269–286, Boston, MA,
August 2022. USENIX Association.

[7] Martin R. Albrecht, Lenka Mareková, Kenneth G. Pa-
terson, and Igors Stepanovs. Four attacks and a proof
for Telegram. In IEEE S&P 2022 [40], pages 87–106.

[8] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky
thirteen: Breaking the TLS and DTLS record proto-
cols. In 2013 IEEE Symposium on Security and Pri-
vacy, pages 526–540. IEEE Computer Society Press,
May 2013.

[9] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The
double ratchet: Security notions, proofs, and modular-
ization for the Signal protocol. In Yuval Ishai and Vin-
cent Rijmen, editors, EUROCRYPT 2019, Part I, volume
11476 of LNCS, pages 129–158. Springer, Heidelberg,
May 2019.

[10] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yian-
nis Tselekounis. Security analysis and improvements
for the IETF MLS standard for group messaging. In
Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part I, volume 12170 of LNCS, pages
248–277. Springer, Heidelberg, August 2020.

[11] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yian-
nis Tselekounis. Modular design of secure group mes-
saging protocols and the security of MLS. In Vigna and
Shi [60], pages 1463–1483.

[12] Joël Alwen, Marta Mularczyk, and Yiannis Tselekou-
nis. Fork-resilient continuous group key agreement.
In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part IV, volume 14084 of LNCS, pages
396–429. Springer, Heidelberg, August 2023.

[13] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky,
Nadia Heninger, Maik Dankel, Jens Steube, Luke
Valenta, David Adrian, J. Alex Halderman, Viktor
Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne
Engels, Christof Paar, and Yuval Shavitt. DROWN:
Breaking TLS using SSLv2. In Thorsten Holz and
Stefan Savage, editors, USENIX Security 2016, pages
689–706. USENIX Association, August 2016.

[14] Richard Barnes, Benjamin Beurdouche, Raphael Robert,
Jon Millican, Emad Omara, and Katriel Cohn-Gordon.

14

https://eprint.iacr.org/2023/1300
https://eprint.iacr.org/2023/1300

The Messaging Layer Security (MLS) Protocol. RFC
9420, July 2023.

[15] Alexander Bienstock, Jaiden Fairoze, Sanjam Garg,
Pratyay Mukherjee, and Srinivasan Raghuraman. A
more complete analysis of the Signal double ratchet al-
gorithm. In Yevgeniy Dodis and Thomas Shrimpton,
editors, CRYPTO 2022, Part I, volume 13507 of LNCS,
pages 784–813. Springer, Heidelberg, August 2022.

[16] Simon Blake-Wilson and Alfred Menezes. Unknown
key-share attacks on the station-to-station (STS) proto-
col. In Hideki Imai and Yuliang Zheng, editors, PKC’99,
volume 1560 of LNCS, pages 154–170. Springer, Hei-
delberg, March 1999.

[17] Lara Bruseghini, Daniel Huigens, and Kenneth G. Pa-
terson. Victory by KO: Attacking OpenPGP using key
overwriting. In Heng Yin, Angelos Stavrou, Cas Cre-
mers, and Elaine Shi, editors, ACM CCS 2022, pages
411–423. ACM Press, November 2022.

[18] Chris Brzuska, Eric Cornelissen, and Konrad Kohbrok.
Security analysis of the MLS key derivation. In IEEE
S&P 2022 [40], pages 2535–2553.

[19] Taylor R. Campbell. On compression in data formats.
https://web.archive.org/web/20181116185051/
https://mumble.net/~campbell/2013/10/08/
compression.

[20] Delta Chat. FAQ - Delta Chat. https:
//web.archive.org/web/20240206093339/https:
//delta.chat/en/help.

[21] Delta Chat. Hardening guaranteed end-to-end
encryption based on a security analysis from
ETH researchers. https://delta.chat/en/
2024-03-25-crypto-analysis-securejoin.

[22] Delta Chat. User stories and voices. https:
//web.archive.org/web/20240206093211/https:
//delta.chat/en/user-voices.

[23] Delta Chat. SecureJoin: Protecting chat mes-
saging against network adversaries. https:
//web.archive.org/web/20240110171400/https:
//securejoin.readthedocs.io/en/latest/,
2023.

[24] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling,
Luke Garratt, and Douglas Stebila. A formal security
analysis of the Signal messaging protocol. Journal of
Cryptology, 33(4):1914–1983, October 2020.

[25] Cas Cremers, Charlie Jacomme, and Aurora Naska.
Formal analysis of session-handling in secure messag-
ing: Lifting security from sessions to conversations.

Cryptology ePrint Archive, Report 2022/1710, 2022.
https://eprint.iacr.org/2022/1710.

[26] Luca De Feo, Bertram Poettering, and Alessandro
Sorniotti. On the (in)security of ElGamal in OpenPGP.
In Vigna and Shi [60], pages 2066–2080.

[27] Front Line Defenders. Guide to secure
group chat and conferencing tools. https:
//web.archive.org/web/20230922042917/
https://www.frontlinedefenders.
org/en/resource-publication/
guide-secure-group-chat-and-conferencing-tools.

[28] L. Peter Deutsch and Jean loup Gailly. ZLIB compressed
data format specification version 3.3. RFC 1950, 1996.

[29] Christoph Döberl, Wolfgang Eibner, Simon Gärtner,
Manuela Kos, Florian Kutschera, and Sebastian Ra-
macher. Quantum-resistant end-to-end secure messag-
ing and email communication. In Proceedings of the
18th International Conference on Availability, Reliabil-
ity and Security, ARES ’23, New York, NY, USA, 2023.
Association for Computing Machinery.

[30] Benjamin Dowling, Felix Günther, and Alexandre Poir-
rier. Continuous authentication in secure messag-
ing. In Vijayalakshmi Atluri, Roberto Di Pietro, Chris-
tian Damsgaard Jensen, and Weizhi Meng, editors, ES-
ORICS 2022, Part II, volume 13555 of LNCS, pages
361–381. Springer, Heidelberg, September 2022.

[31] Benjamin Dowling and Britta Hale. Secure messaging
authentication against active man-in-the-middle attacks.
In 2021 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 54–70, 2021.

[32] Ksenia Ermoshina. Needfinding report – Multi-
tool contexts and organizational features. https:
//web.archive.org/web/20230521003456/https:
//delta.chat/en/2020-03-31-needfinding_
multidevice, 2020.

[33] Ksenia Ermoshina and Vadym Hudyma. Needfind-
ing report based on interviews in Ukraine. https:
//web.archive.org/web/20231128092711/https:
//delta.chat/en/2018-12-19-needfinding,
2018.

[34] Ksenia Ermoshina and Vadym Hudyma.
Delta chat UX and needfinding final re-
port. https://web.archive.org/web/
20221225004507/https://delta.chat/assets/
blog/Delta-Chat-UX-final-report-july2019.
pdf, 2019.

[35] Hal Finney, Lutz Donnerhacke, Jon Callas, Rodney L.
Thayer, and Daphne Shaw. OpenPGP message format.
RFC 4880, 2007.

15

https://web.archive.org/web/20181116185051/https://mumble.net/~campbell/2013/10/08/compression
https://web.archive.org/web/20181116185051/https://mumble.net/~campbell/2013/10/08/compression
https://web.archive.org/web/20181116185051/https://mumble.net/~campbell/2013/10/08/compression
https://web.archive.org/web/20240206093339/https://delta.chat/en/help
https://web.archive.org/web/20240206093339/https://delta.chat/en/help
https://web.archive.org/web/20240206093339/https://delta.chat/en/help
https://delta.chat/en/2024-03-25-crypto-analysis-securejoin
https://delta.chat/en/2024-03-25-crypto-analysis-securejoin
https://web.archive.org/web/20240206093211/https://delta.chat/en/user-voices
https://web.archive.org/web/20240206093211/https://delta.chat/en/user-voices
https://web.archive.org/web/20240206093211/https://delta.chat/en/user-voices
https://web.archive.org/web/20240110171400/https://securejoin.readthedocs.io/en/latest/
https://web.archive.org/web/20240110171400/https://securejoin.readthedocs.io/en/latest/
https://web.archive.org/web/20240110171400/https://securejoin.readthedocs.io/en/latest/
https://eprint.iacr.org/2022/1710
https://web.archive.org/web/20230922042917/https://www.frontlinedefenders.org/en/resource-publication/guide-secure-group-chat-and-conferencing-tools
https://web.archive.org/web/20230922042917/https://www.frontlinedefenders.org/en/resource-publication/guide-secure-group-chat-and-conferencing-tools
https://web.archive.org/web/20230922042917/https://www.frontlinedefenders.org/en/resource-publication/guide-secure-group-chat-and-conferencing-tools
https://web.archive.org/web/20230922042917/https://www.frontlinedefenders.org/en/resource-publication/guide-secure-group-chat-and-conferencing-tools
https://web.archive.org/web/20230922042917/https://www.frontlinedefenders.org/en/resource-publication/guide-secure-group-chat-and-conferencing-tools
https://web.archive.org/web/20230521003456/https://delta.chat/en/2020-03-31-needfinding_multidevice
https://web.archive.org/web/20230521003456/https://delta.chat/en/2020-03-31-needfinding_multidevice
https://web.archive.org/web/20230521003456/https://delta.chat/en/2020-03-31-needfinding_multidevice
https://web.archive.org/web/20230521003456/https://delta.chat/en/2020-03-31-needfinding_multidevice
https://web.archive.org/web/20231128092711/https://delta.chat/en/2018-12-19-needfinding
https://web.archive.org/web/20231128092711/https://delta.chat/en/2018-12-19-needfinding
https://web.archive.org/web/20231128092711/https://delta.chat/en/2018-12-19-needfinding
https://web.archive.org/web/20221225004507/https://delta.chat/assets/blog/Delta-Chat-UX-final-report-july2019.pdf
https://web.archive.org/web/20221225004507/https://delta.chat/assets/blog/Delta-Chat-UX-final-report-july2019.pdf
https://web.archive.org/web/20221225004507/https://delta.chat/assets/blog/Delta-Chat-UX-final-report-july2019.pdf
https://web.archive.org/web/20221225004507/https://delta.chat/assets/blog/Delta-Chat-UX-final-report-july2019.pdf

[36] Yoel Gluck, Neal Harris, and Angelo Prado. BREACH:
Reviving the CRIME attack. Black Hat, 2013.

[37] Harry Halpin. SoK: why Johnny can’t fix PGP standard-
ization. In Proceedings of the 15th International Confer-
ence on Availability, Reliability and Security, ARES ’20,
New York, NY, USA, 2020. Association for Computing
Machinery.

[38] hocuri and holga. Introducing Automatic
E-mail Address Porting (AEAP). https:
//web.archive.org/web/20231128100514/https:
//delta.chat/en/2022-09-14-aeap.

[39] holga. Guaranteed End-to-End encryp-
tion and many other good news. https:
//web.archive.org/web/20240111214108/https:
//delta.chat/en/2023-11-23-jumbo-42.

[40] 2022 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2022.

[41] Fabian Ising, Damian Poddebniak, Tobias Kappert,
Christoph Saatjohann, and Sebastian Schinzel. Content-
Type: multipart/oracle - tapping into format oracles in
email End-to-End encryption. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 4175–4192,
Anaheim, CA, August 2023. USENIX Association.

[42] John Kelsey. Compression and information leakage of
plaintext. In FSE, volume 2365 of Lecture Notes in
Computer Science, pages 263–276. Springer, 2002.

[43] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck
Wee. On the security of the TLS protocol: A systematic
analysis. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages
429–448. Springer, Heidelberg, August 2013.

[44] Bogdan Kulynych, Wouter Lueks, Marios Isaakidis,
George Danezis, and Carmela Troncoso. ClaimChain:
Improving the security and privacy of in-band key dis-
tribution for messaging. In WPES@CCS, pages 86–103.
ACM, 2018.

[45] Timo Longin and SEC Consult. SMTP
smuggling - spoofing e-mails worldwide.
https://web.archive.org/web/20240123001533/
https://sec-consult.com/blog/detail/
smtp-smuggling-spoofing-e-mails-worldwide/.

[46] Florian Maury, Jean-René Reinhard, Olivier Levillain,
and Henri Gilbert. Format oracles on OpenPGP. In
CT-RSA, volume 9048 of Lecture Notes in Computer
Science, pages 220–236. Springer, 2015.

[47] Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi.
A modular security analysis of the TLS handshake pro-
tocol. In Josef Pieprzyk, editor, ASIACRYPT 2008, vol-
ume 5350 of LNCS, pages 55–73. Springer, Heidelberg,
December 2008.

[48] Jens Müller, Marcus Brinkmann, Damian Poddebniak,
Hanno Böck, Sebastian Schinzel, Juraj Somorovsky,
and Jörg Schwenk. “Johnny, you are fired!” – spoof-
ing OpenPGP and S/MIME signatures in emails. In
28th USENIX Security Symposium (USENIX Security
19), pages 1011–1028, Santa Clara, CA, August 2019.
USENIX Association.

[49] NEXTLEAP. NEXTLEAP project. https:
//web.archive.org/web/20240111234949/https:
//nextleap.eu/, 2018.

[50] NEXTLEAP. Detecting and preventing
active attacks against Autocrypt. https:
//web.archive.org/web/20231208095502/https:
//countermitm.readthedocs.io/en/latest/,
2020.

[51] Kenneth G. Paterson, Matteo Scarlata, and Kien Tuong
Truong. Three lessons from Threema: Analysis of a
secure messenger. In USENIX Security Symposium,
pages 1289–1306. USENIX Association, 2023.

[52] Damian Poddebniak, Christian Dresen, Jens Müller,
Fabian Ising, Sebastian Schinzel, Simon Friedberger,
Juraj Somorovsky, and Jörg Schwenk. Efail: Breaking
S/MIME and OpenPGP email encryption using exfiltra-
tion channels. In William Enck and Adrienne Porter
Felt, editors, USENIX Security 2018, pages 549–566.
USENIX Association, August 2018.

[53] The dComms Project. dComms: Alternative com-
munication methods during censorship, interruptions,
and restrictions on the Internet in Ukraine. https:
//web.archive.org/web/20240206093610/https:
//dcomm.net.ua/en/.

[54] Juliano Rizzo and Thai Duong. The CRIME attack.
Ekoparty, 2012.

[55] Scott Ruoti, Jeff Andersen, Daniel Zappala, and Kent
Seamons. Why Johnny still, still can’t encrypt: Eval-
uating the usability of a modern PGP client. https:
//arxiv.org/abs/1510.08555, 2016.

[56] Include Security. Security assessment of DeltaChat’s
RPGP and RustCrypto RSA libraries for the Open
Tech Fund, 2019. https://web.archive.org/web/
20230605134243/https://delta.chat/assets/
blog/2019-first-security-review.pdf.

16

https://web.archive.org/web/20231128100514/https://delta.chat/en/2022-09-14-aeap
https://web.archive.org/web/20231128100514/https://delta.chat/en/2022-09-14-aeap
https://web.archive.org/web/20231128100514/https://delta.chat/en/2022-09-14-aeap
https://web.archive.org/web/20240111214108/https://delta.chat/en/2023-11-23-jumbo-42
https://web.archive.org/web/20240111214108/https://delta.chat/en/2023-11-23-jumbo-42
https://web.archive.org/web/20240111214108/https://delta.chat/en/2023-11-23-jumbo-42
https://web.archive.org/web/20240123001533/https://sec-consult.com/blog/detail/smtp-smuggling-spoofing-e-mails-worldwide/
https://web.archive.org/web/20240123001533/https://sec-consult.com/blog/detail/smtp-smuggling-spoofing-e-mails-worldwide/
https://web.archive.org/web/20240123001533/https://sec-consult.com/blog/detail/smtp-smuggling-spoofing-e-mails-worldwide/
https://web.archive.org/web/20240111234949/https://nextleap.eu/
https://web.archive.org/web/20240111234949/https://nextleap.eu/
https://web.archive.org/web/20240111234949/https://nextleap.eu/
https://web.archive.org/web/20231208095502/https://countermitm.readthedocs.io/en/latest/
https://web.archive.org/web/20231208095502/https://countermitm.readthedocs.io/en/latest/
https://web.archive.org/web/20231208095502/https://countermitm.readthedocs.io/en/latest/
https://web.archive.org/web/20240206093610/https://dcomm.net.ua/en/
https://web.archive.org/web/20240206093610/https://dcomm.net.ua/en/
https://web.archive.org/web/20240206093610/https://dcomm.net.ua/en/
https://arxiv.org/abs/1510.08555
https://arxiv.org/abs/1510.08555
https://web.archive.org/web/20230605134243/https://delta.chat/assets/blog/2019-first-security-review.pdf
https://web.archive.org/web/20230605134243/https://delta.chat/assets/blog/2019-first-security-review.pdf
https://web.archive.org/web/20230605134243/https://delta.chat/assets/blog/2019-first-security-review.pdf

[57] Include Security. Security assessment of Delta Chat’s
primary Rust libraries on behalf of the Open Technol-
ogy Fund, 2020. https://web.archive.org/web/
20230605132024/https://delta.chat/assets/
blog/2020-second-security-review.pdf.

[58] Autocrypt team. Autocrypt Level 1 specification.
https://web.archive.org/web/20231207173301/
https://autocrypt.org/autocrypt-spec-1.1.0.
pdf, 2020.

[59] Elham Vaziripour, Justin Wu, Mark O’Neill, Daniel
Metro, Josh Cockrell, Timothy Moffett, Jordan White-
head, Nick Bonner, Kent Seamons, and Daniel Zappala.
Action needed! helping users find and complete the
authentication ceremony in Signal. In Fourteenth Sym-
posium on Usable Privacy and Security (SOUPS 2018),
pages 47–62, Baltimore, MD, August 2018. USENIX
Association.

[60] Giovanni Vigna and Elaine Shi, editors. ACM CCS 2021.
ACM Press, November 2021.

[61] Alma Whitten and J. Doug Tygar. Why johnny can’t en-
crypt: A usability evaluation of PGP 5.0. In G. Winfield
Treese, editor, USENIX Security 99. USENIX Associa-
tion, August 1999.

[62] Paul Wouters, Daniel Huigens, Justus Winter, and Ni-
ibe Yutaka. OpenPGP draft-ietf-openpgp-crypto-
refresh-13. https://datatracker.ietf.org/doc/
draft-ietf-openpgp-crypto-refresh/13/, 2024.

A OpenPGP

OpenPGP [35] is a standard for providing confidentiality and
authenticity for messages and data, primarily used for end-to-
end e-mail encryption. The main standard for OpenPGP is
RFC 4880 [35]. In this section, we summarise only the parts
of OpenPGP that are relevant for our analysis.

Packets. In OpenPGP, messages and keys consist of one or
more records called packets, and some of the packets may in
turn contain nested packets. Each packet consists of a variable-
length packet header, which specifies the type and length of
the packet, and the packet body, which contains the actual
data. Table 2 lists the types of packets that are most important
for our analysis of Delta Chat.

Signatures. OpenPGP uses digital signatures for a wide
range of purposes: the OpenPGP standard lists 15 different
signature types [35, Section 5.2.1]. Signatures on binary or
text messages attest to their authenticity, and signatures on
public keys can bind attributes and subkeys to the primary
key or certify the owner’s identity.

Table 2: Selected packet types in OpenPGP [35, Section 4.3].

Packet Type Tag
Public-Key Encrypted Session Key (PKESK) 1
Signature 2
Symmetric-Key Encrypted Session Key (SKESK) 3
Public-Key 6
Compressed Data 8
Symmetrically Encrypted and Integrity Protected
Data (SEIPD)

18

Digital signatures in OpenPGP are represented with the
Signature packet [35, Section 5.2]. A Signature packet con-
tains a signature on some data as well as information about
the signature, such as the signature type and the public-key
algorithm used. Delta Chat uses version 4 Signature packets
by default, and version 3 Signature packets are also accepted.
Table 3 shows the body of a version 4 Signature packet.

To compute a signature, an OpenPGP implementation first
computes a hash over the data to be signed; more precisely,
the hash digest covers the data being signed and a prefix of
the Signature packet body, inclusive from the version number
to hashed subpackets. Then, it uses the specified signature
algorithm to compute the signature over the hash under the
user’s private key. Similarly, to verify a signature under a
public key, an implementation first computes the hash from
the data to be verified, and then uses the signature algorithm
specified in the Signature packet to verify the signature under
the corresponding public key.

Compression. While it is possible to encrypt uncompressed
messages in OpenPGP, it is usually the case that the message
is compressed after signing and before encryption. The default
compression format in Delta Chat is zlib [28]. OpenPGP
represents compressed data in a Compressed Data packet [35,
Section 5.6].

RFC 4880 requires that “decompressing a Compressed
Data packet must yield a valid OpenPGP Message” [35, Sec-
tion 11.3]. However, an OpenPGP message can come in many
different shapes and forms; in particular, a single Compressed
Data packet already qualifies as a valid OpenPGP message.

Encryption. We describe a typical workflow in OpenPGP
for message encryption [35, Section 2.1]. First, the OpenPGP
implementation generates a random session key, and uses
the session key to encrypt the message as well as a SHA-1
digest of the message, obtaining a Symmetrically Encrypted
and Integrity Protected Data (SEIPD) packet. Then, for each
intended recipient, the OpenPGP implementation encrypts the
session key in an Encrypted Session Key (ESK) packet, under
the public key of that recipient or under a shared passphrase.

17

https://web.archive.org/web/20230605132024/https://delta.chat/assets/blog/2020-second-security-review.pdf
https://web.archive.org/web/20230605132024/https://delta.chat/assets/blog/2020-second-security-review.pdf
https://web.archive.org/web/20230605132024/https://delta.chat/assets/blog/2020-second-security-review.pdf
https://web.archive.org/web/20231207173301/https://autocrypt.org/autocrypt-spec-1.1.0.pdf
https://web.archive.org/web/20231207173301/https://autocrypt.org/autocrypt-spec-1.1.0.pdf
https://web.archive.org/web/20231207173301/https://autocrypt.org/autocrypt-spec-1.1.0.pdf
https://datatracker.ietf.org/doc/draft-ietf-openpgp-crypto-refresh/13/
https://datatracker.ietf.org/doc/draft-ietf-openpgp-crypto-refresh/13/

Table 3: The body of a version 4 Signature packet.

version (1B) sig type (1B) pubkey alg (1B) hash alg (1B)
hashed subpackets length (2B) hashed subpackets (variable)

unhashed subpackets length (2B) unhashed subpackets (variable)

left 16 bits of hash (2B) signature (variable)

Table 4: The body of a version 4 SKESK packet.

version (1B) symkey alg (1B) S2K specifier (variable) esk (variable, optional)

The encrypted message is the concatenation of the ESK pack-
ets and the SEIPD packet.

On decryption, the OpenPGP implementation first decrypts
the corresponding Session Key packet with the private key
or the shared passphrase. Then, it decrypts the SEIPD packet
using the decrypted session key and checks that the decrypted
SHA-1 digest is correct, returning an error if not.

SEIPD packet. The Symmetrically Encrypted and Integrity
Protected Data (SEIPD) packet contains symmetrically-
encrypted data that is integrity protected using the Modifi-
cation Detecton Code (MDC). To derive an SEIPD packet,
an OpenPGP implementation appends an MDC packet to
the plaintext data to encrypt, where the MDC packet body
is a 20-byte SHA-1 hash of all bytes preceding the packet
body, including the plaintext data and the fixed 2-byte MDC
packet header. The SEIPD packet body is then the encyption
of the plaintext data and the MDC packet under the specified
symmetric-key algorithm.

Upon decryption, the MDC is recalculated, and any dif-
ference is considered a failure and should be reported to the
user [35, Section 5.12]. However, some OpenPGP implemen-
tations may only display a warning for MDC failures, making
the MDC largely ineffective. The rPGP library correctly treats
the MDC failure as an error.

Note that the rPGP library does not support the Symmetri-
cally Encrypted Data (SED) packet, which has no integrity
protection and is generally considered insecure.

The default OpenPGP symmetric-key algorithm in Delta
Chat is AES-128. OpenPGP uses symmetric-key algorithms
in the cipher feedback (CFB) mode. In OpenPGP, the IV is
of all zeros and is not included in the ciphertext. Instead,
OpenPGP samples the first plaintext block at random, and
sets the first two bytes in the second plaintext block the same
as the last two bytes in the first block. The actual data starts
from the third byte of the second plaintext block. These two
bytes can act as a “quick check” to confirm that the session
key is correct, but performing the quick check may create a
format oracle for chosen ciphertext attacks [35, Section 14].

ESK packets. The Encrypted Session Key (ESK) packet, as
the name suggests, contains an encrypted symmetric session
key for decrypting the SEIPD packet. There are two types of
ESK packets in OpenPGP: the Public-Key Encrypted Session
Key (PKESK) packet [35, Section 5.1], and the Symmetric-Key
Encrypted Session Key (SKESK) packet [35, Section 5.3].

The SKESK packet contains a session key, encrypted with
or derived from a passphrase. The packet body contains a
one-byte version number (4, the only version in [35]), a string-
to-key (S2K) specifier, a one-byte symmetric-key algorithm
identifier, optionally followed by the encrypted session key;
see also Table 4. The S2K specifier determines the key deriva-
tion procedure from the passphrase. If the encrypted session
key is not present in the SKESK packet, then the key de-
rived from the passphrase is used as the session key, together
with the symmetric-key algorithm specified in the SKESK
packet. Otherwise, the key is used to decrypt the encrypted
session key under the specified key algorithm, using the CFB
mode with the all-zero IV. Note that the random block and
the “quick check” bytes are not used in the encrypted session
key. The decryption recovers the session key, along with the
one-byte symmetric algorithm identifier for the session key.

B Forward and Backward Verification

The newer versions of Delta Chat core (1.133) redefine the
concept of contact verification.20 Satisfying the requirements
in Section 3.2.1 only means the contact is forward-verified,
which allows the contact to send messages to the user in veri-
fied chats. The one-on-one chat with the forward-verified con-
tact is also marked as verified. However, in order to get a green
checkmark, the contact still needs to get backward-verified,
i.e. indicate that the contact has also verified the user’s key,
which may require the contact to send an additional message
to the user. Contacts introduced through the Verified Group

20https://github.com/deltachat/deltachat-core-rust/pull/
5089

18

https://github.com/deltachat/deltachat-core-rust/pull/5089
https://github.com/deltachat/deltachat-core-rust/pull/5089

protocol are automatically marked as backward-verified.
This change only affects one of our attacks. Note that veri-

fication through gossips in the Verified Group protocol is not
affected by the change, where the peer in the gossip would
also be marked as backward-verified; therefore, the gossip
key injection attack still achieves the same effect for newer
Delta Chat versions without any modification.

Impact on the attack in Section 4.4. The attacker would
need to send one more message to the target, as if sent from
the peer through the verified one-on-one chat with the target,
in order to make the target verify the peer. In more detail,
the peer chosen by the attacker (which can be the attacker
themselves) is forward-verified to the target at this point, but
not necessarily backward-verified; that is, the target’s client
has verified the peer’s key, but is not sure if the peer’s client
has also marked the target’s key as verified. In that case, Delta
Chat would only mark the one-on-one chat with the peer
as verified, but would not mark the peer as verified until it
receives a message through the verified chat.

C Setup Contact Protocol Details

We first introduce the notation and simplified primitives for
the Setup Contact protocol (Section 3.2.2):

• pk = (pkprim,σprim,pksub,σsub): an OpenPGP transfer-
able public key, where pkprim is the primary public key
for signing, σprim is a self-signature, pksub is the public
subkey for encryption, and σsub is a binding signature
on pksub by the primary key. We ignore fields like the
User ID that are irrelevant for the protocol.

• sk= (pk,skprim,sksub): an OpenPGP secret key, where
skprim and sksub are private keys for pkprim and pksub in
pk respectively.

• fp= FP(pk): an OpenPGP key fingerprint, which is a 20-
byte SHA-1 digest derived from the primary key pkprim.

• Seal(skA,pkB,m): the Autocrypt “encrypt” process
(sign-compress-encrypt), where the message m is signed
with skA and encrypted with pkB.

• Open(skB,pkA,c): the Autocrypt “decrypt” process
(decrypt-decompress-verify).

• From = (name,addr): a From header, where name is
a name (e.g. "Alice") and addr is an e-mail address
(e.g. "alice@example.org").

• peers: the Autocrypt peer state table, which contains
each peer’s Autocrypt public key, gossip key, verified key,
and the timestamps for the keys (see Section 3.1.4). We
use peers[addr] to refer to the peer state for the contact
with address addr, and use peers.lookup(fp) to refer to

the peer state whose Autocrypt key fingerprint is fp; both
can uniquely identify a peer state in Delta Chat.

• INVITE and AUTH: random tokens in the QR code.

• tokens: the token database. We use tokens.top() to de-
note selecting the most recently created INVITE and
AUTH tokens from the token database.

Figure 4 shows a simplified run of the Setup Contact proto-
col. For the purpose of introducing the protocol, it suffices to
treat the internals of OpenPGP as a black box. Alice’s invite
code contains her fingerprint fpA, address addrA, nickname
nameA, and two random tokens, INVITE and AUTH, taken
from the tokensA database. These tokens do not expire unless
Alice manually revokes the corresponding QR code. Accord-
ing to the SecureJoin document, INVITE and AUTH should
each be at least 8 bytes. In Delta Chat, both tokens are random
strings of 11 Base64 characters.

Remarks. Note that Alice in the protocol is stateless except
for maintaining peer states, while Bob is stateful. A user may
participate in multiple protocol instances at the same time in
the role of Alice, but can only have a single protocol instance
at the same time in the role of Bob. Protocol participants
find their peer’s state in the peer state table using the peer’s
fingerprint. A fingerprint can uniquely identify a peer in the
table, since Delta Chat does not allow two peers to have the
same public key fingerprint in the peer state table.

D Options for the Setup Forgery Attack

In this section, we give the detailed options for implementing
the attack in Section 4.5. Recall from Appendix A that the
body of a version 4 SKESK packet consists of a one-byte
version number, a one-byte symmetric algorithm, a string-to-
key (S2K) specifier, and, optionally, the encrypted session
key. Note that when decrypting an SEIPD packet with the
plaintext algorithm, the MDC is still checked.

Option 1: No esk with plaintext data. The attacker can use
an SKESK packet with the algorithm set to “plaintext” and
without the encrypted session key, followed by some plaintext
data with two random bytes prefixed and an MDC packet
attached. This way, Delta Chat always decrypts the message
to the attacker-chosen data under the plaintext algorithm, and
the session key derived from the passphrase is not used at
all. As a result, no matter what passphrase the target enters,
the malicious Autocrypt Setup Message always successfully
decrypts to the malicious key.

Option 2: Modified esk with plaintext data. This option
requires the attacker to intercept the target’s Autocrypt Setup
Message. The attacker takes the SKESK packet from the
intercepted Autocrypt Setup Message, and changes the inner
algorithm specifier from a known byte (7 for AES-128 in

19

Alice Bob
(pkA,skA,addrA,nameA,tokensA,peersA) (pkB,skB,addrB,nameB,peersB)

fpA← FP(pkA) fpB← FP(pkB)

FromA← (nameA,addrA) FromB← (nameB,addrB)

. Setup Contact .

Step 1:

(INVITE,AUTH)← tokensA.top()
fpA,addrA,nameA,
INVITE,AUTH Step 2:

if FP(peersB[addrA].public_key) = fpA then

goto shortcut

Step 3:
pkB,FromB, INVITE,

"vc-request"

if (INVITE(B), ·) /∈ tokensA then ignore mail

c3←$ Seal(skA,pkB,"vc-auth-required")

pkA,FromA,c3 Step 4:

Open(skB,pkA,c3)

if FP(pkA) ̸= fpA then abort

shortcut :

m4← ("vc-request-with-auth",AUTH, fpB)

c4←$ Seal(skB,pkA,m4)

Step 5: pkB,FromB,c4

m4← Open(skA,pkB,c4)

if m4.fpB =⊥ or FP(pkB) ̸= m4.fpB or

m4.AUTH=⊥ or (·,m4.AUTH) /∈ tokensA then

alert user and ignore mail

Step 6:

Mark peersA.lookup(fpB) verified

c6←$ Seal(skA,pkB,"vc-contact-confirm")

pkA,FromA,c6 Step 7:

Open(skB,pkA,c6)

Mark peersB.lookup(fpA) verified

Figure 4: A simplified description of the Setup Contact protocol in Delta Chat. We assume messages on the wire are correctly
formatted. Delta Chat checks message labels before possible signature verification and ignores messages with incorrect labels. If
Open fails on verification, then Alice’s client alerts the user and ignores the message, while Bob’s client aborts the protocol; for
all other Open failures, including during decryption and decompression, Delta Chat ignores the message. We do not include
fields that are sent by honest participants but are not checked by their peers’ clients. We also omit the Autocrypt key update
process (Section 3.1), implicitly assuming that the effective dates for outbound messages are increasing for each participant.

20

Delta Chat) to 0 (plaintext). As there are no integrity checks
over the symmetrically-encrypted session key, this can be
done by simply xoring the first byte of the encrypted session
key with an appropriate byte (7 in our example). Then, the
attacker appends the malicious key to the SKESK packet,
similar to Option 1. If the target enters the correct Setup
Code intended for the intercepted Setup Message, Delta Chat
decrypts the encrypted session key algorithm to “plaintext”,
and the Setup Message decrypts successfully to the malicious
key. Otherwise, if the target enters a wrong passphrase, then
with probability around 255/256, Delta Chat decrypts the
encrypted session key algorithm to a different value, which
either does not have a corresponding algorithm, or results in
a decryption failure when it is used to decrypt the subsequent
SEIPD packet. This option makes the attack harder to detect
by users who may suspect manipulation, since the Autocrypt
Setup Message no longer decrypts successfully with incorrect
passphrases, entered either intentionally or by accident.

Option 3: Plaintext esk with encrypted data. It is also
possible for the attacker to set the symmetric algorithm to
plaintext in the SKESK packet, such that no matter what
passphrase the target enters, the encrypted session key always
decrypts to itself. The attacker simply uses the fixed session
key to encrypt the malicious key, so that Delta Chat always
decrypts the message to the malicious key, irrespective of the
passphrase used by the target. This option is harder to detect
by inspection of the encrypted e-mail, since only one byte of
non-random data is “encrypted” with the plaintext algorithm.

E Attacks Outside of the Threat Model

Here we discuss attacks that are outside of Delta Chat’s speci-
fied threat model. For example, some attacks may require that
the attacker be verified to the target, or break some security
properties that are not explicitly claimed to hold in Delta Chat.
These attacks may or may not be considered as real threats to
Delta Chat users. Note that attacks in the previous subsections
may be used to gain privileges for some of these attacks.

Missing standard properties. Note that the threat model
outlined in Section 2 excludes attacks that would in general
prevent making formal security claims standard in the aca-
demic literature on messaging but also more fundamentally
on key exchange and secure channels. For example, a more
robust protocol would be able to prevent reordering, replay21

and deletion attacks, but also unknown key-share [16] or iden-
tity misbinding attacks such as the one below.

Contact misbinding. In the Setup Contact protocol, while
Bob’s message carries a protected From header, Alice’s client
still accepts the message and ignores the protected From if
it is different from the outer unprotected From. Therefore, a

21Newer versions of Delta Chat do add limited replay protection by includ-
ing a Message-ID header in the protected payload, see Section 4.2.

network attacker could perform an identity-misbinding attack
between Alice and Bob, where the attacker modifies messages
from Bob to Alice as if they were sent from another address
controlled by the attacker, and forwards messages intended
for the attacker-controlled address to Bob. Upon completion
of the Setup Contact protocol, Alice’s client would mark the
attacker-controlled address as verified with a green check-
mark, but still under Bob’s public key.

To fix this issue, Delta Chat should ensure that the protected
From header is present in SecureJoin messages whenever
possible, and reject the message with possible warnings to the
user if it is missing or different from the unprotected From.
Note that simply preferring the protected From would not be
a correct mitigation as it would make spoofing easier for an
attacker.

Attacks on privacy. An eavesdropping attacker can eas-
ily distinguish Autocrypt traffic by checking the Autocrypt
header. The attacker can also distinguish messages from dif-
ferent groups, since the group ID is a part of the plaintext
Message-ID header. An attacker that can only observe and
modify partial network traffic, e.g. a malicious e-mail server,
may “taint” Autocrypt keys in order to to learn more about
the social graph of the target. The attacker can do this by
adding unhashed subpackets to OpenPGP keys in Autocrypt
headers found in network messages, which is possible since
these fields are not protected by signatures nor contribute
to the key fingerprint. Afterwards, the attacker can interact
with potential contacts and see from the Autocrypt-Gossip
header whether they possess the tainted key.

Insider Attacks

Another class of attacks excluded from Delta Chat’s threat
model is the case of insider attacks, where the attacker is able
to corrupt one of the contacts of the target, or is part of the
same verified group as the target. While preventing all such
attacks may seem impossible, there are scenarios in which
protocols can be more or less vulnerable, and which may also
have real consequences. Below, we list an example applicable
to Delta Chat’s Setup Contact protocol. Note that an attacker
who is instead part of a verified group with the target could
achieve the same results, as the Verified Group protocol is
trivially vulnerable to insider attacks.

Another header manipulation attack. Suppose Mallory
first performs the Setup Contact protocol with Bob or cap-
tures a vc-request-with-auth message from Bob. Then,
Mallory obtains Alice’s QR code. Mallory could verify Bob
to Alice by forwarding the vc-request-with-auth mes-
sage she received or captured from Bob to Alice and adding
a Secure-Join-Auth plaintext header with Alice’s AUTH
token to the message, which would overwrite the protected
Secure-Join-Auth header. Since Bob’s message does not

21

properly bind to Mallory, on receiving the message, Alice’s
client would genuinely believe Bob is establishing contact
with her and mark Bob’s key as verified.

Setting Secure-Join-Auth as a secured header would
solve this issue.

F Miscellaneous Issues

We list weaknesses or issues that are not vulnerabilities per
se, but may nonetheless be of interest.

Compression side channels. In Delta Chat, compression
is enabled by default for OpenPGP messages, even for auto-
mated e-mails like SecureJoin and synchronisation messages.
However, OpenPGP performs compression before encryption,
which is known to be dangerous since compression leaks
information about the plaintext [42], as evidenced by the infa-
mous CRIME and BREACH attacks [36, 54]. Delta Chat is
potentially vulnerable to compression side-channel attacks,
especially since some messages may co-locate secrets and
attacker-controlled fields, such as synchronisation messages.
However, there appears to not be an efficient way for the at-
tacker to utilise the compression side channels in Delta Chat.
Delta Chat should disable compression for SecureJoin and
synchronisation messages, and consider disabling compres-
sion for all messages.

Weak keys and algorithms. While Delta Chat defaults to
a strong set of OpenPGP configurations, the rPGP library
accepts old packet formats and can handle some outdated
ciphers, like IDEA and CAST5.

Logging. As noted in [57], Delta Chat may write sensitive
information to unencrypted log files in local storage. We
found that Delta Chat continues to log sensitive information,
such as the QR code used in the SecureJoin protocols and
error information in the cryptographic libraries.

Format oracles. Some OpenPGP implementations return
detailed error information that could be used to instantiate a
format oracle [41, 46]. This is also the case for rPGP. For ex-
ample, the rPGP library still checks the “quick check” bytes,
and returns a distinct error if the quick check fails. The se-
curity audit on rPGP marked this issue as a medium-risk
finding [56], which had previously been left open and was
eventually fixed as a result of our analysis.22 Since Delta Chat
logs errors in rPGP verbatim most of the time, an attacker with
access to the target’s log file may be able to recover encrypted
message contents from the target, using the error information
in the log-file as “lunchtime” format oracles. However, since
Delta Chat stores messages and private keys unencrypted,
having access to the target’s machine would already break
most security guarantees of Delta Chat.

Partial signing oracle. In the Setup Contact protocol, Al-
ice shows a QR code to Bob, which contains a randomly
generated AUTH token. The SecureJoin document does not

22https://github.com/rpgp/rpgp/issues/183

specify the format or the maximum length of the AUTH token;
Delta Chat generates AUTH tokens of 11 Base64 characters,
but it also accepts tokens that are very long or contain some
non-Base64 characters, such as space, comma and period.
Therefore, a malicious Alice could make the AUTH token
in the QR code resemble an authentic English text, which is
difficult for Bob to notice. After scanning Alice’s QR code,
Bob’s client at some point sends a vc-request-with-auth
message to Alice, with the AUTH token in the signed and
encrypted payload. After decryption and decompression, Al-
ice obtains Bob’s signature on a message that she has partial
control of, which Alice could potentially use to incriminate
Bob. However, other fields inside the signed message would
make it apparent that it was a protocol message.

Key expiration time. The key expiration time in OpenPGP
keys is currently not used in Delta Chat. All keys created
in Delta Chat have no expiration time, and nothing prevents
the usage of expired Autocrypt keys in Delta Chat. This is
a deliberate decision of the Delta Chat team as they believe
encrypting a message under an expired key is better than not
encrypting it. Note that key expiration only protects against
the leakage of subkeys and not the primary key.

Domain separation. Recall that the Verified Group protocol
(Section 3.2.3) associates different random tokens with differ-
ent groups. However, Delta Chat seems to treat tokens as valid
in the Verified Group protocol even if they are associated with
different groups or intended for the Setup Contact protocol.

TOCTOU attack. There seems to be a possibility of time-of-
check to time-of use (TOCTOU) attacks on Delta Chat. More
specifically, in the Setup Contact protocol, on receiving the
vc-auth-required message from Alice (step 4), Bob first
checks that the fingerprint of Alice’s Autocrypt key matches
the fingerprint in the QR code, and then encrypts the AUTH
token under Alice’s Autocrypt key. If Mallory managed to
spoof a message from Alice to Bob with a malicious Au-
tocrypt header, then it is theoretically possible that Bob’s
client would update Alice’s Autocrypt key to the malicious
one after the check but before encryption, and therefore Bob’s
client could accidentally encrypt the AUTH token under a key
controlled by Mallory. However, this attack is likely impracti-
cal since the time interval between check and use is negligible
and e-mails have a low granularity in time.

Unknown verification attack. It appears that Bob’s mes-
sages in the Setup Contact protocol do not properly bind
to Alice’s public key or fingerprint. Even though the
vc-request-with-auth message from Bob carries Alice’s
public key and address as an Autocrypt-Gossip header in
the protected payload, Alice’s client does not reject the mes-
sage if the gossiped key is different from Alice’s own key. If
a network attacker Mallory obtained Alice’s QR invite code,
she could modify her own QR code to contain the same tokens
as in Alice’s QR code while keeping other fields unchanged,
and convince Bob to scan the modified QR code, possibly
as an insider attacker. Mallory then forwards messages from

22

https://github.com/rpgp/rpgp/issues/183

Bob to Alice, re-encrypted under Alice’s public key, and crafts
appropriate responses for Bob on her own. At the end of the
Setup Contact protocol, Bob’s client would mark Mallory as
verified, but Alice’s client would mark Bob as verified, even
though Bob did not intend to establish contact with Alice.

In Delta Chat, Alice’s client should check that SecureJoin
messages from Bob carry Alice’s address and public key in
the protected payload as a gossip, except for the very first
vc/vg-request message, and reject the message with possi-
ble warnings if not.

23

	Introduction
	Contributions
	Related Work
	Methodology
	Responsible Disclosure
	Overview of the Paper

	Threat Model
	Delta Chat
	Autocrypt
	OpenPGP Keys
	Autocrypt Header
	Autocrypt Key Gossip
	Peer State Table
	Autocrypt Setup Message

	SecureJoin
	Verification in Delta Chat
	Setup Contact Protocol
	Verified Group Protocol

	Attacks
	Gossip Key Injection
	Group Member Removal
	Synchronisation Forgery
	InsecureJoin Observer
	Autocrypt Setup Forgery
	Compression Quine

	Discussion
	OpenPGP
	Forward and Backward Verification
	Setup Contact Protocol Details
	Options for the Setup Forgery Attack
	Attacks Outside of the Threat Model
	Miscellaneous Issues

