
Unbounded Non-Zero Inner Product Encryption

Bishnu Charan Behera and Somindu C. Ramanna

Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, India

bishnu charan behera@iitkgp.ac.in, somindu@cse.iitkgp.ac.in

Abstract. In a non-zero inner product encryption (NIPE) scheme, ciphertexts and keys are associated
with vectors from some inner-product space. Decryption of a ciphertext for x⃗ is allowed by a key for
y⃗ if and only if the inner product ⟨x⃗, y⃗⟩ ̸= 0. Existing constructions of NIPE assume the length of
the vectors are fixed apriori. We present the first constructions of unbounded non-zero inner product
encryption (UNIPE) with constant sized keys. Unbounded here refers to the size of vectors not being
pre-fixed during setup. Both constructions, based on bilinear maps, are proven selectively secure under
the decisional bilinear Diffie-Hellman (DBDH) assumption.

Our constructions are obtained by transforming the unbounded inner product functional encryption
(IPFE) schemes of Dufour-Sans and Pointcheval (ACNS 2019), one in the strict domain setting and the
other in the permissive domain setting. Interestingly, in the latter case, we prove security from DBDH,
a static assumption while the original IPE scheme relied on an interactive parameterised assumption.
In terms of efficiency, features of the IPE constructions are retrained after transformation to NIPE.
Notably, the public key and decryption keys have constant size.

Keywords: Unbounded vectors · Non-zero inner product encryption· Strict domain · Permissive do-
main

1 Introduction

Functional encryption (FE) [7] is a generalisation of public key encryption where each public key is
associated with several secret keys, all of which have different decryption capabilities. More precisely,
each secret key skf is associated with a function f , which allows to recover f(m) from an encryption
of a message m under the associated public key. Attribute-based encryption (ABE) [23,15] is a
specific form of FE that allows fine-grained access to encrypted data. Here, a ciphertext is associated
with an attribute x⃗ and a secret key for a user is associated to some attribute y⃗. Decryption succeeds
i.e., the message can be fully recovered if and only if some relation (or predicate) R on x⃗, y⃗ holds true
i.e., R(x⃗, y⃗) = 1. An ABE system is deemed secure if a colluding group of users holding secret keys
cannot compromise the security of a ciphertext that their secret keys are not capable of decrypting.

In an inner product encryption (IPE) system (special case of ABE), attributes belong to some
inner product space V and the relation is given by R(x⃗, y⃗) = 1 iff ⟨x⃗, y⃗⟩ = 0, for x⃗, y⃗ ∈ V . On the
other hand, if R is defined as R(x⃗, y⃗) = 1 iff ⟨x⃗, y⃗⟩ ≠ 0, then the resulting ABE is called non-zero
inner product encryption (NIPE) [3,27]. Applications of NIPE include identity-based revocation
(IBR), an important primitive that allows to broadcast encrypted messages so that only a “small”
subset of the recipients (known to the encryption algorithm) cannot decrypt i.e., their decryption
capabilities are revoked.

In all existing NIPE constructions, the size of vectors are pre-determined and all public param-
eters of the sytem are chosen based on that. This makes them incapable of handling variable-length
vectors. A layman approach to overcome this problem is to fix the size n to be arbitrarily large. This,

however, would lead to large parameters whose size typically grows linearly in n. A natural ques-
tion is whether there exists a NIPE scheme with the parameters being completely unconstrained
by the lengths of the vectors/attributes in keys and ciphertexts. We call such a scheme unbounded
non-zero inner product encryption (UNIPE). Our main goal in this paper is to design a UNIPE
scheme that achieves reasonable efficiency and can be proven secure under well-studied complexity
assumptions.

Our Contribution. We propose the first constructions of non-zero inner product encryption using
asymmetric pairings that support unbounded or variable-length vectors. The inner product of two
variable length vectors x⃗ = (xi)i∈D, y⃗ = (yi)i∈D′ defined over domains D,D′ respectively, is defined
as ⟨x⃗, y⃗⟩ =

∑
i∈D∩D′ xiyi. Our schemes are derived from the unbounded inner product FE schemes

of Dufour-Sans and Pointcheval [14]. In an unbounded inner product FE scheme, decryption of
a ciphertext for x⃗ by a key for y⃗ would recover ⟨x⃗, y⃗⟩. A transformation to NIPE must facilitate
hiding another message, say M , in the ciphertext so that decryption recovers this message if and
only if ⟨x⃗, y⃗⟩ ≠ 0.

Strict Domain. In the strict domain setting, decryption works only when the domains D,D′ of
the vectors corresponding to ciphertext and key respectively are identical. We first transform the
IPFE construction of [14] in the strict domain setting to NIPE retaining the same efficiency. The
resulting scheme is proven selectively secure from the decisional bilinear Diffie-Hellman (DBDH)
assumption in the random oracle model.

Permissive Domain. In the permissive domain setting, decryption works even when D′ is a subset
of D. We apply our transformation to the permissive unbounded IPFE scheme of [14] and obtain a
UNIPE scheme which we prove to be (selectively) secure under the decisional bilinear Diffie-Hellman
(DBDH) assumption in the random oracle model. In contrast to the original scheme which relied
on an interactive parameterised assumption called linearly extended DBDH, our proof relies on a
well-studied static assumption.

Related Work. Katz, Sahai and Waters [16] were the first to propose the notion of inner product
attribute encryption along with constructions and then a large number of works
[18,24,21,2,17,19,20,21,22] followed, focussing on different aspects (such as efficiency, security) of
the design of IPE and on extensions to generalised primitives. The first construction of NIPE [3]
achieved security in the so-called co-selective model under the decision linear and decisional bilin-
ear Diffie-Hellman assumptions in addition to constant-size ciphertexts. On the other hand, public
parameters and secret keys have sizes linear in n, the pre-fixed length of vectors. Attrapadung et
al. [4] and Yamada et al. [26] suggested more efficient constructions with security from the pa-
rameterised n-DBDHE assumption. The first construction of adaptively secure NIPE [22] (from
decisional linear assumption) had linear sized parameters while either the ciphertext or the key
is of constant-size. More efficient constructions appeared in [8] and [10]. Chen et al. [9] put forth
the first NIPE scheme that simultaneously achieves short ciphertexts and secret keys with selective
security from n-DBDHE assumption. Katsumata and Yamada [27] proposed the first NIPE without
bilinear maps.

The first practical functional encryption systems for inner product (linear) functionality were
built by Abdalla et al. [1] from simple assumptions, namely, the decision Diffie-Hellman and
learning-with-errors assumptions. Subsequent works [5,6] showed how to achieve adaptive secu-
rity and other security guarantees.

2

The notion of unbounded vectors in the inner product setting was first considered by Okamoto
and Takashima in [20]. They proposed an unbounded zero IPE. Their scheme achieved adaptive
security under DLIN assumption. Recently, Dutta et al. [13] UZIPE construction achieved adaptive
security with reduced ciphertext and secret key size (in comparison to [20]). Unbounded vectors have
also been considered in the context of designing FE schemes for inner product functionality. Tomida
and Takashima [25] propose a construction that achieves adaptive security at the cost of ciphertext
and key sizes being linear in the sizes of the associated domains. Dufour-Sans and Pointcheval
[14] suggest a scheme that achieves short keys while obtaining security in a more restricted model.
Unbounded vectors have also been considered in the context of multi-input FE [12] for the inner
product functionality. A more recent work [11] considers simultaneously evaluating unbounded
inner-product predicates (both zero and non-zero) and accordingly decrypt the inner-poduct of two
separate vectors associated with the ciphertext and key respectively.

2 Technical Overview

As mentioned earlier, both our UNIPE schemes are derived from the unbounded inner product FE
schemes of Dufour-Sans and Pointcheval [14]. We now provide a brief technical overview of our first
construction in the strict domain setting.

Let x⃗ = (xi)i∈D, y⃗ = (yi)i∈D′ be 2 vectors defined over domains D,D′ respectively. And let
e : G1 × G2 → GT be an asymmetric pairing of prime order p with P1, P2 generating G1,G2

respectively. In the strict domain FE scheme of [14], the ciphertext ct and key sky⃗ corresponding
to x⃗ and y⃗ are given by

ct = (tP1, (ci)i∈D) where ci = e(P1, P2)
xie(sP1, tui||DP2),∀i ∈ D,

sky⃗ =

(
y⃗,−s(

∑
i∈D′

yiui||D′)P2

)
,

where s is the master secret and its encoding in G1 is available in the public parameters, ui||D, ui||D′

are outputs of a hash function H : {0, 1}∗ → G2. The decryption algorithm recovers e(P1, P2)
⟨x⃗,y⃗⟩

if D = D′ and obtains the inner product ⟨x⃗, y⃗⟩ via a discrete logarithm computation. In order to
ensure efficiency of the discrete logarithm computation, the value of the inner product must be
bounded. We carefully modify their scheme by introducing another element in the ciphertext that
hides the message (or payload) in addition to randomising the xi-component of each ci. Let GT

be the message space and let M denote the message to be encrypted to vector x⃗. We mask the
message with a e(P1, P2)

−zst where z ∈ Zp is the scalar used to randomise the xi-component of ci.
The ciphertext and key have the following structure.

ct = (tP1, x⃗, (ci)i∈D, ĉ) where ci = e(sP1, tP2)
zxie(sP1, tui||DP2),∀i ∈ D,

ĉ = M · e([s]1, [t]2)−z.

sky⃗ =

(
y⃗,−s(

∑
i∈D′

yiui||D′)P2

)
.

Upon FE decryption we recover e(P1, P2)
zst⟨x⃗,y⃗⟩ from which we can recover e(P1, P2)

−zst using ⟨x⃗, y⃗⟩
which can in turn be used to unmask the message. We prove selective security of our scheme in the
random oracle model from the DBDH assumption. The proof uses ideas from [1,14].

3

The construction of the permissive UNIPE scheme also proceeds in a similar manner. The main
novelty lies in the fact that while the permissive unbounded IPFE of [14] relies on an interactive
parameterised assumption, our transformed scheme can be proved secure relying only on DBDH,
which is a static well-studied assumption.

3 Preliminaries

3.1 Notation

We write x1, . . . , xk
R←− X to indicate that x1, . . . , xk are sampled independently from a set X

according to some distribution R (U denotes uniform distribution). For a (probabilicstic) algorithm
A, y ←− A(x) means that y is chosen according to the output distribution of A on input x.

Unbounded Vectors An unbounded vector is written as x⃗ = (xi)i∈D where D, a finite subset of N∗

is called the domain of x⃗. In this paper, xi ∈ Zp for all i ∈ D, where p is defined by the bilinear
map used in the construction of our encryption scheme.

Inner Products Given two vectors x⃗ = (xi)i∈D and y⃗ = (yi)i∈D′ , the inner product ⟨x⃗, y⃗⟩ is a
function defined as:

⟨x⃗, y⃗⟩ =
∑

i∈D∩D′

xiyi

where the domains D and D′ are non-empty finite subsets of N∗.

3.2 Bilinear Groups and Related Assumptions

A bilinear map G = (G1,G2,GT , P1, P2, e, p) consists of cyclic groups G1,G2,GT of prime order p
with the first two groups given by generators P1, P2 respectively and an efficiently computable map
e : G1 ×G2 → GT , with the following two properties:

Bilinearity: e(aQ1, bQ2) = e(Q1, Q2)
ab, for all Q1 ∈ G1, Q2 ∈ G2 and a, b ∈ Zp.

Non-degeneracy: e(P1, P2) is a generator for GT unless P1 = 0 or P2 = 0 where P1 ∈ G1, P2 ∈ G2.

The bilinear group generator GroupGen(ϑ) takes a security parameter ϑ as input and returns a
bilinear map G over a ϑ-bit prime p.

We represent an element aPι ∈ Gι for ι ∈ {1, 2} as [a]ι and an element e(P1, P2)
a ∈ GT as [a]T ,

where Pι is a generator of Gι. Given [a]ι it is generally hard to obtain a. Observe that for a, b ∈ Zp,
given [a]ι, [b]ι, one can compute [a+ b]ι as [a]ι + [b]ι. Furthermore, given [a]1, [b]2, one can compute
[ab]T as e([a]1, [b]2).

Decisional Bilinear Diffie-Hellman (DBDH) Assumption. Given an asymmetric bilinear
map G ← GroupGen(ϑ) with the following distributions:

([k]1, [l]1, [k]2, [m]2, [klm]T) and ([k]1, [l]1, [k]2, [m]2, [r]T)

where k, l,m, r
U←− Zp, the DBDH problem asks to distinguish between the above distributions.

For a probabilistic polynnomial time adversary A , define

AdvDBDH
A ,G (ϑ) =

∣∣∣∣Pr[A (G, [k]1, [l]1, [k]2, [m]2, [klm]T) = 1]

− Pr[A (G, [k]1, [l]1, [k]2, [m]2, [r]T) = 1]

∣∣∣∣.
4

The Decisional Bilinear Diffie-Hellman(DBDH) assumption holds if for all PPT adversaries A ,
AdvDBDH

A ,G (ϑ) ≤ negl(ϑ).

3.3 Unbounded Non-Zero Inner Product Encryption(UNIPE)

LetM be a message space, and V be an inner product space. A non-zero inner product encryption
scheme over V is defined by the following probabilistic algorithms.

Setup(ϑ): Takes as input a security parameter ϑ and returns the public parameter pp with the
master secret key msk as output.

KeyGen(msk, y⃗, D): Inputs the master secret key msk, a vector y⃗ = (yi)i∈D with a non-empty
domain set D ⊆ s[ϑ], where s[ϑ] is a polynomial, and returns a secret key sky⃗.

Encrypt(pp,M, x⃗): Inputs the public parameters pp, vector x⃗ = (xi)i∈D′ with a message M , where
D′ is a non-empty domain set withD′ ⊆ m[ϑ] for some polynomialm[ϑ] and returns a ciphertext
ct.

Decrypt(pp, sky⃗, ct): Recovers and returns the message M if ⟨x⃗, y⃗⟩ ≠ 0; otherwise returns ⊥.

Correctness. The scheme above is said to be correct if for all (pp,msk) ←− Setup(ϑ), for any
message M and any vector x⃗ over any domain D′, for any vector y⃗ over any domain D, if ct ←−
Encrypt(pp,M, x⃗) and sky⃗ ←− KeyGen(msk, y⃗, D), then Decrypt(pp, sky⃗, ct) = M if and only if
D = D′ and ⟨x⃗, y⃗⟩ ≠ 0.

Selective Security. The notion of selective security of a UNIPE scheme is formally defined in
terms of a game sel-IND between an adversary A and a challenger C described below.

Initialization: The game starts by adversary A declaring a vector x⃗∗ = (x⃗∗i)i∈D∗ for some domain
set D∗.

Setup: The challenger C executes the Setup algorithm and passes the public parameters to A .
Key Query Phase 1: A number of key extraction queries are made by A . Each query vector y⃗ =

(yi)i∈D′ has the restriction that ⟨x⃗∗, y⃗⟩ = 0, and the challenger C responds to this with the
secret key sky⃗.

Challenge Ciphertext: A requests the challenge ciphertext by submitting two challenge messages
M0,M1, to be encrypted under x⃗∗. A bit ζ

U←− {0, 1} is uniformly chosen by the challenger
which then encrypts M ζ under x⃗∗ and returns the challenge ciphertext ct∗ to A .

Key Query Phase 2: Identical to Key Query Phase 1.
Guess: The adversary concludes the game with a guess ζ ′ of ζ.

In the sel-IND game, if ζ ′ = ζ, then A wins the game. The advantage of the adversary A in winning
the sel-IND game is defined as:

Advsel-INDA ,UNIPE(ϑ) =

∣∣∣∣Pr[ζ ′ = ζ]− 1

2

∣∣∣∣
The UNIPE scheme is said to be selectively secure if no probabilistic polynomial time adversary
has a non-negligible advantage in winning the preceding game.

3.4 Restrictions on Domains of Vectors

We consider unbounded NIPE in two settings with some restrictions placed on the inner product
functionality leading to successful decryption.

5

Strict Unbounded NIPE. In the strict domain setting, given ciphertext and key for two related

vectors x⃗ = (xi)i∈D ∈ Z|D|
p and y⃗ = (yi)i∈D′ ∈ Z|D′|

p respectively, the decryption algorithm will
work when D = D′. In the context of NIPE, decryption of the message M is possible if and only if
D = D′ and ⟨x⃗, y⃗⟩ ≠ 0.

Permissive Unbounded NIPE. A NIPE scheme in the permissive domain setting allows decryption
when D′ ⊆ D and ⟨x⃗, y⃗⟩ ≠ 0. We emphasise that D′ is the domain of the vector corresponding to
the secret key used for decryption and D corresponds to the vector associated with ciphertext.

4 A Strict Domain UNIPE Scheme

4.1 Construction

We first present our construction of UNIPE. As mentioned earlier, our construction closely follows
that in [14]. Below are the algorithms defining our scheme.

Setup(ϑ): Choose a pairing G = (p,G1,G2,GT , P1, P2, e) ←− GroupGen(ϑ). Choose s
U←− Zp and

a hash function H : {0, 1}∗ → G2. The public parameter is defined as pp = [s]1, and the master
secret key is set as msk = (s, pp).

Encrypt(pp,M, x⃗ = (xi)i∈D): Takes the public parameter pp, the message M and an unbounded

vector x⃗ = (xi)i∈D over some domain set D as input. Elements z, t
U←− Zp are chosen uniformly.

Set

ci = e([s]1, [t]2)
zxie([s]1, t[ui||D]2),∀i ∈ D

ĉ = M · e([s]1, [t]2)−z

where [ui||D]2 = H(i||D). Finally, return the ciphertext ct = ([t]1, x⃗, (ci)i∈D, ĉ).

KeyGen(msk, y⃗ = (yi)i∈D′): Computes and returns

sky⃗ =

(
y⃗,−s

∑
i∈D′

yi[ui||D′]2

)

Decrypt(pp, ct, sky⃗): Takes pp, a ciphertext ct = ([t]1, x⃗ = (xi)i∈D, (ci)i∈D, ĉ), and a secret key
sky⃗ = (y⃗, f) as input. If the inner product of the associated vectors x⃗ and y⃗ is zero, i.e.,
⟨x⃗, y⃗⟩ = 0 then return ⊥; otherwise, compute and output

M = ĉ ·

(
e([t]1, f)

∏
i∈D∩D′

cyii

) 1
⟨x⃗,y⃗⟩

.

6

Correctness: When D = D′ and ⟨x⃗, y⃗⟩ ≠ 0, we have

ĉ ·

(
e([t]1, f)

∏
i∈D

cyii

) 1
⟨x⃗,y⃗⟩

= ĉ ·

(
e

(
[t]1,−s

∑
i∈D

yi[ui||D]2

)∏
i∈D

e(P1, P2)
stzyixi+styiui||D

) 1
⟨x⃗,y⃗⟩

= ĉ ·
(
e(P1, P2)

−st
∑

i∈D yiui||De(P1, P2)
∑

i∈D stzyixi+styiui||D
) 1

⟨x⃗,y⃗⟩

= M · e(P1, P2)
−stz

(
e(P1, P2)

stz⟨x⃗,y⃗⟩
) 1

⟨x⃗,y⃗⟩

= M.

4.2 Proof of Security

We work in the selective model. For the proof, we need an additional assumption about the challenge
vector x⃗∗ = (x∗i)i∈D∗ . In order to avoid ⟨x⃗∗, x⃗∗⟩ = 0, we assume that x∗i ∈ {0, 1, . . . , L − 1} for a
suitable value of L ensuring that the prime p is larger than |D∗|.L2.

Theorem 1. The proposed strict domain UNIPE scheme achieves selective security under the
DBDH assumption in the random oracle model.

Proof. Let A be an adversary that breaks the selective security of our scheme. We construct an
algorithm B that breaks the DBDH assumption.

First, B receives a DBDH instance ([k]1, [l]1, [k]2, [m]2, [d]T), B’s objective is to guess whether
d = klm or d is randomly distributed in Zp. The adversary A sets the target attribute vector
x⃗∗ = (x∗i)i∈D∗ with target domain D∗ and sends it to B. Note that the A is restricted to make key
queries on vector y⃗ = (yi)i∈D′ such that ⟨x⃗∗, y⃗⟩ = 0.

Let the cardinality of the target domain set be n, i.e., |D∗| = n and Ψ : D∗ → [n] be a function
that maps the original indices to {1, 2, . . . , n}. That is, we now work in the (isomorphic) space

Zn
p instead of {(wi)i∈D∗ |wi ∈ Zp}. Assume that

{
(⃗bj)

n−1
j=1

}
to be a basis for (x⃗∗)⊥. So, the family{

x⃗∗, (⃗bj)
n−1
j=1

}
is a basis for Zn

p , and each canonical vector can be expressed in the following form:

ei = αi · x⃗∗ +
∑

j∈[n−1]

λi,j · b⃗j

where αi, λi,j ∈ Zp. Also, (n− 1) random scalars (v1, ...vn−1) ∈ Zn−1
p are chosen uniformly. B can

now simulate the game in the following way:

Public Parameters: B fixes the public parameter pp = [k]1 and passes it to A , implicitly setting
the master secret key as k.

Random Oracle Calls: On any input i||D, if D ̸= D′ or i /∈ D∗, B picks a random group
element ui||D ∈ Zp, stores i||D,ui||D and sends ui||DP2 ∈ G2 to A . Otherwise, it returns

[ui||D∗]2 = αΨ(i)[m]2 +
∑

j∈[n−1]

λΨ(i),j [vj]2

7

Challenge Ciphertext: A sends two challenge messages M0 and M1, to be encrypted under
x⃗∗. A bit ζ

U←− {0, 1} is chosen uniformly by B and the ciphertext for M ζ is generated with the
vector x⃗∗ = (x∗i)i∈D∗ . It sets [t]1 = [l]1 and

c∗i = [d]
x∗
i+αΨ(i)

T e([l]1, [k]2)
∑

j∈[n−1] λΨ(i),jvj ,∀i ∈ D∗

ĉ∗ = M ζ · [d]−1
T

B sends the ciphertext C∗ = ([l]1, (c
∗
i)i∈D∗ , ĉ∗) to A .

Key Queries: On any input y = (yi)i∈D′ , if D′ ̸= D∗, B returns(
y,−

∑
i∈D′

ui||D′yi[k]2

)
Otherwise B returns

sky =

y,−

∑
i∈D∗

yi

 ∑
j∈[n−1]

λΨ(i),jvj

 [k]2

Finally, A makes a guess ζ

′ ∈ {0, 1} and if ζ
′
= ζ, B returns 1; else it returns 0.

B correctly simulates the game for A when given a true DBDH tuple. The public parameter
is a uniform random element from group G2. The random oracle calls are responded with random
elements of G2. We now show that the key queries are also perfectly simulated. Clearly, for the case

when D′ ̸= D∗, the keys have the correct distribution. Otherwise, observe that αi =
x∗
Ψ(i)

⟨x⃗∗,x⃗∗⟩ and

hence
∑

i∈D∗ yiαΨ(i) = 0.

−s
∑
i∈D∗

yi[ui||D∗]2 = −k
∑
i∈D∗

yi

αΨ(i)[m]2 +
∑

j∈[n−1]

λΨ(i),j [vj]2

= −

∑
i∈D∗

yiαΨ(i)m+
∑
i∈D∗

yi
∑

j∈[n−1]

λΨ(i),jvj

 [k]2

= −

∑
i∈D∗

yi
∑

j∈[n−1]

λΨ(i),jvj

 [k]2

which is precisely what B computes.
Now for the challenge ciphertext, when d = klm, a legitimate encryption of M ζ under x⃗∗ =

(x∗i)i∈D∗ is generated, implicitly setting z = m. On the other hand, if B is given a random tuple
i.e., d is uniformly distributed in Zp, then the bit ζ is information-theoretically hidden from A in
which case, A ’s probability of winning the game is exactly 1/2. Therefore, we have

AdvDBDH
B,G (ϑ) =

∣∣Pr[B(G, [k]1, [l]1, [k]2, [m]2, [klm]T) = 1]

− Pr[B(G, [k]1, [l]1, [k]2, [m]2, [r]T) = 1]
∣∣

= |Pr[A wins | d = klm]− Pr[A wins | d = r]|

=

∣∣∣∣Pr[ζ = ζ ′ in the real game]− 1

2

∣∣∣∣
= Advsel-INDA ,UNIPE(ϑ)

8

5 Permissive UNIPE

5.1 Construction

Our UNIPE scheme in the permissive domain setting is defined by the following algorithms. We
prove selective security from the DBDH assumption in the next subsection.

Setup(ϑ): Choose a pairing G = (p,G1,G2,GT , P1, P2, e) ←− GroupGen(ϑ). Choose s
U←− Zp and

a hash function H : {0, 1}∗ → G2. The public parameter is defined as pp = [s]1, and the master
secret key is set as msk = (s, pp).

Encrypt(pp,M, x⃗ = (xi)i∈D): Takes the public parameter pp, the message M and an unbounded

vector x⃗ = (xi)i∈D over some domain set D as input. Elements z, t
U←− Zp are chosen uniformly.

Set

ci = e([s]1, [t]2)
zxie([s]1, t[ui]2), ∀i ∈ D

ĉ = M · e([s]1, [t]2)−z

where [ui]2 = H(i). Finally, return the ciphertext ct = ([t]1, x⃗, (ci)i∈D, ĉ).

KeyGen(msk, y⃗ = (yi)i∈D′): Computes and returns

sky⃗ =

(
y⃗,−s

∑
i∈D′

yi[ui]2

)

Decrypt(pp, ct, sky⃗): Takes pp, a ciphertext ct = ([t]1, x⃗ = (xi)i∈D, (ci)i∈D, ĉ), and a secret key
sky⃗ = (y⃗, f) as input. If the inner product of the associated vectors x⃗ and y⃗ is zero, i.e.,
⟨x⃗, y⃗⟩ = 0 then return ⊥; otherwise, compute and output

M = ĉ ·

(
e([t]1, f)

∏
i∈D′

cyii

) 1
⟨x⃗,y⃗⟩

.

Correctness: When D′ ⊆ D and ⟨x⃗, y⃗⟩ ≠ 0, we have

ĉ ·

(
e([t]1, f)

∏
i∈D′

cyii

) 1
⟨x⃗,y⃗⟩

= ĉ ·

(
e

(
[t]1,−s

∑
i∈D′

yi[ui]2

) ∏
i∈D′

e(P1, P2)
stzyixi+styiui

) 1
⟨x⃗,y⃗⟩

= ĉ ·
(
e(P1, P2)

−st
∑

i∈D′ yiuie(P1, P2)
∑

i∈D′ stzyixi+styiui

) 1
⟨x⃗,y⃗⟩

= M · e(P1, P2)
−stz

(
e(P1, P2)

stz⟨x⃗,y⃗⟩
) 1

⟨x⃗,y⃗⟩

= M.

9

5.2 Security Proof

Again, we assume that for challenge vector x⃗∗ = (x∗i)i∈D∗ , x∗i ∈ {0, 1, . . . , L− 1} for a suitable L.

Theorem 2. The proposed permissive domain UNIPE scheme achieves selective security under the
DBDH assumption in the random oracle model.

Proof. Let A be an adversary that breaks the selective security of our scheme. We construct an
algorithm B that breaks the DBDH assumption.

First, B receives a DBDH instance ([k]1, [l]1, [k]2, [m]2, [d]T), B’s objective is to guess whether
d = klm or d is randomly distributed in Zp. The adversary A sets the target attribute vector
x⃗∗ = (x∗i)i∈D∗ with target domain D∗ and sends it to B. Note that the A is restricted to make key
queries on vector y⃗ = (yi)i∈D′ such that ⟨x⃗∗, y⃗⟩ = 0.

Let the cardinality of the target domain set be n, i.e., |D∗| = n and Ψ : D∗ → [n] be a function
that maps the original indices to {1, 2, . . . , n}. That is, we now work in the (isomorphic) space

Zn
p instead of {(wi)i∈D∗ |wi ∈ Zp}. Assume that

{
(⃗bj)

n−1
j=1

}
to be a basis for (x⃗∗)⊥. So, the family{

x⃗∗, (⃗bj)
n−1
j=1

}
is a basis for Zn

p , and each canonical vector can be expressed in the following form:

ei = αi · x⃗∗ +
∑

j∈[n−1]

λi,j · b⃗j

where αi, λi,j ∈ Zp. Also, (n− 1) random scalars (v1, ...vn−1) ∈ Zn−1
p are chosen uniformly. B can

now simulate the game in the following way:

Public Parameters: B fixes the public parameter pp = [k]1 and passes it to A , implicitly setting
the master secret key as k.

Random Oracle Calls: On any input i, if i /∈ D∗, B picks a random group element ui ∈ Zp,
stores i, ui and sends uiP2 ∈ G2 to A . Otherwise, it returns

[ui]2 = αΨ(i)[m]2 +
∑

j∈[n−1]

λΨ(i),j [vj]2

Challenge Ciphertext: A sends two challenge messages M0 and M1, to be encrypted under
x⃗∗. A bit ζ

U←− {0, 1} is chosen uniformly by B and the ciphertext for M ζ is generated with the
vector x⃗∗ = (x∗i)i∈D∗ . It sets [t]1 = [l]1 and

c∗i = [d]
x∗
i+αΨ(i)

T e([l]1, [k]2)
∑

j∈[n−1] λΨ(i),jvj ,∀i ∈ D∗

ĉ∗ = M ζ · [d]−1
T

B sends the ciphertext C∗ = ([l]1, (c
∗
i)i∈D∗ , ĉ∗) to A .

Key Queries: On any input y = (yi)i∈D′ , if D′ ∩D∗ ̸= D∗ and D′ ∩D∗ ̸= D′, B returns(
y,−

∑
i∈D′

uiyi[k]2

)

10

If D′ ⊃ D∗, B returnsy,−

∑
i∈D∗

yi

 ∑
j∈[n−1]

λΨ(i),jvj

+
∑

i∈D′\D∗

yiui

 [k]2

Otherwise B returns

sky =

y,−

∑
i∈D′

yi

∑
j∈D′

λΨ(i),jvj

 [k]2

Finally, A makes a guess ζ

′ ∈ {0, 1} and if ζ
′
= ζ, B returns 1; else it returns 0.

B correctly simulates the game for A when given a true DBDH tuple. The public parameter
is a uniform random element from group G2. The random oracle calls are responded with random
elements of G2. We now show that the key queries are also perfectly simulated. Clearly, for the case
when D′ ∩ D∗ ̸= D∗ and D′ ∩ D∗ ̸= D′, the keys have the correct distribution. Now for the case

D′ ⊃ D∗, observe that αi =
x∗
Ψ(i)

⟨x⃗∗,x⃗∗⟩ and hence
∑

i∈D∗ yiαΨ(i) = 0.

−s
∑
i∈D′

yi[ui]2 = −s

∑
i∈D∗

yi[ui]2 +
∑

i∈D′\D∗

yi[ui]2

= −k

∑
i∈D∗

yi

αΨ(i)[m]2 +
∑

j∈[n−1]

λΨ(i),j [vj]2

+
∑

i∈D′\D∗

yi[ui]2

= −

∑
i∈D∗

yiαΨ(i)m+
∑
i∈D∗

yi
∑

j∈[n−1]

λΨ(i),jvj +
∑

i∈D′\D∗

yiui

 [k]2

= −

∑
i∈D∗

yi
∑

j∈[n−1]

λΨ(i),jvj +
∑

i∈D′\D∗

yiui

 [k]2

Otherwise,

−s
∑
i∈D′

yi[ui||D′]2 = −k
∑
i∈D′

yi

αΨ(i)[m]2 +
∑
j∈D′

λΨ(i),j [vj]2

= −

∑
i∈D′

yiαΨ(i)m+
∑
i∈D′

yi
∑
j∈D′

λΨ(i),jvj

 [k]2

= −

∑
i∈D′

yi
∑
j∈D′

λΨ(i),jvj

 [k]2

which is precisely what B computes.
Now for the challenge ciphertext, when d = klm, a legitimate encryption of M ζ under x⃗∗ =

(x∗i)i∈D∗ is generated, implicitly setting z = m. On the other hand, if B is given a random tuple

11

i.e., d is uniformly distributed in Zp, then the bit ζ is information-theoretically hidden from A in
which case, A ’s probability of winning the game is exactly 1/2. Therefore, we have

AdvDBDH
B,G (ϑ) =

∣∣Pr[B(G, [k]1, [l]1, [k]2, [m]2, [klm]T) = 1]

− Pr[B(G, [k]1, [l]1, [k]2, [m]2, [r]T) = 1]
∣∣

= |Pr[A wins | d = klm]− Pr[A wins | d = r]|

=

∣∣∣∣Pr[ζ = ζ ′ in the real game]− 1

2

∣∣∣∣
= Advsel-INDA ,UNIPE(ϑ)

6 Comparison with Existing Constructions

A comparison of our schemes with prior pairing-based NIPE schemes is provided in Table 1. The
works [22], [8] each present two NIPE constructions, one with constant-size ciphertexts and the
other with constant-size keys named 1 and 2 respectively. [9] describes two NIPE schemes, one
using asymmetric prime-order pairings and the other in the setting of composite-order pairings,
named 1 and 2 respectively.

Note that none of the prior works consider unbounded vectors. Among the ones that achieve
succinct keys, [8]-2 improves on [22]-2 in terms of efficiency. We highlight the constants in the
running time of encryption and decryption algorithms to indicate that the constructions in [8] are
more efficient. Both have public parameters and ciphertexts of size linear in the vector-length. On
the other hand they achieve adaptive security. The constructions in [9] are comparable to ours in
terms of secret key size and security guarantees though in addition they have succint ciphertexts as
well. Since they support only fixed length vectors, it is but natural that public parameters are linear
sized. However, the prime-order construction relies on a parameterized assumption while security
of our scheme relies on a static assumption albeit in the random oracle model. The composite-order
construction, on the other hand, relies on the static subgroup decision assumptions. It would be
interesting to see if prior techniques are useful in constructing unbounded NIPE without domain
restrictions or random oracles and with enhanced security guarantees.

Scheme Pairing Unbounded #pp #cpr #key #enc #dec Security Assumptions

[3] Symmetric No (n+ 11)S1 + ST 9S1 + ST (n+ 6)S1 O(n)[M1] + [ET] O(n)[M1] + 9[P] Co-Selective D-Lin, DBDH

[22]-1 Asymmetric No (8n+ 23)S1 13S1 + ST (4n+ 5)S2 (2n+ 17)[M1] + [ET] (4n− 4)[M2] + 13[P] Adaptive D-Lin

[22]-2 Asymmetric No (8n+ 23)S1 (4n+ 5)S1 + ST 13S2 (8n2 + 15)[M1] + [ET] (4n− 4)[M1] + 13[P] Adaptive D-Lin

[26] Symmetric No (n+ 2)S1 + ST 2S1 + ST (n+ 2)S1 O(n)[M1] + [P] + [ET] O(n)[M1] + 3[P] + [ET] Selective n-DBDHE

[8]-1 Asymmetric No (6n+ 2)S1 + 2ST 6S1 + ST (3n+ 3)S2 3(n+ 1)[M1] + [ET] + [P] [ET] + 3n[M2] + 6[P] Adaptive D-Lin

[8]-2 Asymmetric No (6n+ 8)S1 + 2ST (3n+ 3)S1 + ST 9S2 6n[M1] + [ET] + [P] [ET] + 3n[M1] + 6[P] Adaptive D-Lin

[9]-1 Asymmetric No (4n+ 1)S1 2S1 + ST S2 O(n)[M1] + [ET] + [P] O(n)[M2] + [ET] + 2[P] Selective n-DBDHE

[9]-2 Composite-Order No (3n+ 1)S1 2S1 + ST S1 O(n)[M1] + [ET] + [P] O(n)[M1] + [ET] + 2[P] Selective Subgroup

This work Asymmetric Yes S1 (n+ 1)ST S2 (2nc + 1)[P] + [ET] (nk + 1)[ET] + [P] Selective DBDH

Table 1: Comparison of our scheme with previously known pairing-based NIPE schemes.

We use some additional notation for the comparison. #pp, #cpr, #key refer to sizes of public
parameters, ciphertext and key repectively. #enc, #dec refer to running time of encryption, de-
cryption algorithms respectively. n denotes the lengths of vectors in the bounded length setting. In

12

the unbounded case, nc, nk denote the lengths of vectors associated to the ciphertext, key respec-
tively. Sι denotes the size of representation of elements from Gι for ι ∈ {1, 2, T}. [Mι] denotes the
cost of scalar multiplication in group Gι for ι ∈ {1, 2} and [ET] is the cost of exponentiation in
GT . Let [P] denote the cost of pairing computation. Note that in case of symmertic pairings (and
composite order symmetric pairings), G1 = G2. In the table, we write symmetric/asymmetric for
the prime-order pairing setting; it is assumed that composite-order pairings are symmetric.

7 Conclusion

This work proposes the first construction for unbounded NIPE in both strict and permissive domain
settings. Both schemes achieve efficiency in terms of size of the secret key, specified by a single
element from G2. Many interesting problems remain open, such as constructing unbounded NIPE
with short ciphertexts and/or adaptive security without random oracles. Another direction for
future research is to remove the domain restrictions altogether.

Acknowledgments

The first author expresses thanks to University Grants Commission (UGC), India for their support.

References

1. M. Abdalla, F. Bourse, A. De Caro, D. Pointcheval. Simple Functional Encryption Schemes for Inner Products.
In PKC 2015, LNCS 6056, pp. 733–751. Springer, 2015.

2. S. Agrawal, D. Freeman, V. Vaikuntanathan. Functional Encryption for Inner Product Predicates from Learning
with Errors. In Asiacrypt 2011, LNCS 7073, pp. 21–40. Springer, 2011.

3. N. Attrapadung, B. Libert. Functional encryption for inner product: Achieving constant-size ciphertexts with
adaptive security or support for negation. In PKC 2010, LNCS 6056, pp. 384–402. Springer Berlin Heidelberg,
2010.

4. N. Attrapadung, B. Libert, E. De Panafieu. Expressive key-policy attribute-based encryption with constant-size
ciphertexts. In PKC 2011, LNCS 6571, pp. 90–108

5. S. Agrawal, B. Libert, D. Stehlé. Fully Secure Functional Encryption for Inner Products, from Standard As-
sumptions. Cryptology ePrint Archive: Report 2015/608, 2015.

6. A. Bishop, A. Jain, L. Kowalczyk. Function-Hiding Inner Product Encryption. In Asiacrypt’15, LNCS 9452, pp.
470–491, 2015.

7. D. Boneh, A. Sahai and B. Waters. Functional encryption: Definitions and challenges. In TCC 2011 LNCS 6597,
pp. 253-273, 2011.

8. J. Chen, R. Gay, H. Wee. Improved Dual System ABE in Prime-Order Groups via Predicate Encodings. In
Eurocrypt 2015 (2), LNCS 9057, pp. 595–624

9. J. Chen, B. Libert, S. Ramanna. Non-Zero Inner Product Encryption with Short Ciphertexts and Private Keys.
In SCN 2016, LNCS 9841, pp. 23–41, 2016.

10. J. Chen, H. Wee. Doubly spatial encryption from DBDH. In Theor. Comput. Sci.543:79–89, 2014.
11. U. Dowerah, S. Dutta., A. Mitrokotsa, S. Mukherjee, T. Pal. Unbounded Predicate Inner Product Functional

Encryption from Pairings. In Journal of Cryptology 36(3), pp. 29, 2023.
12. P. Datta, T. Okamoto, J. Tomida. Full-Hiding (Unbounded) Multi-input Inner Product Functional Encryption

from the k-Linear Assumption. In PKC 2018 part II, LNCS 10770, pp. 245–277, 2018.
13. S. Dutta, T. Tapas Pal, and R. Dutta. Fully Secure Unbounded Zero Inner Product Encryption with Short

Ciphertexts and Keys. In ProvSec 2021, LNCS 13059, pp. 241–258, 2021.
14. E. Dufour-Sans and D. Pointcheval. Unbounded Inner-Product Functional Encryption with Succinct Keys. In

ACNS 2019, LNCS 12726, pp. 426–441, 2019.
15. V. Goyal, O. Pandey, A. Sahai, B. Waters. Attribute-based encryption for fine-grained access control of encrypted

data. In ACM CCS’06, pp. 89–98, 2006.

13

16. J. Katz, A. Sahai, B. Waters. Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner
Products. In Eurocrypt’08, LNCS 4965, pp. 146-162.

17. A. Lewko, T. Okamoto, A. Sahai, K. Takashima, B. Waters. Fully Secure Functional Encryption: Attribute-
Based Encryption and (Hierarchical) Inner Product Encryption. In Eurocrypt 2010, LNCS 6110, pp. 62–91,
2010.

18. T. Okamoto, K. Takashima. Hierarchical Predicate Encryption for Inner-Products.In Asiacrypt’09, LNCS 5912,
pp. 214–231, 2009.

19. T. Okamoto, K. Takashima. Fully secure functional encryption with general relations from the decisional linear
assumption. In Crypto’10, LNCS 6223, pp. 191–208, 2010.

20. T. Okamoto, K. Takashima. Adaptively Attribute-Hiding (Hierarchical) Inner Product Encryption. In Euro-
crypt’12, LNCS 7237, pp. 591–608, 2012.

21. T. Okamoto, K. Takashima. Fully Secure Unbounded Inner-Product and Attribute-Based Encryption. In Asi-
acrypt’12, LNCS 7658, pp. 349–366, 2012.

22. T. Okamoto, K. Takashima. Achieving short ciphertexts or short secret-keys for adaptively secure general inner-
product encryption. Designs, Codes and Cryptography 77.2-3 (2015): 725–771.

23. A. Sahai, B. Waters. Fuzzy Identity-Based Encryption In Eurocrypt’05, LNCS 3494, pp. 457–473, 2005.
24. E. Shen, E. Shi, B. Waters. Predicate Privacy in Encryption Systems. In TCC’09, LNCS 5444, pp. 457–473,

2009.
25. J. Tomida and K. Takashima. Unbounded Inner Product Functional Encryption from Bilinear Maps. In ASI-

ACRYPT 2018, LNCS 11274, pp. 723-779, 2018.
26. S. Yamada, N. Attrapadung, G. Hanaoka, N. Kunihiro. A Framework and Compact Constructions for Non-

monotonic Attribute-Based Encryption. In PKC 2014, LNCS 8383, pp. 275–292, 2014.
27. Katsumata, S., Yamada, S. (2019). Non-zero Inner Product Encryption Schemes from Various Assumptions:

LWE, DDH and DCR. In: Lin, D., Sako, K. (eds) Public-Key Cryptography â€“ PKC 2019.

14

	Unbounded Non-Zero Inner Product Encryption

