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Abstract. Shortening the argument (three group elements or 1536 / 3072 bits over the BLS12-
381/BLS24-509 curves) of the Groth16 zk-SNARK for R1CS is a long-standing open problem. We
propose a zk-SNARK Polymath for the Square Arithmetic Programming constraint system using
the KZG polynomial commitment scheme. Polymath has a shorter argument (1408 / 1792 bits
over the same curves) than Groth16. At 192-bit security, Polymath’s argument is nearly half the
size, making it highly competitive for high-security future applications. Notably, we handle public
inputs in a simple way. We optimized Polymath’s prover through an exhaustive parameter search.
Polymath’s prover does not output G2 elements, aiding in batch verification, SNARK aggregation,
and recursion. Polymath’s properties make it highly suitable to be the final SNARK in SNARK
compositions.
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1 Introduction

A zk-SNARK (zero-knowledge succinct non-interactive argument of knowl-
edge, [Mic94,DL08,Gro10,Lip12,GGPR13,PHGR13]) lets a prover show to a verifier that a computation
F is done correctly, or more precisely, that it knows a witness w such that y = F (x,w) where x is
a public input. The key property of zk-SNARKs is that the proof size and the verification time are
succinct, i.e., smaller than the size of the computation F and the witness w. Groth16 [Gro16] is a
notable zk-SNARK for R1CS (rank-1 constraint system, [GGPR13]), having the shortest proof and the
fastest verification despite extensive research. Groth16’s widespread use in applications underscores its
significance, making improving Groth16 an important challenge.

Groth16 uses asymmetric pairings from G1 ×G2 to GT , with its argument comprising two elements
from G1 and one from G2. In the plain model, Groth established a minimum argument length of two group
elements, including at least one element from G2. (No non-trivial lower bound is known in the random-
oracle model.) Given that G2 elements are longer (by a factor of two in the case of the standard BLS12-
381 curve [BGM17] and by a factor of four or eight in 192-bit or 256-bit security level, respectively),
involvement of a G2 element significantly affects communication size.

It is only known [Gro16] how to achieve the lower bound of two group elements by constructing a zk-
SNARK for a slightly less efficient constraint system SAP (Square Arithmetic Program, [Gro16,GM17])
and using significantly less efficient symmetric pairings. Since group elements are considerably longer in
the setting of symmetric pairings, the resulting argument has a larger bit-length. Thus, counting only
group elements is a wrong measure.

Groth16’s drawbacks include being non-universal [Gro10,GKM+18] (circuit-dependent trusted setup),
a slow prover, and having five trapdoors. Bowe et al. [BGM17] and Lipmaa [Lip22] reduced the number
of trapdoors to four and two.

The issue of slow prover can be tackled by composing a prover-efficient inner zk-SNARK Πin with a
verifier-efficient outer SNARK Πout, hoping to achieve prover efficiency comparable with the former and
verifier efficiency comparable with the latter. See, e.g., [BSB22,XZC+22,CGG+21] that all use Groth16 as
Πout. In addition, Groth16 is used as the final SNARK in commercial recursive SNARK implementations
like RISC Zero, Polygon’s zk-EVM, and zkSync’s Boojum.

In such compositions, it is crucial that Groth16 has the shortest argument length and an efficient
verifier; this enables minimizing the gas cost and storage requirements. For example, using proof compo-
sition in a Cosmos-to-Ethereum bridge [XZC+22] enables to reduce the proof verification cost from 80M
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gas to less than 230K; moreover, storing 1KB of data costs about 0.032 ETH according to [XZC+22]
(“$90 at the time of writing” of [XZC+22] and more than $3600 at the end of May, 2024). Thus, reducing
on-chain computation and storage overhead is one of the key goals in many applications.

Crucially, the precise prover complexity of Groth16 is of secondary importance since Groth16 is
applied to a sublinear argument of a prover-efficient zk-SNARK. Moreover, since such recursions apply
Groth16 to Πin’s verifier circuit that does not depend on the original language, the composed zk-SNARK
is universal. Thus, two of the most significant drawbacks of Groth16 become irrelevant.

Another vital point of Groth16 is that it does not use random oracles. The recent research favors
universal, updatable, and transparent zk-SNARKs. The best constructions [GKM+18] of plain model
updatable zk-SNARKs are impractical. Thus, updatable (or transparent) zk-SNARKs are constructed
by making an interactive proof system into zk-SNARKs using the Fiat-Shamir heuristic. In particular,
random-oracle-model updatable zk-SNARKs like Plonk [GWC19] are widely used in practice. Moreover,
in SNARK compositions like Testudo, the first (prover-efficient) zk-SNARK uses random oracles anyhow,
so adding random oracles to the second zk-SNARK Πout seems to be completely acceptable.

To sum it up, Groth16 is used primarily in practice due to its short argument length (and efficient ver-
ifier). Its drawbacks, like slow prover, are unimportant in specific applications like SNARK composition.
Motivated by above discussion, we aim to answer the following main questions.

Our Main Questions. Can one improve Groth16’s argument length when counting bits and not group
elements without sacrificing too much on the prover-efficiency? Can one win even more in future-proof
higher security levels? Can using the random oracle model help?

Our Contributions. We think outside the box, focusing on the argument size in bits rather than
group elements. We build Polymath, a new zk-SNARK, inspired by the modifications of Groth16 [Gro16]
from [Lip22]. Polymath has a single trapdoor to optimize the argument length, allowing KZG use. Further,
shortening is achieved using the SAP constraint system [Gro16,GM17], opening some polynomials, and
using a novel public input verification method.

Polymath’s argument is shorter than Groth16’s, by a factor of 1.7 on 192-bit security level. Polymath’s
verification cost is approximately the same when |x| = 1 (the public input has been pre-hashed) and
smaller than Groth16’s as a function of |x|. Polymath’s verifier avoids pairings with prover-defined G2

points, making recursive aggregation of proofs more convenient (see, e.g., [BCMS20]). Polymath’s main
drawbacks are a longer SRS (structured reference string) and a slower prover. While the latter is not
critical in application areas like SNARK recursion, we invest substantial effort in optimizing the prover
computation. Reducing the prover’s computation is our work’s most technically intricate aspect; we
employ an exhaustive search to determine specific parameters.

It is rather surprising that one can improve Groth16’s argument length without losing too much in
the prover’s complexity. It is even more surprising that we obtain almost twice better communication at
the 192-bit security level.

Our Techniques. The main idea of Polymath sounds deceptively simple. Groth16’s argument is π =
([a, c]1, [b]2).1 We interpret all elements in π as polynomial commitments (that are never opened in
Groth16). Due to the large size of G2 elements, we aim to replace [b]2 with a polynomial commitment
(say, [b]1) in G1. Since then one cannot use pairings to verify quadratic relationships, we must open at
least one polynomial commitment and perform the verification using the openings. A priori, it is unclear
how to do this efficiently.

Groth16, with its five trapdoors, is incompatible with KZG. Multivariate polynomial commitment
schemes, such as [PST13,Lee21], result in poorer communication compared to Groth16. To employ the
communication-efficient univariate KZG scheme, Groth16 must be modified to utilize a single trapdoor
x. Assume for a moment that this modification has been achieved.

In the proposed strategy, the prover sends three group elements [a, b, c]1 (with [b]1 viewed as a polyno-
mial commitment) together with at least one evaluation proof (another group element) and one opening

1 We adopt the standard additive bracket notation: there is a type-3 pairing G1 × G2 → GT and [x]ι = x[1]ι,
where [1]ι is a fixed generator of Gι for ι ∈ {1, 2, T}.
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(a field element). This amounts to at least 1792 / 2304 bits over BLS12-381/BLS24-5092, improving on
Groth16 only in the 192-bit setting. (Which is still an improvement!)

To minimize the argument length further, we design Polymath for the SAP constraint sys-
tem [Gro16,GM17]. In SAP, one has to replace arbitrary quadratic constraints with squaring ones,
potentially doubling the number of constraints and variables. However, due to symmetry, a = b. Thus,
Polymath’s prover forwards two group elements [a, c]1 and KZG-opens [a]1 (together with another aux-
iliary polynomial commitment) at a random point x1, chosen by the verifier V. Doing this allows us to
obtain a shorter argument even at a 128-bit security level.

Univariatization. To make Polymath univariate, one must make it a single trapdoor. The straightforward
idea is to replace other trapdoors with powers of x sufficiently large to maintain soundness proof. Direct
approaches lead to high-degree polynomials, significantly increasing the prover’s workload. (Recall that
the KZG prover’s computational complexity is Θ(n log n) field and Θ(n) group operations, where n is
the degree of committed polynomial.) As a motivating example, Lipmaa [Lip22] wrote four trapdoors as
powers of a trapdoor y, yielding a SNARK with two trapdoors x and y. (Since [Lip22] did not open any
commitments, it was satisfied with the bivariate case.) Then, [Lip22] used an exhaustive search to find
the smallest exponents not contradicting soundness.

In addition, one can express y = xσ for a well-chosen σ ≥ n to obtain a univariate solution. However,
this results in a zk-SNARK using high powers of x. In [Lip22]’s recommended setting, the SRS includes
[vj(x)y

−7]1 and [y7]1. Here, the degree-(≤ n− 1) polynomials vj(X) interpolate the columns of an R1CS
matrix, where n is the number of constraints. Following the soundness proof of [Lip22], we must set
σ ≥ 3n. Thus, one deals with polynomials of approximate degree (7 − (−7) + 1) · 3n = 45n, resulting
in slow KZG commitment and opening. Moreover, in Polymath, we move the second a from G2 to G1.
Since the SRS has far more G1 than G2 elements, an adversary has more flexibility to create [a]1 than
[a]2. To balance this, one must use larger exponents than in [Lip22]’s variant of Groth16, resulting in an
even slower prover.

To gain maximum efficiency, we build Polymath from scratch, though following ideas from Groth16
and [Lip22]. Since replacing each trapdoor with a large power of x results in inefficiency, we use several
independent ideas to reduce the number of trapdoors. Serendipitously, due to the use of SAP, Polymath
has one fewer trapdoor than Groth16. Another trapdoor in Groth16 and [Lip22] is caused by how
the verification of public input is performed; their SRS contains m0 = |x| elements that depend on
this trapdoor. As a result of independent importance, we devise a new method for handling public
inputs, eliminating these SRS elements and the second trapdoor. In Polymath, verifying public input
x involves computing an interpolating polynomial of x over |x| points, resulting in faster public input
verification than Groth16. This optimization can improve the verifier efficiency of updatable zk-SNARKs
like Plonk [GWC19] or Marlin [CHM+20].

We now have three trapdoors instead of Groth16’s five trapdoors. At this step, we replace two of
the remaining trapdoors with large powers of x: namely, they are yα and yγ for y = xσ. Like [Lip22],
we employ exhaustive search to find suitable (sufficient for soundness and giving good prover efficiency)
values of α = −3 and γ = −5. We also set σ = n + 3. We obtain polynomials of degree ≈ 10n, rather
than 45n, improving the prover’s time by approximately five times.

Finally, Groth16’s circuit-dependent SRS lacks elements for constructing the KZG opening polynomial
(an essentially arbitrary low-degree polynomial). We add another trapdoor z, only used to compute the
KZG opening. Since we never KZG-commit to z-dependent polynomials, z is an independent trapdoor.

Security Proofs. The completeness and zero-knowledge proofs are standard. The soundness proof
is quite intricate. Since we aim to get knowledge-soundness after Fiat-Shamir, we follow the results
of [AFK22] and prove special-soundness of the interactive Polymath argument. We prove the special-
soundness in the AGMOS (AGM with oblivious sampling, [LPS23]) framework that extends the AGM
by allowing adversaries to perform oblivious sampling. Notably, [LPS23] showed that it is common to

2 There is currently no industry standard on the 192-level security level, so we just picked BLS24-509 as a
well-known curve from the well-known BLS family. BLS24-509 satisfies |G1| = 512, |G2| = 2048 = 4|G1|, and
|F| = 256 bits.
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Table 1. Efficiency comparison of Groth16 and Polymath. m (or m̃ ≈ 2m) and n (or ñ ≈ 2n) denote the number
of variables and constraints in the R1CS (or SAP) arithmetization, and m0 is the input length. “mι” denotes
scalar multiplication in group Gι (O(log |F|) field operations), “p” denotes pairing, “f” denotes a field operation,
and “gι” denotes the representation length of a Gι element in bits. M is the number of batched proofs. We give
bit-length for BLS12-381 (128-bit) and BLS24-509 (192-bit security level) curves. We only mention dominating
factors; e.g., we omit Fiat-Shamir’s costs. See the text for a discussion about multiscalar multiplications vs scalar
multiplications.

zk-SNARK Groth16 Polymath

Arithmetization R1CS SAP
|srs| (m+ 2n)g1 + ng2 (m̃+ 12ñ)g1
P computation (m+ 3n)m1 + nm2 (m̃+ 13ñ)m1

|π| 2g1 + 1g2 (1536 / 3072 bits) 3g1 + 1f (1408 / 1792 bits)
V computation 3p + m0m1 (m1 = Θ(λf)) 2p+ 2m1 + 1m2 + O(m0 logm0)f
V batch-computation 3Mm1 +Mp+Mm0m1 4Mm1 +O(Mm0 logm0)f

rely on KZG in a manner that is secure in the AGM but not the AGMOS or non-idealized models. Thus,
an AGM proof would not suffice.3

Following the blueprint of [LPS23], our AGMOS special-soundness proof consists of four cases. As
in almost all proofs of [LPS23], the last three cases are standard reductions to the PDL (power discrete
logarithm, [Lip12]) and TOFR (Tensor Oracle FindRep, [LPS23]) assumptions.

The first (information-theoretical) case depends intrinsically on Polymath’s structure. By analyzing
the tree of accepting transcripts, we prove that the prover is honest if, for a moment thinking of Y as
an independent indeterminate, φ(X,Y ) = 0 for a known (Laurent) polynomial φ. To do this, we write
φ(X,Y ) = 0 as a system

∑
φk(X)Y k of 12 (Laurent) polynomial equations, and analyze 5 of them. To

contrast, in the knowledge-soundness proof of Groth16 and [Lip22], the verification equation institutes
a very complicated (Laurent) polynomial equation system with around 30 . . . 45 polynomials.

Compared to [Gro16,Lip22], we face extra challenges since Y = Xσ depends on X; thus, j1 ̸= j2 does
not imply that Xi1Y j1 ̸= Xi2Y j2 . We employ exhaustive search to find small α and γ that guarantee
that φ(X,Y ) = 0 implies that φ0(X) ≡ 0 (mod Xn − 1) and φk(X) = 0 for 4 values of k. From that,
we derive that the prover was honest. The requirement on φ0(X) allows for additional optimization; it
is needed exactly because Y is not an independent indeterminate.

Efficiency. Table 1 compares the efficiency of Groth16 and Polymath. See Section 5 for more details.
Polymath has a shorter argument than Groth16 but a larger SRS size and prover’s computation. For small
m0, the verifier computation is approximately the same, depending on the curve and the implementation.
However, Polymath has a slight edge that grows with m0.

Consider first the case m0 = 1 (e.g., when the public input is pre-hashed). Then, Groth16’s verifier
executes one G1 scalar multiplication and 3 pairings while Polymath’s verifier executes a small con-
stant number of field operations (since m0 = 1, interpolation is costless), two hashes over short inputs
(< 2000 bytes in total), 2 pairings, 2 scalar multiplications in G1, and one in G2. Depending on the
implementation, Polymath’s verifier can be up to 25% more efficient.

Polymath’s verifier is more efficient as a function of m0: It performs an interpolation (32m0 logm0

field operations) while Groth’s verifier performs a width-O(m0) multi-scalar multiplication. The latter
can be computed in λ+(1+ o(1))λm0/ log2(λm0) field operations using the Pippenger’s algorithm. Our
method is faster for practically relevant values of m0 ≤ 216.

With new cryptanalytic attacks (e.g., [KB16]), the bit-length of group elements tends to become
longer, while the bit-length of field elements stays the same. In particular, in the case of 192-bit and
256-bit security levels, the elements of G2 are 4 and 8 times longer than G1 elements. (This is caused by
a larger embedding degree: BLS curves [BLS03] have embedding degree 12, 24, and 48 in the 128, 192,
and 256-bit security levels.) According to [APR21], in the case of the 192-bit security BLS24-509 curve,
the elements of G2 are four times longer and G2 scalar multiplication is ≈ 5.4 times more expensive

3 Recently, [LPS24] proved the knowledge-soundness of KZG-based zk-SNARKs under falsifiable assumptions in
the ROM. However, their constructions add overhead. We will leave the use of their methods for future work.
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compared to G1. Thus, the advantage of Polymath over Groth16 in argument length is more significant
in high-security levels. In low-security levels, it can only increase in the future.

Batching. Polymath’s prover does not output adversarially chosen G2 elements. Thus, it is easier to
recursively aggregate [BCMS20, Section 2.4.2] and batch Polymath than Groth16. While we do not
optimize Polymath for IPA-based aggregation techniques [BMM+21,GMN22,ABST23], we will point out
that they also work for Polymath.

Applications. A zk-SNARK does not have to satisfy all existing optimization criteria simultaneously.
One can compose zk-SNARKs with different parameters to a SNARK that achieves the best of the
worlds. In a depth-one composition, a prover-efficient inner SNARK Πin creates a sublinear but still long
(say, length O(

√
n)) inner argument πin and then a verifier-efficient SNARK Πout (say, Groth16) proves

that Πin’s verifier accepts πin. If |πin| is sublinear (say, O(
√
n)) and Πin’s verifier does not have a too

complex arithmetic circuit, this reduces the prover time over just using Groth16 without compromising
the argument length or verification time. Moreover, when Πin is well-chosen, the composed zk-SNARK
can be universal even if Groth16 is not (see [CGG+21] for related discussions).

This methodology is well-known [BCTV14,Tha22]. Recent works make it super competitive for the
verifier by involving Groth16. For example, [BSB22] composes Groth16 with GKR, zkBridge [XZC+22]
with Virgo, and Testudo [CGG+21] with Spartan.

Testudo’s inner SNARK Πin has a linear-time prover but produces a O(
√
n)-size argument πin. The

outer SNARK’s (Groth16’s) prover works in time O(
√
n log n), albeit with a large constant. Groth16’s

prover takes 10–15% of Testudo’s proving time [CGG+21]. Replacing Groth16 with Polymath in the
outer SNARK increased Testudo’s prover time by less than 1.5 times, reduces argument size, and may
improve verifier speed. Minor tweaks to Testudo, which is tuned for Groth16, could further reduce the
prover slow-down. A depth-two composition is possible, where the first zk-SNARK is prover-efficient,
the second zk-SNARK balances the prover and verifier, and the third zk-SNARK is verifier-efficient
(Polymath). Groth16 can be replaced with Polymath in [BSB22,XZC+22].

Polymath is very batching-friendly. The verifier given M Polymath proofs can batch-verify them in
a time dominated by four M -multi-scalar-multiplications in G1. A similar batching of Groth16 proofs
is dominated by an M -multi-pairing and three m0-multi-scalar-multiplications in G1. Polymath is sig-
nificantly more efficient since multi-pairing is much more expensive than a multi-scalar multiplication.
In particular, after replacing Groth16 with Polymath in [BSB22,XZC+22,CGG+21], their verifier can
perform quicker batch verification.

Generalizations. Polymath can be adjusted for various trade-offs, such as employing R1CS or mul-
tilinear PCSs, which improve prover complexity at the cost of longer arguments. Polymath prioritizes
argument length and verifier efficiency. Since we use pairings and G2 elements only to verify KZG
openings, we are not restricted to R1CS or SAP. Exploring whether alternative arithmetizations, like
Plonk [GWC19] or customizable constraint systems [STW23], can maintain verifier efficiency remains an
open question for future research.

Polymath features the simplest univariate polynomial (holographic) IOP for NP, where the prover
sends oracles to two polynomials A(X) and C(X), that the verifier asks to be opened at a random point.
To compare, one sends oracles to 7 polynomials in Plonk [GWC19], 11 in Marlin [CHM+20], and 3
in Vampire [LSZ22]. (However, Vampire makes significant sacrifices in all other parameters.) One can
replace KZG with other PCSs to obtain various trade-offs. Such PCSs must satisfy several more or less
standard properties, such as being additively homomorphic and any adversarially constructed polynomial
commitments having to belong to the span of input polynomial commitments. Since our primary goal is
to improve Groth16, we leave all generalizations for future work.

2 Preliminaries

Let λ denote the security parameter. PPT stands for probabilistic polynomial time. By F we denote a
finite field of prime order p. We denote by F≤n[X] the ring of univariate polynomials with variable X
over F of degree ≤ n. When a is uniformly sampled from a set A, we write a←$A.
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Assume n is a power of two and assume n | (p− 1). Let ω be the n-th primitive root of unity modulo
p and let H = ⟨ω⟩ be the subgroup generated by ω. Let ZH(X) :=

∏n
i=1(X − ωi−1) = Xn − 1 be the

vanishing polynomial of H (ZH(s) = 0 for all s ∈ H). For j ∈ [1, n], let ℓj(X) be the j-th Lagrange
polynomial of H, that is, the unique degree n− 1 polynomial, such that ℓj(ωj−1) = 1 and ℓi(ω

j−1) = 0
for i ̸= j. It is well known that ℓj(X) = (Xn − 1)ωj−1/(n(X − ωj−1)).

Let n be a big integer; in the case of the BLS12-381 curve, n = 232. A bilinear group generator
Pgen(1λ, n) returns pp = (p,G1,G2,GT , ê, [1]1, [1]2), where G1, G2, and GT are additive cyclic (thus,
abelian) groups of prime order p with n | (p − 1), ê : G1 × G2 → GT is a non-degenerate efficiently
computable bilinear pairing, and [1]ι is a fixed generator of Gι for ι ∈ {1, 2, T}. Intuitively, dependence
on n allows for fast interpolation. We asume /.pp has not been subverted [BFS16]. While [1]ι is part
of pp, we often give it as an explicit input to different algorithms. We assume that there is no efficient
isomorphism between G1 and G2. We use the standard bracket notation, that is, for ι ∈ {1, 2, T} and
x ∈ F, we write [x]ι to denote x[1]ι. We denote ê([x]1, [y]2) by [x]1 • [y]2 and assume that [1]T = [1]1 • [1]2.
Thus, [x]1 • [y]2 = [xy]T for all x, y ∈ F.

Algebraic group model (AGM, [FKL18]) is an idealized model for security proofs. In the AGM,
adversaries are restricted to be algebraic in the following sense: if A inputs some group elements and
outputs a group element, it provides an algebraic representation of the latter in terms of the former. More
precisely, if A has received group elements [x1]1, [x2]2 so far and outputs [y1]1, [y2]2, then (in the security
proof) it also outputs field element vectors γ1, γ2 such that [y1]1 =

∑
i γ1i[x1i]1 and [y2]2 =

∑
j γ2j [x2j ]2.

Polynomial Commitment Schemes. In a polynomial commitment scheme (PCS, [KZG10]), the
prover commits to a polynomial f ∈ F≤n[X] and later opens it to f(x1) for x1 ∈ F chosen by the verifier.
A (non-interactive, non-randomized) polynomial commitment scheme [KZG10] consists of the following
algorithms:

Setup Pgen(1λ) 7→ pp: Given 1λ, return system parameters pp.
Commitment key generation KGen(pp, n) 7→ (ck, tk): Given a system parameter pp and an upper-

bound n on the polynomial degree, return (ck, tk), where ck is the commitment key and tk is the
trapdoor. We always assume implicitly that ck contains pp.

Commitment Com(ck, f) 7→ C: Given a commitment key ck and a polynomial f ∈ F≤n[X], return a
commitment C.

Opening Open(ck, C, x1, f) 7→ (fx1
, π): Given a commitment key ck, a commitment C, an evaluation

point x1 ∈ F, and a polynomial f ∈ F≤n[X], return (fx1 , π), where fx1 ← f(x1) and π is an evaluation
proof.

Verification Vf(ck, C, x1, fx1
, π) 7→ {0, 1}: Given a commitment key ck, a commitment C, an evaluation

point x1, a purported evaluation fx1
= f(x1), and an evaluation proof π, return 1 (accept) or 0

(reject).

The KZG [KZG10] polynomial commitment scheme is defined as follows:

KZG.Pgen(λ): return pp← Pgen(1λ).
KZG.KGen(pp, n): Let tk← x←$F∗, ck← (pp, [(xi)ni=0]1, [1, x]2). Return (ck, tk).
KZG.Com(ck, f): return C ← [f(x)]1 =

∑n
j=0 fj [x

j ]1.
KZG.Open(ck, [f(x)]1, x1, f): Let fx1

← f(x1). Let D(X)← (f(X)− fx1
)/(X − x1) and [d]1 ← [D(x)]1.

Let π ← [d]1. Return (fx1
, π).

KZG.Vf(ck, [f(x)]1, x1, fx1
, [d]1): Return 1 iff [f(x)− fx1

]1 • [1]2 = [d]1 • [x− x1]2.

The KZG commitment scheme can also be used with Laurent polynomials. For example, if f(X) =
X6 −X−6, then (f(X)− f(2))/(X − 2) = (X12 −X6)/(X − 2) ·X−6 = g(X)X−6 for g(X) ∈ F≤11[X].
Then, one must add [(xi)5i=−6]1 to the SRS. We use this observation crucially in Polymath.

Polynomial IOP. Let R be an indexed relation with corresponding indexed language L(R),F a finite
field, and d ∈ N a degree bound. A Polynomial IOP [CHM+20,BFS20] for R with degree bound d is a
pair of interactive machines (P,V), such that: (1) (P,V) is an interactive proof for L(R) with r rounds,
and with soundness error ε, (2) P sends polynomials fi ∈ F[X] of degree at most d to V, (3) V is an
oracle machine with access to a list of oracles, containing one oracle for each polynomial it has received
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from the prover, (4) when an oracle associated with a polynomial fi(X) is queried on a point zj ∈ F, the
oracle responds with the value fi(zj), (5) V sends challenges αk ∈ F to P, (6) V is public coin.

A PHP (polynomial holographic IOP, [CFF+21]) is a polynomial IOP with several added capabilities
like the possibility to verify that committed polynomials satisfy certain equations without actually open-
ing them (this models the use of pairings), opening a function (for example, an affine map) of committed
polynomials, and doing degree tests. See [CFF+21] for a formal definition.

2.1 Succinct Zero-Knowledge Arguments

Let RG be a relation generator, such that RG(1λ) returns a polynomial-time decidable binary relation
R = {(x,w)} together with auxiliary information pp. Here, x is a statement, and w is a witness. We
assume that λ is explicitly deducible from the description of R. Intuitively, (pp,R) is the common
auxiliary input to the honest parties, the adversary, and the corresponding extractor. We assume that
pp← Pgen(1λ, n) for a well-defined n. (Recall that the choice of p and thus of the groups Gι depends on
n and that pp is not subvertible.) Let LR = {x : ∃w such that (x,w) ∈ R} be an NP-language.

Let (P,V) be a pair of interactive algorithms where V outputs the final message (typically either 0 or
1, unless V is malicious). We denote by tr ← ⟨P(x),V(y)⟩ the protocol transcript when P gets an input
x and V gets an input y. When V’s last message is b, we sometimes write ⟨P(x),V(y)⟩ = b.

A succinct zero-knowledge argument system Π = (Pgen,SRSGen,P,V) with a non-universal SRS for
RG consists of the following algorithms.

Setup Pgen(1λ, n): Given 1λ and n ∈ N, return pp.
SRS Generation SRSGen(pp,R): a probabilistic algorithm which, given public parameters pp and a

relation R, outputs srs = (srsP, srsV) along with a trapdoor tdsrs. Implicitly, elements such as
srsP and srsV include pp.

Prover/Verifier: a pair of interactive algorithms ⟨P(srsP,x,w),V(srsV,x)⟩ = b, where P takes a prov-
ing key srsP, a statement x, and a witness w, such that (x,w) ∈ R, and V takes a verification key for
a relationR and a statement x, and either accepts (b = 1) or rejects (b = 0) the argument. Interactive
arguments start and end with the prover’s message, making the number 2µ + 1 of communication
steps always odd.

Π must satisfy the following four requirements.
Completeness. For all λ, n ∈ poly(λ), pp ∈ image(Pgen(1λ, n)), R ∈ RG(1λ), and (x,w) ∈ R,

Pr
[
⟨P(srsP,x,w),V(srsV,x)⟩ = 1 | (srs, tdsrs)← SRSGen(pp,R)

]
= 1 .

Succinctness. Π is succinct if the running time of V is poly(λ+ |x|+ log |w|) and the communication
size is poly(λ+ log |w|).
Special-Soundness. Given k = (k1, . . . , kµ) ∈ Nµ, a k-tree of transcripts for a (2µ+ 1)-move public-coin
interactive argument Π = (Pgen,SRSGen,P,V) consists of K =

∏µ
i=1 ki transcripts organized in a tree.

In this tree, nodes represent prover’s messages and edges represent verifier’s challenges. A node at depth
i has ki children, each for distinct challenges. Transcripts map uniquely to paths from the root to a leaf.

Let k,N ∈ Nµ. A (2µ+ 1)-move public-coin interactive argument Π = (Pgen,SRSGen,P,V) for RG,
where V samples the i-th challenge from a set of cardinality Ni ≥ ki for 1 ≤ i ≤ µ, is k-out-of-N
special-sound if there exists a PPT extractor Extss such that for any λ, n ∈ poly(λ), R ∈ RG(1λ), PPT
Ass, AdvssPgen,Π,Extss,k,A(λ) :=

Pr

 T is a k-tree of accepting
transcripts ∧ (srs,x,w) /∈ R

pp← Pgen(1λ, n);
(srs, tdsrs)← SRSGen(pp,R);
(x, T )← Ass(srs);
w← Extss(srs,x, T )

 ≈λ 0 .

Zero-Knowledge. Π is ε-statistical zero-knowledge if there exists a PPT simulator Sim, such that for all
unbounded D = (D1,D2,D3), all λ, all n ∈ poly(λ), all pp ∈ image(Pgen(1λ, n)), and R ∈ RG(1λ),
|ε0(λ)− ε1(λ)| ≤ ε(λ), where

ε0(λ) := Pr

D3(st, tr) = 1∧
R(x,w)

∣∣∣∣∣∣
(srs, tdsrs)← SRSGen(pp,R);
(x,w, st)← D1(srs);
tr← ⟨P(srsP,x,w),D2(x)⟩

 ,

7



ε1(λ) := Pr

D3(st, tr) = 1∧
R(x,w)

∣∣∣∣∣∣
(srs, tdsrs)← SRSGen(pp,R);
(x,w, st)← D1(srs);
tr← ⟨Sim(srs, tdsrs,R,x),D2(x)⟩

 .

Π has statistical zero-knowledge when ε(λ) is negligible, and perfect zero-knowledge when ε(λ) = 0.
Π has subversion zero-knowledge (Sub-ZK, [BFS16]), if it has zero-knowledge even when the SRS is

maliciously generated. Sub-ZK follows from perfect zero-knowledge (with trusted SRS), SRS verifiability
(there exists a PPT algorithm that checks that the SRS belongs to image(SRSGen)), and a SNARK-
specific knowledge assumption, [ABLZ17,ALSZ21].

Using Fiat-Shamir. A zk-SNARK (succinct non-interactive argument of knowledge) is a NIZK ar-
gument system with a sublinear-sized argument. Zk-SNARKs are typically built by applying the Fiat-
Shamir heuristic to a succinct, public-coin, constant-round interactive argument system. As shown by
Attema et al. [AFK22], Fiat-Shamir can be used to transform any special-sound interactive proof to a
knowledge-sound non-interactive one, with an optimal security loss.

Fact 1 ([AFK22]) Let Π be a k-out-of-N -special-sound interactive proof. Then, the Fiat-Shamir trans-
formation of Π is knowledge-sound with knowledge error

κfs(Q) = (Q+ 1) · κ ,

where Q is the number of random oracle queries the adversary makes and κ = 1−
∏µ

i=1(1− (ki−1)/Ni).

Importantly, in all our security proofs, ki/Ni is negligible for all i, resulting in a negligible κfs(Q). The
result is adaptable for interactive arguments; see [AFK22,DG23,AFKR23].

R1CS And SAP. Let n be the number of constraints, m be the number of variables, and m0 ≤ m
be the number of public inputs. A Rank-1 Constraint System (R1CS, [GGPR13]) instance I is a tuple
(F,m0,U ,V ,W ), where U ,V ,W ∈ Fn×m. I defines the following relation, where ◦ is the Hadamard
product:

RR1CS
I =

{
z = ( xw ) : x = (z1, . . . , zm0

)⊺ ∧w = (zm0+1, . . . , zm)⊺∧
Uz ◦ V z = Wz

}
. (1)

One commonly uses the language of polynomials to express Eq. (1). Let uj , vj , wj ∈ F≤n[X] interpolate
the jth column of U ,V ,W correspondingly, and write u(X) =

∑m
j=1 zjuj(X), v(X) =

∑m
j=1 zjvj(X),

and w(X) =
∑m

j=1 zjwj(X). Then, (x,w) ∈ RR1CS
I if there exists h(X) ∈ F≤n−2[X], such that

u(X)v(X) − w(X) = h(X)ZH(X). On top of this, the verifier also needs to check that u(X), v(X),
and w(X) are correctly computed: that is, that (i) the first m0 coefficients zj in u(X) are equal to the
public inputs, and (ii) u(X), v(X), and w(X) are all computed using the same coefficients zj for j ≤ m.

The Square Arithmetic Program (SAP) was introduced in [Gro16,GM17] as a slightly less efficient
arithmetization that enables the design of more verifier-efficient zk-SNARKs. While R1CS corresponds
to arithmetic circuits with multiplication and addition gates, SAP corresponds to arithmetic circuits
with squaring and addition gates. These circuits can implement any arithmetic circuit with an overhead
of at most two [Gro16,GM17]: one can implement any multiplication gate x · y by computing (x/2 +
y/2)2 − (x/2 − y/2)2. Often, the overhead is smaller than two. As noted in [Lip22], one can start with
a zk-SNARK for R1CS (like Groth16) and transform it into a zk-SNARK for SAP by specializing it to
the case V = U . Thus, a SAP instance is represented as I = (F,m0,U ,W ).

Groth16. Groth16 [Gro16] is a non-universal (the SRS depends on the instance) zk-SNARK for R1CS
widely used due to its verifier-efficiency. We depict Groth16 in Fig. 1. Groth16’s prover computes three
group elements ([a, c]1, [b]2) and the verifier executes a single verification equation that requires the
computation of three pairings. Here, [a]1 and [b]2 are commitments to the witness (more precisely, to
Uz and V z) while [c]1 contains the rest of the information (the actual “argument” that in particular
convinces the verifier that the prover used the correct public input). Since Groth16 is well-known, we
omit further intuition.
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SRSGen(pp,RR1CS
I ): Sample x, α̂, β̂, δ̂←$F∗ such that xn ̸= 1. Let

srsP ←

(
[(xj)n−1

j=0 , δ̂, ((α̂uj(x) + β̂vj(x) + wj(x))/δ̂)
m
j=m0+1]1,

[(xiZH(x)/δ̂)
n−2
j=0 , α̂, β̂]1, [δ̂, (x

j)n−1
j=0 ]2

)
;

srsV ←
(
[((α̂uj(x) + β̂vj(x) + wj(x))/γ̂)

m0
j=1, α̂]1, [β̂, γ̂, δ̂]2, [α̂β̂]T

)
;

srs← (srsP, srsV); tdsrs ← (x, α̂, β̂, γ̂, δ̂); return (srs, tdsrs);

P(srsP, (zj)
m0
j=1, (zj)

m
j=m0+1):

u(X)←
∑m

j=1 zjuj(X); v(X)←
∑m

j=1 zjvj(X); w(X)←
∑m

j=1 zjwj(X);
h(X)← (u(X)v(X)− w(X))/ZH(X);
(ra, rb)←$F2; [a]1 ← [u(x)]1 + ra[δ̂]1 + [α̂]1; [b]2 ← [v(x)]2 + rb[δ̂]2 + [β̂]1;

[c]1 ←
∑m

j=m0+1 zj

[
α̂uj(x)+β̂vj(x)+wj(x)

δ̂

]
1
+
[
h(x)ZH(x)

δ̂

]
1
+ rb[a]1 + ra[b]1 − rarb[δ̂]1;

return π ← ([a, c]1, [b]2);

V(srsV, (zj)
m0
j=1, π = ([a, c]1, [b]2)): // 3p + (m0 + 1)G1 + G2

[PI]1 ←
∑m0

j=1 zj [(α̂uj(x) + β̂vj(x) + wj(x))/γ̂]1;
Check that [PI]1 • [γ̂]2 + [c]1 • [δ̂]2 = [a]1 • [b]2 − [α̂β̂]T .

Sim(srs, tdsrs = (x, α̂, β̂, δ̂),x = (zj)
m0
j=1): // x is not used by the simulator

a←$F; b←$F; [PI]1 ←
∑m0

j=1 zj [(α̂uj(x) + β̂vj(x) + wj(x))/γ̂]1;
[c]1 ← (ab[1]1 − [α̂β̂]T − γ̂[PI]1)/δ̂;
return π ← ([a, c]1, [b]2);

Fig. 1. Groth’s [Gro16] SNARK Groth16.

One can batch-verify M proofs πi = ([ai, ci]1, [bi]2) that use the same SRS, by letting the verifier to
sample M field elements ri←$F and then checking that(∑M

i=1 ri[PIi]1
)
• [γ̂]2 +

(∑M
i=1 ri[ci]1

)
• [δ̂]2 =

∑M
i=1 (ri[ai]1 • [bi]2)−

(∑M
i=1 ri

)
[α̂β̂]T . (2)

This is dominated by M m0-multi-scalar-multiplications in G1 to compute {[PIi]1}, two M -multi-scalar-
multiplications in G1 to compute

∑M
i=1 ri[PIi]1 and

∑M
i=1 ri[ci]1, M scalar multiplications in G1 to com-

pute {ri[ai]1}, and one M -multi-pairing.

Improvements of [Lip22]. Lipmaa [Lip22] reduced Groth16’s five trapdoors to two. Namely, [Lip22]
replaced four of Groth16’s trapdoors with well-chosen powers4 yα, yβ , yγ , yδ, yη of a single trapdoor
y. (For flexibility, [Lip22] has one more virtual trapdoor than Groth16.) Here, α, β, γ, δ, η ∈ Z are small
constants that must be well-chosen to guarantee (knowledge-)soundness and possibly additional security
properties like Sub-ZK and simulation-extractability.

To fix the values of α, . . . , η, [Lip22] proceeds as follows. In the AGM proof, the verification polynomial
V(X,Y ) is bivariate. Considering V as a polynomial in R[Y ], where R = F[X], it has 29 to 44 monomials
Vi(X)Y i. From V = 0, it follows that Vi = 0 for all i. Lipmaa [Lip22] showed that it suffices to analyze
the setting Vi = 0 for only a small number (namely, six) of well-chosen critical exponents i. From this,
one can derive that the prover was honest.

For the security proof to make sense, the exponents i in critical monomials Vi(X)Y i have to be
distinct from each other and other (23 = 29 − 6 or more) exponents. This can be achieved by choosing
α, . . . , η carefully. However, since there are more than 20 non-critical exponents, six critical exponents,
and five integers α, . . . , η, it is not clear how to find suitable values manually. Lipmaa [Lip22] solved the
problem by using an exhaustive search. In the current paper, we will have a different zk-SNARK with
a different setting, but we will use a similar exhaustive search to find the values of (in our case) two
exponents.
4 We use the notation of [Gro16,Lip22] when talking about corresponding zk-SNARKs, but add “hats” to

Groth16’s trapdoors. The notation for Polymath aligns with that in [Lip22]. For example, α̂ in Groth16
corresponds to yγ in [Lip22] and Polymath.
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3 Polymath: A New Super-Succinct zk-SNARK

Fix a SAP instance I = (F,m0,U ,W ). Let uj(X) and wj(X) be the interpolation polynomials of
the jth column of U and W . Then, the prover is honest iff u(X)2 − w(X) = h(X)ZH(X) for some
h(X) ∈ F≤n−2[X] (see Eq. (1), after setting V = U and using the polynomial language). We observe
that in Groth16, [a]1 is a KZG commitment to u(X), [b]2 to v(X), and [c]1 to a linear combination of
u(X), v(X) and additional terms.

Similarly to [Lip22], Polymath uses several virtual indeterminates, X, Y α, and Y γ . Here, α and γ
are small integers (α = −3 and γ = −5, see Section 4.1) that we found using an exhaustive search.
Well-chosen values of α and γ are crucial to simultaneously obtain soundness and good prover-efficiency.
Our goal is to have a single trapdoor. Thus, differently from [Lip22] that handled Y as an independent
indeterminate, we set Y ← Xσ for some σ = σ(n) that we also fix later (see Section 4.1). Since Y has a
different semantic meaning than X, we mostly write Y and not Xσ in the rest of the paper.

Derivation. Let u(X) =
∑m

j=1 zjuj(X) and w(X) =
∑m

j=1 zjwj(X), where z = ( xw ). Thus, u(X) and
w(X) interpolate Uz and Wz. Let α and γ be small integer constants to be determined later. We define

A(X) := u(X) + ra(X)Y α ,

where ra(X)←$F≤bnda [X] is a (bnda + 1)-independent hash for bnda := 1. (Intuitively, [A(x)]1, where x
is a trapdoor, commits to Uz.) We chose bnda = 1 since we will later open the polynomial commitment
[a]1 at one point, and we aim to obtain zero knowledge. Following the general approach of [Gro16,Lip22],
we define an auxiliary polynomial

C0(X) := (A(X) + Y γ)A(X)

= (u(X) + ra(X)Y α + Y γ) · (u(X) + ra(X)Y α)

=u(X)Y γ + u(X)2 +R0(X) , where
R0(X) := ra(X)Y α · (2u(X) + ra(X)Y α + Y γ) .

Note that each term of R0(X) depends on ra(X). C0(X) is more complicated in [Gro16,Lip22] since the
latter zk-SNARKs are for R1CS. Using SAP enables us to simplify C0(X) and the following derivation.

Similarly to [Gro16,Lip22], we include the term Y γ in C0(X) to obtain the term u(X)Y γ , independent
of ra(X). Recall that u(X)2−w(X) = h(X)ZH(X) for a polynomial h(X) iff the prover is honest. Using
this, we rewrite C0(X) as

C0(X) =u(X)Y γ + w(X) +
(
u(X)2 − w(X)

)
+R0(X)

=u(X)Y γ + w(X) + h(X)ZH(X) +R0(X) .

Similarly to [Gro16,Lip22], we divide the expression u(X)Y γ +w(X) into private and public (“public
input” polynomial) parts. For another virtual trapdoor Y η, Lipmaa [Lip22] wrote

C0(X) = C(X)Y α + PI0(X)Y η , (3)

where (PI stands for “public input”)

PI0(X) :=
∑m0

j=1 zj (uj(X)Y γ + wj(X)) /Y η ,

C(X) :=
∑m

j=m0+1 zj (uj(X)Y γ + wj(X)) /Y α

+h(X)ZH(X)/Y α +R(X) ,

R(X) :=R0(X)/Y α = ra(X) · (2u(X) + ra(X)Y α + Y γ) .

(4)

As in [Lip22], we use α in the definition of C0(X) instead of introducing a new exponent since it allows
to reuse the computation of u(X) and ra(X)Y α. To verify Eq. (3), the verifier checks on pairings that

[c]1 • [yα]2 + [PI0(x)]1 • [yη]2 = [a+ yγ ]1 • [a]2 ,
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where [a]1 = [A(x)]1 and [c]1 = [C(x)]1 are committed polynomials, x is the trapdoor corresponding
to X, and y is the trapdoor corresponding to Y (an independent trapdoor in [Lip22] and y = xσ in
Polymath). The verifier recomputes

[PI0(x)]1 ←
∑m0

j=1 zj [(uj(x)y
γ + wj(x)) /y

η]1

from the SRS elements [(uj(x)y
γ + wj(x))/y

η]1.
Thus, the verifier must perform m0 costly scalar multiplications. Moreover, the SRS includes m0

elements [(uj(x)yγ + wj(x)) /y
η]1 that are the only ones that depend on the virtual trapdoor yη. Reducing

the number of scalar multiplications typically involves hashing the public input x to H(x) and using
H(x) as the input with m0 = 1 (x forms part of the witness). The verifier still must hash a long x and
the instance includes new constraints for verifying the hash’s correctness. Hashing will also not change
the issue of having additional SRS elements; η is present even if m0 = 1. In particular, having η as a
separate trapdoor increases the values of α and γ found by the exhaustive search in Section 4.1, making
Polymath’s prover less efficient.

Efficient Verifier. We handle the public input polynomial PI(X) differently to solve both issues. We
emphasize that the hash-based solution is still possible: one can assume that the public input (with length
one) is the hash of the actual input. The optimization is motivated by but not equal to how inputs are
handled in Basilisk and Vampire [RZ21,LSZ22]. We assume that U and W are such that for j ≤ m0,
uj(X) has at most two5 non-zero coefficients and wj(X) = 0. If one uses R1CS, one can achieve this by
introducing additional copy constraints, with setting (say) zm0+j = zj for j ≤ m0 and then adding new
constraints zm0+j = zj · 1. Since we use SAP, we can implement this by adding constraints

zm0+2j = (zj/2 + 1/2)2

and
zm0+2j+1 = (zj/2− 1/2)2 ,

and then using zm0+2j − zm0+2j+1 instead of zj in the rest of the circuit. For example, in the case
m0 = 4 (and z1 = 1 as always):

U =


z1 z2 z3 z4 ...

1 0 0 0 ...
1/2 1/2 0 0 ...
−1/2 1/2 0 0 ...

0 0 1/2 1/2 ...
0 0 −1/2 1/2 ...
... ... ... ... ...

 W =


z1 z2 z3 z4 w5 w6 w7 w8 w9 ...

0 0 0 0 1 0 0 0 0 ...
0 0 0 0 0 1 0 0 0 ...
0 0 0 0 0 0 1 0 0 ...
0 0 0 0 0 0 0 1 0 ...
0 0 0 0 0 0 0 0 1 ...
... ... ... ... ... ... ... ... ... ...

 . (5)

To obtain even better efficiency, we redefine the space K of public inputs. In Groth16 and most other
zk-SNARKs that we know, K = [1,m0] (see, e.g., Eq. (4), where j is summed over K and H \K). Recall
n = |H|. Assuming m0 | n and m > n6, we define K ⊂ H to be the multiplicative subgroup

K := {νj : j ∈ [0,m0 − 1]} = {ωn/m0·j : j ∈ [0,m0 − 1]} ,

where ν := ωn/m0 has order m0. Let

h := {j : ωj−1 ∈ H} and k := {j : ωj−1 ∈ K}

be the sets of exponents corresponding to H = {ωh} and K = {ωk}. Define

ZK(X) :=
∏

s∈K(X − s) = Xm0 − 1 ∈ F≤m0
[X] ,

ZH\K(X) :=
∏

s∈H\K(X − s) =
Xn−1
Xm0−1 ∈ F≤m−m0

[X] .

5 Any small constant number c would suffice. A smaller c results in better efficiency, and c ≥ 2 is needed because
we use SAP.

6 This holds in updatable SNARKs [GWC19,CHM+20,CFF+21,LSZ22]. Moreover, Polymath’s prover complexity
depends more on n than m (see Table 1). Thus, increasing m is relatively unimportant.

11



(Recall that m > n.) If n = ba1 and m0 = ba2 are powers of some b, ZH\K(X) =
∏a1−a2−1

i=0

∑b−1
j=0(X

m0)jb
i

.
For example, (X29 − 1)/(X24 − 1) = (X16 + 1)(X32 + 1)(X64 + 1)(X128 + 1)(X256 + 1). If j ∈ k (thus
(ωj−1)m0 = 1),

ZH\K(ω
j−1) =

∏a1−a2−1
i=0

∑b−1
j=0((ω

j−1)m0)jb
i

= ba1−a2 = n/m0 ,

ℓj(X) =
∏

s∈H\{ωj−1}
X−s

ωj−1−s =
∏

s∈K\{ωj−1}
X−s

ωj−1−s ·
∏

s∈H\K
X−s

ωj−1−s

= ℓKj (X) · ZH\K(X)

ZH\K(ωj−1) = ℓKj (X) · m0

n ZH\K(X) ,

where ℓKj (X) := (Xm0−1)νj−1/(m0(X−νj−1)) is the jth Lagrange polynomial over the subgroup K. To
simplify the notation, we assume that the index j in zj comes from h but zj corresponds to the ωj−1th
element of the vector z. Clearly, for our definition of U in Eq. (5), u1(X) = ℓ1(X) + (ℓ2(X)− ℓ3(X))/2,
u2(X) = (ℓ2(X) + ℓ3(X))/2, and u3(X) = (ℓ4(X)− ℓ5(X))/2. Thus,∑

j∈k zjuj(X) = z1

(
ℓ1(X) + ℓ2(X)−ℓ3(X)

2

)
+ z2

ℓ2(X)+ℓ3(X)
2 + . . .

= z1ℓ1(X) + z1+z2
2 ℓ2(X) + z2−z1

2 ℓ3(X) + . . .

=
∑

j∈k z̃jℓj(X) ,

where for j ∈ k,

z̃j :=


zj j = 1 ,
zj−1+zj

2 j ≡ 0 mod 2 ,
zj−1−zj−2

2 j ≡ 1 mod 2, j > 1 .

We define the public input polynomial as

PI(X) :=
(∑

j∈k zjuj(X)
)

nY γ

m0ZH\K(X) =
(∑

j∈k z̃jℓj(X)
)

nY γ

m0ZH\K(X)

=
(∑

j∈k z̃jℓ
K
j (X)

)
Y γ .

(Note that no terms correspond to wj(X).) Thus,

C(X)Y α + PI(X) · m0

n ZH\K(X) = (A(X) + Y γ)A(X) . (6)

In the pairing-based setting, the verifier sets [PI(x)]1 ←
∑

j∈k z̃j [ℓ
K
j (x)y

γ ]1 and checks that for [c]1 =
[C(x)]1,

[c]1 • [yα]2 + [PI(x)]1 •
[
m0

n ZH\K(x)
]
2
− [a+ yγ ]1 • [a]2 = [0]T . (7)

This variant results in a better verifier computation and simpler SRS than previous Groth16 variants,
but it will have the same argument length.

Using KZG. According to the above description, the prover forwards [a]1 and [a]2. Instead of forwarding
[a]2, we ask the prover to open [a]1 to Ax1

:= A(x1) at a random x1, sampled by the verifier. Since
ℓKj (X) ∈ F≤m0−1[X], the verifier can evaluate

∑
z̃jℓ

K
j (x1) efficiently in Θ(m0 logm0) field operations.

Instead of checking Eq. (7) directly, the verifier computes y1 := xσ1 , yα1 , PI(x1), ZH\K(x1), y
γ
1 and checks

that C(X) opens at X = x1 to

Cx1
:=
(
(Ax1

+ yγ1 )Ax1
− PI(x1) · m0

n ZH\K(x1)
)
/yα1 .

(This formula comes from Eq. (7).)
As a standard optimization, the prover batches the openings of A(X) and C(X) at x1 using a random

field element x2 sampled by the verifier. The verifier batch-verifies the two openings. If the batch-
verification holds, then due to the properties of the AGMOS and the Schwartz-Zippel lemma, we get
that Eq. (6) holds, and thus the prover is honest. The prover only needs to forward one extra field element
Ax1

and one group element (for KZG opening).
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SRSGen(pp,RR1CS
I ): Let bnda = 1, σ = n+ 3, α = −3, γ = −5; // See Section 4.1

Let dmin = −5n− 15 and dmax = 5n+ 7 be as in Eq. (15);
x←$F∗ \H; y ← xσ; z←$F∗; Let

srsP ←


[
(xj)n+bnda−1

j=0 , (xiyα)2·bndai=0 , ((uj(x)y
γ + wj(x))/y

α)j∈h\k

]
1
,[

(xiZH(x)/y
α)n−2

j=0 , (x
iyγ)bndai=0 , (x

iz)dmax−1
i=dmin

]
1

 ;

srsV ←
(
[1]1 , [1, x, z]2

)
;

tdsrs ← x; srs← (srsP, srsV); return (srs, tdsrs);

P(srsP, (zj)j∈h):
u(X)←

∑
j∈h zjuj(X); w(X)←

∑
j∈h zjwj(X);

ra(X)←$F≤bnda [X]; A(X)← u(X) + ra(X)Y α; [a]1 ← [u(x)]1 + [ra(x)y
α]1;

h(X)←
(
u(X)2 − w(X)

)
/ZH(X);

R(X)← ra(X) · (2u(X) + ra(X)Y α + Y γ);
[R(x)]1 ← 2[ra(x)u(x)]1 + [ra(x)

2yα]1 + [ra(x)y
γ ]1;

C(X)←
∑

j∈h\k zj (uj(X)Y γ + wj(X)) /Y α + h(X)ZH(X)/Y α +R(X);
[c]1 ←

∑
j∈h\k zj [(uj(x)y

γ + wj(x)) /y
α]1 + [h(x)ZH(x)/y

α]1 + [R(x)]1;
return [a, c]1;

V(srsV, (zj)j∈k, [a, c]1): Send x1 ←$F∗ \ {x};

P(srsP, (zj)j∈h;x1): y1 ← xσ
1 ; return Ax1 ← A(x1) = u(x1) + ra(x1)y

α
1 ;

V(srsV, (zj)j∈k, ([a, c]1;x1;Ax1)): Send x2 ←$F∗;

P(srsP, (zj)j∈k, ([a, c]1;x1;Ax1 ;x2)):
PI(x1)← (

∑
j∈k z̃jℓ

K
j (x1))y

γ
1 ;

Cx1 ←
(
(Ax1 + yγ

1 )Ax1 − PI(x1) · m0
n
ZH\K(x1)

)
/yα

1 ;
D(X)← (A(X) + x2C(X)− (Ax1 + x2Cx1)) /(X − x1);
return [d]1 ← [D(x) · z]1;

V(srsV, (zj)j∈k, ([a, c]1;x1;Ax1 ;x2; [d]1)):
y1 ← xσ

1 ; PI(x1)← (
∑

j∈k z̃jℓ
K
j (x1))y

γ
1 ;

Cx1 ←
(
(Ax1 + yγ

1 )Ax1 − PI(x1) · m0
n
ZH\K(x1)

)
/yα

1 ;
Check that ([a]1 + x2[c]1 − (Ax1 + x2Cx1)[1]1) • [z]2 − [d]1 • ([x]2 − x1[1]2) = [0]T ;

Sim(srs, tdsrs = x,x = (zj)j∈k):
y ← xσ; PI(X)← (

∑
j∈k z̃jℓ

K
j (X))Y γ ;

ra(X)←$F≤bnda [X]; A(X)← ra(X)Y α;
C(X)← ((A(X) + Y γ)A(X)− PI(X) · m0

n
ZH\K(X))/Y α;

Output [A(x),C(x)]1;
Obtain x1 ∈ F \ {0, x}; Output Ax1 ← A(x1);
Obtain x2 ∈ F; Cx1 ← C(x1);
D(x)← (A(x) + x2C(x)− (Ax1 + x2Cx1)) / (x− x1); [d]1 ← D(x) · [z]1;
return π ← ([A(x),C(x)]1;x1;Ax1 ;x2; [d]1);

Fig. 2. Polymath: the new SNARK for SAP.

Description. We describe the Polymath interactive argument system in Fig. 2. It can be converted
into a zk-SNARK using the Fiat-Shamir heuristic. More precisely, Fig. 2 describes a simpler variant of
Polymath that does not achieve Sub-ZK; we will discuss achieving Sub-ZK in Section 3.1.

Polymath uses the two key optimizations (more efficient verifier and using KZG opening) explained
above, together with a batch-opening (this is why we need x2) and a precise choice of exponents α = −3,
γ = −5 (found by using an exhaustive search), and σ = n + 3. We explain this choice of α, γ, and σ
in Section 4.1. For our recommended values of α and δ, dmin = −5n − 15 and dmax = 5n + 7; in the
general case, we compute the values of dmin and dmax in Section 5 (see Eq. (15)). We need x1 ̸= 0 in the
soundness proof and x1 ̸= x, x2 ̸= 0 in the zero-knowledge proof.
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On Non-Universality. Polymath relies on a circuit-dependent SRS solely since the prover uses the
SRS elements [(uj(x)y

γ + wj(x))/y
α]1 to compute [c]1. The verifier’s algorithm does not depend on the

relation.

Polymath as a PHP. Polymath can be interpreted as a PHP with a non-universal setup. All
z-independent SRS elements can be seen as KZG polynomial commitments (in a PHP, oracles to
certain polynomials), with [1]1 being a commitment to the constant function f(X) = 1 and say
[xiZH(x)/y

α]1 = KZG.Com(xiZH(x)/y
α). In the first round, the prover computes [a, c]1 as linear com-

binations of known KZG polynomial commitments, obtaining new KZG polynomial commitments (for
example, a commitment to C(X)). The last round prover’s message and verifier’s checks (KZG opening
and verification, correspondingly) are already written in the language of KZG. In the language of PHP,
it means that the verifier queries A(X) and C(X).

Thus, Polymath is an efficient PHP for SAP that employs a non-universal setup with instance-
dependent polynomial oracles from a trusted third party. The prover provides two oracles, A(X) and
C(X), both linear combinations of setup oracles, but only C(X) depends on instance-dependent ones.
The verifier batch-queries A and C at a random point, but does not query the setup oracles.

We leave it to future work to formalize PHP with a non-universal setup and explore instantiating of
Polymath with other polynomial commitment schemes.

3.1 Completeness And Zero-Knowledge

We will next prove that Polymath is complete and has zero knowledge. In Section 4, we explain the
setting of exponents α, γ, σ, and prove special-soundness. We discuss Polymath’s efficiency in Section 5.

Theorem 1. Polymath is complete. ‘

Proof. Clearly, (X − x1) | (A(X) − A(x1)) and (X − x1) | (C(X) − C(x1)). Batching, we get (X − x1) |
(A(X) + x2C(X)− (A(x1) + x2C(x1))) for any x2 ∈ F. Thus, A(X) + x2C(X) − (A(x1) + x2C(x1)) =
D(X)(X−x1) for the polynomial D(X) = (A(X) + x2C(X)− (A(x1) + x2C(x1))) /(X−x1), defined as in
Fig. 2. Evaluating atX = x and multiplying both sides by z, we get (A(x)+x2C(x)−(A(x1)+x2C(x1)))z =
D(x)z(x− x1). Since in the honest case A(x) = a, C(x) = c, A(x1) = Ax1 , and C(x1) = Cx1 , we get that
the Polymath’s verifier accepts. Finally, the prover can perform all calculations, given Polymath’s SRS.

⊓⊔

Theorem 2. Polymath is perfectly zero-knowledge.

Proof. The simulator computes most values honestly, except (1) A(X) = ra(X)Y α for a random 2-
independent hash function ra(X) and (2) C(X) is computed as in Eq. (6). We need to establish the
correctness of these two changes.

First, consider C(X). Given a fixed A(X), C(x1) = Cx1
is computed as by the honest prover and

verifier. The simulator computes D(x) so the verifier accepts the argument. Moreover, assuming x2 ̸= 0,
a unique value of [c]1 makes the verifier accept. Thus, C(x) = c has also the correct distribution.

Second, consider A(X). Simulator’s A(X) corresponds to a zero witness. Since the simulator chooses
C(X) so that the verifier will accept, this does not impact acceptance. The verifier gets information-
theoretically information about A(X) from the pair A(x) and A(x1). Masking the witness with a 2-
independent hash function ra(X) hides the witness from an omnipotent verifier. ⊓⊔

Subversion zero-knowledge. Since, like Groth16, Polymath is not updatable, we prove it is the next
best thing: Sub-ZK [BFS16]. Following [ABLZ17] (see also [Fuc18,ALSZ21]), one can prove that Polymath
is Sub-ZK [BFS16] under a knowledge assumption. According to [ABLZ17,ALSZ21], constructing an SRS
verification algorithm Vsrs suffices. The construction of Vsrs follows from [ABLZ17,ALSZ21,Lip22] who
constructed Vsrs for Groth16 and Lipmaa’s variant of Groth16. Really, Polymath’s SRS is a simpler
variant of Groth16’s SRS, except that (1) the SRS contains values xiz, and (2) one has to take care of
verifying SRS elements like [xiyα = xi+ασ]1. For (1), one must check that [z]1 • [1]2 = [1]1 • [z]2 and
[xiz]1 • [1]2 = [xi−1z]1 • [z]2 for all i.
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For (2), the SRS must include new G2 elements; this does not affect soundness as the prover does
not output G2 elements. The added elements depend on α, γ, and σ. For example, assume α = −3
and σ = n + 3, as recommended. For simplicity, assume n is a power of two. To allow verifying that
[yα = x−3(n+3)]1 is correctly computed, we add four elements [xn, x2n, x3n, y−1 = x3(n+3)]2 to the SRS.
The verifier checks that [xn]1 • [1]2 = [1]1 • [xn]2, [xn]1 • [xn]2 = [1]1 • [x2n]2, [xn]1 • [x2n]2 = [1]1 • [x3n]2,
[x9]1 • [x3n]2 = [1]1 • [y−1]2, and [y]1 • [y−1]2 = [1]1 • [1]2. Writing down all verification equations is
straightforward but rather tedious.

4 Special-Soundness

Lipmaa [Lip22] proved his Groth16 variant is knowledge-sound in AGMH, an AGM variant that lets
adversaries sample group elements without knowing their discrete logarithms. Since it is easy to im-
plement oblivious sampling [LPS23], the AGMH models the power available to all realistic adversaries.
The AGMH is based on the fully programmable random oracle (FPRO) model, as noted in [LPS23]
[LPS23] defined AGMOS (AGM with oblivious sampling), which has the same strength as AGMH but
without relying on the FPRO. Since AGMOS is more realistic than AGM and does not use the FPRO,
we will prove knowledge soundness in AGMOS. Moreover, AGM allows for clearly spurious knowledge
assumptions. As shown in [LPS23], certain uses7 of KZG in well-known papers are secure in AGM but
not in AGMOS. Since AGMOS is a new model, we will give a longer description of AGMOS and TOFR
(an underlying security assumption); our description is almost wholly taken from [LPS23].

Moreover, motivated by Fact 1, we will prove that Polymath’s interactive argument is computation-
ally special-sound. This causes additional challenges since we must analyze the entire tree of accepting
transcripts. In particular, AGMOS proof of special-soundness has to take into account that the adversary
can ask different sampling oracle queries in every branch of the tree of transcripts.

On AGMOS. An AGMOS adversary can ask the oracle to sample a seed s from a distribution D ∈ DF
and then return E(s), where E ∈ EF is a function. Here, the choice of EF and DF specify the capabilities
of the AGMOS adversary. In the least powerful case, DF can contain only uniform distribution, while in
the most realistic case, DF contains all high min-entropy distributions. Crucially, the strength of TOFR
depends on EF and DF . We refer the reader to [LPS23] for the intuition behind the following formal
definition of the AGMOS.

Fix pp← Pgen(1λ). Let EFpp,ι be a set of (polynomially many) functions E : F→ Gι. Let DFpp be
a family of distributions over F. We introduce two oracles O1 and O2, one for each group G1 and G2.
The ith query (E,D) to Oι consists of a function E ∈ EFpp,ι and a distribution D ∈ DFpp. The oracle
samples a field element si←$D and returns [qιi ]ι ← E(si) and si. Here, qιi is implicit and unknown to
the oracle and the adversary.

We will denote the adversary’s initial input (e.g., input from the challenger) in Gι by [xι]ι. We assume
[xι]ι always includes [1]ι. Let x = ([x1]1, [x2]2). In interactive protocols, x is updated sequentially (we
will not formalize it). The adversary’s view consists of all group elements that the adversary has seen up
to the given moment. This includes the adversary’s initial input, elements sent by other parties during
the interaction, and oracle answers.

Denote O = (O1,O2). We require that for any non-uniform PPT oracle adversary AO, there exists a
non-uniform PPT extractor ExtOA, such that: if AO(x) outputs a vector of group elements [y]ι, on input
x = ([x1]1, [x2]2), then with an overwhelming probability, ExtOA outputs field-element matrices γ, δ, and
a vector [qι]ι (Oι’s answers), such that

y = γ⊺xι + δ⊺qι . (8)

Here, γ and δ have the natural restriction that outputted group elements should only depend on the
current state (group elements, including oracle answers, seen thus far) and not on the future information.

7 Extracting the committed polynomial from solely the polynomial commitment is possible in the AGM but
impossible in the AGMOS. In AGMOS, one has to open the polynomial commitment before extractability
becomes possible.
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Oι(E,D)

if E /∈ EFpp,ι ∨ D /∈ DFpp then return ⊥;fi
s←$D; [q]ι ← E(s); return ([q]ι, s);

Fig. 3. The description of the oblivious sampling oracle Oι, where ι ∈ {1, 2}.

Definition 1 (AGMOS). Let EF = {EFpp,ι} be a collection of functions. Let DF = {DFpp} be a fam-
ily of distributions. A non-uniform PPT algorithm A is an (EF ,DF)-AGMOS adversary for Pgen if there
exists a non-uniform PPT extractor ExtA, such that for any x = (x1,x2), Adv

agmos
Pgen,EF,DF,A,ExtA

(λ) :=

Pr

 y1 ̸= γ⊺
1x1 + δ⊺1q1 ∨

y2 ̸= γ⊺
2x2 + δ⊺2q2

pp← Pgen(1λ); r ← RNDλ(A);
([y1]1, [y2]2)←$AO(pp,x; r);

(γι, δι, [qι]ι)
2
ι=1 ← ExtOA(pp,x; r)

 ≈λ 0 .

O is the non-programmable oracle depicted in Fig. 3. Here, [qι]ι is required to be the tuple of elements
output by Oι. We denote by ilι the number of Oι calls.

Many AGMOS proofs rely on the following two assumptions. TOFR is related to the classical FindRep
assumption [Bra94].

Pgen is (d1, d2)-PDL (Power Discrete Logarithm [Sta08,THS+09,JR10,Lip12]) secure if for any λ
and non-uniform PPT A,

Pr
[
A
(
pp, [(xi)d1

i=0]1, [(x
i)d2

i=0]2

)
= x | pp← Pgen(1λ);x←$F∗] ≈λ 0 .

We allow the lower bound of i different from 0 and even negative.
We say Pgen is (dmin, dmax, d

′
min, d

′
max)-PDL secure if for any λ and non-uniform PPT A,

Pr
[
A
(
pp, [(xi)dmax

i=dmin
]1, [(x

i)
d′
max

i=d′
min

]2
)
= x | pp← Pgen(1λ);x←$F∗] ≈λ 0 .

(A similar variant of PDL, with dmin = d′min = −dmax = −d′max, was used in Sonic [MBKM19].) One can
reduce this generalized variant of PDL to the standard PDL by reprogramming the group generators.

Let EF be some family of functions and DF a family of distributions. Pgen is (EF ,DF)-TOFR
(Tensor Oracle FindRep, [LPS23]) secure if for any non-uniform PPT A, AdvtofrPgen,A(λ) :=

Pr

[
v ̸= 0 ∧ v⊺ ·

(
1
q1
q2

q1⊗q2

)
= 0 pp← Pgen(1λ);v ← AO(pp)

]
≈λ 0 .

Here, O, q1, and q2 are as in Definition 1.
See [LPS23] for an analysis of TOFR. In the simplest case when one only allows for uniform sampling,

TOFR is related to PDL, [LPS23].

4.1 Setting Exponents

Before proving special-soundness, we will explain how we choose α, γ, and σ. Since we will not give
exact security details here, the reader may want to read this subsection while going through the special-
soundness proof.

In our special-soundness proof, we have a polynomial φ(X) (see Eq. (13)), where φ(X) = 0 indicates
an honest prover. We write φ(X) =

∑
k φk(X)Y k, and infer the prover’s honesty from φ0(X) ≡ 0

(mod ZH(X)) and φk(X) = 0 for 4 “critical” exponents k. In [Lip22], it suffices that the critical exponents
are all unique (not equal to each other or some non-critical exponents). For example, if β and γ are critical
exponents and α is non-critical, it must be that β ̸= α, γ ̸= α, and β ̸= γ. In Polymath, Y = Xσ is not an
independent indeterminate; we choose σ together with α and γ. This complicates our special-soundness
proof. In particular, to avoid collisions between monomials XiY j = Xi+σj , we must consider the degrees
of polynomials φk(X). Considering the same example but with degφα = 3n and degφβ = 2n, it is not
sufficient that, say, α ̸= β: we need that either ασ + 3n < βσ or βσ + 2n < ασ. Assuming σ > n, this
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Table 2. Coefficients of φ(X). We postpone the explanation of elements like aγ(X) to Section 4.2. The first
column is highlighted when the coefficient is critical. The last column is the value of k when taking α = −3 and
γ = −5. We sorted the table according to the last column. We use index j when summing over k and i when
summing over h\k. For j ∈ k and i ∈ h\k, z̃i(X) = či−2ra(X)ǎi, z̃j = zj , u(X) :=

∑
z̃juj(X)+

∑
z̃i(X)ui(X),

and w(X) :=
∑
z̃jwj(X) +

∑
z̃i(X)wi(X).

k φk(X) degφk k ∈ F

2γ −aγ(X)(aγ(X) + 1) 2 −10
α+ γ cγ(X)− (2aγ(X) + 1)ra(X) 3 −8
2γ − α −(2aγ(X) + 1)

∑
i∈h\k ǎiui(X) n −7

2α rc(X)− ra(X)2 4 −6
γ u(X)− (2aγ(X) + 1)ua(X) n+ 1 −5
2γ − 2α −

(∑
i∈h\k ǎiui(X)

)2
2(n− 1) −4

α uc(X)− 2ra(X)ua(X) n+ 2 −3
γ − α −2ua(X)

∑
i∈h\k

ǎiui(X)− (2aγ(X) + 1)
∑

i∈h\k

ǎiwi(X)− (2aγ(X) + 1)ha(X)ZH(X) 2n− 1 −2

0 w(X)− ua(X)2 + (hc(X)− 2ra(X)ha(X))ZH(X) 2n 0

γ − 2α −2
(∑

i∈h\k ǎiui(X)
)(∑

i∈h\k ǎiwi(X)
)
− 2ha(X)ZH(X)

∑
i∈h\k ǎiui(X) 3(n− 1) 1

−α −2ua(X)
∑

i∈h\k ǎiwi(X)− 2ua(X)ha(X)ZH(X) 3n− 2 3

−2α −
(∑

i∈h\k ǎiwi(X)
)2
− 2ha(X)ZH(X)

∑
i∈h\k ǎiwi(X)− ha(X)2ZH(X)2 4(n− 1) 6

follows from α, α + 1, α + 2, β, β + 1 being mutually different. We optimize by noticing that φ0(X)
is masked by an adversarially chosen multiple of ZH(X), we allow Xn+i = Xn+i+σ·0 to collide with
Xn+jY = Xn+j+σ·1. This allows us to “pack” the exponents more tightly without losing security: as we
already mentioned, it suffices to verify that φ0(X) ≡ 0 (mod ZH(X)).

We will derive φ(X) in Lemma 1 (see, e.g., Eq. (13)). In Table 2, we depict all the coefficients φk(X)
of φ(X), together with our recommended setting

α = −3, γ = −5 . (9)

The critical exponents are 2γ, 2γ − α, γ, γ − α, 0 (highlighted in Table 2). Other 7 coefficients are
non-critical. Since φ−2α has degree 4(n − 1), we add −2α + j for j ∈ [0, 3] to the set of non-critical
exponents. We do the same with all other coefficients in Table 2. The optimization of the last paragraph
helps here: while the degree of φ0(X) is 2n, we are only interested in the smallest n coefficients of φ0(X)
since φ0(X) is masked with a multiple of ZH(X). Thus, we do not add 1 to the set of critical exponents.
Finally,

σ := n+ 3

is the minimal setting of σ so that the critical and non-critical coefficients do not mix. The following
definition is similar to the definition of soundness-friendliness in [Lip22], except we have different sets
Coeff and Crit.

Definition 2. Let

Coeff :=

{
2α, α+ γ, α, 2γ − 2α, 2γ − 2α+ 1,−α,−α+ 1,−α+ 2,

γ − 2α, γ − 2α+ 1, γ − 2α+ 2,−2α,−2α+ 1,−2α+ 2,−2α+ 3

}
Crit := {0, γ, 2γ, γ − α, γ − α+ 1, 2γ − α} .

We say that (α, γ) ∈ Z2 is Polymath-friendly, if the following two conditions hold: (1) Coeff ∩ Crit = ∅,
(2) γ ̸= 0.

Motivated by [Lip22], we ran an exhaustive search program to find Polymath-friendly values of α
and γ that result in good efficiency. The setting in Eq. (9) is Polymath-friendly and has better efficiency
trade-offs than other settings.
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Given the setting Eq. (9), the SRS is

srsP ←

([
(xj)n+0

j=0 , (x
iy−3)2i=0, (uj(x)y

−2 + wj(x)y
3)j∈h\k

]
1
,

[(xiZH(x)y
3)n−2

j=0 , (x
iy−5)1i=0, (x

iz)dmax−1
i=dmin

]1

)
;

srsV ← ([1]1, [1, x, z]2) ;

Here, dmin = −5n− 15 and dmax = 5n+ 7 are as in Eq. (15). Moreover,

[c]1 =
∑

j∈h\k zj [uj(x)y
−2 + wj(x)y

3]1 + [h(x)ZH(x)y
3]1

+2[ra(x)u(x)]1 + [ra(x)
2y−3]1 + [ra(x)y

−5]1 .

As seen from Table 2, the recommended setting Eq. (9) packs the exponents almost tightly in the
range starting from the minimal (k = −10) to the maximal (k = 6) exponent, with only one gap at
k = −9. The exponents, used to compute [c]1, are somewhat less tightly packed, but our exhaustive
search shows that this is the best setting for (α, γ) — thus, any further improvement must encompass
more than just choosing these parameters.

4.2 Special-Soundness Proof

Theorem 3. Assume that α and γ are Polymath-friendly (see Definition 2). Let D = 2(dmax − dmin) =
20n+ 44; the second equality holds with our default settings of α and γ8. Then, Polymath is (D + 1, 2)-
special-sound in the (EF ,DF)-AGMOS under the (dmin, dmax, 0, 1)-PDL and (EF ,DF)-TOFR assump-
tions.

Proof. Let I = (F,m0,U ,V ,W ) be an R1CS instance. Let RR1CS
I be as in Eq. (1). Let A be an AGMOS

special-soundness adversary that outputs a (D + 1, 2)-tree T of accepting transcripts

tr⟨ij⟩ =
(
[a, c]1;x

⟨i⟩
1 ;A⟨i⟩

x1
, x

⟨ij⟩
2 , [d⟨ij⟩]1

)
,

where i ∈ [1, D + 1] and j ∈ [1, 2]. Here, each (i, j) is some path in the tree.
Since A is an AGMOS adversary, she has an access to a sampling oracle. For every path (i, j) in the

tree, let [q⟨ij⟩]1 be the vector of sampling oracle answers made during the corresponding transcript, and
let Q⟨ij⟩ be the corresponding indeterminates. Denote X̄

⟨ij⟩
:= (X,Z,Q⟨ij⟩) and x̄⟨ij⟩ := (x, z, q⟨ij⟩). Let

X̄, Q, x̄, and q be the intersection of all possible X̄
⟨ij⟩, Q⟨ij⟩, x̄⟨ij⟩, and q⟨ij⟩ (i.e., they correspond to the

oracle queries made before the first rewinding point).
For every path (i, j), the AGMOS extractor ExtA outputs the coefficients of Laurent polynomials

A(X), C(X), and D⟨ij⟩(X̄
⟨ij⟩

), such that [a]1 = [A(x̄)]1, [c]1 = [C(x̄)]1, and [d⟨ij⟩]1 = [D⟨ij⟩(x̄)]1. ExtA also
outputs [q⟨ij⟩]1. Here, only D⟨ij⟩(x̄) can depend on x⟨ij⟩1 and x⟨ij⟩2 .

More precisely, the extractor’s output contains coefficients like ua(X) showing that A(X̄), C(X̄), and
D(X̄)⟨ij⟩ belong to the span of the set of Laurent polynomials for which srs contains evaluations:9

A(X̄) =ua(X) + ra(X)Y α +
∑

i∈h\k ǎi · (ui(X)Y γ + wi(X)) /Y α

+ha(X)ZH(X)/Y α + aγ(X)Y γ + az(X)Z +
∑

k aqkQk ,

C(X̄) =uc(X) + rc(X)Y α +
∑

i∈h\k či · (ui(X)Y γ + wi(X)) /Y α

+hc(X)ZH(X)/Y α + cγ(X)Y γ + cz(X)Z +
∑

k cqkQk ,

D⟨ij⟩(X̄
⟨ij⟩

) =u
⟨ij⟩
d (X) + r

⟨ij⟩
d (X)Y α +

∑
i∈h\k ď

⟨ij⟩
i · (ui(X)Y γ + wi(X)) /Y α

+h
⟨ij⟩
d (X)ZH(X)/Y α + d

⟨ij⟩
γ (X)Y γ + d

⟨ij⟩
z (X)Z +

∑
k d

⟨ij⟩
qk Qk .

(10)

Here, ui(X), wi(X) ∈ F≤n−1[X] are fixed polynomials. The following coefficients are adversarially cho-
sen: ua ∈ F≤n+bnda−1[X], ra(X) ∈ F≤2·bnda [X], ǎi ∈ F, ha(X) ∈ F≤n−2[X], aγ(X) ∈ F≤bnda [X],
8 See Eq. (15) for the deriviation of dmin and dmax in the general case.
9 While Y = Xσ is a “virtual” indeterminate, we feel that writing Y instead of Xσ makes the proof more

readable.
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az(X)/Xdmin ∈ F≤dmax−dmin
[X], and aqk ∈ F. Similar restrictions hold for terms involved in C(X̄)

and D⟨ij⟩(X̄
⟨ij⟩

). Note that degX C(X̄) = Θ(n) = poly(λ).10

Recall that we have an accepting tree of transcripts. Fix a path (i, j). The verification equation in
Fig. 2 states that V⟨ij⟩(x̄⟨ij⟩) = 0, where

V⟨ij⟩(X̄
⟨ij⟩

) :=

(A(X̄) + x
⟨ij⟩
2 C(X̄)−

(
A
⟨i⟩
x1 + x

⟨ij⟩
2 Cx1

))
Z−

D⟨ij⟩
(
X̄

⟨ij⟩
)(

X − x⟨i⟩1
) Xτ . (11)

Here, τ is the smallest non-negative integer such that both

f ⟨ij⟩(X̄
⟨ij⟩

) := (A(X̄) + x
⟨ij⟩
2 C(X̄)− (A⟨i⟩

x1
+ x

⟨ij⟩
2 C⟨i⟩

x1
))Xτ

and g⟨ij⟩(X̄
⟨ij⟩

) := D⟨ij⟩(X̄
⟨ij⟩

)Xτ are polynomials. Thus, V⟨ij⟩(X̄
⟨ij⟩

) is a polynomial. Since x ̸= 0,
V⟨ij⟩(x̄⟨ij⟩) = 0 iff V⟨ij⟩(x̄⟨ij⟩)/xτ = 0. Crucially, the reduction can compute all coefficients of V⟨ij⟩ given
the adversary’s explanations. That is, V⟨ij⟩ is a known polynomial.

Following [LPS23], we write V⟨ij⟩(X̄
⟨ij⟩

) = V⟨ij⟩
h (X,Z)+V⟨ij⟩

t (X̄
⟨ij⟩

), where V⟨ij⟩
h (X,Z) does not depend

on Q⟨ij⟩ (i.e., it corresponds to the verification equation when the adversary does not use the oracle) while
every term in V⟨ij⟩

t depends on some Q⟨ij⟩
k . Clearly, the definition of V⟨ij⟩

h and V⟨ij⟩
t is unambiguous.

Since the verifier accepts, one of the four cases in Lemmas 1 to 4 must hold. (See Sections 4.3 to 4.6 for
their proofs.) The theorem follows since Pr[A wins] is bounded by the sum of success probabilities in these
four cases. Specifically, Case A (Lemma 1) addresses scenarios where V⟨ij⟩ equals zero for every path (i, j),
while the remainder collectively tackle instances where V⟨ij⟩ is nonzero for some path (i, j). The division
into four cases follows the blueprint of AGMOS proofs in [LPS23]. The first case depends intricately on the
structure of Polymath, while the last three cases are standard reductions to computational assumptions.

⊓⊔

Lemma 1 (Case A). Assume that V⟨ij⟩(X̄
⟨j⟩
) = 0 as a polynomial for all paths (i, j) ∈ [1, D+1]× [1, 2].

If the adversary succeeds, then, with probability 1−poly(λ)/|F|, one can extract the witness w of (x,w) ∈
RR1CS

I .

Lemma 2 (Case X.1). Let dmin = −5n− 15 and dmax = 5n+ 7 be as in Eq. (15). Fix any path (i, j).
There exists a PPT (dmin, dmax, 0, 1)-PDL adversary B, such that

Pr[A wins | V⟨ij⟩(X̄
⟨ij⟩

) ̸= 0 ∧ V⟨ij⟩
t (X̄

⟨ij⟩
) = 0 ∧ V⟨ij⟩(x̄⟨ij⟩) = 0] ≤ Pr[B wins] .

Lemma 3 (Case X.2). Let dmin = −5n− 15 and dmax = 5n+ 7 be as in Eq. (15). Fix any path (i, j).
There exists a PPT (dmin, dmax, 0, 1)-PDL adversary B, such that

Pr[A wins | V⟨ij⟩
t (X̄

⟨ij⟩
) ̸= 0 ∧ V⟨ij⟩

t (x, z,Q⟨ij⟩) = 0] ≤ Pr[B wins] .

Lemma 4 (Case Q). Let EF and DF be as in Theorem 3. Fix any path (i, j). Then there exists a PPT
(EF ,DF)-TOFR adversary B, such that

Pr[A wins | V⟨ij⟩
t (x, z,Q⟨ij⟩) ̸= 0 ∧ V⟨ij⟩(x̄⟨ij⟩) = 0] ≤ Pr[B wins] .

The first two cases are shared with AGM proofs, but the last two cases are unique to AGMOS proofs.
In particular, we obtain the following corollary.

Corollary 1. Assume that α and γ are Polymath-friendly (see Definition 2). Then, Polymath is (D +
1, 2)-special-sound in the AGM under the (dmin, dmax, 0, 1)-PDL assumption.

10 More precisely, recall that bnda = 1, σ = n + 3, α = −3, γ = −5, and dmin = −5n − 15 and dmax = 5n + 7
are as in Eq. (15). Given this setting, the exponents of X in A, B, C belong to the range [dmin, dmax] =
[γσ, 2n− 2− ασ] = [−5(n+ 3), 5n+ 7].
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4.3 Proof of Lemma 1

Proof. Let T be a (D + 1, 2)-tree of accepting transcripts

tr⟨ij⟩ = ([a, c]1;x
⟨i⟩
1 ;A⟨i⟩

x1
, x

⟨ij⟩
2 , [d⟨ij⟩]1) ,

where i ∈ [1, D + 1] and j ∈ [1, 2]. Assume that for all transcripts tr⟨ij⟩, i ∈ [1, D + 1] and j ∈ [1, 2],
V⟨ij⟩(X̄) = 0 (see Eq. (11)).

Fix any i ∈ [1, D + 1] and j ∈ [1, 2]. Recall that both

f ⟨ij⟩(X̄) :=
(
A(X̄) + x

⟨ij⟩
2 C(X̄)− (A⟨i⟩

x1
+ x

⟨ij⟩
2 C⟨i⟩

x1
)
)
Xτ

and g⟨ij⟩(X̄) := D⟨ij⟩(X̄)Xτ are polynomials. From V⟨ij⟩(X̄) = 0, it follows f ⟨ij⟩(X̄)Z = g⟨ij⟩(X̄)(X−x⟨i⟩1 ).
Since Z ∤ (X − x⟨i⟩1 ), we get Z | g⟨ij⟩(X̄). Due to the structure of the SRS, g⟨ij⟩(X̄) has degree ≤ 1 in
Z. Thus, g⟨ij⟩(X̄) = ĝ⟨ij⟩(X,Q⟨ij⟩)Z for some polynomial ĝ⟨ij⟩(X,Q) that does not depend on Z. Thus,
f ⟨ij⟩(X̄) = ĝ⟨ij⟩(X,Q⟨ij⟩)(X − x⟨i⟩1 ) and

(X − x⟨i⟩1 ) | f ⟨ij⟩(X̄) .

Since f ⟨ij⟩(X̄) is a polynomial, f ⟨ij⟩(x⟨i⟩1 , Z,Q
⟨ij⟩) = 0. Since x⟨i⟩1 ̸= 0, we can divide by (x

⟨i⟩
1 )τ to get that

ψ⟨i⟩(x
⟨ij⟩
2 , Z,Q⟨ij⟩) = 0, where

ψ⟨i⟩(X2, Z,Q) :=
(
A(x

⟨i⟩
1 , Z,Q)− A⟨i⟩

x1

)
+X2

(
C(x

⟨i⟩
1 , Z,Q)− C⟨i⟩

x1

)
. (12)

For any i ∈ [1, D + 1], this holds for both j = 1 and j = 2. Since ψ⟨i⟩ has X2-degree 1 and
ψ⟨i⟩(x

⟨ij⟩
2 , Z,Q⟨ij⟩) = 0 for two different values x

⟨i1⟩
2 and x

⟨i2⟩
2 , we get that A(x

⟨i⟩
1 , Z,Q) = A

⟨i⟩
x1 and

C(x
⟨i⟩
1 , Z,Q) = C

⟨i⟩
x1 . This holds for any i.

Recalling from Fig. 2 how C
⟨i⟩
x1 is computed, the Laurent polynomial

φ(X̄) := C(X̄)Y α + PI(X) · m0

n ZH\K(X)−
(
A(X̄) + Y γ

)
A(X̄) (13)

satisfies φ(x⟨i⟩1 , z, q) = 0. Since the latter holds for i ∈ [1, D+1] but φ has X-degree at most D, φ(X̄) = 0
as a Laurent polynomial.11

From the definition of A(X̄) and C(X̄) (see Eq. (10)), since Z and Qk are indeterminates, we get
from φ(X̄) = 0 that that aqk = cqk = az(X) = cz(X) = 0. (This follows from analyzing the coefficients
of Y γZ, Y αZ, Y γQk, and Y αQk of ϕ(X̄).) Thus, A(X) = A(X̄), C(X) = C(X̄), and φ(X) = φ(X̄)

do not depend on Z and Q⟨ij⟩. In particular, A(x⟨i⟩1 ) = A
⟨i⟩
x1 and C(x

⟨i⟩
1 ) = C

⟨i⟩
x1 . From this point on, the

current proof does not depend on either i or j.
Next, φ(X) = 0 means that Eq. (6) holds, except that A(X) and C(X) are maliciously chosen Laurent

polynomials. We will show that from φ(X) = 0, it follows that x belongs to the SAP instance.
As in the caption of Table 2, define z̃j(X) := zj for j ∈ k and

z̃i(X) := či − 2ra(X)ǎi

for i ∈ h \ k. Define

u(X) :=
∑

j∈h z̃j(X)uj(X) and w(X) :=
∑

j∈h z̃j(X)wj(X) .

(We will show soon that for any j ∈ h, z̃j(X) does not depend on X.) Thinking of Y as an independent
indeterminate, write φ(X) =

∑
k φk(X)Y k as a Laurent polynomial in (F[X])[Y, Y −1] with φ(X) ∈ F[X].

(In a few paragraphs, we will study what happens when we choose Y = Xσ.)
In Table 2, we depict all non-zero coefficients φk(X) of φ(X) ∈ (F[X])[Y, Y −1]. Table 2 can be verified

manually. In addition, we verified all coefficients by using computer algebra. For example, the coefficient
φγ−α(X) of Y γ−α is a sum of two addends. First,

−2aγ(X)
∑

i∈h\k ǎiwi(X)− 2aγ(X)ha(X)ZH(X)− 2ua(X)
∑

i∈h\k ǎiui(X) ,

11 Using the computations in Footnote 10 and the default setting, we can find that the exponents of X in φ(X)
belong to the range [2dmin, 2dmax] = [−10n− 30, 10n+ 14].
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coming from −A(X)2 in Eq. (13); see Eq. (10) for the definition of A(X). Second,

−
∑

i∈h\k ǎi(X)wi(X)− ha(X)ZH(X)

that comes from −A(X)Y γ .
Since Y = Xσ is only a virtual trapdoor, φ(X) = 0 does not imply that φk(X) = 0 for each

k. Fortunately, we only need to derive that φk(X) = 0 for 4 critical exponents k and φk(X) ≡ 0
(mod ZH(X)) for one more exponent. We can do that since (α, γ) is Polymath-friendly,

More precisely, as seen from Table 2, since (α, γ) is Polymath-friendly, the monomials corresponding
to φ2γ(X) (namely, XjY γ = Xj+γσ for j ∈ [0, 2·bnda]) do not overlap with any monomials corresponding
to any other φk(X). This follows directly from the definition of Coeff and Crit in Definition 2. Hence,
from φ(X) = 0 we can derive φ2γ(X) = 0. Similar claim holds for the monomials of φγ(X), φγ−α(X),
and φ2γ−α(X), and thus φγ(X) = φγ−α(X) = φ2γ−α(X) = 0.

The case of φ0(X) is more tricky: Polymath-friendliness (see Definition 2) only guarantees that the
monomials Xi for i < n+ 3 do not overlap with any other monomials, but there is no similar guarantee
about Xi for i ≥ n + 3. However, we are only interested in φ0(X) (mod ZH(X)) since the higher
monomials in φ0(X) are anyhow masked with an adversarially chosen polynomial hc(X)−2ra(X)ha(X).
Thus, from φ(X) = 0, we get that φ0(X) ≡ 0 (mod ZH(X)).

Let us now analyze the consequences of φ2γ(X) = φγ(X) = φ2γ−α(X) = φγ−α(X) = 0 and φ0(X) ≡
0 (mod ZH(X)).

1. Assume φ2γ(X) = −aγ(X)(aγ(X) + 1) = 0. Then, either (a) aγ(X) = 0, or (b) aγ(X) = −1.
2. Assume φγ(X) = u(X) − (2aγ(X) + 1)ua(X) = 0. If aγ(X) = 0, then ua(X) = u(X). On the other

hand, if aγ(X) = −1, then ua(X) = −u(X). Thus, ua(X) = ±u(X) and

u2a(X) = u2(X) .

3. Assume φ2γ−α(X) = −(2aγ(X) + 1)
∑

i∈h\k ǎiui(X) = 0. Since aγ(X) ∈ {0,−1}, 2aγ(X) +

1 ̸= 0. Thus,
∑

i∈h\k ǎiui(X) = 0 and
∑

i∈h\k z̃i(X)ui(X) =
∑

i∈h\k(či − 2ra(X)ǎi)ui(X) =∑
i∈h\k čiui(X). Recalling z̃j = zj for j ∈ k,

u(X) =
∑

j∈k zjuj(X) +
∑

i∈h\k čiui(X) .

4. Assume φγ−α(X) = −2ua(X)
∑

i∈h\k ǎiui(X) − (2aγ(X) + 1)
∑

i∈h\k ǎiwi(X) − (2aγ(X) +

1)ha(X)ZH(X) = 0. We already know
∑

i∈h\k ǎiui(X) = 0 and aγ(X) ∈ {−1, 0}. Hence,∑
i∈h\k ǎiwi(X) = −ha(X)ZH(X) .

Since degwi ≤ n − 1,
∑

i∈h\k ǎiwi(X) = 0. Thus,
∑

i∈h\k z̃i(X)wi(X) =
∑

i∈h\k(či −
2ra(X)ǎi)wi(X) =

∑
i∈h\k čiwi(X). Thus,

w(X) =
∑

j∈k zjwj(X) +
∑

i∈h\k čiwi(X) .

5. Assume φ0(X) = w(X)− ua(X)2 ≡ 0 (mod ZH(X)). Then, w(X) = ua(X)2 + h(X)ZH(X) for some
polynomial h(X). Since ua(X), w(X) ∈ F≤n−1[X], we have h(X) ∈ F≤n−2[X]. Since ua(X)2 = u(X)2,

w(X) = u(X)2 + h(X)ZH(X) .

The claim follows since u(X) =
∑

j∈k zjuj(X) +
∑

i∈h\k čiui(X) and w(X) =
∑

j∈k zjwj(X) +∑
i∈h\k čiui(X) for correct public input and či ∈ F.12 ⊓⊔

12 The analysis of φ2γ−α(X) and φγ−α(X) is needed since, without it, one can only establish that z̃i = či −
2ra(X)ǎi, that is, that it is a function of X. Hence, soundness would still hold but not necessarily special-
soundness. On the other hand, fewer coefficients are critical, which will give more choices for α and γ. Some
of the latter will result in better efficiency.
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4.4 Proof of Lemma 2

Proof. Fix any path (i, j). Note that since V⟨ij⟩
t (X̄

⟨ij⟩
) = 0, then also V⟨ij⟩

t (x̄⟨ij⟩) = 0. Thus, from
V⟨ij⟩(x̄⟨ij⟩) = 0 it follows that V⟨ij⟩

h (x, z) = 0. Let A be an AGMOS knowledge-soundness adversary
that, with a non-negligible probability, outputs an accepting argument π with V⟨ij⟩

h (X,Z) ̸= 0 but
V⟨ij⟩
h (x, z) = 0. We construct the following PDL adversary B.

Given its SRS ([(xi)dmax

i=dmin
]1, [1, x]2), B samples random s, t←$F and then implicitly sets z ← sx+ t.

From this, B computes a Polymath SRS srs for A. B can do it due to the choice of dmin and dmax.
Assume A succeeds. By using the explanations provided by A, B can compute the coefficients of V⟨ij⟩

h

similarly to Lemma 1, with V⟨ij⟩
h (X,Z) being as in Eq. (11). Clearly, V⟨ij⟩

h has a poly(λ) degree. Moreover,
Z = sX + t for s, t chosen by the adversary. Hence, V∗(X) := V⟨ij⟩

h (X, sX + t) is a univariate non-
zero polynomial that also has a polynomial degree and has a root V∗(x) = 0 at X = x. One can use
a polynomial-time root-finding algorithm for finite fields to compute all (polynomial number) roots of
V∗(X), one of which has to be equal to x. B can check which one is x by comparing the obtained roots
with SRS elements. By returning x, B has thus broken the PDL assumption. ⊓⊔

4.5 Proof of Lemma 3

Proof. Fix a path (i, j). Let A be an AGMOS knowledge-soundness adversary that, with a non-
negligible probability, outputs an accepting argument π⟨ij⟩ with V⟨ij⟩

t (X̄
⟨ij⟩

) ̸= 0, V⟨ij⟩
t (x, z,Q⟨ij⟩) = 0

and V⟨ij⟩(x̄⟨ij⟩) = 0. Write
V⟨ij⟩
t (X̄

⟨ij⟩
) = Xτ

∑
β
⟨ij⟩
k (X,Z)Q

⟨ij⟩
k (14)

for
β
⟨ij⟩
k (X,Z) := (aqk + x

⟨ij⟩
2 cqk)Z − d⟨ij⟩qk (X − x

⟨i⟩
1 )

(see Eqs. (10) and (11)). Since V⟨ij⟩
t (x, z,Q⟨ij⟩) = 0, β⟨ij⟩

k (x, z) = 0 for all k. Since V⟨ij⟩
t (X,Z,Q⟨ij⟩) ̸= 0,

β
⟨ij⟩
k′ (X,Z) ̸= 0 for some k′. We would get a contradiction if β⟨ij⟩

k′ were constant. Hence, β⟨ij⟩
k′ is a non-zero

non-constant polynomial with (x, z) as a root.
We now go on with constructing the PDL adversary as in Lemma 2, except we replace V⟨ij⟩

h with β⟨ij⟩
k′ .

The reduction is slightly simpler since β⟨ij⟩
k′ (X, sX + t) is a linear polynomial in X and thus has only a

single root. ⊓⊔

4.6 Proof of Lemma 4

Proof. Fix a path (i, j). B samples x and z to construct the SRS. Let [x1]1 be the part of the SRS
that consists of G1 elements. It then plays Polymath verifier for A to obtain a transcript tr⟨ij⟩ =

([a, c]1;x
⟨i⟩
1 ;A

⟨i⟩
x1 , x

⟨ij⟩
2 , [d⟨ij⟩]1), such that V⟨ij⟩(x, z,Q⟨ij⟩) ̸= 0 and V⟨ij⟩(x̄⟨ij⟩) = 0. It uses the AGMOS

extractor to extract field elements γ, δ and oracle outputs [q⟨ij⟩]1, such that [a]1 = γ⊺
1 [x1]1 + δ⊺1 [q

⟨ij⟩]1,
[c]1 = γ⊺

2 [x1]1 + δ⊺2 [q
⟨ij⟩]1, and [d]1 = γ⊺

3 [x1]1 + δ⊺3 [q
⟨ij⟩]1.

Writing V⟨ij⟩(X) = V⟨ij⟩
h (X,Z) + V⟨ij⟩

t (X̄
⟨ij⟩

) and using Eq. (14), we get that

v⊺

 1

q
⟨ij⟩
1

q
⟨ij⟩
2

q
⟨ij⟩
1 ⊗q

⟨ij⟩
2

 = 0 , where v =

(
V⟨ij⟩

h (X)

β⟨ij⟩(X,Z)
0

)
.

By returning v, B breaks the TOFR assumption. ⊓⊔

4.7 On Fiat-Shamir And Knowledge-Soundness

One can use the results of Attema et al. [AFK22] (see Fact 1) to show that Polymath is knowledge-
sound after applying the Fiat-Shamir heuristic. Strictly speaking, [AFK22] deals with proofs and not
arguments, but as noted in [AFKR23], one can straightforwardly extend their results to arguments. Note
that after applying the Fiat-Shamir transform, x1 = H(srsV, (zj)j∈k, [a, c]1) and x2 = H(x1,Ax1

).
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We prove that interactive Polymath is special-sound so that we can use Fact 1. It is more desirable to
have knowledge-soundness proof in specific applications (e.g., where one requires a straight-line extrac-
tor). Modifying our special-soundness proof to obtain knowledge-soundness is relatively straightforward:
essentially, we will only have one path (i, j). In two places (just after Eqs. (12) and (13)), when we argue
that some polynomial equation holds since some other equation holds for several different arguments, we
will now use Schwartz-Zippel.

5 Efficiency

Recall bnda = 1. As showed in Section 4.1, one can set α = −3 and γ = −5. This setting suffices for
knowledge-soundness. Moreover, it results in the best prover efficiency (without changing the SNARK
itself).

Prover computation. All scalar multiplications are in G1. Moreover, most of them are multiscalar
multiplications (MSMs). We count the number of individual scalar multiplications for a rough complexity
estimation, but one can obtain the number of MSMs straightforwardly. The prover (see Fig. 2) does the
following:

1. First round: (a) n − 1 scalar multiplications to compute [u(x)]1 ←
∑

j∈h zj [uj(x)]1, (b) bnda +
1 scalar multiplications to compute [ra(x)y

α]1, (c) m − m0 scalar multiplications to compute the
first addend

∑
j∈h\k zj [(uj(x)y

γ + wj(x))/y
α]1 of [c]1, (d) n − 2 scalar multiplications to compute

[h(x)ZH(x)/y
α]1, (e) (n−1)+1 = n scalar multiplications to compute 2[ra(x)u(x)]1 = 2ra1[xu(x)]1+

2ra0[u(x)]1 (we can reuse the computation of [u(x)]1), (f) 2·bnda+1 scalar multiplications to compute
[ra(x)

2yα]1, and bnda+1 scalar multiplications to compute [ra(x)y
γ ]1. In total, approximately 3n+m

scalar multiplications.
2. Third round: computing [d]1. With our setting σ = n + 3, α = −3, and γ = −5, the Laurent

polynomial C(X) =
∑dmax

i=dmin
CiX

i has degree dmax − dmin = 5n+ 7− (−5n− 15) = 10n+ 22, where

dmin = min(0, α, γ − α,−α, γ) · σ
= γσ = −5(n+ 3) = −5n− 15 ,

dmax = max

(
n+ bnda − 1, ασ + 2 · bnda, (γ − α)σ + n− 1,
−ασ + 2n− 2, γσ + bnda

)
= − ασ + 2n− 2 = −(−3(n+ 3)) + 2n− 2 = 5n+ 7 .

(15)

The prover needs to execute degC(X) = 10n+ 22 scalar multiplications.

The total prover computation is dominated by approximately (3n +m) + 10n = 13n +m scalar multi-
plications in G1.

Comparison with Groth16. The increase in prover computation, as compared to Groth16, depends on
several factors, like the overhead in transforming an R1CS instance to an SAP one and the ratio of wires
to gates in the circuit. Let n be the number of R1CS constraints (gates) and m be the number of R1CS
variables (wires). Assuming that the first overhead induces a factor of 2 (ñ = 2n), there are 4 times more
wires than gates (m̃ = 4ñ), σ = ñ + 3 (this setting follows from our soundness proof), and that a G2

scalar multiplication is 2.5 times more expensive than a G1 scalar multiplication, we get that Groth16’s
prover executes 8.5n and Polymath’s prover 40.0n G1 scalar multiplications. In the 192-bit security level,
Groth16’s prover complexity increases to 11.4n, while Polymath’s prover complexity stays at 40.0n.

We emphasize that given constants are approximate and depend on the circuit and underlying curve.
Asymptotically (especially when the number of wires increases), Polymath’s prover overhead is dominated
by the factor 2 overhead of SAP over R1CS. Often, the arithmetic circuit already has many square gates;
then, the SAP overhead will be less than 2. For example, elliptic curve point doubling and addition
computations are often optimized to take advantage of the fact that squaring is faster than general
multiplication on finite fields. In particular, point doubling in Jacobian coordinates takes 4 multiplications
and 6 squarings, [CMO98], resulting in SAP overhead 1.4.
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Verifier computation. The verifier computes approximately 3
2m0 logm0 field operations, a 2-multi-

scalar multiplication in G1, one scalar multiplication in G2, and a 2-multi-pairing. Let us first compare
Polymath’s and Groth16’s verification when m0 = 1 (e.g., the public input is pre-hashed). Then, in
Groth16, the verifier executes one G1 scalar multiplication and 3 pairings. According to [APR21], when
using BLS12-381, a G1 scalar multiplication, a G2 scalar multiplication, and a pairing cost 402, 836, and
3255 (in units of 103 cycles on an Intel Skylake processor). Groth16’s verifier takes 402+3 ·3255 = 10167
units while Polymath’s verifier takes 2 · 402 + 836 + 2 · 3255 = 8150 units, thus being 25% faster. Note
that if m0 = 1, Fiat-Shamir requires to hash less than 2000 bytes, and thus accounting for hashing costs
does not change the ratio13.

Similarly, when using BLS24-509, a G1 scalar multiplication, a G2 scalar multiplication, and a pairing
cost 969, 5231, and 16730 units. Then, Groth16’s verifier takes 969 + 3 · 16730 = 51159 units while
Polymath’s verifier takes 2 · 969 + 5231 + 2 · 16730 = 40629 units, thus being 26% faster. In fact, we get
similar ratios for all five curves considered in [APR21, Table 2].

These estimates are not yet validated by real implementation. In particular, an optimized version
would batch elliptic curve operations. On the one hand, Groth16 implementations can batch three pairings
into a single multi-pairing. On the other hand, since G2 elements in each pairing are fixed, precomputation
can reduce pairing computation time by ≈ 30% [CS10]. The same is important in pairing verification
applications [NE24]. (Groth16 has one pairing with an adversarially chosen G2 element.) Groth16’s wide
application, including in scenarios not suited for batching, underscores the value of alternatives like
Polymath.

Let us now compare the verification cost for general m0. In Groth16, the verifier computes an m0-
multi-scalar multiplication in G1 and a 3-multi-pairing. In Polymath, the verifier executes a G1 2-multi-
scalar multiplication, one G2 scalar multiplication, a 2-multi-pairing, and O(m0 logm0) field operations.
(We omit the cost of Fiat-Shamir since hashing m0 field elements is considerably cheaper than an m0-
multi-scalar multiplication.) Polymath’s verifier is more efficient as a function of m0: it performs an
interpolation ( 32m0 logm0 field operations) while Groth’s verifier performs a width-O(m0) multi-scalar
multiplication. The latter can be computed in time λ+ (1+ o(1))λm0/ log2(λm0) using the Pippenger’s
algorithm. Our method is faster for practically relevant values of m0 ≤ 216.

The speed comparison between Polymath and Groth16 verifier depends on the curve, hash function,
processor, memory, cache, and the implementation, but we expect Polymath to be slightly faster (or
approximately as fast) for small m0 and significantly faster when m0 is sufficiently long.

Since we need to include pairing with z, Polymath’s verifier takes slightly more time than a standard
KZG verifier. We leave it as an open question to further optimize the verifier.

Finally, depending on the curve and the implementation, the following rearrangement of the verifica-
tion equation can be slightly faster:

([a]1 + x2[c]1 − (Ax1
+ x2Cx1

)[1]1) • [z]2 + x1[d]1 • [1]2 − [d]1 • [x]2 = [0]T .

Here, the verifier computes approximately 3
2m0 logm0 field operations, a 2-multi-scalar multiplication

in G1, and a 3-multi-pairing.

Argument Length. After applying Fiat-Shamir, the argument length is three G1 elements and one
field element, that is, 1408 bits when using the BLS12-381 curve, compared to two G1 elements and one
G2 element (1536 bits) in Groth16. When one uses the 192-bit security level curve BLS24-509 [APR21],
Polymath’s communication is 1792 bits compared to 3072 bits in Groth16.

SRS length. The SRS length is (n+bnda)+(2·bnda+1)+(m−m0)+(n−1)+(bnda+1)+(dmax−dmin) =
m+ 2n−m0 + 5 + (10n+ 22) = m+ 12n−m0 + 27 elements of G1 and three elements of G2.

Finally, recall that n and m are the number of constraints and variables in the SAP instance, both a
factor of ≤ 2 times larger than in an R1CS instance. Here, 2 is an upper bound on the SAP overhead,
and in reality the overhead will usually be somewhat smaller. Hence, compared to Groth16 (see Table 1),
we obtain better communication and verifier’s computation, although worse prover’s computation and
SRS length.
13 According to https://keccak.team/sw_performance.html, hashing with SHA3 takes less than 15 cycles per

byte, which gives less than 30 units (30000 cycles) on Skylake to hash 2000 bytes.
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Batching And Proof Aggregation. One place where Polymath really shines is batching. Assume
that the verifier is given M different Polymath proofs πi = ([ai, ci]1;x1i;Ax1,i;x2i; [di]1). Let

Cx1,i ← ((Ax1,i + yγ1i)Ax1,i − PI(x1i) · m0

n ZH\K(x1i))/y
α
1i .

(See Fig. 2.) To batch verify, V can check if for random r, [ā]1 =
∑M

i=1 r
i[ai]1, [c]1 =

∑M
i=1 r

ix2i[ci]1,
[d̄]1 =

∑M
i=1 r

i[di]1, [d]1 =
∑M

i=1 r
ix1i[di]1, and

[Φ̄]1 = [ā]1 + [c]1 − (
∑M

i=1 r
i (Ax1,i + x2iCx1,i))[1]1 ,

it holds that
[Φ̄]1 • [z]2 + [d]1 • [1]2 − [d̄]1 • [x]2 = [0]T .

For large M , the verifier’s computation is dominated by four M -multi-scalar-multiplications in G1, com-
pared to three M -multi-scalar-multiplications in G1 and one significantly more expensive multi-pairing
in the case of Groth16.

A third party can aggregate Groth16 proofs using inner-product arguments
(IPAs, [BMM+21,GMN22]). Fiat-Shamir-based zk-SNARKs aggregation is more complex due to
the need to verify the correct computation of hash value vectors. Following aPlonk’s method [ABST23]
for Plonk, we assume a single party generates all proofs with consistent hash function outputs x1
and x2. Using this approach, we lose flexibility but obtain better efficiency than say Snarkpack:
Groth16’s use of pairings and thus Snarkpack’s reliance on the TIPP argument (IPA for inner pairing
product, [BMM+21]) contrasts with Polymath’s use of G1 arithmetic that results on the reliance on the
simpler MIPP (IPA for multi-scalar-multiplication inner product) argument. In Polymath, we can use
MIPP twice to prove the correctness of [Φ̄]1 and [d̄]1. Moreover, one can batch these two MIPPs into a
single MIPP. Nonetheless, we emphasize that Polymath is not fully optimized for this use.

Acknowledgments. We thank Matteo Campanelli for useful comments.
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