
SoK: Model Reverse Engineering Threats for Neural Network Hardware

Seetal Potluri
Department of Electrical and Computer Engineering

University at Albany, SUNY, NY 12208
Email: spotluri@albany.edu

Farinaz Koushanfar
Department of Electrical and Computer Engineering

University of California San Diego, CA 92093
Email: farinaz@ucsd.edu

Abstract—There has been significant progress over the past
seven years in model reverse engineering (RE) for neural
network (NN) hardware. Although there has been systematiza-
tion of knowledge (SoK) in an overall sense [1], [2], however,
the treatment from the hardware perspective has been far
from adequate. To bridge this gap, this paper systematically
categorizes the types of NN hardware used prevalently by the
industry/academia, and also the model RE attacks/defenses
published in each category. Further, we sub-categorize existing
NN model RE attacks based on different criteria including
the degree of hardware parallelism, threat vectors like side-
channels, fault-injection, scan-chain attacks, system-level at-
tacks, type of asset under attack, the type of NN, exact versus
approximate recovery, etc.

We make important technical observations and identify
key open research directions. Subsequently, we discuss the
state-of-the-art defenses against NN model RE, identify certain
categorization criteria, and compare the existing works based
on these criteria. We note significant qualitative gaps for
defenses, and suggest recommendations for important open
research directions for protection of NN models. Finally, we
discuss limitations of existing work in terms of the types of
models where security evaluation or defenses were proposed,
and suggest open problems in terms of protecting practically
expensive model IPs.

1. Introduction
Artificial intelligence (AI) is currently widely used in ap-

plications related to many aspects of life including weather
prediction, transportation, social networking, health, adver-
tising, and more recently in chatbots. Within this broad field,
machine learning (ML) is a sub-field that uses algorithms
to analyze large amounts of data, learn from the insights,
and then make informed decisions. Traditional ML required
considerable domain expertise and significant manual effort
to perform the feature extraction step that transformed the
raw data into a suitable internal representation or feature
vector from which the learning subsystem, often a classifier,
could detect or classify patterns in the input.

Deep-learning (DL) is a sub-field of ML that allows
a machine to be fed with raw data, which will then be
able to perform automatic feature extraction [3]. DL was
found to be very successful in extracting useful knowledge

Figure 1. Classification of AI algorithms.

from high-dimensional data in many practical problems in
image/speech/text/video/audio recognition, that resisted the
AI community for many decades. This relationship between
AI, ML, and DL is highlighted in Figure 1. DL consti-
tutes deep neural networks (DNNs) with input, hidden, and
output layers. Different types of DL architectures exist:
fully connected feed-forward networks (FCNs) or multi-
layer perceptrons (MLPs), convolutional neural networks
(CNNs), recurrent neural networks (RNNs), autoencoders,
generative adversarial networks (GANs), and transformers
being some of the most popular/prominent ones as shown
in Figure 1.

Coming to hardware implementations of
these algorithms, they are twofold: (a) low-cost
(area/power/performance) devices that leverage serial
implementations and (b) hardware accelerators that
leverage powerful systolic arrays for highly parallel
execution to achieve high throughput. The first class of
NN hardware is used in low-power IoT/edge applications
that demand a low hardware footprint. DL algorithms are
indispensable with these edge devices used in sensors,
actuators, etc. [4]. Moreover, these devices are typically
battery-constrained and hence use low-power processors
that perform serial execution.

The second class of devices are used in compute-
intensive applications and sometimes have hard real-time
performance requirements, which cannot be met by serial
NN hardware. To meet these performance goals, there has
been significant progress made in NN hardware accelerator
development within both the industry and academia. These
accelerators leverage parallel execution to maintain high
throughput. This is also reflected in the proliferation of AI

hardware startups, corresponding funding, and AI compa-
nies increasingly diversifying into chip design e.g. OpenAI.

Recently, SambaNova Systems announced a new mile-
stone in accelerating AI workloads, achieving as high as
1000 tokens per second with the Llama-3 8 billion param-
eter large language model (LLM) [5], which is also a variant
of NN. Considering the costs of design and development of
the NN models that run on these devices, protecting their
intellectual property (IP) becomes a critical concern. For
example, it is estimated that training the GPT-4 model costs
over $100 million [6]. As a result, there have been numerous
model IP RE attacks published over the last few years.
Apart from IP theft, since the model is a strong function
of the customer’s private data, data privacy is an orthogonal
concern [5]. The number of published papers in hardware-
based model RE attacks and defenses are shown in Figure 2.
It can be seen that there is a systematic rise in both attacks
and defenses over the years, although not monotonic.

1.1. Software Attacks

In software attacks, one prevalent area of research is
teacher-student models. This approach entails creating a
dataset based on the teacher model and using it to train
student models [2], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17]. The student model may acquire a biased
understanding, lacking the comprehensive intelligence of
the teacher model, as the attacker typically lacks access
to the actual dataset used to train the teacher model. Ad-
ditionally, defenses against adversarial attacks can further
mislead the student, hindering their ability to accurately
learn from the teacher model. Another type of software
attack involves cryptanalytic RE of neural networks (NNs).
Attackers manipulate inputs to identify input-output rela-
tionships, allowing them to identify critical points within
the activation regions [18], [19], [20], [21], [22] of ReLU
networks. However, these attacks are usually limited to
networks with two or three layers due to their complexity.

1.2. Hardware Attacks

Since only the query-label pairs are available while
intermediate states i.e. after each layer, are unavailable
through software, extracting each model parameter becomes
a mathematically daunting task. On the other hand, such in-
ternal states are accessible through hardware side-channels,
scan-chains, etc., making hardware attacks many orders of
magnitude more powerful both in terms of queries and RE
accuracy [23], [24]. These attacks have been demonstrated
on various forms of hardware, which can be broadly cate-
gorized into four types: (a) central processing units (CPUs),
which include both single-core and multi-core ones, (b)
graphics processing units (GPU), (c) field-programmable
gate arrays (FPGAs), and (d) application specific integrated
circuit (ASIC) accelerators. In terms of computation, some
of them are limited to serial execution, while others are
capable of parallel execution. Figure 3 shows the distribu-
tion of existing model RE works (both attacks and defenses

2017 2018 2019 2020 2021 2022 2023
0

10

20

30
Attacks
Defenses

Figure 2. Literature over the years on NN hardware attacks/defenses.

Serial Execution

64%

Parallel Execution

37%

Figure 3. Distribution of works with respect to serial/parallel execution.

Side-Channels

54%

Fault-Injection
7%

Obfuscation

12%
Others

27%

Figure 4. Distribution of different classes of attacks/defenses.

included) in terms of serial or parallel execution. According
to this plot, the majority of the existing work focus on
serial execution. This observation along with the fact that
today’s real-world NN hardware products are dominated
by accelerators that perform parallel execution, shows that
there is a significant gap between what is done and what
needs to be done.

Orthogonally, the threat vectors themselves can be cat-
egorized as (a) side channels, (b) fault injection, (c) scan-
chain attacks, and (d) other system-level attacks. Figure 4
shows the distribution of the attack vectors (both attacks and
defenses) into these different categories. It is interesting to
note that side channels dominate the ensemble of existing
works, and hence we shall provide special treatment to side
channels later in the paper.

1.3. Contributions
There exist rigorous surveys and systematization of

knowledge (SoK) works for software-based NN model
RE [2], [25], but there is little to almost no systematization
of knowledge (SoK) for hardware-based NN model RE.
Existing surveys [2], [26], [27], [28], [29] on NN model
RE through hardware do not systematically analyze the
vulnerabilities and defenses. Each of them is either not com-
prehensive, focuses exclusively on hardware side-channels,

or is restricted to certain classes of attacks/defenses or only
to serial implementations. Our main contributions are as
follows:

• We categorize existing hardware-based NN model
RE attacks. We also provide detailed taxonomy
based on the underlying hardware type.

• We identify side channels as the dominant research
direction pursued so far. We identify the gaps in
the existing work on security evaluation and suggest
open research directions.

• Since the future is converging towards ASIC accel-
erators meant for parallel execution, we identify the
gap between this trend and the existing work that
is dominated by serial implementations. We provide
recommendations on how to bridge this gap.

• We also categorize the huge volume of existing
hardware-based defenses, and provide a detailed
comparison between different works in terms of
different figures of merit.

• Although there is a huge volume of defense papers,
we show there are significant qualitative gaps. Based
on this, we suggest important open research direc-
tions for protection of NN hardware.

2. Neural Networks
A neural network (NN) can be described as a series

of functional transformations, where the architecture and
parameters completely describe the NN model. A training
set is used to train/tune the parameters of an adaptive NN
model. These parameters are typically called weights and
biases. The training is typically done using the backprop-
agation algorithm [3]. Once the training is complete, the
network is used to perform classification or regression. This
work focuses on NN models for classification. NNs are
organized into layers, the first called input layer, the last
one the output layer, and the in-between ones as the hidden
layers. There are different types of neural networks, some
of the popular ones include:

2.1. Multi-Layer Perceptrons (MLPs)
It is a fully-connected feed-forward neural network with

multiple layers of neurons. Neurons of one layer are fully
connected to the neurons of the next as well as the previous
layers.

2.2. Convolutional Neural Networks (CNNs)
They are a class of NNs, that have shown superior

performance over classical ML approaches for image recog-
nition [30]. It is a special kind of NN built for processing
information with a grid-like structure, and typically consist-
ing of (a) convolutional layers for preserving the relationship
between the inputs while extracting the underlying features;
(b) pooling layers to produce feature maps that are invariant
to small changes in the input data [31]; (c) fully connected
or dense layers at the end to predict the probability distribu-
tions of the input over different classes. Others sometimes
include batch normalization and dropout layers.

2.3. Recurrent Neural Networks (RNNs)
Recurrent neural networks (RNNs) are suitable for work-

ing with sequential data to solve problems where there is a
temporal dependency. Unlike convolutional neural networks
(CNNs) and multilayer perceptrons (MLPs), a RNN pos-
sesses a memory attribute. The memory allows the RNN to
use previously seen values with the current input to predict
the following event. LSTM is a popular example that uses
RNN-style architecture. In RNNs, the weights are adjusted
by training with backpropagation through time (BPTT), a
variation on backpropagation seen in MLPs.

2.4. Autoencoders
Stacked auto-encoders are NNs with many layers trained

by following a very specific procedure. This procedure con-
sists of training each layer independently, using the output of
the previous layer as input for the current one. Each layer is
composed of an encoder and a decoder, both being a dense
layer (i.e. fully connected layer).

2.5. Generative Adversarial Networks
They are a special class of NNs that can be used to

generate data, consisting of two networks, generator and
discriminator. The generator learns to create samples that
match the training sample distribution, while the discrimi-
nator learns to discriminate between them [2].

2.6. Transformers
They are advanced NNs for working with sequential data

based out of multi-head attention mechanism [32]. They
have been shown to be of superior quality and require less
training time than RNNs.

3. Neural Network Hardware
Neural network hardware architectures exist in various

forms based on memory capacities, and power, performance,
area (PPA) requirements, and depending on the end user
application. For IoT nodes, which are area and battery
constrained, serial implementations are most suitable. On
the other hand, for performance constrained applications e.g.
a fast moving autonomous car detecting a stop sign, area
and energy-efficiency are less critical, so designers tend to
provide great levels of parallellism.

3.1. Serial Implementations
These are typically single-core central processing units

(CPUs). These devices could be used both at the cloud and
at the edge. Examples at the edge include Fitbit that use
ARM Cortex-M4 [33]. These are typically low-power mi-
crocontrollers which form a fair share of the current market
with huge dominance in mobile applications, but also seeing
rapid adoption in markets like IoT, automotive, virtual and
augmented reality, etc. [33]. On the other hand, in cloud and
datacenter applications, typically high-performance CPUs
with large computing power are used.

3.2. Parallel Implementations
These hardware platforms enable parallel execution, and

come in various forms: (a) multi-core systems that enable
task-level parallelism; (b) graphics processing units (GPUs)
that enable data-level parallelism; (c) field-programmable
gate arrays (FPGAs) what provide user with the flexibility
to modify hardware at runtime; and (d) systolic arrays,
which provide tiled array of processing elements (PEs)
for providing high-throughput for multiply-accumulate like
operations.

3.2.1. Multi-Core. These are straightforward extensions of
the CPUs discussed above, with multiple cores integrated
on the same die. They enable multi-threaded execution and
sometimes could integrate NN hardware accelerators on the
same die [34].

3.2.2. Graphics Processing Units (GPUs). This is the
dominant category of hardware to train and one of the domi-
nant ones to run NN models, due to their massive parallelism
and energy-efficiency. They are prevalently used for both
neural architecture search (NAS) and training the model
parameters using the backpropagation algorithm. Depending
on their architecture, modern GPUs can be divided into in-
tegrated GPU-CPU architectures (monolithically integrated
on the same die) and discrete GPUs which are connected to
CPU via PCIe [35].

While integrated GPUs are more energy efficient, dis-
crete GPUs are typically used for AI due to their ability
for compute acceleration [35]. When such GPUs are on the
cloud, there arises potential vulnerabilities due to adversaries
sharing them with the victim. GPU kernels are typically
accelerated using a software platform called compute unified
device architecture (CUDA) which typically involves three
tasks: (a) copies input data from main memory to GPU
memory; (b) launches computational kernels on GPU; and
(c) finally transfers the results from GPU memory back to
the main memory. These GPUs are bandwidth bounded,
hence the GDDR (graphics double data rate) memory is
used to increase the memory bandwidth [36].

3.3. Field-Programmable Gate Arrays (FPGAs)
FPGA is a competing platform to a GPU, for the purpose

of accelerating both neural network inference and train-
ing [37]. A modern FPGA SoC consists of a (a) programm-
ble logic (PL) subsystem; and (b) a processor subsystem.
The PL subsystem consists of an array of configurable
logic blocks (CLBs), block random access memory (BRAM)
units, digital signal processing (DSP) blocks, etc. As the
name suggests, the PL subsystem can be reconfigured using
a user-defined bitstream. On the other hand, the processor
subsystem helps adding a layer of software, and the ability to
control hardware through simple software level primitives,
thereby adding great flexibility and ease of use. In the
modern context, FPGAs also coming up with additional
hardware to accelerate AI applications e.g. AI engine [38].

Figure 5. Hardware Accelerators for Neural Networks.

3.4. Systolic Arrays
There is currently a global race for the design of neural-

network (NN) hardware accelerators with high-performance
and low-power consumption, among most of the semi-
conductor companies [38], [39], [40], [41], [42], [43], [44],
[45], [46], [47]. Figure 5 shows a tensor processing unit
(TPU)-like systolic array based accelerator, which is repre-
sentative of most of these accelerators albeit the differences
in the low level details. The matrix multiply unit is at the
heart of TPU, which helps perform layer wise computation
within the NN. The weights and input features for this
unit are read from independent partitions of an off-chip
dynamic random access memory (DRAM) called weight
and feature memories respectively. The complete accelerator
architecture contains other components like host CPU, on-
chip first-in first-out (FIFO) queues, on-chip buffers, host
interfaces, and other control logic, which are skipped in
Figure 5 for brevity.

4. Objective of the Adversary
The objective can be broadly categorised to be twofold:

(a) breaching the confidentiality; and (b) breaching integrity.
All the attacks published so far fall in one of these cate-
gories, or both in some cases.

4.1. Confidentiality
The adversary aims to RE (steal) the model IP through

query access to the API combined with access to hardware
internal states through various attacks discussed earlier. This
typically involves targeting specific hardware components
within the NN hardware, in order to extract the proprietary
information including structure and/or the parameters of
the model IP.

Definitions. The adversary aims to RE a target model
denoted by f and uses input-response pairs (x, y). The
attackers applies an input x to the oracle and obtains the
prediction output y s.t. f(x) = y. If no other source of

information is available, it is known as black-box access.
On the contrary, if complete access to the architecture and
model parameters is available, it is known as white-box
access. The last scenario is somewhere in between, where
the adversary has some additional information on what is
going on inside the black-box beyond the outputs, it is
known as grey-box access. We consider black-box and grey-
box access scenarios in this paper. If the attacker obtains an
approximate copy of the target model, it is denoted by f̂ .

Architecture/Structure: This refers to the model structure
i.e. number of layers, layer types, number of neurons in
each layer, etc. In case of MLPs, this translates to obtaining
number of layers, number of neurons in each layer, type of
activation function, etc. In case of CNNs, apart from this,
types of each layer, kernel sizes per layer, etc. will also be
needed. Basically, the type of information being retrieved
depends on the underlying NN type.

Training Hyperparameters: Once the architecture is
fixed/stolen, the adversary is interested to stealing the train-
ing hyperparameters, so the entity can train the substitute
model in case of approximate model extraction. This corre-
sponds to the set of hyperparameters used during training,
like regularisation hyperparameters, batch size, optimization
algorithm, etc. [2].

Model Parameters: Once architecture is fixed/stolen, the
adversary is interested to extract the weights/bias values
of all neurons in all the layers of the target model. In
this case, the adversary is attempting at identical behavior
extraction [2].

Objective. The adversary’s objective can be of two
types: (a) exact model extraction; or (b) approximate model
extraction. In the first case, the attacker tries to reverse
engineer the exact structure of the network in terms of
layers, neuron count, hyperparameters, and exact values of
the model parameters (weights/biases). In the latter case,
the adversary is only interested in obtaining an approximate
copy, which mimicks the behavior of the target model.
In this case, there are again two sub-categories: (a) high
accuracy, where the extracted model closely resembles the
target model for the original data; and (b) high fidelity,
where the extracted model is functionally equivalent to the
target model i.e. predictions resembling with target model
on any input [48].

In the field of logic deobfuscation, techniques like
AppSAT [49] are used to solve the exploding query
problem. Such techniques trade off query complexity
with extraction accuracy. This gives the ability to handle
hard instances of the problem by performing incremental
analysis given a timeout. Although as discussed earlier,
approximate model recovery methods exist, however
techniques to trade-off accuracy with extraction effort
are missing in the field of model RE. It is important to
note that such security evaluation is critical, since such
an adversary is more powerful than an exact adversary.
It is because even for hard instances of the model RE
problem, such an adversary has the ability to retrieve at least
some partial information, that helps him to perform stealing.

Open Problem: Exploring the tradeoff between extrac-
tion effort and RE accuracy for approximate model RE
through NN hardware.

4.1.1. Adversary’s capabilities. There are three main as-
pects when the adversary tries to perform model RE: knowl-
edge about the target model, and available resources.

Knowledge: As discussed earlier, the attacker has black-
box or gray-box access to the target model. In some works,
they assumed that the attacker already has knowledge of the
model architecture/structure, and proceed with the model
parameter extraction.

Resources: Since we are interested in hardware attacks,
the adversary has physical or remote access to the NN
hardware target, either performing training or inference. In
case of physical access, the adversary has access to side-
channel probes, or other hardware measuring equipment
to observe signals of interest, and measurement equipment
like oscilloscope to capture signals of interest. Sometimes,
signal conditioning/processing equipment like transceivers,
impedance matchers, amplifiers, etc. will be used. In case
of scan-chain attacks, access to the scan-chain infrastructure
i.e. JTAG is needed. Such attacks will typically be thus
exploited at third-party testing provider or in-field testing
where scan-chain access is available along with system-
level-test (SLT) capability.

4.1.2. Adversary’s goals. In the case of exact model ex-
traction, the extracted values must closely match the values
of the target model. The most common metric to measure
RE success is to minimize max|θ − θ̂|, where θ ∈ f .

Coming to approximate model extraction, as discussed
earlier, there are high-accuracy and high-fidelty attacks. In
the case of high-accuracy attacks, the adversary’s goal is to
minimize max|f(x)− f̂(x)|, ∀x ∈ T , there T is the dataset
used to train the target model. On the other hand, in the
case of high-fidelty attacks, the adversary’s goal is to make
sure f(x) = f̂(x), ∀x.

4.1.3. Attack Success Rate. The adversary’s success is
measured in terms of how many NN architecture parame-
ters or/and model parameters are successfully extracted, the
extraction error, the number of queries used, the number
of traces used in the case of side-channels, etc. In the
case of remote attacks, the adversary has to pay per each
query, so query minimization is an important measure of
success. Even otherwise, similar to the field of physical side-
channels, success rate is measured in terms of query/trace
minimization to achieve the desired goal.

4.2. Integrity
This constitutes to the attacks that are popular in the

adversarial machine learning regime. In software, there are
two types of such attacks: (a) white-box setting; and (b)
black-box setting. Since white-box settings are usually un-
realistic in practice [50], [51], we focus only on black-box
setting in this paper. In order to craft adversarial examples,

the attacker can either makes assumptions about the victim
model [52] or conduct fingerprinting [50] to infer more
information required about the victim model.

Sometimes, the adversary exploits teacher-student mod-
els based on some openly available information in a transfer
learning setting to obtain this information [50]. All the defi-
nitions, goals, objectives, capabilities, etc. defined earlier in
section 4.1 hold good here as well, because integrity attacks
also aim to retrieve the model structure and parameters as
accurately as possible.

5. Categorization Criteria for Attacks
The existing work on model reverse engineering (RE)

can be categorised based on different criterion, depending
on the angle of view that the researcher is interested in. The
categorization points include threat vector, the underlying
end-user application platform, the hardware type, neural
network type, asset, phase of attack, etc.

5.1. Threat Vector
The different threat vectors include side channels, fault

injection, system-level attacks, and scan-chain attacks.

5.2. Platform
Depending on the application, the target platform could

be at the cloud or at the edge. Some of the works look at
machine learning as a service (MLaaS) services with neural
networks at the backend. For such cases, the target platform
is the cloud. On the other hand, in case of physical side-
channels, the target device needs physical probing, which
cannot be executed with a cloud platform. In such cases,
the target platform will be at the edge.

5.3. Hardware type
The attack and defense strategies are highly influenced

by the underlying hardware architecture. For example, phys-
ical side-channels are generally ineffective for hardware
accelerators that execute highly concurrent computation due
the background noise, thus other styles of attack are pre-
ferred. As discussed earlier, we categorise based on CPU,
GPU, FPGA, and ASIC accelerators.

5.4. Neural Network type
The attack procedure depends on the underlying NN

type, which highly influences the kind of architecture, hy-
perparameters, etc. that need to be reverse-engineered.

5.5. Type of asset being stolen
There are two primary categories: (a) architecture steal-

ing; and (b) model parameter stealing. Existing works try
to steal either one of these two assets or in some special
cases, both. Figure 6 shows the distribution of existing works
into these two categories. It can be seen that majority of
the works look at reverse engineering the model architec-
ture/structure.

Param. Stealing

19%

Arch. Stealing

81%

Figure 6. Distribution of attacks/defenses in terms of asset-under-attack.

5.6. Attack phase: training or inference?
Some selected works have launched the attack during

the training phase, while most of the existing work have
focused on the inference phase. It it difficult to steal during
training because designers take several precautions, but if
the adversary makes it possible, very valuable assets can
be stolen during training. Coming to inference, anyone can
launch most of the existing attacks, but it becomes very hard
to steal during inference. For example, equivalent architec-
ture extraction problem has been shown to be very hard due
to the huge search space of the possible architectures [53].

6. Side Channel Attacks (SCAs)
We show our categorization of existing side-channel

attacks (SCA) based on the criteria seen above in Table 1.
A computing device interacts with its environment while
executing different operations. Due to strong correlations
of the data they operate on, to the physical properties of
the device such as computation time, power consumption,
electromagnetic (EM) radiation, etc., during such interac-
tions, these devices leak sensitive information. Such phys-
ical leakages are popularly known as side-channels in the
information security community. These side-channels can
be qualitatively categorised into different categories, based
on the way the confidential information is leaked. Some of
the popular ones include microarchitectural, Trojan-based,
physical, and remote side-channels.

6.1. Microarchitectural side-channels
As the name suggests, this category heavily relies on

the microarchitecture of the implementation. As a result, it
is critical to analyse microarchitectural side-channels indi-
vidually for the four popular NN hardware choices: CPU,
GPU, FPGA, and ASIC Accelerators. Most of the time, these
attacks could be exploited remotely because they do not need
physical probing.

6.1.1. CPU. It is well-known that micro-architecture side-
channels that typically capture different memory or inter-
connect access patterns are very powerful in breaking cry-
tosystems. Such side-channels have also been successfully
applied to perform model RE for NNs. One popular sub-
branch is cache side-channels, where it is assumed that the
spy/attacker process is co-located with the victim process on

TABLE 1. SIDE CHANNEL ATTACKS

Target Authors Parallel Microarch. Physical Remote Arch. Param. During During Distillation/TL/ NN type
Exec. SCA SCA SCA Stealing Stealing Training Inf. Surrogates

CPU

Duddu et al. [53] # # # # CNN
Batina et al. [33] # # # # # MLP, CNN
Yan et al. [54] # # # # CNN
Hong et al. [50] # # # CNN
Jeong et al. [55] # # # # MLP
Liu et al. [56] # # # # # CNN
Wolf et al. [57] # # # # # # MLP
Gao et al. [58] # # # # CNN
Gongye et al. [59] # # # # # MLP
Maji et al. [60] # # # # # # CNN
Batina et al. [4] # # # # # MLP, CNN
Gao et al. [34] # # # CNN
Malan et al. [61] # # # # # # CNN
Ryu et al. [62] # # # # # CNN
Won et al. [63] # # # CNN

GPU

Wei et al. [64] # # # # CNN
Hu et al. [65] # # # CNN
Chmielewski et al. [66] # # # # # MLP, CNN
Liang et al. [67] # # # # CNN
Wang et al. [68] # # # CNN
Ahmadi et al. [69] # # # CNN

FPGA

Zhang et al. [70] # # # # # # MLP, CNN
Yu et al. [71] # # # # BNN
Yoshida et al. [72] # # # # # # MLP
Dubey et al. [73] # # # # # # BNN
Meyers et al. [74] # # # # # MLP, CNN
Li et al. [75] # # # # # MLP
Yli-Mäyry et al. [76] # # # # # BNN
Dubey et al. [77] # # # # # # BNN

ASIC Acc.

Hua et al. [78] # # # CNN
Sharma et al. [79] # # # # # CNN
Read et al. [80] # # # # # MLP
Won et al. [81] # # # CNN
Yang et al. [82] # # # # CNN
Gongye et al. [83] # # # # # CNN
Yan et al. [84] # # # # CNN
Tian et al. [85] # # # # # CNN

 denotes ”Yes”, and# denotes ”No”, ✗denotes ”Not Applicable.”.

the same processor chip. One of the first cache side-channel
works for model RE is Cache Telepathy [54] that exploits
the extensive usage of geometrix matrix multiply (GEMM).

The attack proceeds in three steps: (a) using cache side-
channel attack to reverse engineer the matrix dimensions;
(b) perform detailed analysis of GEMM algorithms in ML
frameworks to figure out the relationship between matrix
parameters and the hyperparameters, and in this way reverse
engineer a good initial solution to the model architecture;
and (c) finally prune the candidate solutions to RE the archi-
tecture that is close to the target model. The authors evaluate
both Prime + Probe and Flush + Reload, two popular
cache SCAs. Another cache side-channel attack on model
RE is DeepRecon that uses Flush + Reload to reverse-
engineer the architecture and further build a meta-model
that accurately fingerprints the architecture and family of
the pretrained model in a transfer learning setting [50].

Another cache SCA is GANRED [56], an attack ap-
proach based on the generative adversarial nets (GAN)

framework which utilizes cache timing side-channel in-
formation in the form of Prime + Probe to accurately
recover the structure of DNNs without memory sharing or
code access. Unlike above cache SCAs, GANRED does
not need any shared main memory segment between the
victim and the attacker or analyze the DNN library codes
on the server. GANRED uses an incremental approach to
grow the retrieved structure using generator, discriminator
and validator to measure side-channel information, victim
comparisons, and pruning respectively.

Another popular sub-branch is Meltdown vulnerabil-
ity [86] that allows memory read without access privileges
by exploiting out-of-order execution. Researchers have ex-
poited dictionary-type symbol tables in Python to identify
the target memory address where the victim neural network
is mapped, and subsequently exploit Meltdown to extract
both the structure and model parameters of fully con-
nected networks [55]. Orthogonally, researchers proposed
Tenet [34], which demonstrate that malicious tenants in a

multi-tenant multi-core system, where victim and spy are
located on separate cores with a share memory channel.
Tenet uses the fact the memory timing information in the
shared memory channel exposes the knowledge of model
architecture, which can be exploited by the malicious tenants
to reverse-engineer the layer structure of neural networks.

6.1.2. GPU. Leaky DNN [64] looks the victim and the
adversary the same GPU when training an NN, and ex-
ploit the context-switching side-channel to extract the struc-
ture of the NN, including layers and hyperparameters.
This is one of the very few works across all platforms
(CPU/GPU/FPGA/ASIC) that looks at RE vulnerability
during training. DeepSniffer [65], on the other hand,
learns the relation between extracted architectural hints like
memory reads/write counts obtained by side-channel or bus
snooping attacks and the details of the model architecture.

Unlike prior works, which look at incomplete model
extraction in terms of layers and neurons details in the
structure, this work looks at complete model extraction
with run-time layer sequence identification, layer topology
reconstruction, and dimension size estimation, and is robust
to architecture-level noise. Finally, UMProbe [68] formally
defines timing-sensitive architecture-level events, called the
Arch-hints. Further, they identify existing Arch-hints are
ineffective for unified memory (UM) management system
for GPUs, and use their proposed formal definitions to
develop a new attack surface for UM.

6.1.3. FPGA. Chandrasekar et al. [87] introduce a hardware
Trojan to monitor memory side-channel information
available on the Advanced eXtensible Interface (AXI) bus
and leak it through the universal asynchronous receiver
/ transmitter (UART) port. This is the only work on
microarchitectural side-channels on FPGA, while there
has been significant work on physical side-channels and
fault-injection on the FPGA. Since it is well-known that
FPGAs are increasingly being used in the datacenters and
virtualization technologies, similar to GPU, it is important
to make sure if there are there are any memory or/and
interconnect side-channels leaking sensitive information
when executing NNs.

Open Problem: Exploring microarchitectural side-
channels in cloud FPGAs and FPGAs in datacenters.

6.1.4. ASIC Accelerator. In Hua et al. [78], researchers
have proposed an attack in the context of an NN hardware
accelerator, where the accelerator is protected while the off-
chip memory is not, similar to Intel SGX. In this context,
they snoop the bus to observe the off-chip memory accesses
like addresses and information on read/write operations, and
use this information to successfully RE the structure and
model parameter set of a CNN. Likewise, HuffDuff [82]
was proposed that leverage the boundary effect present in
the convolutional layers and the timing side channel of on-
the-fly activation compression, to significantly prune the
architecture search space during RE. Otherwise, there is not

much work on microarchitectural side-channels for ASIC
accelerators.

Since NN hardware is dominated by ASIC accelerators,
and there is a global race amongst all the companies in the
ASIC accelerator market, it is important to further explore
microarchitectural side-channels in this context. Further,
different companies consider different architectures. For
example, Google’s TPU looks at a more streamlined
engine focused on multiply and accumulate operations. On
the other hand, other companies like Tenstorrent rely on
RISC-V based arrays, and AMD’s AI engine is also based
out of array of RISC CPUs. This leads to numerous threat
vector possibilites, that need exploration.

Open Problem: Exploring microarchitectural side-
channels in ASIC accelerators.

6.1.5. Other System-level attacks. Apart from microarchi-
tectural side-channels, there are other system-level works
explored in the literature. Researchers proposed DnD [88]
that is able to recover a high-level representation of a
DNN starting from its compiled binary code. It is the
first compiler- and ISA-agnostic DNN decompiler, and does
template matching to recover hyper-parameters, model pa-
rameters, and the overall DNN topology. Likewise, ”Bits to
BNNs” [89] is is the first method for NN model RE from
the viewpoint of FPGA bitstream analysis and that further
work is needed to improve security assurance for edge
intelligence. For GPU, a new attack, called Hermes [35],
was proposed, that snoops the PCIe bus between the host
machine and GPU to RE both the structure and model
parameters of an NN.

6.2. Trojan Side-Channels
A Trojan side-channel refers to a special kind of

hardware Trojan that induces physical side-channels to
leak secret information. Trojan side-channels have been
extensively explored in the past for cryptosystems [90],
[91], [92], [93]. Likewise, Trojan side-channel adversaries
have also been proposed in the field of NN model RE in
the context of versatile tensor accelerator (VTA) on Zynq
UltraScale+ field programmable gate arrays (FPGA) [87].
This work aims at hyperparameter stealing in the context
of CNNs. However, this is almost no other work in this
direction.

Open Problem(s): Is it possible for adversaries to exploit
hardware Trojan side-channels to steal model parame-
ters? Can hardware Trojan side-channels be exploited for
knowledge distillation like attacks?

6.3. Physical side-channels
Physical side-channels rely on the fact that all hardware

implementations have unintended physical leakages. This
includes power, electromagnetic (EM) emissions, timing,
photonic emissions, scan-chains, etc. This class of attacks

on NN hardware for model RE can be broadly categoriezed
into two categories: (a) exact recovery; and (b) knowledge
distillation/transfer-learning (TF)/surrogates.

Exact recovery: This again has two sub-categories:
(a) the adversary has prior knowledge of the architec-
ture/structure of the network, and interested to RE the model
parameters; and (b) the adversary tries to perform RE on
both the architecture/structure of the network and the model
parameters.

Knowledge distillation: The adversary obtains exact or
partial information on the architecture/structure from the
side-channel, and trains this substitute model using a dataset
which is again created using side-channel information.

Knowledge distillation is an easier model RE problem,
compared to exact model RE problem. This is because in
knowledge distillation, the adversary only looks at different
hints on the architecture and training data, and is satisfied if
the trained substitute model has decent accuracy. This is not
the case with the exact model RE problem, because of the
stringent constraints to obtain the exact structure in terms of
layers, neurons per layer, and the exact model parameters.

Exact model RE works can be broadly categorized into
two categories: (a) serial execution; and (b) parallel execu-
tion. Depending on the category, the approach to physical
side channel analysis varies, although the challenges for
serial execution is strictly a subset of the challenges for
parallel execution due to the additional noise introduced in
the latter case.

6.3.1. Serial Execution. Both simple power analysis (SPA),
and differential power analysis (DPA) are well-known to
successfully exploit the power side-channel to break both
symmetric and asymmetric cryptosystems [94]. The key
enabler in SPA is the identification of distinguishing power
profiles for different instructions, while extraction the key
bits becomes difficult due to small variations caused by the
key bits amidst the high measurement noise. On the other
hand, DPA extracts the statistical correlations between the
individual secret key bits and the dynamic power dissipated
by the microprocessor during the cryptographic computation
over a large number of input cases, to successfully extract
this secret key. Since power dissipation and EM radiation
have a close mathematical relationship, researchers have
extended DPA to EM side-channels, which is popularly
known in the literature differential electro-magnetic analysis
(DEMA) [95].

It is important to note that DPA/DEMA are successful
on microprocessors that perform serial execution: in other
words, the CPU executes only one instruction per clock
cycle, thereby the power traces contain clear power patterns,
revealing the instruction-level information in the temporal
sense. In this case, the power consumed by each instruction
is directly visible on the chip’s power pin, thereby the
correlation of the key bits is visible in the current consumed
by the power pin, and not corrupted by background noise
due to other instructions.

Researchers have extended the idea of extracting individ-
ual key bits to extracting individual weight bits in a binary

neural network (BNN) and successfully exploited DPA to
perform RE [73], [77], [96], [97], [98], [99]. Researchers
have recently extended this to beyond BNNs to the more
general arithmetic or multi-bit model parameter represen-
tations. Yoshida et al. [72] used correlation power analysis
(CPA) to extract 8-bit fixed point model parameters of an
MLP with partial success. Batina et al. [33] have extended
DEMA to both 32-bit fixed and 32-bit floating point model
parameters in both MLP and CNN, hence strongly estab-
lishing the universal applicability of DPA/DEMA on neural
networks.

6.3.2. Parallel Execution. Unlike the serial execution
scenario, in the case of parallel execution, multiple
operations take place concurrently. In the TPU example
discussed earlier, there is a 256 × 256 array of processing
elements (PEs), all of them working simultaneously to
accelerate the NN computations. In such cases, it is not
possible to see observe direct correlations between an
individual weight and the corresponding side-channel
information in the temporal sense. Since all weights are
operating simultaneously, operation on one weight appears
as noise to the other, thereby there will be no correlations
whatsover due to the extreme levels of parallelism. That
is the reason most of physical side-channel works look at
only architecture stealing or serial execution.

Open Problem: Exploring the application of physical
side-channels to parallel execution scenarios. Is it possi-
ble to extract statistical correlations of the secret weights
to the side-channel information?

Since most of the NN hardware today is not serial
in nature, it is desirable to the adversary to convert the
parallel execution scenario to the serial execution scenario
so that all the rich source of literature on side-channels for
NN model RE on serial execution hardware can be made
directly applicable. To make this happen, the adversary
intelligently chooses carefully crafted inputs, or quiescent
operating points, also called the Q-points, which when
applied the NN accelerator, executes operations only on one
of the PEs, while all other PEs receives zeroed feature and
weight inputs. This property is known as linear constraint
satisfaction [23], [78], [83].

6.4. Remote Power Side-Channels
Except timing attacks, which are well-known to have

the potent to be launched remotely [100], rest of the phys-
ical side-channels like power, EM, etc. were originally
meant to be executed physically. However, after the first
remote power attack on an FPGA [101], remote power side-
channels have become very popular. These works attempt
to repeat what could be done with physical power side-
channel with remote power side-channel and report the
success rate, resolution, signal-to-noise (SNR) ratio, etc.
Due to common underlying cause, similar to physical power
side-channel, remote power side-channel has the same issues

related to parallel execution. Another interesting case study
is DeepTheft [58], which looks at power side-channel on
the cloud using running average power limit (RAPL) side-
channel. Similar to physical side-channels, the challenge of
extracting statistical correlations during parallel execution
discussed above, persist for remote side-channels as well.

7. Fault Injection Attacks
Rakin et al. [102] proposed HammerLeak that performs

rowhammer based fault injection [103] to infer weights
and biases, when sharing the off-chip DRAM with the
victim. The attack is stealthy and the adversary also trains
a substitute based on the partial leakages due to bitflips,
and thereby successfully performs model RE. They extend
RAMBleed [104] which deploys rowhammer as a read side-
channel, to DNNs. While RAMBleed requires the same
page content in both aggressor rows, DNNs do not allow
that. They address this issue by waving the requirement of
having two duplicated copies of the victim page, and rather
by substituting one victim page with attackers page while
still being able to leak secret bits from the victim page.

Brier et al. [105] proposed a sign bit flip fault (SNIFF)
attack that enables the reverse engineering by changing
the sign of intermediate values. They specifically inject
electromagnetic (EM) radition induced faults and target the
deep-layer feature extractor networks produced by transfer
learning, to recover the weights and biases of the last hidden
layer.

Recently, Hector et al. [106] proposed a safe error attack
(SEA), that relies on laser fault injection (LFI) using a bit-
set fault model (0 → 1, 1 → 1), that can perform a model
extraction attack with an adversary having a limited access
to training data to illegally train a substitute model. SEA
enables to recover the MSB values of the victim model
parameters, which in effect enables to efficiently constrain
the substitute model training, with training data as low
as 8%, while achieving high fidelity and near identical
accuracy compared to the target/victim model. They focus
on embedded DNNs on 32-bit microcontrollers, targeting
IoT applications, making LFI feasible.

Other than this, the FI work for model RE is
very limited. Most of the existing work on FI targets
misclassification [107], [108], [109], [110], [111], [112],
and not much for model RE attacks. There is a rich source
of literature for fault injection attacks on cryptographic
implementations. Unlike SCA, which has been successfully
extended to NN model RE, FI is still an open direction.

Open Problem: Extending power, clock, EM, LFI,
rowhammer, and other available fault injection attacks
for cryptographic implementations to NN hardware for
the purpose of model RE.

8. Scan-Chain Attacks
The scan-chain vulnerability exists at the third-party

testing provider or during in-field testing. The adversary runs

the classifier chip for a certain number of functional clock
cycles, switches to test mode and dumps out the states of
critical registers [23]. The switch between functional and
debug modes also exists in the prior works on scan-chain
attacks for cryptographic accelerators [113], but the timing
of the clock and other control signals is unique to NN
accelerators.

w⊺
n1
x > bn1

w⊺
j x ≤ bj , j ̸= n1

Figure 7. Linear Constraint Satisfaction (LCS) system for a target neuron-
n1 in the first layer of a fully connected network, where x is the layer
input, while w⊺

n1
and bn1 are the weight vector and bias values of neuron-

n1 respectively.

Constraint Satisfaction. Figure 7 shows the
mathematical formulation of LCS system for neuron-
n1 in layer-1 of an MLP. It is important to note that for
RE to be successful for layer-2, the model parameter set
obtained after training should satisfy LCS for all neurons in
layer-1 [23]. It was empirically demonstrated across a wide
range of structures of different sizes and depths that this
property is naturally satisfied for MLPs trained using the
backpropagation algorithm [23]. While this is very useful
from a practical perspective, it is not clear if this is always
true. As a result, it is important to theoretically prove this
is indeed always true, or the adversary has to come up with
intelligent verification mechanisms for LCS satisfaction.

Open Problem: Why linear constraint satisfaction is
naturally satisfied for fully connected networks? Or-
thogonally, is it possible to make sure/verify that the
training output can be made to satisfy linear constraint
satisfaction?

So far, LCS has been empirically demonstrated only for
MLPs. Since CNNs are very popular and it is well-known
that CNNs are used prevalently with NN accelerators,
it is important that LCS be extended to CNNs as well.
Likewise, it will interesting to check if this property for
NNs that process sequential data like recurrent neural
networks (RNNs).

Open Problem: Is linear constraint satisfaction also
naturally satisfied for more complex networks like CNNs
and RNNs?

In case of scan-chain attacks on cryptographic
implementations [113], interrupting the hardware is
relatively easy since the hardware is simple and has no
layer of software. Thus, interrupting the hardware at a
precise clock cycle to dump intermediate states is not very
challenging. However, in case of NN hardware accelerators
like Google’s Tensor Processing Unit (TPU), the underlying
hardware is complex and there is also a layer of software
involved. This makes it extremely difficult to interrupt the
NN hardware in real-time at a precise clock cycle, to dump
out the internal states of the registers.

Open Problem: Is it possible to interrupt the NN hard-
ware accelerator in real-time when the classification is
is progress, at a precise clock cycle, to implement scan-
chain attack?

In the case of physical side-channels, there are multiple
companies like Riscure, ChipWhisperer, Sakura, Sasebo,
etc. which provide products to validate the vulnerability.
However, in case of scan-chain attacks at third-party
testing provider or even in the field during in-field testing,
although the vulnerability exists, there is no way for
academic research to perform security evaluation in the lab
environment and develop robust defenses.

Open Problem: Need to come up with plat-
forms/products for scan-chain security evaluation, to pro-
mote research in this direction.

9. Categorization Criteria for Defenses
Similar to attacks, the defenses can be categorized based

on different criterion, depending on the angle of view that
the researcher is interested in.

9.1. Nature of Defense
The high-level categorization is done based on the nature

of defense, which we identify as nine categories: (a) trusted
execution environments (TEEs) and attestation, (b) hardware
masking, (c) obfuscation, optimization, and perturbation
(OOP) techniques, (d) application of cryptographic meth-
ods, (e) shuffling, dummy instruction/operation insertion,
and randomization (SDR) defenses, (f) hardware-assisted
defenses, (g) prediction poisoning methods, that thwart the
adversary, (h) model fingerprinting methods , and (i) model
compression defenses, depending on the nature of applied
protection for the model IP.

9.2. Reactive or Proactive?
One of the categorization criteria is whether the defense

is detection-based (reactive) or prevention-based (proactive).
As we shall see later, most of the hardware defenses for
model RE are prevention-based.

9.3. Impact on Actual Classifier Accuracy
Sometimes, companies have to pay a price to implement

the defense in NN hardware/software co-system. While we
are interested to protect the model, it is also important to
understand how the changes made to the hardware/software
due to the defense, will impact the classifier accuracy. As we
shall see later, while some of the defenses have no impact on
the classifier accuracy, some do incur a penalty which is the
trade-off between security and the actual classifier accuracy.

9.4. Figures of Merit
Since we are interested in protecting NN models running

on hardware, the defenses in most cases involve modifi-
cations to certain aspects of hardware/software. This can

negatively impact the power, performance, area (PPA) of
the underlying NN hardware. Thus, it is important to under-
stand/analyze the tradeoffs between security and PPA figures
of merit of the NN hardware.

10. Defenses
Table 2 shows the different defenses published in the

literature, in terms of the categorization criteria above.

10.1. TEEs and Attestation
These techniques aim full or partial execution of the

confidential computations inside a TEE like Intel SGX,
ARM TrustZone, Sanctum, Graviton, etc., as well as device
attestations for co-processors for providing access control.
It has been shown that the full TEE-based DNN execu-
tion incurs 10×, partial TEE-based DNN execution incurs
≈ 2× performance penalty [114], [156], while attestation
techniques like DeepAttest [115], [156] incurs only 1.3%
performance penalty. While these attestation techniques use
watermarks to verify the legitimacy of the deployed DNN
before allowing it to execute normal inference, they still
cannot guarantee protection against physical side-channels
or scan-chain attacks.

10.2. Hardware Masking
Masking defenses split inputs of all weight-dependent

computations into two randomized shares, which are then
independently processed and are reconstituted at the final
step when the final output is generated. This is done so
as to decorrelate the computations to the secret weights, to
make physical side-channel attacks infeasible. This is further
augmented with hiding techniques to decorrelate the sign
bit from the input. There are numerous hardware masking
defenses in the literature [77], [96], [97], [98], [99], [129],
[144].

10.3. OOP Defenses
There are numerous model and input obfuscation

defenses proposed for model RE [69], [123], [124], [126],
[128], [131], [132], [133], [140], [144], [146], [151],
[157], [158], that fall in this category. Likewise, works
that use model optimization [134] to defend RE and model
perturbation defenses also fall in this category. Although
there are model perturbation defenses for software, there
are currently no model perturbation defenses for hardware
model RE.

Open Problem: Is it possible to perform secure training
or perturb the models, so as to make the model more
secure against model RE attacks?

10.4. Cryptographic Defenses
These are encryption based techniques that tries to pro-

tect model parameters from unprotected components, by en-
crypting them before they reach such components. Typically,
these techniques incur a performance overhead.

TABLE 2. DEFENSES.

Defense Class Authors Detection Prevention Impact on Classifier Accuracy Overheads
Inf. Performance Area Power

TEEs and Attestation

Tramer et al. [114] # −0.5% 2.5 − 12.5× 18.3%

Chen et al. [115] # # 0.7 − 1.9%

Chakraborty et al. [116] # # #
Lin et al. [117] # # #
Sun et al. [118] # 1% 0.6 − 1.6×
Liu et al. [119] # # 53%

Hardware Masking

Dubey et al. [77] # 2.8× 2.3×
Dubey et al. [96] # 3.5% 5.9×
Dubey et al. [97] # 3.1% 5.3 − 5.7×
Dubey et al. [98] # 0.5 − 1% 2.5 − 3.6× 3.1%

Breier et al. [120] # 2.6 − 11%

Dubey et al. [121] # 2.1× ≈ 3×
Maji et al. [122] # < 5% 1.4× 1.64× 5.5×

OOP Defenses

He et al. [123] # # 2%

Zhou et al. [124] # 0.14×
Zhou et al. [125] #
Szentannai et al. [126] # #
DeepObfuscation [127] # # # 2.1×
Isakov et al. [128] # Low Power
Wang et al. [129] # # < 0.001% < 0.01%

Ahmadi et al. [130] # # 1.4×
Olney et al. [131] # # 4.4% # #
Sternby et al. [132] # < 1%

Zhang et al. [133] # # # 1.17%

Jap et al. [134] # # # # #
Luo et al. [135] # 3.06%

Duan et al. [136] # # 21%

Cryptographic

Zuo et al. [36] # ≈ 5%

Wei et al. [137] # 2% 0.77µs/weight

Alam et al. [138] # # 2.5 − 3×
Alam et al. [139] # # 1.3 − 2× Negligible
Zhou et al. [140] #
Wang et al. [141] # # 1.03 − 1.25× 6.4% 9.6%

SDR Defenses Liu et al. [142] # Constant factor
Ganesan et al. [143] # # 0.56% 2.46% 3.28%

Hardware-Assisted

Chakraborty et al. [144] # # # 0.5%

Goldstein et al. [145] # #
Grailoo et al. [146] # # # 5 − 21% 0.7 − 9%

Rajasekharan [147] #
Mankali et al. [148] #
Li et al. [149] # # Negligible Negligible Negligible
Li et al. [150] # # Negligible Negligible Negligible
Zou et al. [151] # 16× < 2%

Prediction Poisoning Grailoo et al. [152] # # # Negligible Negligible

Fingerprinting Cao et al. [153] # # Negligible
Shen et al. [154] # # Negligible

Compression Shrivastava et al. [155] # 1.71× Negligible Negligible
 denotes ”Yes”, and# denotes ”No”, ✗ denotes ”Not Applicable”, denotes ”Not mentioned”. SDR stands for ”Shuffling, Dummy Operation Insertion, and Randomization

Defenses.” OOP stands for Obfuscation, Optimization, and Perturbation Techniques.

10.5. SDR Defenses
This category contains techniques that shuffle instruction

sequences during execution, memory locations to obfus-
cate the address space with low overheads, etc.; and tech-
niques for dummy instruction insertion including insertion
of dummy memory access requests; as well as techniques for
address space layout randomization. This class of defenses
aim at confusing the attacker in terms of hardware execution
or memory patterns, with the objective to thwart the RE
process.

10.6. Hardware-Assisted Defenses

This category considers technique that borrow tech-
niques from hardware security used for IP protection and fin-
gerprinting like logic-locking, physical unclonable functions
(PUFs), etc. Researchers have borrowed these techniques
from other fields and successfully applied them for model IP
protection. These are typically supply chain defenses from
the hardware security community, hence hardware masking
do not fall in this category.

10.7. Prediction Poisoning Defenses
As discussed earlier, architecture stealing for distillation-

based attacks has been very popular among hardware at-
tacks. This category includes methods to poison the pre-
dictions that prevent such hardware based distillation-based
attacks.

10.8. Fingerprinting Defenses
These defenses create a fingerprint of the original clas-

sifier, so as to distinguish from pirated classifiers. For ex-
ample, one of the techniques creates a fingerprint of some
data points near the classification boundary of the original
classifier, to characterize its uniqueness [153].

10.9. Model Compression Defenses
This class of techniques use compression as a method

of obfuscation and a potential source of randomness [155].
As shown in Table 2, except a few methods, most of
the works have not quantified area and power overheads.
This is a major limitation, and needs to be addressed for
future defenses, since without quantifying that, it becomes
difficult for chip designers to make design decisions without
considering PPA requirements.

Recommendation: Future defenses need to quantify area
and power/energy overheads.

Table 2 also shows that most of the defenses are
prevention-based and with little impact on classifier
accuracy, thus making them very attractive. However,
except for a few defenses [115], [156], most of them have
either very high performance overheads or area overheads.
They are typically many times original design size. This is
typically not acceptable for designers, hence is an important
consideration to keep the overheads a small percentage of
original design for future defenses.

Recommendation: Future defenses need to keep per-
formance and area overheads to a small percentage of
original design.

10.10. Scan-chain defenses
In the case of scan-chain attacks [23], [24], there are

no defenses so far. To handle in-field errors e.g. silent data
corruption (SDC), most of the semiconductor companies
are actively looking at scan for in-field testing. As a result,
the threat becomes even more relevant and important to
defend.

Open Problem: Is it possible to defend scan-chain at-
tacks for NN hardware accelerators?

There has been a significant body of work [113], [159],
[160], [161] on scan-chain defenses for cryptographic im-
plementations. However, there is no validation done to check
if these defenses are effective/ineffective for NN hardware.

Open Problem: Are scan-chain defenses for cryp-
tographic implementations effective/ineffective on NN
hardware to defend against model RE attacks?

11. Models
The attack procedure depends on the type of the model-

under-attack and the impact of the attack depends on the
csot of the model. So far, researchers have been discussing
the possibility of the private training data being under risk
due to model RE. However, there is no significant work
that performs the security evaluation pertaining to the same.

Open Problem: Is it possible to reverse engineer the
private training data based on the reverse-engineered NN
model through hardware?

Further, researchers have evaluated mostly on CNNs
and MLPs. Bringing the threat model into perspective, the
original goal was to protect the commercial value of the
model IP. As a result, security evaluation and protection
becomes important when the value of the model IP is
very high. Neural networks like CNNs, MLPs are very
important IPs because sometimes the cost of training
and neural-architecture search (NAS) can be as high as
$3 million. However, in the case of some of the natural
language processing (NLP) tasks, the cost goes up even
more. For example, transformers, which are used in GPT-4
cost more than $100 million for training [6]. However,
there is no work so far neither on the security evaluation
side nor on the protection front.

Open Problem: Extending model RE to expensive IPs
like transformers.

11.1. Adversarial Attacks
Although a significant number of papers focus on

architecture stealing (refer Figure 6), and hint that the
adversary can exploit it for adversarial attacks, few
have actually explored that direction. One such work is
Tenet [34], which implements and reports the adversarial
success rate to be 42.4%. As a result, this is clearly an
open research direction.

Open Problem: Can model RE through hardware help
adversaries craft adversarial examples/samples?

12. Conclusion
Since deep learning gained popularity in the recent

years [3], model reverse engineering problem has been
well-studied from both software and hardware perspectives.
Although there has been significant body of work (130+
papers) on the hardware side, there is no systematization
of knowledge. We addressed this issue by categorizing the
various attacks/defenses based on various criterion. We also
discussed pros and cons of these works based on different
figures of merit, and suggested several open research direc-
tions.

Acknowledgments

The authors would like to thank Manideep Thotakura
from the University at Albany for assisting with collecting
the papers.

References

[1] T. Nayan, Q. Guo, M. Al Duniawi, M. Botacin, S. Uluagac, and
R. Sun, “SoK: All You Need to Know About On-Device ML Model
Extraction-The Gap Between Research and Practice.”

[2] D. Oliynyk, R. Mayer, and A. Rauber, “I Know What You Trained
Last Summer: A Survey on Stealing Machine Learning Models
and Defences,” ACM Comput. Surv., vol. 55, no. 14s, jul 2023.
[Online]. Available: https://doi.org/10.1145/3595292

[3] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015. [Online]. Available:
https://doi.org/10.1038/nature14539

[4] L. Batina, S. Bhasin, D. Jap, and S. Picek, “SCA Strikes Back:
Reverse-Engineering Neural Network Architectures Using Side
Channels,” IEEE Design Test, vol. 39, no. 4, pp. 7–14, 2022.

[5] “Model Ownership,” 2024. [Online]. Available: https://sambanova.
ai/blog/generative-ai-model-ownership

[6] “OpenAI’s CEO Says the Age of Giant AI Models Is Already
Over,” 2023. [Online]. Available: https://www.wired.com/story/op
enai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/

[7] I. Mosafi, E. David, and N. S. Netanyahu, “Zero-Knowledge Attack
for Replicating Protected Deep Neural Networks,” in 2023 Inter-
national Joint Conference on Neural Networks (IJCNN), 2023, pp.
1–8.

[8] A. Dmitrenko, “DNN model extraction attacks using prediction
interfaces,” 2018. [Online]. Available: https://api.semanticscholar.or
g/CorpusID:208977276

[9] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Trans-
ferable Architectures for Scalable Image Recognition,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 8697–8710.

[10] C. Yang, L. Xie, S. Qiao, and A. L. Yuille, “Knowledge
Distillation in Generations: More Tolerant Teachers Educate Better
Students,” CoRR, vol. abs/1805.05551, 2018. [Online]. Available:
http://arxiv.org/abs/1805.05551

[11] J. R. C. da Silva, R. F. Berriel, C. Badue, A. F. de Souza,
and T. Oliveira-Santos, “Copycat CNN: Stealing Knowledge
by Persuading Confession with Random Non-Labeled Data,”
CoRR, vol. abs/1806.05476, 2018. [Online]. Available: http:
//arxiv.org/abs/1806.05476

[12] Y. Shi, Y. E. Sagduyu, K. Davaslioglu, and J. H. Li, “Active
Deep Learning Attacks under Strict Rate Limitations for Online
API Calls,” CoRR, vol. abs/1811.01811, 2018. [Online]. Available:
http://arxiv.org/abs/1811.01811

[13] V. Chandrasekaran, K. Chaudhuri, I. Giacomelli, S. Jha, and S. Yan,
“Model extraction and active learning,” CoRR, vol. abs/1811.02054,
2018. [Online]. Available: http://arxiv.org/abs/1811.02054

[14] S. Pal, Y. Gupta, A. Shukla, A. Kanade, S. K. Shevade, and
V. Ganapathy, “A framework for the extraction of Deep Neural
Networks by leveraging public data,” CoRR, vol. abs/1905.09165,
2019. [Online]. Available: http://arxiv.org/abs/1905.09165

[15] I. Mosafi, E. David, and N. S. Netanyahu, “DeepMimic:
Mentor-Student Unlabeled Data Based Training,” CoRR, vol.
abs/1912.00079, 2019. [Online]. Available: http://arxiv.org/abs/19
12.00079

[16] ——, “Stealing knowledge from protected deep neural networks
using composite unlabeled data,” CoRR, vol. abs/1912.03959, 2019.
[Online]. Available: http://arxiv.org/abs/1912.03959

[17] S. Pal, Y. Gupta, A. Shukla, A. Kanade, S. K. Shevade,
and V. Ganapathy, “ActiveThief: Model Extraction Using Active
Learning and Unannotated Public Data,” in AAAI Conference
on Artificial Intelligence, 2020. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:213157375

[18] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Stealing Machine Learning Models via Prediction APIs,” CoRR,
vol. abs/1609.02943, 2016. [Online]. Available: http://arxiv.org/abs/
1609.02943

[19] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot,
“High-Fidelity Extraction of Neural Network Models,” CoRR, vol.
abs/1909.01838, 2019. [Online]. Available: http://arxiv.org/abs/19
09.01838

[20] S. Milli, L. Schmidt, A. D. Dragan, and M. Hardt, “Model
reconstruction from model explanations,” in Proceedings of the
Conference on Fairness, Accountability, and Transparency, ser.
FAT* ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 1–9. [Online]. Available: https://doi.org/10.114
5/3287560.3287562

[21] D. Rolnick and K. P. Körding, “Identifying Weights and Architec-
tures of Unknown ReLU Networks,” CoRR, vol. abs/1910.00744,
2019. [Online]. Available: http://arxiv.org/abs/1910.00744

[22] R. Ge, R. Kuditipudi, Z. Li, and X. Wang, “Learning two-
layer neural networks with symmetric inputs,” CoRR, vol.
abs/1810.06793, 2018. [Online]. Available: http://arxiv.org/abs/18
10.06793

[23] S. Potluri and A. Aysu, “Stealing Neural Network Models through
the Scan Chain: A New Threat for ML Hardware,” in 2021
IEEE/ACM International Conference On Computer Aided Design
(ICCAD), 2021, pp. 1–8.

[24] S. Jiang, S. Potluri, and T.-Y. Ho, “Scalable scan-chain-based ex-
traction of neural network models,” in 2023 Design, Automation and
Test in Europe Conference and Exhibition (DATE), 2023, pp. 1–6.

[25] T. Nayan, Q. Guo, M. Al Duniawi, M. Botacin, S. Uluagac, and
R. Sun, “SoK: All You Need to Know About On-Device ML Model
Extraction-The Gap Between Research and Practice.”

[26] M. Isakov, V. Gadepally, K. M. Gettings, and M. A. Kinsy, “Survey
of attacks and defenses on edge-deployed neural networks,” in 2019
IEEE High Performance Extreme Computing Conference (HPEC),
2019, pp. 1–8.

[27] Q. Xu, M. T. Arafin, and G. Qu, “Security of neural networks from
hardware perspective: A survey and beyond,” in Proceedings of the
26th Asia and South Pacific Design Automation Conference, ser.
ASPDAC ’21. Association for Computing Machinery, 2021, p.
449–454.

[28] S. Mittal, H. Gupta, and S. Srivastava, “A survey on hardware
security of DNN models and accelerators,” Journal of Systems
Architecture, vol. 117, p. 102163, 2021.

[29] T. Zhou, Y. Zhang, S. Duan, Y. Luo, and X. Xu, “Deep neural net-
work security from a hardware perspective,” in 2021 IEEE/ACM In-
ternational Symposium on Nanoscale Architectures (NANOARCH),
2021, pp. 1–6.

[30] F. Sultana, A. Sufian, and P. Dutta, “Advancements in Image Clas-
sification using Convolutional Neural Network,” in International
Conference on Research in Computational Intelligence and Com-
munication Networks, 2018, pp. 122–129.

[31] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016. [Online]. Available: http://www.deeplearningbook.org

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

https://doi.org/10.1145/3595292
https://doi.org/10.1038/nature14539
https://sambanova.ai/blog/generative-ai-model-ownership
https://sambanova.ai/blog/generative-ai-model-ownership
https://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/
https://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/
https://api.semanticscholar.org/CorpusID:208977276
https://api.semanticscholar.org/CorpusID:208977276
http://arxiv.org/abs/1805.05551
http://arxiv.org/abs/1806.05476
http://arxiv.org/abs/1806.05476
http://arxiv.org/abs/1811.01811
http://arxiv.org/abs/1811.02054
http://arxiv.org/abs/1905.09165
http://arxiv.org/abs/1912.00079
http://arxiv.org/abs/1912.00079
http://arxiv.org/abs/1912.03959
https://api.semanticscholar.org/CorpusID:213157375
https://api.semanticscholar.org/CorpusID:213157375
http://arxiv.org/abs/1609.02943
http://arxiv.org/abs/1609.02943
http://arxiv.org/abs/1909.01838
http://arxiv.org/abs/1909.01838
https://doi.org/10.1145/3287560.3287562
https://doi.org/10.1145/3287560.3287562
http://arxiv.org/abs/1910.00744
http://arxiv.org/abs/1810.06793
http://arxiv.org/abs/1810.06793
http://www.deeplearningbook.org

[33] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse
engineering of neural network architectures through electromagnetic
side channel,” in 28th USENIX Security Symposium (USENIX
Security 19). Santa Clara, CA: USENIX Association, Aug. 2019,
pp. 515–532. [Online]. Available: https://www.usenix.org/conferenc
e/usenixsecurity19/presentation/batina

[34] C. Gao, B. Li, Y. Wang, W. Chen, and L. Zhang, “Tenet: A Neural
Network Model Extraction Attack in Multi-core Architecture,” in
Proceedings of the 2021 on Great Lakes Symposium on VLSI.
Association for Computing Machinery, 2021, p. 21–26.

[35] Y. Zhu, Y. Cheng, H. Zhou, and Y. Lu, “Hermes Attack:
Steal DNN Models with Lossless Inference Accuracy,” in 30th
USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 1973–1988. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/zhu

[36] P. Zuo, Y. Hua, L. Liang, X. Xie, X. Hu, and Y. Xie, “Sealing neural
network models in encrypted deep learning accelerators,” in 2021
58th ACM/IEEE Design Automation Conference (DAC), 2021, pp.
1255–1260.

[37] L. Huegle, M. Gotthard, V. Meyers, J. Krautter, D. R. E. Gnad,
and M. B. Tahoori, “Power2Picture: Using Generative CNNs for
Input Recovery of Neural Network Accelerators through Power
Side-Channels on FPGAs,” in 2023 IEEE 31st Annual International
Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2023, pp. 155–161.

[38] “Xilinx AI Engine.” [Online]. Available: https://www.xilinx.com/s
upport/documentation/white papers/wp506-ai-engine.pdf

[39] “NVIDIA AI Engine.” [Online]. Available: https://www.nvidia.com
/en-us/data-center/dgx-1/

[40] “IBM TrueNorth.” [Online]. Available: https://www.research.ibm.c
om/artificial-intelligence/hardware/

[41] “ARM ML Processor.” [Online]. Available: https://www.arm.com/
solutions/artificial-intelligence

[42] “Intel Movidius.” [Online]. Available: https://software.intel.com/e
n-us/movidius-ncs

[43] “Qualcomm AI Engine.” [Online]. Available: https://www.qualco
mm.com/snapdragon/artificial-intelligence

[44] “Nxp s32v234 vision processor.” [Online]. Available: https:
//www.nxp.com/products/processors-and-microcontrollers/arm-bas
ed-processors-and-mcus/s32-automotive-platform/vision-processor
-for-front-and-surround-view-camera-machine-learning-and-senso
r-fusion:S32V234

[45] “Texas-instruments ai engine.” [Online]. Available: http://www.ti.c
om/tool/SITARA-MACHINE-LEARNING

[46] “Samsung neural processing unit (npu).” [Online]. Available:
https://www.samsung.com/global/galaxy/what-is/npu/

[47] “Google Tensor Processing Unit (TPU).” [Online]. Available:
https://cloud.google.com/tpu/docs/tpus

[48] M. Jagielski et al, “High Accuracy and High Fidelity Extraction of
Neural Networks, booktitle = USENIX Security Symposium, pages
= 1345–1362, year = 2020,.”

[49] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin,
“Appsat: Approximately deobfuscating integrated circuits,” in 2017
IEEE International Symposium on Hardware Oriented Security and
Trust (HOST). IEEE, 2017, pp. 95–100.

[50] S. Hong, M. Davinroy, Y. Kaya, S. N. Locke, I. Rackow, K. Kulda,
D. Dachman-Soled, and T. Dumitras, “Security Analysis of Deep
Neural Networks Operating in the Presence of Cache Side-Channel
Attacks,” CoRR, vol. abs/1810.03487, 2018. [Online]. Available:
http://arxiv.org/abs/1810.03487

[51] O. Suciu, R. Marginean, Y. Kaya, H. Daume III, and T. Dumitras,
“When does machine learning {FAIL}? generalized transferability
for evasion and poisoning attacks,” in 27th USENIX Security Sym-
posium (USENIX Security 18), 2018, pp. 1299–1316.

[52] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
in Proceedings of the 2017 ACM on Asia conference on computer
and communications security, 2017, pp. 506–519.

[53] V. Duddu, D. Samanta, D. V. Rao, and V. E. Balas, “Stealing neural
networks via timing side channels. corr abs/1812.11720 (2018),”
arXiv preprint arXiv:1812.11720, 2018.

[54] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy:
Leveraging shared resource attacks to learn DNN architectures,” in
29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 2003–2020. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/yan

[55] H. Jeong, D. Ryu, and J. Hur, “Neural Network Stealing via Melt-
down,” in 2021 International Conference on Information Networking
(ICOIN), 2021, pp. 36–38.

[56] Y. Liu and A. Srivastava, “GANRED: GAN-based Reverse Engineer-
ing of DNNs via Cache Side-Channel,” in Proceedings of the 2020
ACM SIGSAC Conference on Cloud Computing Security Workshop,
2020, p. 41–52.

[57] S. Wolf, H. Hu, R. Cooley, and M. Borowczak, “Stealing machine
learning parameters via side channel power attacks,” in 2021 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), 2021, pp.
242–247.

[58] Y. Gao, H. Qiu, Z. Zhang, B. Wang, H. Ma, A. Abuadbba, M. Xue,
A. Fu, and S. Nepal, “Deeptheft: Stealing DNN model architec-
tures through power side channel,” arXiv preprint arXiv:2309.11894,
2023.

[59] C. Gongye, Y. Fei, and T. Wahl, “Reverse-engineering deep neural
networks using floating-point timing side-channels,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[60] S. Maji, U. Banerjee, and A. P. Chandrakasan, “Leaky Nets: Re-
covering Embedded Neural Network Models and Inputs Through
Simple Power and Timing Side-Channels—Attacks and Defenses,”
IEEE Internet of Things Journal, vol. 8, no. 15, pp. 12 079–12 092,
2021.

[61] E. Malan, V. Peluso, A. Calimera, and E. Macii, “Enabling DVFS
Side-Channel Attacks for Neural Network Fingerprinting in Edge
Inference Services,” in 2023 IEEE/ACM International Symposium
on Low Power Electronics and Design (ISLPED), 2023, pp. 1–6.

[62] D. Ryu, Y. Kim, and J. Hur, “γ-Knife: Extracting Neural Network
Architecture Through Software-Based Power Side-Channel,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–17, 2023.

[63] Y.-S. Won, S. Chatterjee, D. Jap, A. Basu, and S. Bhasin, “Deep-
Freeze: Cold Boot Attacks and High Fidelity Model Recovery on
Commercial EdgeML Device,” in 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), 2021, pp. 1–9.

[64] J. Wei, Y. Zhang, Z. Zhou, Z. Li, and M. A. Al Faruque, “Leaky
DNN: Stealing Deep-Learning Model Secret with GPU Context-
Switching Side-Channel,” in 2020 50th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN),
2020, pp. 125–137.

[65] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding,
C. Liu, T. Sherwood, and Y. Xie, “DeepSniffer: A DNN Model
Extraction Framework Based on Learning Architectural Hints,” ser.
ACM ASPLOS, 2020, p. 385–399.

[66] Ł. Chmielewski and L. Weissbart, “On Reverse Engineering Neural
Network Implementation on GPU,” in Applied Cryptography and
Network Security Workshops. Cham: Springer International Pub-
lishing, 2021, pp. 96–113.

[67] S. Liang, Z. Zhan, F. Yao, L. Cheng, and Z. Zhang, “Clairvoyance:
Exploiting Far-field EM Emanations of GPU to ”See” Your DNN
Models through Obstacles at a Distance,” in IEEE Security and
Privacy Workshops (SPW), 2022, pp. 312–322.

https://www.usenix.org/conference/usenixsecurity19/presentation/batina
https://www.usenix.org/conference/usenixsecurity19/presentation/batina
https://www.usenix.org/conference/usenixsecurity21/presentation/zhu
https://www.usenix.org/conference/usenixsecurity21/presentation/zhu
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.research.ibm.com/artificial-intelligence/hardware/
https://www.research.ibm.com/artificial-intelligence/hardware/
https://www.arm.com/solutions/artificial-intelligence
https://www.arm.com/solutions/artificial-intelligence
https://software.intel.com/en-us/movidius-ncs
https://software.intel.com/en-us/movidius-ncs
https://www.qualcomm.com/snapdragon/artificial-intelligence
https://www.qualcomm.com/snapdragon/artificial-intelligence
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion:S32V234
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion:S32V234
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion:S32V234
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion:S32V234
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion:S32V234
http://www.ti.com/tool/SITARA-MACHINE-LEARNING
http://www.ti.com/tool/SITARA-MACHINE-LEARNING
https://www.samsung.com/global/galaxy/what-is/npu/
https://cloud.google.com/tpu/docs/tpus
http://arxiv.org/abs/1810.03487
https://www.usenix.org/conference/usenixsecurity20/presentation/yan
https://www.usenix.org/conference/usenixsecurity20/presentation/yan

[68] Z. Wang, X. Zeng, X. Tang, D. Zhang, X. Hu, and Y. Hu, “De-
mystifying Arch-hints for Model Extraction: An Attack in Unified
Memory System,” arXiv preprint arXiv:2208.13720, 2022.

[69] M. M. Ahmadi, L. Alrahis, A. Colucci, O. Sinanoglu, and
M. Shafique, “NeuroUnlock: Unlocking the Architecture of Obfus-
cated Deep Neural Networks,” in 2022 International Joint Confer-
ence on Neural Networks (IJCNN), 2022, pp. 01–10.

[70] Y. Zhang, R. Yasaei, H. Chen, Z. Li, and M. A. A. Faruque,
“Stealing Neural Network Structure Through Remote FPGA Side-
Channel Analysis,” IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 4377–4388, 2021.

[71] H. Yu et al, “DeepEM: Deep Neural Networks Model Recovery
through EM Side-Channel Information Leakage,” in HOST, 2020.

[72] K. Yoshida, T. Kubota, S. Okura, M. Shiozaki, and T. Fujino,
“Model Reverse-Engineering Attack using Correlation Power Anal-
ysis against Systolic Array Based Neural Network Accelerator,”
in 2020 IEEE International Symposium on Circuits and Systems
(ISCAS), 2020, pp. 1–5.

[73] A. Dubey, E. Karabulut, A. Awad, and A. Aysu, “High-fidelity
model extraction attacks via remote power monitors,” in 2022 IEEE
4th International Conference on Artificial Intelligence Circuits and
Systems (AICAS), 2022, pp. 328–331.

[74] V. Meyers, D. Gnad, and M. Tahoori, “Reverse Engineering Neural
Network Folding with Remote FPGA Power Analysis,” in IEEE 30th
Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2022, pp. 1–10.

[75] T. Li and C. Merkel, “Model extraction and adversarial attacks on
neural networks using switching power information,” in Artificial
Neural Networks and Machine Learning – ICANN 2021, I. Farkaš,
P. Masulli, S. Otte, and S. Wermter, Eds. Cham: Springer Interna-
tional Publishing, 2021, pp. 91–101.

[76] V. Yli-Mäyry, A. Ito, N. Homma, S. Bhasin, and D. Jap, “Extraction
of binarized neural network architecture and secret parameters using
side-channel information,” in 2021 IEEE International Symposium
on Circuits and Systems (ISCAS), 2021, pp. 1–5.

[77] A. Dubey, R. Cammarota, and A. Aysu, “Maskednet: The first
hardware inference engine aiming power side-channel protection,” in
2020 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). IEEE, 2020, pp. 197–208.

[78] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convo-
lutional neural networks through side-channel information leaks,”
in Proceedings of the 55th Annual Design Automation Conference,
2018, pp. 1–6.

[79] S. Sharma, U. Kamal, J. Tong, T. Krishna, and S. Mukhopadhyay,
“SNATCH: Stealing Neural Network Architecture from ML Accel-
erator in Intelligent Sensors,” in 2023 IEEE SENSORS, 2023, pp.
1–4.

[80] J. Read, W. Li, and S. Yu, “A method for reverse engineering neural
network parameters from compute-in-memory accelerators,” in 2022
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2022,
pp. 302–307.

[81] Y.-S. Won, S. Chatterjee, D. Jap, S. Bhasin, and A. Basu, “Time to
leak: Cross-device timing attack on edge deep learning accelerator,”
in 2021 International Conference on Electronics, Information, and
Communication (ICEIC), 2021, pp. 1–4.

[82] D. Yang, P. J. Nair, and M. Lis, “HuffDuff: Stealing Pruned DNNs
from Sparse Accelerators,” ser. ACM ASPLOS, 2023, p. 385–399.

[83] C. Gongye, Y. Luo, X. Xu, and Y. Fei, “Side-Channel-Assisted
Reverse-Engineering of Encrypted DNN Hardware Accelerator IP
and Attack Surface Exploration,” in IEEE Symposium on Security
and Privacy (SP), 2024, pp. 5–5.

[84] X. Yan, X. Lou, G. Xu, H. Qiu, S. Guo, C. H. Chang, and T. Zhang,
“MERCURY: An Automated Remote Side-channel Attack to Nvidia
Deep Learning Accelerator,” in IEEE International Conference on
Field Programmable Technology (ICFPT), 2023, pp. 188–197.

[85] S. Tian, S. Moini, A. Wolnikowski, D. Holcomb, R. Tessier, and
J. Szefer, “Remote Power Attacks on the Versatile Tensor Accel-
erator in Multi-Tenant FPGAs,” in 2021 IEEE 29th Annual In-
ternational Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2021, pp. 242–246.

[86] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom et al., “Meltdown:
Reading kernel memory from user space,” Communications of the
ACM, vol. 63, no. 6, pp. 46–56, 2020.

[87] S. Chandrasekar, S.-K. Lam, and S. Thambipillai, “DNN Model
Theft Through Trojan Side-Channel on Edge FPGA Accelerator,”
in Applied Reconfigurable Computing. Architectures, Tools, and
Applications, F. Palumbo, G. Keramidas, N. Voros, and P. C. Diniz,
Eds. Cham: Springer Nature Switzerland, 2023, pp. 146–158.

[88] R. Wu, T. Kim, D. J. Tian, A. Bianchi, and D. Xu, “DnD: A
Cross-Architecture Deep Neural Network Decompiler,” in USENIX
Security Symposium, 2022, pp. 2135–2152.

[89] B. Olney and R. Karam, “Bits to BNNs: Reconstructing FPGA ML-
IP with Joint Bitstream and Side-Channel Analysis,” in 2023 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), 2023, pp. 238–248.

[90] L. Lin, M. Kasper, T. Güneysu, C. Paar, and W. Burleson, “Trojan
side-channels: Lightweight hardware trojans through side-channel
engineering,” in CHES. Springer, 2009, pp. 382–395.

[91] M. Ender, S. Ghandali, A. Moradi, and C. Paar, “The first thorough
side-channel hardware trojan,” in ASIACRYPT. Springer, 2017, pp.
755–780.

[92] J. Zhang, G. Su, Y. Liu, L. Wei, F. Yuan, G. Bai, and Q. Xu, “On Tro-
jan side channel design and identification,” in 2014 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD). IEEE,
2014, pp. 278–285.

[93] T. Perez, M. Imran, P. Vaz, and S. Pagliarini, “Side-channel trojan
insertion-a practical foundry-side attack via ECO,” in 2021 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE,
2021, pp. 1–5.

[94] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
CRYPTO. Springer, 1999, pp. 388–397.

[95] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards,” in Smart Card
Programming and Security: International Conference on Research
in Smart Cards, E-smart 2001 Cannes, France, September 19–21,
2001 Proceedings. Springer, 2001, pp. 200–210.

[96] A. Dubey, R. Cammarota, and A. Aysu, “BoMaNet: Boolean
Masking of an Entire Neural Network,” in IEEE/ACM International
Conference On Computer Aided Design, ICCAD 2020, San Diego,
CA, USA, November 2-5, 2020. IEEE, 2020, pp. 51:1–51:9.
[Online]. Available: https://doi.org/10.1145/3400302.3415649

[97] A. Dubey, R. Cammarota, V. Suresh, and A. Aysu, “Guarding
machine learning hardware against physical side-channel attacks,”
ACM Journal on Emerging Technologies in Computing Systems
(JETC), vol. 18, no. 3, pp. 1–31, 2022.

[98] A. Dubey, A. Ahmad, M. A. Pasha, R. Cammarota, and A. Aysu,
“ModuloNET: Neural Networks Meet Modular Arithmetic for
Efficient Hardware Masking,” TCHES, vol. 2022, no. 1, pp.
506–556, 2022. [Online]. Available: https://doi.org/10.46586/tches
.v2022.i1.506-556

[99] A. Dubey and A. Aysu, “A Full-Stack Approach for Side-Channel
Secure ML Hardware,” in 2023 IEEE International Test Conference
(ITC), 2023, pp. 186–195.

[100] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.

[101] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel
attacks,” in IEEE Symposium on Security and Privacy (SP), 2018,
pp. 229–244.

https://doi.org/10.1145/3400302.3415649
https://doi.org/10.46586/tches.v2022.i1.506-556
https://doi.org/10.46586/tches.v2022.i1.506-556

[102] A. S. Rakin, M. H. I. Chowdhuryy, F. Yao, and D. Fan, “DeepSteal:
Advanced Model Extractions Leveraging Efficient Weight Stealing
in Memories,” in 2022 IEEE Symposium on Security and Privacy
(SP), 2022, pp. 1157–1174.

[103] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of DRAM disturbance errors,” ACM
SIGARCH Computer Architecture News, vol. 42, no. 3, pp. 361–372,
2014.

[104] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed:
Reading bits in memory without accessing them,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 695–
711.

[105] J. Breier, D. Jap, X. Hou, S. Bhasin, and Y. Liu, “SNIFF: reverse en-
gineering of neural networks with fault attacks,” IEEE Transactions
on Reliability, vol. 71, no. 4, pp. 1527–1539, 2021.

[106] K. Hector, P.-A. Moëllic, J.-M. Dutertre, and M. Dumont, “Fault
injection and safe-error attack for extraction of embedded neural
network models,” in European Symposium on Research in Computer
Security. Springer, 2023, pp. 644–664.

[107] Y. Liu, L. Wei, B. Luo, and Q. Xu, “Fault injection attack on deep
neural network,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2017, pp. 131–138.

[108] Y. Luo, C. Gongye, Y. Fei, and X. Xu, “Deepstrike: Remotely-guided
fault injection attacks on DNN accelerator in Cloud-FPGA,” in 2021
58th ACM/IEEE Design Automation Conference (DAC). IEEE,
2021, pp. 295–300.

[109] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte,
“RAM-Jam: Remote Temperature and Voltage Fault Attack on
FPGAs using Memory Collisions,” in 2019 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), 2019, pp. 48–55.

[110] P. Zhao, S. Wang, C. Gongye, Y. Wang, Y. Fei, and X. Lin, “Fault
sneaking attack: A stealthy framework for misleading deep neural
networkss,” in Proceedings of the 56th Annual Design Automation
Conference 2019, 2019, pp. 1–6.

[111] V. Meyers, D. Gnad, and M. Tahoori, “Active and passive physical
attacks on neural network accelerators,” IEEE Design & Test, 2023.

[112] X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin, and Y. Liu, “Physical
security of deep learning on edge devices: Comprehensive evaluation
of fault injection attack vectors,” Microelectronics Reliability, vol.
120, p. 114116, 2021.

[113] B. Yang et al, “Scan based side channel attack on dedicated hardware
implementations of Data Encryption Standard,” in ITC, 2004, pp.
339–344.

[114] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private
execution of neural networks in trusted hardware,” arXiv preprint
arXiv:1806.03287, 2018.

[115] H. Chen, C. Fu, B. D. Rouhani, J. Zhao, and F. Koushanfar,
“DeepAttest: an end-to-end attestation framework for deep neural
networks,” in Proceedings of the 46th International Symposium on
Computer Architecture. Association for Computing Machinery,
2019, p. 487–498.

[116] A. Chakraborty, D. Xing, Y. Liu, and A. Srivastava, “Dynamarks:
Defending against deep learning model extraction using dynamic
watermarking,” arXiv preprint arXiv:2207.13321, 2022.

[117] H.-Y. Lin, C. Fang, and J. Shi, “Bident Structure for Neural Network
Model Protection,” in ICISSP, 2020, pp. 377–384.

[118] Z. Sun, R. Sun, C. Liu, A. R. Chowdhury, L. Lu, and S. Jha, “Shad-
owNet: A Secure and Efficient On-device Model Inference System
for Convolutional Neural Networks,” in 2023 IEEE Symposium on
Security and Privacy (SP), 2023, pp. 1596–1612.

[119] Z. Liu, Y. Lu, X. Xie, Y. Fang, Z. Jian, and T. Li, “Trusted-DNN:
A TrustZone-based Adaptive Isolation Strategy for Deep Neural
Networks,” in Proceedings of the ACM Turing Award Celebration
Conference - China, ser. ACM TURC ’21. Association for Com-
puting Machinery, 2021, p. 67–71.

[120] J. Breier, D. Jap, X. Hou, and S. Bhasin, “A desynchronization-based
countermeasure against side-channel analysis of neural networks,”
in Cyber Security, Cryptology, and Machine Learning. Springer
Nature Switzerland, 2023, pp. 296–306.

[121] A. Dubey, R. Cammarota, A. Varna, R. Kumar, and A. Aysu,
“Hardware-software co-design for side-channel protected neural net-
work inference,” in 2023 IEEE International Symposium on Hard-
ware Oriented Security and Trust (HOST), 2023, pp. 155–166.

[122] S. Maji, U. Banerjee, S. H. Fuller, and A. P. Chandrakasan, “A
threshoid-impiementation-based neural-network accelerator securing
model parameters and inputs against power side-channel attacks,” in
2022 IEEE International Solid-State Circuits Conference (ISSCC),
vol. 65. IEEE, 2022, pp. 518–520.

[123] J. Li, Z. He, A. S. Rakin, D. Fan, and C. Chakrabarti, “NeurObfus-
cator: A Full-stack Obfuscation Tool to Mitigate Neural Architecture
Stealing,” in IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2021, pp. 248–258.

[124] T. Zhou, S. Ren, and X. Xu, “ObfuNAS: A Neural Architecture
Search-Based DNN Obfuscation Approach.” New York, NY, USA:
Association for Computing Machinery, 2022.

[125] T. Zhou, Y. Luo, S. Ren, and X. Xu, “NNSplitter: An Active Defense
Solution for DNN Model via Automated Weight Obfuscation,” in
International Conference on Machine Learning, vol. 202. PMLR,
2023, pp. 42 614–42 624.

[126] K. Szentannai, J. Al-Afandi, and A. Horváth, “Preventing neural
network weight stealing via network obfuscation,” in Intelligent
Computing, Volume 3. Springer, 2020, pp. 1–11.

[127] H. Xu, Y. Su, Z. Zhao, Y. Zhou, M. R. Lyu, and I. King, “DeepOb-
fuscation: Securing the structure of convolutional neural networks
via knowledge distillation,” arXiv preprint arXiv:1806.10313, 2018.

[128] M. Isakov, L. Bu, H. Cheng, and M. A. Kinsy, “Preventing neural
network model exfiltration in machine learning hardware accel-
erators,” in IEEE Asian Hardware Oriented Security and Trust
Symposium (AsianHOST), 2018, pp. 62–67.

[129] Y. Wang, S. Jin, and T. Li, “A Low Cost Weight Obfuscation Scheme
for Security Enhancement of ReRAM Based Neural Network Ac-
celerators,” in ACM Asia and South Pacific Design Automation
Conference (ASPDAC), 2021, p. 499–504.

[130] M. M. Ahmadi, L. Alrahis, O. Sinanoglu, and M. Shafique, “DNN-
Alias: Deep Neural Network Protection Against Side-Channel At-
tacks via Layer Balancing,” arXiv preprint arXiv:2303.06746, 2023.

[131] B. Olney and R. Karam, “Protecting Deep Neural Network In-
tellectual Property with Architecture-Agnostic Input Obfuscation,”
in ACM Great Lakes Symposium on VLSI (GLSVLSI), 2022, p.
111–115.

[132] J. Sternby, B. Johansson, and M. Liljenstam, “Neural Network
Model Obfuscation through Adversarial Training,” in IEEE Inter-
national Symposium on Cluster, Cloud and Internet Computing
(CCGrid), 2022, pp. 782–789.

[133] J. Zhang, C. Wang, Y. Cai, Z. Zhu, D. Kline, H. Yang, and Y. Wang,
“WESCO: Weight-encoded Reliability and Security Co-design for
In-memory Computing Systems,” in IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2022, pp. 296–301.

[134] D. Jap and S. Bhasin, “Using Model Optimization as Countermea-
sure against Model Recovery Attacks,” in International Conference
on Applied Cryptography and Network Security. Springer, 2023,
pp. 196–209.

[135] Y. Luo, S. Duan, C. Gongye, Y. Fei, and X. Xu, “NNReArch: A
Tensor Program Scheduling Framework Against Neural Network
Architecture Reverse Engineering,” in IEEE Annual International
Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2022, pp. 1–9.

[136] S. Duan, S. Ren, and X. Xu, “HDLock: Exploiting Privileged
Encoding to Protect Hyperdimensional Computing Models against
IP Stealing,” in ACM/IEEE Design Automation Conference (DAC),
2022, pp. 679–684.

[137] W. Jiang, Z. Song, J. Zhan, D. Liu, and J. Wan, “Layerwise security
protection for deep neural networks in industrial cyber physical
systems,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 12, pp. 8797–8806, 2022.

[138] M. Alam, S. Saha, D. Mukhopadhyay, and S. Kundu, “Deep-Lock:
Secure Authorization for Deep Neural Networks,” CoRR, vol.
abs/2008.05966, 2020. [Online]. Available: https://arxiv.org/abs/20
08.05966

[139] ——, “NN-Lock: A Lightweight Authorization to Prevent IP Threats
of Deep Learning Models,” J. Emerg. Technol. Comput. Syst.,
vol. 18, no. 3, apr 2022.

[140] J. Zhou and X. Zhang, “Joint protection scheme for deep neural
network hardware accelerators and models,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 42,
no. 12, pp. 4518–4527, 2023.

[141] X. Wang, R. Hou, Y. Zhu, J. Zhang, and D. Meng, “NPUFort:
A secure architecture of DNN accelerator against model inversion
attack,” in ACM International Conference on Computing Frontiers,
2019, pp. 190–196.

[142] Y. Liu, D. Dachman-Soled, and A. Srivastava, “Mitigating reverse
engineering attacks on deep neural networks,” in IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2019, pp. 657–662.

[143] K. Ganesan, M. Fishkin, O. Lin, and N. E. Jerger, “BlackJack:
Secure machine learning on IoT devices through hardware-based
shuffling,” arXiv preprint arXiv:2310.17804, 2023.

[144] A. Chakraborty, A. Mondai, and A. Srivastava, “Hardware-assisted
intellectual property protection of deep learning models,” in
ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[145] B. F. Goldstein, V. C. Patil, V. C. Ferreira, A. S. Nery, F. M. G.
França, and S. Kundu, “Preventing DNN Model IP Theft via Hard-
ware Obfuscation,” IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, vol. 11, no. 2, pp. 267–277, 2021.

[146] M. Grailoo, U. Reinsalu, M. Leier, and T. Nikoubin, “Hardware-
assisted Neural Network IP Protection using Non-malicious Back-
door and Selective Weight Obfuscation,” in IEEE Dallas Circuit And
System Conference (DCAS), 2022, pp. 1–6.

[147] D. Rajasekharan, N. Rangarajan, S. Patnaik, O. Sinanoglu, and Y. S.
Chauhan, “SCANet: Securing the Weights With Superparamagnetic-
MTJ Crossbar Array Networkss,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 34, no. 9, pp. 5693–5707,
2023.

[148] L. Mankali, N. Rangarajan, S. Chatterjee, S. Kumar, Y. S. Chauhan,
O. Sinanoglu, and H. Amrouch, “Leveraging Ferroelectric Stochas-
ticity and In-Memory Computing for DNN IP Obfuscation,” IEEE
Journal on Exploratory Solid-State Computational Devices and Cir-
cuits, vol. 8, no. 2, pp. 102–110, 2022.

[149] W. Li, Y. Wang, H. Li, and X. Li, “P3M: a PIM-based neural network
model protection scheme for deep learning accelerator,” in ACM
Asia and South Pacific Design Automation Conference (ASPDAC),
2019, p. 633–638.

[150] D. Li, D. Liu, Y. Guo, Y. Ren, J. Su, and J. Liu, “Defending
against model extraction attacks with physical unclonable function,”
Information Sciences, vol. 628, pp. 196–207, 2023.

[151] M. Zou, Z. Zhu, Y. Cai, J. Zhou, C. Wang, and Y. Wang, “Security
Enhancement for RRAM Computing System through Obfuscating
Crossbar Row Connections,” in ACM/IEEE Design, Automation Test
in Europe Conference Exhibition (DATE), 2020, pp. 466–471.

[152] M. Grailoo, Z. U. Abideen, M. Leier, and S. Pagliarini,
“Preventing distillation-based attacks on neural network IP,”
CoRR, vol. abs/2204.00292, 2022. [Online]. Available: https:
//doi.org/10.48550/arXiv.2204.00292

[153] X. Cao, J. Jia, and N. Z. Gong, “IPGuard: Protecting Intellectual
Property of Deep Neural Networks via Fingerprinting the Classifi-
cation Boundary,” ser. ACM AsiaCCS, 2021, p. 14–25.

[154] T. Shen, J. Qi, J. Jiang, X. Wang, S. Wen, X. Chen, S. Zhao, S. Wang,
L. Chen, X. Luo, F. Zhang, and H. Cui, “SOTER: Guarding Black-
box Inference for General Neural Networks at the Edge,” in USENIX
Annual Technical Conference (ATC), 2022, pp. 723–738.

[155] N. Shrivastava and S. R. Sarangi, “SparseLock: Securing Neural
Network Models in Deep Learning Accelerators,” arXiv preprint
arXiv:2311.02628, 2023.

[156] H. Chen, C. Fu, B. D. Rouhani, J. Zhao, and F. Koushanfar,
“Intellectual Property Protection of Deep-Learning Systems via
Hardware/Software Co-Design,” IEEE Des. Test, vol. 41, no. 2, pp.
23–31, 2024.

[157] M. Zhou, X. Gao, J. Wu, J. C. Grundy, X. Chen, C. Chen, and L. Li,
“Model obfuscation for securing deployed neural networks,” 2022.

[158] M. Grailoo, Z. U. Abideen, M. Leier, and S. Pagliarini, “Preventing
Distillation-based Attacks on Neural Network IP,” arXiv preprint
arXiv:2204.00292, 2022.

[159] B. Yang, K. Wu, and R. Karri, “Secure scan: a design-for-test
architecture for crypto chips,” in ACM Annual Design Automation
Conference (DAC), 2005, p. 135–140.

[160] S. S. Ali, S. M. Saeed, O. Sinanoglu, and R. Karri, “Novel test-
mode-only scan attack and countermeasure for compression-based
scan architectures,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 34, no. 5, pp. 808–821,
2015.

[161] Y. Liu, K. Wu, and R. Karri, “Scan-based attacks on linear feed-
back shift register based stream ciphers,” ACM Trans. Des. Autom.
Electron. Syst., vol. 16, no. 2, 2011.

https://arxiv.org/abs/2008.05966
https://arxiv.org/abs/2008.05966
https://doi.org/10.48550/arXiv.2204.00292
https://doi.org/10.48550/arXiv.2204.00292

	Introduction
	Software Attacks
	Hardware Attacks
	Contributions

	Neural Networks
	Multi-Layer Perceptrons (MLPs)
	Convolutional Neural Networks (CNNs)
	Recurrent Neural Networks (RNNs)
	Autoencoders
	Generative Adversarial Networks
	Transformers

	Neural Network Hardware
	Serial Implementations
	Parallel Implementations
	Multi-Core
	Graphics Processing Units (GPUs)

	Field-Programmable Gate Arrays (FPGAs)
	Systolic Arrays

	Objective of the Adversary
	Confidentiality
	Adversary's capabilities
	Adversary's goals
	Attack Success Rate

	Integrity

	Categorization Criteria for Attacks
	Threat Vector
	Platform
	Hardware type
	Neural Network type
	Type of asset being stolen
	Attack phase: training or inference?

	Side Channel Attacks (SCAs)
	Microarchitectural side-channels
	CPU
	GPU
	FPGA
	ASIC Accelerator
	Other System-level attacks

	Trojan Side-Channels
	Physical side-channels
	Serial Execution
	Parallel Execution

	Remote Power Side-Channels

	Fault Injection Attacks
	Scan-Chain Attacks
	Categorization Criteria for Defenses
	Nature of Defense
	Reactive or Proactive?
	Impact on Actual Classifier Accuracy
	Figures of Merit

	Defenses
	TEEs and Attestation
	Hardware Masking
	OOP Defenses
	Cryptographic Defenses
	SDR Defenses
	Hardware-Assisted Defenses
	Prediction Poisoning Defenses
	Fingerprinting Defenses
	Model Compression Defenses
	Scan-chain defenses

	Models
	Adversarial Attacks

	Conclusion
	References

