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ABSTRACT

Cryptographic hash functions are said to be the work-horses of

modern cryptography. One of the strongest approaches to assess

a cryptographic hash function’s security is indifferentiability. In-

formally, indifferentiability measures to what degree the function

resembles a random oracle when instantiated with an ideal under-

lying primitive. However, proving the indifferentiability security

of hash functions has been challenging due to complex simulator

designs and proof arguments. The Sponge construction is one of

the prevalent hashing method used in various systems. The Sponge

has been shown to be indifferentiable from a random oracle when

initialized with a random permutation.

In this work, we first introduce GSponge, a generalized form

of the Sponge construction offering enhanced flexibility in input

chaining, field sizes, and padding types. GSponge not only captures
all existing sponge variants but also unveils new, efficient ones.

The generic structure of GSponge facilitates the discovery of two

micro-optimizations for already deployed sponges. Firstly, it allows

a new padding rule based on zero-padding and domain-separated

inputs, saving one full permutation call in certain cases without

increasing the generation time of zero-knowledge proofs. Secondly,

it allows to absorb up to c/2 more elements (that can save another

permutation call for certain message lengths) without compromis-

ing the indifferentiability security. These optimizations enhance

hashing time for practical use cases such as Merkle-tree hashing

and short message processing.

We then propose a new efficient instantiation of GSponge called
Sponge2 capturing these micro-optimizations and provide a formal

indifferentiability proof to establish both Sponge2 and GSponge’s
security. This proof, simpler than the original for Sponges, offers

clarity and ease of understanding for real-world practitioners. Addi-

tionally, it is demonstrated that GSponge can be safely instantiated

with permutations defined over large prime fields, a result not

previously formally proven.
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1 INTRODUCTION

Cryptographic hash functions play a fundamental role in modern

cryptography. Hash functions are used for converting input data of

varying lengths into fixed-size outputs, ensuring data integrity, au-

thenticating transactions, and facilitating digital signatures. These

cryptographic primitives are integral to awide range of applications,

including but not limited to data storage, authentication protocols,

and secure communication channels. In recent decades, hash func-

tions have also found specialized applications in algebraic hashing,

a field essential for Blockchain scaling via L2 rollups (e.g., Polygon

Miden).

Ideal primitives commonly used in hash function construction

are random functions, random permutations, or ideal ciphers. In

practice, such primitives are expected to generate pseudorandom

outputs for given inputs, ensuring unpredictability and resistance

against cryptographic attacks. By combining these ideal primitives

within specific modes, hash functions can achieve desired security

properties such as collision resistance, preimage resistance, and sec-

ond preimage resistance. The selection of appropriate primitives is

crucial in designing hash functions that meet the stringent security

requirements of modern cryptographic applications.

Hashing Mode Strategies. The choice of hashing mode is as

critical as the selection of primitives, impacting both the security

and efficiency of the resulting hash function. In cryptographic liter-

ature, the two mainly used hashing strategies are tree hashing (a.k.a.

parallel hashing) and cascade hashing (a.k.a. sequential hashing).

Tree hashing techniques, exemplified by Merkle trees [5] and

ABR trees [1], involve the parallel computation of hash values

across multiple branches or levels of a hash tree. These methods

offer efficient verification and authentication of large datasets, mak-

ing them suitable for applications requiring scalable and parallel

processing; however, at a cost of larger (length dependent) state to

be maintained.

In contrast, cascade hashing strategies, such as Merkle-

Damgård [12, 24] (MD) style hashes and sponge [7] based hashes,

process input data sequentially, iteratively updating a relatively

small internal state to produce the final hash value. MD-style hashes

such as Wide Pipe [22], Fast Wide Pipe [28], Chop-MD [11] and pf-

MD[11] by design rely of random functions as primitives, whereas

sponge-based hashes such as Sponge [7], Overwrite Sponge [14] and

JH [30] can incorporate both random functions and permutations.

Due to their versatility and wide applicability, the sponge-based ap-

proach has garnered huge attention in recent years. This approach,

notably employed in SHA-3 and algebraic hashing systems such

as Polygon Miden [25], offers inherent flexibility, particularly in

accommodating algebraic primitives as most of them are permuta-

tions.

Sponge Hashing. At a fundamental level, Sponge-based con-

structions are characterized by a state of 𝑏 bits, comprising a 𝑐-bit

inner state, known as the capacity, and an 𝑟 -bit outer state, referred

to as the rate, where the total state size 𝑏 equals the sum of 𝑐 and

𝑟 . Traditionally, in Sponge-like modes, data absorbing operations

occur via the rate part, processing 𝑟 bits at a time.
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A notable sponge variant documented in the literature is the

overwrite sponge mode [14]. This variant improves the efficiency

of regular sponge by dropping the top 𝑟 bits of each permutation

output instead of cascading them, resulting in 𝑟 -bit smaller state

among the permutation calls and removal of all XOR operations

during absorption. Originally, (overwrite) sponge was proposed

for primitives operating on bits, i.e., binary fields. However, recent

works such as Rescue [29], Poseidon [15] and XHash [4] highlights

that the applicability of sponge construction can be extended to

prime field setting when algebraic primitives are preferred or re-

quired. The rate and capacity of sponge under algebraic primitive

is measured in field elements.

Handling Arbitrary Lengths. By design, sponge variants

can only handle messages that has lengths multiple of the rate

size. Hence, to handle messages of arbitrary lengths, a sponge-

compliant padding rule is used to preprocess the message into a

rate-aligned message, i.e., a message whose length is a multiple

of the rate size. One of the simple and popular padding rules is

the pad10∗ padding [7]. This padding simply appends the input

with a 1 followed by the minimum number of 0s such that the

length of the result is a multiple of the rate. We note that despite

the simple definition, this padding adds another 𝑟 -bit pad to even

already rate-aligned messages, and hence imposes an extra prim-

itive call to process them. Such drawback of a padding can affect

the performance significantly in applications where reducing even

one permutation call is highly beneficial such as applications that

process small size messages.

Security Analysis. Security analysis of hash functions involves

a two-step approach: Firstly, demonstrating the generic security of

the hashing mode, initialized with an ideal primitive, by proving

desired security properties such as collision resistance or indif-

ferentiability. Subsequently, instantiating the ideal primitive with

a concrete function that goes through multiple cryptanalysis for

validation.

Generic Attacks. In a generic attack, adversaries exploit vul-

nerabilities in a crypto-algorithm by assuming perfect behavior of

its underlying primitives. For instance, consider a hash function

𝐻 : F∗𝑝 → F𝑛𝑝 utilizing a random permutation P : F𝑚𝑝 → F𝑚𝑝
for some positive integers 𝑚 and 𝑛. This creates an opportunity

for generic attacks, which exploit weaknesses in 𝐻 with fewer

resources compared to a larger random oracle RO : F∗𝑝 → F𝑛𝑝 .
Generic attacks on hash functions are widely documented in cryp-

tographic literature. Examples include Joux’s multi-collision at-

tack [18], the Kelsey–Schneier expandable-message second pre-

image attack [20], and the Kelsey–Kohno herding attack [19], all

targeting the prevalent Merkle–Damgård construction. Addition-

ally, various generic attacks like pre-image, second pre-image, col-

lision, multi-collision, and herding attacks have been identified

for numerous other hash functions [2, 9, 13, 16–18], expanding

beyond the basic Merkle–Damgård structure. These attacks typi-

cally assume the hash function’s fundamental primitive behaves

optimally, fulfilling the criteria of generic attacks. Consequently,

the prevalence of such attacks significantly influenced the secu-

rity assessment of cryptographic hash functions, emphasizing the

necessity to develop hash modes capable of withstanding such

threats.

Security by Indifferentiability. The concept of indifferen-

tiability, introduced byMaurer et al. [23] in 2004, and later employed

by Coron et al. [11] in 2005, offers a means to assess the resilience of

hash modes against generic attacks. This framework measures how

closely a hash function resembles a random oracle when instan-

tiated with an underlying primitive behaving in an ideal manner.

Many cryptographic protocols employ random oracles and there-

fore depend on the indifferntiability security of the underlying hash

function for engineering purposes. In fact, by contemporary best

practices, indifferentiability has become a common prerequisite for

hash mode adoption, given its effectiveness in safeguarding against

generic attacks.

Despite being a crucial requirement, proving and validating the

indifferntiability security of hash functions has not been an easy

task. All indifferentiability proofs rely on the concept of a simulator,

which is used to simulate the idealized primitivewhen the hash func-

tion is replaced with a true random oracle. Simulators are defined

carefully to be both indistinguishable from the ideal primitive on

the one hand, and consistent with the outputs of the random oracle

on the other. Due to these correlated requirements, the descrip-

tion of simulators in indifferentiability proofs sometime becomes

very contrived which makes both the simulator design and the

proof arguments less intuitive and hard to follow. See [3, 8, 10, 26]

for examples of simulator descriptions, indifferentiability proof

approaches and proof sizes.

Further, it is also sometimes hard to directly adapt a given in-

differentiability proof of a hashing mode to even minor variations

due to the specifically defined simulator definition or dedicated bad

case analysis.

1.1 Our Contribution

Our contribution in this work is twofold: (1) We generalize sponge

mode into GSponge over input chaining type (capturing regular

sponge and overwrite), field type (capturing binary and algebraic

setting) and padding type (capturing all injective paddings). In

comparison with the regular sponge, GSponge provides extra rate
of r0 < c elements for the first permutation call where c denotes its
capacity. These elements can also be used for domain separation to

directly achieve multi-rate and multi-protocol security.

We show that GSponge provides same security as any efficient

instantiation of it. We then propose Sponge2, as an efficient instan-

tiation of GSponge.
(2) We provide an intuitive yet formal proof of indifferentiability

for Sponge2. To reduce the design complexity of the simulator and

to improve the proof intuition, we introduce a new ideal object for

sponges called capacity-collision-free random functions. Idealizing

primitives as capacity-collision-free random functions naturally

makes the indifferentiability proof simple and easily verifiable.

We note that by design, Sponge2 saves one full permutation call

in cases where the unpadded message’s length is already an integral

multiple of the rate (e.g., in 2-to-1 Merkle-tree hashing) without

increasing the proof generation time in zkVMs like Polygon Miden.

Further, it also allows to absorb up to c/2 more elements in the first

permutation call, again resulting in saving a permutation call for
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some message lengths, without any loss in the security size, i.e.,

still ≈ c log
2
𝑝/2 bits.

2 RELATEDWORK

The Parazoa family, proposed byAndreeva et al. [3], can also be seen

as a generalization of the sponge construction. However, unlike

GSponge, it is limited to injective padding functions and provides

the same rate for all primitive calls. Consequently, it cannot ac-

commodate interesting sponge instantiations like Sponge2, which
works with non-injective paddings to save one full permutation

call and provides an extra rate for the first primitive call.

Furthermore, the provable security results of Parazoa says noth-

ing about its multi-rate and multi-protocol security. As mentioned

earlier, the simulator descriptions and proof approaches of existing

indifferentiability proofs are lengthy and difficult to follow, and

this complexity is exacerbated by the generalization of Parazoa. For

GSponge, we achieve multi-rate and multi-protocol security with

a simple and intuitive proof.

Naito et al. improved the indifferentiability result of PHOTON’s

hashing mode in [27]. As a side result, they also claimed that the

rate of the first permutation call in PHOTON’s sponge-like hashing

mode could be improved by half of the capacity size, although they

omitted the proof, relying on their main indifferentiability result of

PHOTON’s hashing mode. While one may indeed be able to derive

this proof for PHOTON’s hashing mode in the binary setting, we

have considered it for a generalized sponge that captures various

sponge-like modes in both binary and algebraic settings.

3 PAPER ORGANIZATION

We provide the preliminaries in Section 4. We then propose the

sponge generalization GSponge and argue its security in Section 5.

In Section 6, we provide Sponge2 as an efficient instantiation of

GSponge and formally prove its security in Section 7. Finally, we

provide a discussion and conclude the paper in Section 8.

4 PRELIMINARIES

4.1 Notation

Vectors.We let F𝑝 to a denote a finite field of order 𝑝 = 𝑎𝑏 with

𝑎 a prime and 𝑏 a positive integer. A vector 𝑆 of size 𝑛 is denoted by

𝑆 = (𝑆 [0], . . . , 𝑆 [𝑛 − 1]). We use ⊕ is used to denote addition over

the finite field F𝑝 . For simplicity, we refer to a vector of 𝑛 > 0 many

F𝑝 elements as an (𝑛, 𝑝)-vector. Note that in particular (𝑛, 2)-vectors
are analogous to 𝑛-bit binary strings. We denote the set of all (𝑛, 𝑝)-
vectors by F𝑛𝑝 . The set of vectors of any possible length i.e., arbitrary

𝑛 is denoted by F∗𝑝 . The set of all permutations of F𝑛𝑝 is denoted by

Perm𝑝 (𝑛) and the set of all functions/maps from F𝑚𝑝 (respectively,

F∗𝑝 ) to F
𝑛
𝑝 is denoted by Func𝑝 (𝑚,𝑛) (respectively, Func𝑝 (∗, 𝑛)). For

any (𝑛, 𝑝)-vector 𝐴, |𝐴| is the length of 𝐴 in elements i.e., |𝐴| = 𝑛.

For any two sets 𝐴 and 𝐵, their Cartesian product is defined as

𝐴 × 𝐵 = {(𝑖, 𝑗) | 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐵} and the term 𝐴\𝐵 denotes the largest

subset of 𝐴 that shares no element with 𝐵.

Partitions. Given a vector 𝐴 and an integer 𝑛 > 0 such that

|𝐴| = 𝑎𝑛 + 𝑑 , where 𝑎 is a positive integer and 0 < 𝑑 ≤ 𝑛, the

notation 𝐴1, 𝐴2, . . . , 𝐴𝑎+1
𝑛←− 𝐴 is used to indicate the partitioning

of 𝐴 into a maximum number of (𝑛, 𝑝)-vectors a.k.a. block vectors.

Each block vector 𝐴𝑖 has a length of 𝑛 for 1 ≤ 𝑖 ≤ 𝑎, and the

last block vector 𝐴𝑎+1 has a length of 𝑑 . If 𝑑 = 𝑛, we say 𝐴 is

𝑛-aligned. Similarly, we also use [𝐴1, 𝐴2, . . . , 𝐴𝑎+1] to denote the

ordered union a.k.a. concatenation of these vectors i.e., 𝐴.

Miscellaneous. We use ⟨𝑖⟩ to denote a bijective encoding of

0 ≤ 𝑖 < 𝑝 in F𝑝 . The notation𝑥
$←− X indicates the random sampling

of an element 𝑥 from a finite set X with a uniform distribution. The

symbol ⊥ is used to represent an undefined value or an error.

4.2 Statistical Distance

The statistical distance between two random variables (or distribu-

tions) is defined as follows

Definition 4.1 (Statistical Distance). Let 𝑋 and 𝑌 be two random

variables taking values from a finite set X. The statistical distance
between 𝑋 and 𝑌 is defined as

SD(𝑋,𝑌 ) = 1

2

∑︁
𝑥∈X
| Pr[𝑋 = 𝑥] − Pr[𝑌 = 𝑥] | .

4.3 Indifferentiability

We now recall the main indifferentiability theorem, due to Mau-

rer et al. [23] for hash functions under the random permutation

model. If a hash function 𝐻 , based on a public permutation P (with

inverse P−1) is indifferentiable from a random oracle RO, then a

cryptosystem C based on RO (in the random oracle model) is at

least as secure as C based on 𝐻 (in the random permutation model).

This highlights the importance of indifferentiability in ensuring

the security of cryptographic protocols that use hash functions to

instantiate random oracles.

Figure 1: The indifferentiability notion

We now generalize and formally define the indifferentiability

notion as of [11] for hash functions that use random public permu-

tations (or any other ideal public primitives with both forward and

backward oracles) and are defined over F𝑝 with arbitrary prime

power 𝑝 .

Definition 4.2 (Indifferentiability from an RO). Let 𝐻 : F∗𝑝 → F𝑛𝑝
for some integer 𝑛 > 0 and prime power 𝑝 be a hash function that

internally uses a random permutation P : F𝑚𝑝 → F𝑚𝑝 for some

integer𝑚 > 0 and let RO : F∗𝑝 → F𝑛𝑝 be a random oracle. Let A
be a computationally unbounded adversary A with triple oracle

access - the hash function, its underlying primitive and primitive’s

inverse. The advantage of A against the indifferentiability of 𝐻
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from RO is defined as

Advro-indiff
𝐻 [P] (A) = min

𝑆
| Pr[A𝐻,P,P−1 ⇒ 1]−Pr[ARO,𝑆,𝑆

−1
⇒ 1] |

where 𝑆 : F𝑚𝑝 → F𝑚𝑃 is a simulator algorithm simulating P for RO.

The simulator 𝑆 has oracle access to RO, but it cannot directly
observe past queries made to RO by A (refer to Fig. 1 for a visual

representation of the indifferentiability concept).

5 GSponge: A GENERALIZED SPONGE MODE

In this section, we provide a generalization of the popular sponge [7]

mode to capture all existing sponge variants such as overwrite

sponge, prepadded sponge, domain-separated sponge, etc. We then

argue its security by its indifferentiability from a random oracle

(RO).

GSponge𝑢,r0 [𝜋] : F
∗
𝑝 → Fr𝑝 is based on a permutation 𝜋 : Fb𝑝 →

Fb𝑝 with size b = r+c for some positive integers r and c called the rate
and capacity of 𝜋 , respectively and an injective padding function

padr,r0 : F
∗
𝑝 → F∗𝑝 that for a given r0 < cmaps any arbitrary length

vector to a unique 𝑎r + r0-length vector for some 𝑎 ≥ 1. An input

𝑀 ∈ F∗𝑝 to GSponge is first padded to 𝑃 = padr,r0 (𝑀) and then

processed using 𝜋 as shown in Fig. 2. Here 𝑢 ∈ {0, 1} that decides
if the rate output of a permutation is chained to the next rate input

or not.

Figure 2: GSponge (block diagram). Here ⊙ represents field

multiplication with 𝑢 ∈ {0, 1} which returns zero or the in-

put itself, depending on the value of 𝑢. The upper input (or

output) part of 𝜋 corresponds to its rate whereas the lower

input (or output) part corresponds to its capacity.

Deriving Popular Sponge Variants. Recall that GSponge is
parameterized with 𝑢 and r0. When 𝑢 = 1, r0 = 0, 𝑝 = 2

𝑛
for some

positive integer 𝑛 and padr,0 (𝑀) = [⟨0⟩, 𝑀, ⟨1⟩, ⟨0⟩r−( |𝑀 | mod r) ],
we get the original sponge mode [7]. Further, when under the same

setting 𝑢 is replaced to 0, we get the original overwrite mode [14].

Finally, when 𝑝 is not fixed to 2
𝑛
, we get spongemode and overwrite

mode under prime a.k.a. algebraic setting as used in [15, 29].

We highlight that the formal security by indifferentiability of

the original sponge mode is proven in [8], however, to the best of

our knowledge, the other popular variants as derived above do not

have formal proofs in literature. We also note that a formal proof

for GSpongewill cover the formal security of these variants as well

as other possible instantiations of GSponge.

5.1 Security of GSponge
We target the security of GSponge as its indifferentiability from an

RO. We highlight that indifferentiability under sufficiently large

digest size implicitly provides basic cryptographic hash security

properties such as (second) pre-image resistance and collision re-

sistance.

We note that the input space ofGSponge is invariant of𝑢 as every

unique input under 𝑢 = 0 matches with some unique input under

𝑢 = 1. This implies that the outputs of GSponge are differently

ordered a.k.a. permuted for different values of 𝑢, however, with the

same output multiset and thus same output distribution.

Thus, the indifferentiability of GSponge is independent of 𝑢 and

therefore, it is sufficient to argue its indifferentiability with 𝑢 = 0 ,

i.e., as overwrite GSponge mode.

Further, we also note that the indifferentiability of GSponge
0,r0

remains same over all choices of the injective paddings. This holds

because injective paddings are bijective to each other and when

modeled as an RO, the statistical distance between the output dis-

tributions of GSponge
0,r0 under two different injective paddings

is zero. Therefore, the indifferentiability of GSponge
0,r0 can be ar-

gued by proving the same for any efficient instantiation of it. In the

next section, we provide such an efficient instantiation of GSponge
and formally prove its security. We emphasize that this identical

output distribution argument only works when GSponge
0,r0 (for

any injective padding) is shown indifferentiable from an RO.

6 Sponge2: AN EFFICIENT GSponge
INSTANTIATION

In this section, we provide a new sponge variant called Sponge2 as
an efficient instantiation of GSponge. Sponge2 : F∗𝑝 → Fr𝑝 is based

on a permutation 𝜋 : Fb𝑝 → Fb𝑝 with size b = r + c for some positive

integers r and c called the rate and capacity of 𝜋 , respectively. An

input 𝑀 ∈ F∗𝑝 to Sponge2 is processed using 𝜋 as shown in Fig. 3

(b).

Domain Separation in Sponge2. For a message 𝑀 of length

0 < |𝑀 | ≤ r0, the domain separator is defined as 𝑖 = r + r0 − |𝑀 |
and otherwise, it is defined as 𝑖 = (r− ((|𝑀 | − r0) mod r)) mod r.
It is easy to see that 𝑖 is a unique value that varies from 0 to r + r0−1
for messages with different last block lengths and is same as the

number of zero elements padded after the message to make it rate-

aligned i.e., the number of zeros used in ⟨0⟩∗ defines 𝑖 for every
message.

Sponge2 differs from the popular overwrite-style sponge hash

in the padding rule and the underlying first primitive’s input as

shown in Fig. 3. This difference allows Sponge2 to 1) process r0 < c
many more F𝑝 elements and to 2) additionally reduce the overall

cost by one 𝜋 call than the regular overwrite sponge mode. More

specifically, unlike Sponge, no extra 𝜋 call is required at the end

to finalize rate-aligned messages. This gain could be reasonably

large for applications that work with stringent resource constraints

and/or typically hash small size messages. The targeted application

of Miden VM in this work fits to both of these categories which

makes Sponge2 a viable choice for it.
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Figure 3: Overwrite Sponge vs Sponge2 (block diagrams). Here

⟨0⟩∗ represents a zero vector with sufficient number of ⟨0⟩s
to fill the corresponding input of 𝜋 . In Sponge2, the domain

separator 𝑖 is defined by the number of zeros used in the

corresponding ⟨0⟩∗.

6.1 Security of Sponge2
We state the formal claim about the indifferentiability (from an RO)

of Sponge2 in Theorem 6.1.

Theorem 6.1. Let Sponge2[𝜋] be the hash function as defined

above in Fig. 3 with 𝜋
$←− Perm𝑝 (b) and let r0 < c be some fixed

integer. Then for any adversary A who makes at most 𝑞𝑃 𝜋 queries,
we have

Advro-indiffSponge2[𝜋 ] (A) ≤
𝑞𝑃 (𝑞𝑃 − 1)

2𝑝b
+ 𝑞𝑃

𝑝c−r0

(
1 + 1

𝑝 − 1

)
+
𝑞2
𝑃

𝑝c

(
1 + 𝑝−c+r0+1

𝑝 − 1 − 𝑝−c+r0+1
)
.

We defer the proof of Theorem 6.1 to Section 7. We now define a

corollary of Theorem 6.1 that provides the indifferentiability bound

for Sponge2 with fields of odd characteristic i.e., when 𝑝 > 2 and

when r0 is fixed to c/2. In simple words, Corollary 6.2’s bound states

that in the AO context, Sponge2 provides at least (c · log
2
𝑝 − 4)/2

bits of security. This results in a concrete security of at least ≈ 126

bits when 𝑝 ≈ 2
64

and c = 4 i.e., 𝜋 has 4 F𝑝 elements as the capacity.

Corollary 6.2. Let Sponge2[𝜋] be the hash function as defined

above in Fig. 3 with 𝜋
$←− Perm𝑝 (b) and let r0 = c/2, and 𝑝 > 2. Then

for any adversary A who makes at most 𝑞𝑃 𝜋 queries, we have

Advro-indiffSponge2[𝜋 ] (A) ≤
3𝑞𝑃

𝑝𝑐/2
.

Proof of Corollary 6.2. The proof of Corollary 6.2 follows

from the result of Theorem 6.1. More specifically, with r0 = c/2,

b ≥ c, 𝑝 > 2, 𝑞𝑃 ≤ 𝑝c/2/3 and Theorem 6.1, we get

Advro-indiffSponge2[𝜋 ] (A) ≤
𝑞2
𝑃

2𝑝c
+ 𝑞𝑃

𝑝c/2

(
1 + 1

𝑝 − 1

)
+
𝑞2
𝑃

𝑝c

(
1 + 1

𝑝 − 2

)
≤ 𝑞𝑃

𝑝c/2

(
1

6

)
+ 𝑞𝑃

𝑝c/2

(
3

2

)
+ 𝑞𝑃

𝑝c/2

(
2

3

)
≤ 3𝑞𝑃

𝑝𝑐/2
.

Finally, we drop the assumption 𝑞𝑃 ≤ 𝑝c/2/3 as for 𝑞𝑃 > 𝑝c/2/3,
this bound becomes void anyways. This completes the proof of

Corollary 6.2. □

6.2 Sponge2 under Multi-rate and

Multi-protocol Setting

In real-world applications, the same hash function is sometimes

used under the same input space but with different rate sizes or

different protocols. In such situations, we need domain separations

to ensure the security of the hash function across these use cases.

Sponge2 provides security for multi-rate and multi-protocol ap-

plications by simply adding a domain separator in the r0 elements

of the first call. This domain separator can be seen as an identifier

of the used rate size or protocol. The security of Sponge2 (in bits)

under multi-rate and multi-protocol applications is upper bounded

by the security of Sponge2 (in bits) under the maximum allowed

rate r as captured in Theorem 6.1.

7 SECURITY ANALYSIS

In this section, we provide the deferred proof of Theorem 6.1.

Proof of Theorem 6.1. Replacing 𝜋 . We treat duplicate

queries and cross-oracle known response queries (i.e., querying the

𝜋−1 oracle with an output of previously queried 𝜋 or vice versa)

as trivial queries and the rest as non-trivial queries. We note that

trivial queries cannot help A in increasing its advantage as their

output is already known and thus independent of the queried ora-

cle. Hence, we can assume w.l.o.g., that A only makes non-trivial

queries.

We now recall that as per the standard RP-RF switching

lemma [6], a randomly sampled (𝜋, 𝜋−1) with 𝜋
$←− Perm𝑝 (b) is

indistinguishable up to the birthday bound (in the output size) from

a randomly sampled function pair (𝑓1, 𝑓2) for non-trivial oracle
queries where (𝑓1, 𝑓2)

$←− Func𝑝 (b, b) × Func𝑝 (b, b).
More formally, for any adversaryA that makes at most 𝑞𝑃 many

non-trivial 𝜋 queries (to both forward and inverse oracles in total),

we have that

��
Pr[A𝜋,𝜋−1 ⇒ 1] − Pr[A 𝑓1,𝑓2 ⇒ 1]

�� ≤ 𝑞𝑃 (𝑞𝑃 − 1)
2𝑝b

.

Let us denote Sponge2[𝜋] by Sponge2′ [𝜋, 𝜋−1]. Then, with the

above inequality we get



Tomer Ashur and Amit Singh Bhati

Advro-indiffSponge2[𝜋 ] (A) = Advro-indiffSponge2′ [𝜋,𝜋−1 ] (A)

≤ Advro-indiffSponge2′ [ 𝑓1,𝑓2 ] (A) +
𝑞𝑃 (𝑞𝑃 − 1)

2𝑝b
. (1)

Blacklisting Outputs for 𝑓1 and 𝑓2. For a smooth indiffer-

entiability proof, we will later need to restrict the primitive to not

return a particular form of outputs, hence we hereby update the

primitive to easily achieve this restriction later. Let L be a set of

restricted outputs in Fb𝑝 with size |L| = Δ and let 𝑔1 and 𝑔2 be

uniform random functions from Fb𝑝 to Fb𝑝\L. Observing that the

statistical distance between 𝑓1 and 𝑔1 (similarly, between 𝑓2 and 𝑔2)

is Δ/𝑝b and since we evaluate the primitives 𝑓1 and 𝑓2 in total 𝑞𝑃
many times, we get

Advro-indiffSponge2′ [ 𝑓1,𝑓2 ] (A) ≤ Advro-indiffSponge2′ [𝑔1,𝑔2 ] (A) +
𝑞𝑃Δ

𝑝b
. (2)

Making 𝑔1 and 𝑔2 Capacity-collision-free. Now, since 𝑔1

and𝑔2 are uniform random functions over Fb𝑝\L, they can still have
random collisions in the last c elements a.k.a. the capacity or the

inner part. Such collisions are undesirable as they can be used to

construct hash outputs for not-yet-queried inputs and thus make

the hash differentiable from an RO. We therefore now replace the

primitive with a capacity-collision-free variant.

We also note that for every input of the form

[𝑥1, . . . , 𝑥r, 𝑥r+1, . . . , 𝑥r+c] with 𝑥𝑖 ∈ F𝑝 , the outputs of 𝑔1 and 𝑔2
functions are sampled uniformly at random from (Fr𝑝 × Fc𝑝 )\L
with form [𝑦1, . . . , 𝑦r, 𝑦r+1, . . . , 𝑦r+c] where 𝑦𝑖 ∈ F𝑝 .

We now define a new class of functions called capacity-collision-
free or CCF. CCF functions are defined in pairs.

Definition 7.1. A CCF pair (𝑓 ccf
1

, 𝑓 ccf
2
) is a pair of Fr𝑝 × Fc𝑝 →

(Fr𝑝 ×Fc𝑝 )\L functions. Each of these functions takes r+ c elements

in F𝑝 as input and maps them to r+c elements in F𝑝 with the added

restriction that the capacity i.e., the last c elements of any output

never collides/matches with the capacity of any previously queried

input or output of both of the CCF functions.

One can notice that a CCF pair (i.e., both functions in total) can-

not be exhausted in fewer than 𝑝c/2 queries and is necessarily

exhausted after at most 𝑝c − 1 queries as by then all Fc𝑝 many ca-

pacity values are exhausted. Further, a CCF pair can be constructed

plainly by keeping a mapping table that requires a memory of at

least 𝑝c/2 (when all queried inputs and outputs have different ca-

pacities) to at most 𝑝c − 1 (when only the queried outputs have

different capacities) input-output pairs.

A randomly sampled CCF pair is defined as a CCF pair where

for every input query (to either of the two functions) the output is

sampled uniformly at random from the remaining space of possible

outputs. We replace (𝑔1, 𝑔2) with a random CCF pair (𝑓 ccf
1

, 𝑓 ccf
2
)

and get

Advro-indiffSponge2′ [𝑔1,𝑔2 ] (A) ≤ Advro-indiff
Sponge2′ [ 𝑓 ccf

1
,𝑓 ccf
2
] (A)

+
��
Pr[A 𝑓 ccf

1
,𝑓 ccf
2 ⇒ 1] − Pr[A𝑔1,𝑔2 ⇒ 1]

�� . (3)

Note that the above probability difference is specific to the adversary

A and its strategy. We know that this difference can never be

higher than the actual statistical distance between the input-output

distributions of the 𝑞𝑃 queries to (𝑓 ccf
1

, 𝑓 ccf
2
) and (𝑔1, 𝑔2).

Let A be a query bounded adversary making 𝑞1 many queries

to the first oracle and 𝑞2 many queries to the second such that

𝑞1 + 𝑞2 = 𝑞𝑃 . Let Θ𝑓 = (Θ𝑋 ,Θ𝑌,𝑓 ) = ({𝑋𝑖 }𝑞𝑃𝑖=1, {𝑌
𝑓

𝑖
}𝑞𝑃
𝑖=1
}) and

Θ𝑔 = (Θ𝑋 ,Θ𝑌,𝑔) = ({𝑋𝑖 }
𝑞𝑃
𝑖=1

, {𝑌𝑔

𝑖
}𝑞𝑃
𝑖=1
}) be the random variables

for the input-output distributions of the 𝑞𝑃 queries with any ad-

versarial choice of oracle order to (𝑓 ccf
1

, 𝑓 ccf
2
) and (𝑔1, 𝑔2), respec-

tively. Here 𝑋𝑖 and 𝑌𝑖 represent the input and output of the 𝑖𝑡ℎ

query to the corresponding oracle, respectively. Θ𝑋 takes val-

ues from S𝑋 = (Fb𝑝 )𝑞𝑃 whereas Θ𝑌,𝑓 and Θ𝑌,𝑔 take values from

S𝑌 = (Fb𝑝\L)𝑞𝑃 . Let S = S𝑋 × S𝑌 and Sccf ⊆ S be the set of all

possible 𝑞𝑃 input-output tuples for oracles (𝑓 ccf
1

, 𝑓 ccf
2
) i.e., the set

of all possible capacity-collision-free query-response tuples. We get��
Pr[A 𝑓 ccf

1
,𝑓 ccf
2 ⇒ 1] − Pr[A𝑔1,𝑔2 ⇒ 1]

��
≤ SD(Θ𝑓 ,Θ𝑔) =

1

2

∑︁
𝜃 ∈S
| Pr[Θ𝑓 = 𝜃 ] − Pr[Θ𝑔 = 𝜃 ] |

=
1

2

∑︁
𝜃 ∈Sccf

| Pr[Θ𝑓 = 𝜃 ] − Pr[Θ𝑔 = 𝜃 ] |

+ 1

2

∑︁
𝜃 ∈S\Sccf

|0 − Pr[Θ𝑔 = 𝜃 ] | .

Here the last equality holds as by definition, Θ𝑓 only returns out-

puts from Sccf . Now, since by design A does not make trivial

queries we know that the 𝑞𝑃 outputs of 𝑔1 and 𝑔2 are each sampled

uniformly and independently at random from Fb𝑝\L and hence

for 𝜃 = (𝜃𝑋 , 𝜃𝑌 ), we get Pr[Θ𝑔 = 𝜃 ] = Pr[Θ𝑋 = 𝜃𝑋 ∧ Θ𝑌,𝑔 =

𝜃𝑌 ] = Pr[Θ𝑋 = 𝜃𝑋 ]/|S𝑌 |. Similarly, for a given query-tuple 𝜃𝑋 ,

we also know that the corresponding 𝑞𝑃 response-tuple 𝜃𝑌 w.r.t.

𝑓 ccf
1

and 𝑓 ccf
2

is sampled uniformly at random from the set of all

possible capacity-collision-free response tuples that correspond

to the query tuple 𝜃𝑋 , i.e., from the set S𝜃𝑋ccf,𝑌 ⊆ S𝑌 defined as

{ 𝑗 | (𝑖, 𝑗) ∈ Sccf and 𝑖 = 𝜃𝑋 } which implies that Pr[Θ𝑓 = 𝜃 ] =
Pr[Θ𝑋 = 𝜃𝑋 ] · Pr[Θ𝑌,𝑓 = 𝜃𝑌 | Θ𝑋 = 𝜃𝑋 ] = Pr[Θ𝑋 = 𝜃𝑋 ]/|S𝜃𝑋ccf,𝑌 |.
This gives us

1

2

∑︁
𝜃 ∈Sccf

| Pr[Θ𝑓 = 𝜃 ] − Pr[Θ𝑔 = 𝜃 ] | + 1

2

∑︁
𝜃 ∈S\Sccf

|0 − Pr[Θ𝑔 = 𝜃 ] |

=
1

2

( ∑︁
𝜃 ∈Sccf

Pr[Θ𝑋 = 𝜃𝑋 ] ·
(

1

|S𝜃𝑋ccf,𝑌 |
− 1

|S𝑌 |

)
+

∑︁
𝜃 ∈S\Sccf

Pr[Θ𝑋 = 𝜃𝑋 ]
|S𝑌 |

)
=

1

2

∑︁
𝜃𝑋 ∈S𝑋

Pr[Θ𝑋 = 𝜃𝑋 ] ·
( ∑︁
𝜃𝑌 ∈S

𝜃𝑋
ccf,𝑌

(
1

|S𝜃𝑋ccf,𝑌 |
− 1

|S𝑌 |

)
+

∑︁
𝜃𝑌 ∈S𝑌 \S

𝜃𝑋
ccf,𝑌

1

|S𝑌 |

)
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=
1

2

∑︁
𝜃𝑋 ∈S𝑋

Pr[Θ𝑋 = 𝜃𝑋 ] ·
(
|S𝜃𝑋ccf,𝑌 |

(
1

|S𝜃𝑋ccf,𝑌 |
− 1

|S𝑌 |

)
+
(
|S𝑌 | − |S𝜃𝑋ccf,𝑌 |

)
1

|S𝑌 |

)
=

∑︁
𝜃𝑋 ∈S𝑋

Pr[Θ𝑋 = 𝜃𝑋 ] ·
(
1 −
|S𝜃𝑋ccf,𝑌 |
|S𝑌 |

)
≤ max

𝜃𝑋 ∈S𝑋

(
1 −
|S𝜃𝑋ccf,𝑌 |
|S𝑌 |

) ∑︁
𝜃𝑋 ∈S𝑋

Pr[Θ𝑋 = 𝜃𝑋 ]

= max

𝜃𝑋 ∈S𝑋

(
1 −
|S𝜃𝑋ccf,𝑌 |
|S𝑌 |

)
. (4)

Let 𝑄 = |Fb𝑝\L| = 𝑝b − Δ and therefore, |S𝑌 | = 𝑄𝑞𝑃
. Further,

since S𝜃𝑋ccf,𝑌 is a set of capacity-collision-free response tuples with

each tuple containing 𝑞𝑃 many elements from Fb𝑝\L, we have

min𝜃𝑋 ∈S𝑋 {|S
𝜃𝑋
ccf,𝑌 |} = (𝑄 − 1 · 𝑝

r) (𝑄 − 3 · 𝑝r) (𝑄 − 5 · 𝑝r) · · · (𝑄 −
(2𝑞𝑃 − 1) · 𝑝r). This bound comes from the case when the capac-

ity part of every input and output of 𝑞𝑃 queries is unique which

reduces S𝜃𝑋ccf,𝑌 to its minimum size. Combining these results with

Exp. 4, we get

SD(Θ𝑓 ,Θ𝑔) ≤ 1 −
∏𝑞𝑃

𝑖=1
(𝑄 − (2𝑖 − 1) · 𝑝r)

𝑄𝑞𝑃

= 1 −
𝑞𝑃∏
𝑖=1

(
1 − 2𝑖 − 1

𝑄𝑝−r

)
≤ 1 −

(
1 −

𝑞𝑃∑︁
𝑖=1

2𝑖 − 1
𝑄𝑝−r

)
=

𝑞2
𝑃

𝑄𝑝−r
. (5)

Here the last inequality holds from the following observation: For

two positive numbers 𝑎1 and 𝑎2,

2∏
𝑖=1

(1 − 𝑎𝑖 ) = (1 − 𝑎1) (1 − 𝑎2) = 1 − 𝑎1 − 𝑎2 + 𝑎1𝑎2 ≥ 1 −
2∑︁

𝑖=1

𝑎𝑖 .

Now, combining Exp. 1, 2, 3 and 5 together gives us for 𝑞𝑃 ≤ 𝑝c/2

Advro-indiffSponge2[𝜋 ] (A) ≤ Advro-indiff
Sponge2′ [ 𝑓 ccf

1
,𝑓 ccf
2
] (A) +

𝑞𝑃 (𝑞𝑃 − 1)
2𝑝b

+ 𝑞𝑃Δ
𝑝b
+

𝑞2
𝑃
𝑝r

𝑝b − Δ
. (6)

We are now left with bounding the term Advro-indiff
Sponge2′ [ 𝑓 ccf

1
,𝑓 ccf
2
] (A).

We note that the above inequality holds for any value of Δ; however,
we are only interested in the smallest value of Δ for which the above

upper bound minimizes.

Reordering Input Space. We recall that in Sponge2′, the
inputs are post-padded with minimum number of zeros to make

the input rate aligned as shown in Fig. 3 (b). We define a new

variant of Sponge2′ named Sponge2† where the padded zeros

are pulled to the start of the message (see Fig. 4). For example,

a message 𝑀 = [𝑥1, 𝑥2, . . . , 𝑥r+r0+2] of size r + r0 + 2 elements

is padded as [𝑥1, 𝑥2, . . . , 𝑥r0 , 𝑥r0+1 . . . , 𝑥r+r0+2, ⟨0⟩, ⟨0⟩, . . . , ⟨0⟩]
with r − 2 postpadded zeros when processed under

Sponge2′ whereas the same message would become

[⟨0⟩, ⟨0⟩, . . . , ⟨0⟩, 𝑥1, 𝑥2, . . . , 𝑥r0 , 𝑥r0+1 . . . , 𝑥r+r0+2] with r − 2

prepadded zeros when processed under Sponge2†.

Figure 4: Sponge2† (block diagram) with prepadding.

We stress that the hash functions Sponge2′ and Sponge2† only differ
in the padding rules and there is a bijective mapping between both

of these padding rules. This implies that the output distributions of

these two hash functions is identical and hence provide the same

security (by indifferentiability from an RO). More concretely, we

have

Advro-indiff
Sponge2′ [ 𝑓 ccf

1
,𝑓 ccf
2
] (A) = Advro-indiff

Sponge2† [ 𝑓 ccf
1

,𝑓 ccf
2
] (A)

≤ | Pr[ASponge2† [ 𝑓 ccf
1

,𝑓 ccf
2
],𝑓 ccf

1
,𝑓 ccf
2 ⇒ 1]

− Pr[ARO,𝑆1,𝑆2 ⇒ 1] | (7)

where 𝑆1 and 𝑆2 are two oracles defined to simulate adversarial-

query response for 𝑓 ccf
1

, 𝑓 ccf
2

in the ideal world. Note that the above

expression is an inequality instead of an equality as 𝑆1 and 𝑆2
may not necessarily be the best simulators to define the advantage

tightly.

Defining Simulators. In order to show that Sponge2† is indif-
ferentiable from an RO, we need to construct two simulators 𝑆1 and

𝑆2 to model 𝑓 ccf
1

and 𝑓 ccf
2

in the ideal world, respectively.

Let for any b-element vector𝑋 with b = r+c,𝑋 r
and𝑋 c

represent

the first r and the last c elements (as a vector) of 𝑋 . In other words,

𝑋 = [𝑋 r, 𝑋 c]. We define 𝑆2 = 𝑓 ccf
2

and 𝑆1 as shown in Fig. 5. In the

algorithmic description of 𝑆1,U is a set of pairs of the form (𝛼, 𝛽)
where 𝛼 is a c-element vector and 𝛽 is an arbitrary size vector. We

setU = {} before A makes its first query.

For a fresh primitive query 𝑆1 (𝑋 ) = 𝑌 of A, an entry (𝛼, 𝛽) is
added toU where 𝛼 represents the last c elements of the output 𝑌

whereas 𝛽 represents the longest message whose hash output can

be constructed using the already made 𝑆1 queries (including the

current query) with a condition that the final 𝑆1 call of this hash is

𝑆1 (𝑋 ).
Note that 𝑆1 and 𝑓 ccf

1
differs in the generation of top r elements of

the output, however, in both cases these r elements are sampled
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1: function S1(X)

2: Y ← f ccf
1 (X)

3: β ← [ ]
4: for i← 0 to r + r0 − 1 do
5: if [X[r + r0 − i], . . . , X[b− 1]] = [⟨0⟩i, ⟨i⟩, ⟨0⟩c−r0−1] then ▷ case when X is
6: β ← [X[0], . . . , X[r + r0− i−1]] the first primitive
7: Y r ← RO(β) input in a hash call
8: end if
9: end for
10: if ∃ (α′, β′) ∈ U with α′ = Xc then ▷ case when X is
11: β ← [β′, Xr] some primitive
12: Y r ← RO(β) input in a hash call
13: end if
14: α← Y c

15: U ← U ∪ {(α, β)}
16: Y ← [Y r, Y c]
17: return Y
18: end function

Fig. 5: The Simulator Algorithm S1.

Note that S1 and f ccf
1 differs in the generation of top r elements of the output,

however, in both cases these r elements are sampled uniformly at random from
Fp for each value of X. This implies (S1, S2) is indistinguishable from (f ccf

1 , f ccf
2 ).

Indifferentiability from an RO. We first define the set L consisting re-
stricted outputs for both primitives (introduced above for Exp. 2) to sim-
plify the remaining analysis as the set of all possible first primitive call in-
puts of Sponge2†. More concretely, L = {X ∈ Fb

p | for some i ∈ [0, r + r0 −
1], [X[r + r0 − i], . . . , X[b − 1]] = [⟨0⟩i, ⟨i⟩, ⟨0⟩c−r0−1]}. With L defined, we get

∆ = |L| = ∑r+r0−1
i=0 pr+r0−i = (1 + (p− 1)−1)(pr+r0 − 1).

Let us refer the first oracle in both worlds (i.e., Sponge2† in the real and
RO in the ideal world) as the hash oracle and the second and third oracles in
both worlds as the forward and backward primitive oracles, respectively. It is
easy to notice that when the forward and backward primitives are restricted to
return outputs only from Fb

p\L and are capacity-collision-free, A can compute a
hash oracle output only by either constructing the same using the old forward
primitive query-response pairs or by making a fresh hash oracle query. We call
the former type of queries, constructed queries and the latter type of queries,
direct queries.

We emphasize here that the backward primitive calls become useless for A
as they can’t be used to replace the forward primitive calls in any hash query.
This holds as backward primitive queries never return outputs that belong to
L or have capacity collisions with forward primitive query outputs (as they are
capacity-collision-free).

Note that in the real world, all constructed and direct hash queries are con-
sistent as per the definition of Sponge2† i.e., on same message they both return
same outputs. Similarly, in the ideal world, with the defined simulator S1, all
constructed and direct hash queries are consistent as per the definition of S1. See

Figure 5: The Simulator Algorithm 𝑆1.

uniformly at random from F𝑝 for each value of 𝑋 . This implies

(𝑆1, 𝑆2) is indistinguishable from (𝑓 ccf
1

, 𝑓 ccf
2
).

Indifferentiability from an RO. We first define the set

L consisting restricted outputs for both primitives (introduced

above for Exp. 2) to simplify the remaining analysis as the set of

all possible first primitive call inputs of Sponge2†. More concretely,

L = {𝑋 ∈ Fb𝑝 | for some 𝑖 ∈ [0, r + r0−1], [𝑋 [r + r0−𝑖], . . . , 𝑋 [b−
1]] = [⟨0⟩𝑖 , ⟨𝑖⟩, ⟨0⟩c−r0−1]}. With L defined, we get Δ = |L| =∑r+r0−1
𝑖=0

𝑝r+r0−𝑖 = 𝑝 (𝑝r+r0 − 1)/(𝑝 − 1).
Let us refer the first oracle in both worlds (i.e., Sponge2† in the

real and RO in the ideal world) as the hash oracle and the second

and third oracles in both worlds as the forward and backward

primitive oracles, respectively. It is easy to notice that when the

forward and backward primitives are restricted to return outputs

only from Fb𝑝\L and are capacity-collision-free, A can compute a

hash oracle output only by either constructing the same using the

old forward primitive query-response pairs or by making a fresh

hash oracle query. We call the former type of queries —constructed
queries and the latter type of queries —direct queries.

We emphasize here that the backward primitive calls become

useless forA as they can’t be used to replace the forward primitive

calls in any hash query. This holds as backward primitive queries

never return outputs that belong to L (i.e., the set of restricted

outputs for primitives) or have capacity collisions with forward

primitive query outputs (as they are capacity-collision-free).

Note that in the real world, all constructed and direct hash

queries are consistent as per the definition of Sponge2† i.e., on
same message they both return same outputs. Similarly, in the

ideal world, with the defined simulator 𝑆1, all constructed and di-
rect hash queries are consistent as per the definition of 𝑆1. See

Fig. 6 for an example showing how a constructed query in the

ideal world is consistent with its corresponding direct query. The

example shows that for some input 𝑀 , the constructed query re-

turns RO(unpad𝑖 ( [𝑃0, . . . , 𝑃ℓ ])) whereas the direct query returns

RO(𝑀) and since by definition, 𝑀 = unpad𝑖 ( [𝑃0, . . . , 𝑃ℓ ]), we
have RO(unpad𝑖 ( [𝑃0, . . . , 𝑃ℓ ])) = RO(𝑀). Here, for any vector 𝑋 ,

unpad𝑖 ( [⟨0⟩𝑖 , 𝑋 ]) = 𝑋 and ⊥, otherwise.

This means the only way left for A to differentiate

(Sponge† [𝑓 ccf
1
], 𝑓 ccf

1
, 𝑓 ccf
2
) from (RO, 𝑆1, 𝑆2) is by distinguishing

the direct query outputs of Sponge† [𝑓 ccf
1
] (i.e., hash outputs in the

real world) from the direct query outputs of RO (i.e., hash outputs

in the ideal world). Now, since 𝑓 ccf
1

is a capacity-collision-free

function, we have that for distinct direct queries to Sponge† [𝑓 ccf
1
],

the last 𝑓 ccf
1

calls will always have a unique input and thus the rate

part of its output (which is the final hash output) will be sampled

uniformly at random from Fr𝑝 . Similarly, since the outputs of RO
are also sampled uniformly at random from Fr𝑝 for distinct direct

queries, we have that

Advro-indiff
Sponge2† [ 𝑓 ccf

1
,𝑓 ccf
2
] (A) = 0 (8)

We finalize the indifferentiability bound by combining Exp. 6, 7

and 8 with Δ = (1 + (𝑝 − 1)−1) (𝑝r+r0 − 1) and get

Advro-indiffSponge2[𝜋 ] (A) ≤
𝑞𝑃 (𝑞𝑃 − 1)

2𝑝b
+ 𝑞𝑃

𝑝c−r0

(
1 + 1

𝑝 − 1

)
+
𝑞2
𝑃

𝑝c

(
1 + 𝑝−c+r0+1

𝑝 − 1 − 𝑝−c+r0+1
)

(9)

and thus the result of Theorem 6.1. □

8 DISCUSSION AND CONCLUSION

Arithmetization oriented hash functions are a crucial building block

in ZKP systems deployed in the real world (e.g., blockchain L2

rollups). In many cases, the efficiency of the hash function is one of

the major cost drivers for the entire system. Consequently, optimiz-

ing certain aspects of the hash function results in a net improvement

to the entire system. Work in this field employed the permutation
based cryptography paradigm to construct Sponge-based hash func-

tions. When employing this paradigm, a designer comes up with a

suitable permutation; i.e., a carefully crafted permutation admitting

no distinguishable properties that is efficient to evaluate on the

target architecture. Then, the permutation is used to instantiate a

Sponge-function, resulting in a versatile algorithm that can be used

as a hash function.
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Figure 6: Simulator 𝑆1 returning consistent outputs with RO queries. Here for any vector 𝑋 , unpad𝑖 ( [⟨0⟩𝑖 , 𝑋 ]) = 𝑋 and ⊥,
otherwise.

Indeed, most work in this domain focused on designing more

efficient permutations (for some definition of efficiency). In this

work we take a different approach and focus instead on the Sponge

construction itself. As a first contribution, which is of indepen-

dent interest, we generalize the sponge construction to GSponge.
We then argue the security of the generalized construction with

a formal indifferentiability proof. While the proof alone does not

yet provide any efficiency gain to the concrete system, it is much

simpler than the original proof for Sponges [8] and, in our opinion,

simpler to grasp by real-world practitioners. As an additional bene-

fit, we show that the Generalized Sponge can be safely instantiated

with permutations defined over large prime fields. This latter result

has been known as folklore for the original Sponge Construction;

however, we are not aware of any paper formally proving it.
1

Thanks to GSponge’s generic structure, we found two micro-

optimizations for deployed sponges. First, we introduce a new type

of padding rule based on zero-padding and domain-separated inputs.

This padding rule never extends the message length by a full rate

size block, and consequently, saves one full permutation call in

cases where the unpadded message’s length is already an integral

multiple of the rate (e.g., in 2-to-1 Merkle-tree hashing) without

increasing the proof generation time in zkVMs like Polygon Miden.

Secondly, we show that in the first permutation call it is possible

to absorb up to c/2 more elements, again resulting in saving a

permutation call for some message lengths, without any loss in the

security size, i.e., still ≈ c log
2
𝑝/2 bits.

While not asymptotic, these micro-optimizations can be used to

improve the hashing time of practical use-cases (e.g., Merkle-tree

hashing, short messages, etc.). As a vision for future work, we hope

that this paper will inspire further work on modes of operation

tailored for permutations defined over large prime fields.

1
As an exception, we note the SAFE API [21] providing a proof for one, somewhat

contrived, instance of the Sponge construction.
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